Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Sledování exprese adhezních molekul v aortě u myšího modelu nealkoholické steatohepatitidy.
Název práce v češtině: Sledování exprese adhezních molekul v aortě u myšího modelu nealkoholické steatohepatitidy.
Název v anglickém jazyce: Evaluation of cell adhesion molecules expression in mice aorta in animal model of non-alcoholic steatohepatitis.
Akademický rok vypsání: 2017/2018
Typ práce: diplomová práce
Jazyk práce: čeština
Ústav: Katedra biologických a lékařských věd (16-16150)
Vedoucí / školitel: prof. PharmDr. Petr Nachtigal, Ph.D.
Řešitel: skrytý - zadáno vedoucím/školitelem
Datum přihlášení: 28.09.2017
Datum zadání: 20.02.2019
Datum a čas obhajoby: 04.06.2019 08:00
Datum odevzdání elektronické podoby:28.04.2019
Datum proběhlé obhajoby: 04.06.2019
Oponenti: PharmDr. Eva Doleželová, Ph.D.
 
 
 
Zásady pro vypracování
Literární rešerše
Imunohistochemická analýza cév
Vyhodnocení výsledků
Seznam odborné literatury
[1] Bahirat UA, Shenoy RR, Goel RN, Nemmani KV. APD668, a G protein-coupled receptor 119 agonist improves fat tolerance and attenuates fatty liver in high-trans fat diet induced steatohepatitis model in C57BL/6 mice. European journal of pharmacology 2017; 801:35-45.
[2] Bettermann K, Mehta AK, Hofer EM et al. Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice: A model of steatohepatitis-associated liver carcinogenesis. Oncotarget 2016; 7:73309-73322.
[3] Bruckbauer A, Banerjee J, Fu L et al. A Combination of Leucine, Metformin, and Sildenafil Treats Nonalcoholic Fatty Liver Disease and Steatohepatitis in Mice. International journal of hepatology 2016; 2016:9185987.
[4] Cichocki JA, Luo YS, Furuya S et al. Modulation of Tetrachloroethylene-Associated Kidney Effects by Nonalcoholic Fatty Liver or Steatohepatitis in Male C57BL/6J Mice. Toxicological sciences : an official journal of the Society of Toxicology 2019; 167:126-137.
[5] Cortez-Pinto H, Borralho P, Machado J et al. Microbiota Modulation With Synbiotic Decreases Liver Fibrosis in a High Fat Choline Deficient Diet Mice Model of Non-Alcoholic Steatohepatitis (NASH). GE Portuguese journal of gastroenterology 2016; 23:132-141.
[6] Cui G, Martin RC, Liu X et al. Serological biomarkers associate ultrasound characteristics of steatohepatitis in mice with liver cancer. Nutrition & metabolism 2018; 15:71.
[7] Gandhi CR, Chaillet JR, Nalesnik MA et al. Liver-specific deletion of augmenter of liver regeneration accelerates development of steatohepatitis and hepatocellular carcinoma in mice. Gastroenterology 2015; 148:379-391 e374.
[8] Ganz M, Bukong TN, Csak T et al. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. Journal of translational medicine 2015; 13:193.
[9] Chen S, Kang Y, Sun Y et al. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease. Journal of molecular cell biology 2016; 8:492-504.
[10] Chen XM, Li FQ, Yan S et al. [Nicotine alleviates the liver inflammation of non-alcoholic steatohepatitis induced by high-fat and high-fructose in mice]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences 2016; 48:777-782.
[11] Chiu CC, Ching YH, Li YP et al. Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic Steatohepatitis. Nutrients 2017; 9.
[12] Ideta T, Shirakami Y, Ohnishi M et al. Non-alcoholic steatohepatitis-related liver tumorigenesis is suppressed in mice lacking hepatic retinoid storage. Oncotarget 2017; 8:70695-70706.
[13] Krishnasamy Y, Ramshesh VK, Gooz M et al. Ethanol and High Cholesterol Diet Causes Severe Steatohepatitis and Early Liver Fibrosis in Mice. PloS one 2016; 11:e0163342.
[14] Li FQ, Wu XC, Xu LN et al. [Effect of nicotinic acetylcholine receptor alpha7 subunit gene on liver inflammatory reaction in mice with nonalcoholic steatohepatitis and related mechanisms]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology 2016; 24:767-771.
[15] Li J, Sasaki GY, Dey P et al. Green tea extract protects against hepatic NFkappaB activation along the gut-liver axis in diet-induced obese mice with nonalcoholic steatohepatitis by reducing endotoxin and TLR4/MyD88 signaling. The Journal of nutritional biochemistry 2018; 53:58-65.
[16] Li TH, Yang YY, Huang CC et al. Elafibranor interrupts adipose dysfunction-mediated gut and liver injury in mice with alcoholic steatohepatitis. Clinical science 2019; 133:531-544.
[17] Li XJ, Mu YM, Qin QF et al. Chronic high-dosage fish oil exacerbates gut-liver axis injury in alcoholic steatohepatitis in mice: the roles of endotoxin and IL-4 in Kupffer cell polarization imbalance. Toxicology research 2017; 6:611-620.
[18] Liu X, Huang K, Niu Z et al. Protective effect of isochlorogenic acid B on liver fibrosis in non-alcoholic steatohepatitis of mice. Basic & clinical pharmacology & toxicology 2019; 124:144-153.
[19] Luo F, Ishigami M, Achiwa K et al. Raloxifene Ameliorates Liver Fibrosis of Nonalcoholic Steatohepatitis Induced by Choline-Deficient High-Fat Diet in Ovariectomized Mice. Digestive diseases and sciences 2015; 60:2730-2739.
[20] Miyazaki T, Shirakami Y, Kubota M et al. Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Oncotarget 2016; 7:10448-10458.
[21] Motino O, Agra N, Brea Contreras R et al. Cyclooxygenase-2 expression in hepatocytes attenuates non-alcoholic steatohepatitis and liver fibrosis in mice. Biochimica et biophysica acta 2016; 1862:1710-1723.
[22] Park HS, Jang JE, Ko MS et al. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice. Diabetes & metabolism journal 2016; 40:376-385.
[23] Preziosi ME, Singh S, Valore EV et al. Mice lacking liver-specific beta-catenin develop steatohepatitis and fibrosis after iron overload. Journal of hepatology 2017; 67:360-369.
[24] Schierwagen R, Maybuchen L, Zimmer S et al. Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Scientific reports 2015; 5:12931.
[25] Tsuneyama K, Nishida T, Baba H et al. Neonatal monosodium glutamate treatment causes obesity, diabetes, and macrovesicular steatohepatitis with liver nodules in DIAR mice. Journal of gastroenterology and hepatology 2014; 29:1736-1743.
[26] Valdecantos MP, Pardo V, Ruiz L et al. A novel glucagon-like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice. Hepatology 2017; 65:950-968.
[27] Yamamoto S, Oshima Y, Saitou T et al. Quantitative imaging of fibrotic and morphological changes in liver of non-alcoholic steatohepatitis (NASH) model mice by second harmonic generation (SHG) and auto-fluorescence (AF) imaging using two-photon excitation microscopy (TPEM). Biochemistry and biophysics reports 2016; 8:277-283.
[28] Yamanishi K, Maeda S, Kuwahara-Otani S et al. Interleukin-18-deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Translational research : the journal of laboratory and clinical medicine 2016; 173:101-114 e107.
[29] Yan D, Wei YY, Li XM et al. PFP alleviates nonalcoholic steatohepatitis fatty liver in both Apo E(-/-) mice and Changliver cell[S]. American journal of translational research 2017; 9:3073-3083.
[30] Yao HT, Lee PF, Lii CK et al. Freshwater clam extract reduces liver injury by lowering cholesterol accumulation, improving dysregulated cholesterol synthesis and alleviating inflammation in high-fat, high-cholesterol and cholic acid diet-induced steatohepatitis in mice. Food & function 2018; 9:4876-4887.
[31] Blankenberg S, Rupprecht HJ, Bickel C et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 2001; 104:1336-1342.
[32] Fang L, Wei H, Mak KH et al. Markers of low-grade inflammation and soluble cell adhesion molecules in Chinese patients with coronary artery disease. The Canadian journal of cardiology 2004; 20:1433-1438.
[33] Gornas P, Gorski A. [The role of cell adhesion molecules in the pathogenesis of coronary artery disease]. Polskie Archiwum Medycyny Wewnetrznej 1996; 96:183-187.
[34] Hulok A, Sciborski K, Marczak J et al. Soluble Cell Adhesion Molecules - Does Estimating sVCAM-1 and sICAM-1 Concentration Provide Additional Information About Cardiovascular Risk in Patients with Coronary Artery Disease? Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2014; 23:735-741.
[35] Jang Y, Lincoff AM, Plow EF, Topol EJ. Cell adhesion molecules in coronary artery disease. Journal of the American College of Cardiology 1994; 24:1591-1601.
[36] Jin Y, Feng F, Li B et al. [The protein expression of heme oxygenase-1 and platelet endothelial cell adhesion molecules-1 in human coronary artery endothelial cell induced by zinc oxide nanoparticle]. Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases 2015; 33:11-14.
[37] Kruszelnicka O, Chyrchel B, Golay A, Surdacki A. Differential associations of circulating asymmetric dimethylarginine and cell adhesion molecules with metformin use in patients with type 2 diabetes mellitus and stable coronary artery disease. Amino acids 2015; 47:1951-1959.
[38] Mashru MR, Shah VK, Soneji SL et al. Soluble levels of cell adhesion molecules (CAMs) in coronary artery disease. Indian heart journal 2010; 62:57-63.
[39] Matsuo Y, Onodera H, Shiga Y et al. Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain research 1994; 656:344-352.
[40] Paiker JE, Raal FJ, Veller M et al. Cell adhesion molecules - can they be used to predict coronary artery disease in patients with familial hypercholesterolaemia? Clinica chimica acta; international journal of clinical chemistry 2000; 293:105-113.
[41] Rehnqvist N. Cell adhesion molecules, simvastatin and hormone replacement therapy, in coronary artery disease. European heart journal 2000; 21:963-964.
[42] Sbarouni E, Kroupis C, Kyriakides ZS et al. Cell adhesion molecules in relation to simvastatin and hormone replacement therapy in coronary artery disease. European heart journal 2000; 21:975-980.
[43] Turhan H, Erbay AR, Yasar AS et al. Plasma soluble adhesion molecules; intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin levels in patients with isolated coronary artery ectasia. Coronary artery disease 2005; 16:45-50.
[44] Wada AM, Reese DE, Bader DM. Bves: prototype of a new class of cell adhesion molecules expressed during coronary artery development. Development 2001; 128:2085-2093.
[45] Yeboah J, Klein K, Brosnihan B et al. Effects of hormone therapy on soluble cell adhesion molecules in postmenopausal women with coronary artery disease. Menopause 2008; 15:1060-1064.
Předběžná náplň práce
Literární rešerše
Imunohistochemická analýza cév
Vyhodnocení výsledků
 
Univerzita Karlova | Informační systém UK