Modelling Durations Using Artificial Neural Networks
Název práce v češtině: | Modelování durací pomocí neuronových sítí |
---|---|
Název v anglickém jazyce: | Modelling Durations Using Artificial Neural Networks |
Klíčová slova: | cenove durace, neuronove ste, geneticke algoritmy |
Klíčová slova anglicky: | price durations,articial neural networks, genetic algorithms |
Akademický rok vypsání: | 2011/2012 |
Typ práce: | diplomová práce |
Jazyk práce: | angličtina |
Ústav: | Institut ekonomických studií (23-IES) |
Vedoucí / školitel: | doc. PhDr. Jozef Baruník, Ph.D. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 20.06.2012 |
Datum zadání: | 20.06.2012 |
Datum a čas obhajoby: | 28.01.2014 00:00 |
Místo konání obhajoby: | IES |
Datum odevzdání elektronické podoby: | 06.01.2014 |
Datum proběhlé obhajoby: | 28.01.2014 |
Oponenti: | PhDr. Martin Dózsa |
Kontrola URKUND: | ![]() |
Předběžná náplň práce v anglickém jazyce |
The thesis introduces Arti�cial Neural Networks (ANN) to the �eld of �nancial
durations. We begin by reviewing the �ndings about �nancial durations and models applied to analyze them. ANNs are then surveyed and one of the pos- sible network architectures is selected for the forecasting. The selected ANN is a feed-forward network, with one hidden layer, a sigmoid activation func- tion and a genetic algorithm for optimization. We use original and diurnally adjusted data for estimation and in contrast to other duration models, ANNs do not require data pre-processing. Therefore forecasts are estimated in one step without removing seasonalities for raw data. The estimates of the ANN are compared to estimates of the Autoregressive Conditional Duration (ACD) model, which serves as a benchmark for forecasting capabilities of the ANNs. The �ndings con�rm that ANNs can be used to model durations with a similar accuracy as the ACD model. In the case of raw data the model slightly out- performs the ACD model, while the opposite is true for adjusted data, however the forecasting ability di�erence is not signi�cant. |