SubjectsSubjects(version: 970)
Course, academic year 2012/2013
   Login via CAS
Mathematics for Cartographers - MS710P14
Title: Matematika pro kartografy
Guaranteed by: Institute of Applied Mathematics and Information Technologies (31-710)
Faculty: Faculty of Science
Actual: from 2009 to 2013
Semester: summer
E-Credits: 5
Examination process: summer s.:
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Note: enabled for web enrollment
Guarantor: RNDr. Milan Štědrý, CSc.
Teacher(s): RNDr. Milan Štědrý, CSc.
Opinion survey results   Examination dates   Schedule   
Annotation -
A course for students of cartography and geoinformatics explaining the
basic notions of differential geometry of curves and surfaces, spherical
trigonometry, graph theory, and simple mappings in the complex plane.
It is a continuation of Mathematics for geographers S710P02.
Last update: Hladíková Hana, RNDr., Ph.D. (26.11.2019)
Literature - Czech

Rektorys, K.: Přehled užité matematiky. Prometheus, 1995.

Budínský, B.: Analytická a diferenciální geometrie. SNTL, 1983

Struik, D.J.: Lectures on Classical Differential Geometry.

Addison-Wesley Publishing Company, Inc., Reading, London, 1961.

Kreyszig, E.: Introduction to Differential Geometry and Riemannian Geometry.

University of Toronto Press, 1968.

Kuntz, E.: Kartennetzentwurfslehre, Grunlagen und Anwendungen, Wichmann,

Karlruhe, 1990.

Last update: Hladíková Hana, RNDr., Ph.D. (26.11.2019)
Syllabus -

1. Introductory topics: Taylor's theorem, vector functions and differential

operations, analytic geometry in 2D and 3D, vector and scalar product,

more dimensional integration, basic curves and surfaces.

2. Curves in the plane and in the space, general parametrization, tangent,

length of a curve. Formulae of Frenet, curvature and torsion. Osculating,

normal and rectifying planes, order of contact of curves. Derivation of

radii of curvature for an ellipsoid of revolution.

3. The first and second fundamental form of a surface. Curves on a surface.

Meusnier's and Euler's theorem. The total and mean curvature.

Geodesic curvature and geodesic lines. Classification of mappings between

surfaces.

4. Basic formulae of spherical trigonometry.

5. Several elementary notions from the graph theory.

6. Functions of complex variable, derivative, analytic functions. Simple

mapping in complex plane.

Last update: Hladíková Hana, RNDr., Ph.D. (26.11.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html