Combinatorial structure of graph drawings
Thesis title in Czech: | Kombinatorická struktura grafových nakreslení |
---|---|
Thesis title in English: | Combinatorial structure of graph drawings |
Key words: | nakreslení grafu|signotopy|pseudopřímky|monotoní křivky |
English key words: | graph drawing|signotope|pseudolines|monotone curves |
Academic year of topic announcement: | 2021/2022 |
Thesis type: | diploma thesis |
Thesis language: | angličtina |
Department: | Department of Applied Mathematics (32-KAM) |
Supervisor: | doc. RNDr. Martin Balko, Ph.D. |
Author: | hidden![]() |
Date of registration: | 21.04.2022 |
Date of assignment: | 21.04.2022 |
Confirmed by Study dept. on: | 02.05.2022 |
Date and time of defence: | 14.06.2024 09:00 |
Date of electronic submission: | 27.04.2024 |
Date of submission of printed version: | 02.05.2024 |
Date of proceeded defence: | 14.06.2024 |
Opponents: | doc. RNDr. Pavel Valtr, Dr. |
Guidelines |
Cílem práce je zkoumat strukturální vlastnosti jednoduchých nakreslení úplných grafů a jejich zobecnění s důrazem na kombinatorický popis daných nakreslení. |
References |
Martin Balko, Radoslav Fulek a Jan Kynčl. ”Crossing numbers and combinatorial characterization of monotone drawings of K_n“. In:Discrete Com-put. Geom.53.1 (2015), s. 107–143.
Helena Bergold, Stefan Felsner, Manfred Scheucher, Felix Schröder a Raphael Steiner. "Topological drawings meet classical theorems from convex geometry". Graph drawing and network visualization, s. 281–294, Lecture Notes in Comput. Sci., 2020. János Pach a Géza Tóth. How many ways can one draw a graph? Combinatorica 26 (2006), no. 5, s. 559–576. |