Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 390)
Detail práce
   Přihlásit přes CAS
Adoptivní transfer tumor-specifických lymfocytů v imunoterapii nádorových onemocnění
Název práce v češtině: Adoptivní transfer tumor-specifických lymfocytů v imunoterapii nádorových onemocnění
Název v anglickém jazyce: Adoptive transfer of tumor-specific lymphocytes for cancer immunotherapy
Klíčová slova: adoptivní T buněčný transfer, DCVAC/PCa, karcinom prostaty, protinádorová imunoterapie
Klíčová slova anglicky: adoptive T cell transfer, DCVAC/PCa, prostate cancer, antitumor immunotherapy
Akademický rok vypsání: 2013/2014
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Ústav imunologie (13-722)
Vedoucí / školitel: prof. MUDr. Jiřina Bartůňková, DrSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 05.08.2014
Datum zadání: 05.08.2014
Datum potvrzení stud. oddělením: 05.08.2014
Datum a čas obhajoby: 04.09.2020 08:00
Datum odevzdání elektronické podoby:01.04.2020
Datum odevzdání tištěné podoby:01.04.2020
Datum proběhlé obhajoby: 04.09.2020
Oponenti: RNDr. Šárka Němečková, DrSc.
  RNDr. Milan Reiniš, CSc.
 
 
Seznam odborné literatury
1. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
2. Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, 2010. 140(6): p. 883-99.
3. Gungor, N., et al., Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis, 2010. 25(2): p. 149-54.
4. Fialkow, L., Y. Wang, and G.P. Downey, Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med, 2007. 42(2): p. 153-64.
5. Brandau, S., C.A. Dumitru, and S. Lang, Protumor and antitumor functions of neutrophil granulocytes. Semin Immunopathol, 2013. 35(2): p. 163-76.
6. Herant, M., V. Heinrich, and M. Dembo, Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci, 2006. 119(Pt 9): p. 1903-13.
7. Branzk, N., et al., Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol, 2014. 15(11): p. 1017-25.
8. Brinkmann, V. and A. Zychlinsky, Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol, 2012. 198(5): p. 773-83.
9. Urban, C.F., et al., Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol, 2006. 8(4): p. 668-76.
10. Park, J., et al., Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med, 2016. 8(361): p. 361ra138.
11. Brill, A., et al., Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost, 2012. 10(1): p. 136-44.
12. Massberg, S., et al., Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med, 2010. 16(8): p. 887-96.
13. Schmidt, H., et al., Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer, 2005. 93(3): p. 273-8.
14. Gentles, A.J., et al., The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med, 2015. 21(8): p. 938-945.
15. Caruso, R.A., et al., Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol, 2002. 15(8): p. 831-7.
16. Di Carlo, E., et al., The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 2001. 97(2): p. 339-45.
17. Ford, C.A., et al., Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Curr Biol, 2015. 25(5): p. 577-88.
18. Galli, S., et al., CD47 protein expression in acute myeloid leukemia: A tissue microarray-based analysis. Leuk Res, 2015. 39(7): p. 749-56.
19. Baccelli, I., et al., Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol, 2013. 31(6): p. 539-44.
20. Willingham, S.B., et al., The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A, 2012. 109(17): p. 6662-7.
21. Edris, B., et al., Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc Natl Acad Sci U S A, 2012. 109(17): p. 6656-61.
22. Krampitz, G.W., et al., Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A, 2016. 113(16): p. 4464-9.
23. Weiskopf, K., et al., CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest, 2016. 126(7): p. 2610-20.
24. Tseng, D., et al., Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci U S A, 2013. 110(27): p. 11103-8.
25. Liu, M., et al., Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don't-eat-me' signal. Nat Immunol, 2019. 20(3): p. 265-275.
26. Chao, M.P., et al., Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med, 2010. 2(63): p. 63ra94.
27. Bellora, F., et al., Human NK cells and NK receptors. Immunol Lett, 2014. 161(2): p. 168-73.
28. Vivier, E., et al., Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol, 2012. 12(4): p. 239-52.
29. Correia, D.V., et al., Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood, 2011. 118(4): p. 992-1001.
30. Delahaye, N.F., et al., Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med, 2011. 17(6): p. 700-7.
31. Coca, S., et al., The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer, 1997. 79(12): p. 2320-8.
32. Hsia, J.Y., et al., Prognostic significance of intratumoral natural killer cells in primary resected esophageal squamous cell carcinoma. Chang Gung Med J, 2005. 28(5): p. 335-40.
33. Villegas, F.R., et al., Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer, 2002. 35(1): p. 23-8.
34. Beano, A., et al., Correlation between NK function and response to trastuzumab in metastatic breast cancer patients. J Transl Med, 2008. 6: p. 25.
35. Parker, K.H., D.W. Beury, and S. Ostrand-Rosenberg, Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment. Adv Cancer Res, 2015. 128: p. 95-139.
36. Sarhan, D., et al., Adaptive NK Cells with Low TIGIT Expression Are Inherently Resistant to Myeloid-Derived Suppressor Cells. Cancer Res, 2016. 76(19): p. 5696-5706.
37. Perez-Gracia, J.L., et al., Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol, 2014. 27: p. 89-97.
38. Hanson, E.M., et al., Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol, 2009. 183(2): p. 937-44.
39. Jerud, E.S., G. Bricard, and S.A. Porcelli, CD1d-Restricted Natural Killer T Cells: Roles in Tumor Immunosurveillance and Tolerance. Transfusion Medicine and Hemotherapy, 2006. 33(1): p. 18-36.
40. Terabe, M. and J.A. Berzofsky, The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother, 2014. 63(3): p. 199-213.
41. Lythe, G., et al., How many TCR clonotypes does a body maintain? J Theor Biol, 2016. 389: p. 214-24.
42. de Goer de Herve, M.G., et al., Direct CD4 help provision following interaction of memory CD4 and CD8 T cells with distinct antigen-presenting dendritic cells. J Immunol, 2010. 185(2): p. 1028-36.
43. Gattinoni, L., et al., Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest, 2005. 115(6): p. 1616-26.
44. Huang, J., et al., Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother, 2005. 28(3): p. 258-67.
45. Pan, H.F., et al., Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev, 2013. 24(6): p. 515-22.
46. Mai, J., H. Wang, and X.F. Yang, Th 17 cells interplay with Foxp3+ Tregs in regulation of inflammation and autoimmunity. Front Biosci (Landmark Ed), 2010. 15: p. 986-1006.
47. Tong, Z.H. and H.Z. Shi, Subpopulations of helper T lymphocytes in tuberculous pleurisy. Tuberculosis (Edinb), 2013. 93(3): p. 279-84.
48. Zhang, R., et al., Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. J Biol Chem, 2003. 278(51): p. 51267-76.
49. Charles, K.A., et al., The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest, 2009. 119(10): p. 3011-23.
50. Ubukata, H., et al., Evaluations of interferon-gamma/interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J Surg Oncol, 2010. 102(7): p. 742-7.
51. Camus, M., et al., Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res, 2009. 69(6): p. 2685-93.
52. Teschendorff, A.E., et al., Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC Cancer, 2010. 10: p. 604.
53. Marth, C., et al., Interferon-gamma expression is an independent prognostic factor in ovarian cancer. Am J Obstet Gynecol, 2004. 191(5): p. 1598-605.
54. Galaine, J., et al., Interest of Tumor-Specific CD4 T Helper 1 Cells for Therapeutic Anticancer Vaccine. Vaccines (Basel), 2015. 3(3): p. 490-502.
55. Yagi, R., et al., The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-gamma. Immunity, 2010. 32(4): p. 507-17.
56. Usui, T., et al., GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity, 2003. 18(3): p. 415-28.
57. DeNardo, D.G., et al., CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 2009. 16(2): p. 91-102.
58. Gocheva, V., et al., IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 2010. 24(3): p. 241-55.
59. Zissler, U.M., et al., Interleukin-4 and interferon-gamma orchestrate an epithelial polarization in the airways. Mucosal Immunol, 2016. 9(4): p. 917-26.
60. Mandapathil, M., et al., Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer. Clin Cancer Res, 2009. 15(20): p. 6348-57.
61. Linterman, M.A., et al., Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med, 2011. 17(8): p. 975-82.
62. Gregori, S., et al., Isolation, expansion, and characterization of human natural and adaptive regulatory T cells. Methods Mol Biol, 2007. 380: p. 83-105.
63. Jonuleit, H., et al., Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med, 2000. 192(9): p. 1213-22.
64. Richards, D.M., et al., Treg Cell Differentiation: From Thymus to Peripheral Tissue. Prog Mol Biol Transl Sci, 2015. 136: p. 175-205.
65. Oleinika, K., et al., Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol, 2013. 171(1): p. 36-45.
66. Iwakura, Y., et al., Functional specialization of interleukin-17 family members. Immunity, 2011. 34(2): p. 149-62.
67. Fridman, W.H., et al., The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer, 2012. 12(4): p. 298-306.
68. Kryczek, I., et al., Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood, 2009. 114(6): p. 1141-9.
69. Su, Z., et al., Th17 cell expansion in gastric cancer may contribute to cancer development and metastasis. Immunol Res, 2014. 58(1): p. 118-24.
70. Benevides, L., et al., Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol, 2013. 43(6): p. 1518-28.
71. Zhang, J.P., et al., Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol, 2009. 50(5): p. 980-9.
72. Fialova, A., et al., Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int J Cancer, 2013. 132(5): p. 1070-9.
73. Koenen, H.J., et al., Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood, 2008. 112(6): p. 2340-52.
74. Yang, B.H., et al., Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol, 2016. 9(2): p. 444-57.
75. Lu, Y., et al., Th9 cells promote antitumor immune responses in vivo. J Clin Invest, 2012. 122(11): p. 4160-71.
76. Ai, P., et al., Tumor microenvironment contributes to Epstein-Barr virus anti-nuclear antigen-1 antibody production in nasopharyngeal carcinoma. Oncol Lett, 2017. 14(2): p. 2458-2462.
77. Dunn, G.P., L.J. Old, and R.D. Schreiber, The three Es of cancer immunoediting. Annu Rev Immunol, 2004. 22: p. 329-60.
78. Dunn, G.P., et al., Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002. 3(11): p. 991-8.
79. Vavrova, K.B., J.; Horvath, R., Adoptivní T-buněčná terapie v léčbě nádorových onemocnění. Alergie, 2013. 15(3): p. 204-213.
80. Spisek, R., et al., Imunitní reakce na nádorové buňky a možnosti vakcinace proti nádorům. Vakcinologie, 2010. 1(4): p. 12-19.
81. Igney, F.H., C.K. Behrens, and P.H. Krammer, Tumor counterattack--concept and reality. Eur J Immunol, 2000. 30(3): p. 725-31.
82. Motz, G.T., et al., Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med, 2014. 20(6): p. 607-15.
83. Morales, A., D. Eidinger, and A.W. Bruce, Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol, 1976. 116(2): p. 180-3.
84. Achkar, T., et al., High-dose interleukin 2 in patients with metastatic renal cell carcinoma with sarcomatoid features. PLoS One, 2017. 12(12): p. e0190084.
85. Hasselbalch, H.C. and M.O. Holmstrom, Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure? Semin Immunopathol, 2019. 41(1): p. 5-19.
86. Roberts, N.J., et al., Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget, 2011. 2(10): p. 739-51.
87. Grilo, A.L. and A. Mantalaris, The Increasingly Human and Profitable Monoclonal Antibody Market. Trends Biotechnol, 2019. 37(1): p. 9-16.
88. Rosenberg, S.A. and N.P. Restifo, Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015. 348(6230): p. 62-8.
89. Madan, R.A., et al., Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs, 2009. 18(7): p. 1001-11.
90. Acres, B., Cancer immunotherapy: phase II clinical studies with TG4010 (MVA-MUC1-IL2). J BUON, 2007. 12 Suppl 1: p. S71-5.
91. Pol, J.G., et al., Maraba virus as a potent oncolytic vaccine vector. Mol Ther, 2014. 22(2): p. 420-429.
92. Andtbacka, R.H., et al., Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol, 2015. 33(25): p. 2780-8.
93. Kalinski, P., et al., Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future Oncol, 2009. 5(3): p. 379-90.
94. Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells. Annu Rev Immunol, 2003. 21: p. 685-711.
95. Martinez-Cingolani, C., et al., Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta. Blood, 2014. 124(15): p. 2411-20.
96. Sato, K. and S. Fujita, Dendritic cells: nature and classification. Allergol Int, 2007. 56(3): p. 183-91.
97. Tran Janco, J.M., et al., Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol, 2015. 194(7): p. 2985-91.
98. Murphy, G., et al., Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate, 1996. 29(6): p. 371-80.
99. Schuler, G., Dendritic cells in cancer immunotherapy. Eur J Immunol, 2010. 40(8): p. 2123-30.
100. Rutella, S., S. Danese, and G. Leone, Tolerogenic dendritic cells: cytokine modulation comes of age. Blood, 2006. 108(5): p. 1435-40.
101. Kantoff, P.W., et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363(5): p. 411-22.
102. Park, J.W., et al., Treatment with autologous antigen-presenting cells activated with the HER-2 based antigen Lapuleucel-T: results of a phase I study in immunologic and clinical activity in HER-2 overexpressing breast cancer. J Clin Oncol, 2007. 25(24): p. 3680-7.
103. Carreno, B.M., et al., IL-12p70-producing patient DC vaccine elicits Tc1-polarized immunity. J Clin Invest, 2013. 123(8): p. 3383-94.
104. Li, Y. and R.J. Kurlander, Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J Transl Med, 2010. 8: p. 104.
105. Drobyski, W.R., et al., Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood, 1993. 82(8): p. 2310-8.
106. Kolb, H.J., et al., Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood, 1990. 76(12): p. 2462-5.
107. Tey, S.K., C.M. Bollard, and H.E. Heslop, Adoptive T-cell transfer in cancer immunotherapy. Immunol Cell Biol, 2006. 84(3): p. 281-9.
108. Starr, T.K., S.C. Jameson, and K.A. Hogquist, Positive and negative selection of T cells. Annu Rev Immunol, 2003. 21: p. 139-76.
109. Restifo, N.P., M.E. Dudley, and S.A. Rosenberg, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol, 2012. 12(4): p. 269-81.
110. Shilyansky, J., et al., Identification of a T-cell receptor from a therapeutic murine T-cell clone. J Immunother, 1997. 20(4): p. 247-55.
111. Ioannidou, K., et al., Low Avidity T Cells Do Not Hinder High Avidity T Cell Responses Against Melanoma. Front Immunol, 2019. 10: p. 2115.
112. Heslop, H.E., et al., Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med, 1996. 2(5): p. 551-5.
113. Wang, Y., et al., Combination of Epstein-Barr virus nuclear antigen 1, 3 and lytic antigen BZLF1 peptide pools allows fast and efficient stimulation of Epstein-Barr virus-specific T cells for adoptive immunotherapy. Cytotherapy, 2014. 16(1): p. 122-34.
114. Clancy, L.E., et al., Cytomegalovirus-specific cytotoxic T lymphocytes can be efficiently expanded from granulocyte colony-stimulating factor-mobilized hemopoietic progenitor cell products ex vivo and safely transferred to stem cell transplantation recipients to facilitate immune reconstitution. Biol Blood Marrow Transplant, 2013. 19(5): p. 725-34.
115. Greenberg, P.D., Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol, 1991. 49: p. 281-355.
116. Kono, K., et al., Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin Cancer Res, 2002. 8(6): p. 1767-71.
117. Khammari, A., et al., Long-term follow-up of patients treated by adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol Immunother, 2007. 56(11): p. 1853-60.
118. Nguyen, L.T., et al., Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol Immunother, 2019. 68(5): p. 773-785.
119. Rosenberg, S.A., et al., Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res, 2011. 17(13): p. 4550-7.
120. Besser, M.J., et al., Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res, 2013. 19(17): p. 4792-800.
121. Radvanyi, L.G., et al., Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res, 2012. 18(24): p. 6758-70.
122. Dudley, M.E., et al., A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother, 2002. 25(3): p. 243-51.
123. Dudley, M.E., et al., Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol, 2005. 23(10): p. 2346-57.
124. Saint-Jean, M., et al., Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients. J Immunol Res, 2018. 2018: p. 3530148.
125. Ellebaek, E., et al., Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med, 2012. 10: p. 169.
126. Svane, I.M. and E.M. Verdegaal, Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol Immunother, 2014. 63(10): p. 1081-91.
127. Yee, C., et al., Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A, 2002. 99(25): p. 16168-73.
128. Takada, K., et al., Lymphocyte depletion with fludarabine in patients with psoriatic arthritis: clinical and immunological effects. Ann Rheum Dis, 2003. 62(11): p. 1112-5.
129. Dudley, M.E., et al., Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother, 2003. 26(4): p. 332-42.
130. Johnson, L.A., et al., Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 2009. 114(3): p. 535-46.
131. Yee, C., et al., Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med, 2000. 192(11): p. 1637-44.
132. Mackensen, A., et al., Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol, 2006. 24(31): p. 5060-9.
133. Robbins, P.F., et al., Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol, 2011. 29(7): p. 917-24.
134. Willemsen, R., et al., Redirecting human CD4+ T lymphocytes to the MHC class I-restricted melanoma antigen MAGE-A1 by TCR alphabeta gene transfer requires CD8alpha. Gene Ther, 2005. 12(2): p. 140-6.
135. Chinnasamy, N., et al., A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J Immunol, 2011. 186(2): p. 685-96.
136. Vavrova, K.B., J.; Horvath, R. , Adoptivní buněčná terapie pomocí lymfocytů T v léčbě nádorů. Onkologie, 2015. 9(1): p. 7-9.
137. Tokarew, N., et al., Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer, 2019. 120(1): p. 26-37.
138. Porter, D.L., et al., Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med, 2011. 365(8): p. 725-33.
139. Fraietta, J.A., et al., Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016. 127(9): p. 1117-27.
140. Li, S., et al., Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB. Br J Haematol, 2018. 181(3): p. 360-371.
141. Salmikangas, P., N. Kinsella, and P. Chamberlain, Chimeric Antigen Receptor T-Cells (CAR T-Cells) for Cancer Immunotherapy - Moving Target for Industry? Pharm Res, 2018. 35(8): p. 152.
142. Enblad, G., et al., A Phase I/IIa Trial Using CD19-Targeted Third-Generation CAR T Cells for Lymphoma and Leukemia. Clin Cancer Res, 2018. 24(24): p. 6185-6194.
143. Idorn, M., et al., Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model. Oncoimmunology, 2018. 7(8): p. e1450715.
144. Reinhard, K., et al., An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science, 2020.
145. Zhao, L. and Y.J. Cao, Engineered T Cell Therapy for Cancer in the Clinic. Front Immunol, 2019. 10: p. 2250.
146. Casucci, M. and A. Bondanza, Suicide gene therapy to increase the safety of chimeric antigen receptor-redirected T lymphocytes. J Cancer, 2011. 2: p. 378-82.
147. Teshima, T., et al., Donor leukocyte infusion from immunized donors increases tumor vaccine efficacy after allogeneic bone marrow transplantation. Cancer Res, 2002. 62(3): p. 796-800.
148. Parviz, M., et al., Successful adoptive immunotherapy with vaccine-sensitized T cells, despite no effect with vaccination alone in a weakly immunogenic tumor model. Cancer Immunol Immunother, 2003. 52(12): p. 739-50.
149. Laport, G.G., et al., Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood, 2003. 102(6): p. 2004-13.
150. Rapoport, A.P., et al., Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med, 2005. 11(11): p. 1230-7.
151. Chang, A.E., et al., Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. J Clin Oncol, 1997. 15(2): p. 796-807.
152. Poschke, I., et al., A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer Immunol Immunother, 2014. 63(10): p. 1061-71.
153. Kandalaft, L.E., et al., Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology, 2013. 2(1): p. e22664.
154. Chang, A.E., et al., Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol, 2003. 21(5): p. 884-90.
155. Rosenberg, S.A. and M.E. Dudley, Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol, 2009. 21(2): p. 233-40.
156. Dudley, M.E., et al., Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 2002. 298(5594): p. 850-4.
157. Gattinoni, L., et al., Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med, 2005. 202(7): p. 907-12.
158. Klebanoff, C.A., et al., Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol, 2005. 26(2): p. 111-7.
159. Wang, X., et al., Autoantibody signatures in prostate cancer. N Engl J Med, 2005. 353(12): p. 1224-35.
160. Carosella, E.D., et al., A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur Urol, 2015. 68(2): p. 267-79.
161. Kantoff, P.W., et al., Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol, 2010. 28(7): p. 1099-105.
162. Small, E.J., et al., A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res, 2007. 13(6): p. 1810-5.






Předběžná náplň práce
Karcinom prostaty je druhou nejčastější příčinou úmrtí mužů na rakovinu v Evropě a USA. V kontextu dosavadních preklinických experimentů a klinických studií existují předpoklady pro úspěšné uplatnění imunoterapie v jeho léčbě. Slibných výsledků je dosaženo převážně kombinací různých léčebných modalit, kdy dochází k jejich synergickému protinádorovému působení. Jednou z možností je využití protinádorových vakcín a adoptivního T buněčného transferu.
Téma této dizertační práce navazuje na dlouhodobý výzkumný program pracoviště kandidátky v oblasti protinádorové imunoterapie. Obecná část dizertační práce podává základní přehled o mechanismech protinádorové imunity a o roli jednotlivých složek imunitního systému při jejím zajištění. Další části se věnují současným imunoterapeutickým přístupům s důrazem na metodu adoptivního T buněčného transferu a jejího uplatnění v léčbě karcinomu prostaty. Ve vlastní výzkumné části předkládá vypracovaný experimentální protokol pro adoptivní transfer tumor specifických T lymfocytů, a dále protokol zabývající se ex vivo obohacením buněčných populací o peptid-specifické T lymfocyty u pacientů s karcinomem prostaty. V rámci našeho výzkumu uvádíme též výsledky klinické studie, která si kladla za cíl ověřit biologickou bezpečnost, schopnost indukce imunitní protinádorové odpovědi a zhodnotit klinické odpovědi pacientů na imunoterapeutický léčivý přípravek na bázi dendritických buněk s označením DCVAC/PCa
Předběžná náplň práce v anglickém jazyce
Prostate cancer is the second leading cause of cancer death in men in Europe and the US. In the context of previous preclinical experiments and clinical studies there are certain assumptions predicating successful application of immunotherapy in the treatment of patients with prostate cancer. Promising results have been achieved by a combination of different treatment modalities which provide a synergistic antitumor effect. One of these combinatorial options is the use of antitumor vaccines and adoptive T cell transfer.
The topic of this thesis is to provide a fresh insight into the past and current trends following the long-term candidate´s department program in the field of anti-tumor immunotherapy. The experimental part of this thesis revolves around our own results published in this field. The introductory chapter delivers a basic overview of cellular mechanisms of anti-tumor immunity and the role of individual immune components in these processes. Following chapters are dedicated to current immunotherapeutic approaches with emphasis on the adoptive T cell transfer and implication of this technology in the treatment of prostate cancer. The results section describes the establishment of our protocol for adoptive T cell transfer as well as the protocol for ex vivo enrichment of human T cell populations for cancer peptide-reactive T lymphocytes in patients with prostate cancer. Importantly, this thesis also includes our clinical data aimed at testing the biosafety of established protocol, evaluation of the capacity of patients T cells to induce anti-tumor immune responses as well as the assessment of the patient’s clinical responses to a DCVAC/PCa dendritic cell-based vaccine.
 
Univerzita Karlova | Informační systém UK