Thesis (Selection of subject)Thesis (Selection of subject)(version: 390)
Thesis details
   Login via CAS
Deep-learning architectures for analysing population neural data
Thesis title in Czech: Architektury hlubokého učení pro analýzu populačních neaurálních dat
Thesis title in English: Deep-learning architectures for analysing population neural data
Key words: hluboké učení|výpočetní neurověda|modelování V1|biologicky inspirované architektury
English key words: deep-learning|computational neuroscience|v1 modeling|bio-inspired architectures|visual computation
Academic year of topic announcement: 2019/2020
Thesis type: diploma thesis
Thesis language: angličtina
Department: Department of Software and Computer Science Education (32-KSVI)
Supervisor: Mgr. Ján Antolík, Ph.D.
Author: Mgr. Petr Houška - assigned and confirmed by the Study Dept.
Date of registration: 05.01.2020
Date of assignment: 06.02.2020
Confirmed by Study dept. on: 09.11.2020
Date and time of defence: 04.02.2021 08:30
Date of electronic submission:04.01.2021
Date of submission of printed version:04.01.2021
Date of proceeded defence: 04.02.2021
Opponents: doc. Mgr. Martin Pilát, Ph.D.
 
 
 
Guidelines
In this project student will develop novel deep-learning architectures based around the NDN (htps://github.com/NeuroTheoryUMD/NDN) suite of deep models, targeting population data recorded from mammalin primary visual cortex. The student will expand the library with parametrized kernel features, and subsequently testing their combination with deep architectures on neural population recordings from mouse and/or cat primary visual cortex.
References
[1] Willmore, B. D. B., & Smyth, D. (2003). Methods for first-order kernel estimation: simple-cell receptive fields from responses to natural scenes. Network, 14(3), 553–77. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12938771
[2] Vintch, B., Movshon, J. A., & Simoncelli, E. P. (2015). A Convolutional Subunit Model for Neuronal Responses in Macaque V1. Journal of Neuroscience, 35(44), 14829–14841. https://doi.org/10.1523/JNEUROSCI.2815-13.2015
[3] Dan A. Butts (2019). Data-driven approaches to understanding visual neuron activity. Annual Review of Vision Science, 5:451-457,
[4] Antolík, J., Hofer, S. B., Bednar, J. A., & Mrsic-Flogel, T. D. (2016). Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes. PLoS Computational Biology, 12(6). https://doi.org/10.1371/journal.pcbi.1004927
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html