Reprodukční dělba práce u fakultativně eusociálních blanokřídlých
Název práce v češtině: | Reprodukční dělba práce u fakultativně eusociálních blanokřídlých |
---|---|
Název v anglickém jazyce: | Reproductive division of labor in facultative eusocial Hymenoptera |
Klíčová slova: | Příbuznost, mikrosatelitová analýza, evoluce eusociality, Xylocopinae |
Klíčová slova anglicky: | Relatedness, microsatellite analysis, evolution of eusociality, Carpenter bees (Xylocopinae), |
Akademický rok vypsání: | 2025/2026 |
Typ práce: | disertační práce |
Jazyk práce: | čeština |
Ústav: | Katedra zoologie (31-170) |
Vedoucí / školitel: | Mgr. Michael Mikát, Ph.D. |
Řešitel: |
Zásady pro vypracování |
Biologie sociálního hmyzu Molekulární ekologie |
Seznam odborné literatury |
1. Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964). 2. Wilson, E. O. & Hölldobler, B. Eusociality: Origin and consequences. Proc. Natl. Acad. Sci. 102, 13367–13371 (2005). 3. Wilson, E. O. The insect societies. (Belknap Press of Harvard University Press, 1971). 4. Sherman, P. W., Lacey, E. A., Reeve, H. K. & Keller, L. The eusociality continuum. Behav. Ecol. 6, 102–108 (1995). 5. Brothers, D. J. Aculeate Hymenoptera: Phylogeny and classification. in Encyclopedia of Social Insects (ed. Starr, C.) 1–9 (Springer International Publishing, 2019). 6. Holland, J. G. & Bloch, G. The complexity of social complexity: A quantitative multidimensional approach for studies of social organization. Am. Nat. 196, 525–540 (2020). 7. Kocher, S. D. & Paxton, R. J. Comparative methods offer powerful insights into social evolution in bees. Apidologie 45, 289–305 (2014). 8. Schwarz, M. P., Richards, M. H. & Danforth, B. N. Changing paradigms in insect social evolution: insights from halictine and allodapine Bees. Annu. Rev. Entomol. 52, 127–150 (2007). 9. Shell, W. A. & Rehan, S. M. Behavioral and genetic mechanisms of social evolution: Insights from incipiently and facultatively social bees. Apidologie 1–18 (2017). 10. Bridge, C. & Field, J. Queuing for dominance: Gerontocracy and queue-jumping in the hover wasp Liostenogaster flavolineata. Behav. Ecol. Sociobiol. 61, 1253–1259 (2007). 11. Saleh, N. W. & Ramírez, S. R. Sociality emerges from solitary behaviours and reproductive plasticity in the orchid bee Euglossa dilemma. Proc. R. Soc. B Biol. Sci. 286, 20190588 (2019). 12. Nonacs, P. Reproductive skew in cooperative breeding: Environmental variability, antagonistic selection, choice, and control. Ecol. Evol. 9, 10163–10175 (2019). 13. Hogendoorn, K. & Velthuis, H. H. W. Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size. Insectes Sociaux 46, 198–207 (1999). 14. Dew, R. M., Rehan, S. M., Tierney, S. M., Chenoweth, L. B. & Schwarz, M. P. A single origin of large colony size in allodapine bees suggests a threshold event among 50 million years of evolutionary tinkering. Insectes Sociaux 59, 207–214 (2012). 15. Rehan, S. M., Leys, R. & Schwarz, M. P. A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS ONE 7, e34690 (2012). 16. Dew, R. M., Tierney, S. M. & Schwarz, M. P. Lack of ovarian skew in an allodapine bee and the evolution of casteless social behaviour. Ethol. Ecol. Evol. 30, 51–69 (2018). 17. Turillazzi, S. The Biology of Hover Wasps. (Springer Science & Business Media, 2013). 18. Matthews, R. W. Microstigmus comes: Sociality in a sphecid wasp. Science 160, 787–788 (1968). 19. Lucas, E. R., Martins, R. P. & Field, J. Reproductive skew is highly variable and correlated with genetic relatedness in a social apoid wasp. Behav. Ecol. 22, 337–344 (2011). 20. Turillazzi, S., Matthews, R. W., Pradella, D., Meucci, F. & Baracchi, D. Nest architecture and colony composition of communally nesting Spilomena socialis sp. n. (Hymenoptera, Crabronidae, Pemphredoninae) from peninsular Malaysia. J. Hymenopt. Res. 41, 113–129 (2014). 21. Andrade, A. C. R., Miranda, E. A., Lama, M. A. D. & Nascimento, F. S. Reproductive concessions between related and unrelated members promote eusociality in bees. Sci. Rep. 6, 1–9 (2016). 22. Hearn, L. R., Davies, O. K. & Schwarz, M. P. Extreme reproductive skew at the dawn of sociality is consistent with inclusive fitness theory but problematic for routes to eusociality. Proc. R. Soc. B Biol. Sci. 289, 20220652 (2022). 23. Crespi, B. J. & Yanega, D. The definition of eusociality. Behav. Ecol. 6, 109–115 (1995). 24. Paxton, R. J., Ayasse, M., Field, J. & Soro, A. Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites. Mol. Ecol. 11, 2405–2416 (2002). 25. Richards, M. H., French, D. & Paxton, R. J. It’s good to be queen: Classically eusocial colony structure and low worker fitness in an obligately social sweat bee. Mol. Ecol. 14, 4123–4133 (2005). 26. Hunt, J. H. Evolution of castes in Polistes. in Annales Zoologici Fennici 407–422 (2006). 27. Steen, Z. Life cycle and sociality of the green carpenter bees (subgenus Lestis). Flinders University of South Australia, School of Biological Sciences (2000). 28. Bolton, A., Sumner, S., Shreeves, G., Casiraghi, M. & Field, J. Colony genetic structure in a facultatively eusocial hover wasp. Behav. Ecol. 17, 873–880 (2006). 29. Langer, P., Hogendoorn, K., Schwarz, M. P. & Keller, L. Reproductive skew in the Australian allodapine bee Exoneura robusta. Anim. Behav. 71, 193–201 (2006). 30. Southon, R. J., Radford, A. N. & Sumner, S. High reproductive skew in the Neotropical paper wasp Polistes lanio. Insectes Sociaux 67, 451–456 (2020). 31. Sumner, S., Casiraghi, M., Foster, W. & Field, J. High reproductive skew in tropical hover wasps. Proc. R. Soc. Lond. B Biol. Sci. 269, 179–186 (2002). 32. Freiria, G. A., Garófalo, C. A. & Del Lama, M. A. The primitively social behavior of Euglossa cordata (Hymenoptera, Apidae, Euglossini): a view from the perspective of kin selection theory and models of reproductive skew. Apidologie 48, 523–532 (2017). 33. Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. S. & Field, J. Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333, 874–876 (2011). 34. Pennell, T. M. & Field, J. Split sex ratios and genetic relatedness in a primitively eusocial sweat bee. Behav. Ecol. Sociobiol. 75, 5 (2020). 35. Brand, N. & Chapuisat, M. Low relatedness and frequent inter-nest movements in a eusocial sweat bee. Insectes Sociaux 63, 249–256 (2016). 36. Seppä, P., Fogelqvist, J., Gyllenstrand, N. & Lorenzi, M. C. Colony kin structure and breeding patterns in the social wasp, Polistes biglumis. Insectes Sociaux 58, 345–355 (2011). 37. Southon, R. J. et al. High indirect fitness benefits for helpers across the nesting cycle in the tropical paper wasp Polistes canadensis. Mol. Ecol. 28, 3271–3284 (2019). 38. Rehan, S. M., Richards, M. H., Adams, M. & Schwarz, M. P. The costs and benefits of sociality in a facultatively social bee. Anim. Behav. 97, 77–85 (2014). 39. Mikát, M., Benda, D. & Straka, J. Unrelated males in societies of a facultatively social bee. J. Apic. Res. 0, 1–12 (2021). 40. Michener, C. D. The social behavior of the bees: A comparative study. (Harvard University Press, 1974). 41. Silva, C. R. B. da, Stevens, M. I. & Schwarz, M. P. Casteless sociality in an allodapine bee and evolutionary losses of social hierarchies. Insectes Sociaux 63, 67–78 (2016). 42. Maeta, Y. & Sakagami, S. F. Oophagy and egg replacement in artificially induced colonies of a basically solitary bee, Ceratina (Ceratinidia) okinawana (Hymenoptera, Anthophoridae, Xylocopinae), with a comparison of social behavior among Ceratina, Xylocopa and the Halictine bees. Jpn. J. Entomol. 63, 347–375 (1995). 43. Richards, M. H. & Packer, L. Demography and relatedness in multiple-foundress nests of the social sweat bee, Halictus ligatus. Insectes Sociaux 45, 97–109 (1998). 44. Reeve, H. K. & Keller, L. Tests of reproductive-skew models in social insects. Annu. Rev. Entomol. 46, 347–385 (2001). 45. Reeve, H. K. & Shen, S.-F. Unity and disunity in the search for a unified reproductive skew theory. Anim. Behav. 85, 1137–1144 (2013). 46. Favreau, E. et al. Co-expression gene networks and machine-learning algorithms unveil a core genetic toolkit for reproductive division of labour in rudimentary insect societies. Genome Biol. Evol. 15, evac174 (2023). 47. Parsons, P. J., Couchoux, C., Horsburgh, G. J., Dawson, D. A. & Field, J. Identification of 24 new microsatellite loci in the sweat bee Lasioglossum malachurum (Hymenoptera: Halictidae). BMC Res. Notes 10, 753 (2017). 48. Steen, Z. & Schwarz, M. P. Nesting and life cycle of the Australian green carpenter bees Xylocopa (Lestis) aeratus Smith and Xylocopa (Lestis) bombylans (Fabricius)(Hymenoptera: Apidae: Xylocopinae). Aust. J. Entomol. 39, 291–300 (2000). 49. Groom, S. V. C. & Rehan, S. M. Climate-mediated behavioural variability in facultatively social bees. Biol. J. Linn. Soc. 125, 165–170 (2018). 50. Mikát, M., Fraňková, T., Benda, D. & Straka, J. Evidence of sociality in European small carpenter bees (Ceratina). Apidologie 53, 18 (2022). 51. Sakagami, S. F. & Maeta, Y. Some presumably presocial habits of Japanese Ceratina bees, with notes on various social types in Hymenoptera. Insectes Sociaux 24, 319–343 (1977). 52. Tierney, S. M., Smith, J. A., Chenoweth, L. & Schwarz, M. P. Phylogenetics of allodapine bees: a review of social evolution, parasitism and biogeography. Apidologie 39, 3–15 (2008). 53. Buchmann, S. L. & Minckley, R. L. Large carpenter bees (Xylocopa). in Encyclopedia of Social Insects 1–4 (Springer International Publishing, 2019). 54. Dew, R. M., Shell, W. A. & Rehan, S. M. Changes in maternal investment with climate moderate social behaviour in a facultatively social bee. Behav. Ecol. Sociobiol. 72, 69 (2018). 55. Mueller, U. G. & Wolf-Mueller, B. A method for estimating the age of bees: age-dependent wing wear and coloration in the wool-carder bee Anthidium manicatum (Hymenoptera: Megachilidae). J. Insect Behav. 6, 529–537 (1993). 56. Theodorou, P. et al. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. R. Soc. B Biol. Sci. 285, 20172806 (2018). 57. Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010). 58. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). 59. Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. Dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691– 699 (2018). 60. Konovalov, D. A., Manning, C. & Henshaw, M. T. KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol. Ecol. Notes 4, 779–782 (2004). 61. Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010). 62. Fox, G. et al. Multi-individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi). Mol. Ecol. Resour. 19, 1672–1680 (2019). |
Předběžná náplň práce |
Sociální hmyz hmyzu patří mezi nejúspěšnější a nejzajímavější výsledky evoluce, především díky přítomnosti dělnic – jedinců, kteří rezignují na vlastní reprodukci, aby podpořili reprodukci ostatních členů společenství. Reprodukční altruismus je ústředním konceptem ve studiu společenského hmyzu, avšak podmínky, které umožňují jeho vznik, zůstávají z velké části neznámé. Přestože existuje značné množství teoretického výzkumu o původu reprodukčního altruismu, jen málo studií se zabývalo rozsahem tohoto jevu v jednoduchých hmyzích společenství. Tento projekt si klade za cíl zkoumat reprodukční dělbu práce u včel z podčeledi Xylocopinae, které vytvářejí jednoduchá společenství čítající jen malý počet jedinců. Pro analýzu reprodukční dělby práce budou vyvinuty a následně použity mikrosatelitové multiplexy. Student bude hodnotit příbuznost jedinců v rámci hnízd u 10 druhů Xylocopinae a srovná tato zjištění s dosud publikovanými studiemi reprodukční dělby práce u fakultativně eusociálních blanokřídlých (Hymenoptera). Konečným cílem je objasnit původ a trvalost reprodukčního rozdělení práce, což přispěje k hlubšímu pochopení evoluce společenského hmyzu. |
Předběžná náplň práce v anglickém jazyce |
Insect societies are among the most successful and fascinating outcomes of evolution, largely due to the presence of workers—individuals who sacrifice their own reproduction to support the reproduction of others. Reproductive altruism is a central concept in the study of social insects, yet much remains unknown about the conditions that enable its emergence. While a substantial body of theoretical research exists on the origins of reproductive altruism, few studies have investigated the extent of this phenomenon in simple insect societies. This project seeks to explore reproductive skew in carpenter bees (Xylocopinae), a group characterized by relatively simple social structures, using genetic markers. Student will assess within-nest relatedness across 10 Xylocopinae species and integrate our findings with data from approximately 20 other simple social Hymenoptera species. By identifying the key factors influencing reproductive skew and testing the applicability of existing reproductive skew models, we aim to refine or develop more accurate models. Ultimately, our research seeks to shed light on the origins and persistence of reproductive division of labor, advancing our understanding of the evolution of social insects. |