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How did we start to study the statistics?

Descriptive statistics Maximum likelihood
Frequency methods The least squares

Unbiasedness, consistency, Sufficiency, efficiency,
asymptotic normality sequential tests
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How did we start to study the statistics ?

A small historical chimney-corner

Could You assign some years or persons to this development ?
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When did we start to study the statistics?

Pierre-Simon Adrien-Marie Carl Friedrich
Laplace Legendre Gauss

1749 –1827 1752 – 1833 1777 – 1855

AndrejFrancis Ysidro Ronald Aylmer
Nikolajevič

Edgeworth Fisher
Kolmogorov

1845 – 1926 1890 – 1962 1903 – 1987

The first statistical society in the world

- STATISTICAL SOCIETY in LONDON -

founded on February 21, 1834

the Czech Statistical Society

- Prague, March 29, 1990
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Pierre-Simon Adrien-Marie Carl Friedrich
Laplace Legendre Gauss

1749 –1827 1752 – 1833 1777 – 1855

AndrejFrancis Ysidro Ronald Aylmer
Nikolajevič

Edgeworth Fisher
Kolmogorov

1845 – 1926 1890 – 1962 1903 – 1987

Jaroslav Hájek

1926 – 1974
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How did we start to study the statistics ?

Repeating from previous lecture - small deviation from exact model can cause ...

Huber, P. J. (1980): Robust Statistics.
New York: J.Wiley and Sons.

sn =

[
1
n

n∑
i=1

(xi − x̄n)2

] 1
2

dn =
π

2n

n∑
i=1

|xi − x̄n|

F (x) = (1− ε)Φ(x) + εΦ(
x
3

)

AREF (ε) = lim
n→∞

varF sn/IE2
F sn

varF dn/IE2
F dn
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Small deviation from exact model can cause ...

ε 0 0.001 0.002 0.05

ARE(ε) 0.876 0.948 1.016 2.035

So, 5% of contamination → dn is two times better than sn.
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How did we start to study the statistics ?

Is 5% contamination too much or too little?

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, W. A. Stahel. (1986):
Robust Statistic - The Approach Based on Influence Curve.

New York: J.Wiley and Sons.

E. g. Switzerland has 6% of errors in mortality tables.
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How did we start to study the statistics ?

Is the efficiency really important or a bit misleading?

Fisher, R. A. (1922): On the mathematical foundation of theoretical statistics.
Philos. Trans. Roy. Soc. London Ser. A 222, 309 - 368.

lim
n→∞

varN(0,1)(xn)

vart(ν)(xn)
= 1− 6

ν(ν + 1)

lim
n→∞

varN(0,1)(s2
n)

vart(ν)(s2
n)

= 1− 12
ν(ν + 1)
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How did we start to study the statistics ?

Is the efficiency really important or a bit misleading?

lim
n→∞

varN(0,1)(Tn)

vart(ν)(Tn)
t9 t5 t3

xn 0.93 0.80 0.50

s2
n 0.83 0.40 0!
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How did we start to study the statistics ?

How far is Student density from the normal one ?

THE BLUE CURVE IS STANDARD NORMAL WHILE THE RED ONE IS THE

STUDENT’S WITH 3 DEGREES OF FREEDOM.

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
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How did we start to study the statistics ?

How far is Student density from the normal one ?

THE BLUE CURVE IS STANDARD NORMAL WHILE THE RED ONE IS THE

STUDENT’S WITH 9 DEGREES OF FREEDOM.
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How did we start to study the statistics ?

A tacit hope in ingnoring deviations from ideal models was that they
would not matter; that statistical procedures which were optimal under
strict model would still be approximately optimal under the approximate
model. Unfortunately, it turned out that this hope was often drastically
wrong; even mild deviations often have much larger effects than were
anticipated by most statisticians.

John W. Tukey (1960)
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How did we start to study the statistics ?

Let’s study general reasons causing it - returning a few slides back.

Maximum likelihood - solving an extremal problem

θ̂(ML,n) = arg max
θ∈Θ

∏n
i=1 f (xi , θ)

θ̂(ML,n) = arg max
θ∈Θ

∑n
i=1 log (f (xi , θ))

Let again f (x , µ, σ2) = 1√
2πσ

exp
{

(x−µ)2

2σ2

}
and consider only µ

⇒ µ̂(ML,n) = arg min
µ∈R

{∑n
i=1 (xi − µ)2

}
The observations with large (xi − µ)2

have a large influence on solution.



Repetition of findings from previous lecture
Main goals of robust statistics and problems to be solved

How did we start to study the statistics ?

Evidently, low robustness is consequence of quadratic objective function
We have such objective function.

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Conclusion - instead of solving

µ̂(ML,n) = arg min
µ∈R

∑n
i=1 (xi − µ)2

we should solve

µ̂(ML,n) = arg min
µ∈R

∑n
i=1 ρ (xi − µ) .
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How did we start to study the statistics ?

Let’s study general reasons causing it - an alternative way.

Maximum likelihood - solving the normal equations

θ̂(ML,n) = arg max
θ∈Θ

∏n
i=1 f (xi , θ) = arg max

θ∈Θ

∑n
i=1 log (f (xi , θ))

θ̂(ML,n) = arg
θ∈Θ

∑n
i=1

1
f (xi ,θ)

· ∂f (xi ,θ)
∂θ

= 0

Let again f (x , µ, σ2) = 1√
2πσ

exp
{

(x−µ)2

2σ2

}
, i. e. ∂f (xi ,θ)

∂µ
= f (xi , µ, σ

2) · (xi−µ)

σ2

and consider only µ ⇒ µ̂(ML,n) = arg
µ∈R

{∑n
i=1 (xi − µ) = 0

}
The same conclusion:

The observations with large |xi − µ|
have a large influence on solution.
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How did we start to study the statistics ?

Equivalently, low robustness is consequence of identity in normal equations

We have such influence function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2
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−1

−0.5

0

0.5

1

1.5

2

Conclusion - instead of solving∑n
i=1 (xi − µ) = 0

we should solve ∑n
i=1 ψ (xi − µ) = 0.
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Equivalently, low robustness is consequence of identity in normal equations

We should employ such influence function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Conclusion - instead of solving∑n
i=1 (xi − µ) = 0

we should solve ∑n
i=1 ψ (xi − µ) = 0.



Repetition of findings from previous lecture
Main goals of robust statistics and problems to be solved

How did we start to study the statistics ?

Equivalently, low robustness is consequence of identity in normal equations
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Conclusion - instead of solving∑n
i=1 (xi − µ) = 0

we should solve ∑n
i=1 ψ (xi − µ) = 0.
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How did we start to study the statistics ?

Motivation by historical experience

1 Ancient Egyptians and medieval French,

2 Sir John William Rayleigh, Nobel Prize for Physics, 1904
(William Ramsay, Nobel Prize in chemistry, 1904)

- 7 out of 15 atomic weight of “nitrogen”⇒ argon,

3 J. B. Leon Foucalt - 19. century,
Albert Abraham Michelson - 1920 improved the method

- 12 out of 16 measurements of light velocity.
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How did we start to study the statistics ?

Motivation by historical experience

1 Ancient Egyptians and medieval French,

2 Sir John William Rayleigh, Nobel Prize for Physics, 1904
(William Ramsay, Nobel Prize in chemistry, 1904)

- 7 out of 15 atomic weight of “nitrogen”⇒ argon,

3 J. B. Leon Foucalt - 19. century,
Albert Abraham Michelson - 1920 improved the method

- 12 out of 16 measurements of light velocity.

(Remember Foucalt pendulum, 1851.)
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The main goals of robust statistics

1 To describe the structure best fitting the bulk of data.

2 To identify deviating data points (outliers) or deviating
substructures for further treatment, if desired.

3 To identify and give a warning about highly influential data points
(leverage points).

4 To deal with unsuspected serial correlation, or more generally,
with deviations from the assumed correlation structures.
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The four main types of deviations from the strict parametric model

1 The occurence of gross errors.

2 Rounding and grouping.

3 The model may have been conceived as an approximation
anyway, e.g., by virtue of CLT.

4 Apart of distributional assumptions, the assumption of
independence (or of some specific correlation structure) may only
be approximately fulfilled.
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How have we attempted to cope with these tasks ?

Three approaches:

1 Huber’s alternative to classical point estimation
via neighbourhoods.

2 Huber’s alternative to classical testing hypotheses via capacities.

3 Hampel’s infinitesimal approach via Prokhorov metric
and influence function.
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Huber’s proposal to robustify point estimation

1 Denote by H the set of all distribution functions (d. f.’s).

2 Select one fix Fθ0 ∈ FΘ = {Fθ}θ∈Θ ⊂ H
(called the parent or central distribution),

fix also some H ∈ H∗ ⊂ H and δ > 0. Then put

Gθ0,δ,H(x) = (1− δ)Fθ0 (x) + δH(x).

3 Fix ε ∈ (0,1) and put
GΘ,ε,H∗ = {Gθ,δ,H}θ∈Θ,δ≤ε,H∈H∗ .

4 Use GΘ,ε,H∗ instead of FΘ

in the usual approach of classical statistics.
(An example on the next slide)
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Huber’s proposal to robustify point estimation - an example

1 Previous lecture has recalled ML estimation

θ̂(ML,n) = arg max
θ∈Θ

log

{
n∏

i=1

f (xi , θ)

}
, (1)

2 specifying example with f (x , µ, σ2) = 1√
2πσ

exp
{
− (x−µ)2

2σ2

}
.

3 Putting for Θ = (R × R+) and θ = (µ, σ2)

FΘ =
{

IN(x , µ, σ2)
}

(µ,σ2)∈(R×R+)

we can write (1) as

θ̂(ML,n) = (µ̂(ML,n), σ̂(ML,n)) = arg max
f∈FΘ

log

{
n∏

i=1

f (xi , θ)

}
.

(The item 3 is rewritten on the next slide.)
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θ̂(ML,n,ε) = (µ̂(ML,n,ε), σ̂(ML,n,ε)) = arg max
g∈GΘ,ε

log

{
n∏

i=1

g
(
xi , µ, σ

2, δ,H
)}

where g
(
xi , µ, σ

2, δ,H
)

is the density of

Gθ,δ,H = Gµ,σ2,δ,H = (1− δ)Φ(x , µ, σ2) + δH(x)

and GΘ,ε,H∗ = {Gθ,δ,H}θ∈Θ,δ≤ε,H∈H∗ .

For details see:
Huber, P. J. (1964): Robust estimation of a location parameter.

Ann. Math. Statist. 35, 73–101.
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Huber’s proposal to robustify testing hypotheses

The proposal has the same character as the previous one but instead of
considering the neighbourhoods of type

GΘ,ε,H∗ = {Gθ,δ,H}θ∈Θ,δ≤ε,H∈H∗ .

Peter Huber employed Choquet’s capacities.

For details about the capacities see:
Choquet, G. (1954): Theory of capacities.

Annales de l’institut Fourier, 5 (1954), 131-295.

For details about the tests see:
Huber, P. J. (1965): A robust version of the probability ratio test.

Ann. Math. Statist. 36, 1753–1758.

A generalized Neyman-Pearson lemma
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Hampel’s approach - a bit more mathematics

The Hampel’s approach is based on two basic ideas and a nice fact:

1 The first idea - any estimator can be interpreted as
a function T (say) from the space of all distribution

functions H to the parameter space Θ (say).

2 The second idea - the function T can be studied by
an infinitesimal calculus of limits, derivaties, integrals, etc.

3 A nice fact - the Kolmogorov-Smirnov result - the empirical
d.f. converge uniformly to the “true” underlying one.

Let’s start - by an illustration - with the last topic,
an exact mathematics will be delivered in some next lecture.
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Convergence of emp. d. f. and Kolmogorov-Smirnov distance

Empirical distribution function - 50 observations.
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Kolmogorov, A. (1933):
Sulla determinazione empirica di una legge di distribuzionc

1st. Ital. Attuari. G. 4. 1 - 11.
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Smirnov, N. (1939): On the estimation of discrepancy between
empirical curves of distribution for two independent samples.

Bull. Math. Univ. Moscow 2, 3 - 14.
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Convergence of emp. d. f. and Kolmogorov-Smirnov distance

Empirical distribution function - observations.
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Víšek, J. Á (2011):
Empirical distribution function under heteroscedasticity.

Statistics 45, 497-508.
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Making preparation steps for explanation of Hampel’s approach

Now, let us turn to the first idea:

Any estimator can be interpreted as
a function T (say) from the space of all distribution

functions H to the parameter space Θ (say).

Prior to it we need to recall something about the integration of functions.
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A preliminary intermezzo - the idea of integral

All of us learnt that the integral, say
∫ b

a g(y)dy , is defined as follows:

Let a = y0 < y1 < y2 < ... < yn = b be an (equdistant) division of the
interval [a,b] and for any i ∈ {1,2, ...,n} let ỹi ∈ [yi−1, yi ]. Then put∫ b

a
g(y)dy = lim

n→∞

n∑
i=1

g(ỹi )(yi − yi−1).

The integral represents the area under the function g(y).

We say that the integral is computed
with respect to Lebesgue measure yi − yi−1

- it is indicated by dy .
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A preliminary intermezzo - the idea of the mean value of r. v.

Let F be a d. f., f its density (in a general sense covering continuous as
well as discrete r. v.’s) and Y random variable distributed according to F .
Then the mean value of Y is given as

IEF Y =

∫ ∞
−∞

y f (y) dy = lim
n→∞

n∑
i=1

ỹi f (ỹi )(yi − yi−1).

Notice the subindex in IEF
indicating that the mean value was taken with respect to d. f. F .

But f (ỹi )(yi − yi−1) ≈ F (yi )− F (yi−1).

So, we can see the mean value also as

IEY = lim
n→∞

n∑
i=1

ỹi

(
F (yi )− F (yi−1)

)
=

∫ ∞
−∞

ydF (y).
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ỹi f (ỹi )(yi − yi−1).

Notice the subindex in IEF
indicating that the mean value was taken with respect to d. f. F .
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But Fn(yi )− Fn(yi−1) is either 1
n or 0, i. e.

IEFn Y =
1
n

n∑
i=1

ỹi

where ỹi ’s are points at which is jump equal to 1
n .

Finally, let’s recall that we have denoted the set of all d. f.’s by H
(in what follows we’ll need it).
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The Hampel approach

Estimator as a function of distribution function

1 Consider e. g. x̄ = 1
n

∑n
i=1 xi .

2 Let Fn(.) ∈ H be an empirical d. f. corresponding to the observa-

tions x1, x2, ..., xn, then T (Fn) =
∫

xdFn(x) = 1
n

∑n
i=1 xi = x̄

(because Fn(x)has positive dFn(x) of size 1
n just at the points x1, x2, ..., xn).

3 If we plug-in instead of empirical d. f. the underlying d. f. F ,
we obtain a function(al) T : H → Rk T (F ) =

∫
xdF (x) = IEX

which is a theoretical counterpart to the estimator.
4 Typically, for any estimator we have a theoretical conterpart so that

we can write θ̂(n) = Tn(Fn) and θ = T (F ), where Fn is the empirical
d. f. corresponding to the underlying d. f..

Realize that Fn → F (Kolmogorov-Smirnov)
and immediately is clear why we adopt this idea.

If T (.) is coninuous (at the point F ∈ H),
we have θ̂(n) = T (Fn) → T (F ) = θ.
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Repetition of findings from previous lecture
Main goals of robust statistics and problems to be solved

Making preparation steps for explanation of Hampel’s approach

Now, let us turn to the second idea:

The function T

can be studied by an infinitesimal calculus of limits,
derivaties, integrals, etc.

Prior to it we need to carry out some preliminary explanation
about the uncountably dimensional vector spaces.
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Main goals of robust statistics and problems to be solved

Countable versus uncountable - notion of cardinality

1 Two sets have the same cardinality (mohutnost),
if they have the “same number of elements”.

2 The “same number of elements” means that
we can find a one-to-one mapping of one set on the other.

3 An example


A
B
C
D


←→
←→
←→
←→


W
X
Y
Z


4 An example with infinite number of objects is on the next slide

- consider the set of all positive integers
and the set of all positive rational numbers.
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Main goals of robust statistics and problems to be solved

Positive integers versus positive rational numbers

So, let’s study cardinalities of the set of positive integers, say N ,
and of set of positive rational numbers, R.

1 Imagine interval [0,1].
2 Inside the interval [0,1] there are at least all rationals of the type:

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 , etc. up to infinity.

3 So, we have much more positive rational numbers
than the positive integers, haven’t we?

Surprising correct answer is:
The set of positive integers

has the same cardinality as the set of positive rational numbers.

Realize that although our conclusion was wrong,
we proved that #N ≤ #R.

Let’s star to construct the mapping.
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Positive integers versus positive rational numbers

The set of positive rational numbers, say R
(some rationals are repeated in this table, e. g. 1

2 and 2
4 , etc):

1
1

2
1

3
1

4
1

5
1

6
1 ...

1
2

2
2

3
2

4
2

5
2

6
2 ...

1
3

2
3

3
3

4
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5
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6
3 ...

1
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4
4

5
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4 ...

1
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2
5

3
5

4
5

5
5

6
5 ...

1
6

2
6

3
6

4
6

5
6

6
6 ...

1
7

2
7

3
7

4
7

5
7

6
7 ...

...
...

...
...

...
... ...

Let’s star to construct the mapping.
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Positive integers versus positive rational numbers

Starting the construction of mapping R on N - the first step:
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Positive integers versus positive rational numbers
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... ...

Q.E.D.
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Positive rational numbers versus positive irrational numbers

What about cardinalities of the set of positive rational numbers R
and of set of positive irrational numbers, say I.

1 Between any two positive rational numbers
is at least one positive irrational number.

2 Between any two positive irrational numbers
is at least one positive rational numbers.

3 So, we have the same number of positive rational numbers
and of positive irrational numbers, haven’t we?

Surprising correct answer is:
The set of positive irrational numbers

has (much) larger cardinality than the set of positive rational numbers.
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Main goals of robust statistics and problems to be solved

Cardinality of R (positive rationals), I (positive irrationals) and RE (positive

real numbers)

1 We already know - R is countable.

2 If I be countable→ RE is countable.

3 However, we’ll prove that RE is uncountable.

4 Hence I is uncountable.
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Cardinality of R (positive rationals), I (positive irrationals) and RE (positive

real numbers)

1 We already know - R is countable.

2 If I be countable→ RE is countable.

3 However, we’ll prove that RE is uncountable.

4 Hence I is uncountable.
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Famous diagonal argument by Georg Cantor (1845 - 1918)

Let’s assume that the set of real numbers between 0 and 1 is countable.
Assume that we have all real numbers between 0 and 1,

ordered into a sequence:
(the upper index indicates position of number in question in this sequence)

0. c(1)
1 c(1)

2 c(1)
3 c(1)

4 c(1)
5 c(1)

6 c(1)
7 c(1)

8 ...

0. c(2)
1 c(2)

2 c(2)
3 c(2)

4 c(2)
5 c(2)

6 c(2)
7 c(2)

8 ...

0. c(3)
1 c(3)

2 c(3)
3 c(3)

4 c(3)
5 c(3)

6 c(3)
7 c(3)

8 ...

0. c(4)
1 c(4)

2 c(4)
3 c(4)

4 c(4)
5 c(4)

6 c(4)
7 c(1)

8 ...

...
...

...
...

...

Let’s rewrite this scheme on the next slide.
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Famous diagonal argument by Georg Cantor (1845 - 1918)

0. c(1)
1 c(1)

2 c(1)
3 c(1)

4 c(1)
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6 c(1)
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8 ...
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1 c(4)

2 c(4)
3 c(4)

4 c(4)
5 c(4)

6 c(4)
7 c(1)

8 ...

...
...

...
...

...

Let’s create a new real number (the upper index (n) indicates that it is
“new” real number):

0. c(n)
1 6=c(1)

1 c(n)
2 6=c(2)

2 c(n)
3 6=c(3)

3 c(n)
4 6=c(4)

4 c(1)
5 6=c(5)

5 c(1)
6 6=c(6)

6 c(1)
7 6=c(7)

7 c(1)
8 6=c(8)

8 ...

This new number does not coincide with any number in the sequence
and it is a contradiction with the assumption that
we had all real numbers in the sequence we studied above.
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More shocking facts !!

We are going to prove a much more surprising result
and what is nearly shocking - it can be done by trivial means.
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Main goals of robust statistics and problems to be solved

Cardinality (denote by #) of finite sets and sets of their subsets

Consider a finite set A = {1,2, ...,n}, i. e. #A = n.

How much subsets it has (including the whole set A and the empty set)?

The answer is hinted by the scheme :

Label of element 1 2 3 4 ... n
The element is not selected into subsample 0 0 0 0 ... 0
The element is selected into subsample 1 1 1 1 ... 1

The set of all subsets, say A, has 2#A elements ! So, #A < #A.

Does the last inequality hold also for infinite sets,
i. e. is it still true that #A < 2#A ?
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The cardinality of a set and the set of all its subsets.

1 Consider any set A and all its subsets, say A.

2 Assume that there is a one-to-one mapping of A and A,
say κ : A → A - i. e.

∀(s ∈ A) ∃(S ∈ A) so that S = κ(s).

3 Denife a set S̃ = {s ∈ A : s /∈ κ(s)}.

4 As the mapping is one-to-one,
there is a point s̃ such that κ(s̃) = S̃.

5 Assume that s̃ ∈ S̃. But point 3 then implies that s̃ /∈ S̃.

6 So, assume that s̃ /∈ S̃. But point 3 then implies that s̃ ∈ S̃.

We proved that it holds generally that #A < #A.
The set of real numbers is (more or less) the same thing as the set of

all subsets of rational numbers.
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1 Consider any set A and all its subsets, say A.

2 Assume that there is a one-to-one mapping of A and A,
say κ : A → A - i. e.

∀(s ∈ A) ∃(S ∈ A) so that S = κ(s).

3 Denife a set S̃ = {s ∈ A : s /∈ κ(s)}.

4 As the mapping is one-to-one,
there is a point s̃ such that κ(s̃) = S̃.

5 Assume that s̃ ∈ S̃. But point 3 then implies that s̃ /∈ S̃.

6 So, assume that s̃ /∈ S̃. But point 3 then implies that s̃ ∈ S̃.

We proved that it holds generally that #A < #A.
The set of real numbers is (more or less) the same thing as the set of

all subsets of rational numbers.
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Making preparation steps for explanation of Hampel’s approach

DEFINITION

1 We say that the set is finite, if it has finite number of points.

2 We say that the set A is countable if its cardinality
is the same as cardinality of the set of (all positive) integers.

3 Otherwise, we say that the set is uncountable.

EXAMPLES:
• The sets of (all) rational numbers is countable.

• The sets of (all) irrational numbers is uncountable.

• The sets of (all) real numbers is uncountable.
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Making preparation steps for explanation of Hampel’s approach

Recalling the notion of vector space

1 Consider p-dimensional vector space, say U
→ then any vector u ∈ U has coordinates ui , i ∈ {1,2, ...,p}.

2 We can imagine that we have for any point u ∈ U one mapping from
the set {1,2, ...,p} to the real line, i. e. for point u we have the
mapping u(.) such that if we plug in some i from {1,2, ...,p}, we
obtain the i-th coordinate of u.
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Making preparation steps for explanation of Hampel’s approach

Slightly generalize the notion of vector space

1 Consider countably-dimensional vector space, say Z
→ then any vector z ∈ Z has coordinates zi ’s, i ∈ {1,2, ...}.

2 We can again imagine that we have for any point z ∈ Z one mapping
from the set {1,2, ...} to the real line, i. e. for point z we have the
mapping z(.) such that if we plug in some i from {1,2, ...}, we obtain
the i-th coordinate of z.
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Making preparation steps for explanation of Hampel’s approach

Slightly generalize the notion of vector space

1 Finally, consider uncountably-dimensional vector space, say F
→ then any vector F ∈ F has coordinates F (x), x ∈ R, say.

2 We can again imagine that we have for any point of F one mapping
from the set R to the real line, i. e. for point F we have the mapping
F (.) such that if we plug in some x from R, we obtain the x-th
coordinate of F .

An example
In the previous lecture we met with the space of all distribution function H.
It is uncountably-dimensional vector space. Every d.f. F , including the
empirical ones, is one point in it - convolution.
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