Kombinatorické vlastnosti komplexních sítí
Název práce v češtině: | Kombinatorické vlastnosti komplexních sítí |
---|---|
Název v anglickém jazyce: | Combinatorial properties of complex networks |
Klíčová slova: | komplexní síť, kombinatorické vlastnosti |
Klíčová slova anglicky: | complex network, combinatorial properties |
Akademický rok vypsání: | 2019/2020 |
Typ práce: | disertační práce |
Jazyk práce: | čeština |
Ústav: | Informatický ústav Univerzity Karlovy (32-IUUK) |
Vedoucí / školitel: | doc. Ing. et Ing. David Hartman, Ph.D. et Ph.D. |
Řešitel: | skrytý - zadáno a potvrzeno stud. odd. |
Datum přihlášení: | 08.09.2020 |
Datum zadání: | 08.09.2020 |
Datum potvrzení stud. oddělením: | 30.09.2020 |
Zásady pro vypracování |
The complex network approach belongs to state-of-the-art methods to characterize and analyze potentially dynamical complex systems composed of many interacting subsystems. Tools used for these characterizations include a structural description of networks, random network theory, dynamical processes of networks or graph limits. The majority of research topics in this area are governed by the real-world system research tasks. The success of these approaches, however, is fundamentally dependent on a well understanding of corresponding theoretical properties of the underlying combinatorial structure. These properties are often less explored. The student should perform research in commonly used properties of complex networks, e.g. graph centralities, and explore their properties, such as extremal values, deviation from symmetry or limiting behavior. |
Seznam odborné literatury |
Newmann, M.E.J. Networks: an introduction. Oxford University Press, 2018.
Easley, D., Kleinberg. J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010. Barabasi, A.-L. Network Science. Cambridge University Press, 2016. Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 2003. Albert, R.; Barabasi, A.-L. Statistical mechanics of complex networks. Rev. Modern Phys. 74(1):47-97, 2002. |