Numerical solution of degenerate parabolic problems
Thesis title in Czech: | Numerické řešení degenerované parabolické úlohy |
---|---|
Thesis title in English: | Numerical solution of degenerate parabolic problems |
Key words: | Richardsova rovnice|proudění v porézním prostředí|degenerované parabolické rovnice|nespojitá Galerkinova metoda|odhady chyby|hp-adaptace |
English key words: | Richards' equation|porous media flow|degenerate parabolic equation|discontinuous Galerkin method|error estimates|hp-adaptation |
Academic year of topic announcement: | 2020/2021 |
Thesis type: | dissertation |
Thesis language: | angličtina |
Department: | Department of Numerical Mathematics (32-KNM) |
Supervisor: | Scott Congreve, Ph.D. |
Author: | hidden![]() |
Date of registration: | 30.09.2020 |
Date of assignment: | 30.09.2020 |
Confirmed by Study dept. on: | 22.10.2020 |
Date and time of defence: | 24.09.2024 14:00 |
Date of electronic submission: | 28.05.2024 |
Date of submission of printed version: | 28.05.2024 |
Date of proceeded defence: | 24.09.2024 |
Opponents: | prof. Dr. Kundan Kumar |
prof. Dr. Iuiu Sorin Pop | |
Advisors: | prof. RNDr. Vít Dolejší, Ph.D., DSc. |
Guidelines |
The aim of the thesis is to develop adaptive higher-order methods, with error estimates, for the numerical solution of degenerate parabolic partial differential equations. |
References |
A. Quarteroni, A. Valli: Numerical approximation of partial differential equations, Springer, 1997
V. Dolejsi, M. Feistauer: Discontinuous Galerkin Method - Analysis and Applications to Compressible Flow, Springer-Verlag, 2015 P. Deuflhard: Newton Methods for Nonlinear Problems, Springer Series in Computational Mathematics, Vol. 35, Springer, 2004 |