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... broken orthogonality condition

... collinearity

Ignoring the orthogonality condition - breaking the consistency of β̂
(OLS,n)

We have discussed it in details in the tenth lecture.

We have robustified the Instrumental Variables
by means of implicit weighting, i. e. we have defined

Instrumental Weighted Variables (IWV)
as a solutions of the normal equations:

n∑
i=1

w (Fn(|r`(β)|)) Zi (Yi − X ′i β) = 0.

But there are still at least two questions:

1 Firstly, can we robustify Instrumental Variables by some other way,
employing some other idea of robustification

of the classical econometric methods?
2 Secondly (and more importantly), how we learn that we should use IWV?
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Answering the first question

We can define Instrumental M-estimators, say β̂(IM,n), as a solution of:

n∑
i=1

Ziψ

(
Yi − X ′i β

σ̂n

)
= 0

where Zi ’s have to be selected so that IEZ1ψ(e1σ
−1
e1 ) = 0

and |IEZ1j (X1j − IEX1j )| as large as possible for all j = 1,2, ...,p.
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... broken orthogonality condition

... collinearity

Answering the second question

Let’s make some preparation steps for the Hausman test
Under hypothesis of orthogonality:

Las

(√
n(β̂(IM,n) − β̂(M,n))

)
= N (0,CH)

with

CH = IEψ2(e1σ
−1
e1

)

[
Q−1

Z IE {Z1Z ′i } [Q−1
Z ]′ −Q−1IE−1ψ′(e1σ

−1
e1

)

]
.

(Notice that the second term in parentheses is β̂(M,n))

- this is a preparatory considerations for Hausman test.)
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Answering the second question

Let’s continue in the preparation steps for the Hausman test:
Under alternative:

Las(
√

n
(
β̂(IM,n) − β̂(M,n) −Q−1IE

[
X1ψ(e1σ

−1
e1

)
])

) = N (0,CA)

with
CA = Q−1 [IE {ψ2(e1σ

−1
e1

)X1X ′1
}

−IE
{
ψ(e1σ

−1
e1

)X1
}

IE
{
ψ(e1σ

−1
e1

)X ′1
}]

Q−1

−Q−1IE{X1Z ′1ψ
2(e1σ

−1
e1

)}[Q−1
Z ]′

−Q−1
Z IE{Z1X ′1ψ

2(e1σ
−1
e1

)}[Q−1]′

+IE
{
ψ2(e1σ

−1
e1

)
}

Q−1
Z IE {Z1Z ′1} [Q−1

Z ]′.

Under hypothesis we can show that CA −→ CH .
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... collinearity

How we learn that the orthogonality condition is broken?

The classical econometrics offered the Hausman test.

Put
q =
√

n
(
β̂(IV ,n) − β̂(LS,n)

)
, X̂ = Z (Z ′Z )

−1 Z ′X

V =

(
1
n

X̂ ′X̂
)−1

−
(

1
n

X ′X
)−1

and λ = IE {X ′1e1}V−1IE {X1e1} .

Then

Las

(
q′V−1q

s2

)
= χ2(p, λ).

(Notice that under the hypothesis χ2 is central,
while under the alternative we have some parameter λ of noncentrality.)
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Hausman specification test for M-estimators

Theorem: Under hypothesis & alternative:

Put q̃ =
√

n
(
β̂(IM,n) − β̂(M,n))

)
and W̃ = q̃′

[
CA
]−1 q̃. Then

Las(W̃ ) = χ2(p, λ̃)

with

λ̃ = IE
[
X ′1ψ(e1σ

−1
e1

)
] [

Q−1]′ [CA]−1
Q−1IE

[
X1ψ(e1σ

−1
e1

)
]
.

For details see:

Víšek, J. Á. (1998): Robust specification test.
Proceedings of Prague Stochastics’98 (eds. Hušková, M. & Lachout, P.),

Union of Czechoslovak Mathematicians and Physicists, 581 - 586.

Víšek, J. Á. (1998): Robust instrumental variables and specification test.
PRASTAN 2000, Proceedings of conference

“Mathematical statistics, numerical mathematics and their application”
(eds. Kalina, M., Minárová, M., Nánásiová, O.), 133 - 164.

(I believe that for LWS the same result can be derived
- but an exact proof is still to be written.)
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... broken orthogonality condition

... collinearity

Recognizing the collinearity and estimating the model

Condition number

η =
max1≤i≤p

√
λi

min1≤i≤p
√
λi

where λi ’s are eigenvalues of X ′X .

If η is larger than a treshold, ... .

Hoerl, A. E., R. W. Kennard (1970):
Ridge regression: Biased estimation for nonorthogonal problems.

Technometrics 12, 55 - 68.

Hoerl, A. E., R. W. Kennard (1970):
Ridge regression: Application to nonorthogonal problems.

Technometrics 12, 69 - 82.

β̂(R,n) = (X ′X + δ · II)−1 X ′Y ,
Biased - but δ 6= 0 is not the sufficient explanation ... .

Generally, (X ′X + δ · II)−1 X ′Y can’t be equal to (X ′X)−1 X ′Y
because when X ′X is regular matrix, also X ′X + δ · II is regular.
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Estimating the model under collinearity

An alternative estimator:

The (ordinary) least squares with constraints

β̂(OLS,n,C) = arg min
β∈Rp

{
n∑

i=1

(Yi − X ′i β)
2

; C · β + κ = 0

}

They can be employed at least in two situations:

1 Depressing the influence of the collinearity
and

2 improving the combinations of forecasts.

A few words about the second possibility

14 / 82
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Combining forecasts to reach an improvement

Bates, J. M., C. W. J. Granger (1969): The combination of forecasts.
Operational Research Quarterly, 20, 451-468.

Clemen, R. T. (1986):
Linear constraints and efficiency of combined forecasts.

Journal of Forecasting, 6, 31 - 38.

C =

[
1 0 . . . 0
0 1 . . . 1

]
, κ =

[
0
1

]
i. e. β̂

(LS,C,n)
1 = 0

p∑
j=2

β̂
(LS,C,n)
j = 1.
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Combining forecasts to reach an improvement

Hendry, D. F., M. P. Clements (2004): Pooling of forecasts.
Econometrics Journal 7, is 1, 1 - 31.

Araújo, M. B., M. New (2007):
Ensemble forecasting of species distributions.

Trends in Ecology & Evolution, 22, 42-47.
(both having more than 150 references)

Jore, A. S., J. Mitchell, S. P. Vahey (2010):
Combining forecast densities from VARs with uncertain instabilities.

Special Issue of J. of Applied Econometrics 25, 621-634.

Wonga, K. K. F., H. Song, S. F. Witta and D. C. Wua (2007):
Tourism forecasting: To combine or not to combine?

Tourism Management 28, 1068-1078.
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Estimating the model under collinearity

We are looking for:

β̂(OLS,n,C) = arg min
β∈Rp

{
n∑

i=1

(Yi − X ′i β)
2

; C · β + κ = 0

}
.

If κ (can be assumed) random, we can write (for some δ 6= 0)[
Y
0

]
=

[
X
δ · C

]
· β +

[
ε

δ · κ

]

β̂(OLS,n,C) =

{[
X
δ · C

]′
·
[

X
δ · C

]}−1

·
[

X
δ · C

]′
·
[

Y
0

]
β̂(OLS,n,C) =

[
X ′X + δ2 · C′C

]−1 · X ′Y .

(To keep a possibility to follow the explanation, a part of slide is rewritten on the next slide.)
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

Estimating the model under collinearity

We are looking for:

β̂(OLS,n,C) = arg min
β∈Rp

{
n∑

i=1

(Yi − X ′i β)
2

; C · β + κ = 0

}
(1)

and it gives
β̂(OLS,n,C) =

[
X ′X + δ2 · C′C

]−1 · X ′Y . (2)

So it seems that β̂(OLS,n,C) is a special case of β̂(R,n)

= (X ′X + δ · II)−1 X ′Y , or vice versa.

Why is this conclusion wrong ?
Also the derivation of β̂(OLS,n,C) needs some attention !!

The answer on the second sentence is straightforward:
Notice that (1) doesn’t depend on δ while (2) does.

(As κ is not too much specified, the solution of (1) is also solution for

β̂(OLS,n,C) = arg min
β∈Rp

{ n∑
i=1

(
Yi − X ′i β

)2
; δ · C · β + κ̃ = 0

}
for some κ̃ and it affects of course β̂(OLS,n,C,δ).

The answer on the question is a bit more complicated:
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

Estimating the model under collinearity

Consider the constraints Cβ + κ = 0 (it implies that C has p columns).

What is (or what can be) the number of rows of C
(or, equivalently, the dimension of κ) ?

The rows of C are (linearly) independent,
otherwise we delete some of them.

Denote the number of rows of C, i. e. the rank(C) by `.

If ` = p, then the p-tuple of equations C · β + κ = 0
identifies uniquely β and hence

the whole extremal problem has solution given by constraints.
It is a nonsence,hence

` < p.
We have of course also dim(κ) = `.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

Solving the “extremal problem with constraints”

So we have C of type `× p. Then there is a matrix C̃

(of type p − `× p) so that
[

C
C̃

]
is regular and C′ · C̃ = 0.

Let’s give an example.

Let
C =

[
1 1 1 1 1

]
.

The matrix C̃ can be selected as

C̃ =


1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

 .

20 / 82
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

Solving the “extremal problem with constraints”

Now, let β∗ fulfills constraints, i. e. Cβ∗ + κ = 0 and define the mapping
β(λ) : Rp−` → {β ∈ Rp : Cβ + κ = 0} by

β(λ) = C̃′ · λ+ β∗.

• Let’s verify that it is mapping into {β ∈ Rp : Cβ + κ = 0}.
We have for any λ ∈ Rp−` C · β(λ) = CC̃′︸︷︷︸

0

·λ+ Cβ∗ = κ.

• The mapping is one-to-one.
Assume that for a pair λ1, λ2 ∈ Rp−` β(λ1) = β(λ2)

which means that C̃′ · (λ1 − λ2) = 0.
As the matrix C̃ is of full rank, we have λ1 − λ2 = 0.

• The mapping is on {β ∈ Rp : Cβ + κ = 0}.
We have for any β̄ ∈ {β ∈ Rp : Cβ + κ = 0} C

(
β̄ − β∗

)
= 0.

Hence β̄ − β∗ ⊥ C.
So, ∃λ ∈ Rp−` such that β̄ − β∗ = C̃′ · λ (combination of columns of C̃′),

i. e. β̄ = C̃′ · λ+ β∗.
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... broken orthogonality condition

... collinearity

An example

Let β0 = (1,−2, 3,−4, 5)′ and consider the constraint:

β̂1 + β̂2 + β̂3 + β̂4 + β̂5 = 3.
Then

C =
[

1 1 1 1 1
]

and κ =
[

3
]
.

The matrix C̃ and β∗ can be selected as

C̃ =


1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

 and β∗ = [ 1 − 2 3 − 4 5 ]′ .
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Solving the “extremal problem with constraints”(continued)

Let again β∗ fulfills constraints, i. e. Cβ∗ + κ = 0 and put

Ỹ = Y − Xβ∗, X̃ = X · C̃′.

Then for any λ ∈ Rn−` and β(λ) = C̃′ · λ+ β∗ we have:

∀ i Ỹi − X̃ ′i λ = Yi − X ′i β
∗ − X ′i · C̃′λ = Yi − X ′i

(
C̃′λ+ β∗

)
= Yi − X ′i β(λ).

It means that

λ̂(OLS,n) = arg min
λ∈Rp−`

{
n∑

i=1

(
Ỹi − X̃ ′i λ

)2
}

= arg min
λ∈Rp−`

{
n∑

i=1

(Yi − X ′i β(λ))
2

}

= arg min
β̄∈{β∈Rp :Cβ+κ=0}

{
n∑

i=1

(
Yi − X ′i β̄

)2

}
.
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Robustifying the Ordinary Least squares with constraints

It means that for

λ̂(OLS,n) = arg min
λ∈Rp−`

{
n∑

i=1

(
Ỹi − X̃ ′i λ

)2
}
,

β̂(λ) = C̃′ · λ̂(OLS,n) + β∗ solves

β̂(λ) = arg min
β∈Rp

{
n∑

i=1

(Yi − X ′i β)
2

; C · β + κ = 0

}
.
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Estimating robustly the model under collinearity

Robustifying the least squares with constraints:

The least weighted squares with constraints

β̂(LWS,n,C) = arg min
β∈Rp

{
n∑

i=1

w
(

i − 1
n

)
r2
(i)(β); C · β + κ = 0

}

They can be calculated as LWS without constraints for data
(

Ỹ , X̃
)

- that’s all.
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Numerical study

We have generated 1000 data-sets, as follows{ {
X (k)

i , e(k)
i , ε

(k)
i

}100

i=1

}1000

k=1
and

{ {
σ

(k)
i

}100

i=1

}1000

k=1

with X (k)
i =

(
X (k)

i1 ,X (k)
i2 ,X (k)

i3

)′
’s, e(k)

i ’s and ε(k)
i ’s normally distributed,

and σ(k)
i ’s uniformly distributed over [0.5, 3.5],

U(k)
ij = X (k)

ij , j = 1, 2, 3 and U(k)
i,3+` = 0.5 ∗ X (k)

(i,p−1−`) + 0.5 ∗ X (k)
(i,p−2−`) + η · ε(k)

i` ,

for ` = 1, 2, i = 1, 2, ..., 100, k = 1, 2, ..., 1000.

Then we calculated for

β0 = [ 1, −2, 3, −4, 5 ]′

W (k)
i =

p∑
j=1

U(k)
ij · β

0
j + e(k)

i · σ
(k)
i and employed data

{ {
W (k)

i ,U(k)
i

}100

i=1

}1000

k=1
.
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Numerical study (continued)

For each dataset we obtained, say{
β̂(index,k) = (β̂

(index,k)
1 , β̂

(index,k)
2 , ..., β̂

(index,k)
5 )′

}1000

k=1

for indeces OLS, LWS, LTS, OLSC, LWSC and LTSC an we refer

β̂
(index)
j =

1
1000

1000∑
k=1

β̂
(index,k)
j and M̂SE

(
β̂

(index)
j

)
=

1
1000

1000∑
k=1

(
β̂

(index,k)
j − β0

j

)2
.
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Employing one constraint

We will consider one constraint:

5∑
j=1

β̂j = 3.

Then
C =

[
1 1 1 1 1

]
and κ =

[
3
]
.

The matrix C̃ and β∗ can be selected as

C̃ =


1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

 and β∗ = [ 1 − 2 3 − 4 5 ]′ .

Notice that the rows of matrix C̃ are not orthogonal each to other.
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Numerical study (continued)

TABLE 1
1 The disturbances are heteroscedastic (0.5 ≤ σ2

i ≤ 3.5)
and independent from explanatory variables.

2 Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 41.25.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,

the weight function w had h = 85% and g = 95% of n.
4 The collinearity is depressed by one constraint condition (see previous slide).
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β̂OLS
(MSE(β̂OLS ))

1.00(0.808) −2.00(1.619) 3.01(0.855) −4.01(3.413) 5.00(3.228)

β̂LWS
(MSE(β̂LWS ))

1.02(0.851) −1.94(1.745) 3.04(0.966) −4.08(3.839) 4.96(3.378)

β̂LTS
(MSE(β̂LTS ))

1.03(0.868) −1.93(1.760) 3.05(0.961) −4.09(3.813) 4.94(3.455)

β̂OLSC
(MSE(β̂OLSC ))

1.00(0.797) −1.99(1.601) 3.01(0.839) −4.01(3.351) 5.00(3.187)

β̂LWSC
(MSE(β̂LWSC ))

1.03(0.829) −1.94(1.697) 3.04(0.912) −4.07(3.633) 4.94(3.303)

β̂LTSC
(MSE(β̂LTSC ))

1.03(0.851) −1.94(1.703) 3.03(0.946) −4.06(3.766) 4.94(3.387)

The other tables for the mean values of the condition numbers 1.16, 9.95, 19.95, 31.01,

32.79, 48.97, 61.22, 69.78 and 98.47 are available on http://samba.fsv.cuni.cz/˜

visek/Constraints_Heteroscedasticity_Numerical_Study/visek_NumericalStudy.
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What about to employing two constraints ?

Now we consider two constraints:
5∑

j=1

β̂j = 3 and β̂1 + β̂2 = −1.

Then
C =

[
1 1 1 1 1
1 1 0 0 0

]
and κ =

[
3
−1

]
.

The matrix C̃ and β∗ can be selected as

C̃ =

 1 −1 0 0 0
0 0 1 −1 0
0 0 1 0 −1

 and β∗ = [ 1 − 2 3 − 4 5 ]′ .

Notice that the rows of matrix C are not orthogonal each to other.
The same is true about the rows of C̃.
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Numerical study(continued)

TABLE 2
Nearly the same framework as in previous case - except of underlined.

1 The disturbances are heteroscedastic (0.5 ≤ σ2
i ≤ 3.5)

and independent from explanatory variables.

2 Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.79.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,

the weight function w had h = 85% and g = 95% of n.
4 The collinearity is depressed by two constraints (see previous slide).
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β̂OLS
(MSE(β̂OLS ))

1.00(0.559) −2.01(1.179) 2.98(0.609) −3.97(3.402) 5.00(2.224)

β̂LWS
(MSE(β̂LWS ))

1.02(0.543) −2.00(1.086) 2.99(0.546) −3.97(2.172) 4.96(2.154)

β̂LTS
(MSE(β̂LTS ))

1.01(0.557) −2.00(1.165) 2.99(0.594) −3.98(2.360) 4.97(2.219)

β̂OLSC
(MSE(β̂OLSC ))

1.01(0.115) −2.01(0.115) 2.99(0.455) −3.97(1.795) 4.98(0.449)

β̂LWSC
(MSE(β̂LWSC ))

1.01(0.108) −2.01(0.108) 2.99(0.425) −3.97(1.686) 4.98(0.425)

β̂LTSC
(MSE(β̂LTSC ))

1.01(0.112) −2.01(0.112) 2.99(0.444) −3.97(1.760) 4.98(0.443)

The other tables for the mean values of the condition numbers 1.16, 9.95, 19.95, 31.01,
41.25, 48.97, 61.22, 69.78 and 98.47 are available again on http://samba.fsv.cuni.cz/˜
visek/Constraints_Heteroscedasticity_Numerical_Study/visek_NumericalStudy.

The results are much better than in Table 1 - compare MSE’s.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

What about to employ two orthogonal constraints ?

Let β0 = (1,−2, 3,−4, 5)′ and consider two orthogonal constraints:

β̂1 + β̂2 = −1 and β̂3 + β̂4 = −1.

Then
C =

[
1 1 0 0 0
0 0 1 1 0

]
and κ =

[
−1
−1

]
.

The matrix C̃ and β∗ can be selected as

C̃ =

 1 −1 0 0 0
0 0 1 −1 0
0 0 0 0 1

 and β∗ = [ 1 − 2 3 − 4 5 ]′ .
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

How the transformation of variables looks like ? An example

We have
Ỹi = Yi − X ′i β

∗ and X̃i = C̃Xi

i. e.
X̃i1 = Xi1 − Xi2 , X̃i2 = Xi3 − Xi4 and X̃i3 = Xi5.

Finally,
β̂ = C̃′λ̂+ β∗

i. e.
β̂1 = λ̂1 + 1, β̂2 = −λ̂1 − 2, β̂3 = λ̂2 + 3

β̂4 = −λ̂2 − 4 and β̂5 = λ̂3 + 5.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

Numerical study(continued)

TABLE 3
Nearly the same framework as in previous case - except of underlined.

1 The disturbances are heteroscedastic (0.5 ≤ σ2
i ≤ 3.5)

and independent from explanatory variables.

2 Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.95.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,

the weight function w had h = 85% and g = 95% of n.
4 We have employed two orthogonal constraints (see previous slide).
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

β̂OLS
(MSE(β̂OLS ))

1.05(0.593) −1.91(1.167) 3.04(0.579) −4.08(2.297) 4.91(2.359)

β̂LWS
(MSE(β̂LWS ))

1.04(0.573) −1.93(1.065) 3.03(0.525) −4.06(2.076) 4.92(2.279)

β̂LTS
(MSE(β̂LTS ))

1.04(0.615) −1.91(1.174) 3.05(0.572) −4.11(2.275) 4.93(3.435)

β̂OLSC
(MSE(β̂OLSC ))

1.00(0.005) −2.00(0.005) 3.00(0.021) −4.00(0.021) 5.01(0.015)

β̂LWSC
(MSE(β̂LWSC ))

1.00(0.004) −2.00(0.004) 3.00(0.019) −4.00(0.019) 5.01(0.014)

β̂LTSC
(MSE(β̂LTSC ))

1.00(0.004) −2.00(0.004) 3.00(0.021) −4.00(0.021) 5.01(0.015)

The other tables for some other mean values of the condition numbers are available again on
http://samba.fsv.cuni.cz/˜visek/Constraints_Heteroscedasticity_Numerical_Study/visek_
NumericalStudy.

The results are again even much better than in Table 2 - compare MSE’s.

Hence we will keep these constraints in the rest of study.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous case - except of underlined.

1 The disturbances are heteroscedastic (0.5 ≤ σ2
i ≤ 3.5)

and independent from explanatory variables.

2 There is a collinearity,
the mean value of condition numbers was equal to 16.55.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 90% of n,

the weight function w had h = 65% and g = 90% of n.

4 We have employed two orthogonal constraints.

5 The 5% contamination by outliers Y (contaminated) = −2 ∗ Y (original).

38 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous case - except of underlined.

1 The disturbances are heteroscedastic (0.5 ≤ σ2
i ≤ 3.5)

and independent from explanatory variables.

2 There is a collinearity,
the mean value of condition numbers was equal to 16.55.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 90% of n,

the weight function w had h = 65% and g = 90% of n.

4 We have employed two orthogonal constraints.

5 The 5% contamination by outliers Y (contaminated) = −2 ∗ Y (original).

38 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous case - except of underlined.

1 The disturbances are heteroscedastic (0.5 ≤ σ2
i ≤ 3.5)

and independent from explanatory variables.

2 There is a collinearity,
the mean value of condition numbers was equal to 16.55.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 90% of n,

the weight function w had h = 65% and g = 90% of n.

4 We have employed two orthogonal constraints.

5 The 5% contamination by outliers Y (contaminated) = −2 ∗ Y (original).

38 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous case - except of underlined.

1 The disturbances are heteroscedastic (0.5 ≤ σ2
i ≤ 3.5)

and independent from explanatory variables.

2 There is a collinearity,
the mean value of condition numbers was equal to 16.55.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 90% of n,

the weight function w had h = 65% and g = 90% of n.

4 We have employed two orthogonal constraints.

5 The 5% contamination by outliers Y (contaminated) = −2 ∗ Y (original).

38 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous case - except of underlined.

1 The disturbances are heteroscedastic (0.5 ≤ σ2
i ≤ 3.5)

and independent from explanatory variables.

2 There is a collinearity,
the mean value of condition numbers was equal to 16.55.

3 The level of robustness was fixed:
the number of observations h taken into account by LTS was 90% of n,

the weight function w had h = 65% and g = 90% of n.

4 We have employed two orthogonal constraints.

5 The 5% contamination by outliers Y (contaminated) = −2 ∗ Y (original).

38 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

β̂OLS
(MSE(β̂OLS ))

0.02(5.943) −1.44(8.821) 3.41(4.669) −3.45(16.254) 4.10(19.377)

β̂LWS
(MSE(β̂LWS ))

1.00(0.160) −2.02(0.314) 2.99(0.164) −3.97(0.620) 5.01(0.612)

β̂LTS
(MSE(β̂LTS ))

0.99(0.170) −2.02(0.336) 2.99(0.182) −3.97(0.692) 5.02(0.652)

β̂OLSC
(MSE(β̂OLSC ))

0.25(0.958) −1.25(0.958) 2.38(1.639) −3.38(1.639) 3.66(3.231)

β̂LWSC
(MSE(β̂LWSC ))

1.00(0.005) −2.00(0.005) 3.00(0.023) −4.00(0.023) 5.01(0.019)

β̂LTSC
(MSE(β̂LTSC ))

1.00(0.006) −2.00(0.006) 3.00(0.028) −4.00(0.028) 5.01(0.023)

The other tables for some other mean values of the condition numbers are available again on
http://samba.fsv.cuni.cz/˜visek/Constraints_Heteroscedasticity_Numerical_Study/visek_
NumericalStudy.

The results are again even much better than in Table 2 - compare MSE’s.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous cases - except of underlined.

1 There is a collinearity,
the mean value of condition numbers was equal to 32.60.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

β̂OLS
(MSE(β̂OLS ))

0.22(16.606) −1.54(31.568) 2.12(18.144) −2.90(69.279) 3.72(64.889)

β̂LWS
(MSE(β̂LWS ))

1.06(0.636) −1.92(1.279) 3.01(0.622) −4.03(3.485) 4.88(2.541)

β̂LTS
(MSE(β̂LTS ))

1.04(0.686) −1.95(1.286) 3.00(0.653) −3.99(2.607) 4.91(2.700)

β̂OLSC
(MSE(β̂OLSC ))

0.27(0.915) −1.27(0.915) 2.34(1.848) −3.34(1.848) 3.62(3.488)

β̂LWSC
(MSE(β̂LWSC ))

1.00(0.005) −2.00(0.005) 3.00(0.026) −4.00(0.026) 5.00(0.021)

β̂LTSC
(MSE(β̂LTSC ))

1.00(0.006) −2.00(0.006) 3.01(0.030) −4.01(0.030) 5.00(0.024)

The other tables for some other level of contamination are available again on
http://samba.fsv.cuni.cz/˜visek/Constraints_Heteroscedasticity_Numerical_Study/visek_
NumericalStudy.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

What about leverage points.

TABLE 5
Nearly the same framework as in previous cases - except of underlined.

1 There is a collinearity,
the mean value of condition numbers was equal to 16.55.

2 The 5% contamination by leverage points

X (contaminated) = 3 ∗ X (original) , Y (contaminated) = −2 ∗ Y (original).
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... broken orthogonality condition

... collinearity

β̂OLS
(MSE(β̂OLS ))

−1.59(45.600) 0.68(81.603) 0.68(45.803) −1.53(155.949) 0.50(169.327)

β̂LWS
(MSE(β̂LWS ))

0.99(0.162) −2.01(0.312) 3.01(0.163) −4.01(0.634) 5.01(0.622)

β̂LTS
(MSE(β̂LTS ))

1.00(0.190) −2.00(0.323) 3.01(0.201) −4.01(0.745) 4.99(0.717)

β̂OLSC
(MSE(β̂OLSC ))

−1.86(10.474) 0.86(10.474) 0.70(13.424) −1.70(13.424) 0.52(27.070)

β̂LWSC
(MSE(β̂LWSC ))

1.00(0.005) −2.00(0.005) 3.00(0.026) −4.00(0.026) 5.00(0.021)

β̂LTSC
(MSE(β̂LTSC ))

1.00(0.007) −2.00(0.007) 3.01(0.037) −4.01(0.037) 4.99(0.028)

The other tables for some other level of contamination are available again on
http://samba.fsv.cuni.cz/˜visek/Constraints_Heteroscedasticity_Numerical_Study/visek_
NumericalStudy.
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http://samba.fsv.cuni.cz/˜visek/Constraints_Heteroscedasticity_Numerical_Study/visek_
NumericalStudy.
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TABLE 6
The same framework as in previous cases

- only the mean value of condition numbers was equal to 32.60.

β̂OLS
(MSE(β̂OLS ))
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β̂LTSC
(MSE(β̂LTSC ))

1.00(0.009) −2.00(0.009) 3.00(0.045) −4.00(0.045) 5.00(0.043)

The other tables for some other level of contamination are available again on
http://samba.fsv.cuni.cz/˜visek/Constraints_Heteroscedasticity_Numerical_Study/visek_
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Significance of explanatory variable - for the Least Weighted Squares

We are going to give an idea of deriving
the significance of individual regressor - two steps:

The first one (which we have already seen in the seventh lecture
- hence only a brief repetition):

The Least Weighted Squares β̂(LWS,n,W ) can be
- at any point of a basic probabily space (Ω,A,P) -

written as Weighted Least Squares β̂(WLS,n,W ,π).

The second one:

The classical derivation for significance of
individual regressor for OLS

can be generalised for the classical WLS β̂(WLS,n,W ,π).
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Showing that β̂(LWS,n) is β̂(LWS,n,π̂) ...

We have seen in the seventh lecture:

∀ (ω ∈ Ω) ∃ (π = π(ω) = {π1(ω), π2(ω), ..., πn(ω)}) so that

β̂(LWS,n,W )(ω) = arg min
β∈Rp

n∑
i=1

wi
(
Yπi − X ′πi

β
)2

= β̂(WLS,n,W ,π)(ω)

= arg min
β∈Rp

n∑
i=1

(
w

1
2

i Yπi − w
1
2

i X ′πi
β
)2
.

Notice the dependence of π on ω.

Let’s recall how we have found it.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Recalling several facts

Let P be the set of all permutations of integers {1,2, ...,n}.

For any π ∈ P, π = {π1, π2, ..., πn} let

Yπ = (Yπ1 ,Yπ2 , ...,Yπn )′ , Xπ = (Xπ1 ,Xπ2 , ...,Xπn )′ and επ = (επ1 , επ2 , ..., επn )′ .

Put

β̂(WLS,n,π) = (X ′πWXπ)
−1 X ′πWYπ and S2

π =
n∑

j=1

wi

(
Yπj − X ′πj

β̂(WLS,n,π)
)2
.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Deriving existence of β̂(LWS,n)

Then for any π ∈ P

S2
π =

n∑
j=1

wj

(
Yπj − X ′πj

β̂(WLS,n,π)
)2
≤ min

β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
. (3)

Let (Ω,A,P) be the basic Probability Space

and denote for any r. v. Z by Z (ω) its value at point ω ∈ Ω.

Finally, fix ω0 and put

π̂(ω0) = arg min
π∈P

S2
π(ω0).

Then - due to (3)

S2
π̂(ω0)(ω0) ≤ min

π∈P
min
β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2

= min
β∈Rp

min
π∈P

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
.

50 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Deriving existence of β̂(LWS,n)

Then for any π ∈ P

S2
π =

n∑
j=1

wj

(
Yπj − X ′πj

β̂(WLS,n,π)
)2
≤ min

β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
. (3)

Let (Ω,A,P) be the basic Probability Space

and denote for any r. v. Z by Z (ω) its value at point ω ∈ Ω.

Finally, fix ω0 and put

π̂(ω0) = arg min
π∈P

S2
π(ω0).

Then - due to (3)

S2
π̂(ω0)(ω0) ≤ min

π∈P
min
β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2

= min
β∈Rp

min
π∈P

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
.

50 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Deriving existence of β̂(LWS,n)

Then for any π ∈ P

S2
π =

n∑
j=1

wj

(
Yπj − X ′πj

β̂(WLS,n,π)
)2
≤ min

β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
. (3)

Let (Ω,A,P) be the basic Probability Space

and denote for any r. v. Z by Z (ω) its value at point ω ∈ Ω.

Finally, fix ω0 and put

π̂(ω0) = arg min
π∈P

S2
π(ω0).

Then - due to (3)

S2
π̂(ω0)(ω0) ≤ min

π∈P
min
β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2

= min
β∈Rp

min
π∈P

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
.

50 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Deriving existence of β̂(LWS,n)

Then for any π ∈ P

S2
π =

n∑
j=1

wj

(
Yπj − X ′πj

β̂(WLS,n,π)
)2
≤ min

β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
. (3)

Let (Ω,A,P) be the basic Probability Space

and denote for any r. v. Z by Z (ω) its value at point ω ∈ Ω.

Finally, fix ω0 and put

π̂(ω0) = arg min
π∈P

S2
π(ω0).

Then - due to (3)

S2
π̂(ω0)(ω0) ≤ min

π∈P
min
β∈Rp

n∑
j=1

wj

(
Yπj − X ′πj

β
)2

= min
β∈Rp

min
π∈P

n∑
j=1

wj

(
Yπj − X ′πj

β
)2
.

50 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Deriving existence and form of β̂(LWS,n)

It means

β̂(WLS,n,π̂(ω0))(ω0) = β̂(WLS,n)
(
Yπ(ω0)(ω0),Xπ(ω0)(ω0)

)
= β̂(LWS,n,w)(ω0)

Repeating it for all ω ∈ Ω, we prove the existence of β̂(LWS,n,w).

Fix π ∈ P and put

B (π) = {ω ∈ Ω : π = π̂(ω)} .
Then ω ∈ B (π) ⇒ β̂(LWS,n,w)(ω) = β̂(WLS,n,π)(ω)

i. e.
β̂(LWS,n,w)(ω) = β̂(WLS,n,π)(ω) = arg min

β∈Rp

n∑
j=1

w
(

j − 1
n

)(
Yπj − X ′πj

β
)2
.

Due to i.i.d. framework, ∀π ∈ P
P (B (π)) = (n!)−1

.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Deriving form of β̂(LWS,n)

Let’s repeat:
We have shown that fixing π ∈ P and putting B(π) = {ω ∈ Ω : π = π(ω)},
we have

P(B(π)) = (n!)−1

and one can easy verify that

∪π∈P B(π) = Ω.

All further considerations can be done conditionally,
on π (or on B(π), if You want) for β̂(WLS,n,π).

Then we take mean value over all conditions, i. e. over all π ∈ P
but the situation for all π is the same, with the same probabilities,

hence an unconditional result is the same as conditional.
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Deriving existence and form of β̂(LWS,n)

Let’s rewrite the line (the third from bottom) from the last but one slide, for
ω ∈ B (π)

β̂(LWS,n,w)(ω) = β̂(WLS,n,π)(ω) = arg min
β∈Rp

n∑
j=1

w
(

j − 1
n

)(
Yπj − X ′πj

β
)2
. (4)

Putting W̃ = diag
{

w−
1
2 (0) ,w−

1
2
( 1

n

)
, ...,w−

1
2
( n−1

n

)}
and Ỹ = W̃Y , X̃ = W̃X , then (4) reads

β̂(LWS,n,w)(ω) = arg min
β∈Rp

{(
Ỹ − X̃β

)′ (
Ỹ − X̃β

)}
=
(

X̃ ′X̃
)−1

X̃ ′Ỹ = β̂(OLS,n)(Ỹ , X̃ ).

Consider, for a while, the model
Ỹ = X̃β0 + ε̃ with L (ε̃) = N

(
0, σ2W̃ 2

)
(notice the heteroscedascity of ε̃).
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... for LWS-estimation

... simulations of p-values

Deriving existence and form of β̂(LWS,n)

Let’s rewrite the line (the third from bottom) from the last but one slide, for
ω ∈ B (π)

β̂(LWS,n,w)(ω) = β̂(WLS,n,π)(ω) = arg min
β∈Rp

n∑
j=1

w
(

j − 1
n

)(
Yπj − X ′πj

β
)2
. (4)

Putting W̃ = diag
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w−
1
2 (0) ,w−

1
2
( 1

n

)
, ...,w−

1
2
( n−1

n
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Ỹ − X̃β

)′ (
Ỹ − X̃β

)}
=
(

X̃ ′X̃
)−1
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Significance of explanatory variable - classical OLS case

Let’s recall the simplest classical framework for finite-sample diagnostics:

Regression model

Yi = X ′i β
0 + εi , i = 1,2, ...,n or Y = Xβ0 + ε

Conditions :
{(X ′i , εi )

′}∞i=1 i.i.d., FX ,ε(x , v) = FX (x) · Fε(v), Fε(v) = N
(
0, σ2),

Q = IE [X1 · X ′1] is regular.

Significance of `-th explanatory variable Xi` ⇔ ¬ H0 : β̂
(OLS,n)
` = 0

Denote c2
`,` =

[
(X ′X )

−1
]
`,`

and s2
n = 1

n−p

∑n
i=1

(
Yi − X ′i β̂

(OLS,n)
)2

.

Test is based on
L

(
β̂

(OLS,n)
` − β0

`

sn · c`,`

)
= L (t`) = tn−p

(Fisher-Cochran theorem)
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Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

First of all, let’s recall that in any regression model
and hence also in our model for

(
Ỹ , X̃

)
r̃
(
β̂(OLS,n)

(
Ỹ , X̃

))
= Ỹ − X̃ β̂(OLS,n)

(
Ỹ , X̃

)
⊥ M

(
X̃
)

(M
(

X̃
)

is the set of all linear combinations of the columns of X̃ ).

Secondly,̂̃Y = X̃ β̂(OLS,n) = X̃
(

X̃ ′X̃
)−1

X̃ ′Ỹ

= X̃
(

X̃ ′X̃
)−1

X̃ ′
(

X̃β0 + ε̃
)

= X̃β0+X̃
(

X̃ ′X̃
)−1

X̃ ′ε̃,
i. e.

L
(̂̃Y) = N

(
X̃β0, σ2X̃

(
X̃ ′X̃

)−1
X̃ ′W̃ 2X̃

(
X̃ ′X̃

)−1
X̃ ′
)
.
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= X̃
(

X̃ ′X̃
)−1

X̃ ′
(

X̃β0 + ε̃
)

= X̃β0+X̃
(

X̃ ′X̃
)−1

X̃ ′ε̃,
i. e.

L
(̂̃Y) = N

(
X̃β0, σ2X̃

(
X̃ ′X̃

)−1
X̃ ′W̃ 2X̃

(
X̃ ′X̃

)−1
X̃ ′
)
.

55 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

As ̂̃Y = X̃ β̂(OLS,n), i. e. ̂̃Y is a linear combination of the columns of X̃

⇒ ̂̃Y ⊥ r̃
(
β̂(OLS,n)

(
Ỹ , X̃

))
= Ỹ − X̃ β̂(OLS,n)

(
Ỹ , X̃

)
and due to the normality of ̂̃Y , it is independent with r

(
β̂(OLS,n)

(
Ỹ , X̃

))
.

By standard way

β̂(OLS,n)(Ỹ , X̃ )′ =
(

X̃ ′X̃
)−1

X̃ Ỹ =

[(
X̃ ′X̃

)−1
X̃ ′X̃

](
X̃ ′X̃

)−1
X̃ Ỹ

=
(

X̃ ′X̃
)−1

X̃ ′
[
X̃
(

X̃ ′X̃
)−1

X̃ Ỹ
]

=
(

X̃ ′X̃
)−1

X̃ ′ ̂̃Y (5)

Then due to (5) β̂(OLS,n)
(

Ỹ , X̃
)

is independent with r̃
(
β̂(OLS,n)

(
Ỹ , X̃

))
(we shall need it in a few minutes).
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]

=
(

X̃ ′X̃
)−1

X̃ ′ ̂̃Y (5)

Then due to (5) β̂(OLS,n)
(
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Ỹ , X̃

))
.

By standard way

β̂(OLS,n)(Ỹ , X̃ )′ =
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... for LWS-estimation

... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

Let’s recall

β̂(OLS,n)
(

Ỹ , X̃
)
− β0 = β̂(WLS,n,W ,π) − β0 =

(
X̃ ′X̃

)−1
X̃ ′ε̃,

i. e. due to normality of disturbances, also β̂(WLS,n,W ,π) − β0

is normally distributed (with heteroscadasticity).

Let’s recall (as it is well-known from the classical regression)

r̃
(
β̂(OLS,n)

(
Ỹ , X̃

))
= r̃

(
β̂(WLS,n,W ,π)

)
=

(
II − X̃

(
X̃ ′X̃

)−1
X̃ ′
)
ε̃,

i. e. due to normality of disturbances, r̃
(
β̂(WLS,n,W ,π)

)
is normally distributed (with heteroscadasticity).
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Ỹ , X̃
)
− β0 = β̂(WLS,n,W ,π) − β0 =

(
X̃ ′X̃

)−1
X̃ ′ε̃,

i. e. due to normality of disturbances, also β̂(WLS,n,W ,π) − β0

is normally distributed (with heteroscadasticity).
Let’s recall (as it is well-known from the classical regression)

r̃
(
β̂(OLS,n)

(
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... for LWS-estimation

... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

Recalling that W̃ = diag
{

w
1
2

1 ,w
1
2

2 , ...,w
1
2

n

}
and

L (ε̃) = N
(

0, σ2W̃ 2
)
,

we have from

β̂(OLS,n)
(

Ỹ , X̃
)
− β0 = β̂(WLS,n,W ,π) − β0 = X̃

(
X̃ ′X̃

)−1
X̃ ′ε̃,

IE
{
β̂(OLS,n)

(
Ỹ , X̃

)
− β0

}
= IE

{
β̂(WLS,n,W ,π) − β0

}
= 0

and
cov

{
β̂(OLS,n)

(
Ỹ , X̃

)
− β0

}
=
(

X̃ ′X̃
)−1

X̃ ′W̃ 2X̃
(

X̃ ′X̃
)−1

.

=
(

X ′W̃ 2X
)−1
·

n∑
i=1

w2
i · Xi · X ′i

(
X ′W̃ 2X

)−1
.
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... for LWS-estimation

... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

Denote[
cov

{
β̂(OLS,n)

(
Ỹ , X̃

)
− β0

}]
``

=
[
cov

{
β̂(WLS,n,W ,π) (Y ,X )− β0

}]
``

=

[(
X ′W̃ 2X

)−1
·

n∑
i=1

w2
i · Xi · X ′i

(
X ′W̃ 2X

)−1
]
``

=︸︷︷︸
(denote)

dn,`(W ,X ).

Then

L

 β̂(OLS,n)
`

(
Ỹ , X̃

)
− β0

σdn,`(W ,X )

 = L

(
β̂

(LWS,n,W )
` − β0

σdn,`(W ,X )

)
= N (0,1).
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Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Establishing the result

We can show (similarly as in the OLS-regression),

L
(
σ−2r̃ ′

(
β̂(WLS,n,W )

)
· r̃
(
β̂(WLS,n,W )

))
= L

(
σ−2 · RSS

)
= χ2

generalized (n − p)

in the sense that χ2
generalized (n − p) is distribution of the sum of squares of n − p independent

r. v.’s normally distributed with zero mean but variance not equal one, but wi .

Let us recall that for the “classical χ2(n − p) we have (written symbolically)

IEχ2(n − p) = n − p

and hence in the denominatot of t-statistics we put r̃ ′
(
β̂(WLS,n,W )

)
· r̃
(
β̂(WLS,n,W )

)
(n − p) · σ2


1
2

.

So, to conclude the derivation we need to calculate IEχ2
generalized (n − p).
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... for LWS-estimation

... simulations of p-values

Establishing the result

Let us recall that W
1
2 = W̃ = diag

{
w

1
2

1 ,w
1
2

2 , ...,w
1
2

n

}
and ε̃ = W̃ε

and that (as it is well-known from the classical regression)

r̃
(
β̂(WLS,n)

)
=

(
II − X̃

(
X̃ ′X̃

)−1
X̃ ′
)

︸ ︷︷ ︸
denote it by M̃

ε̃ = M̃W̃ε.

IE
[
r̃ ′
(
β̂(WLS,n)

)
· r̃
(
β̂(WLS,n)

)]
= σ2 · tr

[
W
(

II − X̃
(

X̃ ′X̃
)−1

X̃ ′
)]

= σ2 ·

(
n∑

i=1

wi (1− dii )

)

where dii =

[
X̃
(

X̃ ′X̃
)−1

X̃ ′
]

ii
. So,

r̃ ′(β̂(WLS,n))·r̃(β̂(WLS,n))

σ2
∑n

i=1 wi (1−dii )
→ 1.
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Establishing the result

Let us recall that W
1
2 = W̃ = diag

{
w

1
2

1 ,w
1
2

2 , ...,w
1
2

n

}
and ε̃ = W̃ε

and that (as it is well-known from the classical regression)

r̃
(
β̂(WLS,n)

)
=

(
II − X̃

(
X̃ ′X̃

)−1
X̃ ′
)

︸ ︷︷ ︸
denote it by M̃

ε̃ = M̃W̃ε.

IE
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Recalling the classical regression for Ỹ , X̃

We conclude
THEOREM

L
(
β̂

(LWS,n,W )
` −β0

dn,`(W ,X)
·
[∑n

i=1 wi (1−dii )

RSS

] 1
2
)

= tgeneralized (n − p)

in the sense that tgeneralized (n − p) is a ratio of standard normal r. v.
and χ2

generalized (n − p) r. v. and numerator and denominator are independent

(in the appendix which follows after the end of lecture,
an alternative derivation with more details is given, see also ICORS2011).
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We conclude
THEOREM

L
(
β̂

(LWS,n,W )
` −β0

dn,`(W ,X)
·
[∑n

i=1 wi (1−dii )

RSS

] 1
2
)

= tgeneralized (n − p)

in the sense that tgeneralized (n − p) is a ratio of standard normal r. v.
and χ2

generalized (n − p) r. v. and numerator and denominator are independent

(in the appendix which follows after the end of lecture,
an alternative derivation with more details is given, see also ICORS2011).

62 / 82



Disqualifying classical regression analysis by ignoring ...
Significance of individual explanatory variable

... for LWS-estimation

... simulations of p-values

Function generating the weights

Let me recall that we already know
that under low contamination, the intuitively optimal (left)

and really optimal (right) weight functions are
(in the sense of mean square error of the estimates of regression coefficients).

w` = w
(
`−1

n

)
Contamination : 4% outliers

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

h g

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

gh

But the optimality of the weight function is rather flexible
with respect to the point where decrease starts!

(Numerically established experience.)
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Content

1 Disqualifying classical regression analysis by ignoring ...
... broken orthogonality condition
... collinearity

2 Significance of individual explanatory variable
... for LWS-estimation
... simulations of p-values
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Framework of simulations

1 For each value of n = 20,30, ...,190 we generated 5000 times

β̂
(LWS,n,W )
` −β0

dn,`(W ,X)
·
[∑n

i=1 wi (1−dii )

RSS

] 1
2
.

2 The 4875 and 4975 order statistics
among these 5000 values were found.

3 We repeated it 100 times and have found empirical means
and the roots of mean square errors over these 100 repetitions

(these roots of mean square errors are in parentheses).
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TABLE 1
The simulated quantiles for 5%.

n 20 30 40 50 60 70

t̂LWS
0.975(n)(var) 2.148 (0.047) 2.087 (0.040) 2.056 (0.046) 2.027 (0.045) 2.017 (0.046) 2.012 (0.045)

t0.975(n) 2.085 2.043 2.022 2.009 2.000 1.995

n 80 90 100 110 120 130

t̂LWS
0.975(n) 2.008 (0.040) 1.999 (0.041) 1.992 (0.040) 1.991 (0.041) 1.990 (0.040) 1.988 (0.040)

t0.975(n) 1.990 1.987 1.984 1.982 1.980 1.978

n 140 150 160 170 180 190

t̂LWS
0.975(n) 1.986 (0.043) 1.989 (0.041) 1.975 (0.035) 1.974 (0.035) 1.973 (0.035) 1.973 (0.035)

t0.975(n) 1.977 1.976 1.975 1.974 1.974 1.973

By the way, the 0.975-upper quantile of the standard normal distribution is equal
to 1.959964, i. e. Φ(1.959964) = 0.975.
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TABLE 2
The simulated quantiles for 1%.

n 20 30 40 50 60 70

t̂LWS
0.995(n) 2.999 (0.100) 2.825 (0.082) 2.766 (0.080) 2.702 (0.085) 2.688 (0.077) 2.678 (0.079)

t0.995(n) 2.845 2.748 2.705 2.678 2.661 2.651

n 80 90 100 110 120 130

t̂LWS
0.995(n) 2.659 (0.067) 2.644 (0.075) 2.633 (0.077) 2.627 (0.063) 2.629 (0.070) 2.626 (0.071)

t0.995(n) 2.640 2.632 2.625 2.619 2.614 2.612

n 140 150 160 170 180 190

t̂LWS
0.995(n) 2.619 (0.072) 2.621 (0.073) 2.609 (0.079) 2.609 (0.070) 2.620 (0.078) 2.602 (0.078)

t0.995(n) 2.611 2.610 2.609 2.608 2.606 2.605

Again, the 0.995-upper quantile of the standard normal distribution is equal to
2.575, i. e. Φ(2.575) = 0.995.
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Significance of explanatory variable

Let’s recall the simplest classical framework for finite-sample diagnostics:

Regression model

Yi = X ′i β
0 + εi , i = 1,2, ...,n or Y = Xβ0 + ε

Conditions :
{(X ′i , εi )

′}∞i=1 i.i.d., FX ,ε(x , v) = FX (x) · Fε(v), Fε(v) = N
(
0, σ2),

Q = IE [X1 · X ′1] is regular,

Significance of `-th explanatory variable Xi` ⇔ H0 : β̂
(LS,n)
` = 0

Denote c2
`,` =

[
(X ′X )

−1
]
`,`

and s2
n = 1

n−p

∑n
i=1

(
Yi − X ′i β̂

(LS,n)
)2

.

Test is based on
L

(
β̂

(LS,n)
` − β0

`

sn · c`,`

)
= tn−p

(Fisher-Cochran theorem)
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Significance of explanatory variable

Let’s recall the classical “treatment” under heteroscedaticity:(we shall need it)

Conditions :
{(X ′i , εi )

′}∞i=1 i.d., FX ,εi (x , v) = FX (x) · Fεi (v),Fεi (v) = N
(
0, σ2

i
)
,

QIE [X1 · X ′1] is regular,

Significance of `-th explanatory variable Xi` ⇔ H0 : β̂
(LS,n)
` = 0

Denote

d2
`,` =

[(
X ′X

)−1
n∑

i=1

r 2
i

(
β̂(LS,n)

)
· Xi · X ′i

(
X ′X

)−1

]
`,`

.

(Halbert White estimator - 1980)

Test is based on
L

(
β̂

(LS,n)
` − β0

`

d`,`

)
≈ tn−p (?!?!)

(L
(

(n − p) · d2
`,`

)
≈ χ2

n−p ?!?!)
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Recalling several facts

Let’s W = diag {w1,w2, ...,wn} be a weight matrix.

Then the classical Weighted Least Squares is given as

β̂(WLS,n) = (X ′WX )
−1 X ′WY .

Let P be the set of all permutations of integers {1,2, ...,n}.
Fix π ∈ P, π = {i1, i2, ..., in} and put

Yπ = (Yi1 ,Yi2 , ...,Yin )′ , Xπ = (Xi1 ,Xi2 , ...,Xin )′ (and επ = (εi1 , εi2 , ..., εin )′)

and consider model
Yπ = Xπβ0 + επ.

Then denote

β̂(WLS,n,π) = (X ′πWXπ)
−1 X ′πWYπ and S2

π =
n∑

j=1

wi

(
Yij − X ′ij β̂

(WLS,n,π)
)2
.
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Deriving existence of β̂(LWS,n)

Then for any π ∈ P

S2
π =

n∑
j=1

wi

(
Yij − X ′ij β̂

(WLS,n,π)
)2
≤ min

β∈Rp

n∑
j=1

wi

(
Yij − X ′ijβ

)2
. (6)

Let (Ω,A,P) be the basic Probability Space

and write Z (ω) for the value of r.v. at point ω ∈ Ω.

Finally, assume w1 ≥ w2 ≥ ... ≥ wn, fix ω0 and put

π̂(ω0) = arg min
π∈P

S2
π(ω0).

Then - due to (6)

S2
π̂(ω0)(ω0) ≤ min

β∈Rp
min
π∈P

n∑
j=1

wi

(
Yij − X ′ijβ

)2
.
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Deriving form of β̂(LWS,n)

It means
β̂(WLS,n,π̂(ω0))(ω0) = β̂(LWS,n,w)(ω0)

Repeat it for all ω ∈ Ω.

Fix π ∈ P and put

B (π) = {ω ∈ Ω : π = π̂(ω)} .

Then ω ∈ B (π) ⇒ β̂(LWS,n,w)(ω) = β̂(WLS,n,π)(ω)

i. e.
β̂(LWS,n,w)(ω) = β̂(WLS,n,π)(ω) = arg min

β∈Rp

n∑
i=1

wi (Yπ1 − X ′πβ)
2
.

Due to i.i.d. framework, ∀π ∈ P
P (B (π)) = (n!)−1

and all B’s are the “same”.
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... for LWS-estimation

... simulations of p-values

Deriving form of β̂(LWS,n)

Let’s rewrite one line of previuos slide, for ω0 ∈ B (π)

β̂(LWS,n,w)(ω0) = β̂(WLS,n,π)(ω0) = arg min
β∈Rp

n∑
i=1

wi (Yπ − X ′πβ)
2
. (7)

and drop for a while ω0 and π.

Then putting W̃ = diag
{

w−
1
2

1 ,w−
1
2

2 , ...,w−
1
2

n

}
and Ỹ = W̃Y , X̃ = W̃X ,

(7) implies

β̂(LWS,n,w)(Y ,X ) =
(

X̃ ′X̃
)−1

X̃ ′Ỹ = β̂(OLS,n)(Ỹ , X̃ ).

Consider now the model

Ỹ = X̃β0 + ε̃ with L (ε̃) = N
(

0, σ2W̃ 2
)

(W̃ 2 is known⇒ heteroscedasticity is governed by one unknown parameter σ2)
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... for LWS-estimation

... simulations of p-values

Recalling the classical regression for Ỹ , X̃

By standard way (please read only last but one line)

β̂(OLS,n)(Ỹ , X̃ )′ =
(

X̃ ′X̃
)−1

X̃ Ỹ =

[(
X̃ ′X̃

)−1
X̃ ′X̃

](
X̃ ′X̃

)−1
X̃ Ỹ

=
(

X̃ ′X̃
)−1

X̃ ′
[
X̃
(

X̃ ′X̃
)−1

X̃ Ỹ
]

=
(

X̃ ′X̃
)−1

X̃ ′ ̂̃Y (8)

As ̂̃Y = X̃ β̂(OLS,n), i. e. ̂̃Y is a linear combimation of the columns of X̃

⇒ ̂̃Y ⊥ r̃
(
β̂(WLS,n)

)
= Ỹ − X̃ β̂(OLS,n)

and due to the normality of disturbances ̂̃Y is independent with r̃ .

Then due to (8) β̂(LWS,n,w) is independent with r̃
(
β̂(LWS,n,w)

)
(we shall need it in a few minutes).
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... for LWS-estimation

... simulations of p-values

Recalling the classical regression for Ỹ , X̃

Please read again only the last line

Regress `-th column of matrix X̃ on all other columns of this matrix
and denote the residuals by u(`).

Recall that we consider Ỹ = X̃β0 + ε̃ with Ỹ = W̃Y , etc. Then
(see e. g. Wooldridge (2003))

β̂
(LWS,n,w)
` (Y ,X )− β0

` = β̂
(OLS,n)
` (Ỹ , X̃ )− β0

` =
[
u(`)
]′
ε̃ ·
∥∥∥u(`)

∥∥∥−2

with

var
(
β̂

(LWS,n,w)
`

)
= σ2

n∑
i=1

wi

[
u(`)

i

]2 ∥∥∥u(`)
∥∥∥−4

=︸︷︷︸
denote

σ2D2
n(W ,X ).

Then

L

(
β̂

(LWS,n,w)
` − β0

`

σDn(W ,X )

)
= N (0,1). (9)
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... for LWS-estimation

... simulations of p-values

Recalling the classical regression for Ỹ , X̃

Let us recall that W
1
2 = W̃ = diag

{
w

1
2

1 ,w
1
2

2 , ...,w
1
2

n

}
and that it is well-known

from the classical regression

r̃
(
β̂(WLS,n)

)
=

(
II − X̃

(
X̃ ′X̃

)−1
X̃ ′
)

︸ ︷︷ ︸
denote it by M̃

ε̃ = M̃W̃ε.

IE
[
r̃ ′
(
β̂(WLS,n)

)
· r̃
(
β̂(WLS,n)

)]
= σ2 · tr

[
W
(

II − X̃
(

X̃ ′X̃
)−1

X̃ ′
)]

= σ2 ·

(
n∑

i=1

wi (1− dii )

)

where dii =

[
X̃
(

X̃ ′X̃
)−1

X̃ ′
]

ii
. So, s2

n =
r̃ ′(β̂(WLS,n))·r̃(β̂(WLS,n))∑n

i=1 wi (1−dii )
→ IEs2

n = σ2.
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n
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and that it is well-known

from the classical regression

r̃
(
β̂(WLS,n)

)
=

(
II − X̃

(
X̃ ′X̃

)−1
X̃ ′
)

︸ ︷︷ ︸
denote it by M̃

ε̃ = M̃W̃ε.

Then (recall also that IE ε̃ = 0 and cov(ε̃) = σ2W where W = diag {w1,w2, ...,wn})

r̃ ′
(
β̂(WLS,n)

)
· r̃
(
β̂(WLS,n)

)
= [ε̃]′ M̃ ε̃ = [ε̃]′W− 1

2 W
1
2 M̃W

1
2︸ ︷︷ ︸

M

W− 1
2 ε̃︸ ︷︷ ︸

η

= η′Mη

with L (η) = N
(
0, σ2II

)
.
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... for LWS-estimation

... simulations of p-values

Recalling the classical regression for Ỹ , X̃

Let Q′MQ = Λ where Q = [q1, q, ..., qn] and Λ = diag {λ1, λ2, ..., λn} with

M · qi = λi · qi , i. e. λi > 0, i = 1, 2, ..., n − p, λi = 0 otherwise and Q′Q = QQ′ = II.

Then M = QΛQ′ and
r̃ ′
(
β̂(WLS,n)

)
· r̃
(
β̂(WLS,n)

)
= [ε̃]′QΛQ′ε̃ = ξ′ξ

with ξ = Λ
1
2 Qη (notice that the last p coordinates of ξ = 0), i.e. IEξ = 0 and cov(ξ) = σΛ.
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... for LWS-estimation

... simulations of p-values

Recalling the classical regression for Ỹ , X̃

Then
L (ξ) = N

(
0, σ2 · Λ

)
.

Finally,

L
(
σ−2 r̃ ′

(
β̂(WLS,n)

)
· r̃
(
β̂(WLS,n)

))
= χ2

generalized (n − p)

in the sense that
χ2

generalized (n − p) is distribution
of the sum of squares of n − p independent r. v.’s normally distributed

with zero mean but variance not equal one.
We conclude,

L

 β̂(LWS,n,w) − β0

Dn(W ,X )
·

 ∑n
i=1 wi (1− dii )

r̃ ′
(
β̂(WLS,n)

)
· r̃
(
β̂(WLS,n)

)
 1

2
 = tgeneralized (n − p) .
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