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Q Disqualifying classical regression analysis by ignoring ...
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e Significance of individual explanatory variable
@ ... for LWS-estimation
@ ... simulations of p-values
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Ignoring the orthogonality condition - breaking the consistency of B(OLS‘n)

We have discussed it in details in the tenth lecture.
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We have discussed it in details in the tenth lecture.
We have robustified the Instrumental Variables
by means of implicit weighting, i. e. we have defined

Instrumental Weighted Variables (IWV)
as a solutions of the normal equations:
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employing some other idea of robustification
of the classical econometric methods?
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Ignoring the orthogonality condition - breaking the consistency of B(OLS‘n)

We have discussed it in details in the tenth lecture.
We have robustified the Instrumental Variables
by means of implicit weighting, i. e. we have defined

Instrumental Weighted Variables (IWV)
as a solutions of the normal equations:

n

S~ w(Fallre(B)))) Zi(Yi — X/ B) = 0.

i=1

But there are still at least two questions:
@ Firstly, can we robustify Instrumental Variables by some other way,
employing some other idea of robustification
of the classical econometric methods?

@ Secondly (and more importanty), how we learn that we should use IWV?
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Answering the first question

We can define Instrumental M-estimators, say 3(™:7), as a solution of:

n
Y, X'
Sz (/15) _0
i=1 In

where Z;’s have to be selected so that EZ;v)(e; 0;1) =0
and |EZj(Xi; — EXjj)| as large as possible forall j = 1,2, ..., p.
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Answering the second question

Let’s make some preparation steps for the Hausman test
Under hypothesis of orthogonality:

ol (\/B(B(IM,n) L] B(M,n))) = N(O, CH)

with

CH = Ey?(ejo;") [o; E{z,Z}[Q;' - Q" 'E"¢/(e105")
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Answering the second question

Let’s make some preparation steps for the Hausman test
Under hypothesis of orthogonality:

il (ﬁ,( (IM.n) (Mn))) = N(0,CM)

with

H _ E1/)2(e10';1) [021 E{Z1Z,/} [021]/ X 071 E717/)/(e1(7;1)

(Notice that the second term in parentheses is (M:")
- this is a preparatory considerations for Hausman test.)
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Answering the second question

Let’'s continue in the preparation steps for the Hausman test:
Under alternative:

Los(/1 (B0 — 304D _ Q= E [Xsy(e10,,1)] ) = N(0, CY)

with
CA = Q7" [E {93(e105) X1 X{}
—E{u(er05,) X1} E {v(eroe)Xi}] Q"
Q' E{X1Z{yP(e105,)HQ;
—Q; E{Zi X{y*(e105,)HQ "
+E {y*(e105")} Q7' E{Z,Z{} [Q; .
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Answering the second question

Let’'s continue in the preparation steps for the Hausman test:
Under alternative:

Lo/ (B0 — 30D — Q=1 E [Xi(er05,)])) = M(0, C*)

with
CA = Q7" [E {¢?(ei05)Xi X{}
—E {4(e105,)X } E {¢(e105)X{}] Q'
—O T EX Z{yP(e1o5 ) QZ )
—-Q; E{Zi X{y?(e105, )} Q"
+E {y*(e105")} Q7' E{Z,Z{} [Q; .

Under hypothesis we can show that CA —s C*.
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The classical econometrics offered the Hausman test.

Put A %
u q= f( (1V,n) ﬁLSN) X:Z(ZIZ)71Z/X

=1 -1
V= Gxx) = Gx’x) and A= E{X/e} V'E{Xie}.
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How we learn that the orthogonality condition is broken?

The classical econometrics offered the Hausman test.

Put .. A 3
¢ an <ﬁ(/vﬁn) i B(L&n)) ’ e Z(Z’Z)q 7'X

=] 1
V= (lxx) = Gx’x) and A= E{X/e;} V'E{Xe}.

Then

/V71
o <qSZq> = Xz(pv )‘)

(Notice that under the hypothesis x? is central,
while under the alternative we have some parameter A of noncentrality.)
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Hausman specification test for M-estimators

Theorem: Under hypothesis & alternative:

with

For details see:
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Hausman specification test for M-estimators

Theorem: Under hypothesis & alternative:

) /"IH\A Ay SLAL A \ b4 o L II171 Y
Vigek, J. A. (1998): Robust specification test.
Proceedings of Prague Stochastics’98 (eds. Huskova, M. & Lachout, P),
Union of Czechoslovak Mathematicians and Physicists, 581 - 586. )

\

r

Visek, J. A. (1998): Robust instrumental variables and specification test.
PRASTAN 2000, Proceedings of conference
“Mathematical statistics, numerical mathematics and their application”

(eds. Kalina, M., Minarova, M., Nanasiova, O.), 133 - 1 64)
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) /"IH\A Ay SLAL A \ b4 o L II171 Y
Vigek, J. A. (1998): Robust specification test.
Proceedings of Prague Stochastics’98 (eds. Huskova, M. & Lachout, P),
Union of Czechoslovak Mathematicians and Physicists, 581 - 586. )

\

r

Visek, J. A. (1998): Robust instrumental variables and specification test.
PRASTAN 2000, Proceedings of conference
“Mathematical statistics, numerical mathematics and their application”

(eds. Kalina, M., Minarova, M., Nanasiova, O.), 133 - 1 64)

\,

(I believe that for LWS the same result can be derived
- but an exact proof is still to be written.)
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Recognizing the collinearity and estimating the model

Condition number

maXi<j<p v A

n=————
mini<i<p v i

where \;’s are eigenvalues of X’ X.
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Recognizing the collinearity and estimating the model

Condition number

maXi<j<p v Aj

n=———
mini<ij<p v A

where \;’s are eigenvalues of X’ X. If nis larger than a treshold, ... .
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Recognizing the collinearity and estimating the model

Condition number

maXi<j<p v Aj

miny <i<p V A

Hoerl, A. E., R. W. Kennard (1970):
Ridge regression: Biased estimation for nonorthogonal problems.
\_ Technometrics 12, 55-68. )
é Hoerl, A. E., R. W. Kennard (1970): )
Ridge regression: Application to nonorthogonal problems.
\_ Technometrics 12,69 -82. )

BREM — (X'X+6-D7' XY

Biased - but 6 # 0 is not the sufficient explanation ... .
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Recognizing the collinearity and estimating the model

Condition number

maXi<j<p v Aj

miny <i<p V A

Hoerl, A. E., R. W. Kennard (1970):
Ridge regression: Biased estimation for nonorthogonal problems.
\_ Technometrics 12, 55-68. )
é Hoerl, A. E., R. W. Kennard (1970): )
Ridge regression: Application to nonorthogonal problems.
\_ Technometrics 12,69 -82. )

BREM — (X'X+6-D7' XY
Biased - but 6 # 0 is not the sufficient explanation ... .
Generally, (X'X +6 - I)~" X'Y can't be equal to (X'X)~" X"Y
because when X’ X is regular matrix, also X’ X + § - I'is regular.
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Estimating the model under collinearity

An alternative estimator:

( The (ordinary) least squares with constraints )

n

B(OLS,n.C) — argmin Y'—X-’BZ; C-8+k=0
‘ BERP ;( i ) =E

14/82
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@ Depressing the influence of the collinearity
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Estimating the model under collinearity

An alternative estimator:

( The (ordinary) least squares with constraints )

n
BOLS:n.C) — argmin {Z(Y,-_X//B)z; C-B#—nzO}

n
BeR i—1

They can be employed at least in two situations:

@ Depressing the influence of the collinearity
and

@ improving the combinations of forecasts.
A few words about the second possibility
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(Combining forecasts to reach an improvement )

(
Bates, J. M., C. W. J. Granger (1969): The combination of forecasts.
L Operational Research Quarterly, 20, 451-468.
(" Clemen, R. T. (1986): )
Linear constraints and efficiency of combined forecasts.
\_ Journal of Forecasting, 6, 31 - 38. Y,
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(Combining forecasts to reach an improvement )

(
Bates, J. M., C. W. J. Granger (1969): The combination of forecasts.

L Operational Research Quarterly, 20, 451-468.

(" Clemen, R. T. (1986): )

Linear constraints and efficiency of combined forecasts.
\_ Journal of Forecasting, 6, 31 - 38. Y,
1T eL0r =70 L0 0
C_{o 1ol 1}7 ”‘{1}
i.e. BgLS,C,n) Lo Xp:%A/(LS cn) _

j=2

J
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(Combining forecasts to reach an improvement )

~ ™
Hendry, D. F., M. P. Clements (2004): Pooling of forecasts.
L Econometrics Journal 7, is 1, 1 - 31. )
(" Arajo, M. B., M. New (2007): )
Ensemble forecasting of species distributions.
\_ Trends in Ecology & Evolution, 22, 42-47. )
(both having more than 150 references)
(" Jore, A. S., J. Mitchell, S. P. Vahey (2010): )
Combining forecast densities from VARs with uncertain instabilities.
\_ Special Issue of J. of Applied Econometrics 25, 621-634. )
( Wonga, K. K. F, H. Song, S. F. Witta and D. C. Wua (2007): )
Tourism forecasting: To combine or not to combine?
\_ Tourism Management 28, 1068-1 078)
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Estimating the model under collinearity

We are looking for:
n

poLS.:n.C) —  argmin Z Y= XIB)2: C:B+k=0
=il

BERP
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We are looking for:

n
BlOLS:n.C) —  argmin {Z(Y,-—X/B)Z; C-/3+H—O}.

BERP 3
=il

If x (can be assumed) random, we can write (for some § # 0)

Lo]=lste] el o]
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We are looking for:

n
BlOLS:n.C) —  argmin {Z(Yi~X/B)Z; C.5+,€_o},

P
peR i—1

If x (can be assumed) random, we can write (for some § # 0)

il
possa ([ 5] L) [ 5T 3]
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Estimating the model under collinearity

We are looking for:

n
BlOLS:n.C) —  argmin {Z(Yi~X/B)Z; C.5+,€_o},

P
peR i—1

If x (can be assumed) random, we can write (for some § # 0)

[3]-[ 6]l
o {lfo] [} [ 1]

FRSHON L P PGB G XY

(To keep a possibility to follow the explanation, a part of slide is rewritten on the next slide.)
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Estimating the model under collinearity

We are looking for: L
BlOLS:n.C) — argmin {Z (Y — X,’ﬂ)z; C-B+r= 0} (1)

BeRP 3
il

and it gives BOLSn.C) X 52. C'C] Zanx'y . (2)
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Estimating the model under collinearity

We are looking for:

joLsnc) _ argmin {Z(Yf—x,fmz; C-ﬂ+f<—0} (1)

BeRP A9
BOLSNC) L [xrx 4 52 C'C] T XY ()

So it seems that 3(9L5:1:C) is a special case of A(R:")
= (X'X 461" XY, or vice versa.

and it gives
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BeRP A9
BOLSNC) L [xrx 4 52 C'C] T XY ()

So it seems that 3(9L5:7:C) is a special case of A(R:")
= (X'X+6-1)7" X'Y, or vice versa.

and it gives

Why is this conclusion wrong ? B
Also the derivation of 5(°L5:1.C) needs some attention !!
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Notice that (1) doesn’t depend on ¢ while (2) does.
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Estimating the model under collinearity

We are looking for:

joLsnc) _ argmin {Z(Yf—x,fmz; C-ﬂ+f<—0} (1)

BERP A9
BOLSNC) L [xrx 4 52 C'C] T XY ()

So it seems that 3(OL5:n:€) is a special case of 3(A-7)
= (X'X+6-1)7" X'Y, or vice versa.

and it gives

Why is this conclusion wrong ?
Also the derivation of 3(°LS:1.C) needs some attention !
The answer on the second sentence is straightforward:
Notice that (1) doesn’t depend on ¢ while (2) does.

(As « is not too much specified, the solution of (1) is also solution for

n
B(OLS:n.C) —  argmin {Z(fo/ﬁ)z: 5.C-ﬁ+k:0}

BeRP :
i=1

for some & and it affects of course B(OL5:n,C.9)
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Estimating the model under collinearity

We are looking for: { b }
(1)

B(OLS:n.C) — argmin
BERP

DGR C frr=0

=y

B(OLS,H,C) A [X/X i 52 : C/C}_
So it seems that 3(OL5:n:€) is a special case of 3(A-7)

= (X'X+6-1)7" X'Y, or vice versa.

and it gives 1

X'Y. 2)

Why is this conclusion wrong ?
Also the derivation of 3(°LS:1.C) needs some attention !
The answer on the second sentence is straightforward:
Notice that (1) doesn’t depend on ¢ while (2) does.

(As « is not too much specified, the solution of (1) is also solution for

n
B(OLS:n.C) —  argmin {Z(fo/ﬁ)z: 5.C-ﬁ+k:0}

BeRP =
for some # and it affects of course B(OLS:m.C.9),
The answer on the question is a bit more complicated:
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Consider the constraints CS + x = 0 (it implies that C has p columns).
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What is (or what can be) the number of rows of C

(or, equivalently, the dimension of x) ?
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Estimating the model under collinearity

Consider the constraints CS + x = 0 (it implies that C has p columns).

What is (or what can be) the number of rows of C
(or, equivalently, the dimension of ) ?

The rows of C are (linearly) independent,
otherwise we delete some of them.

19/82



Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

Estimating the model under collinearity

Consider the constraints CS + x = 0 (it implies that C has p columns).

What is (or what can be) the number of rows of C
(or, equivalently, the dimension of ) ?

The rows of C are (linearly) independent,
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Denote the number of rows of C, i.e. the rank(C) by .
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Denote the number of rows of C, i.e. the rank(C) by .

If ¢ = p, then the p-tuple of equations C- 3+« =0
identifies uniquely S and hence
the whole extremal problem has solution given by constraints.

It is a nonsence,
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Estimating the model under collinearity

Consider the constraints CS + x = 0 (it implies that C has p columns).
What is (or what can be) the number of rows of C
(or, equivalently, the dimension of ) ?
The rows of C are (linearly) independent,
otherwise we delete some of them.

Denote the number of rows of C, i.e. the rank(C) by .

If ¢ = p, then the p-tuple of equations C- 3+ x =0

identifies uniquely S and hence
the whole extremal problem has solution given by constraints.

It is a nonsence,hence
0 T
We have of course also dim(x) = /.
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Solving the “extremal problem with constraints”

So we have C of type ¢ x p. Then there is a matrix C

(of type p — ¢ x p) so that { g ] is regular and C’ - C = 0.

Let’s give an example.
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So we have C of type ¢ x p. Then there is a matrix C

(of type p — ¢ x p) so that { g ] is regular and C’ - C = 0.

Let’s give an example.

Let
C:[1 1 1 i 1].
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Solving the “extremal problem with constraints”

So we have C of type ¢ x p. Then there is a matrix C

(of type p — ¢ x p) so that { g ] is regular and C’ - C = 0.

Let’s give an example.

Let
C:[1 1 1 i 1].

The matrix C can be selected as

20/82
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Solving the “extremal problem with constraints”

Now, let 5* fulfills constraints, i.e. C3* + k = 0 and define the mapping
B(A): RP~* — {Be RP:CB+k=0}by
BN =C X+ 8
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Solving the “extremal problem with constraints”

Now, let 5* fulfills constraints, i.e. C3* + x = 0 and define the mapping
B(A): RP~* — {Be RP:CB+ Kk =0}by

B(A) =C - A+
e Let’s verify that it is mapping into {5 € R° : C5 + xr = 0}.
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Solving the “extremal problem with constraints”

Now, let 5* fulfills constraints, i.e. C3* + x = 0 and define the mapping
B(\): RP~* — {Be€ RP:CB+r=0}by
RO =R 5
e Let's verify that it is mapping into {8 € R° : Cf + x = 0}.
We have forany A ¢ RP~* C.p()\) = CC -\ + CB* = k.
~~
0
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: which means that C’ - (A — X2) = 0.
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Now, let 5* fulfills constraints, i.e. C3* + x = 0 and define the mapping
B(\): RP~* — {Be€ RP:CB+r=0}by
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e Let's verify that it is mapping into {8 € R° : Cf + x = 0}.
We have forany A ¢ RP~¢ C-p(\) = Qg-)\ + CB* = k.

0
e The mapping is one-to-one.

Assume that for a pair A\, A2 € RBP4 B(\1) = B()\2)
which means that C’ - (\; — Az) = 0.
As the matrix C is of full rank, we have \; — \» = 0.
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Solving the “extremal problem with constraints”

Now, let 5* fulfills constraints, i.e. C3* + x = 0 and define the mapping
B(\): RP~* — {Be€ RP:CB+r=0}by
B(A)=C' - A+ 6.
e Let’s verify that it is mapping into {5 € R’ : C5 + x = 0}.
We have forany A € RP~* C-B(\) = CC -\ + CB* = k.
—~~
e The mapping is one-to-one. ;
Assume that for a pair A\, A2 € RP~¢  B(\1) = B()2)
which means that C’ - (\; — Az) = 0.
As the matrix C is of full rank, we have \; — \» = 0.
e The mappingison {8 € R°: Cs + k = 0}.
We have forany 3 € {8 € RP: CA+r=0} C(3-p*)=0.
r Hence 5 — 3* L C.
So, 3\ € RP—* such that 3 — * = C’ - X (combination of columns of C'),
i.e. 3=C -+ 5~
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... collinearity

An example

Let 3% = (1, -2, 3,4, 5) and consider the constraint:
Bi+ Bo+Pa+ Ba+Ps=3.

Ulog C:[1 1 1 1) 1] and /1':[3].
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An example

Let 3% = (1, -2, 3,4, 5) and consider the constraint:

Bi + B2 + Ba + Ba + s = 3.
Then
C:[1 1 1 1 1] and /{:[3].
The matrix C and 3* can be selected as

= T sk 0x 0% 0
0 =100,
0, Q=0
Q. 10 et Q=]

(@}
Il

andi IB* =102 3 —4 5.

—_
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

Solving the “extremal problem with constraints” continuea)

Let again g* fulfills constraints, i.e. C38* + x = 0 and put
Y = YIEXE X =X
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Solving the “extremal problem with constraints” continuea)

Let again g* fulfills constraints, i.e. C38* + x = 0 and put

V= YLEXAUN =X O,
Thenforany X< R"™* and B(\)=C'-\+ 3" we have:

Vi V- ¥RV X s Y X (é’A 3 9) — Y — X'B(\).
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Solving the “extremal problem with constraints” continuea)

Let again g* fulfills constraints, i.e. C38* + x = 0 and put

V= YLEXAUN =X 0,
Thenforany A€ R and B(\)=C'-\+ 3* we have:

Vi Y/,-—S(,’A:Y,—x,-’/a*—x,-’-é’A:Y,-—x,f(é’w/a*) — Y — X'B(\).

It means that

n n
A(OLS:) _  argmin {Z <\N’/ L 5(/,)\>2} — argmin {Z(Y’ _ XI/3(/\))2}

A€RP¢ . AeRP* 6
=1 i=1

o ).

Be{perP:Ca+r=0} |4
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... collinearity

Robustifying the Ordinary Least squares with constraints

It means that for

MO — argmin § Y™ (\7,- . 5(,’>\>2

AERP—*

N ~ ~

B(A) = C' - AOLSM 1 3+ solves
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Robustifying the Ordinary Least squares with constraints

It means that for
(OLS,n) 4 3
A(OLS:n) _ argmin E V. I %1
2 AegH/H { <Y’ X’A) }’
B(\) = C' - AOLS.n) 1 g+ solves

B(A) = argmin {Z(Y/X,-’f)’)z; C-/?Jrht—O}.

0
AL p
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

Estimating robustly the model under collinearity

Robustifying the least squares with constraints:

( The least weighted squares with constraints )

n L
ALWS.n.0) _ argmin {Z w (';1) 5 (8); C-B+r= 0}

0
BER ol
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Estimating robustly the model under collinearity

Robustifying the least squares with constraints:

( The least weighted squares with constraints )

BWS:n.C) — argmin {Z w (I_n1) f(z,-)(ﬁ); C-f+k= 0}

)
BER ol

They can be calculated as LWS without constraints for data (Y, X
- that’s all.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition

... collinearity

( Numerical study )

We have generated 1000 data-sets, as follows
1000

1000
100 100

BT U R B .
=1) k=1 =1) k=1

!
(X,ﬂ”, B, X,(ak)> s, €’s and s normally distributed,

with X1
and (7 ’’s uniformly distributed over [0.5,3.5],

U = X{ipe 13,000 and-o1)

i ;3+e—05*x

(k)
(i.p—12) +05*X,p 2oy T 1€

for £ =1,2, W=1, 2,-.5100, 7k ="1;211. 4 10001
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... collinearity

( Numerical study )

We have generated 1000 data-sets, as follows
1000 1000

100 100
(e Bl O s NAT)
=1) k=1 =1) k=1

with X = (X(k X® x4 > s, &’s and £¥)’s normally distributed,

i1

and a ’’s uniformly distributed over [0.5,3.5],

k
Z—OS*XIP 1-0) +05*X,p 2opy - 5()

fore=1,2, i=1,2,...,100, k=1,2,...,1000. Then we calculated for
B2 B4, B

100
W,(k) = Z U,(jk) . 5? & efk) . Jfk) and employed data { {W,(k)., U,(k)}. } .
k=1




Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition

... collinearity

( Numerical study (continued) )

For each dataset we obtained, say

{ﬁ(indexﬁk) b (ﬁ (index k) d(mdex k) % Aéindex,k))/}

1000
k=1

for indeces OLS, LWS, LTS, OLSC, LWSC and LTSC an we refer

1000

A}index - Z A (index, k) ge ¥ MSE (B(/ndex)> 1000 Z (6(/ndex k) BO) 4
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... collinearity

Employing one constraint

We will consider one constraint:

I
@

5 ~
2B
s

Then
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Employing one constraint

We will consider one constraint:

0>

5
W R
j=1

Ul C:[1 1 1 1 1] and /{,:[3].

The matrix C and 3* can be selected as

=122 05007110
0l Aen0TE0
0.0 Ol 0
U 7 O or O ]

i
C= 1 and A [#I2 3 —4 5].
1

Notice that the rows of matrix C are not orthogonal each to other.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition

... collinearity

( Numerical study (continued) )

TABLE 1

@ The disturbances are heteroscedastic (0.5 < ¢% < 3.5)
and independent from explanatory variables.
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( Numerical study (continued) )

TABLE 1

@ The disturbances are heteroscedastic (0.5 < ¢? < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 41.25.
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TABLE 1

@ The disturbances are heteroscedastic (0.5 < ¢? < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 41.25.

© The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,
the weight function w had h = 85% and g = 95% of n.
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... collinearity

( Numerical study (continued) )

TABLE 1

@ The disturbances are heteroscedastic (0.5 < ¢? < 3.5)
and independent from explanatory variables.

©

Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 41.25.

© The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,
the weight function w had h = 85% and g = 95% of n.

@ The collinearity is depressed by one constraint condition (see previous slide).
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Disqualifying classical regression analysis by ignoring ...

... collinearity

... broken orthogonality condition

pors (MSE(30LS)) 1.00(0.808) | —2.00(1.619) | 3.01(0.855) | —4.01(3.413) | 5.00(3.228)
pLW (MSE(BLWS)) 1.02(0.851) | —1.94(1.745) | 3.04(0.966) | —4.08(3.839) | 4.96(3.378)
LTS (MSE(3LTS)) 1.03(0.868) | —1-93(1.760) | 3-05(0.961) | —4.093.813) | 4.94(3.455)
poL MSE(QOLSC)) 1.00¢0.797) | —1.99(1.601) | 3:01(0.839) | —4.01(3.351) | 5.00(3.187)
pLWS MSE (awscy, | 1-03(0.820) | —1.94(1.697) | 3.040.912) | —4.07(3.633) | 4.94(3.303)
[aESC (vse(atrsey) | 1:03(0.851) | —1.94(1.703) | 3.03(0.946) | —4.06(3.766) | 4.94(3.387)

The other tables for the mean values of the condition numbers 1.16, 9.95, 19.95, 31.01,

32.79, 48.97, 61.22, 69.78 and 98.47 are available on http:/samba.fsv.cuni.cz/~
visek/Constraints_ Heteroscedasticity Numerical _Study/visek_NumericalStudy.
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... collinearity

What about to employing two constraints ?

Now we consider two constraints:
5

Z/§j23 and 314-32:—1.

j=1

Then
0{1 1 1 1 1} =y /{{3}.
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What about to employing two constraints ?

Now we consider two constraints:
5

Z/§j23 and 314-32:—1.

j=1

Then
1 1 1 1 1 3
0{1 1 0 0 O} and f{,|:_1 }

The matrix C and (* can be selected as
3 17 120740000
C=| GE O 471720 and ' BR=1d 3 —4 57
0%%:0,--1 0 -1

Notice that the rows of matrix C are not orthogonal each to other. )
The same is true about the rows of C.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition

... collinearity

( Numerical study(continued) )

TABLE 2
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < o2 < 3.5)
and independent from explanatory variables.
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( Numerical study(continued) )

TABLE 2
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < o2 < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.79.
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TABLE 2
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < o2 < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.79.

© The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,
the weight function w had h = 85% and g = 95% of n.

32/82



Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
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( Numerical study(continued) )

TABLE 2
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < o2 < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.79.

© The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,
the weight function w had h = 85% and g = 95% of n.

@ The collinearity is depressed by two constraints (see previous slide).
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Disqualifying classical regression analysis by ignoring ...

... broken orthogonality condition
... collinearity

BOLS(MSE(/§OLS)) 1.000.550) | —2.01(1.179) | 2.98(0.600) | —3.97(3.402) | 5.00(2.224)
BLWS(MSE(BLWS)) 1.02(0.543) | —2.00(1.086) | 2.990.546) | —3.97(2.172) | 4.96(2.154
LTS (MSE(3LTS)) 1.01(0.557) | —2.00(1.165) | 2.99(0.504) | —3-98(2.360) | 4.97(2.219)
BOLSC(MSE(BOLSC)) 1.01(0.115) | —2.010.115) | 2.99(0.455) | —3.97(1.705) | 4.98(0.449)
B isecamscyy | 1:07(0.108) | —2.01(0.108) | 2.99(0.425) | —3.97(1.686) | 4.98(0.425)
BHTSC \isecarrsey | 1:07.12) | =201(0.112) | 2.990.444) | —3.97(1.760) | 4.98(0.443)

The other tables for the mean values of the condition numbers 1.16, 9.95, 19.95, 31.01,
41.25, 48.97, 61.22, 69.78 and 98.47 are available again on http://samba.fsv.cuni.cz/~

visek/Constraints_ Heteroscedasticity Numerical _Study/visek_NumericalStudy.
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BOLS(MSE(/§OLS)) 1.000.550) | —2.01(1.179) | 2.98(0.600) | —3.97(3.402) | 5.00(2.224)
BLWS(MSE(BLWS)) 1.02(0.543) | —2.00(1.086) | 2.990.546) | —3.97(2.172) | 4.96(2.154
LTS (MSE(3LTS)) 1.01(0.557) | —2.00(1.165) | 2.99(0.504) | —3-98(2.360) | 4.97(2.219)
BOLSC(MSE(BOLSC)) 1.01(0.115) | —2.010.115) | 2.99(0.455) | —3.97(1.705) | 4.98(0.449)
B isecamscyy | 1:07(0.108) | —2.01(0.108) | 2.99(0.425) | —3.97(1.686) | 4.98(0.425)
BHTSC \isecarrsey | 1:07.12) | =201(0.112) | 2.990.444) | —3.97(1.760) | 4.98(0.443)

The other tables for the mean values of the condition numbers 1.16, 9.95, 19.95, 31.01,
41.25, 48.97, 61.22, 69.78 and 98.47 are available again on http://samba.fsv.cuni.cz/~

visek/Constraints_ Heteroscedasticity Numerical _Study/visek_NumericalStudy.

The results are much better than in Table 1 - compare MSE’s.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

What about to employ two orthogonal constraints ?

Let 3% = (1, -2, 3, -4, 5)’ and consider two orthogonal constraints:

Br+ Bz =—1 and Bs+Ba=—1.

Then
[ 1 1) 620 & .0 0} =i /«{—{_1}.
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What about to employ two orthogonal constraints ?

Let 3% = (1, -2, 3, -4, 5)’ and consider two orthogonal constraints:

Bi+ Br = —1 and B+ fa=—1.

Then
1 1 0 = 07 L6 —q
C—{O o o 1 0} and /{—{ }

The matrix C and (* can be selected as

) ) et B0 ) [ ey 0]
C= | O\¥0- S TR0 and S Al icC® 3 —4 5.
0 B O 0T
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

How the transformation of variables looks like ? An example

We have ; . .
Yer Y B XiBy and Xi=CX;
i.e. g " )
Xin=Xin—Xo, Xo=Xsg—Xa and Xs=Xps.
Finally, il [
B=| GAT B
i.e.

Br=x+1, B=-M-2  B=%+3
34 — 73\2 —4 and 35 = 5\3 + 5.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition

... collinearity

( Numerical study(continued) )

TABLE 3
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < 02 < 3.5)
and independent from explanatory variables.
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TABLE 3
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < 02 < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.95.
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@ The disturbances are heteroscedastic (0.5 < 02 < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.95.

© The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,
the weight function w had h = 85% and g = 95% of n.
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... collinearity

( Numerical study(continued) )

TABLE 3
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < 02 < 3.5)
and independent from explanatory variables.

@ Data are not contaminated but there is a collinearity,
the mean value of condition numbers was equal to 32.95.

© The level of robustness was fixed:
the number of observations h taken into account by LTS was 95% of n,
the weight function w had h = 85% and g = 95% of n.

@ We have employed two orthogonal constraints (see previous slide).
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Disqualifying classical regression analysis by ignoring ...

... collinearity

... broken orthogonality condition

BOLS(MSE(BOLS)) 1.05(0.503) | —1.91(1.167) | 3.04(0.570) | —4.08(2.297) | 4.91(2.359)
BLWS(MSE(ﬁLWS)) 1.04(0.573) | —1.93(1.065) | 3.03(0.505) | —4.06(2.076) | 4.92(2.279)
BLTS (MSE(3LTS)) 1.040.615) | —1.91(1.174) | 3.050.572) | —4.11(2.275) | 4.93(3.435)
BOLSC(MSE(QOLSC)) 1.000.005) | —2.00(0.005) | 3:00(0.021) | —4-00(0.021) | 5.01(0.015)
BLWSC(MSE(BLWSC)) 1.00¢0.004) | —2:00(0.004) | 3:00(0.019) | —4.00(0.019) | 5.01(0.014)
BLTSC(MSE(gwsc)) 1.00(0.004) | —2.00(0.004) | 3-00(0.021) | —4.00(0.021) | 5-01(0.015)

The other tables for some other mean values of the condition numbers are available again on
http://samba.fsv.cuni.cz/~visek/Constraints_ Heteroscedasticity_ Numerical_ Study/visek_
NumericalStudy.
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... collinearity

... broken orthogonality condition

BOLS(MSE(BOLS)) 1.05(0.503) | —1.91(1.167) | 3.04(0.570) | —4.08(2.297) | 4.91(2.359)
BLWS(MSE(ﬁLWS)) 1.04(0.573) | —1.93(1.065) | 3.03(0.505) | —4.06(2.076) | 4.92(2.279)
BLTS (MSE(3LTS)) 1.040.615) | —1.91(1.174) | 3.050.572) | —4.11(2.275) | 4.93(3.435)
BOLSC(MSE(QOLSC)) 1.000.005) | —2.00(0.005) | 3:00(0.021) | —4-00(0.021) | 5.01(0.015)
BLWSC(MSE(BLWSC)) 1.00¢0.004) | —2:00(0.004) | 3:00(0.019) | —4.00(0.019) | 5.01(0.014)
BLTSC(MSE(gwsc)) 1.00(0.004) | —2.00(0.004) | 3-00(0.021) | —4.00(0.021) | 5-01(0.015)

The other tables for some other mean values of the condition numbers are available again on
http://samba.fsv.cuni.cz/~visek/Constraints_ Heteroscedasticity_ Numerical_ Study/visek_

NumericalStudy.
The results are again even much better than in Table 2 - compare MSE'’s.
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... collinearity

... broken orthogonality condition

BOLS(MSE(BOLS)) 1.05(0.503) | —1.91(1.167) | 3.04(0.570) | —4.08(2.297) | 4.91(2.359)
BLWS(MSE(ﬁLWS)) 1.04(0.573) | —1.93(1.065) | 3.03(0.505) | —4.06(2.076) | 4.92(2.279)
BLTS (MSE(3LTS)) 1.040.615) | —1.91(1.174) | 3.050.572) | —4.11(2.275) | 4.93(3.435)
BOLSC(MSE(QOLSC)) 1.000.005) | —2.00(0.005) | 3:00(0.021) | —4-00(0.021) | 5.01(0.015)
BLWSC(MSE(BLWSC)) 1.00¢0.004) | —2:00(0.004) | 3:00(0.019) | —4.00(0.019) | 5.01(0.014)
BLTSC(MSE(gwsc)) 1.00(0.004) | —2.00(0.004) | 3-00(0.021) | —4.00(0.021) | 5-01(0.015)

The other tables for some other mean values of the condition numbers are available again on
http://samba.fsv.cuni.cz/~visek/Constraints_ Heteroscedasticity_ Numerical_ Study/visek_

NumericalStudy.
The results are again even much better than in Table 2 - compare MSE'’s.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < o2 < 3.5)
and independent from explanatory variables.
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TABLE 4
Nearly the same framework as in previous case - except of underlined.

@ The disturbances are heteroscedastic (0.5 < ¢? < 3.5)
and independent from explanatory variables.

@ Thereis a collinearity,
the mean value of condition numbers was equal to 16.55.

© The level of robustness was fixed:
the number of observations h taken into account by LTS was 90% of n,
the weight function w had h = 65% and g = 90% of n.

@ We have employed two orthogonal constraints.

© The 5% contamination by outliers Y(cenamnated) — _ o . y(original)
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Disqualifying classical regression analysis by ignoring ...

... collinearity

... broken orthogonality condition

BRLS (MSE(30LS)) 0.02(5.943) | —1.448.821) | 3.41a6609) | —3.45(16.254) | 4.10(19.377)
pLW MSh (ALWS)) 1.00(0.160) | —2.02(0.314) | 2.990.164) | —3-97(0.620) | 9-01(0.612)
5L (MSE(ALTS)) 0.990.170) | —2.02(0.336) | 2.9900.182) | —3.97(0.602) | 5.02(0.652)
poLse (msg(goscyy | 0-25(0.988) | —1.25(0.958) | 2:38(1.639) | —3-38(1.639) | 3.66(3.231)
pwse mse(awsey | 1:00(0.005) | —2.00(0.005) | 3-00(0.023) | —4.00(0.023) | 5.01(0.019)
BLTSC(MSE(gLrsc)) 1.00(0.006) | —2.00(0.006) | 3-00(0.028) | —4.00(0.028) | 5-01(0.023)

The other tables for some other mean values of the condition numbers are available again on
http://samba.fsv.cuni.cz/~visek/Constraints_ Heteroscedasticity_ Numerical_ Study/visek_
NumericalStudy.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

We are going to make an idea what a contamination can cause.

TABLE 4
Nearly the same framework as in previous cases - except of underlined.

@ Thereis a collinearity,
the mean value of condition numbers was equal to 32.60.
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... broken orthogonality condition
... collinearity

Disqualifying classical regression analysis by ignoring ...

EOLS(MSE(éoLS)) 0.22(16.606) | —1.54(31.508) | 2.12(18.144) | —2.90(p9.2709) | 3.72(64.889)
BLWS(MSE(BLWS)) 1.06(0.636) | —1.92(1.279) | 3.01(0.622) | —4.03(3.485) | 4.882.541)
[alTs se(atrsy | 1:040.686) | —1.95(1.286) | 3.00(0653) | —3.992607) | 4.91(2.700)
BOLfﬁSE(ﬁOLsc)) 0.270.915) | —1.270.015) | 2.34(1.848) | —3.34(1.848) | 3.62(3.488)
BLW(SJSSE([;stc)) 1.00(0.005) | —2.00(0.005) | 3.00(0.026) | —4.00(0.026) | 5-00(0.021)
6LTS&SE(3LTSC)) 1.000.006) | —2-00(0.006) | 3:01(0.030) | —401(0.030) | 5:00(0.024)

The other tables for some other level of contamination are available again on
http://samba.fsv.cuni.cz/~visek/Constraints_ Heteroscedasticity_ Numerical_ Study/visek_
NumericalStudy.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

What about leverage points.

TABLE 5
Nearly the same framework as in previous cases - except of underlined.

@ Thereis a collinearity,
the mean value of condition numbers was equal to 16.55.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

What about leverage points.

TABLE 5
Nearly the same framework as in previous cases - except of underlined.

@ Thereis a collinearity,
the mean value of condition numbers was equal to 16.55.

@ The 5% contamination by leverage points

X(contamina(ed) = 3 x X(origina/) Y(con[aminated) 1ok Y(origina/)
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition

... collinearity

Bot MShBOLS)) —1.5945.600) | 0-68(81.603) | 0.68(45.803) |—1.53(155.949) |0.50(169.327)

BEYS (MSE(ALWS)) 0.99(0.162) —2.01(0.312) | 3.01(0.163) | —4.07(0.634) | 5.01(0.622)

LTS (MSE(3LTS)) 1.000.190) —2.00(0.323) | 3.01(0.201) | —4.01(0.745) | 4.99(0.717)

poLse (msg(goLscyy| —1-86(10.474) | 0.86(10.474) | 0.70(13.424) | —1.70(13.424) | 0.52(27.070)

pLws (MSE(ﬁLWSC)) 1.00¢0.005) —2.000.005) | 3-00(0.026) | —4.00(0.026) | 5-00(0.021)

pLrsc 1.00(0.007) —2.00(0.007) | 3:01(0.037) | —4.07(0.037) | 4-990.028)

(MSE(5LTS0))

The other tables for some other level of contamination are available again on
http://samba.fsv.cuni.cz/~visek/Constraints_ Heteroscedasticity_ Numerical_ Study/visek_
NumericalStudy.
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Disqualifying classical regression analysis by ignoring ... ... broken orthogonality condition
... collinearity

What about leverage points.

TABLE 6

The same framework as in previous cases
- only the mean value of condition numbers was equal to 32.60.

BOLS (mse(goLsy) | —1-67(145.901) | 0-47(268.206) | 0-98(139.653) | —2-16(536.245) | 1-23(570.985)
pLw (MSF (awsy) | 0-940.625) | —2.08(1.216) | 3.00(0503) | —4.00(2.335) | 5.12(2.471)
B (MSE(ALTS)) 0.9400.686) | —2.07(1.260) | 2.990.687) | —3-98(2.658) | 5-11(2.672)
BOLSC(MSE(QOLSC)) —1.61(9.285) | 0.6T(9.285) | 0.69(13.963) | —1.69(13.963) | 0.65(26.999)
BLWSC(MSE(/;stc)) 1.00(0.005) | —2-00(0.005) | 3-01(0.025) | —4.01(0.025) | 5.00(0.019)
BLTSC(MSE(BLTSC» 1.00(0.009) | —2.00(0.009) | 3-00¢0.045) | —4.00(0.045) | 5.00(0.043)

The other tables for some other level of contamination are available again on
http://samba.fsv.cuni.cz/~visek/Constraints_ Heteroscedasticity_ Numerical_ Study/visek_
NumericalStudy.
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Content

e Significance of individual explanatory variable
@ ... for LWS-estimation
@ ... simulations of p-values

45/82



... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Content

e Significance of individual explanatory variable
@ ... for LWS-estimation

46/82



... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Significance of explanatory variable - for the Least Weighted Squares

We are going to give an idea of deriving
the significance of individual regressor - two steps:
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Significance of explanatory variable - for the Least Weighted Squares

We are going to give an idea of deriving
the significance of individual regressor - two steps:
The first one (which we have already seen in the seventh lecture
- hence only a brief repetition):

The Least Weighted Squares 3(1/5:7:W) can be
- at any point of a basic probabily space (£, A, P) -
written as Weighted Least Squares F(WLS:n-W.m),
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Significance of explanatory variable - for the Least Weighted Squares

We are going to give an idea of deriving
the significance of individual regressor - two steps:

The first one (which we have already seen in the seventh lecture
- hence only a brief repetition):

~ )

The Least Weighted Squares (*"S:"W) can be

- at any point of a basic probabily space (£, A, P) -
written as Weighted Least Squares F(WLS:n-W.m),
\ _J
The second one:
. L - )
The classical derivation for significance of

individual regressor for OLS

can be generalised for the classical WLS fWLS.n-W.m) B
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Showing that 3(tWS:n) jg B(LWS.n.#)

We have seen in the seventh lecture:

V (weQ) 3 (7 =7w)={m(w), 2(w),...,mn(w)}) sothat

n

;)(LWS,n.W) )) = arg min Wi Yﬂ' —X/j 2 o A(WLS,n,W,)

BUSTI) = A S (¥, - X, )" =5 ®
n

’ 1 1 2
2 b !
— argmin (w? Ya, — wi X )
3 i=1
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... for LWS-estimation
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Showing that 3(tWS:n) jg B(LWS.n.#)

We have seen in the seventh lecture:

V (we ) 3 (7 =n(w)={mw),m(w),..,mm(w)}) so that

B(LWS,n,W)(w =

~—

n

arg min w; (Y, — X 8)2 = IWLS.nW.m)(,

ﬂEFt'p 1221: I( 4 ﬂrﬁ) 5 ( )
n

; 1 1 2
_ argmin (W/2 Y, —w? XTIr;ﬂ)

)
g e

Notice the dependence of 7 on w.

48/82



... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Showing that 3(tWS:n) jg B(LWS.n.#)

We have seen in the seventh lecture:

V (we ) 3 (7 =n(w)={mw),m(w),..,mm(w)}) so that

B(LWS,n,W)(w =

~—

n

arg min w; (Y, — X 8)2 = IWLS.nW.m)(,

ﬂEFt'p 1221: I( 4 ﬂrﬁ) 5 ( )
n

. 1 1 2

] 2 !

— arﬁg r;lln (w,.2 Yo W2 Xmﬂ>
= =1

Notice the dependence of 7 on w.

Let’s recall how we have found it.
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Recalling several facts

Let P be the set of all permutations of integers {1,2, ..., n}.
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Recalling several facts

Let P be the set of all permutations of integers {1,2, ..., n}.

Forany m € P,w = {my, 7o, ..., mn} let

Y?T - (Yﬂ17 Y772? e Ey Yﬂn)/a Xﬂ' = (XTF17X7T2> '

-~7X7Tn)/ and £, = (571_175”27 ,.,,gﬂn)’.
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... for LWS-estimation

Significance of individual explanatory variable ... simulations of p-values

Recalling several facts

Let P be the set of all permutations of integers {1,2, ..., n}.

Forany m € P, = {my,m2,...,mn} let

Yﬂ' = (Y7T17 Y7r2>‘--7 Yﬂ'n)/a Xﬂ' = (XTF17X7T27 ¢

v X ) A €7 = (Ermyr Emgr oer Emy) -

Put o

A ™ / —1 v 1A ™ 2
BISAT) — (XLWX,) ' X, WY, and 2= w; (Yﬂj _ X! pomsn >)
=1
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Deriving existence of S(1WS:n)

Then forany = € P

n n

S2=> w (Yﬂ, o X;,é(WLSvnm))z < ;ni,gp W (Yﬁ, - X;/“B)Z. (3)
Be

=1 =1
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Deriving existence of S(1WS:n)

Then forany = € P

n

g _ i W, (Yﬂ, F X;j@(WLs,n,ﬂ))z < min

N perr 2" (Y’” a XT/ffﬂ)Z' ®)

J=1 j=1

Let (2, A, P) be the basic Probability Space
and denote for any r.v. Z by Z(w) its value at point w € Q.
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b BERP W (Y”f B X;rfﬂ>2 ’ (3)

= =

Let (Q, A, P) be the basic Probability Space
and denote for any r.v. Z by Z(w) its value at point w € Q.

Finally, fix wg and put

#lwo) = AGMIn_ S2(up).
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Deriving existence of S(1WS:n)

Then forany = € P

n

n 2 A , 2
351_21 W/<Y g BWLSnﬂ)) < ﬂn;llgp 2. W/(Y - X ﬂ) . (3)

Let (Q, A, P) be the basic Probability Space

and denote for any r.v. Z by Z(w) its value at point w € Q.

Finally, fix wg and put

#lwo) = AGMIn S2(p).

Then - due to (3) # r

S?T(w G )S’rrnel?’ jrzl’g Zm(yﬂf_x;ﬂ‘g)z:srzigﬁ ;nég ZW/ (Y - X /3>2
J=1 j=1
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Deriving existence and form of (LWS.n)

It means
B(WLS’n"ﬁ(wo))(WO) - Q(WLS,H) (Yﬂ'(wo)(WO)sXﬂ(wo)(WO)) - 3(LWS’”'W)(W())
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... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Deriving existence and form of (LWS.n)

It means
B(WLS,n,fr(wo))(wO) e B(WLS,n) (Yw(wo)(wo),xﬂ(wo)(wo)) - B(st,n,w)(wo)

Repeating it for all w € Q, we prove the existence of S(LWS:n.w),
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B(WLS,n,fr(wo))(wO) e B(WLS,n) (Yw(wo)(wo),xﬂ(wo)(wo)) - B(st,n,w)(wo)
Repeating it for all w € Q, we prove the existence of S(LWS:n.w),

Fix = € P and put
B(r)={weQ : m=7(w)}.
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... for LWS-estimation

Significance of individual explanatory variable ... simulations of p-values

Deriving existence and form of (LWS.n)

It means

BOMONFR) () = B (Y. o) (0), Xy (w0)) = B4 o)

Repeating it for all w € Q, we prove the existence of S(LWS:n.w),
Fix = € P and put

B(m)={weQ : m==%w)}.
Then weB(r) = B(LWS,n, w)( D= S(WLS n, r)(w)
i. e. n j 1 2
A(LWS,n,w) w) = A(WLS,n, ) — argmin . _ X )
3 (w)=J (w) = argm Ty (n ) (YW X ,/5’)
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... for LWS-estimation

Significance of individual explanatory variable ... simulations of p-values

Deriving existence and form of (LWS.n)

It means

BUMS) g) = B (¥, ) (o), Xy (0)) = LS )
Repeating it for all w € Q, we prove the existence of S(LWS:n.w),
Fix = € P and put

B(r)={weQ : m=#w)}.
weB(m) = B(LWS,n,w)(w) At B(WLS,n,w)(w)

: n iy 2
— argmin S w (’1> (Yo —X28)
BERP T n 4

Due to i.i.d. framework, Vx e P

Then
i.e.
B(LWS,n.W) (w) = ﬂ(WLS,n,W)(w)

P(B(x))=(n)"".
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... for LWS-estimation

Significance of individual explanatory variable ... simulations of p-values

Deriving form of 3(tWS:n)

Let’s repeat:

We have shown that fixing = € P and putting B(r) = {w € Q: 7 = m(w)},
we have

P(B(m)) = (n)™"
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Deriving form of 3(tWS:n)

Let’s repeat:

We have shown that fixing = € P and putting B(r) = {w € Q: 7 = m(w)},
we have

P(B(r)) = ()"

and one can easy verify that

Urep B(r) = Q.
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Deriving form of 3(tWS:n)

Let’s repeat:

We have shown that fixing = € P and putting B(r) = {w € Q: 7 = m(w)},
we have

P(B(m)) = ()~
and one can easy verify that

Urep B(r) = Q.

All further considerations can be done conditionally, A
on 7 (or on B(r), if You want) for f(WLS:mm),
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Significance of individual explanatory variable ... simulations of p-values

Deriving form of 3(tWS:n)

Let’s repeat:

We have shown that fixing = € P and putting B(r) = {w € Q: 7 = m(w)},
we have

P(B(m)) = ()~
and one can easy verify that

Urep B(r) = Q.

All further considerations can be done conditionally, .
on  (or on B(r), if You want) for (W-S:mm),
Then we take mean value over all conditions, i.e. over all * € P
but the situation for all 7 is the same, with the same probabilities,
hence an unconditional result is the same as conditional.
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Deriving existence and form of (LWS.n)

Let’s rewrite the line (the third from bottom) from the last but one slide, for
w € B(m)

A(LWS,nw)(, \ _ AWLS,nz)(, \ _ 5 7l j—1 o 2
sy = gensoni) = s S (20 (v, - x,0)%

BERP
=
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Deriving existence and form of (LWS.n)

Let’s rewrite the line (the third from bottom) from the last but one slide, for
w € B(m)

A o n T ;
s ) = p0msnmiie) — agmn Sw (22) (v, - x0)" @
Putting W = diag{w—% (0), w2 (=2 w3 s }

n

and Y = WY, X = WX, then (4) reads

FLwS.nw)(,) = argmin { ()7 < )N(/j>/ ()N/ | 5(6) }

BeRP
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Deriving existence and form of (LWS.n)

Let’s rewrite the line (the third from bottom) from the last but one slide, for
w € B(m)

o A n : by )
[3(LVVS.HJN)(LU) — lg(VVLS*nvﬂ)(Ld) = a;géggn :E:: w (:j’7j> ( yzn o )(47[3) ] (4)
Putting W = diag {w~ (0),w~# (1), ., w } ()}

n n
and Y = WY, X = WX, then (4) reads
/
BLWS.nw)( )y — argmin Y= X Y X
s wgmn (53 (v-)]
S = I
= (JeX) XY = Bos(Y, X).
Consider, for a while, the model
Y=X3"+2 with L(E) =N (0,02 W2> (notice the heteroscedascity of ).
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Significance of explanatory variable - classical OLS case

Let’s recall the simplest classical framework for finite-sample diagnostics:

Regression model
Y 50 Ve A A g o ¥ s X80+ e
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Significance of explanatory variable - classical OLS case

Let’s recall the simplest classical framework for finite-sample diagnostics:
Regression model
Y X 8% e by Al b T Wk X0+ €
Conditions :

(X&)} i, Foa(x, V) = Fx(x) - Fu(v), Fo(v) = N (0,62),
Q = E[X - X{]is regular.
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Significance of explanatory variable - classical OLS case

Let’s recall the simplest classical framework for finite-sample diagnostics:
Regression model
Y X 8% e by Al b T Wk X0+ €
Conditions :

(X&)} b, F (%, V) = Fx(x) - F(v), F-(v) = N (0,0),
Q = E[X - X{]is regular.

C Significance of (-th explanatory variable X, < - Hp: B9 = o)

N 2
Denote  cZ, = [(X’X)_1] and e s ) (Yi - X,-/ﬁ(OLS*”)> :
00
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Significance of explanatory variable - classical OLS case

Let’s recall the simplest classical framework for finite-sample diagnostics:
Regression model
Y X 8% e by Al b T Wk X0+ €
Conditions :

(X&)} b, F (X, V) = Fx(x) - F(v), F-(v) = N (0,0),
Q = E[X - X{]is regular.

C Significance of (-th explanatory variable X, < - Hp: B9 = o)

A 2
Denote ¢, = [(X’X)_1L , and S s 1, (Y,» L X/ﬂ(OLS*”)) :
Test is based on B(OLS:n) _ 30
YLl <H =)= fh_p
Sn-Crue (Fisher-Cochran theorem)

54/82



... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

First of all, let’s recall that in any regression model
and hence also in our model for <\~/, 5()

P (;@’(OLS’”) (Y 5()) = Y= XploLsn (Y 5() L M <X>

(M <5(> is the set of all linear combinations of the columns of X).
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Recalling the derivation of t-statistics in the classical regression

First of all, let’s recall that in any regression model

and hence also in our model for (\7, 5()
7 (B(OLS’”) (\77 5()) = L X3lo5n (\7, 5() 1 M <5(>

(M (5() is the set of all linear combinations of the columns of X).

§econd|y,
V= %3OS0 - X (XX) kv

— % (%'%) ke (X80 + &) = X0+ X (X'X) e
o o (V)=w <5<3°7 2K (5«)?)“ XWX (%K) X
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Recalling the derivation of t-statistics in the classical regression

As V= XBOLS:n) i e. Yis a linear combination of the columns of X
A ?(fQ(OLSv”) <\7, 5()) =Y — XpoLsn (\7, 5()

and due to the normality of Y, it is independent with r (B(OLS=”) (\7, 5())
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Recalling the derivation of t-statistics in the classical regression

As Y = XBOLS.n) i e. Yisalinear combination of the columns of X

~

and due to the normality of Y, it is independent with r (B(OLSv”) (Y, 5())
By standard way
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... for LWS-estimation

Significance of individual explanatory variable ... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

As Y = XBOLS.n) i e. Yisalinear combination of the columns of X

SAY L r(d(OLS” (VX)) = Y2 XBOLSn) (VX)

and due to the normality of ¥ itis independent with r (B(OLSv”) (Y, 5())
By standard way

X
Then due to (5) 3(OLS.n) (Y ) is independent with 7 <B<OLS n) (\7
a

(we shall need it in

few minutes).

56/82



... for LWS-estimation
Significance of individual explanatory variable ... simulations of p-values

Recalling the derivation of t-statistics in the classical regression

Let’s recall
poLsn) <§/7 )"(> _ B0 fWLSA W) _ 50 _ ()”(/)"(>‘1 Xe

i. e. due to normality of disturbances, also F(WLS:n.W.m) _ 30
is normally distributed (with heteroscadasticity).
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Recalling the derivation of t-statistics in the classical regression

Let’s recall
jloLs,n) ( ) B = pMLS,nW.m) _ 30 (5(’5(>_1 X'g,

i. e. due to normality of disturbances, also F(WLS:n.W.m) _ 30

is normally distributed (with heteroscadasticity).
Let’s recall (as it is well-known from the classical regression)

7 (6 (OLS,n) <Y X)) ul 7</§(WL57”:W~77)> = (l—)N(()N(/)N(>1 5(’) &

i. e. due to normality of disturbances, 7 (B(WLSv”*W“)
is normally distributed (with heteroscadasticity).
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Recalling the derivation of t-statistics in the classical regression

Recalling that W = diag {W%a WZ%’ oo Wr%} fue
E(f) = N (0,U2W2> ’

we have from

and

cov {050 (7,%) - g0} = (Xfx)" XWX (5(')?)*‘

= (X/W2X>_1 En: w2 X - X! (x'|/”v2x)_1

i=1
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Recalling the derivation of t-statistics in the classical regression

Denote

3
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Recalling the derivation of t-statistics in the classical regression

Denote

144

3

_[(x’vwx)”. W,2.X,.)q(x'|7v2x)1] = (W, X).

£¢ (denote)

@’EOLS’n) (Y/ N) = ﬁo ﬁ“IELWS,n,W) | /30
£ ( odne(W, X) =L <(W> = N(0,1).
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Significance of individual explanatory variable ... simulations of p-values

Establishing the result

We can show (similarly as in the OLS-regression),

L (0*2}?’ <B(WLS’”’W)> T (B(WLS’H’W))> == [ (072 3 HSS) = Xgeneralized (n o P)

in the sense that xsene,a,,zed (n — p) is distribution of the sum of squares of n — p independent
r.v.s normally distributed with zero mean but variance not equal one, but w;.
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Establishing the result

We can show (similarly as in the OLS-regression),

L (0*2? (B(WLS’”’W)) T (B(WLS’H’W)>> = [ <072 3 HSS) = ngyeneralized (n o ,D)

in the sense that xsenera,,zed (n — p) is distribution of the sum of squares of n — p independent

r.v.s normally distributed with zero mean but variance not equal one, but w;.
Let us recall that for the “classical x?(n — p) we have (written symbolically)
Ex?(n—-p)=n—-p
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Significance of individual explanatory variable ... simulations of p-values

Establishing the result

We can show (similarly as in the OLS-regression),

L (0*2? (B(WLS’”’W)) T (B(WLS’H’W)>> = [ <072 3 HSS) = ngyeneralized (n o ,D)

in the sense that xsenera,,zed (n — p) is distribution of the sum of squares of n — p independent
r.v.s normally distributed with zero mean but variance not equal one, but w;.

Let us recall that for the “classical x2(n — p) we have (written symbolically)
Ex?(n—p)=n—-p
and hence in the denominatot of ¢-statistics we put

2t (B(WLSm,W)) = (B(WLS,n,W)) :
(n—p)-o®
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Establishing the result

We can show (similarly as in the OLS-regression),
L (072?[ (B(WLSA'”’W)) - F (B(WLSm’W))) =0 <072 j HSS) = ngyeneralized (n - ,D)

in the sense that xsenera,,zed (n — p) is distribution of the sum of squares of n — p independent
r.v.s normally distributed with zero mean but variance not equal one, but w;.

Let us recall that for the “classical x2(n — p) we have (written symbolically)
Ex?(n—p)=n—-p
and hence in the denominatot of ¢-statistics we put
1
P (B(WLSm,W)) ,;(B(WLs,n,W)) 2
(n—p)-o? '

So, to conclude the derivation we need to calculate ExZ,q.jzeq (1 — P)-
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Establishing the result

~ 1 il 1 -
Let us recall that Wz = W = diag{w%., wzé.,..., w,?} and £ = We

and that (as it is well-known from the classical regression)

denote it by M
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Establishing the result

~ 1 il 1 o
Let us recall that Wz = W = diag {wf., w2l w,?} and & = We

and that (as it is well-known from the classical regression)

?<3(WLS;N)) i <[_ X (5(’5()_1 5(’) &= MWe.

denote it by M

= {7/ (B(WLS,n)) & (3(WLS,n)>} L g2 g {W (l— i (5(’5()71 )N(/)}

n
=51 (Z wi(1 - dn‘))
=]
N e ea pr -,:/ S(WLS,H) ; Q(WLS,H)
where dj; = {x (X’X) X’} . So, ( AL ) 1.
ii o? 3Ly wi(1—di)
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Recalling the classical regression for ¥, X

We conclude
THEOREM

A(LWS,n,W) 30 now(1—d;)] 2
L (ﬁ[{dn[(wx)[ . [ZMI;VS(S )} ) = tgenera/ized (I’) - ,0)
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Recalling the classical regression for ¥, X

We conclude
THEOREM

2 1
c ﬂﬁLWS’”'WLﬁ‘).[Zf”a w09 1* ) = tyoneratzea (1 = )
dn o (W, X) RSS generalize

in the sense that {yeperaiized (1 — P) is a ratio of standard normal r.v.
P . .
and Xgeneraized (n— p) r.v. and numerator and denominator are independent

(in the appendix which follows after the end of lecture,
an alternative derivation with more details is given, see also ICORS2011).
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Function generating the weights

Let me recall that we already know
that under low contamination, the intuitively optimal (left)
and really optimal (right) weight functions are
(in the sense of mean square error of the estimates of regression coefficients).

w, = w (&) Contamination : 4% outliers
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Function generating the weights

Let me recall that we already know
that under low contamination, the intuitively optimal (left)
and really optimal (right) weight functions are
(in the sense of mean square error of the estimates of regression coefficients).

w, = w (&) Contamination : 4% outliers

E N e L s 1 1 o b e T S

' \
0.5] n \ 4 0.5

But the optimality of the weight function is rather flexible
with respect to the point where decrease starts!
(Numerically established experience.)

p T ; ] r i

-0, -0
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Content

e Significance of individual explanatory variable

@ ... simulations of p-values
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Framework of simulations

@ For each value of n = 20, 30, ..., 190 we generated 5000 times

I

B { A w;(1_d,f)}
oo (W, X) RSS
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Framework of simulations

@ For each value of n = 20, 30, ..., 190 we generated 5000 times

=

B([LWS‘HYWLBO : { i W/(1—di/'):|
e (W, X) RSS

@ The 4875 and 4975 order statistics
among these 5000 values were found.
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Framework of simulations

@ For each value of n = 20, 30, ..., 190 we generated 5000 times

=

B([LWS‘H'W)*BO : {27:1 W,-(1—d,',‘)}
dn,e(W,X) RSS

@ The 4875 and 4975 order statistics
among these 5000 values were found.

© We repeated it 100 times and have found empirical means

and the roots of mean square errors over these 100 repetitions
(these roots of mean square errors are in parentheses).

65/82



... for LWS-estimation

Significance of individual explanatory variable ... sSimulations of p-values

TABLE 1
The simulated quantiles for 5%.

n 20 30 40 50 60 70

55 (Mar) | 2148 (0.047) | 2.087 0.040) | 2056 (0.045) | 2027 (0.045) | 2017 (g.0as) | 2:012 (0.045)

to.975(n) 2.085 2,043 2,022 2.009 2.000 1.995
n 80 90 100 110 120 130
15'%%5(n) | 2008 (0.040) | 1999 (0.0a1) | 1:992 (0.040) | 1997 (0.0a1) | 1:990 (0.040) | 1.988 (0.040)

t9.975(n) 1.990 1.987 1.984 1.982 1.980 1.978

n 140 150 160 170 180 190
P
BWSs(n) | 1.986 (0.0a3) | 1.989 (g.0a1) | 1.975(0.035) | 1974 (0.0a5) | 1:973 (0.035) | 1.973 (0.035)
t9.975(n) 1.977 1.976 1.975 1.974 1.974 1.973

By the way, the 0.975-upper quantile of the standard normal distribution is equal
to 1.959964, i.e. $(1.959964) = 0.975.
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TABLE 2
The simulated quantiles for 1%.

n 20 30 40 50 60 70

SLWS
Ih/995(") | 2.999 (0.100) | 2-825(0.082) | 2.766 (0.080) | 2702 (0.085) | 2:688 (0.077) | 2-678 (0.079)

t9.995 (1) 2.845 2.748 2.705 2678 2.661 2.651

n 80 90 100 110 120 130
15%55(n) | 2.659 (g.067) | 2644 (0.075) | 2633 (0.077) | 2627 (0.063) | 2629 (0.070) | 2.626 (0.071)
t0.995(n) 2.640 2.632 2.625 2,619 2614 2,612

n 140 150 160 170 180 190
LW
BS(n) | 2619 g.o72) | 2621 (g.073) | 2609 (g.o79) | 2.609 (g.070) | 2620 (g.o78) | 2.602 (g 07s)
t.995(n) 2,611 2,610 2.609 2.608 2.606 2.605

Again, the 0.995-upper quantile of the standard normal distribution is equal to
2.575,i.e. ®(2.575) = 0.995.
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THANKS FOR ATTENTION
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( An appendix )
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Significance of explanatory variable

Let’s recall the simplest classical framework for finite-sample diagnostics:

Regression model
Y X80 4. =1, 2500 Lor” Y= XB0 + ¢

70/82



... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Significance of explanatory variable

Let’s recall the simplest classical framework for finite-sample diagnostics:
Regression model
Y XiB0dreh b A Borg oM b= Yo X0 + ¢
Conditions :

{(X/ &) 12, Lid., Fxe(x, v) = Fx(X) - Fe(v), Fo(v) = N (0,0%),
Q = E[X - X{] is regular,
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Significance of explanatory variable

Let’s recall the simplest classical framework for finite-sample diagnostics:

Regression model
Y XiB0dreh b A Borg oM b= Yo X0 + ¢

Conditions :
{(X{, &)}z Lid., Fxe(X,v) = Fx(x) - Fe(v), Fe(v) = N (0,0%),
Q = E[X - X{] is regular,

C Significance of ¢-th explanatory variable X, < Hp : Q}LS‘”) =0 )

A 2
Denote  ¢f, = [(X/X)’q[ ; and 2= n%p Yo, (y}. - X/g(L&n)) _
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Significance of explanatory variable

Let’s recall the simplest classical framework for finite-sample diagnostics:
Regression model
Y XiB0dreh b A Borg oM b= Yo X0 + ¢
Conditions :

(X&) 124 L, Fe(X, V) = Fx(x) - Fo(v), F(v) = N (0,0),
Q = E[X - X{] is regular,

C Significance of ¢-th explanatory variable X, < Hp : @(LS‘”) =0 )

2
—1 P54 ] A(LS,
Denote  cZ, = [(X/X) L’K and Sh = mip i (Y/ - X/ B ")> :
Test is based on - BUS i §- ;
Sn - Cey o (Fisher-Cochran theorem)
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Significance of explanatory variable

Let’s recall the classical “treatment” under heteroscedaticity:(we shai need it)
Conditions :
{(X], 1) Y21 19s, Fx,ei(X, V) = Fx(x) - Fo(v).Fe)(v) = N (0, 07),
QE [X; - X{] is regular,
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Significance of explanatory variable

Let’s recall the classical “treatment” under heteroscedaticity:(we shai need it)
Conditions :
{(X] &) Y21 1ds, Fxe)(X, V) = Fx(x) - Fo(v),Fey(v) = N (0, 07),
QE [X; - X{] is regular,

C Significance of (-th explanatory variable Xjy < Hj : @(LS‘”) =0 )

Denote

n

(X’X)q Zriz (B(LS,H)) %0 (X/X)1:|

i=1

2
dpe =

0,0
(Halbert White estimator - 1980)
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Significance of explanatory variable

Let’s recall the classical “treatment” under heteroscedaticity:(we shai need it)
Conditions :
{(X] &) Y21 1ds, Fxe)(X, V) = Fx(x) - Fo(v),Fey(v) = N (0, 07),
QE [X; - X{] is regular,

C Significance of (-th explanatory variable Xjy < Hj : @(LS‘”) =0 )

Denote

n

d/izz i (X’X)71 Zfiz (B(LS,n)) )78 )(il (X,X)q
i=1 or
(Halbert White estimator - 1980)
Test is based on. e
L|=F—"— )=y (M
Oe.e € ((n=p) a8 ,) ~xB_p 22
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Recalling several facts

Let's W = diag {w1, ws, ..., w,} be a weight matrix.
Then the classical Weighted Least Squares is given as

BWLS.n). | (XWX) T X WY
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Recalling several facts

Let's W = diag {w1, ws, ..., w,} be a weight matrix.
Then the classical Weighted Least Squares is given as
BWLSD — (X WX) T X' WY.
Let P be the set of all permutations of integers {1,2, ..., n}.
Fix r € P,m = {i1, b, ..., in} and put

Y‘N:(wayizw"fyi)/: Xfr:()(iw)(iza-"a)(in)/ (and 577:(5/1-,51'2-,----,5/")/)
and consider model
Yoot 0
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Recalling several facts

Let's W = diag {w1, ws, ..., w,} be a weight matrix.
Then the classical Weighted Least Squares is given as
BWLSD — (X WX) T X' WY.
Let P be the set of all permutations of integers {1,2, ..., n}.
Fix m € P,m = {1, o, ...,in} and put

Y"":(Yiﬁ Yiz""1 Yl‘n)lv X :()(iw)(iza'-'a)(in)/ (and En :(€i17€i2?"'7€in)/)
and consider model

Yo X,rﬁo +en.

Then denote )

~ F B 2
BOMSAT) — (X0 W) T Xy WY, and 82 =3 wi (¥ — XjBOS )
j=1
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Deriving existence of S(1WS:n)

Then for any = € P

n n

S — Z w; (Yg gt XI,I/_‘B(WLS,n.Tr)>2 < min w; (Y,-/. = X,j’d)2 (6)

£ IBeRg: 4
=1

=
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Deriving existence of S(1WS:n)

Then for any = € P

n n

= 2 : 2
s2=Y w,-(y,-ﬁ)g}/ﬂ(WLs,n,wQ < min W,-(Y,-j.—X,jfﬁ) . ()
J=1 s j=1

Let (2, A, P) be the basic Probability Space
and write Z(w) for the value of r.v. at point w € Q.
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Deriving existence of S(1WS:n)

Then for any = € P

n n

A 2 B 2
% = T (e A e Som(vi-xje) . @
j=1 ! J=1

Let (2, A, P) be the basic Probability Space
and write Z(w) for the value of r.v. at point w € Q.

Finally, assume wy > wo > ... > w,,, fixwy and put

Hwo) = AGMIN_ 52(up).
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... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Deriving existence of S(1WS:n)

Then for any = € P
n n

S = Z w; (Yi, 0 XI,I/_B(WLS,nJr)>2 < min w; (Y,-], = X,-j/ﬂ)‘?. (6)

3¢ RP
= et T

Let (2, A, P) be the basic Probability Space

and write Z(w) for the value of r.v. at point w € Q.
Finally, assume wy > wo > ... > w,,, fixwy and put
#(wg) = argmin S2(wy).

TeP
Then - due to (6)

n

: \ 2

S2 () (wo) < Min  min ZW" (y _XI,/{“3> .
J=1

i
BERP  nEP !

73/82



... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

It means JQ(WLS’H’TAF(“’O))(MO) s B(LWS’n’W)(WO)
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... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

It means B(WLS’H’%(W))(WO) G B(LWS,n,W)(wo)

Repeat it for all w € Q.
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Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

It means B(WLS’H’%(W))(WO) G B(LWS,n,W)(wo)

Repeat it for all w € Q.

Fix = € P and put
B(r)={we Q-+ m=7(w)}.
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... for LWS-estimation

Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

It means B(WLSJL%(WO))(WO) G B(LWS,n,W)(

Repeat it for all w € Q.
Fix = € P and put
B(r)={w e m=7%(w)}.

Then weB(r) = 3(stﬁn,w)(w) :B(WLS,n,w)(w)
i.e.
iA(LWS.n,W) [ A(WLS,H,Tr) — argmin
3 (w) =8 (w) dgeﬂp Zw, o — XLB)E.
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... for LWS-estimation

Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

It means B(WLSJL%(WO))(WO) G B(LWS,n,W)(

Repeat it for all w € Q.
Fix = € P and put

B(r)={weQ : n=%w)}.

Then weB(r) = B(st,n,w)(w) 2 B(WLS,n,w)(w)

pUwS 1) (1g) = pIMLSmm) () = argmin Zw, = XLB)°.

BERP

Due to i.i.d. framework, Vx e P

P(B(m) = (n!)”

and all B's are the “same”.
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... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

Let’s rewrite one line of previuos slide, for wy € B()

n
BN, (o) = BWEE ™) (o) = argmin S™w; (Y, — X182, (7
/ (wo) =4 (wo) o 2 i ( +5) (7)

and drop for a while wp and .
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Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

Let’s rewrite one line of previuos slide, for wy € B(w )

A(LWS,n,w) ¢, — AWLS,n,m) — argmin Y X/ 7
B (wo) = (o) o=, Brg Zw, (7)

and drop for a while wp and .

1 1

Then putting W = diag{wfé, WA W,T%} and Y = WY, X = WX,
(7) implies

5 A LAY A 5,
/j(LWS,nw (WL <X X) X/Yzﬂ(OLS.n)(Y X).
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... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Deriving form of 3(tWS:n)

Let’s rewrite one line of previuos slide, for wy € B(w )

A(LWS,n,w) ¢, ey A(WLS,n,x) — argmin Y X/ 7
B (wo) =B (wo) = BQGRP ZWI BE. ()

and drop for a while wp and .

Then putting W = diag{wf%, WA W,:%} and Y = WY, X = WX,
(7) implies
o4 i B -
/j(LWS,n w) (Y X) (X X) XAy 5(OLS,n)(Y X)
Consider now the model
V=Xg°+¢ with £(&)=N (0,0°W?)

(W2 is known = heteroscedasticity is governed by one unknown parameter o2)
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... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Recalling the classical regression for ¥, X

By standard way (please read only last but one line)

L ()T [x (x%)" xv} =il xv @)

As Y = XABOLSn) i e. Yis a linear combimation of the columns of X

and due to the normality of disturbances % is independent with F.

Then due to (8) 3(tWS:nW) is independent with 7 (B(LWS”LW)

(we shall need it in a few minutes).
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Recalling the classical regression for ¥, X

Please read again only the last line
Regress (-th column of matrix X on all other columns of this matrix
and denote the residuals by u(®).

Recall that we consider Y = X3° + £ with Y = WY, etc. Then
(see e.g. Wooldridge (2003))

’\ELWS,n,W)(Y./ X)— 80 = BéOLS.n)(V’ X) - B9 = {u(f)}/f. Hu(i)Hfz
with n
. (@LWS,,,,W)> — 2y W, [um 2 Hu(z) Hf‘l = o*DH(W, X).
=1 denote
Then ;\{g[_WS,n.W) = /32
o) = o :
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Recalling the classical regression for ¥, X

~ i 1 dl
Let us recall that Wz = W = diag {wz., W3 ..., Wi } and that it is well-known
from the classical regression

P (s = (: T x)

&= MWe.

denote it by M
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Recalling the classical regression for ¥, X

il

~ i 4 dl
Let us recall that Wz = W = diag {wf., W3 ..., Wi } and that it is well-known
from the classical regression

7 (B0 = (: e x) == fIvbe.

denote it by M

(
B (i wi(1 — dn))

i=1

o /N Gl
where dj = [x <X’X) x’} . So, 82 =
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Recalling the classical regression for ¥, X

e 1 i, L
Let us recall that Wz = W = diag {wf./ WE, ..., W} } and that it is well-known
from the classical regression

- (fé(WLS,n)) o, (l— X (5(’5()71 5(’) &= MWe.

denote it by M

Then (recall also that EZ = 0 and cov(¢) = oW where W = diag {wy, wa, ..., Wy})

# (BWLSm 7 (BMSY — 12 e = 12V W2 WEMIW3E W3z = o
F (3 ) r(/a ) 6] Mz = [&) W~ W2MW?: W2z = o My
M n

with £ (n) = N (0,521).
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Recalling the classical regression for ¥, X

Let Q@ MQ = A where Q=[g1,9, ...,qn] and A = diag {\1, Az, ..., An} With
M-gi=X-q, ieX>0 i=1,2..,n—p, A\ =0 otherwise and Q'Q =QQ’ =1L

Then M = QAQ’ and
E (J@(WLS,n)) | ?<€B(WLS7/7)> — [ QnQE = ¢'e

. 1 “
with f = A2 Qf] (notice that the last p coordinates of ¢ = 0), 1.€. E€ =0and COV(f) = o
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Recalling the classical regression for ¥, X

Then
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Recalling the classical regression for ¥, X

Then
Finally,

I (0727/ (J@(WLS,n)) T <“8(WLS’")>> = Xgeneralized (n—p)

in the sense that
X5eneraized (N — P) is distribution

of the sum of squares of n — p independent r. v's normally distributed

with zero mean but variance not equal one.
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... for LWS-estimation
Significance of individual explanatory variable ... sSimulations of p-values

Recalling the classical regression for ¥, X

Then
Finally,

/e (0*27’ (B(WLS7”)) ~T (J@(WLS,n))) = Xseneralized (n o p)

in the sense that
X5eneraized (N — P) is distribution

of the sum of squares of n — p independent r. v's normally distributed

with zero mean but variance not equal one.

We conclude,
1
B(LWS,n,w) _ g0 S w1 =dy)
L]- . i=1 Wi i —¢ . o Sy
Dn( W./ X) ’I",/ (B( WLS,H)) ; ? (B(WLS,H)) generalized ( ,O)
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THANKS FOR ATTENTION
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