Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 341)
Detail práce
   Přihlásit přes CAS
Kreatin monohydrát jako součást prevence sarkopenie u geriatrických pacientů / seniorů
Název práce v češtině: Kreatin monohydrát jako součást prevence sarkopenie u geriatrických pacientů / seniorů
Název v anglickém jazyce: Creatine monohydrate as a part of sarcopenia prevention in geriatric patients
Klíčová slova: kreatin, kreatin monohydrát, sarkopenie, podvýživa, geriatrický pacient
Klíčová slova anglicky: creatine, sarcopenia, malnutrition, geriatric patient, older adult
Akademický rok vypsání: 2020/2021
Typ práce: diplomová práce
Jazyk práce: čeština
Ústav: III. interní klinika – klinika endokrinologie a metabolismu 1. LF UK a VFN (11-00530)
Vedoucí / školitel: Mgr. Ing. Tereza Vágnerová
Řešitel: skrytý - zadáno vedoucím/školitelem
Datum přihlášení: 14.10.2020
Datum zadání: 14.10.2020
Datum a čas obhajoby: 03.06.2021 08:00
Datum odevzdání elektronické podoby:29.04.2021
Datum proběhlé obhajoby: 03.06.2021
Předmět: Obhajoba diplomové práce (B02793)
Oponenti: prof. MUDr. Eva Topinková, CSc.
 
 
 
Seznam odborné literatury
1. (2020, November 2). nutritionDay worldwide. NutritionDay.https://www.nutritionday.org/en/-30-.languages/languages.html

2. Achamrah, N., Colange, G., Delay, J., Rimbert, A., Folope, V., Petit, A., Grigioni, S., Déchelotte, P., & Coëffier, M. (2018). Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PloS one, 13(7), e0200465.https://doi.org/10.1371/journal.pone.0200465

3. Alibhai, S. M., Greenwood, C., & Payette, H. (2005). An approach to the management of unintentional weight loss in elderly people. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 172(6), 773–780.https://doi.org/10.1503/cmaj.1031527

4. Andres, S., Ziegenhagen, R., Trefflich, I., Pevny, S., Schultrich, K., Braun, H., Schänzer, W., Hirsch-Ernst, K. I., Schäfer, B., & Lampen, A. (2017). Creatine and creatine forms intended for sports nutrition. Molecular nutrition & food research, 61(6),//doi.org/10.1002/mnfr.201600772

5. Anker, S. D., Morley, J. E., & von Haehling, S. (2016). Welcome to the ICD-10 code for sarcopenia. Journal of cachexia, sarcopenia and muscle, 7(5), 512–514.https://doi.org/10.1002/jcsm.12147

6. Antonio, J., & Ciccone, V. (2013). The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. Journal of the International Society of Sports Nutrition, 10, 36.https://doi.org/10.1186/1550-2783-10-36

7. Ardalan, M., Samadifar, Z., & Vahedi, A. (2012). Creatine monohydrate supplement induced interstitial nephritis. Journal of nephropathology, 1(2), 117–120.https://doi.org/10.5812/nephropathol.7530

8. Argilés, J. M., Busquets, S., Stemmler, B., & López-Soriano, F. J. (2015). Cachexia and sarcopenia: mechanisms and potential targets for intervention. Current opinion in pharmacology, 22, 100–106.https://doi.org/10.1016/j.coph.2015.04.003

9. Baker, J. S., McCormick, M. C., & Robergs, R. A. (2010). Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. Journal of nutrition and metabolism, 2010, 905612.https://doi.org/10.1155/2010/905612

10. BAPEN’s Nutrition Screening Week – 2011. (2018, February 15). BAPEN.https://www.bapen.org.uk/pdfs/nsw/care-homes/care-homes-uk.pdf

11. Bauer, J., Morley, J. E., Schols, A., Ferrucci, L., Cruz-Jentoft, A. J., Dent, E., Baracos, V. E., Crawford, J. A., Doehner, W., Heymsfield, S. B., Jatoi, A., Kalantar-Zadeh, K., Lainscak, M., Landi, F., Laviano, A., Mancuso, M., Muscaritoli, M., Prado, C. M., Strasser, F., von Haehling, S., … Anker, S. D. (2019). Sarcopenia: A Time for Action. An SCWD Position Paper. Journal of cachexia, sarcopenia and muscle, 10(5), 956–961.https://doi.org/10.1002/jcsm.12483

12. Bertschi, D., Kiss, C. M., Beerli, N., & Kressig, R. W. (2021). Sarcopenia in hospitalized geriatric patients: insights into prevalence and associated parameters using new EWGSOP2 guidelines. European journal of clinical nutrition, 75(4), 653–660.https://doi.org/10.1038/s41430-020-00780-7

13. Bischoff-Ferrari, H. A., Dawson-Hughes, B., Staehelin, H. B., Orav, J. E., Stuck, A. E., Theiler, R., Wong, J. B., Egli, A., Kiel, D. P., & Henschkowski, J. (2009). Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ (Clinical research ed.), 339, b3692.https://doi.org/10.1136/bmj.b3692

14. Branch J. D. (2003). Effect of creatine supplementation on body composition and performance: a meta-analysis. International journal of sport nutrition and exercise metabolism, 13(2), 198–226.https://doi.org/10.1123/ijsnem.13.2.198

15. Branch J. D. (2003). Effect of creatine supplementation on body composition and performance: a meta-analysis. International journal of sport nutrition and exercise metabolism, 13(2), 198–226.https://doi.org/10.1123/ijsnem.13.2.198

16. Broe, K. E., Chen, T. C., Weinberg, J., Bischoff-Ferrari, H. A., Holick, M. F., & Kiel, D. P. (2007). A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. Journal of the American Geriatrics Society, 55(2), 234–239.https://doi.org/10.1111/j.1532-5415.2007.01048.x

17. Brosnan, J. T., da Silva, R. P., & Brosnan, M. E. (2011). The metabolic burden of creatine synthesis. Amino acids, 40(5), 1325–1331.https://doi.org/10.1007/s00726-011-0853-y

18. Burke, D. G., Chilibeck, P. D., Parise, G., Candow, D. G., Mahoney, D., & Tarnopolsky, M. (2003). Effect of creatine and weight training on muscle creatine and performance in vegetarians. Medicine and science in sports and exercise, 35(11), 1946–1955.https://doi.org/10.1249/01.MSS.0000093614.17517.79

19. Cai, C., Song, X., Chen, Y., Chen, X., & Yu, C. (2020). Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Hepatology international, 14(1), 115–126.https://doi.org/10.1007/s12072-019-09964-1

20. Campbell, W. W., Trappe, T. A., Wolfe, R. R., & Evans, W. J. (2001). The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. The journals of gerontology. Series A, Biological sciences and medical sciences, 56(6), M373–M380.https://doi.org/10.1093/gerona/56.6.m373

21. Candow, D. G., Forbes, S. C., Chilibeck, P. D., Cornish, S. M., Antonio, J., & Kreider, R. B. (2019). Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. Journal of clinical medicine, 8(4), 488.https://doi.org/10.3390/jcm8040488

22. Candow, D. G., Forbes, S. C., Chilibeck, P. D., Cornish, S. M., Antonio, J., & Kreider, R. B. (2019). Variables Influencing the Effectiveness of Creatine Supplementation as a Therapeutic Intervention for Sarcopenia. Frontiers in nutrition, 6, 124.https://doi.org/10.3389/fnut.2019.00124

23. Candow, D. G., Vogt, E., Johannsmeyer, S., Forbes, S. C., & Farthing, J. P. (2015). Strategic creatine supplementation and resistance training in healthy older adults. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 40(7), 689–694.https://doi.org/10.1139/apnm-2014-0498

24. Cederholm, T., Jensen, G. L., Correia, M., Gonzalez, M. C., Fukushima, R., Higashiguchi, T., Baptista, G., Barazzoni, R., Blaauw, R., Coats, A., Crivelli, A., Evans, D. C., Gramlich, L., Fuchs-Tarlovsky, V., Keller, H., Llido, L., Malone, A., Mogensen, K. M., Morley, J. E., Muscaritoli, M., … GLIM Working Group (2019). GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. Clinical nutrition (Edinburgh, Scotland), 38(1), 1–9.https://doi.org/10.1016/j.clnu.2018.08.002

25. Coelho-Júnior, H. J., Rodrigues, B., Uchida, M., & Marzetti, E. (2018). Low Protein Intake Is Associated with Frailty in Older Adults: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 10(9), 1334. https://doi.org/10.3390/nu10091334
26. Conley, K. E., Jubrias, S. A., & Esselman, P. C. (2000). Oxidative capacity and ageing in human muscle. The Journal of physiology, 526 Pt 1(Pt 1), 203–210.https://doi.org/10.1111/j.1469-7793.2000.t01-1-00203.x

27. Cook, Z., Kirk, S., Lawrenson, S., & Sandford, S. (2005). Use of BMI in the assessment of undernutrition in older subjects: reflecting on practice. The Proceedings of the Nutrition Society, 64(3), 313–317.https://doi.org/10.1079/pns2005437

28. Coto Montes, A., Boga, J. A., Bermejo Millo, C., Rubio González, A., Potes Ochoa, Y., Vega Naredo, I., Martínez Reig, M., Romero Rizos, L., Sánchez Jurado, P. M., Solano, J. J., Abizanda, P., & Caballero, B. (2017). Potential early biomarkers of sarcopenia among independent older adults. Maturitas, 104, 117–122.https://doi.org/10.1016/j.maturitas.2017.08.009

29. Cribb, P. J., & Hayes, A. (2006). Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Medicine and science in sports and exercise, 38(11), 1918–1925.https://doi.org/10.1249/01.mss.0000233790.08788.3e

30. Cruz-Jentoft, A. J., & Sayer, A. A. (2019). Sarcopenia. Lancet (London, England), 393(10191), 2636–2646.https://doi.org/10.1016/S0140-6736(19)31138-9

31. Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J. P., Rolland, Y., Schneider, S. M., Topinková, E., Vandewoude, M., Zamboni, M., & European Working Group on Sarcopenia in Older People (2010). Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing, 39(4), 412–423.https://doi.org/10.1093/ageing/afq034

32. Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A. A., Schneider, S. M., Sieber, C. C., Topinkova, E., Vandewoude, M., Visser, M., Zamboni, M., & Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2 (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing, 48(1), 16–31.https://doi.org/10.1093/ageing/afy169

33. Cruz-Jentoft, A. J., Landi, F., Schneider, S. M., Zúñiga, C., Arai, H., Boirie, Y., Chen, L. K., Fielding, R. A., Martin, F. C., Michel, J. P., Sieber, C., Stout, J. R., Studenski, S. A., Vellas, B., Woo, J., Zamboni, M., & Cederholm, T. (2014). Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age and ageing, 43(6), 748–759.https://doi.org/10.1093/ageing/afu115

34. Cruz-Jentoft, A. J., Landi, F., Schneider, S. M., Zúñiga, C., Arai, H., Boirie, Y., Chen, L. K., Fielding, R. A., Martin, F. C., Michel, J. P., Sieber, C., Stout, J. R., Studenski, S. A., Vellas, B., Woo, J., Zamboni, M., & Cederholm, T. (2014). Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age and ageing, 43(6), 748–759.https://doi.org/10.1093/ageing/afu115

35. Dahl O. (1965). Estimating protein quality of meat products from the content of typical amino-acids and creatine. Journal of the science of food and agriculture, 16(10), 619–621.https://doi.org/10.1002/jsfa.2740161009

36. Dash, A. K., Mo, Y., & Pyne, A. (2002). Solid-state properties of creatine monohydrate. Journal of pharmaceutical sciences, 91(3), 708–718.https://doi.org/10.1002/jps.10073

37. Dent, E., Morley, J. E., Cruz-Jentoft, A. J., Arai, H., Kritchevsky, S. B., Guralnik, J., Bauer, J. M., Pahor, M., Clark, B. C., Cesari, M., Ruiz, J., Sieber, C. C., Aubertin-Leheudre, M., Waters, D. L., Visvanathan, R., Landi, F., Villareal, D. T., Fielding, R., Won, C. W., Theou, O., … Vellas, B. (2018). International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. The journal of nutrition, health & aging, 22(10), 1148–1161.https://doi.org/10.1007/s12603-018-1139-9

38. Dent, E., Morley, J. E., Cruz-Jentoft, A. J., Arai, H., Kritchevsky, S. B., Guralnik, J., Bauer, J. M., Pahor, M., Clark, B. C., Cesari, M., Ruiz, J., Sieber, C. C., Aubertin-Leheudre, M., Waters, D. L., Visvanathan, R., Landi, F., Villareal, D. T., Fielding, R., Won, C. W., Theou, O., … Vellas, B. (2018). International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. The journal of nutrition, health & aging, 22(10), 1148–1161.https://doi.org/10.1007/s12603-018-1139-9

39. Deutz, N. E., Bauer, J. M., Barazzoni, R., Biolo, G., Boirie, Y., Bosy-Westphal, A., Cederholm, T., Cruz-Jentoft, A., Krznariç, Z., Nair, K. S., Singer, P., Teta, D., Tipton, K., & Calder, P. C. (2014). Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clinical nutrition (Edinburgh, Scotland), 33(6), 929–936.https://doi.org/10.1016/j.clnu.2014.04.007

40. Devries, M. C., & Phillips, S. M. (2014). Creatine supplementation during resistance training in older adults-a meta-analysis. Medicine and science in sports and exercise, 46(6), 1194–1203.https://doi.org/10.1249/MSS.0000000000000220

41. Dorner, B., & Friedrich, E. K. (2018). Position of the Academy of Nutrition and Dietetics: Individualized Nutrition Approaches for Older Adults: Long-Term Care, Post-Acute Care, and Other Settings. Journal of the Academy of Nutrition and Dietetics, 118(4), 724–735. https://doi.org/10.1016/j.jand.2018.01.022
42. Dupont, J., Dedeyne, L., Dalle, S., Koppo, K., & Gielen, E. (2019). The role of omega-3 in the prevention and treatment of sarcopenia. Aging clinical and experimental research, 31(6), 825–836.https://doi.org/10.1007/s40520-019-01146-1

43. Fernández-Landa, J., Fernández-Lázaro, D., Calleja-González, J., Caballero-García, A., Córdova Martínez, A., León-Guereño, P., & Mielgo-Ayuso, J. (2020). Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. Nutrients, 12(1), 193.https://doi.org/10.3390/nu12010193

44. Fielding, R. A., Vellas, B., Evans, W. J., Bhasin, S., Morley, J. E., Newman, A. B., Abellan van Kan, G., Andrieu, S., Bauer, J., Breuille, D., Cederholm, T., Chandler, J., De Meynard, C., Donini, L., Harris, T., Kannt, A., Keime Guibert, F., Onder, G., Papanicolaou, D., Rolland, Y., … Zamboni, M. (2011). Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. Journal of the American Medical Directors Association, 12(4), 249–256.https://doi.org/10.1016/j.jamda.2011.01.003

45. Forbes, S. C., Candow, D. G., Krentz, J. R., Roberts, M. D., & Young, K. C. (2019). Changes in Fat Mass Following Creatine Supplementation and Resistance Training in Adults ≥50 Years of Age: A Meta-Analysis. Journal of functional morphology and kinesiology, 4(3), 62.https://doi.org/10.3390/jfmk4030062

46. Forbes, S., & Candow, D. (2018). Timing of creatine supplementation and resistence training: A brief review. Journal of Excercise and Nutrition, 1(5)

47. Forsberg, A. M., Nilsson, E., Werneman, J., Bergström, J., & Hultman, E. (1991). Muscle composition in relation to age and sex. Clinical science (London, England : 1979), 81(2), 249–256. https://doi.org/10.1042/cs0810249
48. Gabr, R. E., El-Sharkawy, A. M., Schär, M., Weiss, R. G., & Bottomley, P. A. (2011). High-energy phosphate transfer in human muscle: diffusion of phosphocreatine. American journal of physiology. Cell physiology, 301(1), C234–C241.https://doi.org/10.1152/ajpcell.00500.2010

49. Gielen, E., Beckwée, D., Delaere, A., De Breucker, S., Vandewoude, M., Bautmans, I., & Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG) (2021). Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Nutrition reviews, 79(2), 121–147.https://doi.org/10.1093/nutrit/nuaa011

50. Gotshalk, L. A., Kraemer, W. J., Mendonca, M. A., Vingren, J. L., Kenny, A. M., Spiering, B. A., Hatfield, D. L., Fragala, M. S., & Volek, J. S. (2008). Creatine supplementation improves muscular performance in older women. European journal of applied physiology, 102(2), 223–231.https://doi.org/10.1007/s00421-007-0580-y

51. Gualano, B., DE Salles Painneli, V., Roschel, H., Artioli, G. G., Neves, M., Jr, De Sá Pinto, A. L., Da Silva, M. E., Cunha, M. R., Otaduy, M. C., Leite, C., Ferreira, J. C., Pereira, R. M., Brum, P. C., Bonfá, E., & Lancha, A. H., Jr (2011). Creatine in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Medicine and science in sports and exercise, 43(5), 770–778.https://doi.org/10.1249/MSS.0b013e3181fcee7d

52. Gualano, B., Ferreira, D. C., Sapienza, M. T., Seguro, A. C., & Lancha, A. H., Jr (2010). Effect of short-term high-dose creatine supplementation on measured GFR in a young man with a single kidney. American journal of kidney diseases : the official journal of the National Kidney Foundation, 55(3), e7–e9. https://doi.org/10.1053/j.ajkd.2009.10.053
53. Gualano, B., Rawson, E. S., Candow, D. G., & Chilibeck, P. D. (2016). Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino acids, 48(8), 1793–1805.https://doi.org/10.1007/s00726-016-2239-7

54. Guingand, D. L., Palmer, K. R., Snow, R. J., Davies-Tuck, M. L., & Ellery, S. J. (2020). Risk of Adverse Outcomes in Females Taking Oral Creatine Monohydrate: A Systematic Review and Meta-Analysis. Nutrients, 12(6), 1780.https://doi.org/10.3390/nu12061780

55. Guzun, R., Timohhina, N., Tepp, K., Gonzalez-Granillo, M., Shevchuk, I., Chekulayev, V., Kuznetsov, A. V., Kaambre, T., & Saks, V. A. (2011). Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino acids, 40(5), 1333–1348.https://doi.org/10.1007/s00726-011-0854-x

56. Halter, J., Ouslander, J., Studenski, S., High, K., Asthana, S., Supiano, M., & Ritchie, C. (2016). Hazzard’s Geriatric Medicine and Gerontology, Seventh Edition (7th ed.). McGraw-Hill Education / Medical.

57. Hansen R. D. (2005). Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS Study. The American journal of clinical nutrition, 81(5), 1180–1181.https://doi.org/10.1093/ajcn/81.5.1180

58. Harris, R. C., Lowe, J. A., Warnes, K., & Orme, C. E. (1997). The concentration of creatine in meat, offal and commercial dog food. Research in veterinary science, 62(1), 58–62.https://doi.org/10.1016/s0034-5288(97)90181-8

59. Hickson, M., & Smith, S. (2018). Advanced Nutrition and Dietetics in Nutrition Support. Wiley.
60. Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G., & Greenhaff, P. L. (1996). Muscle creatine loading in men. Journal of applied physiology (Bethesda, Md. : 1985), 81(1), 232–237.https://doi.org/10.1152/jappl.1996.81.1.232

61. HUSOVÁ, Kristýna. Význam nutriční péče v zařízeních pro seniory. [Sense of nutrition care in istitutions for seniors]. Praha, 2016. 79 s., 11 příl. Bakalářská práce (Bc.). Univerzita Karlova v Praze, 1. lékařská fakulta. Vedoucí práce Novák, František.

62. Chilibeck, P. D., Kaviani, M., Candow, D. G., & Zello, G. A. (2017). Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open access journal of sports medicine, 8, 213–226.https://doi.org/10.2147/OAJSM.S123529

63. Chilibeck, P. D., Paterson, D. H., McCreary, C. R., Marsh, G. D., Cunningham, D. A., & Thompson, R. T. (1998). The effects of age on kinetics of oxygen uptake and phosphocreatine in humans during exercise. Experimental physiology, 83(1), 107–117.https://doi.org/10.1113/expphysiol.1998.sp004087

64. Jäger, R., Harris, R. C., Purpura, M., & Francaux, M. (2007). Comparison of new forms of creatine in raising plasma creatine levels. Journal of the International Society of Sports Nutrition, 4, 17.https://doi.org/10.1186/1550-2783-4-17

65. Jäger, R., Purpura, M., Shao, A., Inoue, T., & Kreider, R. B. (2011). Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino acids, 40(5), 1369–1383.https://doi.org/10.1007/s00726-011-0874-6

66. Jagim, A. R., Oliver, J. M., Sanchez, A., Galvan, E., Fluckey, J., Riechman, S., Greenwood, M., Kelly, K., Meininger, C., Rasmussen, C., & Kreider, R. B. (2012). A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. Journal of the International Society of Sports Nutrition, 9(1), 43.https://doi.org/10.1186/1550-2783-9-43

67. Jang, B. Y., & Bu, S. Y. (2018). Total energy intake according to the level of skeletal muscle mass in Korean adults aged 30 years and older: an analysis of the Korean National Health and Nutrition Examination Surveys (KNHANES) 2008-2011. Nutrition research and practice, 12(3), 222–232.https://doi.org/10.4162/nrp.2018.12.3.222

68. Janssen, I., Heymsfield, S. B., & Ross, R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society, 50(5), 889–896.https://doi.org/10.1046/j.1532-5415.2002.50216.x

69. Jarošová, D., Gabzdylová, M., Kozáková, R. (2011). Standardizace nutriční péče v domově pro seniory. Praktický lékař, 91(12), 714-717.

70. Joseph, C., Kenny, A. M., Taxel, P., Lorenzo, J. A., Duque, G., & Kuchel, G. A. (2005). Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fracture risk. Molecular aspects of medicine, 26(3), 181–201.https://doi.org/10.1016/j.mam.2005.01.004

71. Kerstetter, J. E., O'Brien, K. O., & Insogna, K. L. (2003). Low protein intake: the impact on calcium and bone homeostasis in humans. The Journal of nutrition, 133(3), 855S–861S.https://doi.org/10.1093/jn/133.3.855S

72. Kim, H. N., & Song, S. W. (2019). Association between carbohydrate intake and body composition: The Korean National Health and Nutrition Examination Survey. Nutrition (Burbank, Los Angeles County, Calif.), 61, 187–193. https://doi.org/10.1016/j.nut.2018.11.011
73. Kim, J. S., Wilson, J. M., & Lee, S. R. (2010). Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. The Journal of nutritional biochemistry, 21(1), 1–13.https://doi.org/10.1016/j.jnutbio.2009.06.014

74. Kim, J., Wang, Z., Heymsfield, S. B., Baumgartner, R. N., & Gallagher, D. (2002). Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. The American journal of clinical nutrition, 76(2), 378–383.https://doi.org/10.1093/ajcn/76.2.378

75. Kirwan, R., McCullough, D., Butler, T., Perez de Heredia, F., Davies, I. G., & Stewart, C. (2020). Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience, 42(6), 1547–1578.https://doi.org/10.1007/s11357-020-00272-3

76. KONOPICKÁ, Olga. Organizace nutriční péče v domovech pro seniory. [Organization of nutrition care in homes for the elderly]. Praha, 2019. 92 s., 7 příl. Diplomová práce (Mgr.). Univerzita Karlova v Praze, 1. lékařská fakulta, IV. Interní klinika – gastroenterologie a hepatologie 1. LF UK v Praze. Vedoucí práce doc. MUDr. František Novák, Ph.D.

77. Koolman, J., & Rohm, K (2012). Barevný atlas biochemie. 1. vydání. Praha: Grada

78. Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., & Lopez, H. L. (2017). International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14, 18.https://doi.org/10.1186/s12970-017-0173-z

79. Liao, C. D., Chen, H. C., Huang, S. W., & Liou, T. H. (2019). The Role of Muscle Mass Gain Following Protein Supplementation Plus Exercise Therapy in Older Adults with Sarcopenia and Frailty Risks: A Systematic Review and Meta-Regression Analysis of Randomized Trials. Nutrients, 11(8), 1713.https://doi.org/10.3390/nu11081713

80. Liu, P., Hao, Q., Hai, S., Wang, H., Cao, L., & Dong, B. (2017). Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: A systematic review and meta-analysis. Maturitas, 103, 16–22.https://doi.org/10.1016/j.maturitas.2017.04.007

81. Louis, M., Poortmans, J. R., Francaux, M., Berré, J., Boisseau, N., Brassine, E., Cuthbertson, D. J., Smith, K., Babraj, J. A., Waddell, T., & Rennie, M. J. (2003). No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. American journal of physiology. Endocrinology and metabolism, 285(5), E1089–E1094.https://doi.org/10.1152/ajpendo.00195.2003

82. Malmstrom, T. K., Miller, D. K., Simonsick, E. M., Ferrucci, L., & Morley, J. E. (2016). SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. Journal of cachexia, sarcopenia and muscle, 7(1), 28–36.https://doi.org/10.1002/jcsm.12048

83. McCully, K. K., Forciea, M. A., Hack, L. M., Donlon, E., Wheatley, R. W., Oatis, C. A., Goldberg, T., & Chance, B. (1991). Muscle metabolism in older subjects using 31P magnetic resonance spectroscopy. Canadian journal of physiology and pharmacology, 69(5), 576–580.https://doi.org/10.1139/y91-084

84. Moisey, L. L., Mourtzakis, M., Cotton, B. A., Premji, T., Heyland, D. K., Wade, C. E., Bulger, E., Kozar, R. A., & Nutrition and Rehabilitation Investigators Consortium (NUTRIC) (2013). Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Critical care (London, England), 17(5), R206.https://doi.org/10.1186/cc12901

85. Moore, D. R., Churchward-Venne, T. A., Witard, O., Breen, L., Burd, N. A., Tipton, K. D., & Phillips, S. M. (2015). Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. The journals of gerontology. Series A, Biological sciences and medical sciences, 70(1), 57–62.https://doi.org/10.1093/gerona/glu103

86. Mora, L., Sentandreu, M. A., & Toldrá, F. (2008). Effect of cooking conditions on creatinine formation in cooked ham. Journal of agricultural and food chemistry, 56(23), 11279–11284.https://doi.org/10.1021/jf801953t

87. Morley, J. E., Kalantar-Zadeh, K., & Anker, S. D. (2020). COVID-19: a major cause of cachexia and sarcopenia?. Journal of cachexia, sarcopenia and muscle, 11(4), 863–865.https://doi.org/10.1002/jcsm.12589

88. Morton, R. W., Traylor, D. A., Weijs, P., & Phillips, S. M. (2018). Defining anabolic resistance: implications for delivery of clinical care nutrition. Current opinion in critical care, 24(2), 124–130.https://doi.org/10.1097/MCC.0000000000000488

89. Naderi, A., de Oliveira, E. P., Ziegenfuss, T. N., & Willems, M. T. (2016). Timing, Optimal Dose and Intake Duration of Dietary Supplements with Evidence-Based Use in Sports Nutrition. Journal of exercise nutrition & biochemistry, 20(4), 1–12.https://doi.org/10.20463/jenb.2016.0031

90. Ostojic S. M. (2021). Diagnostic and Pharmacological Potency of Creatine in Post-Viral Fatigue Syndrome. Nutrients, 13(2), 503.https://doi.org/10.3390/nu13020503

91. Packer, A.; Whidden, M.; Stevens, W.; Klepfer, A.; and Reed, M. (2016) "The Effects of Creatine Monohydrate and Creatine Hydrochloride Supplementation on Power in Trained Individuals," International Journal of Exercise Science: Conference Proceedings: Vol. 9 : Iss. 4 , Article 82. Dostupné z:https://digitalcommons.wku.edu/ijesab/vol9/iss4/82
92. Patel, K. (2021, February 4). Creatine. Examine.Com.https://examine.com/supplements/creatine/research/#sources-and-structure_sources

93. Peng, T. C., Chen, W. L., Wu, L. W., Chang, Y. W., & Kao, T. W. (2020). Sarcopenia and cognitive impairment: A systematic review and meta-analysis. Clinical nutrition (Edinburgh, Scotland), 39(9), 2695–2701.https://doi.org/10.1016/j.clnu.2019.12.014

94. Peterson, S. J., & Braunschweig, C. A. (2016). Prevalence of Sarcopenia and Associated Outcomes in the Clinical Setting. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition, 31(1), 40–48.https://doi.org/10.1177/0884533615622537

95. Rasmussen, B. B., Fujita, S., Wolfe, R. R., Mittendorfer, B., Roy, M., Rowe, V. L., & Volpi, E. (2006). Insulin resistance of muscle protein metabolism in aging. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(6), 768–769.https://doi.org/10.1096/fj.05-4607fje

96. Roberts S. B. (2000). Regulation of energy intake in relation to metabolic state and nutritional status. European journal of clinical nutrition, 54 Suppl 3, S64–S69.https://doi.org/10.1038/sj.ejcn.1601027

97. Rolland, Y., Czerwinski, S., Abellan Van Kan, G., Morley, J. E., Cesari, M., Onder, G., Woo, J., Baumgartner, R., Pillard, F., Boirie, Y., Chumlea, W. M., & Vellas, B. (2008). Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. The journal of nutrition, health & aging, 12(7), 433–450.https://doi.org/10.1007/BF02982704

98. Saremi, A., Gharakhanloo, R., Sharghi, S., Gharaati, M. R., Larijani, B., & Omidfar, K. (2010). Effects of oral creatine and resistance training on serum myostatin and GASP-1. Molecular and cellular endocrinology, 317(1-2), 25–30.https://doi.org/10.1016/j.mce.2009.12.019

99. Selsby, J. T., DiSilvestro, R. A., & Devor, S. T. (2004). Mg2+-creatine chelate and a low-dose creatine supplementation regimen improve exercise performance. Journal of strength and conditioning research, 18(2), 311–315.https://doi.org/10.1519/R-13072.1

100. Short Physical Performance Battery (SPPB). (2021). National Institute on Aging.https://www.nia.nih.gov/research/labs/leps/short-physical-performance-battery-sppb

101. Siparsky, P. N., Kirkendall, D. T., & Garrett, W. E., Jr (2014). Muscle changes in aging: understanding sarcopenia. Sports health, 6(1), 36–40.https://doi.org/10.1177/1941738113502296

102. Solis, M. Y., Artioli, G. G., Otaduy, M., Leite, C., Arruda, W., Veiga, R. R., & Gualano, B. (2017). Effect of age, diet, and tissue type on PCr response to creatine supplementation. Journal of applied physiology (Bethesda, Md. : 1985), 123(2), 407–414.https://doi.org/10.1152/japplphysiol.00248.2017

103. Sousa, A. S., Guerra, R. S., Fonseca, I., Pichel, F., Ferreira, S., & Amaral, T. F. (2016). Financial impact of sarcopenia on hospitalization costs. European journal of clinical nutrition, 70(9), 1046–1051.https://doi.org/10.1038/ejcn.2016.73

104. Steffl, M., Sima, J., Shiells, K., & Holmerova, I. (2017). The increase in health care costs associated with muscle weakness in older people without long-term illnesses in the Czech Republic: results from the Survey of Health, Ageing and Retirement in Europe (SHARE). Clinical interventions in aging, 12, 2003–2007.https://doi.org/10.2147/CIA.S150826

105. Szlejf, Claudia & Rosas-Carrasco, Oscar. (2018). Nutrition Interventions to Manage Sarcopenia: An Appraisal of the Existing Evidence.

106. Tanaka, T., Kawahara, T., Aono, H., Yamada, S., Ishizuka, S., Takahashi, K., and Iijima, K. (2021) A comparison of sarcopenia prevalence between former Tokyo 1964 Olympic athletes and general community‐dwelling older adults, Journal of Cachexia, Sarcopenia and Muscle, XXX,
https://doi.org/10.1002/jcsm.12663

107. Taner, B., Aysim, O., & Abdulkadir, U. (2011). The effects of the recommended dose of creatine monohydrate on kidney function. NDT plus, 4(1), 23–24.https://doi.org/10.1093/ndtplus/sfq177

108. Traylor, D. A., Gorissen, S., & Phillips, S. M. (2018). Perspective: Protein Requirements and Optimal Intakes in Aging: Are We Ready to Recommend More Than the Recommended Daily Allowance?. Advances in nutrition (Bethesda, Md.), 9(3), 171–182.https://doi.org/10.1093/advances/nmy003

109. Uchitomi, R., Oyabu, M., & Kamei, Y. (2020). Vitamin D and Sarcopenia: Potential of Vitamin D Supplementation in Sarcopenia Prevention and Treatment. Nutrients, 12(10), 3189.https://doi.org/10.3390/nu12103189

110. Vágnerová T., & Klímová E. (2019). Standard nutriční péče v geriatrii. Česká asociace nutričních terapeutů.

111. Vágnerová, T. (2020). Výživa v geriatrii a gerontologii. Karolinum.

112. Vágnerová, T., & Šaier M. (2021). Sarkopenická obezita: od vzniku k intervenci. Geriatrie a Gerontologie, 10(1)

113. Valentini, L., Schindler, K., Schlaffer, R., Bucher, H., Mouhieddine, M., Steininger, K., Tripamer, J., Handschuh, M., Schuh, C., Volkert, D., Lochs, H., Sieber, C. C., & Hiesmayr, M. (2009). The first nutritionDay in nursing homes: participation may improve malnutrition awareness. Clinical nutrition (Edinburgh, Scotland), 28(2), 109–116.https://doi.org/10.1016/j.clnu.2009.01.021

114. van Nie-Visser, N. C., Meijers, J. M., Schols, J. M., Lohrmann, C., Bartholomeyczik, S., & Halfens, R. J. (2011). Comparing quality of nutritional care in Dutch and German nursing homes. Journal of clinical nursing, 20(17-18), 2501–2508.https://doi.org/10.1111/j.1365-2702.2011.03761.x

115. van Nie-Visser, N. C., Meijers, J. M., Schols, J. M., Lohrmann, C., Bartholomeyczik, S., & Halfens, R. J. (2011). Comparing quality of nutritional care in Dutch and German nursing homes. Journal of clinical nursing, 20(17-18), 2501–2508.https://doi.org/10.1111/j.1365-2702.2011.03761.x

116. Volkert, D., Beck, A. M., Cederholm, T., Cereda, E., Cruz-Jentoft, A., Goisser, S., de Groot, L., Großhauser, F., Kiesswetter, E., Norman, K., Pourhassan, M., Reinders, I., Roberts, H. C., Rolland, Y., Schneider, S. M., Sieber, C. C., Thiem, U., Visser, M., Wijnhoven, H., & Wirth, R. (2019). Management of Malnutrition in Older Patients-Current Approaches, Evidence and Open Questions. Journal of clinical medicine, 8(7), 974.https://doi.org/10.3390/jcm8070974

117. Volkert, D., Beck, A. M., Cederholm, T., Cruz-Jentoft, A., Goisser, S., Hooper, L., Kiesswetter, E., Maggio, M., Raynaud-Simon, A., Sieber, C. C., Sobotka, L., van Asselt, D., Wirth, R., & Bischoff, S. C. (2019). ESPEN guideline on clinical nutrition and hydration in geriatrics. Clinical nutrition (Edinburgh, Scotland), 38(1), 10–47.https://doi.org/10.1016/j.clnu.2018.05.024

118. Wallimann, T., Tokarska-Schlattner, M., & Schlattner, U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino acids, 40(5), 1271–1296.https://doi.org/10.1007/s00726-011-0877-3

119. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. The Biochemical journal, 281 ( Pt 1)(Pt 1), 21–40.https://doi.org/10.1042/bj2810021

120. Wang, P. Y., Li, Y., & Wang, Q. (2021). Sarcopenia: An underlying treatment target during the COVID-19 pandemic. Nutrition (Burbank, Los Angeles County, Calif.), 84, 111104.https://doi.org/10.1016/j.nut.2020.111104

121. Weijs, P. J., Looijaard, W. G., Dekker, I. M., Stapel, S. N., Girbes, A. R., Oudemans-van Straaten, H. M., & Beishuizen, A. (2014). Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Critical care (London, England), 18(2), R12.https://doi.org/10.1186/cc13189

122. Wiedmer, P., Jung, T., Castro, J. P., Pomatto, L., Sun, P. Y., Davies, K., & Grune, T. (2021). Sarcopenia - Molecular mechanisms and open questions. Ageing research reviews, 65, 101200.https://doi.org/10.1016/j.arr.2020.101200

123. Willoughby, D. S., & Rosene, J. (2001). Effects of oral creatine and resistance training on myosin heavy chain expression. Medicine and science in sports and exercise, 33(10), 1674–1681.https://doi.org/10.1097/00005768-200110000-00010

124. Works and contributions – Sarcopenia Guidelines –. (2021, February 14). BSGG.https://geriatrie.be/the-bsgg/initiatives/works-and-contributions/sarcopenia-guidelines/

125. Wyss, M., Braissant, O., Pischel, I., Salomons, G. S., Schulze, A., Stockler, S., & Wallimann, T. (2007). Creatine and creatine kinase in health and disease--a bright future ahead?. Sub-cellular biochemistry, 46, 309–334. https://doi.org/10.1007/978-1-4020-6486-9_16
Předběžná náplň práce
Tato diplomová práce se zabývá problematikou prevence sarkopenie se zvláštním důrazem na využití kreatinu. V práci je podrobně rozebrána sarkopenie jako nemoc, její charakterizace, etiologie, rizikové faktory, prevalence a důsledky. Podrobně jsou rozebrány konrkétní mechanismy, kterými kreatin může zasahovat do vzniku sarkopenie. Dále jsou rozebrány jednotlivé formy doplňků stravy s obsahem kreatinu a konkrétní nutriční intervence v prevenci a léčbě sarkopenie.
Předběžná náplň práce v anglickém jazyce
This diploma thesis deals with the prevention of sarcopenia with special emphasis on the use of creatine. The work deals in detail with sarcopenia as a disease, its characterization, etiology, risk factors, prevalence and consequences. The specific mechanisms by which creatine may interfere with the development of sarcopenia are discussed in detail. Furthermore, individual forms of dietary supplements containing creatine and specific nutritional interventions in the prevention and treatment of sarcopenia are discussed.
 
Univerzita Karlova | Informační systém UK