Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Modeling, Analysis and Computation of heterogeneous catalysis in microchannels
Název práce v češtině: Modelování, analýza a počítačové simulace heterogenní katalýzy v mikroreaktorech
Název v anglickém jazyce: Modeling, Analysis and Computation of heterogeneous catalysis in microchannels
Klíčová slova: heterogenní katalýza, spárovaný reakce-difuze a konvekce-difuze systém, teorie nelineárních semigrup, bio-diesel mikroreaktor
Klíčová slova anglicky: heterogeneous catalysis, coupled reaction-diffusion/convection-diffusion system, nonlinear semigroup theory, bio-diesel microreactors
Akademický rok vypsání: 2011/2012
Typ práce: diplomová práce
Jazyk práce: angličtina
Ústav: Matematický ústav UK (32-MUUK)
Vedoucí / školitel: prof. RNDr. Josef Málek, CSc., DSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 05.02.2012
Datum zadání: 14.02.2012
Datum potvrzení stud. oddělením: 20.02.2012
Datum a čas obhajoby: 18.09.2013 00:00
Datum odevzdání elektronické podoby:01.08.2013
Datum odevzdání tištěné podoby:02.08.2013
Datum proběhlé obhajoby: 18.09.2013
Oponenti: doc. RNDr. Tomáš Bárta, Ph.D.
 
 
 
Konzultanti: Prof. Dr. Dieter Bothe
Zásady pro vypracování
1. Formulate the mathematical model (see Ref. [1]) and search for and survey related publications.
2. Using the framework of interating continua (theory of mixtures), develop a thermodynamically consistant modelsthat include not only chemica but also mechanical and thermal effects (cf. Heida/Malek/Rajagopal 1 a 2)
3. Introduce concept of solution (strong, weak) and investigate its mathematical properties (for example, prove existence and uniqueness of strong solutions using standard methods; extend the L^2 technique (see papers Pierre and Bothe/Pierre) to this system and use bootstrap to obtain global existence, etc.)
4. Formulate a parabolized form of the system following the ideas in the Ref. [4] (Bothe/Lojewski/Warnecke)
5. Implement a standard numerical scheme to solve this parabolized form
6. Perform numerical experiments to see how the system behaves in the limit of fast reaction/sorption
7. If time allows, prove a rigorous result about the fast limit, following the approach of Ref. [2] (Bothe/Pierre)
Seznam odborné literatury
[1] D. Bothe: Periodic solutions of a nonlinear evolution problem from heterogeneous catalysis, Differential and Integral Equations, Vol. 14, pp. 641-670 (2001).
[2] D. Bothe, M. Pierre: Quasi-steady-state approximation for a reaction–diffusion system with fast intermediate, J. Math. Anal. Appl., Vol. 368, pp. 120-132 (2010).
[3] D. Bothe, M. Pierre: The instanteneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Cont. Dynamical Systems Se. S, Vol. 5, pp. 49-59 (2012).
[4] D. Bothe, A. Lojewski, H.-J. Warnecke: Fully resolved numerical simulation of reactive mixing in a T-shaped micromixer using parabolized species equations, Chemical Engineering Science, Vol. 66, pp.6424–6440 (2011).
[5] M. Heida, J. Málek, K. R. Rajagopal: On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework, Z. Angew. Math. Physik, Vol. 63, pp. 145-169 (2012)
[6] M. Heida, J. Málek, K. R. Rajagopal: On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynamic framework, Z. Angew. Math. Physik (in print) (2012)
and other recommended literature
Předběžná náplň práce
One important recent means for intensification of chemical processes employs microreactors. This is due to the fact that a smaller length scale leads to an acceleration of transport processes, since fluxes scale with the area and the area per volume ratio increases with decreasing spatial dimensions. Chemical reactions often involve catalytic substances and the latter can be immobilized as a coating of the microreactor wall. Here, again, the higher area per volume ratio leads to better performance. But, despite the small sub-millimeter dimensions, diffusion is still slow especially in liquids where Schmidt numbers are in the range of 1000. Therefore, a better understanding of the strong interplay between transport processes, sorption as exchange mechanism between bulk and boundary as well as chemical transformations is strongly required. This can be achieved based on mathematical modeling and numerical simulation. The present master thesis project aims at the development of a thermodynamically consistent mathematical model based on continuum mechanics, its mathematical analysis concerning basic questions of existence, uniqueness and global existence, and the numerical solution for a given simple rectangular channel geometry and strictly laminar flow conditions. A further analytical issue is the rigorous limit for fast sorption kinetics and/or fast boundary reaction kinetics.
Předběžná náplň práce v anglickém jazyce
One important recent means for intensification of chemical processes employs microreactors. This is due to the fact that a smaller length scale leads to an acceleration of transport processes, since fluxes scale with the area and the area per volume ratio increases with decreasing spatial dimensions. Chemical reactions often involve catalytic substances and the latter can be immobilized as a coating of the microreactor wall. Here, again, the higher area per volume ratio leads to better performance. But, despite the small sub-millimeter dimensions, diffusion is still slow especially in liquids where Schmidt numbers are in the range of 1000. Therefore, a better understanding of the strong interplay between transport processes, sorption as exchange mechanism between bulk and boundary as well as chemical transformations is strongly required. This can be achieved based on mathematical modeling and numerical simulation. The present master thesis project aims at the development of a thermodynamically consistent mathematical model based on continuum mechanics, its mathematical analysis concerning basic questions of existence, uniqueness and global existence, and the numerical solution for a given simple rectangular channel geometry and strictly laminar flow conditions. A further analytical issue is the rigorous limit for fast sorption kinetics and/or fast boundary reaction kinetics.
 
Univerzita Karlova | Informační systém UK