Thesis (Selection of subject)Thesis (Selection of subject)(version: 368)
Thesis details
   Login via CAS
Low-temperature plasma processes for applications in sustainable technologies
Thesis title in Czech: Procesy v nízkoteplotním plazmatu s aplikací v udržitelných technologiích
Thesis title in English: Low-temperature plasma processes for applications in sustainable technologies
Key words: plazmatické technologie|diagnostika plazmatu|vytváření tenkých vrstev materiálů
English key words: plasma technologies|plasma diagnostics|thin film deposition
Academic year of topic announcement: 2023/2024
Thesis type: dissertation
Thesis language: angličtina
Department: Department of Surface and Plasma Science (32-KFPP)
Supervisor: prof. RNDr. Milan Tichý, DrSc.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 07.09.2023
Date of assignment: 07.09.2023
Confirmed by Study dept. on: 27.09.2023
Advisors: doc. Mgr. Pavel Kudrna, Dr.
Mgr. Zdeněk Hubička, Ph.D.
Guidelines
Liquid metals plasma facing components in tokamak devices are highly resistant and simultaneously act as a cooling medium. Liquid metal tokamak divertors using lithium or tin are planned for ITER as well as for DEMO tokamaks. Tin (Sn) is a good candidate due to its low vapor pressure, low reactivity with hydrogen and good resilience to neutron impact. A disadvantage is higher impurity influx into the plasma and condensation of the metal vapors on the tokamak wall. Cleaning the deposit off the vessel walls presents a problem that must be solved in systems using a liquid metal tokamak divertor.

The goal of the proposed work is a systematic study of the behavior of the solid Sn sample exposed to the low-temperature flowing discharge plasma in rare and molecular gases, e.g. Ar, N2, with a focus on tin erosion and/or re-deposition. Samples will be prepared by evaporation or magnetron sputtering of Sn on stainless-steel substrates in a high vacuum system separated from the discharge vacuum vessel and then exposed to the flowing high density discharge plasma. The prepared as well as the processed samples will be studied using the surface analysis methods.

For the study will be used the UHV system with generation of low-temperature plasma by a plasma-jet, magnetron and a thermionic cathode; see figure. The needed experimental equipment in our laboratory is fully functional. The topic was proposed for financing to the Czech Science Foundation.
References
[1] J. Čečrdle, Simulation of behavior of liquid metal divertor heat shield on tokamak COMPASS Upgrade, Czech Technical University, Master thesis 2021.
[2] J. Horacek et al. Phys. Scr. 96 (2021) 124013.
[3] A. Manhard et al., Nucl. Fusion 60 106007 (2020).
[4] W. Ou et al., Nucl. Fusion 61 (2021) 066030.
[5] Lieberman M.A., Lichtenberg A.J., Principles of Plasma Discharges and Material Processing, John Wiley and Sons, Inc., 2005, ISBN 0-471-72001-1.
Other papers will be recommended by the supervisor
Preliminary scope of work
Liquid metals plasma facing components in tokamak devices are highly resistant and simultaneously act as a cooling medium. Liquid metal tokamak divertors using lithium or tin are planned for ITER as well as for DEMO tokamaks. Tin (Sn) is a good candidate due to its low vapor pressure, low reactivity with hydrogen and good resilience to neutron impact. A disadvantage is higher impurity influx into the plasma and condensation of the metal vapors on the tokamak wall. Cleaning the deposit off the vessel walls presents a problem that must be solved in systems using a liquid metal tokamak divertor.

https://physics.mff.cuni.cz/kfpp/php/dis-abs.php?id=444
Preliminary scope of work in English
Liquid metals plasma facing components in tokamak devices are highly resistant and simultaneously act as a cooling medium. Liquid metal tokamak divertors using lithium or tin are planned for ITER as well as for DEMO tokamaks. Tin (Sn) is a good candidate due to its low vapor pressure, low reactivity with hydrogen and good resilience to neutron impact. A disadvantage is higher impurity influx into the plasma and condensation of the metal vapors on the tokamak wall. Cleaning the deposit off the vessel walls presents a problem that must be solved in systems using a liquid metal tokamak divertor.

https://physics.mff.cuni.cz/kfpp/php/dis-abs.php?id=444
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html