Nonlinear processes in space plasmas and their effects on the generation and propagation of electromagnetic waves
Thesis title in Czech: | Nelineární procesy v kosmickém plazmatu a jejich vliv na generování a šíření elektromagnetických vln |
---|---|
Thesis title in English: | Nonlinear processes in space plasmas and their effects on the generation and propagation of electromagnetic waves |
Key words: | kosmické plazma|magnetosféra|nelineární jevy|chorus |
English key words: | space plasma|magnetosphere|nonlinear effects|chorus |
Academic year of topic announcement: | 2017/2018 |
Thesis type: | dissertation |
Thesis language: | angličtina |
Department: | Department of Surface and Plasma Science (32-KFPP) |
Supervisor: | prof. RNDr. Ondřej Santolík, Dr. |
Author: | hidden![]() |
Date of registration: | 27.09.2018 |
Date of assignment: | 27.09.2018 |
Confirmed by Study dept. on: | 01.10.2018 |
Date and time of defence: | 06.06.2022 10:00 |
Date of electronic submission: | 18.04.2022 |
Date of submission of printed version: | 19.04.2022 |
Date of proceeded defence: | 06.06.2022 |
Opponents: | Mgr. Petr Hellinger |
Michael J. Rycroft | |
Guidelines |
Nonlinear effects in space plasmas influence generation and propagation of electromagnetic emissions, especially those which are generated with embedded discrete time-frequency structures. Whistler mode chorus is a good example of these waves which are found in the space environment of the Earth, Jupiter, Saturn, and Mars.
This PhD thesis work will be mainly focused on improving fundamental theoretical understanding of the nonlinear behavior of plasma waves or on numerical simulations based on current prominent theories. Specific tasks include: - Review of the available theoretical and experimental scientific literature in this field - Improvements of the existing theoretical or simulation approaches - Comparison of results with the experimental data from spacecraft missions - Presentation of results at international meetings and preparation of publications in scientific journals |
References |
Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622.
Trakhtengerts, V. Y., A. G. Demekhov, E. E. Titova, B. V. Kozelov, O. Santolik, E. Macusova, D. A. Gurnett, J. S. Pickett, M. J. Rycroft, and D. Nunn (2007), Formation of VLF chorus frequency spectrum: Cluster data and comparison with the backward wave oscillator model, Geophys. Res. Lett., 34, L02104, doi:10.1029/2006GL027953. Santolík, O., C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, and S. R. Bounds (2014), Fine structure of large-amplitude chorus wave packets, Geophys. Res. Lett., 41, 293–299, doi:10.1002/2013GL058889. Menietti, J. D., P. Schippers, Y. Katoh, J. S. Leisner, G. B. Hospodarsky, D. A. Gurnett, and O. Santolik (2013), Saturn chorus intensity variations, J. Geophys. Res. Space Physics, 118, 5592–5602, doi:10.1002/jgra.50529. Harada, Y., et al. (2016), MAVEN observations of energy-time dispersed electron signatures in Martian crustal magnetic fields, Geophys. Res. Lett., 43, 939–944, doi:10.1002/2015GL067040. Menietti, J. D., J. B. Groene, T. F. Averkamp, R. B. Horne, E. E. Woodfield, Y. Y. Shprits, M. de Soria-Santacruz Pich, and D. A. Gurnett (2016), Survey of whistler mode chorus intensity at Jupiter, J. Geophys. Res. Space Physics, 121, 9758– 9770, doi:10.1002/2016JA022969 Imai, M. et al. (2016), The beaming structures of Jupiter’s decametric common S-bursts observed from the LWA1, NDA, and URAN2 radio telescopes, ApJ 826 176, doi:10.3847/0004-637X/826/2/176 |