Value-at-risk forecasting with the ARMA-GARCH family of models during the recent financial crisis
Název práce v češtině: | Odhadování value-at-risk s využitím ARMA-GARCH modelů během poslední finanční krize |
---|---|
Název v anglickém jazyce: | Value-at-risk forecasting with the ARMA-GARCH family of models during the recent financial crisis |
Klíčová slova: | VaR, analýza rizika, finanční krize, podmíněná volatilita, conditional coverage, odhad modelů, akciový index, garch, egarch, tarch, moving average proces, autoregresivní proces |
Klíčová slova anglicky: | VaR, risk analysis, financial crisis, conditional volatility, conditional coverage, stock index, garch, egarch, tarch, moving average process, autoregressive process |
Akademický rok vypsání: | 2011/2012 |
Typ práce: | rigorózní práce |
Jazyk práce: | angličtina |
Ústav: | Institut ekonomických studií (23-IES) |
Vedoucí / školitel: | PhDr. Mgr. Milan Rippel |
Řešitel: | skrytý![]() |
Datum přihlášení: | 16.09.2011 |
Datum zadání: | 16.09.2011 |
Datum a čas obhajoby: | 19.10.2011 00:00 |
Místo konání obhajoby: | IES |
Datum odevzdání elektronické podoby: | 20.09.2011 |
Datum proběhlé obhajoby: | 19.10.2011 |
Oponenti: | PhDr. Jakub Seidler, Ph.D. |
Seznam odborné literatury |
Alexander, C.: „Market risk analysis : Volume III, Pricing, hedging and trading financial instruments.
Angelidis, T., A. Benos, & S. Degiannakis (2004): „The use of garch models in var estimation." Statistical Methodology 1(1-2): pp. 105-128. Bollerslev, T. (1986): „Generalized autoregressive conditional heteroskedasticity." Journal of Econometrics 31: pp. 307-327. Christoffersen, P. F. (1998): „Evaluating interval forecasts." International Economic Review 39(4): pp. 841-862. Engle, R. F. (1982): „Autogregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation." Econometrica 50: pp. 987-1008. Holton, G. A. (2003): „Value at Risk : theory and practice. Amsterdam : Academic Press, 405 s. ISBN 0123540100. Huang, A. Y. (2010): „An optimization process in value-at-risk estimation." Review of Financial Economics 19(3): pp. 109-116. Jorion, P. (2007): Value at risk: The New Benchmark for Managing Financial Risk. New York, NY [u.a.]: McGraw-Hill, 3. ed. edition. Kupiec, P. H. (1995): „Techniques for verifying the accuracy of risk measurement models." Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.). Lopez, J. A. (2001): „Evaluating the predictive accuracy of volatility models." Journal of Forecasting 20(2): pp. 87-109. Terasvirta, T. (2006): „An introduction to univariate garch models." Working papers in Economics and Finance 646: p. 30. Zakoian, J.-M. (1994): „Threshold heteroskedastic models." Journal of Economic Dynamics and Control 18(5): pp. 931-955. |
Předběžná náplň práce |
Práce se zabývá analýzou volatility šesti akciových indexů (DJI, GSPC, IXIC, FTSE, GDAXI a N225) mezi léty 2004 až 2009. Uvedené období spadá do periody s relativně vyšší volatilitou, než je u uvedených indexů obvyklé. Data z akciových indexů jsou analyzována pomocí ARMA, ARCH, GARCH, TARCH a GARCH modelů s různými parametry nastavení a za předpokladů rozdělení logaritmizovaných výnosů jedním ze statistických rozdělení – normální, Student-t a GED.
Všechny modely jsou periodicky přepočítávané v přibližně půlroční periodě následně porovnány co do přesnosti pomocí méně známé metody conditional coverage, která je schopná porovnat jak procentuální shodu aplikovaného modelu, tak jeho negativní vlastnosti jako například clusterování chyb. |
Předběžná náplň práce v anglickém jazyce |
The work analysis volatility of six stock indices (DJI, GSPC, IXIC, FTSE, GDAXI a N225) between the years 2004 and 2009. The selected period is a preiod with relatively high volatility than usual for the mentioned indices. Data from stock indices are analyzed using ARMA, ARCH, GARCH, TARCH and GARCH models with various parameters and under the premise of log-returns modeled using one of the Normal, Student-t and GED distributions. All models are periodically reestimated in approximately six months long periods and their predictive accuracy is tested using a less known method called conditional coverage, which is able to compare the models not only based on the failure rates but also takes into account clustering of violations. |