Thesis (Selection of subject)Thesis (Selection of subject)(version: 368)
Thesis details
   Login via CAS
Zdokonalení reprezentace gravitačních vln v klimatických modelech
Thesis title in Czech: Zdokonalení reprezentace gravitačních vln v klimatických modelech
Thesis title in English: Improving the representation of gravity waves in climate models
Key words: globalni klimatické modely|gravitační vlny|parametrizace
English key words: global climate models|gravity waves|parameterization
Academic year of topic announcement: 2024/2025
Thesis type: dissertation
Thesis language:
Department: Department of Atmospheric Physics (32-KFA)
Supervisor: prof. RNDr. Petr Pišoft, Ph.D.
Author:
Advisors: Roland Eichinger, Ph.D.
Guidelines
Gravity waves are important drivers of middle and upper atmospheric dynamics and trace gas transport, thus considerably influencing weather and climate at the surface. The PhD candidate will learn to apply global chemistry-climate models (e.g. EMAC) in order to analyze the influence of gravity waves on various temporal and spatial scales. The work will include handling in-situ and remote sensing observational data sets for comparisons and improving gravity wave parameterizations for a better understanding and representation of atmospheric processes.
References
Plougonven, R, de la Cámara, A, Hertzog, A, Lott, F. How does knowledge of atmospheric gravity waves guide their parameterizations?. QJR Meteorol Soc. 2020; 146: 1529– 1543. https://doi.org/10.1002/qj.3732

Achatz, U., Ribstein, B., Senf, F. and Klein, R. (2017). The interaction between synoptic‐scale balanced flow and a finite‐amplitude mesoscale wave field throughout all atmospheric layers: weak and moderately strong stratification. Q.J.R. Meteorol. Soc., 143: 342-361. https://doi.org/10.1002/qj.2926

Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The interaction between atmospheric gravitywaves and large-scale flows: An efficient description beyond the nonacceleration paradigm.J. Atmos. Sci.,73, 4833–4852,https://doi.org/10.1175/JAS-D-16-0069.1.

Cohen, N. Y., Gerber, E. P., & Bühler, O. (2014). What drives the Brewer–Dobson circulation?. Journal of the Atmospheric Sciences, 71(10), 3837-3855.

Gassmann, A. (2019). Analysis of large-scale dynamics and gravity waves under shedding of inactive flow components. Monthly Weather Review, 147(8), 2861-2876.

Holt, L.A., Alexander, M.J., Coy, L., Liu, C., Molod, A., Putman, W. and Pawson, S. (2017), An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation. Q.J.R. Meteorol. Soc, 143: 2481-2495. https://doi.org/10.1002/qj.3101

Kruse, C. G., & Smith, R. B. (2018). Nondissipative and Dissipative Momentum Deposition by Mountain Wave Events in Sheared Environments, Journal of the Atmospheric Sciences, 75(8), 2721-2740.

Schoon, L. and Zülicke, C.: A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application, Atmos. Chem. Phys., 18, 6971–6983, https://doi.org/10.5194/acp-18-6971-2018, 2018.

van Niekerk, A., Sandu, I., & Vosper, S. B. (2018). The circulation response to resolved versus parametrized orographic drag over complex mountain terrains. Journal of Advances in Modeling Earth Systems, 10(10), 2527-2547. doi: 10.1029/2018MS001417.
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html