Laboratorní diagnostika microRNA u různých diagnostických skupin
Název práce v češtině: | Laboratorní diagnostika microRNA u různých diagnostických skupin |
---|---|
Název v anglickém jazyce: | Laboratory diagnosis of microRNA in different diagnostic groups |
Akademický rok vypsání: | 2022/2023 |
Typ práce: | diplomová práce |
Jazyk práce: | čeština |
Ústav: | Katedra biologických a lékařských věd (16-16150) |
Vedoucí / školitel: | PharmDr. Jana Urbánková Rathouská, Ph.D. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 11.10.2022 |
Datum zadání: | 30.11.2022 |
Datum a čas obhajoby: | 06.06.2024 08:00 |
Datum odevzdání elektronické podoby: | 02.05.2024 |
Datum proběhlé obhajoby: | 06.06.2024 |
Oponenti: | PharmDr. Katarína Tripská, Ph.D. |
Konzultanti: | doc. RNDr. Pavlína Kušnierová, Ph.D. |
Zásady pro vypracování |
Předběžná osnova a postup vypracování diplomové práce: 1. Teoretické studium daného tématu, literární rešerše (10/2022 – 03/2023) 2. Seznámení s metodami izolace nukleových kyselin se zaměřením na microRNA, ELISA metody, PCR metody (04/2023 – 06/2023) 3. Izolace a kvantitativní stanovení vybraných microRNA u různých diagnostických skupin, bude realizováno na OKB, ÚLM, FNO (07/2023 – 12/2023) 4. Statistické zpracování dat, program Medcalc (korelační/regresní analýza, párové porovnání – T-test, Fisherův test, a další dle výsledků), (01-02/2024) 5. Vyhodnocení experimentálního zkoumání (03-04/2024).Vypracování konečné verze (03-04/2024). |
Seznam odborné literatury |
1. Fani, M., Zandi, M., Ebrahimi, S., Soltani, S., & Abbasi, S. (2021). The role of miRNAs in COVID-19 disease. Future Virology, 10.2217/fvl-2020-0389. https://doi.org/10.2217/fvl-2020-0389 2. Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017 Sep 6;45(15):e144. doi: 10.1093/nar/gkx588. PMID: 28911110; PMCID: PMC5587787. 3. Androvic P, Romanyuk N, Urdzikova-Machova L, Rohlova E, Kubista M, Valihrach L. Two-tailed RT-qPCR panel for quality control of circulating microRNA studies. Sci Rep. 2019 Mar 12;9(1):4255. doi: 10.1038/s41598-019-40513-w. PMID: 30862831; PMCID: PMC6414634. 4. Henzinger H. et al. 2020: Non-Coding RNAs and SARS-Related Coronaviruses. Viruses, 12(12), 1374. doi.org/10.3390/v12121374. 5. Fulzele S. et al. 2020 .: COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile. Aging Dis. 2020;11(3):509-522. Published 2020 May 9. doi:10.14336/AD.2020.0428. 6. Ahmadi A, Moradi S. 2021.: In silico analysis suggests the RNAi-enhancing antibiotic enoxacin as a potential inhibitor of SARS-CoV-2 infection. Sci Rep. 2021;11(1):10271. Published 2021 May 13. doi:10.1038/s41598-021-89605-6 7. Meng, Q. et al. 2015.: Upregulation of MicroRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J. Cell. Biochem. 2015, 116, 1613–1623. 8. Miyamoto S, et al. 2015.: Expression Patterns of miRNA-423-5p in the Serum and Pericardial Fluid in Patients Undergoing Cardiac Surgery. PLoS ONE 10(11): e0142904. doi:10.1371/ journal.pone.0142904 9. Poon KS et al. 2017.: Plasma exosomal miR-223 expression regulates inflammatory responses during cardiac surgery with cardiopulmonary bypass. Sci Rep. 2017 Sep 7; 7(1):10807. 10. Jiang L. et al. 2010.: Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer. 2010;10:318. doi: 10.1186/1471-2407-10-318. 11. Rizzacasa B, et al. 2019.: MiR-423 is differentially expressed in patients with stable and unstable coronary artery disease: A pilot study. PLoS ONE 14(5): e0216363 12. Tu H, et al. 2019.:Elevated pulmonary tuberculosis biomarker miR-423-5p plays critical role in the occurrence of active TB by inhibiting autophagosome-lysosome fusion. Emerg Microbes Infect. 2019;8(1):448-460. doi:10.1080/22221751.2019.1590129 13. Sardar R. et al. 2020.: Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon. Sep; 6(9): e04658. 14. Sabbatinelli J. et al. 2020.: Decreased serum levels of inflammaging marker miR-146a are associated with clinical response to tocilizumab in COVID-19 patients., medRxiv. Dec 8. doi: 10.1016/j.mad.2020.111413 15. Bobba. Ch. M. ,2020.: Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun. 2021;12(1):289. Published 2021 Jan 12. doi:10.1038/s41467-020-20449-w 16. Sun LL. et al. 2020.: LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway. Aging (Albany NY). 2020;12(5):4506-4526. doi:10.18632/aging.102904 17. Wang, J., et al. (2019a).: Exosomemediated delivery of induciblemir-423-5p enhances resistance of mrc-5 cells to rabies virus infection. Int. J. Mol. Sci. 20, 1–15. doi: 10.3390/ijms20071537 18. Fu G, Brkić J, Hayder H, et al. MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci 2013;14:5519–44. doi:10.3390/ijms14035519 19. O’Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:1–12. doi:10.3389/fendo.2018.00402 20. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Publ Gr 2014;15:509–24. doi:10.1038/nrm3838 21. Weber JA, Baxter DH, Zhang S, et al. The MicroRNA Spectrum in 12 Body Fluids. Clin Chem 2010;56:1733–41. doi:10.1373/clinchem.2010.147405 22. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18:997–1006. doi:10.1038/cr.2008.282 23. Mezache L, Mikhail M, Garofalo M, et al. Reduced miR-512 and the elevated expression of its targets cFLIP and MCL1 localize to neurons with hyperphosphorylated tau protein in Alzheimer disease. Appl Immunohistochem Mol Morphol 2015;23:615–23. doi:10.1097/PAI.0000000000000147 24. Goh SY, Chao YX, Dheen ST, et al.Role of MicroRNAs in Parkinson ’ s Disease. ;:1–23. 25. Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review. Prog Neurobiol 2017;156:1–68. doi:10.1016/j.pneurobio.2017.03.004 26. Cressatti M, Juwara L, Galindez JM, et al. Salivary microR-153 and microR-223 Levels as Potential Diagnostic Biomarkers of Idiopathic Parkinson’s Disease. Mov Disord 2020;35:468–77. doi:10.1002/mds.27935 27. Caldi Gomes L, Roser AE, Jain G, et al. MicroRNAs from extracellular vesicles as a signature for Parkinson’s disease. Clin Transl Med 2021;11. doi:10.1002/CTM2.357 28. Banzhaf‐Strathmann J, Benito E, May S, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 2014;33:1667–80. doi:10.15252/EMBJ.201387576 29. Hong H, Li Y, Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. J Alzheimer’s Dis 2017;59:1449–58. doi:10.3233/JAD-170156 30. Vergallo A, Lista S, Zhao Y, et al.MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints. Transl Psychiatry 2021;11. doi:10.1038/s41398-020-01184-8 31. Tan YJ, Wong BYX, Vaidyanathan R, et al. Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer’s Disease and Frontotemporal Dementia. J Alzheimer’s Dis reports 2021;5:805–13. doi:10.3233/ADR-21031 32. Zhang Y, Zhao Y, Tian C, et al. Differential exosomal microRNA profile in the serum of a patient with depression. Eur J Psychiatry 2018;32:105–12. doi:10.1016/J.EJPSY.2017.10.002 33. Noronha O, Mesarosovo L, Anink JJ, et al. Differentially Expressed miRNAs in Age-Related Neurodegenerative Diseases: A Meta-Analysis. Genes (Basel) 2022;13:1034. doi:10.3390/genes13061034 34. Khoo SK, Petillo D, Kang UJ, et al.Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis2012;2:321–31. doi:10.3233/JPD-012144 35. Tolosa E, Botta-Orfila T, Morató X, et al. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging 2018;69:283–91. doi:10.1016/J.NEUROBIOLAGING.2018.05.032 36. Zeng Q, Zou L, Qian L, et al. Expression of microRNA‑222 in serum of patients with Alzheimer’s disease. Mol Med Rep 2017;16:5575–9. doi:10.3892/MMR.2017.7301 37. Foggin S, Mesquita-Ribeiro R, Dajas-Bailador F, et al. Biological Significance of microRNA Biomarkers in ALS-Innocent Bystanders or Disease Culprits? Front Neurol 2019;10. doi:10.3389/FNEUR.2019.00578 38. Saavedra N, Rojas G, Herrera J, Rebolledo C, Ruedlinger J, Bustos L, Bobadilla B, Pérez L, Saavedra K, Zambrano T, Lanas F, Salazar LA. Circulating miRNA-23b and miRNA-143 Are Potential Biomarkers for In-Stent Restenosis. Biomed Res Int. 2020 Sep 16;2020:2509039. doi: 10.1155/2020/2509039. PMID: 33015157; PMCID: PMC7519453. 39. Ganjali S, Aghaee-Bakhtiari SH, Reiner Ž, Sahebkar A. Differential Expression of miRNA-223 in Coronary In-Stent Restenosis. J Clin Med. 2022 Feb 6;11(3):849. doi: 10.3390/jcm11030849. PMID: 35160300; PMCID: PMC8836934. 40. Wang M, Zhang W, Zhang L, Wang L, Li J, Shu C, Li X. Roles of MicroRNAs in Peripheral Artery In-Stent Restenosis after Endovascular Treatment. Biomed Res Int. 2021 Jul 27;2021:9935671. doi: 10.1155/2021/9935671. PMID: 34368362; PMCID: PMC8337102. 41. Gao XF, Wang ZM, Chen AQ, Wang F, Luo S, Gu Y, Kong XQ, Zuo GF, Jiang XM, Ding GW, Chen Y, Ge Z, Zhang JJ, Chen SL. Plasma Small Extracellular Vesicle-Carried miRNA-501-5p Promotes Vascular Smooth Muscle Cell Phenotypic Modulation-Mediated In-Stent Restenosis. Oxid Med Cell Longev. 2021 Apr 21;2021:6644970. doi: 10.1155/2021/6644970. PMID: 33968296; PMCID: PMC8084657. 42. Feng S, Gao L, Zhang D, Tian X, Kong L, Shi H, Wu L, Huang Z, Du B, Liang C, Zhang Y, Yao R. MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci. 2019 Sep 7;15(12):2615-2626. doi: 10.7150/ijbs.36995. PMID: 31754334; PMCID: PMC6854371. |