Hodnocení amerických opcí
Thesis title in Czech: | Hodnocení amerických opcí |
---|---|
Thesis title in English: | Valuation of American options |
Academic year of topic announcement: | 2007/2008 |
Thesis type: | diploma thesis |
Thesis language: | čeština |
Department: | Department of Probability and Mathematical Statistics (32-KPMS) |
Supervisor: | doc. RNDr. Jan Hurt, CSc. |
Author: | hidden![]() |
Date of registration: | 01.11.2007 |
Date of assignment: | 01.11.2007 |
Date and time of defence: | 22.09.2009 00:00 |
Date of electronic submission: | 22.09.2009 |
Date of proceeded defence: | 22.09.2009 |
Opponents: | RNDr. Jitka Zichová, Dr. |
Guidelines |
Diplomant se nejprve zaměří na teorii a poté se bude zabývat hodnocením amerických případně některých exotických opcí. Použije přitom binomické modely, numerické metody konečných diferencí a metody konečných prvků. Čerpat bude zejména z pramenů [2] , [3] , [9] , [26] , [27]. Na závěr práce uvede ilustrace a numerické výpočty. |
References |
[1] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modeling in Economics and Finance. Kluwer Academic Publishers. Dordrecht 2002.
[2] Hull, J.C.: Options, Futures, and other Derivative Securities. 4th ed., Prentice-Hall. Upper Saddle Rive 2000. [3] Shaw, W.: Modeling Financial Derivatives with Mathematica. Cambridge University Press. Cambridge 1998. [4] Morgan, J. P., Reuters: RiskMetrics – Technical Document. 4th ed., Morgan Guaranty Trust Company. New York 1996. [5] Hurt, J.: Simulační metody. Skripta SPN. Praha 1982. [6] Fuchs, K.: Hodnocení portfolia opcí. Diplomová práce. UK MFF Praha 2003. [7] Luenberger, D. G.: Investment Science. Oxford University Press. New York 1998. [8] Haerdle, W., Kleinow, T., Stahl, G.: Applied Quantitative Finance.Springer. Berlin 2002. [9] Seydel, R.: Tools for Computational Finance. Springer. Berlin 2002. [10] Gamerman, D.: Markov Chain Monte Carlo. Chapman & Hall. London 1997. [11] Credit Suisse Financial Products. Credit Risk+. Credit Suisse First Boston. www.csfb.com/creditrisk. 1997. [12] Bluhm, C. et al.: Credit Risk Modeling. Chapman & Hall/CRC. Boca Raton 2003. [13] Schoenbucher, P. J.: Credit Derivatives Pricing Models. Wiley. Chichester 2003. [14] Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer. New York 2004. [15] Boyle, P. et al.: Monte Carlo Methods for Security Pricing. In: Option Pricing, Interest Rates and Risk Management. Jouni, E. et al., eds. Springer. New York 2004. 185 - 238. [16] Varian, H. R. (ed.): Computational Economics and Finance. Modeling and Analysis with Mathematica. Springer-TELOS. New York 1996. [17] Pflug, G. Ch.: Some remarks on the Value-at-Risk and the conditional Value-at-Risk. To appear. [18] Krokhmal, P. et al. (eds.): Risk Management and Optimization in Finance. Special Issue. J. of Banking & Finance 30, February 2006. [19] Wolfram, S.: The Mathematica Book. 5th ed. Wolfram Media. Champaign (IL) 2003. [20] Víšková H.: Technická analýza akcií. HZ. Praha 1997. [21] Sears, R. S., Trennepohl, G. L.: Investment Management. The Dryden Press. Forth Worth 1993. [22] Haerdle, W., Hlávka, Z.: Multivariate Statistics: Exercises and Solutions. Springer. Berlin 2007. [23] Hurt, J.: Mnohorozměrná statistická analýza. Přednáška UK MFF. Praha ZS 2007/2008. [24] Hurt, J.: Stochastic Modelling of Pension Funds. ZAMM 77 (1997) Suppl. 2. S385-S700. [25] Cipra, T.: Penzijní pojištění a jeho výpočetní aspekty. HZ. Praha 1996. [26] Jaekel, U.: Pricing of American style options with an adjoint process correction method. Physica A 352 (2005). 584-600. [27] García, D.: Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule. J. of Economic Dynamics & Control 27 (2003). 1855-1879. |
Preliminary scope of work |
Teoretický a numerický přístup k hodnocení opcí. |
Preliminary scope of work in English |
Theoretical and numerical approach to options valuation |