Thesis (Selection of subject)Thesis (Selection of subject)(version: 390)
Thesis details
   Login via CAS
Numerical solution of degenerate parabolic problems
Thesis title in Czech: Numerické řešení degenerované parabolické úlohy
Thesis title in English: Numerical solution of degenerate parabolic problems
Key words: Richardsova rovnice|proudění v porézním prostředí|degenerované parabolické rovnice|nespojitá Galerkinova metoda|odhady chyby|hp-adaptace
English key words: Richards' equation|porous media flow|degenerate parabolic equation|discontinuous Galerkin method|error estimates|hp-adaptation
Academic year of topic announcement: 2020/2021
Thesis type: dissertation
Thesis language: angličtina
Department: Department of Numerical Mathematics (32-KNM)
Supervisor: Scott Congreve, Ph.D.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 30.09.2020
Date of assignment: 30.09.2020
Confirmed by Study dept. on: 22.10.2020
Date and time of defence: 24.09.2024 14:00
Date of electronic submission:28.05.2024
Date of submission of printed version:28.05.2024
Date of proceeded defence: 24.09.2024
Opponents: prof. Dr. Kundan Kumar
  prof. Dr. Iuiu Sorin Pop
 
 
Advisors: prof. RNDr. Vít Dolejší, Ph.D., DSc.
Guidelines
The aim of the thesis is to develop adaptive higher-order methods, with error estimates, for the numerical solution of degenerate parabolic partial differential equations.
References
A. Quarteroni, A. Valli: Numerical approximation of partial differential equations, Springer, 1997

V. Dolejsi, M. Feistauer: Discontinuous Galerkin Method - Analysis and Applications to Compressible Flow, Springer-Verlag, 2015

P. Deuflhard: Newton Methods for Nonlinear Problems, Springer Series in Computational Mathematics, Vol. 35, Springer, 2004
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html