Thesis (Selection of subject)Thesis (Selection of subject)(version: 390)
Thesis details
   Login via CAS
Pressure robust methods for incompressible flow
Thesis title in Czech: Tlakově robustní metody v nestlačitelném proudění
Thesis title in English: Pressure robust methods for incompressible flow
Key words: nestlačitelné proudění|Navier–Stokesovy a Stokesovy rovnice|tlakově robustní metody|divergence-free metody|smíšené konečné prvky
English key words: incompressible flow|Navier–Stokes and Stokes equations|pressure-robust methods|divergence-free methods|mixed finite elements
Academic year of topic announcement: 2023/2024
Thesis type: Bachelor's thesis
Thesis language: angličtina
Department: Mathematical Institute of Charles University (32-MUUK)
Supervisor: Mgr. Jan Blechta, Ph.D.
Author: Nail Sultanbekov - assigned and confirmed by the Study Dept.
Date of registration: 20.03.2024
Date of assignment: 20.03.2024
Confirmed by Study dept. on: 20.03.2024
Date and time of defence: 11.09.2025 08:30
Date of electronic submission:17.07.2025
Date of submission of printed version:17.07.2025
Opponents: Pablo Alexei Gazca Orozco, Ph.D.
 
 
 
Guidelines
Cílem bakalářské práce je seznámit se s numerickým řešením nestlačitelného proudění s důrazem na tlakově robustní metody. Studující nastuduje přehledovou literaturu k tématu, zejména [John, Linke, Merdon, Neilan, Rebholz 2017]. Součástí práce je implementace a numerické experimenty za pomocí softwarové knihovny Firedrake nebo podobné.
References
John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G. On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev. 59(3), 492–544 (2017), DOI 10.1137/15M1047696

Neilan, M. The Stokes Complex: A review of exactly divergence-free finite element pairs for incompressible flows, 75 Years of Mathematics of Computation, 141–158, Contemp. Math. 754, AMS 2020

Arnold, D.N. Finite element exterior calculus, CBMS-NSF Regional Conf. Ser. in Appl. Math., 93 Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018. xi+120 pp, DOI 10.1137/1.9781611975543

Scott, L.R., Vogelius, M. Conforming finite element methods for incompressible and nearly incompressible continua, Technical Note BN-1018, 1984, URL https://apps.dtic.mil/sti/pdfs/ADA141117.pdf

Scott, L.R., Vogelius, M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér.19(1985), no.1, 111–143, DOI 10.1051/m2an/1985190101111

Boffi, D., Brezzi, F., Fortin, M. Mixed finite element methods and applications, Springer Series in Computational Mathematics 44, Springer, Heidelberg 2013, DOI 10.1007/978-3-642-36519-5
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html