Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Vliv porozity na slapovou defomaci planet a měsíců
Název práce v češtině: Vliv porozity na slapovou defomaci planet a měsíců
Název v anglickém jazyce: Influence of Porosity on Tidal Deformation in Planetary Bodies
Klíčová slova: slapové zahřívání|porozita|poroviskoelasticita
Klíčová slova anglicky: tidal heating|porosity|poroviscoelasticity
Akademický rok vypsání: 2023/2024
Typ práce: diplomová práce
Jazyk práce:
Ústav: Katedra geofyziky (32-KG)
Vedoucí / školitel: doc. RNDr. Marie Běhounková, Ph.D.
Řešitel:
Zásady pro vypracování
Tidal deformation and its measurements provide an opportunity to probe planetary bodies. Moreover, the associated tidal dissipation can play a significant role in shaping planets' internal evolution. Consequently, it is important to comprehend the impact of planetary structure and rheological characteristics to correctly interpret the measurements and assess long-term thermal evolution. Present investigations primarily focus on the effects of advanced empirical rheological descriptions. However, the role of porosity on tidal deformation and heating is not well understood (Liao et al., 2020, Rovira-Navarro et al., 2022).

Understanding the influence of porosity on deformation can become particularly important for strongly tidally heated celestial bodies for which intense tidal dissipation can result in significant melting, forming substantial porosity (e.g., Walterová and Běhounková, 2020). Similarly, the interiors of small moons, characterized by low gravity, may be unconsolidated and porous (Roberts, 2015; Choblet et al., 2017).

This thesis aims to study poroviscoelastic medium and its effect on tidal deformation and dissipation for planetary bodies in and beyond the Solar system. In the frame of the thesis, the equations describing the tidal response of the poroviscoelastic body in the frequency domain will be derived, assuming a spherically symmetric body (Rovira-Navarro et al., 2022). The numerical implementation of the method will be benchmarked with published results (Rovira-Navarro et al., 2022).
Seznam odborné literatury
Choblet, G., Tobie, G., Sotin, C., Běhounková, M., Čadek, O., Postberg, F. and O. Souček (2017). Powering prolonged hydrothermal activity inside Enceladus, Nature Astronomy 1, 841-847, https://doi.org/10.1038/s41550-017-0289-8.
Liao, Y., Nimmo, F., & Neufeld, J. A. (2020). Heat production and tidally driven fluid flow in the permeable core of Enceladus. Journal of Geophysical Research: Planets, 125, e2019JE006209. https://doi.org/10.1029/2019JE006209
Roberts, J.H. (2015). The fluffy core of Enceladus, Icarus 258, pp. 54-66. https://doi.org/10.1016/j.icarus.2015.05.033
Rovira‐Navarro, M., Katz, R.F., Liao, Y. van der Wal, W., Nimmo, F. (2022), The tides of Enceladus' porous core, Journal of Geophysical Research: Planets, 127(5), e2021JE007117. https://doi.org/10.1029/2021JE007117
Walterova, M. and Behounkova, M. (2020), Thermal and orbital evolution of low-mass exoplanets, The Astrophysical Journal, 900(1), No. 24, https://doi.org/10.3847/1538-4357/aba8a5.


 
Univerzita Karlova | Informační systém UK