Thesis (Selection of subject)Thesis (Selection of subject)(version: 285)
Assignment details
   Login via CAS
Physical and numerical modelling of the methanation reactor
Thesis title in Czech: Fyzikální model a numerická simulace procesů v metanizačním reaktoru
Thesis title in English: Physical and numerical modelling of the methanation reactor
Key words: methanační reaktor, numerické modelování
English key words: methanation reactor, numerical modelling
Academic year of topic announcement: 2014/2015
Type of assignment: diploma thesis
Thesis language: angličtina
Department: Mathematical Institute of Charles University (32-MUUK)
Supervisor: RNDr. Ondřej Souček, Ph.D.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 16.02.2015
Date of assignment: 17.02.2015
Confirmed by Study dept. on: 23.02.2015
Advisors: Mgr. Peter Čendula, Ph.D.
Storage and effective usage of hydrogen is a very actual problem which is still not sufficiently solved up-to-date. One of the most important indirect use of hydrogen is methanation (conversion of hydrogen to methane), which stores over than 70% of the hydrogen chemical energy in ready to use product – methane.

Our partner at EMPA, Switzerland ( designed a very efficient porous-medium reactor based on Sabatier reaction whose reactants are carbon dioxide and hydrogen producing methane and water vapour. Up to a certain time, the produced water vapour is absorbed in porous structure of the reactor and the output is a gaseous mixture consisting 99 % of methane. After a certain saturation by vapour, the reactor needs to be dried out for a next use. The absorption of water in the reactor and minimizing its detrimental effects on the methanation reaction need to be understood in more detail by a model-based study.

To gain insight into chemical, physical and thermal processes in the reactor, the student should (i) formulate a physical model of the above mentioned processes in porous media and (ii) implement this model numerically, preferably using some of the convenient available implementational tools such as COMSOL or OpenFOAM or FEniCS; (iii) model simulations on real input data will be verified with the measurements provided by the EMPA.

Preliminary plan:

1) Review of relevant literature on the subject
2) Formulation of the physical model of methanation process in the porous-media reactor
3) Numerical implementation of the model using some convenient numerical tool
4) Validation of the model by measurement provided by EMPA
(1) Borgschulte, A.; Gallandat, N.; Probst, B.; Suter, R.; Callini, E.;
Ferri, D.; Arroyo, Y.; Erni, R.; Geerlings, H.; Züttel, A. Phys. Chem.
Chem. Phys. 2013, 15, 9620–9625.

(2) Jakobsen, H. A. Chemical Reactor Modeling: Multiphase Reactive
Flows; Springer, 2008.

(3) Rusten, H. K.; Ochoa-Fernández, E.; Chen, D.; Jakobsen, H. A. Ind. Eng.
Chem. Res. 2007, 46, 4435–4443.
Charles University | Information system of Charles University |