Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Biomimetické materiály na bázi grafenu pro sběr světelné energie
Název práce v češtině: Biomimetické materiály na bázi grafenu pro sběr světelné energie
Název v anglickém jazyce: Graphene-based materials for biomimetic light-harvesting
Akademický rok vypsání: 2021/2022
Typ práce: disertační práce
Jazyk práce:
Ústav: Fyzikální ústav UK (32-FUUK)
Vedoucí / školitel: doc. Mgr. Tomáš Mančal, Ph.D.
Řešitel:
Zásady pro vypracování
1) Zpracovat podrobnou rešeši literatury o vlastnostech, teoretickém popisu a experimentálních metodách zkoumání grafenu a fluorografenu
2) Osvojit si metody teoretického popisu spektroskopických metod zkoumání molekulárních systémů.
3) Osvojit si a rozvinout metody popisu transportních jevů a molekulární dynamiky molekulárních agregátů a uplatnit je na soubor defektů ve fluorografenu.
4) Na základě kvantově dynamických metod a navržených struktur provést výpočty nelineárních spekter a porovnat je s experimentem.
6) Výsledky publikovat ve kvalitních zahraničních časopisech
Seznam odborné literatury
[1] S. Mukamel, Principles of nonlinear spectroscopy, Oxford University Press, Oxford, 1995
[2] H. Haken, Synergetics, Springer Verlag, Berlin, 1983
[3] R. E. Blankenship, Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, 2002
[4] H. van Amerongen, L. Valkunas and R. van Grondelle, Photosynthetic excitons, World Scientific, Singapore, 2000
[5] Novoselov, K. S. et al. A roadmap for graphene. Nature 490 (2012) 192–200
[6] Zbořil, R. et al. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6 (2010) 2885–91
[7] Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of Teflon. Small 6 (2010) 2877–84
Předběžná náplň práce v anglickém jazyce
The remarkable efficiency of primary steps of natural photosynthesis is a great inspiration for a renewable energy oriented research. In this research project we will aim to theoretically investigate modified graphene -fluorographene (FG) - as a platform for biomimetic light-harvesting materials. It will be investigated if the design principles of natural light-harvesting, such as excitation energy (EE) funnel, energy eigenstate delocalization, absence of a long distance charge transfer and the resistance to energetic disorder can be successfully translated into a 2D sheet of FG. FG is a stable insulating material transparent for most of the sun spectrum. Graphene-like defects, fabricated into the FG sheet by removing some of the fluorine atoms, will be studied. The isles of graphene in FG act as impurities with states located within the FG energy gap. By changing the size of the isles, one can tune the position of absorption bands in the visible region. The energy funnel for directing EE can be created by coupling groups of isles to form antenna systems (AS). EE collected by the AS could be injected into the conduction band of graphene nano-ribbons to create photo-voltage, or used to drive chemical processes. In this project, the stability and electronic structure of the nano-engineered FG, the required size and shape of the isles to achieve optimal absorption wavelengths, the tuning of EE transfer properties by density and orientation of the isles, and the coupling between electronic states and the sheet phonons required to dissipate excess EE as it travels down the energy funnel, will be studied. Theoretical predictions from quantum chemistry calculations, EE dynamics based on Frenkel exciton model and molecular dynamics based bath models will stimulate fabrication efforts on FG alternations with technological implications. Lessons learned from studying EE subject to an environment simpler than the water-protein bath of natural photosynthetic antennae will shed new light onto the natural systems themselves.
 
Univerzita Karlova | Informační systém UK