Pravděpodobnostní rozdělení ve financích
Název práce v češtině: | Pravděpodobnostní rozdělení ve financích |
---|---|
Název v anglickém jazyce: | Probability distributions in finance |
Klíčová slova: | Laplaceovo rozdělení, asymetrické Laplaceovo rozdělení |
Klíčová slova anglicky: | Laplace distribution, asymmetric Laplace distribution |
Akademický rok vypsání: | 2010/2011 |
Typ práce: | bakalářská práce |
Jazyk práce: | čeština |
Ústav: | Katedra pravděpodobnosti a matematické statistiky (32-KPMS) |
Vedoucí / školitel: | doc. RNDr. Jan Hurt, CSc. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 10.11.2010 |
Datum zadání: | 10.11.2010 |
Datum a čas obhajoby: | 12.09.2011 00:00 |
Datum odevzdání elektronické podoby: | 22.07.2011 |
Datum odevzdání tištěné podoby: | 05.08.2011 |
Datum proběhlé obhajoby: | 12.09.2011 |
Oponenti: | RNDr. Jitka Zichová, Dr. |
Zásady pro vypracování |
Student prostuduje rozdělení vhodná pro modelování výnosů/ztrát. Jedná se zejména o rozdělení asymetrická a rozdělení s těžkými chvosty. O nich pojedná a provede numerická porovnání týkající se zejména chování chvostů. |
Seznam odborné literatury |
[1] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modeling in Economics and Finance. Kluwer Academic Publishers. Dordrecht 2002.
[2] Hull, J.C.: Options, Futures, and other Derivative Securities. 4th ed., Prentice-Hall. Upper Saddle Rive 2000. [3] Shaw, W.: Modeling Financial Derivatives with Mathematica. Cambridge University Press. Cambridge 1998. [4] Morgan, J. P., Reuters: RiskMetrics ? Technical Document. 4th ed., Morgan Guaranty Trust Company. New York 1996. [5] Hurt, J.: Simulační metody. Skripta SPN. Praha 1982. [6] Fuchs, K.: Hodnocení portfolia opcí. Diplomová práce. UK MFF Praha 2003. [7] Luenberger, D. G.: Investment Science. Oxford University Press. New York 1998. [8] Haerdle, W., Kleinow, T., Stahl, G.: Applied Quantitative Finance.Springer. Berlin 2002. [9] Seydel, R.: Tools for Computational Finance. Springer. Berlin 2002. [10] Gamerman, D.: Markov Chain Monte Carlo. Chapman & Hall. London 1997. [11] Credit Suisse Financial Products. Credit Risk+. Credit Suisse First Boston. www.csfb.com/creditrisk. 1997. [12] Bluhm, C. et al.: Credit Risk Modeling. Chapman & Hall/CRC. Boca Raton 2003. [13] Schoenbucher, P. J.: Credit Derivatives Pricing Models. Wiley. Chichester 2003. [14] Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer. New York 2004. [15] Boyle, P. et al.: Monte Carlo Methods for Security Pricing. In: Option Pricing, Interest Rates and Risk Management. Jouni, E. et al., eds. Springer. New York 2004. 185 - 238. [16] Varian, H. R. (ed.): Computational Economics and Finance. Modeling and Analysis with Mathematica. Springer-TELOS. New York 1996. [17] Pflug, G. Ch.: Some remarks on the Value-at-Risk and the conditional Value-at-Risk. To appear. [18] Krokhmal, P. et al. (eds.): Risk Management and Optimization in Finance. Special Issue. J. of Banking & Finance 30, February 2006. [19] Wolfram, S.: The Mathematica Book. 5th ed. Wolfram Media. Champaign (IL) 2003. [20] Dahlstedt, R. a kol.: On the usefulness of standard industrial classifications in comparative financial statement analysis. European Journal of Operational Research 79 (1994). 230-238. [21] Wolfram, S.: Mathematica v. 6.0.3. Help/tutorial/PartitioningDataIntoClusters. [22] Hurt, J.: Risk measures in finance. In: 2008 International Mathematica User Conference. http://library.wolfram.com/infocenter/Conferences/7230/. Champaign (IL) 2008. [23] Franke, J., Haerdle, W., Hafner, Ch.: Statistics of Financial Markets. Springer. Berlin 2004. [24] Cipra, T.: Finanční ekonometrie. Ekopress. Praha 2008. [25] Tibilleti, L.: The Incremental VaR. In: Kohlmann, M., Tang, S. (eds): Mathematical Finance. Birkaeuser. Basel 2001. pp. 355-364. [26] Baník, P.: Metody optimalizace ve financích. Diplomová práce. UK MFF Praha 2008. [27] Brigham, E. F.: Fundamentals of Financial Management. 6th edition. The Dryden Press. Forth Worth 1992. [28] Brigo, D., Mercurio, F.: Interest Rate Models. Springer. Berlin 2001. [29] http://www.moodyskmv.com/ [30] Vetzal, K. R. (1994): A survey of stochastic continuous time models of term structure of interest rates. Insurance: Mathematics and Economics, Volume 14, Issue 2, May 1994, Pages 139-161. [31] Jeffrey T. Tsai, Jennifer L. Wang, Larry Y. Tzeng: On the optimal product mix in life insurance companies using conditional value at risk. Insurance: Mathematics and Economics, Volume 46, Issue 1, February 2010, Pages pp. 235-241. [32] Hansen, L.P., 1982. Large sample properties of generalized method of moments estimators. Econometrica 50 (4), 1029?1054. [33] Ross, Sheldon M.: An Elementary Introduction to Mathematical Finance. 2nd edition. Cambridge University Press. Cambridge 2003. [34] Cipra, T.: Financial and Insurance Formulas. Springer-Verlag. Berlin 2010. [35] Trindade, A. A., Zhu, Yun (2007): Approximating the distributions of estimators of financial risk under an asymmetric Laplace law. Computational Statistics & Data Analysis, Vol. 51, pp. 3433-3447. [36] Song, Y., Yan, J. (2009): Risk measures with comonotonic subaditivity or convexity and respecting stochastic orders. Insurance: Mathematics and Economics. Vol. 45, pp. 459-465. [37] Inui, K., Kijima, M. (2005): On the significance of expected shortfall as a coherent risk measure. J. of Banking and Finance, Vol. 29, pp. 853-864. [38] Gzyl, H., Mayoral, S. (2008): Determination of risk pricing measures from market prices of risk. Insurance: Mathematics and Economics. Vol. 43, pp. 437-443. [39] Dowd, K., Cairns, A. J. G., Blake, D. (2006): Mortality-dependent financial risk measures. Insurance: Mathematics and Economics. Vol. 38, pp. 427-440. [40] Eling, M., Tibiletti, L. (2010) Internal vs. external risk measures: How capital requirements differ in practice. Opererations Research Letters. doi: 10.1016/j.orl.2010.05.003 [41] Kuan, Chung-Ming, Yeh, Jin-Huei, Hsu, Yu-Chin (2009): Assesing value at risk with CARE, the Conditional Autoregressive Expectile models. Journal of Econometrics. Vol. 150, pp. 261-270. [42] de Melo Mendes B. V., de Souza, R. M. (2004): Measuring financial risks with copulas. Int. Rev. Financ. Analy., Vol 13, pp. 27-45. [43] Cheng, G., Ping, L., Shi, P. (2007): A new algorithm based on copulas for VaR valuation with empirical calculations. Theoretical Computer Science. Vol. 378, pp. 190-197. |
Předběžná náplň práce |
Alternativní rozdělení ve financích. |
Předběžná náplň práce v anglickém jazyce |
Various distributions in finance. |