Thermodynamic modeling of rolling fluid turbine
Název práce v češtině: | Termodynamické modelování Sedláčkovy turbíny |
---|---|
Název v anglickém jazyce: | Thermodynamic modeling of rolling fluid turbine |
Klíčová slova: | Nerovnovážná termodynamika, Sedláčkova turbína, stabilita, vířivost, simulace |
Klíčová slova anglicky: | Non-equilibrium thermodynamics, Rolling fluid turbine, stability, vorticity, simulation |
Akademický rok vypsání: | 2018/2019 |
Typ práce: | diplomová práce |
Jazyk práce: | angličtina |
Ústav: | Matematický ústav UK (32-MUUK) |
Vedoucí / školitel: | RNDr. Michal Pavelka, Ph.D. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 12.12.2018 |
Datum zadání: | 14.02.2019 |
Datum potvrzení stud. oddělením: | 21.04.2020 |
Datum a čas obhajoby: | 09.07.2020 08:30 |
Datum odevzdání elektronické podoby: | 22.05.2020 |
Datum odevzdání tištěné podoby: | 28.05.2020 |
Datum proběhlé obhajoby: | 09.07.2020 |
Oponenti: | RNDr. Jaroslav Hron, Ph.D. |
Konzultanti: | prof. Ing. František Maršík, DrSc. |
Zásady pro vypracování |
The goal of the thesis is to develop a non-equilibrium-thermodynamic model of a rolling turbine according to these steps:
1) Balance equations of fluid mechanics and the evolution equation of vorticity adapted to the geometry of a particular turbine design [1, 2]. 2) Linear stability analysis of the vorticity equation shows creation of vortices, and circulation is generated. 3) Numerical simulation of an simplified geometrical configuration and estimation of power generation. 4) If possible, the obtained results should be compared with experimental data. |
Seznam odborné literatury |
[1] Landau L.D., Lifschitz E.M.: Fluid mechanics, Pergamon Press, Oxford, 1987
[2] Maršík, F., Tomek, R. and Vondruška, M., Performance and efficiency of rolling turbines and its application. Submitted (2017) |
Předběžná náplň práce v anglickém jazyce |
Rolling turbines are fluid motors, which are capable of utilizing very small sources with small elevation of water levels and slow horizontal flows (from 0.8 m/s). They operate on the basis of hydrodynamic stability of vortices. Solid body vortex transforms due to viscosity into a more stable potential vortex. Circulation generated in the core of the vortex is then transmitted to the rolling rotating rotor, which is axially symmetric, e.g. a sphere or truncated cone. The theoretical efficiency of such a device reaches 66% while approximately 50% efficiency is observed in practice. |