NMR hardware Radiofrequency pulses Signal processing

NMR spectrometer

Components

- Magnet
 electromagnet × superconducting
- Console with electronics
 Analog × fully digitized
- NMR probe

Classic × chilled

Control computer

Bruker ~2015

NMR spectrometer- magnet

Superconducting coil in double Dewar vessel • Electric current is high, it can exceed 150 A (depending on the magnetic field) Does not need a power source after charging Need to refill cryoliquids to maintain superconductivity vacuum chamber liquid nitrogen tank liquid helium tank bore He He field coil sample Cross-section of a superconductor (composed of fibers)

NMR spectrometer – probe

Probe head with coils

Sample in rotor

Probe tuning elements

for precise frequency adjustment

NMR spectrometer – schema

Radiofrequency pulses

We already know:

- The RF field is perpendicular to the static magnetic field
- frequency ω_{RF} should be the same as the Larmor frequency
- We decompose the linearly oscillating RF field into two circularly polarized components with constant magnitude
- Only the component in resonance with Larmor's precession is effective -y
- In rotating coordinate system, this component is constant, magnitude B_1
- Magnetization rotates around the direction of B_1 with angular frequency $\omega_1 = \gamma B_1$
- During the pulse of length τ_p , magnetization rotates by angle $\varphi = \omega_1 \tau_p$

New:

Direction of B_1 in rotating frame is determined by the initial phase of the RF pulse, it can therefore be changed at our will

Radiofrequency pulses

Off-resonance effects

Frequency of pulse ω_{RF} is fixed

Ζ

- nuclei have different chemical shifts, different frequencies
- Strictly speaking, they're out of resonance
- In a rotating frame, they are affected by an effective field B_1^{eff}
- B_1^{eff} determines the axis and frequency of magnetization rotation B_1^{eff}

Assuming fictional force due to non-inertial frame (Coriolis force)

nealiaible to B_1

- RF pulse has different effects depending on the signal offset
- for homogeneous excitation, off-resonance effects must be suppressed

good RF pulse for broadband excitation

has a high amplitude (large B_1)

Pulse length and excitation profile

$$arphi = \omega_1 au_p$$

Selective and shaped pulses

Fourier transform

- analyses periodicities in time signal
- · converts the time domain to frequency
- is a linear transformation, i.e. it preserves intensity of individual signal components

Problem of determining the sign of the precession frequency

The Fourier transform reflects this uncertainty in the spectrum

Quadrature detection

FID, Spectrum, and Phase Correction

Spectrum and phase correction

Signal Digitization

Spectral window

It is determined by the choice of c) ٠ offset and spectral width It should include all signals in the • spectrum A poorly chosen window can lead Folded ٠ to false signals The form of the artefact depends b) ٠ on the design of the spectrometer Modern spectrometers with digital ٠ filters eliminate this problem Wrapped a) correctly captured spectrum 5 3 2 6 4 ppm

Spectral resolution

Acquisition time (length of FID)

$$t_{acq} = N_p \Delta t$$

Number of points in FID

After the Fourier transform, the resulting spectrum has the same number of points(N_p)

Resolution in spectrum depends on length of acquisition time

$$\Delta f = rac{\mathrm{sw}}{N_p} = rac{1}{\Delta t \; N_p} = rac{1}{t_{acq}}$$

Short acquisition time Δf Δf Δf t_{acq} t_{acq} t_{acq} bad resolution 0.12 8.0 0.25 0.5 20 10 Hz Long acquisition time **Excellent** resolution 0.5 1.0 1.0 2.0 0.25 4.0

Choice of acquisition time

Adding zeros to FID

Artificially extending the acquisition time

 Δf

0.5

Instead of picking up noisy data, the part of the FID without a signal is digitally replaced by zeros
 TD "SI"

- More points in the spectrum
- Fourier transform performs data interpolation

improved resolution

Signal apodization

- Data at the beginning of FID, where the NMR signal is highest, are of greater importance
- The data at the end of FID contains a lower signal and can be suppressed

Noise suppression at the cost of widening peak lines in the spectrum

Signal apodization

- The weight function is combined with the natural decay of FID (T2 relaxation) and thus affects the signal width
- Decreasing exponential weight function leads to expansion of signals
- Increasing exponential can narrow the signals, but "truncation" needs to be treated

Narrowing of signals in the spectrum at the cost of increased noise level

Signal apodization

- Apodization can be used to suppress clipped FID artifacts
- We artificially suppress FID so that it smoothly transitions into a zero signal (at the cost of expanding peaks)

Signal amplification

- For optimal use of the dynamic range of the ADC converter
- For detecting both intense and weak signals at the same time, it is advantageous that the strongest signal reaches the maximum level of the converter
- The range of the converter is given in bits (hence the number of converter levels)
- Higher transmitter range leads to lower noise after digitization

Receiver gain – Signal amplification before detection

Coherent summation

- To improve the signal-to-noise ratio, the measurement is repeated and summed up
- NMR signal is always the same and thus proportional to the number of repetitions N_R
- The noise is random and partially cancels out, proportional to $\sqrt{N_R}$

Stability and homogeneity of magnetic field

Stability over time

Field-frequency lock

- the position of the signal must be maintained for repeated measurements,
- Lock system independent spectrum (deuterium) is monitored and changes in the magnetic field are compensated for

Homogeneity over sample volume Shim

- for narrow peaks, the Larmor frequency needs to be the same throughout the sample volume
- magnet equipped with a system of coils for homogeneity

adjustment

čas