

Product operators

Product operators

 $2 I_{1y} I_{2z}$

 $I_{1x} \sin \Omega_1 t$

 $-I_{1y} \cos \pi Jt \cos \Omega_{1}t + 2I_{1x}I_{2z} \sin \pi Jt \cos \Omega_{1}t + I_{1x} \cos \pi Jt \sin \Omega_{1}t + 2I_{1y}I_{2z} \sin \pi Jt \sin \Omega_{1}t$ $\underbrace{180_{y}}_{-I_{1y}} -I_{1y} \cos \pi Jt \cos \Omega_{1}t + 2(-I_{1x})(-I_{2z}) \sin \pi Jt \cos \Omega_{1}t - I_{1x} \cos \pi Jt \sin \Omega_{1}t + 2I_{1y}(-I_{2z}) \sin \pi Jt \sin \Omega_{1}t$

 $\begin{array}{c} \Omega_{1}t \\ \hline \\ \end{array} \begin{array}{c} \left(-I_{1y}\cos\Omega_{1}t + I_{1x}\sin\Omega_{1}t\right)\cos\pi Jt\cos\Omega_{1}t & -\left(I_{1x}\cos\Omega_{1}t + I_{1y}\sin\Omega_{1}t\right)\cos\pi Jt\sin\Omega_{1}t \\ + 2\left(I_{1x}\cos\Omega_{1}t + I_{1y}\sin\Omega_{1}t\right)I_{2z}\sin\pi Jt\cos\Omega_{1}t & -2\left(I_{1y}\cos\Omega_{1}t - I_{1x}\sin\Omega_{1}t\right)I_{2z}\sin\pi Jt\sin\Omega_{1}t \end{array} \right) \end{array}$

 $= -I_{1y} \cos \pi Jt \cos^2 \Omega_1 t - I_{1y} \cos \pi Jt \sin^2 \Omega_1 t + 2I_{1x} I_{2z} \sin \pi Jt \cos^2 \Omega_1 t + 2I_{1x} I_{2z} \sin \pi Jt \sin^2 \Omega_1 t$

 $= -I_{1y} \cos \pi J t + 2I_{1x} I_{2z} \sin \pi J t$ chemical shift is refocused

πJt

Spin echo Two hydrogens WITH J interaction $I_1 \qquad I_2 \qquad I_H$ $\Omega_1 \qquad \Omega_2$ IH

 $-I_{1y} \cos \pi Jt + 2I_{1x}I_{2z} \sin \pi Jt \xrightarrow{\pi Jt} -(I_{1y} \cos \pi Jt - 2I_{1x}I_{2z} \sin \pi Jt) \cos \pi Jt$ $+(2I_{1x}I_{2z} \cos \pi Jt + I_{1y} \sin \pi Jt) \sin \pi Jt$ $= -I_{1y} (\cos^2 \pi Jt - \sin^2 \pi Jt) + 2I_{1x}I_{2z} 2 \cos \pi Jt \sin \pi Jt$ $= -I_{1y} \cos 2\pi Jt + 2I_{1x}I_{2z} \sin 2\pi Jt$ $= -I_{1y} \cos \pi J2t + 2I_{1x}I_{2z} \sin \pi J2t$

> evolution due to J-coupling over time 2t

chemical shift is refocused

J coupling remains active

Homework: analysis with Product Operators

*I*₁, *I*₂

chemical shift refocused J interaction for 27

chemical shift for 2τ J interaction for 2τ

au

au

chemical shift refocused J interaction for 2τ

chemical shift of S for 2τ , for I it is refocused

J interaction refocused

INEPT

Insensitive Nuclei Enhanced by Polarization Transfer

INEPT

Insensitive Nuclei Enhanced by Polarization Transfer

INEPT

Insensitive Nuclei Enhanced by Polarization Transfer

Refocused INEPT

DEPT

Distorsionless Enhancement by Polarization Transfer

DEPT

Distorsionless Enhancement by Polarization Transfer

Polarization transfer and inverse detection

Signal intensity proportional to the difference of populations of energy levels $\beta_I = rac{\gamma_I B_0}{k_B T}$

How to increase the signal:noise ratio?

