Biophysical conditions triggering depolarization block in excitatory neurons.
Název práce v češtině: | Biofyzikální podmínky spouštějící depolarizační blok v excitačních neuronech. |
---|---|
Název v anglickém jazyce: | Biophysical conditions triggering depolarization block in excitatory neurons. |
Klíčová slova: | simulace, neuronový model, optogenetická stimulace, depolarizační blok |
Klíčová slova anglicky: | Simulation, Neuron model, Optogenetic stimulation, Depolarization block |
Akademický rok vypsání: | 2023/2024 |
Typ práce: | bakalářská práce |
Jazyk práce: | angličtina |
Ústav: | Katedra buněčné biologie (31-151) |
Vedoucí / školitel: | David Maximilian Berling, M.Sc. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 30.11.2023 |
Datum zadání: | 30.11.2023 |
Datum potvrzení stud. oddělením: | 31.01.2024 |
Datum odevzdání elektronické podoby: | 30.04.2024 |
Datum proběhlé obhajoby: | 19.06.2024 |
Oponenti: | Karolína Korvasová, M.Sc., Dr. rer. nat. |
Seznam odborné literatury |
Berling, Baroni, Antolik et al. Consequences of neural morphology for spatially precise optogenetic stimulation. Preprint. Foutz, T. J., Arlow, R. L., & McIntyre, C. C. (2012). Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. Journal of Neurophysiology, 107(12), 3235–3245. https://doi.org/10.1152/jn.00501.2011 Herman, A. M., Huang, L., Murphey, D. K., Garcia, I., & Arenkiel, B. R. (2014). Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2. eLife, 3, e01481. https://doi.org/10.7554/eLife.01481 Nikolic, K., Grossman, N., Grubb, M. S., Burrone, J., Toumazou, C., & Degenaar, P. (2009). Photocycles of Channelrhodopsin-2. Photochemistry and Photobiology, 85(1), 400–411.https://doi.org/10.1111/j.1751-1097.2008.00460.x @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-536859905 -1073697537 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}a:link, span.MsoHyperlink {mso-style-noshow:yes; mso-style-priority:99; color:blue; text-decoration:underline; text-underline:single;}a:visited, span.MsoHyperlinkFollowed {mso-style-noshow:yes; mso-style-priority:99; color:#954F72; mso-themecolor:followedhyperlink; text-decoration:underline; text-underline:single;}p {mso-style-noshow:yes; mso-style-priority:99; mso-margin-top-alt:auto; margin-right:0cm; mso-margin-bottom-alt:auto; margin-left:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman";}span.il {mso-style-name:il; mso-style-unhide:no;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:0pt; mso-ligatures:none; mso-fareast-language:EN-US;}div.WordSection1 {page:WordSection1;} |
Předběžná náplň práce |
Detaul v angličtině |
Předběžná náplň práce v anglickém jazyce |
Optogenetic stimulation is a recently developed neural stimulation technique which is now being frequently applied to study neural circuits and may in future as a neural prosthesis restore a lost sense like vision or hearing. Despite its abundance as stimulation technique in current experimental research, neural responses to optogenetic stimulation remain not fully understood. Several experimental studies have revealed that high stimulation intensity drives neurons into depolarization block, a state in which a neuron's membrane potential remains strongly depolarized inhibiting the generation of action potentials. Consequently, driving a neuron into depolarization block changes its firing response in a counter-intuitive way, as increasing stimulation intensity typically results in increased firing but a sudden decrease when depolarization block is triggered. To avoid or purposefully induce this effect in optogenetic stimulation interventions, characterization of the conditions inducing depolarization block is needed. After a focused review of the limited amount of existing literature on optogenetically induced depolarization block, the student will in this project utilize an existing simulation framework for optogenetic neural responses to map the conditions under which depolarization block appears in the model neuron. He will start with a guided implementation of a simplified neuron model followed by the systematic exploration of which biological variables are the most relevant ones inducing depolarization block. If time allows, the simulated neural responses will be compared to recordings of optogenetic responses in primate retinal ganglion cells obtained through a collaboration with an experimental neuroscience laboratory. |