Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 363)
Detail práce
   Přihlásit přes CAS
Studium sítí typu LSTM a GRU na datech z přírodních věd
Název práce v češtině: Studium sítí typu LSTM a GRU na datech z přírodních věd
Název v anglickém jazyce: Study of LSTM and GRU networks on natural sciences data
Akademický rok vypsání: 2023/2024
Typ práce: diplomová práce
Jazyk práce:
Ústav: Katedra teoretické informatiky a matematické logiky (32-KTIML)
Vedoucí / školitel: prof. RNDr. Ing. Martin Holeňa, CSc.
Řešitel:
Zásady pro vypracování
Podobně jako varianty LSTM sítí byly i různé varianty GRU sítí zkoumány a porovnávány především v kontextu úloh a dat ze zpracování jazyka. Navržená diplomová práce by se naproti tomu měla LSTM a GRU sítěmi zabývat v kontextu úloh z přírodních věd. K tomu účelu by měly být důležité varianty LSTM a GRU sítí studovány a porovnávány na reálných datech týkajících se růstu krystalů.
Seznam odborné literatury
viz https://www.cs.cas.cz/~martin/diplomka61.html
Předběžná náplň práce
Mezi moderními umělými neuronovými sítěmi (tzv. hlubokými), které přispěly k velkému rozvoji strojového učení v posledních 15 letech, patří k nejúspěšnějším sítě typu LSTM (long short-term memory). Nejčastěji se používají při zpracování jazyka, a to jak psaného textu, tak mluvené řeči. Jde o sítě rekurentní, zpracovávané signály se tedy do některých vrstev sítě s určitým zpožděním vrací. Velkým pokrokem LSTM sítí ve srovnání se staršími typy rekurentních síti je, že dokáží zabránit vymizení gradientu v důsledku rekurentního výpočtu. Aby toho bylo dosaženo, probíhají somatické operace v rekurentních vrstvách sítě nikoliv jako sekvence atomických operací, ale paralelně v různých částech strukturovaných buněk, které v těchto vrstvách nahrazují tradiční neurony umělých neuronových sítí. Tato architektura je parametrizována poměrně velkým počtem parametrů, takže k trénování LSTM sítí je zapotřebí značné množství dat. Ke zmírnění této nevýhody byly v roce 2014 navržena sítě typu GRU (gated recurrent unit). Jejich architektura byla inspirována architekturou LSTM sítí a jejich funkcionalita je velmi podobná, mají však méně parametrů.
 
Univerzita Karlova | Informační systém UK