Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 285)
Detail práce
   Přihlásit přes CAS
Time-Dependent Solution of the Generalized Fano Model
Název práce v češtině: Časově závislé řešení zobecněného Fanova modelu
Název v anglickém jazyce: Time-Dependent Solution of the Generalized Fano Model
Klíčová slova: Resonanční rozptyl, Zobecněný Fanův model, Numericky simulovaný model
Klíčová slova anglicky: Resonance scattering, Generalized Fano model, Numerically simulated decay
Akademický rok vypsání: 2016/2017
Typ práce: bakalářská práce
Jazyk práce: angličtina
Ústav: Ústav teoretické fyziky (32-UTF)
Vedoucí / školitel: RNDr. Přemysl Kolorenč, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 19.10.2016
Datum zadání: 20.10.2016
Datum potvrzení stud. oddělením: 10.01.2017
Datum a čas obhajoby: 12.09.2017 00:00
Datum odevzdání elektronické podoby:02.07.2017
Datum odevzdání tištěné podoby:02.07.2017
Datum proběhlé obhajoby: 12.09.2017
Oponenti: prof. RNDr. Jiří Horáček, DrSc.
 
 
 
Zásady pro vypracování
Student se seznámí s Fanovým modelem rezonancí jeho poruchovým řešením. Pro jednoduchý modelový Hamiltonián implementuje numerické řešení soustavy diferenciálních rovnic vycházejících z vhodné diskretizace kontinua a bude studovat chování řešení v závislosti na tvaru a síle vazby mezi diskrétním stavem a kontinuem.
Seznam odborné literatury
[1] Cohen-Tanouji, Diu, Laloe: Quantum Mechanics (John Wiley & Sons, 2005)
[2] P. Kolorenč: Energy transfers in small molecules (disertační práce, 2005)
Předběžná náplň práce
Řadu fyzikálních procesů v kvantové mechanice je možné popsat jako interakci tzv. diskrétního stavu s kontinuem. Příkladem může být rezonanční rozptyl. Při něm se metastabilní stav, popsaný kvadraticky integrabilní vlnovou funkcí odpovídající zachycení rozptylované částice, rozpadá do kontinua rozptylových stavů. Při řešení tohoto problému se obvykle předpokládá exponenciální rozpad diskrétního stavu s odpovídající rozpadovou šířkou určenou například v nejnižším řádu poruchové teorie. Rozpad je nicméně exponenciální pouze v případě konstantní vazby diskrétního stavu na kontinuum (nezávislé na energii rozptylového stavu) - tzv. Fanův model. Cílem práce bude numerická simulace časového vývoje v případě realističtějšího modelu s nekonstantní vazbou a studium odchylek od očekávaného exponenciálního průběhu.
Předběžná náplň práce v anglickém jazyce
Variety of physical processes in quantum mechanics can be described as interaction of the so called discrete state with continuum. Resonant scattering can serve as a most typical example. Here, the metastable state, which is described by a square integrable wave function, corresponding to capture of the particle near the target, decays into the continuum of scattering states. When dealing with such a problem exponential decay of the discrete state is commonly assumed with the decay rate determined, for instance, through the lowest order of perturbation theory. However, the decay is exponential only in the case of a constant coupling between the discrete state and the continuum (i.e., independent of the energy of the discrete state) - so called Fano model. The goal of the proposed work will be numerical simulation of the time evolution in the case of a more realistic model with energy dependent coupling and study of its deviation from the expected exponential behavior.
 
Univerzita Karlova | Informační systém UK