Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 385)
Detail práce
   Přihlásit přes CAS
Laboratorní diagnostika microRNA u různých diagnostických skupin
Název práce v češtině: Laboratorní diagnostika microRNA u různých diagnostických skupin
Název v anglickém jazyce: Laboratory diagnosis of microRNA in different diagnostic groups
Akademický rok vypsání: 2022/2023
Typ práce: diplomová práce
Jazyk práce: čeština
Ústav: Katedra biologických a lékařských věd (16-16150)
Vedoucí / školitel: PharmDr. Jana Urbánková Rathouská, Ph.D.
Řešitel: skrytý - zadáno vedoucím/školitelem
Datum přihlášení: 11.10.2022
Datum zadání: 30.11.2022
Datum a čas obhajoby: 06.06.2024 08:00
Datum odevzdání elektronické podoby:02.05.2024
Datum proběhlé obhajoby: 06.06.2024
Oponenti: PharmDr. Katarína Tripská, Ph.D.
 
 
 
Konzultanti: doc. RNDr. Pavlína Kušnierová, Ph.D.
Zásady pro vypracování
Předběžná osnova a postup vypracování diplomové práce:
1. Teoretické studium daného tématu, literární rešerše (10/2022 – 03/2023)
2. Seznámení s metodami izolace nukleových kyselin se zaměřením na microRNA, ELISA metody, PCR metody (04/2023 – 06/2023)
3. Izolace a kvantitativní stanovení vybraných microRNA u různých diagnostických skupin, bude realizováno na OKB, ÚLM, FNO (07/2023 – 12/2023)
4. Statistické zpracování dat, program Medcalc (korelační/regresní analýza, párové porovnání – T-test, Fisherův test, a další dle výsledků), (01-02/2024)
5. Vyhodnocení experimentálního zkoumání (03-04/2024).Vypracování konečné verze (03-04/2024).
Seznam odborné literatury
1. Fani, M., Zandi, M., Ebrahimi, S., Soltani, S., & Abbasi, S. (2021). The role of miRNAs in COVID-19 disease. Future Virology, 10.2217/fvl-2020-0389.
https://doi.org/10.2217/fvl-2020-0389
2. Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017 Sep 6;45(15):e144.
doi: 10.1093/nar/gkx588. PMID: 28911110; PMCID: PMC5587787.
3. Androvic P, Romanyuk N, Urdzikova-Machova L, Rohlova E, Kubista M, Valihrach L. Two-tailed RT-qPCR panel for quality control of circulating microRNA studies. Sci Rep. 2019 Mar
12;9(1):4255. doi: 10.1038/s41598-019-40513-w. PMID: 30862831; PMCID: PMC6414634.
4. Henzinger H. et al. 2020: Non-Coding RNAs and SARS-Related Coronaviruses. Viruses, 12(12), 1374. doi.org/10.3390/v12121374.
5. Fulzele S. et al. 2020 .: COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile. Aging Dis. 2020;11(3):509-522. Published 2020
May 9. doi:10.14336/AD.2020.0428.
6. Ahmadi A, Moradi S. 2021.: In silico analysis suggests the RNAi-enhancing antibiotic enoxacin as a potential inhibitor of SARS-CoV-2 infection. Sci Rep. 2021;11(1):10271. Published
2021 May 13. doi:10.1038/s41598-021-89605-6
7. Meng, Q. et al. 2015.: Upregulation of MicroRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J. Cell. Biochem. 2015,
116, 1613–1623.
8. Miyamoto S, et al. 2015.: Expression Patterns of miRNA-423-5p in the Serum and Pericardial Fluid in Patients Undergoing Cardiac Surgery. PLoS ONE 10(11): e0142904. doi:10.1371/
journal.pone.0142904
9. Poon KS et al. 2017.: Plasma exosomal miR-223 expression regulates inflammatory responses during cardiac surgery with cardiopulmonary bypass. Sci Rep. 2017 Sep 7; 7(1):10807.
10. Jiang L. et al. 2010.: Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer
cells. BMC Cancer. 2010;10:318. doi: 10.1186/1471-2407-10-318.
11. Rizzacasa B, et al. 2019.: MiR-423 is differentially expressed in patients with stable and unstable coronary artery disease: A pilot study. PLoS ONE 14(5): e0216363
12. Tu H, et al. 2019.:Elevated pulmonary tuberculosis biomarker miR-423-5p plays critical role in the occurrence of active TB by inhibiting autophagosome-lysosome fusion. Emerg
Microbes Infect. 2019;8(1):448-460. doi:10.1080/22221751.2019.1590129
13. Sardar R. et al. 2020.: Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction,
pathogenesis and clues for novel therapies. Heliyon. Sep; 6(9): e04658.
14. Sabbatinelli J. et al. 2020.: Decreased serum levels of inflammaging marker miR-146a are associated with clinical response to tocilizumab in COVID-19 patients., medRxiv. Dec
8. doi: 10.1016/j.mad.2020.111413
15. Bobba. Ch. M. ,2020.: Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun.
2021;12(1):289. Published 2021 Jan 12. doi:10.1038/s41467-020-20449-w
16. Sun LL. et al. 2020.: LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt
pathway. Aging (Albany NY). 2020;12(5):4506-4526. doi:10.18632/aging.102904
17. Wang, J., et al. (2019a).: Exosomemediated delivery of induciblemir-423-5p enhances resistance of mrc-5 cells to rabies virus infection. Int. J. Mol. Sci. 20, 1–15. doi: 10.3390/ijms20071537
18. Fu G, Brkić J, Hayder H, et al. MicroRNAs in human placental development and pregnancy complications.
Int J Mol Sci 2013;14:5519–44. doi:10.3390/ijms14035519
19. O’Brien J, Hayder H, Zayed Y,
et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation.
Front Endocrinol (Lausanne) 2018;9:1–12. doi:10.3389/fendo.2018.00402
20. Ha M, Kim VN. Regulation of microRNA biogenesis.
Nat Publ Gr 2014;15:509–24. doi:10.1038/nrm3838
21. Weber JA, Baxter DH, Zhang S,
et al. The MicroRNA Spectrum in 12 Body Fluids. Clin Chem 2010;56:1733–41. doi:10.1373/clinchem.2010.147405
22. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases.
Cell Res 2008;18:997–1006. doi:10.1038/cr.2008.282
23. Mezache L, Mikhail M, Garofalo M,
et al. Reduced miR-512 and the elevated expression of its targets cFLIP and MCL1 localize to neurons with hyperphosphorylated tau protein in Alzheimer disease.
Appl Immunohistochem Mol Morphol 2015;23:615–23. doi:10.1097/PAI.0000000000000147
24. Goh SY, Chao YX, Dheen ST,
et al.Role of MicroRNAs in Parkinson ’ s Disease. ;:1–23.
25. Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review.
Prog Neurobiol 2017;156:1–68. doi:10.1016/j.pneurobio.2017.03.004
26. Cressatti M, Juwara L, Galindez JM,
et al. Salivary microR-153 and microR-223 Levels as Potential Diagnostic Biomarkers of Idiopathic Parkinson’s Disease.
Mov Disord 2020;35:468–77. doi:10.1002/mds.27935
27. Caldi Gomes L, Roser AE, Jain G,
et al. MicroRNAs from extracellular vesicles as a signature for Parkinson’s disease.
Clin Transl Med 2021;11. doi:10.1002/CTM2.357
28. Banzhaf‐Strathmann J, Benito E, May S,
et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease.
EMBO J 2014;33:1667–80. doi:10.15252/EMBJ.201387576
29. Hong H, Li Y, Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse.
J Alzheimer’s Dis 2017;59:1449–58. doi:10.3233/JAD-170156
30. Vergallo A, Lista S, Zhao Y,
et al.MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints.
Transl Psychiatry 2021;11. doi:10.1038/s41398-020-01184-8
31. Tan YJ, Wong BYX, Vaidyanathan R,
et al. Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer’s Disease and Frontotemporal Dementia.
J Alzheimer’s Dis reports 2021;5:805–13. doi:10.3233/ADR-21031
32. Zhang Y, Zhao Y, Tian C, et al. Differential exosomal microRNA profile in the serum of a patient with depression.
Eur J Psychiatry 2018;32:105–12. doi:10.1016/J.EJPSY.2017.10.002
33. Noronha O, Mesarosovo L, Anink JJ,
et al. Differentially Expressed miRNAs in Age-Related Neurodegenerative Diseases: A Meta-Analysis.
Genes (Basel) 2022;13:1034. doi:10.3390/genes13061034
34. Khoo SK, Petillo D, Kang UJ,
et al.Plasma-based circulating microRNA biomarkers for Parkinson’s disease.
J Parkinsons Dis2012;2:321–31. doi:10.3233/JPD-012144
35. Tolosa E, Botta-Orfila T, Morató X,
et al. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients.
Neurobiol Aging 2018;69:283–91. doi:10.1016/J.NEUROBIOLAGING.2018.05.032
36. Zeng Q, Zou L, Qian L, et al. Expression of microRNA‑222 in serum of patients with Alzheimer’s disease.
Mol Med Rep 2017;16:5575–9. doi:10.3892/MMR.2017.7301
37. Foggin S, Mesquita-Ribeiro R, Dajas-Bailador F,
et al. Biological Significance of microRNA Biomarkers in ALS-Innocent Bystanders or Disease Culprits?
Front Neurol 2019;10. doi:10.3389/FNEUR.2019.00578
38.
Saavedra N, Rojas G, Herrera J, Rebolledo C, Ruedlinger J, Bustos L, Bobadilla B, Pérez L, Saavedra K, Zambrano T, Lanas F, Salazar LA. Circulating miRNA-23b and miRNA-143
Are Potential Biomarkers for In-Stent Restenosis. Biomed Res Int. 2020 Sep 16;2020:2509039. doi: 10.1155/2020/2509039. PMID: 33015157; PMCID: PMC7519453.
39.
Ganjali S, Aghaee-Bakhtiari SH, Reiner Ž, Sahebkar A. Differential Expression of miRNA-223 in Coronary In-Stent Restenosis. J Clin Med. 2022 Feb 6;11(3):849. doi: 10.3390/jcm11030849.
PMID: 35160300; PMCID: PMC8836934.
40.
Wang M, Zhang W, Zhang L, Wang L, Li J, Shu C, Li X. Roles of MicroRNAs in Peripheral Artery In-Stent Restenosis after Endovascular Treatment. Biomed Res Int. 2021 Jul 27;2021:9935671.
doi: 10.1155/2021/9935671. PMID: 34368362; PMCID: PMC8337102.
41.
Gao XF, Wang ZM, Chen AQ, Wang F, Luo S, Gu Y, Kong XQ, Zuo GF, Jiang XM, Ding GW, Chen Y, Ge Z, Zhang JJ, Chen SL. Plasma Small Extracellular Vesicle-Carried miRNA-501-5p
Promotes Vascular Smooth Muscle Cell Phenotypic Modulation-Mediated In-Stent Restenosis. Oxid Med Cell Longev. 2021 Apr 21;2021:6644970. doi: 10.1155/2021/6644970. PMID: 33968296; PMCID: PMC8084657.
42.
Feng S, Gao L, Zhang D, Tian X, Kong L, Shi H, Wu L, Huang Z, Du B, Liang C, Zhang Y, Yao R. MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation
through targeting Mfn2. Int J Biol Sci. 2019 Sep 7;15(12):2615-2626. doi: 10.7150/ijbs.36995. PMID: 31754334; PMCID: PMC6854371.
 
Univerzita Karlova | Informační systém UK