Thesis (Selection of subject)Thesis (Selection of subject)(version: 285)
Assignment details
   Login via CAS
Matematické modelování šíření léčivých látek ve sklivci
Thesis title in Czech: Matematické modelování šíření léčivých látek ve sklivci
Thesis title in English: Mathematical modeling of drug distribution in the vitreous
Key words: oko, viskoelasticita, anizotropní materiál, šíření léčiv
English key words: eye, viscoelasticity, anisotropic, drug distribution
Academic year of topic announcement: 2016/2017
Type of assignment: dissertation
Thesis language:
Department: Mathematical Institute of Charles University (32-MUUK)
Supervisor: Mgr. Vít Průša, Ph.D.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 17.10.2016
Date of assignment: 17.10.2016
Confirmed by Study dept. on: 20.10.2016
Guidelines
Joint study programme with Ruprecht-Karls-Universität Heidelberg, 2nd year of study takes place at Charles University.

a) Get familiar with modern theory of constitutive relations, in particular theory of viscoelasticity.
b) Get familiar with modern theory of constitutive relations, in particular theory of mixtures.
c) Develop a thermodynamically consistent model for anisotropic viscoelastic solid (vitreous).
References
K. R. Rajagopal and A. R. Srinivasa. Modeling anisotropic fluids within the framework of bodies with multiple
natural configurations. J. Non-Newton. Fluid Mech., 99(2-3):109–124, 2001

Morton E. Gurtin, Eliot Fried, and Lallit Anand. The mechanics and thermodynamics of continua. Cambridge
University Press, Cambridge, 2010

R. W. Ogden. Nonlinear elastic deformations. Ellis Horwood Series: Mathematics and its Applications. Ellis
Horwood Ltd., Chichester, 1984

J. Málek and V. Průša. Derivation of equations for continuum mechanics and thermodynamics of fluids. In Y. Giga
and A. Novotny, editors, Handbook of Mathematical Analysis in Mechanics of Viscus Fluids. Springer, 2016.
Submitted

J. Malek, K. R. Rajagopal, and K. Tuma. On a variant of the Maxwell and Oldroyd-B models within the context of
a thermodynamic basis. Int. J. Non-Linear Mech., 76:42–47, 2015
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html