Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 390)
Detail práce
   Přihlásit přes CAS
Role onkogenní mikroRNA-155 a proto-onkogenu MYB u chronické lymfatické leukémie
Název práce v češtině: Role onkogenní mikroRNA-155 a proto-onkogenu MYB u chronické lymfatické leukémie
Název v anglickém jazyce: The Role of oncogenic microRNA - 155 and proto - oncogen MYB in chronic lymphocytic leukemia
Klíčová slova: B-CLL, terapie, mikroRNA, mRNA, miR-155, MYB, PU.1, genová exprese, leukemie, chromatinové modifikace, DNA, protein
Klíčová slova anglicky: B-CLL, therapy, microRNA, mRNA, miR-155, MYB, PU.1, gene expression, oncogene, chromatin modifications, DNA, protein
Akademický rok vypsání: 2012/2013
Typ práce: disertační práce
Jazyk práce: angličtina
Ústav: Ústav patologické fyziologie 1. LF UK (11-00180)
Vedoucí / školitel: prof. MUDr. Tomáš Stopka, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 20.08.2013
Datum zadání: 20.08.2013
Datum potvrzení stud. oddělením: 23.08.2013
Datum a čas obhajoby: 14.11.2013 11:30
Místo konání obhajoby: Fyziologický ústav 1. LF UK
Datum odevzdání elektronické podoby:26.08.2013
Datum proběhlé obhajoby: 14.11.2013
Předmět: Obhajoba dizertační práce (B90002)
Oponenti: doc. MUDr. Heidi Móciková, Ph.D.
  prof. MUDr. Jan Trka, Ph.D.
 
 
Seznam odborné literatury
1. Rozman C, Montserrat E. Chronic lymphocytic leukemia. The New England Journal of Medicine. 1995;19:1052–1057.2. Hallek M. Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. American Journal of Hematology. 2013; doi: 10.1002/ajh.23491.3. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond:evolving concepts and practical applications. Blood. 2011;117(19):5019–32.4. Danilov A, Danilova O, Klein AK, Huber BT. Molecular pathogenesis of chronic lymphocytic leukemia. Curr. Mol. Med. 2006; (6):665-75.5. Chiorazzi N. Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best practice & research. Clinical Haematology. 2007;20(3):399–413.6. Sieklucka M, Pozarowski P, Bojarska-Junak A, Hus I, Dmoszynska A, Rolinski J. Apoptosis in B-CLL: the relationship between higher ex vivo spontaneous apoptosis before treatment in III-IV Rai stage patients and poor outcome. Oncology Reports. 2008;19(6):1611–20.7. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Invest. 2005;115:755–764.8. Willimott S, Baou M, Huf S, Deaglio S, Wagner SD. Regulation of CD38 in proliferating chronic lymphocytic leukemia cells stimulated with CD154 and interleukin-4. Haematologica. 2007;92(10):1359–66.9. Matutes E, Polliack A. Morphological and Immunophenotypic Features of Chronic Lymphocytic Leukemia. Rev. Clin. Exp. Hematol. 2000;4.1:22-47.10. Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20(2):246–59.11. Goldin LR, McMaster ML, Caporaso NE. Precursors to lymphoproliferative malignancies. Cancer Epidemiol. Biomarkers Prev. 2013;22(4):533–9.12. Shanafelt TD, Geyer SM, Kay NE. Prognosis at diagnosis: integrating molecular biologic insights into clinical practice for patients with CLL. Blood. 2004;103(4):1202–10.13. Döhner H, Stilgenbauer S, Benner A, Leupold E, Kröber A et al. Genomic aberrations and survival in chronic lymphocytic leukemia. The New England Journal of Medicine. 2000;343(26):1910–614. Bertilaccio MTS, Scielzo C, Muzio M, Caligaris-Cappio F. An overview of chronic lymphocytic leukaemia biology. Clinical Haematology. 2010;23(1):21–32.13315. Calin GA, Croce CM. Chronic lymphocytic leukemia: interplay between noncoding RNAs and protein-coding genes. Blood. 2009;114(23):4761–4770.16. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S et al. Frequent deletions and down-regulation of micro- RNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia. PNAS. 2002;99(24):15524–9.17. Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007;109(11):4944–51.18. Srivastava S, Tsongalis GJ, Kaur P. Recent advances in microRNA-mediated gene regulation in chronic lymphocytic leukemia. Clinical Biochemistry. 2013;46(10-11):901–8.19. Visone R, Veronese A, Rassenti LZ, Balatti V, Pearl DK et al. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood. 2011;118(11):3072–9.20. Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe GK et al. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B-chronic lymphocytic leukemia. Blood. 2013; doi:10.1182/blood-2013-01-478222.21. Dighiero G and Hamblin TJ. Chronic lymphocytic leukaemia. Lancet. 2008;371:1017–1029.22. Ruchlemer R, Polliack A. Geography, ethnicity and “roots” in chronic lymphocytic leukemia. Leukemia & Lymphoma. 2013:1142–1150.23. Watson L, Wyld P, Catovsky D. Disease burden of chronic lymphocytic leukaemia within the European Union. European Journal of Haematology. 2008;81(4):253–8.24. Sellick GS, Catovsky D, Houlston RS. Familial chronic lymphocytic leukemia. Seminars in oncology. 2006;33(2):195–201.25. Rebora P, Lee M, Czene K, Valsecchi MG, Reilly M. High risks of familial chronic lymphatic leukemia for specific relatives: signposts for genetic discovery? Leukemia. 2012;26(11):2419–21.26. Shanshal M, Haddad RY. Chronic lymphocytic leukemia. Dis. Mon. 2012;58(4):153–67.27. Agnew KL, Ruchlemer R, Catovsky D, Matutes E, Bunker CB. Cutaneous findings in chronic lymphocytic leukaemia. The British Journal of Dermatology. 2004;150(6):1129–35.28. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.29. Dighiero G. Unsolved issues in CLL biology and management. Leukemia. 2003;17(12):2385–91.13430. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54.31. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101(12):4944–51.32. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. The New England Journal of Medicine. 2003;348(18):1764–75.33. Ibrahim S, Keating M, Do K-A, O'Brien S, Huh YO et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood. 2001;98(1):181–186.34. Chen L, Widhopf G, Huynh L, Rassenti, L, Rai KR et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100(13):4609–14.35. Chan A, Iwashima M, Turck C, Weiss A. ZAP-70: a 70kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell. 1992;71:649–62.36. Smolej L, Vroblova V, Motyckova M, Jankovicova K, Schmitzova D et al. Quantification of ZAP-70 expression in chronic lymphocytic leukemia: T/B-cell ratio of mean fluorescence intensity provides stronger prognostic value than percentage. Neoplasma. 2011;58:140–145.37. Rassenti LZ, Jain S, Keating MJ, Wierda GW, Grever MR et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood. 2008;112(5):1923–30.38. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapou T et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood. 2007;110(9):3352–9.39. Chiorazzi N. Implications of new prognostic markers in chronic lymphocytic leukemia. Hematology Am. Soc. Hematol Educ. Program. 2012;2012:76–87.40. Schroers R, Griesinger F, Trümper L, Haase D, Kulle B et al. Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia. 2005;19(5):750–8.41. Joshi AD, Dickinson JD, Hegde GV, Sanger WG, Armitage JO et al. Bulky lymphadenopathy with poor clinical outcome is associated with ATM downregulation in B-cell chronic lymphocytic leukemia patients irrespective of 11q23 deletion. Cancer Genetics and Cytogenetics. 2007;172(2):120–6.42. Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S et al. TP53 mutation and survival in chronic lymphocytic leukemia. Journal of Clinical Oncology. 2010;28(29):4473–9.13543. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H et al. A New Prognostic Classification of Chronic Lymphocytic Leukemia Derived from a Multivariate Survival Analysis. Cancer; 1981;48:198-206.44. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46(2):219–34.45. Richter M. Generalized reticular cell sarcoma of lymph nodes associated with lymphatic leukemia. The American Journal of Pathology. 1928;IV(4).46. Tsimberidou A-M, Keating MJ. Richter syndrome: biology, incidence, and therapeutic strategies. Cancer. 2005;103(2):216–28.47. Rai KR, Peterson BL, Appelbaum F, Kolitz J, Elias L et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. The New England Journal of Medicine. 2000;343:1750-7.48. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74.49. Keating MJ, O’Brien S, Albitar M, Lerner S, Plunkett W et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. Journal of Clinical Oncology. 2005;23(18):4079–88.50. Špaček M, Obrtlíková P, Trněný M. Chronická lymfocytární leukémie – patogeneze, diagnostika, principy terapie. Postgraduální medicína. 2013;15:504–510.51. Laurenti L, Vannata B, Innocenti I, Autore F, Santini F et al. Chlorambucil plus Rituximab as Front-Line Therapy in Elderly/Unfit Patients Affected by B-Cell Chronic Lymphocytic Leukemia: Results of a Single-Centre Experience. Mediterranean Journal of Hematology and Infectious Diseases. 2013;5(1):e2013031.52. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118(16):4313–20.53. Wiestner A. Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Hematology Am. Soc. Hematol. Educ. Program. 2012;2012:88–96.54. De Weerdt I, Eldering E, van Oers MH, Kater AP. The biological rationale and clinical efficacy of inhibition of signaling kinases in chronic lymphocytic leukemia. Leukemia research. 2013;37(7):838–47.55. Herman SEM, Gordon AL, Hertlein E, Ramanunni A, Zhang X et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.13656. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. Journal of Clinical Oncology. 2013;31(1):88–94.57. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annual Review of Immunology. 1998;16(1):395–419.58. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature Medicine. 2013;19(2):202–8.59. Castelli R, Cassin R, Cannavò A, Cugno M. Immunomodulatory drugs: new options for the treatment of myelodysplastic syndromes. Clinical lymphoma, myeloma & leukemia. 2013;13(1):1–7.60. Davies F, Baz R. Lenalidomide mode of action: linking bench and clinical findings. Blood. 2010;24 Suppl 1:S13–9.61. Strati P, Keating MJ, Wierda WG, Badoux XC, Calin S et al. Lenalidomide induces long-lasting responses in elderly patients with chronic lymphocytic leukemia. Blood. 2013;122(5):734–7.62. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.63. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.64. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.65. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.66. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Research. 2008;36:D154–8.67. Hsu PWC, Huang H-D, Hsu S-D, et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Research. 2006;34:D135–9.68. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Research. 2008;36:D149–53.69. Maselli V, Di Bernardo D, Banfi S. CoGemiR: a comparative genomics microRNA database. BMC Genomics. 2008;9:457.13770. Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T et al. miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Research. 2010;38:D137–41.71. Yang J-H, Shao P, Zhou H, Chen Y-Q, Qu L-H. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Research. 2010;38:D123–30.72. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.73. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L et al. Combinatorial microRNA target predictions. Nature Genetics. 2005;37(5):495–500.74. Sethupathy P, Megraw M, Hatzigeorgiou A. A guide through present computational approaches for the identification of mammalian microRNA targets. Nature methods. 2006;3(11):1–6.75. Maragkakis M, Reczko M, Simossis V a, et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research. 2009;37:W273–6.76. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Research. 2009;37:D105–10.77. Yang J-H, Li J-H, Shao P, Zhou H, Chen Y-Q, Qu L-H. StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic acids research. 2011;39:D202–9.78. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research. 2011;39:D152–7.79. Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel J-P. MicroRNAs: molecular features and role in cancer. Frontiers in Bioscience. 2012;17:2508–2540.80. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Research. 2004;32:D109–11.81. Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116(2):281–297.82. Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Molecular Cell. 2008;30(4):460–71.83. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.84. Rajewsky N. microRNA target predictions in animals. Nature Genetics. 2006;38 Suppl:S8–13.85. Volinia S, Calin G a, Liu C-G, Ambs S, Cimmino A et al. A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS. 2006;103(7):2257–61.86. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.13887. Zhang L, Coukos G. MicroRNAs: a new insight into cancer genome. Cell Cycle. 2006;5(19):2216–2219.88. Landais S, Landry S, Legault P, Rassart E. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Research. 2007;67(12):5699–707.89. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H et al. Dicer is essential for mouse development. Nature Genetics. 2003;35(3):215–7.90. Calin GA, Liu C-G, Sevignani C, Ferracin M, Felli N et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. PNAS. 2004;101(32):11755–60.91. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nature reviews. 2009;10(2):126–39.92. Lee Y, Kim M, Han J, Yeom K-H, Lee S et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO. 2004;23(20):4051–60.93. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nature structural & molecular biology. 2006;13(12):1097–101.94. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science (New York, N.Y.). 2004;303(5654):95–8.95. Tili E, Michaille J-J, Adair B, Alder H, Limaqne E et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010;31(9):1561–6.96. Guil S, Cáceres JF. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature structural & molecular biology. 2007;14(7):591–6.97. Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nature Cell Biology. 2007;9(5):604–11.98. Han J, Lee Y, Yeom K-H, Nam J-W, Heo I et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.99. Berezikov E, Chung W, Willis J, Cuppen E, Lai EC. Mammalian Mirtron Genes Eugene. Molecular and Cellular Biology. 2009;28(2):328–336.100. Zhou H, Huang X, Cui H, Luo X, Tang Y et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood. 2010;116(26):5885–94.101. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.102. Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. The International Journal of Biochemistry & Cell Biology. 2010;42(8):1316–29.139103. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature reviews. 2010;11(9):597–610.104. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry. 2010;79:351–79.105. Kulkarni M, Ozgur S, Stoecklin G. On track with P-bodies. Biochem. Soc. Trans. 2010;38:242–51.106. Liu J, Valencia-sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 2007;7(7):719–723.107. Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science. 2005;310(5747):486–9.108. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochimica et biophysica acta. 2011;1799(10-12):694–701.109. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130(1):89–100.110. Kato M and Slack FJ. microRNAs: small molecules with big roles - C. elegans to human cancer. Biol. Cell. 2008;100(2):71–81.111. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS et al. Chromatin structure analyses identify miRNA promoters. Genes & Development. 2008;22(22):3172–83.112. O’Donnell KA, Wentzel EA, Zeller KI, Dang C V, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.113. Lujambio A and Manel E. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 2007;6:1455–1459.114. Libri V, Miesen P, van Rij RP, Buck AH. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell. Mol. Life Sci. 2013. DOI 10.1007/s00018-012-1257-1.115. Davis B, Hilyard A, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61.116. Kawai S, Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. The Journal of Cell Biology. 2012;197(2):201–8.117. Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature. 2012;486(7404):541–4.118. Barad O, Mann M, Chapnik E, et al. Efficiency and specificity in microRNA biogenesis. Nature structural & molecular biology. 2012;19(6):650–2.119. Gruber JJ, Zatechka DS, Sabin LR, Yong J, Lum JJ et al. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell. 2009;138(2):328–39.140120. Koscianska E, Starega-Roslan J, Krzyzosiak WJ. The role of Dicer protein partners in the processing of microRNA precursors. PloS one. 2011;6(12):e28548.121. Bennasser Y, Chable-Bessia C, Triboulet R, Gibbins D, Gwizdek C et al. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nature Structural & Molecular Biology. 2011;18(3):323–7.122. Iizasa H, Wulff B-E, Alla NR, Mragkakis M, Megraw M et al. Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. The Journal of Biological Chemistry. 2010;285(43):33358–70.123. Maas S, Kawahara Y, Tamburro KM, Nishikura K. A-to-I RNA Editing and Human Disease. RNA Biology. 2006;3:1–9.124. Iwai N, Naraba H. Polymorphisms in human pre-miRNAs. Biochemical and biophysical research communications. 2005;331(4):1439–44.125. Sun G, Yan J, Noltner K, Feng J, Li H et al. SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15(9):1640–51.126. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. The New England Journal of Medicine. 2005;353(17):1793–801.127. Klein U, Lia M, Crespo M, Siegel R, Shen Q et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.128. Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood. 2001;97(7):2098–2104.129. Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood. 2007;109(3):1202–10.130. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS. 2005;102(39):13944–9.131. Masood A, Chitta K, Paulus A, Khan NH, Sher T et al. Downregulation of BCL2 by AT-101 enhances the antileukaemic effect of lenalidomide both by an immune dependant and independent manner. British Journal of Haematology. 2012;157(1):59–66.132. Zanette DL, Rivadavia F, Molfetta GA, Barbuzzano FG, Proto-Siqueira R et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Brazilian Journal of Medical and Biological Research. 2007;40(11):1435–40.133. Asslaber D, Piñón JD, Seyfried I, Desch P, Stöcher M et al. microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood. 2010;115(21):4191–7.141134. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305(1):59–67.135. Zenz T, Häbe S, Denzel T, Mohr J, Winkler D et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009;114(13):2589–97.136. Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 2010;116(6):945–52.137. Wang M, Tan LP, Dijkstra MK, van Lom K, Robertus JL et al. miRNA analysis in B-cell chronic lymphocytic leukaemia:proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. Journal of Pathology. 2008;215:13–20.138. Zhu D-X, Zhu W, Fang Ch, Fan L, Zou Z-J et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 2012;33(7):1294–301.139. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132(5):875–86.140. Xiao C, Srinivasan L, Calado DP, Patterson HCh, Zhang B et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology. 2008;9(4):405–14.141. Van den Berg A, Kroesen B-J, Kooistra K, de Jong D, Briggs J et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes, Chromosomes & Cancer. 2003;37(1):20–8.142. Gibcus JH, Tan LP, Harms G, Schakel RN, de Jong D et al. Hodgkin Lymphoma Cell Lines Are Characterized by a Specific. Neoplasia. 2009;11(2):167–176.143. Marton S, Garcia MR, Robello C, Persson H, Trajtenberg F et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia. 2008;22(2):330–8.144. Vargova K, Curik N, Burda P, Basova P, Kulvait V et al. MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood. 2011;117(14):3816–25.145. Calin GA, Ferracin M, Cimmino A, di Leva G, Shimizu M et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. The New England Journal of Medicine. 2005;353(17):1793–801.146. Zhong H, Xu L, Zhong J-H, Fei X, Liu Q et al. Clinical and prognostic significance of miR-155 and miR-146a expression levels in formalin-fixed/paraffin-embedded tissue of patients142with diffuse large B-cell lymphoma. Experimental and therapeutic medicine. 2012;3(5):763–770.147. Tam W, Ben-Yehuda D, Hayward WS. bic , a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Molecular and cellular biology. 1997;17:1490.148. Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene. 2001;274(1-2):157–67.149. Eis PS, Tam W, Sun L, Chadburn A, Li Z et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. PNAS. 2005;102(10):3627–32.150. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochimica et biophysica acta. 2009;1792(6):497–505.151. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2012; S0378-1119(12)01512-0. doi: 10.1016/j.gene.2012.12.009. [Epub ahead of print].152. Georgantas III RW, Hildreth R, Morisot S, Alder J, Liu Ch-G et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. PNAS. 2007;104(8):2750-2755.153. Ramkissoon S, Mainwaring L, Oquasawara Y, Keyvanfar K, McCoy JP et al. Hematopoietic-specific microRNA expression in human cells. Leukemia research. 2006;30(5):643-7.154. Fernando TR, Rodriguez-Malave NI, Rao DS. MicroRNAs in B cell development and malignancy. Journal of Hematology & Oncology. 2012;5(1):1-10.155. Calame K. MicroRNA-155 function in B Cells. Immunity. 2007;27(6):825–7.156. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov TK et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. The Journal of Experimental Medicine. 2008;205(3):585–94.157. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27(6):847–59.158. Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: an ancient regulator of the immune system. Immunological reviews. 2013;253(1):146–57.159. Ma X, Ma C, Zheng X. MicroRNA-155 in the Pathogenesis of Atherosclerosis: A Conflicting Role? Heart, lung & circulation. 2013. S1443-9506(13)01029-9. doi: 10.1016/j.hlc.2013.05.651. [Epub ahead of print].160. Trotta R, Chen L, Ciarlariello D, Josyula S, Mao Ch et al. miR-155 regulates IFN-γ production in natural killer cells. Blood. 2012;119(15):3478–85.143161. Huang R, Hu G, Lin B, Lin Z, Sun C. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J. Invest. Med. 2010;58(8):961–7.162. Leng R-X, Pan H-F, Qin W-Z, Chen G-M, Ye D-Q. Role of microRNA-155 in autoimmunity. Cytokine & growth factor reviews. 2011;22(3):141–7.163. Zhu G-F, Yang L-X, Guo R-W, Liu H, Shi Y-K et al. miR-155 inhibits oxidized low-density lipoprotein-induced apoptosis of RAW264.7 cells. Mol. Cell. biochem. 2013. DOI:1007/s11010-013-1741-4.164. Haasch D, Chen Y-W, Reilly RM, Chiou GX, Koterski S et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cellular Immunology. 2002;217(1-2):78–86.165. Corsten MF, Papageorgiou A, Verhesen W, Carai P, Lindou M et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circulation research. 2012;111(4):415–25.166. Dudda JC, Salaun B, Ji Y, Palmer DC, Monnot GC et al. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity. 2013;38(4):742–53.167. Kong W, Yang H, He L, Zhao JJ, Coppola D et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 2008;28(22):6773–84.168. Chang S, Sharan SK. Epigenetic control of an oncogenic microRNA, miR-155, by BRCA1. Oncotarget. 2012;3(1):5–8.169. Wang X, Tang S, Le S-Y, Lu R, Zheng Z-M et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PloS one. 2008;3(7):e2557.170. Zhu Y-D, Wang L, Sun C, Fun L, Zhu DX et al. Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia. Medical Oncology. 2012;29(4):2323–31.171. Canale S, Cocco C, Frasson C, Seganfreddo E, di Carlo E et al. Interleukin-27 inhibits pediatric B-acute lymphoblastic leukemia cell spreading in a preclinical model. Leukemia. 2011;25(12):1815–24.172. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes, Chromosomes and Cancer. 2004;39(2):167–169.173. Kluiver J, Poppema S, de Jong D, Blokzjil T, Harms G et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. The Journal of Pathology. 2005;207(2):243–9.144174. Li S, Moffett HF, Lu J, Werner L, Zhang H et al. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PloS one. 2011;6(3):e16956.175. Fabbri M, Croce CM. Role of microRNAs in lymphoid biology and disease. Current opinion in hematology. 2011;18(4):266–72.176. Thai T-H, Calado DP, Casola S, Ansel KM, Xiao Ch et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316(5824):604–8.177. Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 2008;28(5):621–629.178. O’Connell RM, Zhao JL, Rao DS. MicroRNA function in myeloid biology. Blood. 2011; 118(11):2960-9.179. Helgason CD, Kalberer CP, Damen JE, Chappel SM, Pineault N et al. A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of b lymphocytes in ship -/- mice. The Journal of Experimental Medicine. 2000;191(5):781–94.180. Yin Q, Wang X, McBride J, Fewell C, Flemington E. B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. The Journal of biological chemistry. 2007;283(5):2654–62.181. Mraz M, Kipps TJ. MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leukemia & lymphoma. 2013;54(8):1836–9.182. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. PNAS. 2006;103(18):7024–9.183. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007; 316(5824): 608–611.184. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. PNAS. 2012;109(26):E1695–704.185. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. PNAS. 2007;104(5):1604–9.186. Tili E, Michaille J-J, Cimino A, Costinean S, Dumitru CD et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. Journal of Immunology. 2007;179(8):5082–9.187. Yin Q, McBride J, Fewell C, Lacey M, Wang X et al. MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. Journal of Virology. 2008;82(11):5295–306.145188. Zuo T, Wang L, Morrison C, Chang X, Zhang H et al. FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. Cell. 2007;129(7):1275–1286.189. McInnes N, Sadlon TJ, Brown CY, Pederson S, Beyer M et al. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene. 2012;31(8):1045–54.190. Li P, Grgurevic S, Liu Z, Harris D, Rozovski U et al. Signal transducer and activator of transcription-3 induces MicroRNA-155 expression in chronic lymphocytic leukemia. PloS one. 2013;8(6):e64678. doi: 10.1371/journal.pone.0064678.191. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M. Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Research. 2008;36(20):6608–19.192. Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA CB. Virally induced cellular miR-155 plays a key role in B cell immortalization by EBV. Journal of Virology. 2010:11670–8.193. Gottwein E, Mukherjee N, Sachse C, et al. A viral microRNA functions as an ortholog of cellular miR-155. Nature. 2009;450(7172):1096–1099.194. Skalsky RL, Samols M a, Plaisance KB, Boss IW, Riva A et al. Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. Journal of Virology. 2007;81(23):12836–45.195. Moreau-Gachelin F, Tavitian A, Tambourin P. PU.1 is aputative oncogene in virally induced murine erytroleukemias. Nature. 1988;331:277–280.196. Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell. 1990;61(1):113–24.197. Oikawa T, Yamada T, Kihara-Negishi F,Yamamoto H, Kondoh N et al. The role of Ets family transcription factor PU.1 in hematopoietic cell differentiation, proliferation and apoptosis. Cell Death and Differentiation. 1999;6(7):599–608.198. Scott E, Simon MC, Singh H. Requirement of transcription factor PU. 1 in the development of multiple hematopoietic lineages. Science. 1994;265(5178):1573–1577.199. DeKoter RP, Kamath MB, Houston IB. Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models. Blood cells, molecules & diseases. 2007;39(3):316–20.200. Singh H, Pongubala JMR, Medina KL. Gene Regulatory Networks that Orchestrate the Development of B Lymphocyte. Mechanisms of Lymphocyte Activation and Immune Regulation XI (Gupta S, Alt F, Cooper M, Melchers F, Rajewsky K, eds.). Boston, MA: Springer US; 2007:57.201. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nature Genetics. 2004;36(6):624–30.146202. Cook W, McCaw B, Herring C, John DL, Foote SJ et al. PU. 1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood. 2004;104:3437–3444.203. Koschmieder S, Rosenbauer F, Steidl U, Owens BM, Tenen DG. Role of transcription factors C/EBPα and PU. 1 in normal hematopoiesis and leukemia. Int. J. Hematol. 2005;81(5):368–377.204. Tatetsu H, Ueno S, Hata H, Yamada Y, Takeya M et al. Down-regulation of PU.1 by methylation of distal regulatory elements and the promoter is required for myeloma cell growth. Cancer Research. 2007;67(11):5328–36.205. Vlckova P, Pospisil V, Stanek L, Burda P, Savvulidi F et al. Aggressive acute myeloid leukaemia in PU.1/p53 double mutant mice. Oncogene. 2013 (submitted).206. Roussel M, Saule S, Laqrou C, Rommens C, Beuq H et al. Three new types of viral oncogene of cellular origin specific for hematopoietic cell transformation. Nature. 1979;281:452–455.207. Oh IH, Reddy EP. The myb gene family in cell growth, differentiation and apoptosis. Oncogene. 1999;18(19):3017–33.208. Pattabiraman DR, Gonda TJ. Role and potential for therapeutic targeting of MYB in leukemia. Leukemia. 2013;27(2):269–77.209. Biedenkapp H, Borgmeyer U, Sippel A, Klempnauer KH. Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature. 1988;335(27):835–837.210. O’Rourke JP, Ness SA. Alternative RNA splicing produces multiple forms of c-Myb with unique transcriptional activities. Molecular and Cellular Biology. 2008;28(6):2091–101.211. Nakata Y, Shetzline S, Sakashita C, Kalota A, Rallapalli R et al. c-Myb contributes to G2/M cell cycle transition in human hematopoietic cells by direct regulation of cyclin B1 expression. Molecular and Cellular Biology. 2007;27(6):2048–58.212. Ramsay RG, Gonda TJ. MYB function in normal and cancer cells. Nature reviews. 2008;8(7):523–34.213. Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hematopoietic progenitor cells. Seminars in immunology. 2008;20(4):247–56.214. Fahl SP, Crittenden RB, Allman D, Bender TP. c-Myb is required for pro-B cell differentiation. Journal of Immunology. 2009;183(9):5582–92.215. Thomas MD, Kremer CS, Ravichandran KS, Rajewsky K, Bender TP. c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity. 2005;23(3):275–86.216. Carvalho TL, Mota-Santos T, Cumano A, Demengeot J, Vieira P. Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7(-/)- mice. The Journal of Experimental Medicine. 2001;194(8):1141–50.147217. Ferrari S, Torelli U, Serelli L, Donelli A, Wenturelli D et al. Study of the levels of expression of two in acute and chronic leukemias of both lymphoid and lineage. Leukemia research. 1985;9(7):833–842.218. Rosson D, Tereba A. Transcription of Hematopoietic-associated Oncogenes in Childhood Leukemia. Cancer research. 1983;43:3912–3918.219. Sarvaiya PJ, Schwartz JR, Hernandez CP, Rodriguez PC, Vedeckis W V. Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. American Journal of Hematology. 2012;87(10):969–76.220. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood. 2007;110(4):1251–61.221. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nature Genetics. 2007;39(5):593–5.222. Lidonnici MR, Corradini F, Waldron T, Bender TP, Calabretta B. Requirement of c-Myb for p210(BCR/ABL)-dependent transformation of hematopoietic progenitors and leukemogenesis. Blood. 2008;111(9):4771–9.223. Machová-Poláková K, Lopotová T, Klamová H, Burda P, Trnený M et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Molecular Cancer Research. 2011;10:41.224. Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell. 1991;65(4):677–89.225. Greig KT, de Graaf CA, Murphy JM, Carpinelli MR, Pang SHM et al. Critical roles for c-Myb in lymphoid priming and early B-cell development. Blood. 2010;115(14):2796.226. Waldron T, De Dominici M, Soliera AR, Audia A, Iacobucci I et al. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia. 2012;26(4):644–53.227. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevski AM et al. MicroRNA profiling of the murine hematopoietic system. Genome Biology. 2005;6(8):R71.228. Xiao C, Calado DP, Galler G, Thai T-H, Patterson HCh et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131(1):146–59.229. Chen S, Wang Z, Dai X, Pan J, Ge J et al. Re-expression of microRNA-150 induces EBV-positive Burkitt lymphoma differentiation by modulating c-Myb in vitro. Cancer Science. 2013;104(7):826–34.148230. Lin Y-C, Kuo M-W, Yu J, Kuo H-H, Lin R-J et al. c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Molecular Biology and Evolution. 2008;25(10):2189–98.231. Kastner P, Chan S. PU.1: a crucial and versatile player in hematopoiesis and leukemia. The International Journal of Biochemistry & Cell Biology. 2008;40(1):22–7.232. Qiu C, Wang J, Yao P, Wang E, Cui Q. microRNA evolution in a human transcription factor and microRNA regulatory network. BMC systems biology. 2010;4:90.233. Chen J, Wang B-C, Tang J-H. Clinical significance of microRNA-155 expression in human breast cancer. Journal of Surgical Oncology. 2012;106(3):260–6.234. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO. 2003;22(17):4478–88.235. Westin E, Gallo R, Arya S, Eva A, Souza LM et al. Differential expression of the amv gene in human hematopoietic cells. Proc. Nati Acad. Sci. 1982;79:2194–2198.236. Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J. Clin. Invest. 2010;120(2):593-606.237. Pulvertaft R. Cytology of Burkitt’s tumour (African lymphoma). Lancet. 1964:238–40.238. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. J. Exp. Med. 1953;97(5):695-710.239. Drexler H, Quentmeier H, MacLeod R, Uphoff CC, Hu ZB. Leukemia cell lines: In vitro models for the study of acute promyelocytic leukemia. Leukemia research. 1995; (10):681-91.240. Rekhtman N, Choe K, Matushansky I, Murray S, Stopka T, Skoultchi AI. PU. 1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Molecular and Cellular Biology. 2003;23(21):7460–7474.241. Stopka T, Amanatullah DF, Papetti M, Skoultchi AI. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO. 2005;24(21):3712–23.242. Saeed A, Sharov V, White J, Li J, Liang W et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374–8.243. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005;102(43):15545–50.244. Ge T, Liang Y, Fu R, Wang G, Ruan EB et al. Expressions of miR-21, miR-155 and miR-210 in plasma of patients with lymphoma and its clinical significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2012;2:305–9.149245. Pesta M, Vargova K, Vargova J, Dusilkova N, Kulvait V et al. Model to understand clinical relevance of prognostics of CLL in real time. Blood. 2013 (in prep.).246. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54.247. Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nature Genetics. 2006;38(1):27–37.248. Mankaï A, Buhé V, Hammadi M, Youinou P, Ghedira I et al. Improvement of rituximab efficiency in chronic lymphocytic leukemia by CpG-mediated upregulation of CD20 expression independently of PU.1. Annals of the New York Academy of Sciences. 2009;1173:721–8.249. Ghani S, Riemke P, Schönheit J, Lenze D, Stumm J et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood. 2011;118(8):2275–84.250. O’Neil J, Look A. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene. 2007;26(47):6838–49.251. Tam W, Hughes SH, Hayward WS, Besmer P. Avian bic , a Gene Isolated from a Common Retroviral Site in Avian Leukosis Virus-Induced Lymphomas That Encodes a Noncoding RNA, Cooperates with c-myc in Lymphomagenesis and Erythroleukemogenesis. Journal of Virology. 2002;76(9):4275–4286.252. Neiman PE, Elsaesser K, Loring G, Kimmel R. Myc oncogene-induced genomic instability: DNA palindromes in bursal lymphomagenesis. PLoS Genetics. 2008;4(7):e1000132.253. Mo X, Kowenz-Leutz E, Laumonnier Y, Xu H, Leutz A. Histone H3 tail positioning and acetylation by the c-Myb but not the v-Myb DNA-binding SANT domain. Genes Dev. 2005;19(20):2447–57.254. Toth CR, Hostutler RF, Baldwin AS, Bender TP. Members of the nuclear factor kappa B family transactivate the murine c-myb gene. J. Biol. Chem. 1995;270(13):7661-71.255. Golay J, Capucci A, Arsura M, Castellano M, Rizzo V, Introna M. Expression of c-myb and B-myb, but not A-myb, correlates with proliferation in human hematopoietic cells. Blood. 1991;77(1):149–58.256. Golay J, Loffarelli L, Luppi M, Castellano M, Introna M. The human A-myb protein is a strong activator of transcription. Oncogene. 1994;9:2469-79.257. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood. 2011;118(13):3470–8.258. Moussay E, Wang K, Cho J-H, van Moer K, Pierson S et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. PNAS. 2011;108(16):6573–8.150259. Hussein K, Theophile K, Büsche G, Schlegelberger B, Göhring G et al. Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leukemia research. 2010;34(3):328–34.260. Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood. 2005;106(5):1590–600.261. Okuno Y, Huang G, Rosenbauer F, et al. Potential autoregulation of transcription factor PU. 1 by an upstream regulatory element. Molecular and Cellular Biology. 2005;25(7):2832–2845.262. Yuki H, Ueno S, Tatetsu H, Niiro H, Iino T et al. PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells. Blood. 2013;121(6):962–70.263. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 2010;115(9):1755–64.264. Kosaka N, Ochiya T. Unraveling the Mystery of Cancer by Secretory microRNA: Horizontal microRNA Transfer between Living Cells. Frontiers in Genetics. 2011;2:97.265. Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular cell. 2010;39(1):133–44.266. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES et al. Functional delivery of viral miRNAs via exosomes. PNAS. 2010;107(14):6328–33.267. Hegde SP, Kumar A, Kurschner C, Shapiro L. c-Maf Interacts with c-Myb To Regulate Transcription of an Early Myeloid Gene during Differentiation c-Maf Interacts with c-Myb To Regulate Transcription of an Early Myeloid Gene during Differentiation. Molecular and Cellular Biology. 1998;18(5): 2729–2737.268. Fan LP and Shen JZ. Expression of Maf-b mRNA in de novo leukemia patients and its clinical significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010;18:1147–50.269. Zhang Y, Roccaro AM, Rombaoa C, Flores L, Obad S et al. LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood. 2012;120(8):1678–86.270. Han H-J, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452(7184):187–93.271. McInnes N, Sadlon TJ, Brown CY, Pederson S, Beyer M et al. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene. 2012: 1045–1054.272. Cory S, Huang DCS, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22(53):8590–607.273. Sánchez-Beato M, Sánchez-Aguilera A, Piris MA. Cell cycle deregulation in B-cell lymphomas. Blood. 2003;101(4):1220–35.151274. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS. 2005;102(39):13944–9.275. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. The New England Journal of Medicine. 2005;352(8):804–15.276. García-Muñoz R, Galiacho VR, Llorente L. Immunological aspects in chronic lymphocytic leukemia (CLL) development. Ann. Hematol. 2012;91(7):981–96.277. Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annual Review of Immunology. 2002;20:165–96.278. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102(5):553–63.279. Oppezzo P, Dighiero G. What do somatic hypermutation and class switch recombination teach us about chronic lymphocytic leukaemia pathogenesis? Current Top Microbiol. Immunol. 2005;294:71–89.280. Marantidou F, Dagklis A, Stalika E, Korkolopoulou P, Saetta A et al. Activation-induced cytidine deaminase splicing patterns in chronic lymphocytic leukemia. Blood cells, molecules & diseases. 2010;44(4):262–7.281. Komeno Y, Kitaura J, Watanabe-Okochi N, Kato N, Oki T et al. AID-induced T-lymphoma or B-leukemia/lymphoma in a mouse BMT model. Leukemia. 2010;24(5):1018–24.282. Lee SC, Bottaro A, Chen L, Insel RA. Mad1 is a transcriptional repressor of Bcl-6. Molecular Immunology. 2006;43(12):1965–71.283. Dent AL, Vasanwala FH, Toney LM. Regulation of gene expression by the proto-oncogene BCL-6. Critical Reviews in Oncology/Hematology. 2002;41(1):1–9.284. Dogan A, Bagdi E, Munson P, Isaacson PG. CD10 and BCL-6 expression in paraffin sections of normal lymphoid tissue and B-cell lymphomas. The American Journal of Surgical Pathology. 2000;24(6):846–852.285. Sandhu SK, Volinia S, Costinean S, Galasso M, Neinast R et al. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eμ-miR-155 transgenic mouse model. PNAS. 2012;109(49):20047–52.286. Rai D, Karanti S, Jung I, Dahia PLM, Aguiar RCT. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer genetics and cytogenetics. 2008;181(1):8–15.287. Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P et al. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Research. 2011;39(11):4664–79.152288. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T et al. Silencing of microRNAs in vivo with “antagomirs”. Nature. 2005;438(7068):685–9.289. Lieu YK, Reddy EP. Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. PNAS. 2009;106(51):21689–94.290. Zuber J, Rappaport AR, Luo W, Wanq E, Chen C et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes dev. 2011;25(15):1628–40.291. Zuber J, Brodin-Sartorius A, Lapidus N, Patey N, Tosolini M et al. FOXP3-enriched infiltrates associated with better outcome in renal allografts with inflamed fibrosis. Nephrology, dialysis, transplantation. 2009;24(12):3847–54.292. Baer MR, Augustinos P, Kinniburgh AJ. Defective c-myc and c-myb RNA turnover in acute myeloid leukemia cells. Blood. 1992;79(5):1319–26.293. Luger SM, O`Brien SG, Ratajczak J, Mick R, Stadtmauer EA et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood. 2002;99(4):1150–1158.Other sources of literature (internet links):[1] http://moon.ouhsc.edu/kfung/jty1/HemeLearn/HemeCase/PB-001-Ans.htm (B-CLL cells blood smear picture)[2] http://www.ncbi.nlm.nih.gov/gene/114614 (MIR155HG gene)[3]http://www.ebi.ac.uk/ebisearch/search.ebi?query=MYB&db=allebi&requestFrom=searchBox&submit=Search (MYB gene)[4] http://ncicll.com/(WHO B-CLL classification)[5]http://www.stemcell.com/en/Products/All-Products/RosetteSep-Human-B-Cell-Enrichment-Cocktail.aspx (Rosette separtion scheme)[6]http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041461.pdf (TaqMan qRT-PCR)[7] http://bioinfogp.cnb.csic.es/tools/venny/index.html (Wenn diagram)[8] http://clinicaltrialsfeeds.org/clinical-trials/show/NCT00780052 (MYB trial study, 2008)
 
Univerzita Karlova | Informační systém UK