Thesis (Selection of subject)Thesis (Selection of subject)(version: 379)
Thesis details
   Login via CAS
Hluboké učení pro analýzu velkých dat
Thesis title in Czech: Hluboké učení pro analýzu velkých dat
Thesis title in English: Deep learning for big data analytics
Key words: Hluboké učení, big data, distribuované výpočty
English key words: Deep learning, big data, distributed computing
Academic year of topic announcement: 2018/2019
Thesis type: dissertation
Thesis language:
Department: Department of Software Engineering (32-KSI)
Supervisor: doc. RNDr. Jakub Lokoč, Ph.D.
Author:
Guidelines
Analysis of big data and deep learning are two intensively investigated research topics with high practical impact. Whereas huge amounts of domain-specific data contain useful additional information for decision making processes, deep learning methods focuse on high-level complex abstractions given unsupervised data. The goal of this work is to address some important problems in big data analytics using deep learning approaches. For example, extract/analyze complex patterns from huge volumes of unstructured data, data annotation or effective/efficient information retrieval.
References
Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, Randall Wald, and Edin Muharemagic. Deep learning applications and challenges in big data analytics. Journal of Big Data, 2015.

Suthaharan S: Big data classification: Problems and challenges in network intrusion prediction with machine learning. In ACM Sigmetrics: Big Data Analytics Workshop. ACM, Pittsburgh, PA; 2013.

Bengio Y: Learning Deep Architectures for AI. Now Publishers Inc., Hanover, MA, USA; 2009.

Holubová Irena, Kosek Jiří, Minařík Karel, Novák David. Big Data a NoSQL databáze. Grada Publishing, a.s., 2015.
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html