Thesis (Selection of subject)Thesis (Selection of subject)(version: 390)
Thesis details
   Login via CAS
Optimální portfolia se střední hodnotou a rozptylem: Souvislosti s maximalizací užitku v diskrétním případě
Thesis title in Czech: Optimální portfolia se střední hodnotou a rozptylem: Souvislosti s maximalizací užitku v diskrétním případě
Thesis title in English: Optimal Mean Variance Portfolios: Link to Utility Maximization in Discrete Case
Key words: portfolia se střední hodnotou a rozptylem|maximalizace užitku|diskrétní rozdělení
English key words: mean variance portfolio|utility maximization|discrete distributions
Academic year of topic announcement: 2022/2023
Thesis type: Bachelor's thesis
Thesis language: čeština
Department: Department of Probability and Mathematical Statistics (32-KPMS)
Supervisor: doc. RNDr. Jan Večeř, Ph.D.
Author: Bc. Matěj Jerhot - assigned and confirmed by the Study Dept.
Date of registration: 04.11.2022
Date of assignment: 10.11.2022
Confirmed by Study dept. on: 02.12.2022
Date and time of defence: 03.09.2024 08:30
Date of electronic submission:09.05.2024
Date of submission of printed version:09.05.2024
Date of proceeded defence: 03.09.2024
Opponents: RNDr. Martin Šmíd, Ph.D.
 
 
 
Guidelines
The aim of this work is to study links between the techniques of utility maximization and optimal mean variance portfolios. We expect that the optimal mean variance portfolio corresponds to the Taylor approximation of the utility maximization problem. One should examine this link and illustrate the quality of this approximation on specific examples, primarily on discrete distributions.
References
Vecer, J.: Numeraire Invariance of the Logarithmic Utility Funciton, working paper (2022)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html