
C H A R L E S U N I V E R S I T Y
FA C U LT Y O F M AT H E M AT I C S A N D P H Y S I C S

H A B I L I TAT I O N T H E S I S

L I N E A R A N D E X A C T E X T E N D E D F O R M U L AT I O N S

hans raj tiwary

Department of Applied Mathematics
2016

Hans Raj Tiwary: Linear and Exact Extended Formulations,
Habilitation Thesis, © 2016

For Maria and Palomito.

A C K N O W L E D G M E N T S

This thesis would not have taken form if not for the numerous won-
derful collaborators with whom I had the pleasure and honor to work.
My first and foremost thanks to all of them.

I would also like to thank the various mentors I had over the years:
Raimund Seidel, Günter M. Ziegler, and Samuel Fiorini. I may not
have learnt everything that I could have learnt from them, but the
things that I did learn were numerous.

Special thanks also to members of KAM and IUUK for a very
friendly and encouraging environment.

Last but not the least, I would like to thank my wife Maria. Without
her support I would be utterly lost.

v

The finger can point to the moon’s location.
However, the finger is not the moon.

To look at the moon, it is necessary to gaze beyond the finger, right?”

— Hotei, The laughing Budhha

P R E FA C E

In recent years there has been a flurry of activity regarding bounds
on the extension complexity of combinatorial polytopes. This work
covers some of those results in which I took part. At present, this
document is part of my habilitation thesis and as such I do not make
any attempt to be comprehensive about research on extended formu-
lations. To a knowledgeable reader it may be glaringly obvious that
some important aspects of the recent research related to extended
formulations are missing from this work. In particular there is essen-
tially no discussion about approximate extended formulations and
semidefinite extended formulations. Hopefully a future version of
this document will discuss these aspects.

This document – in its current form – is best read as a companion
and commentary to ten of the research articles that I have coauthored.
These articles are listed after the table of contents. It has been my in-
tent to disassemble and reassemble the contents of these papers to
provide the reader with a coherent view of my research in recent
years. While individual tastes may differ regarding the value of these
lines of inquiry, I have attempted to sew them with a common thread.
Naturally, this document also contains results in which I played no
part and I have attempted to cite the correct source for those state-
ments. I take full responsibility for any omissions and misattributions,
and hope that if a reader notices such an issue they will kindly notify
me.

The reader may also notice that this document does not contain
any lemmata or theorems, just a sequence of propositions and a few
exercises. This choice was made to keep the size of the document
reasonable for a habilitation thesis. Listing propositions and exercises
had an obvious benefit for me: I could get away with listing only
some of the proofs. I have attempted to provide a link to the actual
proof where I could find one, but for some propositions and exercises
I am not aware of any text that lists them in the same form as stated
in this work. This does not mean that they are difficult to prove or are
novel, but often a correct proof would require technical discussions
that we do not wish to have. I can only hope that the exercises and the
propositions that have been stated without proofs are simple enough
for someone with basic knowledge of the material. I am also hopeful
that a future revision of this work will include the missing proofs.

In its present form, this work assumes a relatively high level of
familiarity with polytopes and communication complexity. This does
not mean that the reader needs to be an expert in these fields. It is

vii

my estimate that someone pursuing a PhD in theoretical computer
science or a related field should be able to follow the text, fill missing
proofs, and understand the presented propositions.

It is my hope that anyone interested in extended formulations finds
this document helpful. Any comments on how to better this text is
most welcome.

Hans Raj Tiwary

viii

C O N T E N T S

1

0 introduction 3

i ingredients 9

1 polytopes 11

1.1 Basic Facts about Polytopes 11

1.2 The role of embedding 15

1.3 Some Common Operations 17

2 communication complexity 21

2.1 Nonnegative rank . 21

2.2 Communication Protocols 24

2.3 Complexity of computing a function 27

3 extended formulations 29

3.1 Extension Complexity 30

3.2 Effects of common operations 34

3.3 Some canonical polytope families 36

ii recipes 43

4 turing reductions 45

4.1 Relatives of cut polytopes 45

4.2 Embedding arguments from Turing Reductions 47

4.3 Difficulities in handling General reductions 52

5 compact languages 53

5.1 Problems as Languages 54

5.2 Compact Languages . 55

5.3 Closure properties . 56

6 one-pass languages 59

6.1 Online Turing Machines 59

6.2 Extension Complexity of One-pass Languages 59

6.3 Applications . 63

iii variations 67

7 fpt extended formulations 69

7.1 Parameterized extension complexity 69

7.2 The Independent Set Polytope 70

7.3 FPT Upper bounds . 73

8 H-free extended formulations 77

8.1 H-free Extensions . 77

8.2 Matching problems . 78

8.3 The TSP Polytope . 80

9 weak extended formulations 89

9.1 P-completeness of Linear Programming 89

9.2 Weak Extended Formulations 90

9.3 Weak extension for P/poly 92

ix

x contents

bibliography 95

iv appendix 101

a exponential lower bounds for polytopes in com-
binatorial optimization 103

b extended formulations , nonnegative factoriza-
tions , and randomized communication protocols 129

c extended formulations for polygons 151

d on the extension complexity of combinatorial

polytopes 165

e extension complexity of formal languages 189

f parameterized extension complexity of indepen-
dent set and related problems 207

g extension complexity, mso logic , and treewidth 221

h a generalisation of extension complexity that

captures P 237

i on the H-free extension complexity of the tsp 245

j polynomial size linear programs for problems

in P 259

L I S T O F F I G U R E S

Figure 1 An H- and a V-polytope 11

Figure 2 Irredundant H- and V-representation of an oc-
tagon . 12

Figure 3 An octagon as a slice of 3-dimensional cone. . 15

Figure 4 A communication protocol viewed as a tree . . 25

Figure 5 A deformed hypercube projects to a regular
octagon. 29

Figure 6 A 5-subdivided prism over K4. 82

Figure 7 Construction of a comb from given odd set . . 84

Figure 8 Constructing a TSP tour from a perfect matching. 85

Figure 9 A circuit to compute whether a 4 node graph
has a perfect matching 93

xi

P U B L I C AT I O N S

This thesis is based on the following ten research articles that I have
coauthored. A copy of each article is attached in the appendices.

[1] David Avis and Hans Raj Tiwary. “A generalization of exten-
sion complexity that captures P.” In: Information Processing Let-
ters 115.6-8 (2015), pp. 588–593. doi: 10.1016/j.ipl.2015.02.
005.

[2] David Avis and Hans Raj Tiwary. “On the extension complex-
ity of combinatorial polytopes.” In: Mathematical Programming
153.1 (2015), pp. 95–115. doi: 10.1007/s10107-014-0764-2.

[3] David Avis and Hans Raj Tiwary. “On the H-free extension
complexity of the TSP.” In: Optimization Letters (2016), pp. 1–11.
issn: 1862-4480. doi: 10.1007/s11590-016-1029-1.

[4] David Avis, David Bremner, Hans Raj Tiwary, and Osamu Watan-
abe. “Polynomial size linear programs for non-bipartite match-
ing problems and other problems in P.” In: CoRR abs/1408.0807

(2014). eprint: arXiv:1408.0807.

[5] Yuri Faenza, Samuel Fiorini, Roland Grappe, and Hans Raj Ti-
wary. “Extended formulations, nonnegative factorizations, and
randomized communication protocols.” In: Mathematical Pro-
gramming 153.1 (2015), pp. 75–94. doi: 10.1007/s10107-014-
0755-3.

[6] Samuel Fiorini, Thomas Rothvoß, and Hans Raj Tiwary. “Ex-
tended Formulations for Polygons.” In: Discrete & Computational
Geometry 48.3 (2012), pp. 658–668. doi: 10.1007/s00454-012-
9421-9.

[7] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Ti-
wary, and Ronald de Wolf. “Exponential Lower Bounds for
Polytopes in Combinatorial Optimization.” In: Journal of the ACM
62.2 (2015), p. 17. doi: 10.1145/2716307.

[8] Jakub Gajarský, Petr Hliněný, and Hans Raj Tiwary. “Parame-
terized Extension Complexity of Independent Set and Related
Problems.” In: CoRR abs/1511.08841 (2015). eprint: arXiv:1511.
08841.

[9] Petr Kolman, Martin Koutecký, and Hans Raj Tiwary. “Exten-
sion Complexity, MSO Logic, and Treewidth.” In: Proceedings of
the 15th SWAT To appear (2016). eprint: arXiv:1507.04907.

[10] Hans Raj Tiwary. “Extension Complexity of Formal Languages.”
In: ArXiv e-prints (Mar. 2016). arXiv: 1603.07786 [cs.CC].

xiii

http://dx.doi.org/10.1016/j.ipl.2015.02.005
http://dx.doi.org/10.1016/j.ipl.2015.02.005
http://dx.doi.org/10.1007/s10107-014-0764-2
http://dx.doi.org/10.1007/s11590-016-1029-1
arXiv:1408.0807
http://dx.doi.org/10.1007/s10107-014-0755-3
http://dx.doi.org/10.1007/s10107-014-0755-3
http://dx.doi.org/10.1007/s00454-012-9421-9
http://dx.doi.org/10.1007/s00454-012-9421-9
http://dx.doi.org/10.1145/2716307
arXiv:1511.08841
arXiv:1511.08841
arXiv:1507.04907
http://arxiv.org/abs/1603.07786

"The time has come," the Walrus said,
"To talk of many things:
Of shoes–and ships–and sealing-wax–
Of cabbages–and kings–
And why the sea is boiling hot–
And whether pigs have wings."

— The Walrus and The Carpenter [17]

1

0
I N T R O D U C T I O N

history

This thesis deals with recent advances in the theory of extended for-
mulations, with emphasis on linear and exact formulations. A linear
and exact extended formulation for a polytope P is another polytope
Q such that P is a projection of Q. If one wants to optimize a linear
function over P one can also obtain the same result by optimizing
instead over an extended formulation with the weights modified ac-
cording to the projection matrix that produces P from Q (cf. Chapter
3). Many polytopes that require an exponential number of facets to
describe can be obtained as a projection of a higher dimensional poly-
tope with just polynomially many facets [19, 39, 62]. The importance
of extended formulations, thus, is clear for combinatorial optimiza-
tion.

The directions that are explored in this thesis come from the re-
verse perspective. In the late eighties Swart attempted to prove that
PTIME = NP by writing a polynomial sized linear program (LP) for
the traveling salesman problem. Due to the large size of the LP and
its complicated nature, it was difficult to find an error in the con-
struction. In a groundbreaking paper Yannakakis showed that any
symmetric1 LP whose feasible region is an extended formulation for
the TSP polytope must have exponentially many facets, thus proving
that Swart’s LP was erroneous. Whether or not the requirement of
symmetry could be removed was left by Yannakakis as an open prob-
lem. Yannakakis believed that asymmetry should not help one avoid
exponential size [63].

This question remained dormant for about two decades when Kaibel,
Pashkovich, and Theis showed that asymmetry does play an impor-
tant role in reducing the size of an extended formulation [40]. They
gave explicit polytopes whose symmetric extended formulations re-
quired exponential size but for which asymmetric extensions of poly-
nomial size existed. Two years later Rothvoss showed that there are
0/1 polytopes that require exponential size extended formulations
[54]. These two results created a fresh interest in proving that symme-
try did not help for polytopes related to NP-hard problems such as
MAX-CUT or TSP. Soon afterwards in a paper coauthored by Fiorini,
Pokutta, Massar, de Wolf, and the present author, it was shown that
the TSP polytope requires exponential sized extended formulation
[27].

The final piece of the puzzle initiated by Yannakakis was supplied
by Rothvoss again who showed that even the perfect matching poly-
tope – which corresponds to the polynomial time solvable problem

1 The reader need not concern themselves with the meaning of a symmetric LP; it
suffices to think of it as a technical requirement that Swart’s LP satisfied.

3

4 introduction

of identifying whether a graph has a perfect matching – also requires
exponential size extended formulations [55]. The rusults of Rothvoss
and Fiorini et al. created a flurry of activity for proving lower bounds
for extension complexity of polytopes. While Rothvoss’ result implied
that even “easy” problems may require large extended formulations,
the unconditional nature of the lower bounds – at least for “hard”
problems seemed to match the conventional conditional bounds rely-
ing on complexity assumptions such as PTIME 6= NP.

At this point the lines of equiry about bounds on the size of small-
est extensions of a polytope had branched into widely different direc-
tions. The notion of extended formulations was generalized to arbi-
trary conic lifts [33]; lower bounds were obtained for approximation
[9, 10, 18] and semidefinite extensions [12, 25, 46]; and connections
with physical theories [28] and information theory [8, 11] were dis-
covered. The previous list of citations do not do any justice to the
widely diverse results that have been obtained since then, and we
will not even attempt to have a comprehensive citation in order to
keep the focus on works where the present author has taken part.

summary and organization of the thesis

This thesis summarizes ten articles that the present author has coau-
thored and that relate to extended formulations. Out of the ten ar-
ticles six have appeared in peer-reviewed journals [1–3, 24, 26, 27].
The article [44] has been accepted for presentation in a peer-reviewed
coference, and [4, 30] and [60] are under peer-review.

This thesis is best read as a commentary to these ten accompanying
articles. The contents of these ten articles have been disassembled and
reassembled as smaller parts of a larger picture. The rest of thesis is
organized into three parts, each containing three chapters.

0.0.1 Part One: Ingredients

Part one of the thesis describes the basic objects that we deal with:
polytopes, communication complexity, and extended formulations. It
is the intent of the author to present the basic notions that are relevant
for the accompanying papers in a comprehensive way. We develop
common terminology in which later results can be presented without
repeated description of the underlying notions. This part of the thesis
refers to some results that the present author coauthored in [2, 24, 26]
and [27].

In Chapter 1 we collect the basic terminology related to polytopes.
We present basic facts related to polytopes, discuss the role of embed-
dings and describe common operations on polytopes that become rel-
evant in later chapters. This chapter contains mostly classical results
about polytopes. The discussion about embeddings becomes relevant
when discussing extended formulations because the same polytope
may be described in various ways depending on whether the descrip-
tion is minimal or not, and whether the polytope is embedded in

introduction 5

the smallest possible Euclidean space. We develop the notion of slack
equivalence of a polytope that serves as an invariant under the ac-
tual embedding of a polytope and allows us to later focus on just the
combinatorial structure relevant to the extension complexity of the
polytope.

In Chapter 2 we describe basic setting of communication complex-
ity and some tools to prove lower bounds for it. In Section 2.1 we
introduce nonnegative rank of a matrix which turns out to be closely
related to the size of smallest extension of a polytope. We also discuss
some tools to lower bound this quantity, and discuss the lower bound
for a specific problem: unique disjointness. This problem serves as a
canonical ingredient in proving lower bounds for the extension com-
plexity of the CUT polytope. In Section 2.2 we introduce the notion of
communication protocol and in Section 2.3 we describe three models
of communication complexity, two of which are the classical deter-
ministic and randomized models while the third one – where it is
enough for a protocol to work in expectation – is relevant to exten-
sion complexity.

In Chapter 3 we finally introduce the notion of extended formula-
tions and extension complexity. This allows us to talk about the size of
the smallest possible extended formulation of a polytope. In Section
3.1 we present the notion of extension complexity for a set of related
polytopes since one is usually interested not just in the extension com-
plexity of a single polytope but of a family of related polytopes. We
have attempted to provide a general language that allows us to later
on talk not just about sets of polytopes but also about notions such
as the parameterized extension complexity of polytopes. We also dis-
cuss some common tricks to bound the extension complexity of a
polytope. In Section 3.2 we discuss the effects of applying some com-
mon operations of polytopes on their extension complexity. Finally, in
Chapter 3.3 we present some canonical examples of polytope families
and bounds on their extension complexity. Later on these examples
serve us as building blocks for bounds on other families.

0.0.2 Part two: Recipes

Part two of the thesis presents more lower bounds for various fami-
lies of polytopes. We also develop notions allowing us to talk about
extension complexity of binary languages and we define the class of
languages that admit polynomial size extended formulations. This
part of the thesis refers to some results that the present author coau-
thored in [2, 27] and [60].

In Chapter 4 we present lower bounds for various classes of poly-
topes. These polytopes correspond to various NP-hard problems and
the bounds on their extension complexity are derived using stan-
dard NP-hardness reductions together with some simple observa-
tions made in earlier chapters. We also discuss some issues in trying
to make a meta statement about arbitrary polynomial time reduc-
tions.

6 introduction

In Chapter 5 we describe a convenient way to discuss extension
complexity of binary languages. In Section 5.1 we discuss various
kinds of problems related to an underlying language, and in Section
5.2 we present the class of languages admitting polynomial size ex-
tended formulations. We also discuss the impact of small extensions
on the computational complexities of various kind of problems re-
lated to the underlying language, and present an example of a com-
pact language. Our example is related to walks in directed graphs
and we use this example later on to establish that problems efficiently
solvable in the streaming model admit small extended formulations.
In Section 5.3 we finally discuss some closure properties of compact
languages.

In Chapter 6 we use the discussions from the previous chapter to
prove that if a language is accepted by an online Turing machine (pos-
sibly nondeterministic) using only logarithmic space then it admits
a polynomial size extended formulation. In Section 6.3 we discuss
various applications of these results. We present lower bounds in the
streaming model and upper bounds on extension complexity of some
polytopes.

0.0.3 Part three: Variations

In this part we discuss some ways in which the notion of extension
complexity can be generalized and applied in other settings. This part
of the thesis refers to some results that the present author coauthored
in [1, 3, 4, 30] and [44].

In Chapter 7 we consider the extension complexities of parame-
terized problems. In Section 7.1 we define the notion of parameter-
ized extension complexity and in Section 7.2 we apply this definition
to study the parameterized extension complexity of the independent
set polytope parameterized by the size of the independent sets. We
show that this polytope does not admit a fixed-parameter polyno-
mial extended formulation. Finally, in Section 7.3 we given examples
of two general classes of polytopes that do admit fixed-parameter
polynomial extension complexity: polytopes of assignments for first
order logic over graphs of bounded expansion, and polytopes of as-
signments for monadic second order logic over graphs of bounded
treewidth.

In Chapter 8 we consider the following: suppose we identify a sub-
set of facets of a polytope P and show that the extension complexity
of the corresponding inequalities with respect to the vertices of P is
large. What can be said about the extension complexity of the poly-
tope formed by removing these inequalities from the description of
P? This is motivated by practical considerations. Often for hard poly-
topes – such as the TSP – one can optimize efficiently over a subset of
facets and various cutting plane algorithm exploit this in search for
violated inequalities. In Section 8.1 we define this notion precisely. In
Section 8.2 we provide strong lower bounds for polytopes related to
various NP-hard matching polytopes even if we ignore the odd-set

introduction 7

inequalities of Edmonds. In Section 8.3 we discuss similar results for
the TSP polytope with respect to a general class of comb inequalities.

In Chapter 9 we consider a weaker form of extended formulations
that we call Weak Extended Formulation (WEF). Instead of requiring
that the LP formulation of a problem project to the entire feasible set,
we only put milder constraints on the formulation. The most impor-
tant restriction being that the polytope may have some bad vertices,
but it must have the right vertices along the right directions. The moti-
vation for this is that under a polyhedral representation of a problem,
we are not always interested in optimizing along arbitrary directions
but only some. This hold specially true for decision problems. In Sec-
tion 9.1 we motivate the reader and present the definition of a WEF
in Section 9.2. Finally in Section 9.3 we discuss how every problem in
P/poly admits a polynomial sized WEF.

notations and conventions

We will use the following conventions throughout this document ex-
cept when specifically stated otherwise.

• Boldface small letters represent column vectors; boldface capital
letters represent matrices. The i-th row and the j-th column of
a matrix M will be denoted by Mi and Mj respectively.

• Set of vectors will be denoted by capital letters. A set V can
also be written as a matrix V. For example, let V = {v1, v2, . . .}
be a set of vectors, then V is the corresponding matrix whose
columns are vectors vi.

• Similar to previous convention, if V is an n×m matrix then V
will denote the set of column vectors of V.

• The number of rows of a matrixV will be denoted by numrows(V)
and the number of columns by numcols(V).

• For matrices A and B we will denote the matrix obtained by
concatenating the columns of the matrices by

[
A B

]
. Similarly,

the matrix obtained by concatenating the rows will be denoted

by

[
A

B

]
.

• Capital letters such as P will be used for denoting polytopes; P
will denote a family of polytopes, and P will denote a clan of
polytopes (cf. Definition 3.1.10).

some linear algebra

The following basic notion from Linear Algebra will be useful to us
later.

Definition 0.0.1. A linear inequality is of the form a>x 6 b where
a ∈ Rn is a vector and b ∈ R.

8 introduction

Definition 0.0.2. A linear inequality a>x 6 b defines the halfspace
h(a,b) := {x ∈ Rn | a>x 6 b}. A hyperplane is the boundary {x ∈
Rn | a>x = b} associated with the halfspace h(a,b).

At times – if it is clear from the context – we will not make any
distinction between a linear inequality and the associated halfspace.

Definition 0.0.3. Let V = {v1, v2, . . . , vm} be a set of m vectors in Rn.
A point x ∈ Rn is said to be a convex combination of the vectors in V
if there exists a vector λ ∈ Rm such that

Vλ = x, (1)

1>λ = 1, (2)

λ > 0 (3)

where 1 and 0 are column vectors of all ones and zeroes respectively.

Dropping the requirement that the sum of λi’s be one, we get the
notion of affine combination.

Definition 0.0.4. The affine hull of a set of vectors V = {v1, v2, . . . , vm}

– denoted by aff(V) – is defined to be the set of vectors that are affine
combinations of vi’s. That is,

aff(V) :=

{
x ∈ Rn

∣∣∣∣∣
Vλ = x,

λ > 0

}

Finally, dropping the nonnegativity requirement, we get the notion
of linear combination.

Definition 0.0.5. The linear hull of a set of vectors V = {v1, v2, . . . , vm}

– denoted by lin(V) – is defined to be the set of vectors that are linear
combinations of vi’s. That is,

aff(V) :=
{
x ∈ Rn

∣∣∣Vλ = x

}

For a vector v =



v1
...

vn


 we say that the dimension of v is n. For a

set of vectors V = {v1, v2, . . . , vm} with vi ∈ Rn the ambient dimension
is n, while the dimension – denoted by dim(V) – is equal to the di-
mension of their affine hull. That is, the vectors in the set V live in a
dim(aff(V)) dimensional subspace of Rn.

Part I

I N G R E D I E N T S

Whenever Gutei Oshõ was asked about Zen, he simply raised
his finger. Once a visitor asked Gutei’s boy attendant, "What
does your master teach?"

The boy too raised his finger.

Hearing of this, Gutei cut off the boy’s finger with a knife. The
boy, screaming with pain, began to run away. Gutei called to
him, and when he turned around, Gutei raised his finger.

The boy suddenly became enlightened.

— The Gateless Gate: Case 3 [38]

1
P O LY T O P E S

Polytopes are generalizations of polygons to higher dimensional Eu-
clidean spaces. Whereas polygons are relatively simple objects, their
higher dimensional analogs have a much richer structure. In this
chapter we collect some basic notions related to polytopes that will
be relevant to us. For more details we refer the reader to the excellent
textbooks by Grünbaum [35] and Ziegler [65].

1.1 basic facts about polytopes

Definition 1.1.1. Let V = {v1, . . . , vm} be a subset of Rn. The convex
hull of V – denoted by conv(V) – is defined as

conv(V) :=

x ∈ Rn

∣∣∣∣∣∣∣∣

Vλ = x,

1>λ = 1,

λ > 0


Definition 1.1.2. An H-polytope in Rn is a bounded subset of Rn

that is defined by the intersection of a finite number of halfspaces. A
V-polytope in Rn is the convex hull of a finite subset of Rn.

Note that the intersection of a finite number of halfspaces need not
always be bounded. However we are only interested in the ones that
are. Therefore, we will always assume boundedness unless explicitely
stated otherwise.

Example 1.1.3. The same octagon described as the intersection of
some halfspaces, and as the convex hull of some points.

Figure 1: An octagon as an H-polytope (left) and as a V-polytope (right)

An H-polytope P := {x ∈ Rn |Ax 6 b } will be often written as
P(A,b). Similarly, a V-polytope P := conv(V) will be written as P(V).

11

12 polytopes

Example 1.1.4. Let V be an n×m real matrix. Then,

P(V) = conv(V),

P(V, 1) = {x ∈ Rm | Vx 6 1} ,

P(V>, 1) =
{
x ∈ Rn | V>x 6 1

}
.

Note again, that P(V, 1) need not always a polytope. In fact, a pre-
cise characterization of boundedness of P(V, 1) is possible in terms of
the location of the origin with respect to P(V)) and dim(aff(V)) but
the previous example is just to illustrate the notation.

Exercise 1.1.5. Let V be an n×m matrix. Show that P(V, 1) is a poly-
tope if and only if dim(aff(V)) = m and there exists strictly positive
convex multipliers such that 0 is a convex combination of vectors in
V (columns of V).

Proposition 1.1.6. P is an H-polytope if and only if it is a V-polytope.

Proof. See [65], Theorem 1.1.

Proposition 1.1.6 ensures that every polytope can be represented
both by an intersection of a finite number of linear inequalities and
as the convex hull of a finite number of points. So we can refer to
a polytope instead of an H- or a V-polytope, and we can reserve the
words H-, V-polytope to refer to a particular representation of a poly-
tope. The shorthands such as P(V) or P(A,b) will be referred to as a
description of the associated polytope, with P(V) being a V-description
and P(A,b) being an H-description.

It should be immediately clear that neither H- nor V-descriptions
of any polytope are unique, with the empty set and the convex hull of
a single point being the only two exceptions for the V-representation.

Definition 1.1.7. A V-description, say P(V), of a polytope is said to
be irredundant if removing any column from V results in a different
polytope. Otherwise, the description is said to be redundant.

An H-description, say P(A,b), of a polytope P is said to be irredun-
dant if removing any inequality from the systemAx6b produces a set
of feasible points that is different from P. Otherwise, the description
is said to be redundant.

Figure 2: Irredundant H- and V-representation of an octagon

1.1 basic facts about polytopes 13

Definition 1.1.8. Let P = P(V) be a polytope. We say that P is a d-
polytope in Rn if dim(aff(V)) = d and numrows(V) = n. Observe
that d 6 n. We call P full-dimensional if d = n.

1.1.1 Faces of a polytope

Definition 1.1.9. An inequality a>x 6 b is said to be valid for a
polytope P if P = P ∩ {x | a>x 6 b}.

Definition 1.1.10. F ⊆ P is called a face of polytope P if F = P ∩
{x | a>x = b} for some a,b such that a>x 6 b is valid for P.

We will often say that a>x 6 b defines the face F. Observe that
for any polytope P, both ∅ and P are its faces: pick a = 0,b = −1 or
a = 0,b = 1. These two faces are called the trivial faces, and unless
explicitly stated we will use the word “face” to refer only to non-
trivial faces. Also, any face of a polytope is itself a polytope: a fact
easily proven by observing that any polytope is an H-polytope as well
and that adding linear inequalities does not destroy boundedness.

Definition 1.1.11. Let P = P(V) be a d-polytope in Rn. We say that
F is an i-face of P if F is an i-polytope and a face of P. Observe that
0 6 i 6 d−1. The 0-faces of a polytope are called the vertices and the
(d−1)-faces are called the facets.

Exercise 1.1.12. Let P be a d-polytope in Rn. Let a>1 x 6 b1 and
a>2 x 6 b2 define the same facet. Show that there exists α ∈ Rn and
scalars β, λ1, λ2 such that

1. α>x = β for all x ∈ P, and

2.

(
a1

b1

)
= λ1

(
a2

b2

)
+ λ2

(
α

β

)
.

Exercise 1.1.13. Let P be a polytope, and let F be the set of facets of
P. Show that, for any description P(A,b) of P numrows(A) > |F|.

Exercise 1.1.14. Let P be a full-dimensional polytope, and let F be the
set of facets of P. Show that, there exists a description P(A,b) of P
such that numrows(A) = |F|.

1.1.2 Size of a polytope

Definition 1.1.15. Let P be a k-polytope in Rd. Let F be the set of
facets of P. We define the size of P – denoted by size(P) – as the
number |F|.

Exercises 1.1.13 and 1.1.14 are meant for the readers to convince
themselves that the above definition makes sense: it assigns a unique
number to every polytope and it is possible to describe a full-dimensional
polytope with size(P) inequalities. More precisely,

size(P) = min
P=P(A,b)

numrows(A).

14 polytopes

Proposition 1.1.16. Let P be a d-polytope in Rn. Then, for every irredun-
dant description P(A,b) of P we have that

numrows(A) = size(P) + 2(n− d).

In particular, the inequalities in any irredundant description of P
can be split in two groups: size(P) many of the inequalities have a
bijection with the facets of P and 2(n− d) inequalities correspond to
(n−d) equations describing the affine hull of P. For full-dimensional
polytopes, the irredundant H- and V-descriptions are unique up to a
scaling of inequalities.

Proposition 1.1.17. Let P be a full-dimensional polytope with P(V1), P(V2),
P(A1,b1), and P(A2,b2) its irredundant descriptions. Then, V1 = V2 up
to permutation of columns and

[
A1 b1

]
= Λ

[
A2 b2

]
up to permuta-

tion of rows, for some diagonal matrix Λ with positive diagonal entries.

1.1.3 Slack Matrix

Let V and A be matrices and let b ∈ Rn with numrows(V) =

numcols(A) = n, such that P(V) ⊆ P(A,b). That is, AiVj6bi for
all i ∈ [numrows(A)], j ∈ [numcols(V)].

Definition 1.1.18. The slack of the polytope P(V) with respect to the
the polytope P(A,b) – denoted by S(A,b,V) – is defined to be the
numrows(A)×numcols(V) matrix S with Sij = bi −AiVj.

When P(V) and P(A,b) describe the same polytope – say P – then
S(A,b,V) is called a slack matrix of P. When P(A,b) and P(V) are ir-
redundant descriptions, we will say that S(A,b,V) is an irredundant
slack matrix of P.

Exercise 1.1.19. Let P be a d-polytope in Rn with d > 1. Show that
no slack matrix of P contains a zero column.

Proposition 1.1.20. Let P be a d-polytope in Rn. Let S(A1,b1,V1) and
S(A2,b2,V2) be irredundant slack matrices of P. Then, V1 = V2 up to per-
muting rows, and S(A1,b1,V1) = S(A2,b2,V2) up to permuting rows
and columns and scaling each row by some positive factor.

Definition 1.1.21. A matrix S2 is called slack-equivalent to a matrix S1
if S2 can be obtained from S1 by any combination of the following
operations (in any order):

• Adding or removing convexly dependent rows or columns,

• Adding or removing zero rows or columns,

• Multiplying each row and column by (possibly different) posi-
tive scalar values, and

• Applying a permutation of rows and columns.

Proposition 1.1.22. Let P be a polytope. Any two slack matrices of P are
slack-equivalent to each other.

1.2 the role of embedding 15

Proof. This is easy to prove by noting that any slack matrix of a poly-
tope can be brought to an irredundant form by applying previously
described operations that preserve slack-equivalence, and by Propo-
sition 1.1.20 any two irredundant slack matrices of a polytope are
slack-equivalent.

1.2 the role of embedding

Let P be a d-polytope. Whenever we consider a particular descrip-
tion of P, we implicitly impose a specific embedding of P into the
Euclidean space Rn for some n > d. This is the ambient space where
P “lives” and in the terminology that we have so far, we say that P is
a d-polytope in Rn.

Example 1.2.1. Consider the three dimensional hypercube defined by
the inequalities 0 6 xi 6 1, i ∈ [3]. The facet x1 = 0, 0 6 xi 6 1, i ∈
{2, 3} is a 2-polytope in R3. This facet is in fact a square.

Example 1.2.2. Imagine the octagon in Example 1.1.3 as a section of
a three dimensional object. The following figure illustrates this.

Figure 3: An octagon as a slice of 3-dimensional cone (viewed from top).

To be able to say that two polytopes are the same despite seemingly
very different embedding and description – such as in the previous
example – we consider various transformations that do not alter the
slack matrices of a polytope too much.

1.2.1 Simple lift

Definition 1.2.3. Let P be a d-polytope in Rn. A simple lift of P into
Rn+1 is obtained by embedding P into the hyperplane {xn+1 = 1}.

Proposition 1.2.4. Let P ′ be obtained by a simple lift of P. Let S be an
irredundant slack matrix of P and S ′ be an irredundant slack matrix of P ′.
Then, S ′ and S are slack equivalent.

Proof. This follows from the fact that S ′ can be obtained from S by
appending two zero rows, scaling each row by some positive factor,
and applying some permutation of rows and columns.

16 polytopes

1.2.2 Variable elimination

Let P be a d-polytope in Rn. If d < n then any irredundant H-
description of P contains size(P) inequalities and (n− d) equations
(cf. Proposition 1.1.16). One can use any of these equations to elimi-
nate one variable resulting in a polytope P ′ that is an embedding of
P in Rn−1. This operation can be used to undo a simple lift.

Proposition 1.2.5. Let P ′ be obtained from P by reducing the dimension,
and let S ′ and S be irredundant slack matrices of P ′ and P respectrively.
Then, S ′ and S are slack equivalent.

Proof. S ′ can be obtained from S by dropping two zero rows, scaling
each row by a positive factor, and applying some permutation of rows
and columns.

1.2.3 Non-degenerate affine transforms

Definition 1.2.6. Let P be a d-polytope in Rn. A non-degenerate affine
transform of P is the set {Tx+ c | x ∈ P} for some invertible matrix
T ∈ Rn×n and some vector c ∈ Rn.

Exercise 1.2.7. Prove that the image of any non-degenerate affine
transform of a polytope is again a polytope with the same number
of vertices and facets.

Proposition 1.2.8. Let P ′ be obtained from P by a non-degenerate affine
transform, and let S ′ and S be slack matrices of P ′ and P respectively. Then,
S and S ′ are slack equivalent.

Proof. This follows from the fact that S and S ′ are the same up to
scaling each row by some positive factor, and permuting rows and
columns.

1.2.4 Projective scaling

Definition 1.2.9. Let P be a d-polytope in Rn with d < n. Further-
more, suppose that the origin is not contained in the affine hull aff(P).
A projective scaling of P defines a new polytope P ′ = conv(V ′) where
V ′ contains each vertex of P scaled by some positive factor such that
dim(aff(P ′)) = dim(aff(P)).

We call this operation a projective scaling because a simple lift of a
full-dimensional polytope P followed by a projective scaling creates a
simple lift of a polytope projectively isomorphic to P (cf. Subsection
3.2.1).

Proposition 1.2.10. Let P be a d-polytope in Rn such that aff(P) does not
contain the origin, and let P ′ be obtained by a projective scaling of P. If S
and S ′ are irredundant slack matrices of P and P ′ respectively, then S ′ is
slack-equivalent to S.

Proof. This follows from the fact that a projective scaling is obtained
by a sequence of simple lift, non-degenerate affine transform, and
variable elimination.

1.3 some common operations 17

1.2.5 The canonical slack matrix

When we start discussing extended formulations in Chapter 3 we
will see that we are only concerned with slack matrices of a polytope.
Propositions 1.2.4, 1.2.5, 1.2.8, and 1.2.10 make it clear that the irre-
dundant slack matrices of a polytope are all the same up to a few
zero rows, scaling of rows and columns, and permutation of rows
and columns regardless of the choice of the ambient space and the
coordinate axes. In fact, the following is true.

Proposition 1.2.11. Let P be a full-dimensional polytope with any irredun-
dant slack matrix S(P). Let P ′ be the polytope obtained by applying any com-
bination of the transformations described in subsections 1.2.1, 1.2.2, 1.2.3,
and 1.2.4 and let S ′ be any slack matrix of P ′. Then, S ′ is slack-equivalent
to S(P).

Proof. Follows from Propositions 1.2.4, 1.2.5, 1.2.8, and 1.2.10.

For our purposes, there will be no distinction between two poly-
topes that can be obtained from each other via any of the operations
described in subsections 1.2.1–1.2.4. That is, a three-dimensional hy-
percube – for us – remains the same polytope whether embedded in
dimension three or thirty; regardless of the position of the origin and
the orientation of the coordinate axes; and irrespective of any affine
deformations.

We can associate a unique (up to positive scaling and permutation
of rows) irredundant slack matrix S(P) with every polytope P by re-
ducing the dimension of P until we get a full-dimensional polytope
P ′. Then any two irredundant slack matrices of P ′ differ only up to
reordering and positive scaling (cf. Proposition 1.1.20) and so any ir-
redundant slack matrix of P ′ is then defined to be S(P) and is simply
referred to as the slack matrix of P.

1.3 some common operations

1.3.1 Polar duality

Definition 1.3.1. Let C ⊆ Rn be a convex set. The polar of C – de-
noted by C∆ – is defined as

C∆ :=
{
x ∈ Rn | y>x 6 1 for all y ∈ C

}
.

Let P be a full-dimensional polytope containing origin in its inte-
rior. Without loss of generality we can assume that the irredundant
descriptions of P are given by P(V) and P(A, 1) for some matrices V
and A. In this case, the polar is also a polytope and the irredundant
description of P∆ is closely related to that of P.

Proposition 1.3.2. P∆ = P(A>) = P(V>, 1).

18 polytopes

1.3.2 Intersection and Union

Definition 1.3.3. The intersection of two polytopes P1 and P2 is the set
of common points and is denoted by P1 ∩ P2. That is,

P1 ∩ P2 := {x | x ∈ P1 ∧ x ∈ P2}.

Proposition 1.3.4. P1 ∩ P2 is a polytope. Furthermore, if P1 = P(A1,b1)
and P2 = P(A2,b2) then,

P1 ∩ P2 = P
([
A1

A2

]
,

(
b1

b2

))
.

A simple consequence of this is the following.

Proposition 1.3.5. size(P1 ∩ P2) 6 size(P1) + size(P2).

Similarly one may define the union of two polytopes but then the
result is not necessarily convex and one may need to take the convex
hull of the resulting set to obtain a polytope. We denote this operation
by]. That is,

P1] P2 := conv ({x | x ∈ P1 ∨ x ∈ P2}) .

For full-dimensional polytopes containing origin in the interior this
operation is the polar dual of intersection.

Proposition 1.3.6. Let P1 and P2 be full-dimensional polytopes containing
origin in the interior. Then, (P1 ∩ P2)∆ = P∆1] P∆2 and (P1] P2)∆ =

P∆1 ∩ P∆2 .

1.3.3 Join and product

Definition 1.3.7. The join of polytopes P1 and P2 – denoted by P1 ∗P2
– is obtained by embedding them in Rd for some d such that the affine
subspaces aff(P1) and aff(P2) are skew, and then taking the convex
hull of the union.

Any particular choice of the skew subspaces is not very important
in this definition since the resulting polytopes are affinely isomorphic
(cf. [65]). For polytopes P(V1) and P(V2) we will take the following
canonical embedding to be our definition of the join.

P(V1) ∗ P(V2) := P






V1 O

O V2

−1> 1>





 .

Proposition 1.3.8. Let P1 = P(A1,b1) and P2 = P(A2,b2) be two poly-
topes. Then, dim(P1 ∗ P2) = dim(P1) + dim(P2) + 1. Furthermore,

P1 ∗ P2 = P
([

2A1 O b1

O 2A2 −b2

]
,

[
b1

b2

])
.

1.3 some common operations 19

Once we have the description of the facets of the join of two poly-
topes, it is a matter of simple substitution of values to relate the
canonical slack matrix of the join S(P1 ∗ P2) with the canonical slack
matrices of the component polytopes S(P1) and S(P2).

Proposition 1.3.9. S(P1 ∗ P2) =
[
2S(P1) 0

0 2S(P2)

]
.

Definition 1.3.10. Let P1 and P2 be two polytopes. The product – de-
noted by P1 × P2 – is defined as

P1 × P2 :=
{(

x

y

)∣∣∣∣∣ x ∈ P1,y ∈ P2
}

.

Proposition 1.3.11. Let P1 = P(A1,b1) and P2 = P(A2,b2) be two
polytopes. Then, dim(P1 × P2) = dim(P1) + dim(P2). Furthermore,

P1 × P2 = P
([

A1 O

O A2

]
,

[
b1

b2

])
.

1.3.4 Glued-product

Definition 1.3.12. Let P1,P2 be polytopes with P1 ⊆ Rn1+d and P2 ⊆
Rn2+d. The glued product of P1 and P2 over the last d coordinates –
denoted by P1 ⊗d P2 – is defined as

P1 ⊗d P2 := conv




x

z

y


 ∈ Rn1+d+n2

∣∣∣∣∣∣∣∣∣∣

(
x

z

)
∈ vert(P1)

(
y

z

)
∈ vert(P2)

 .

We also call these special coordinates the glued coordinates.

Example 1.3.13. Let V1 =

[
1 0

0 1

]
and let V2 =

[
1 0

1 1

]
. Then

P(V1)⊗1 P(V2) = P






0 0

1 1

1 0





 .

It can be shown that the glued product has a very simple descrip-
tion if the glued coordinates have some nice structure. In particular,
we have the following.

Proposition 1.3.14. Let P1 ⊆ Rn1+d,P2 ⊆ Rn2+d be polytopes with
descriptions A1x+B1z 6 c1 and A2y+B2w 6 c2 respectively. Suppose
that for every vertex (u>, z>)> of P1 or P2, z is a 0/1 vector with at most
one 1. Then,

P1 ⊗d P2 :=




x

z

y


 ∈ Rn1+d+n2

∣∣∣∣∣∣∣∣

A1x+B1z 6 c1

A2y+B2z 6 c2

 .

Proof. See [20] Theorem 1.

2
C O M M U N I C AT I O N C O M P L E X I T Y

In this chapter we collect some relevant facts about communication
complexity. Our focus will be rather narrow and we refer the reader
to the excellent text by Kushilevitz and Nisan [45].

Let X, Y, and Z be arbitrary finite sets with Z ⊆ R+, and let f :

X× Y → Z be a function. Suppose that there are two players Alice
and Bob who wish to compute f(x,y) for some inputs x ∈ X and y ∈
Y. The players have unlimited computational power. However, Alice
knows only x and Bob knows only y. They must therefore exchange
information to be able to compute f(x,y).

They could tell each other the inputs that they are holding and
thus compute the value f(x,y) but this may not be needed for every
function.

Example 2.0.1. Let f(x,y) = (x+ y) mod 2. It suffices for Alice and
Bob to send one bit each to the other party indicating whether their
input is an odd number or not.

Given an ordering x1, . . . , xm of the elements of X, and y1, . . . , yn
of the elements of Y, we can visualize the function f : X × Y → Z

as a m× n nonnegative matrix F = F(f) such that Fij = f(xi,yj) for
all (i, j) ∈ [m]× [n]. The matrix F is called the communication matrix
of f. As is natural, we will not always make a distinction between
a function and its communication matrix. In fact, for the remainder
of the chapter we will use the same notation for a function as for a
matrix. For example, if F denotes a function then both F(x,y) and Fxy
represent the value of the function on input (x,y). Note that this is
the same value as the entry in the communication matrix at the row
corresponding to x and column corresponding to y.

What features of the communication matrix are relevant for Alice
and Bob if they wish to minimize the number of bits that they have
to exchange? Surely, we must make precise what is meant when we
say that Alice and Bob wish to “compute a function F”. We will first
discuss a property of matrices – called the nonnegative rank – which
will play a crucial role in our discussions and then attempt to take
a view of the communication between Alice and Bob in such a way
that various notions of computing a function can be handled without
requiring much modification.

2.1 nonnegative rank

Definition 2.1.1. A rank-r nonnegative factorization of a matrix S is an
expression of S as a product S = AB where A and B are nonnegative
matrices with numcols(A) = numrows(B) = r. The nonnegative rank
of S, denoted by rank+(S), is the minimum nonnegative integer r
such that S admits a rank-r nonnegative factorization.

21

22 communication complexity

The nonnegative rank of a matrix S is finite if and only if S is a
nonnegative matrix. This is of little consequence for us since we are,
in fact, only interested in nonnegative matrices.

Proposition 2.1.2. The nonnegative rank of a matrix S is the minimum
nonnegative integer r such that S is the sum of r nonnegative rank-1 matri-
ces.

Proof. If S = AB, then S =
numcols(A)∑

i=1

AiBi.

The following is an easy observation which turns out to be very
useful when proving lower bounds on the nonnegative matrices.

Proposition 2.1.3. Let S ′ be a submatrix of S. Then, rank+(S) > rank+(S
′).

2.1.1 Modifying matrices: effect on nonnegative rank

Now we will see some simple properties of nonnegative rank that will
be specially useful for us. Most of the matrices whose nonnegative
rank we would like to bound from below will be slack matrices of
polytopes. As we will see next, the choice of a canonical slack matrix
as done in subsection 1.2.5 was not an ad-hoc choice.

Proposition 2.1.4. Let F,G be m×n matrices, then

1. rank+(F+G) 6 rank+(F) + rank+(G)

2. rank+(F ◦G) 6 rank+(F) · rank+(G)

One immediate consequence of this is that the nonnegative rank of
a matrix remains unchanged if each row and column of a matrix is
scaled independently by a positive factor. One can show something
stronger.

Proposition 2.1.5. Let S ′,S be matrices such that S ′ is slack-equivalent to
S. Then rank+(S

′) = rank+(S).

Proof. Suppose S ′ is obtained from S by appending a zero column.
Then rank+(S

′) = rank+(S) since [AB 0] = A[B 0]. Similarly for
appending a zero row.

Suppose S ′ is obtained from S by appending a convexly dependent
column. Then rank+(S

′) = rank+(S) since [AB
∑numcols(S)
i=1 λi(AB)

i] =

A[B
∑numcols(B)
i=1 λi(B)

i]. Similarly for appending a convexly depen-
dent row.

Finally, suppose S ′ is obtained by scaling the (i, j)-th entry by αiβj.
Let F,G be defined by Fij = αiβj and Gij = 1/(αiβj). Clearly,
rank+(F) = rank+(G) = 1. Moreover, S ′ = S ◦ F and S = S ′ ◦G.
Therefore, by Proposition 2.1.4 we have that rank+(S

′) 6 rank+(S)

and rank+(S) 6 rank+(S
′).

Due to the fact that any slack matrix of a polytope P is slack-
equivalent to its canonical slack matrix S(P) (Prop. 1.2.11), we get
that all slack matrices of a polytope have the same nonnegative rank.

2.1 nonnegative rank 23

Proposition 2.1.6. Let P be a polytope and S be any slack matrix of P. Then,
rank+(S) = rank+(S(P)).

At last we can convince ourselves that we do not need to fret over a
particular choice of description of a polytope if we are only interested
in the nonnegative rank. The nonnegative rank of any slack matrix of
a polytope – to a large extent – depends only on the inner geometry
and not a particular perspective.

We now describe a combinatorial argument that can sometimes be
used to give lower bounds on the nonnegative rank of some matrices.
We illustrate the argument by applying it to the slack matrices of
joins of polytopes (cf. Subsection 1.3.3). Then in the next subsection
we present a related technique that is often used for lower bounding
the nonnegative rank of a matrix.

Proposition 2.1.7. Let P1 and P2 be polytopes with the canonical slack ma-
trices S(P1) and S(P2). Let S(P1 ∗ P2) be the canonical slack matrix of the
join P1 ∗ P2. Then, rank+(S(P1 ∗ P2)) = rank+(S(P1)) + rank+(S(P2)).

Proof. Due to Proposition 1.3.9 we known that

S(P1 ∗ P2) =
[
2S(P1) 0

0 2S(P2)

]
.

Let numrows(S1) = m1 , numrows(S2) = m2, numcols(S1) = n1,
and numcols(S2) = n2. Also, let S(P1 ∗P2) = AB be a rank-r nonneg-
ative factorization with smallest possible r.

We observe that any column of A cannot contain nonzero entries
among the first m1 rows as well as the last m2 rows. To see this, let
1 6 k1 6 m1 and m1 + 1 6 k2 6 m2 be any two rows. For any
column l of A if AAk1l 6= 0 then Bls = 0 for all n1 + 1 6 s 6 n2
and if AAk2l 6= 0 then Bls = 0 for all 1 6 s 6 n1. Therefore, having
nonzero entries within the first n1 rows and the last m2 rows of any
column of A would make B to contain a zero row.

Therefore every column of A contains zeroes either for all first m1
rows or for all last m2 rows. Rearrange columns of A so that AA =[
A1 0

0 A2

]
. Arrange the rows of B accordingly to B =

[
B1 B2

B3 B4

]

such that their product remains unchanged. Then, S1 = 2A1B1 and
S2 = 2A2B4. Since numcols(A1) > rank+(S1) and numcols(A2) >
rank+(S2) we have that

r = numcols(A) > rank+(S(P1)) + rank+(S(P2)).

Also, rank+(S(P1 ∗P2)) 6 rank+(S(P1))+ rank+(S(P2)). Therefore,
equality follows.

2.1.2 Rectangle covering bound

Let S be an m × n matrix all whose entries are either zero or one.
Such a matrix is often called a 0/1-matrix.

24 communication complexity

Definition 2.1.8. A combinatorial rectangle (or simply a rectangle) R
is a subset of [m]× [n] such that R = A× B for some A ⊆ [m] and
B ⊆ [n].

Definition 2.1.9. A rectangle R is called a 1-rectangle if for all (x,y) ∈
R we have that Sxy = 1. A 0-rectangle is defined similarly. Finally, R
is called monochromatic if it is either a 1-rectangle or a 0-rectangle.

Definition 2.1.10. A set of monochromatic rectangles R is said to
cover S if for every (x,y) ∈ [m]× [n] there exists a rectangle R ∈ R

such that (x,y) ∈ R. The rectangle covering number of S, denoted by
rc(S), is the size of smallest R that covers S.

Let suppmat(S) be the binary support matrix of S. That is,

suppmat(S)ab =

{
1 if Sab 6= 0,
0 otherwise.

Proposition 2.1.11. rank+(S) > rc(suppmat(S)).

Proof. See Theorem 4 in [27] (Appendix A).

This provides a useful way of proving lower bounds on the non-
negative rank of matrices by means of combinatorial arguments. We
illustrate this by an example that will play an important role later on.

2.1.3 Unique Disjointness

Consider the following 2n × 2n matrix U = U(n) with rows and
columns indexed by n-bit strings a and b, and real nonnegative en-
tries:

Uab := (a>b− 1)2.

An entry Uab of this matrix is zero if and only if the strings a and
b are different except at some unique index. A simple combinatorial
argument shows the following.

Proposition 2.1.12. rc (suppmat(U)) >
(
3
2

)n.

Proof. See [41], Theorem 1.

Combining Proposition 2.1.12 with Proposition 2.1.11 we get the
following theorem.

Proposition 2.1.13. rank+(U) >
(
3
2

)n.

2.2 communication protocols

However Alice and Bob may choose to define what it means to com-
pute a function together, their communication is carried out as a pro-
tocol that is agreed upon beforehand by them, on the sole basis of the
function f. At the beginning of an execution of the protocol Alice and
Bob receive their inputs x and y respectively. At each step of the pro-
tocol, one of the players has the token. Whoever has the token sends

2.2 communication protocols 25

a bit to the other player. At any point, one of the players outputs a
value and the execution stops. The correctness of the protocol is de-
termined by a previously specified relation between the output value
and the value of f(x,y).

A protocol can be viewed as a rooted binary tree where each node
is marked either Alice or Bob. The leaves have vectors associated with
them. An execution of the protocol on a particular input is a path in
the tree starting at the root. At a node owned by Alice, following the
path to the left subtree corresponds to Alice sending a zero to Bob
and taking the right subtree corresponds to Alice sending a one to
Bob; and similarly for nodes owned by Bob.

Let X and Y be finite sets and let f : X× Y → R+ be a function that
Alice and Bob wish to compute 1.

Definition 2.2.1. A communication protocol (with private random bits and
nonnegative outputs) is a rooted binary tree with some extra informa-
tion attached to its nodes. Each node of the tree has a type, which
is either X or Y. To each node v of type X are attached two function
p0v,p1v : X → [0, 1]; to each node v of type Y are attached two func-
tions q0v,q1v : Y → [0, 1]; and to each leaf v is attached a nonnegative
vector Λv that is a column vector of size |X| for leaves of type X and a
row vector of size |Y| for leaves of type Y. The functions piv and qjv
define transition probabilities, and we assume that p0v(x) +p1v(x) 6 1
and q0v(y) +q1v(y) 6 1.

Figure 4 shows an example of a protocol.

Alice

Alice

Bob Bob

(0 , 1, 2, 4)T (1 , 2, 3, 5)T (1 , 1, 2, 5)T

(0 , 1, 0, 5) (1 , 1, 4, 3)

(0 .5, 0.6, 0, 1)T (0.4, 0.2, 1, 0)T

(1, 1, 1, 0) (0, 0, 0, 1) (0, 1, 1, 1) (0.7, 0, 0, 0)

(0, 0, 0, 1)T (1, 0.4, 0.8, 0)T

Figure 4: Example of a protocol viewed as a tree

Definition 2.2.2. An execution of the protocol on input (x,y) ∈ X× Y
is a random path that starts at the root and descends to the left child
of an internal node v with probability p0v(x) if v is of type X and
q0v(y) if v is of type Y, and to the right child of v with probability
p1v(x) if v is of type X and q1v(y) if v is of type Y. With probability
1− p0v(x) − p1v(x) and 1− q0v(y) − q1v(y) respectively, the execu-
tion stops at v.

1 For now, let us not worry about the precise meaning of computing a function.

26 communication complexity

Definition 2.2.3. The value of an execution on the input pair x,y –
denoted by val(x,y) – is defined as follows. For an execution stopping
at leaf v with vector Λv, val(x,y) is defined as the entry of Λv that
corresponds to input x ∈ X if v is of type X, and y ∈ Y if v is of type
Y. For an execution stopping at an internal node, val(x,y) is defined
to be 0.

Definition 2.2.4. The complexity of a protocol Π is measured by one of
the two parameters. The depth of the protocol – denoted by depth(Π)
– is the depth of the corresponding protocol tree, and the size of
the protocol – denoted by size(Π) – is the number of leaves of the
corresponding protocol tree.

When presenting a protocol, we shall often say that one of the two
players sends an integer k rather than a binary value. This should be
interpreted as the player sending the binary encoding of k or, as a
(sub)tree of depth dlgke, or of size k. Finally, our definitions are such
that the depth of a protocol equals the number of bits exchanged by
Alice and Bob in the worst case.

Exercise 2.2.5. What is the relation between the depth and the size of
a protocol, if the protocol tree is balanced?

With every node v of a communication protocol we can associate
a nonnegative matrix Pv that specifies the probability of visiting that
node in an execution. Let v1, . . . , vk denote the nodes of type X on
the unique path from the root to the parent of v, and let w1, . . . , w`
denote the nodes of type Y on this path. Then we have

Pv(x,y) =
k∏
i=1

pαivi(x) ·
∏̀
j=1

qβjwj(y),

where αi is either 0 or 1 depending on if the path goes the left or
right subtree at vi, and similarly for βj. Observe that Pv is a matrix of
nonnegative rank one for each node v of the protocol tree as required.

2.2.1 The expected value of a protocol

For each input pair (x,y) given to Alice and Bob, val(x,y) is a random
variable whose distribution depends on the transition probabilities
at the nodes of the protocol tree. One may therefore talk about the
expected value E[val(x,y)].

Let LX and LY be the set of all leaves of the protocol that are of type
X and Y respectively and let Λv denote the (column or row) vector of
values at a leaf v ∈ LX ∪ LY . We have

E[val(x,y)] =
∑
v∈LX

Λv(x)Pv(x,y) +
∑
w∈LY

Pw(x,y)Λw(y).

Regardless of what Alice and Bob may think that they are comput-
ing using a protocol Π, we may associate a function EΠ : X× Y → R+

with Π defined by EΠ(x,y) = E[[val(x,y)]]. Therefore,

EΠ =
∑
v∈LX

(Λv ◦av)bv +
∑
v∈LY

aw(bw ◦Λw).

2.3 complexity of computing a function 27

Proposition 2.2.6. Let S be a nonnegative matrix. Then,

rank+(S) = min {size(Π) | EΠ = S} .

Proof. Implicit in the proof of Theorem 2 in [24].

2.3 complexity of computing a function

To relate a communication protocol to a function f, it remains to estab-
lish the relation between val(x,y) and f(x,y). Each of the following
models specify in different way what it means to compute a function.

Definition 2.3.1. The communication complexity of a function f is de-
fined to be the minimum depth among all communication protocols
that compute f.

A natural reason to define the communication complexity in this
way is to imagine Alice and Bob communicating with each other with
the goal of selecting a particular leaf in the protocol tree, so that they
can output a value that "computes" the function fwithout any further
communication. To reach any leaf it suffices to send one bit at each
node on the unique path from the root to the particular leaf indicating
if the next node is the left or the right child.

2.3.1 Classical deterministic model

In classical deterministic models of communication complexity, the
transition probabilities at each node of the protocol tree can take val-
ues either zero or one. Thus, val(x,y) can take only one possible value
for each pair (x,y). A protocol is said to compute a function f if and
only if val(x,y) = f(x,y) for all pairs (x,y) of inputs that Alice and
Bob may receive.

2.3.2 Classical randomized model

In classical randomized models of communication complexity, the
transition probabilities at each node of the protocol tree can take val-
ues between zero and one. Thus, for each fixed input (x,y) ∈ X× Y,
val(x,y) is a random variable and can take one of multiple possi-
ble values. A protocol is said to compute a function f if and only if
val(x,y) is close to f(x,y) for all pairs x,y of inputs that Alice and
Bob may receive. One may further specify whether this happens with
high probability for an execution, or for all executions.

We will not clarify the ambiguities in the previous paragraph since
this model is not relevant to us. The interested reader may read Chap-
ter 3 of [45]. We leave the discussion with the following food for
thought.

Exercise 2.3.2. How does the variance of the random variable val(x,y)
influence the communication complexity in classical randomized mod-
els?

28 communication complexity

2.3.3 EF model

As discussed in Section 2.2.1, for each fixed input (x,y) ∈ X× Y, the
value of an execution on input (x,y) is a random variable and one can
define the function EΠ of the expected output of the protocol on input
(x,y). In the EF model, we say that the protocol computes a function f
if f = EΠ. As a shorthand we will refer to a communication protocol
with the EF model of computation as an EF-protocol. For example
saying that f is computed by an EF-protocol Π should be understood
as: Π is a communication protocol and EΠ = f.

Computing a function only in expectation allows us to assume
many things about the "smallest" communication protocol available
for any given function.

Proposition 2.3.3. If f can be computed by an EF-protocol of size r, then f
can be computed by an EF-protocol of depth dlog re .

Proof. See [24], Theorem 2 (Appendix B).

This allows us to measure the communication complexity either in
terms of the depth or the size of the smallest protocol computing f.
For our purposes, we will measure the communication complexity in
the EF model by the smallest size of any EF-protocol for f.

3
E X T E N D E D F O R M U L AT I O N S

Let P ⊂ Rn and Q ⊂ Rn+r be polytopes.

Definition 3.0.1. Q is called an extended formulation (EF) of P if there
exists a linear map π : Rn+r → Rn such that P = π(Q).

The map π in the previous definition projectsQ to P. With a change
of basis one can always assume that this projection map just amounts
to dropping r coordinates of Q.

Exercise 3.0.2. Let Q be an EF of P. Show that there exists an EF Q ′

of P such that size(Q ′) = size(Q) and P = π(Q) where the map π is
defined by π(z) = x if z> = (x>,y>).

When the projection map is not specified, we will assume it to be
the canonical orthogonal projection: drop-r-coordinates.

Example 3.0.3. A regular octagon can be seen as a projection of a
deformed three-dimensional cube.

Figure 5: A deformed hypercube projects to a regular octagon.

An extended formulation can also be defined in terms of a certain
equivalence in optimization, as follows.

Proposition 3.0.4. Q is an EF of P if and only if there exists t ∈ Rn and
an (n+ r)×n matrix R such that

max
x∈P

c>x = max
z∈Q

(Rc)>z+ c>t

for all c ∈ Rn.

Proof. Suppose Q is an EF of P. Then, there exists a linear map π :

Rn+r → Rn such that π(Q) = P. Let π be defined as π((x>,y>)>) =
R>(x>,y>)> + t where R is an (n+ r)× n matrix and t ∈ Rn is a
vector. R and t satisfy the requirement of the lemma.

For the other direction, notice that α>x 6 β is valid for P if and
only if (x>,y>)Rα 6 β−α>t is valid for Q. Therefore, we can define
the linear map π(z) = R>(x>,y>)> + t, if z> = (x>,y>) with x ∈
Rn,y ∈ Rr. For this map we have that π(Q) = P.

29

30 extended formulations

3.1 extension complexity

Definition 3.1.1. The extension complexity of a polytope P – denoted by
xc(P) – is defined to be the size of an extended formulation requiring
the fewest number of inequalities. That is,

xc(P) := min
Q is EF of P

size(Q)

Most often we are interested in the extension complexity of a poly-
tope in terms of the ambient dimension. The ambient dimension, in
turn, is often polynomially related to the dimension of the polytope.

Example 3.1.2. The convex hull of the characteristic vectors of all per-
fect matchings of the complete graph Kn lives in the ambient dimen-
sion

(
n
2

)
. This polytope, however, is not full-dimension and has di-

mension
(
n
2

)
− n. We may measure the extension complexity of this

polytope either in terms of the ambient dimension
(
n
2

)
or the actual

dimension
(
n
2

)
− n or n. In all these cases, the expression we will

get are essentially equivalent to each other in terms of whether the
extension complexity is polynomially bounded or not.

Sometimes we may be interested in the extension complexity of a
polytope in terms of other things as well.

Example 3.1.3. Consider the polytope STABk(G) defined as the con-
vex hull of the characteristic vectors of all independent sets of G that
are of size k. Are there constant c and function f such that for all
graphs G on n vertices, xc(STABk(G)) 6 f(k)·nc?

To talk about such questions succinctly, we may think of k as a
parameter of the polytope STABk(G) and talk about its parametrized
extension complexity.

Definition 3.1.4. Let P ⊂ Rn be a polytope and κ be a fixed number
(somehow associated with P). The parametrized extension complexity of
P is the extension complexity of P expressed as a function of κ and n.
The number κ is called a parameter.

The above definition does not make a lot of sense since for any fixed
polytope P the numbers n, κ, and xc(P) are fixed numbers. However
this definition does make sense for a set of polytopes. This is very
convenient since usually we are not interested in the extension com-
plexity of one fixed polytope but a set of related polytopes.

3.1.1 Extension complexity of multiple polytopes

Definition 3.1.5. Let P be a set of polytopes. Let n, κ : P→N be two
functions. We say that the extension complexity of P – denoted by
xc(P) – is a function f : N×N → N if for every P ∈ P we have that
xc(P) = f(n(P), κ(P)). When not specified, the parameter κ is chosen
to be κ(P) = 1 for all P ∈ P.

3.1 extension complexity 31

The sets of polytopes that are of interest to us, will usually be im-
plicitly described using objects such as graphs, a set of numbers, etc.
In such cases, n(P) will usually be the “size“ of these objects and will
be polynomially related to the ambient dimension of P. The parame-
ter κ(P) will usually be a parameter related to the underlying object
used to define P. Let us illustrate this with an example.

Example 3.1.6. For any graph G, consider CUT�(G), the convex hull
of the characteristic vectors of the edge cuts of G. A natural choice
for n(CUT�(G)) is the number of vertices of G. A natural parameter
κ(CUT�(G) can the the treewidth of G.

Remark 3.1.7. When the choice of the functions n and κ is clear and
does not create ambiguities, we may say that the extension complexity
of the set P is f(n,k) for some function f. When κ is not mentioned,
we may say that the extension complexity of the set is g(n) for some
function g.

Example 3.1.8. Suppose MAGIC is a set of polytopes somehow re-
lated to graphs. That is, each polytope in this set is defined using a
uniquely associated graph. Saying that “xc(MAGIC) = 2τn where
τ is the treewidth and n is the number of vertices of the underlying
graph“ should be understood to mean that for every graph G with
n vertices and treewidth τ the corresponding polytope in the set has
extension complexity 2τn.

Example 3.1.9. Let P� be the set of full-dimensional hypercubes. Then
xc(P�) = 2n where n is the dimension.

Now we will describe two special kinds of sets of polytopes that
will help us deduce the parameters n and κ from the context.

Definition 3.1.10. A clan of polytopes is a set of related polytopes. The
relation between polytopes will usually be clear from the description.
For example, the convex hull of all satisfying assignments of 3CNF
formulae defines a clan.

A family of polytopes is a countable ordered set {P1,P2, . . .} with
Pn ⊆ Rn.

Example 3.1.11. A polytope EP(G) can be defined for every graph G
as the convex hull of all perfect matchings of the graph G. For each
natural number m, define Edmonds’ polytope EP(m) as the convex
hull of characteristic vectors of the perfect matchings of Kn where
m =

(
n
2

)
.

The set {EP(G) | G is a graph } defines the perfect matching clan
EP while EP = {EP(n)|n ∈N} defines a particular family of this clan.

Proposition 3.1.12. EP(m) is empty if there is no n with m =
(
n
2

)
or if

such an n exists but is odd.

Proposition 3.1.13 (Rothvoß). There exists a constant 0 < c < 1/2, such
that for every even n ∈N we have that xc(EP(

(
n
2

)
)) > 2cn.

Proof. See [55], Theorem 1.

32 extended formulations

Proposition 3.1.14. For every ε > 0 there exists n0 ∈ N such that for all
n > n0 we have that xc(EP(

(
n
2

)
)) 6 2(1/2+ε)n.

Proof. See [24], Proposition 3 (Appendix B).

For a family of polytopes the choice of the parameter n will most
often be the ambient dimension. That is, if P is a family of polytopes
then n(Pn) = n for Pn ∈ P. Since a family contains exactly one poly-
tope Pn ⊂ Rn, the meaning of xc(P) is clear and a statement such
xc(P) = n3 is unambiguous with this convention. Note that the poly-
topes Pn in a family are not required to be full-dimensional (or even
non-empty).

Definition 3.1.15. Extension complexity of a clan P is also denoted
by xc(P) and is defined to be the extension complexity of the fam-
ily P ∈ P obtained by picking the polytopes with largest extension
complexity for each dimension.

More precisely, given a clan P, let Pmax be a family of polytopes
such that if Pn ⊂ Rn belongs to Pmax then xc(Pn) > xc(P ′n) for all
P ′n ∈ P with P ′n ⊆ Rn. Moreover, for every n exactly one Pn ⊂ Rn

belongs to Pmax. The extension complexity of clan P is defined to be
equal to xc(P).

For different values of n, the corresponding polytopes in a family
P may have extension complexities that are not well described by a
simple function. Even if exact bounds are known for each polytope
in a family of polytopes, it will simplify our lives if we use asymp-
totic notation to describe the extension complexity of the family. In
fact, for a family (or clan) of polytopes, the asymptotic behavior of
their extension complexity is what we generally care about. If it is a
polynomial function then – at least in principle – the polytopes can be
efficiently represented. If the extension complexity of the family (or
clan) grows superpolynomially then at least some of the polytopes
require large descriptions.

Let P = {P1,P2, . . .} be a family of polytopes with Pn ⊆ Rn. We
will say that xc(P) = O(f) to mean that there exists a constant c > 0
and a natural number n0 such that for every polytope Pn ∈ P with
n > n0 we have that xc(Pn) 6 cf(n).

We will say that xc(P) = Ω(f) to mean that there exists a constant
c > 0 and such that for every natural number n0 there exists an n >
n0 such that xc(Pn) > cf(n). Note the slight difference from the usual
Ω notation used in asymptotic analysis of algorithms 1. The intent
here is to be able to say that P contains infinitely many polytopes
that have high extension complexity.

Finally, we will say that xc(P) = Θ(f) to mean that xc(P) = O(f) as
well as xc(P) = Ω(f).

Example 3.1.16. Proposition 3.1.13 can be translated in our setting to
the following.

Proposition 3.1.17. xc(EP) = Ω(c
√
n) for some c > 1.

1 This usage, however, is common among number theorists

3.1 extension complexity 33

One can extend the above notation to provide more information
by being able to use functions described in asysmptotic notation as
well. We will not go into the details of this point except to present an
example that should clarify the point.

Example 3.1.18. Combining Propositions 3.1.13 and 3.1.14 one could
say that xc(EP) = xc(EP) = 2Θ(

√
n).

3.1.2 Bounding extension complexity: some tools

Before we mention stronger results connecting extension complexity
with nonnegative rank, we would like to list few simple facts that
follow from the above definition and basic polyhedral properties.

Proposition 3.1.19. If P is the convex hull of m points then xc(P) 6 m.

Proof. If P = P(V), then by definition P is a projection of the polytope
(
x

λ

)
∣∣∣∣∣∣∣∣

Vλ = x

1>λ = 1

λ > 0



Definition 3.1.20. Let Q be a polytope and h be a hyperplane. Q∩ h
defines A slice of Q.

Proposition 3.1.21. If P is a slice of Q, then xc(P) 6 xc(Q).

In particular, noting that a polytope is a trivial slice of itself and
every face of a polytope P is also a slice of P we get the following
simple but important cases.

Proposition 3.1.22. If Q is an EF of P, then xc(P) 6 xc(Q).

Proposition 3.1.23. If P is a face of Q, then xc(P) 6 xc(Q).

3.1.3 Yannakakis’ characterization of Extension Complexity

Proposition 3.1.24. Let P be a polytope and S be any slack matrix of P.
Then, xc(P) = rank+(S).

Proof. See [24], Theorem 1 (Appendix B).

Combining Propositions 2.2.6, 2.3.3 and 3.1.24 we get the following.

Proposition 3.1.25. Let P be a polytope. Then, the following are equivalent.

1. xc(P) 6 2r.

2. rank+(S(P)) 6 2r.

3. There exists an EF protocol Π with EΠ = S(P) and size(Π) 6 2r.

4. There exists an EF protocol Π with EΠ = S(P) and depth(Π) 6 r.

34 extended formulations

Already with the discussion so far, the reader should be able to
prove bounds on extension complexities of a number of polytopes:
some by simply referring to facts already established in previous
chapters.

Example 3.1.26. Let Pij =
{
x ∈ {0, 1}n+1 | xn+1 = xi ⊕ xj

}
for 1 6 i <

j 6 n. Then,

Pij = ���n−2 × P






0 0 1 1

0 1 0 1

0 1 1 0







upto relabeling of coordinates. Therefore, xc(Pij) 6 2n (cf. Proposi-
tion 3.2.3).

3.1.4 Combinatorially isomorphic polytopes with different extension com-
plexity

Before discussing how robust extension complexity is as a measure of
intrinsic complexity of representing a polytope, we would like to re-
mark that combinatorial isomorphism of two polytopes is not enough
to ensure same extension complexity. This is seen by considering poly-
gons.

Definition 3.1.27. Two polytopes are said to be combinatorially isomor-
phic if the posets of their faces (including trivial ones) ordered by
inclusion are isomorphic.

Exercise 3.1.28. Any two n-gons are combinatorially isomorphic.

Proposition 3.1.29. Let Pn be a regular n-gon. Then xc(Pn) 6 2 logn.

Proof. See [26], Theorem 2 (Appendix C).

Proposition 3.1.30. For every n ∈N there exists an n-gon with extension
complexity Ω(

√
n).

Proof. See [26], Theorem 3 (Appendix C).

3.2 effects of common operations

The extension complexity of a polytope is a fairly robust measure of
the inherent complexity of describing a polytope. It does not depend
on the ambient space and the choice of a particular coordinate axes.
In fact, the extension complexity remains unchanged if the polytope
is distorted by a projective transform. Before describing projective
transforms formally, we provide a more geometric picture from the
excellent textbook "Lectures on Polytopes" by Ziegler.

3.2.1 Projective transforms

Let P be a full-dimensional polytope in Rn. Embed this polytope into
an affine hyperplane H ⊆ Rn+1 and construct the homogenization

3.2 effects of common operations 35

of P: cone({x | x ∈ P}). Cut this cone with any hyperplane K that
intersects all its extreme rays and identify K with Rn. This defines a
projective transform of P.

Definition 3.2.1. Let P be a d-polytope in Rn. A projective transform
of P is defined by a matrix

[
B c

a> an+1

]

and a vector c ′ with the following conditions:

1. det

(
B c

a> an+1

)
6= 0

2. a>x+ an+1 > 0 for all x ∈ P.

The polytope P ′ obtained from P via this projective transformation
is defined by

P ′ =
{

Bx+ c

a>x+ an+1
+ c ′

∣∣∣∣ x ∈ P
}

.

Proposition 3.2.2. Let P1 and P2 be two polytopes that are isomorphic
under projective transformations. Then,

xc(P1) = xc(P2).

Proof. See [33], Proposition 2.9.

3.2.2 Join, product, and free-sum

Proposition 3.2.3. Let P1,P2 be polytopes. Then,

1. xc(P1 ∗ P2) = xc(P1) + xc(P2).

2. xc(P1 × P2) 6 xc(P1) + xc(P2).

3. xc(P1 ⊕ P2) 6 xc(P1) + xc(P2).

Proof. The first bound follows immediately from Proposition 2.1.7
and Proposition 3.1.24. The second follows from the fact that P1 × P2
is a slice of P1 ∗ P2 (cf. Proposition 3.1.21), while the third follows
from the fact that P1 ⊕ P2 is a projection of P1 ∗ P2 (cf. Proposition
3.1.22).

3.2.3 Glued Product

Proposition 3.2.4 (Margot). Let P1 ⊆ Rn1+d and P2 ⊆ Rn2+d be poly-
topes such that the last d coordinates of any vertex of either polytope is a
zero-one vector with at most one 1. Then xc(P1 ⊗d P2) 6 xc(P1) + xc(P2).

Proof. See [20], Theorem 1 (cf. [44], Lemma 1, Appendix G).

36 extended formulations

3.2.4 Union

Proposition 3.2.5. xc(P1] P2) 6 xc(P1) + xc(P2).

Proof. Let P1 = P(V1) and P2 = P(V2). Consider the projective trans-
form given by the matrix



I I 0

O I 0

0> 0> 1


 ,

where I is the identity matrix of appropriate size, O is the matrix of
all zeroes, and 0 is the zero vector.

This transforms the join P1 ∗ P2 to

P






V1 O

O V2

−1> 1>





→ P






V1 V2

O V2

−1> 1>





 .

The later is easily seen to be an EF of P1] P2. Combining Propo-
sitions 3.2.3, 3.2.2 and 3.1.22 we get that xc(P1] P2) 6 xc(P1 ∗ P2) 6
xc(P1) + xc(P2).

3.2.5 Intersection

Proposition 3.2.6. xc(P1 ∩ P2) 6 xc(P1) + xc(P2).

Proof. Let P1 = {x | A1x 6 b1} and P2 = {x | A2x 6 b1}. Let Q1 ={(
x

z

)∣∣∣∣∣E1x+ F1z 6 g1
}

and Q2 =

{(
x

w

)∣∣∣∣∣E2x+ F2w 6 g2
}

be

EFs of P1 and P2 respectively. Then,

R =






x

z

y

w




∣∣∣∣∣∣∣∣∣∣

E1x+ F1z 6 g1

E2y+ F2w 6 g2

x = y


is an EF of P1 ∩ P2.

3.3 some canonical polytope families

There are obvious clans – such as the one consisting of all polytopes –
that have extension complexity unbounded by any function. Consid-
ering the clan POLYGONS of all polygons embedded in all dimen-
sions, by Proposition 3.1.30 we already have that xc(POLYGONS)

is not bounded by any function. One feature of such easily-produced
high complexity clans is that describing the members may require
unbounded precision. In any case we will be mostly interested in 0/1-
polytopes which cannot have arbitrarily high extension complexity.

3.3 some canonical polytope families 37

Proposition 3.3.1. Let ZERO−ONE be the clan of all 0/1-polytopes.
Then, 2

n
2 (1−o(1)) 6 xc(ZERO−ONE)) 6 2n

Proof. The upper bound follows from Proposition 3.1.19 since any 0/1
polytope in Rn has at most 2n vertices. The lower bound follows from
the fact that there are 0/1 polytopes of such extension complexity
[54].

So we see that the clan of all 0/1 polytopes has extension complex-
ity 2Θ(n). A family with such complexity can essentially by picked by
selecting random polytopes for each dimension. It may be quite intu-
itive that this will result in a family of large extension complexity but
proving it requires some very precise argument controlling the num-
ber of bits required to encode any extended formulation. Rothvoss
was able to do exactly this and together with an elegant double count-
ing argument was able to show the lower bound.

Such examples may be unsatisfactory because we do not get an ex-
plicit family of polytopes that has high extension complexity. A clan
with high extension complexity becomes more interesting when we
can describe the clan members and a specially hard family in the clan
rather succintly. This is what was first done by Fiorini et al. [27] with
polytopes related to the maxcut problem and later extended by vari-
ous authors. We will see some of these clans in Chapter 4. Now we
describe three canonical clans of polytopes that will play an impor-
tant role later: the polytopes of cut vectors of graphs; the polytopes
of satisfying assignments of CNF formulae; and the polytopes of non-
satisfying assignments of CNF formulae.

3.3.1 The CUT clan

An important clan of polytopes that has high extension complexity
is the that of Cut polytopes. These polytopes are naturally associated
with the familiar NP-hard MAXCUT problem and have a rich history.
We direct the reader to the textbook "Geometry of Cuts" by Deza and
Laurant [21].

Definition 3.3.2. For a graph G the cut polytope of G – denoted by
CUT�(G) – is defined to be the convex hull of characteristic vectors
of all cuts in G. Any polytope P such that P = CUT�(G) for some
graph G is called a cut polytope. The clan CUT is defined to be the
set of all cut polytopes.

Proposition 3.3.3.

CUT�(Kn+1) =
{
x ∈ {0, 1}(

n
2)+n

∣∣∣ xij = xi ⊕ xj, i < j
}

Proof. See [2], proof of Theorem 5 (Appendix D).

If we take CUT to be any family of cut polytopes that contains
CUT�(Kn) for each n ∈ N then this family has high extension com-
plexity. This family was the first explicit family of polytopes that

38 extended formulations

was shown to have superpolynomial extension complexity. Here we
present a combinatior of ideas that appeared in [2, 27, 41].

The crucial fact used for showing that the CUT clan has large ex-
tension complexity is that a certain matrix U = (a>b− 1)2 has large
nonnegative rank (cf. Proposition 2.1.13). The next step is to show that
this matrix is actually a submatrix of some slack matrix of CUT�(Kn).
Then by Proposition 2.1.3 and Proposition 3.1.24 we get the desired
lower bound on the extension complexity of the CUT clan.

The first step in embeddingU(n−1) in a slack matrix of CUT�(Kn)
is to identify some valid inequalities that produce the desired slack.
The following lemma describes a set of such inequalities.

Lemma 3.3.4. For any n > 2, let b1,b2, ...,bn be any set of n integers.
The following inequality is valid for CUT�(Kn):∑

16i<j6n
bibjxij 6

⌊
(
∑n
i=1 bi)

2

4

⌋
(4)

Proof. See [2], Lemma 1 (Appendix D).

The inequality (4) is called hypermetric (respectively, of negative type)
if the integers bi can be partitioned into two subsets whose sum dif-
fers by one (respectively, zero). A simple example of hypermetric in-
equalities are the triangle inequalities, obtained by setting three of
the bi to be +/- 1 and the rest to be zero. The most basic negative
type inequality is non-negativity, obtained by setting one bi to 1, an-
other one to -1, and the others to zero. We note in passing that Deza
and Laurent (see Section 6.1 of [21]) showed that each negative type
inequality could be written as a convex combination of hypermetric
inequalities, so that none of them are facet inducing for CUT�(Kn).

Let n > 2 be an integer. Let S ⊆ [n−1]. This defines a cut δ(S) of Kn
and each cut in Kn has such a subset of vertices defining it. Define a
vector b with

bi =


1, if i ∈ S
0, n 6= i /∈ S
3− |S| i=n

Observe that |S| = 1>b. Inequality (4) for this b-vector is easily
seen to be of negative type and can be written as

∑
16i<j6n−1

bibjxij 6 1+ (1>b− 3)

n−1∑
i=1

bixin. (5)

Let C ⊆ [n−1] and accordingly δ(C) be a cut of Kn. Define the
vector a with

ai =

{
1, if i ∈ C
0, i /∈ S

Proposition 3.3.5. Let C and S be subsets of [n−1]. Then the slack of the
cut δ(C) with respect to (5) is (a>b− 1)2 with a,b as defined previously.

3.3 some canonical polytope families 39

Proof.

1+ (1>b− 3)

n−1∑
i=1

biδ(C)in −
∑

16i<j6n−1
bibjδ(C)ij

= 1+ (1>b− 3)a>b−a>b(1>b−a>b− 1)

= (a>b)2 − 2a>b+ 1.

This implies that the extension complexity of CUT�(Kn) is at least
as large as rank+(U(n− 1)). That is,

Proposition 3.3.6. xc(CUT�(Kn)) > 2Ω(n).

This in turn implies that the extension complexity of the CUT clan
is exponential in the ambient dimension.

Proposition 3.3.7. xc(CUT) > 2Θ(
√
n). In particular, xc(CUT) > 2Θ(

√
n).

It is not a coincidence that the high lower bound of CUT is ob-
tained by taking the family CUT of cut polytopes corresponding to
the complete graphs. The specific family of complete graphs is in
some sense the most general family of graphs for defining a hard
family of cut polytopes as evidenced by the following.

Proposition 3.3.8. Let G be any graph on n vertices. Then CUT�(G) is a
projection of CUT�(Kn).

Proof. If an edge (i, j) is not present in G, project it out.

3.3.2 The CNF-CERT family

For any given boolean formulaϕwith n variables define the polytope
SAT(ϕ) as the convex hull of all satisfying assignments. That is,

SAT(ϕ) := conv({x ∈ {0, 1}n | ϕ(x) = 1})

Since every 0/1 polytope is trivially the SAT polytope for some
CNF formula, the corresponding clan of polytopes is just the clan
ZERO−ONE which has high extension complexity as pointed out
in Proposition 3.3.1. We will now show the existence of an easy to con-
struct family of SAT polytopes that has superpolynomial extension
complexity. The polytopes in this family will correspond to CNF for-
mulae encoding the cuts of Kn as their satisfying assignments. This
family of polytopes will be called the CNF-CERT family, and will
turn out to be a canonical family of polytopes with high extension
complexity that will be used in Chapter 4 to give lower bounds for
other families.

Let n ∈ N and m = n2. For the complete graph Kn define a 3SAT
boolean formulaϕm such that CUT�(Kn) is a projection of SAT(ϕm).
Consider the relation xij = xii⊕ xjj, where ⊕ is the xor operator. The
boolean formula

(xii∨ xjj∨ xij)∧ (xii∨ xjj∨ xij)∧ (xii∨ xjj∨ xij)∧ (xii∨ xjj∨ xij)

40 extended formulations

is true if and only if xij = xii⊕xjj for any assignment of the variables
xii, xjj and xij.

Therefore we define ϕm (with m = n2) as

ϕm :=
∧

i,j∈[n]
i 6=j

[
(xii ∨ xjj ∨ xij)∧ (xii ∨ xjj ∨ xij)∧

(xii ∨ xjj ∨ xij)∧ (xii ∨ xjj ∨ xij)

]
. (6)

This ensures that the the satisfying assignments of ϕm when re-
stricted to the variables xij with i 6= j are exactly the cut vectors of
Kn and every cut vector of Kn can be extended to a satisfying assign-
ment of ϕ. Consequently, we have that.

Proposition 3.3.9. SAT(ϕm) is an EF of CUT�(Kn+1) for each natural
number m = n2.

Proof. This follows from Proposition 3.3.3. In fact, SAT(ϕm) is actu-
ally CUT�(Kn+1).

Definition 3.3.10. The CNF-CERT family of polytopes is defined by
the polytopes Pm = SAT(ϕm) withϕm described previously by equa-
tion 6. For values of m with no corresponding ϕm we have Pm = ∅.

Note that SAT(ϕm) has m = n2 variables and 4(m−n) clauses.
Since CUT�(Kn) is a projection of SAT(ϕm), we can conclude that
xc(SAT(ϕm)) > xc(CUT�)) > 2Ω(n) (cf. Prop. 3.1.22), and thus,

Proposition 3.3.11. xc(CNF-CERT) = 2Ω(
√
n).

Proof. This follows from Proposition 3.3.9.

3.3.3 The DNF-CERT family

Finally, we describe an interesting family of polytopes that has poly-
nomial extension complexity. Similar to, and yet in contrast with the
CNF-CERT family, this family corresponds to the satisfying assign-
ments of DNF formulae. Notice that whereas deciding satisfiability
of a CNF formula is an NP-hard problem, deciding the same for a
DNF formulae is trivial.

Let Φ = {ϕ1, . . .} be a family of DNF formulae where ϕn has n
variables and poly(n) clauses. We will call the family {SAT(ϕ1), . . .} of
polytopes a DNF-CERT family. It is not important to pick a canonical
representative of this family because as we will see next, the certifi-
cates of a polynomial sized DNF formula have polynomial extension
complexity.

Proposition 3.3.12. Let ϕ be a DNF formula with n variables and m
clauses. Then xc(SAT(ϕ)) 6 2mn.

Proof. If ϕ consists of a single clause then it is just a conjunction
of some literals. In this case SAT(ϕ) is a face of the n-hypercube
and has xc(SAT(ϕ)) 6 2n. Furthermore, for DNF formulae ϕ1,ϕ2
we have that SAT(ϕ1∨ϕ2) = SAT(ϕ1)] SAT(ϕ2)). Therefore, using
Proposition 3.2.5 repeatedly we obtain that for a DNF formulaϕwith
n variables and m clauses SAT(ϕ) 6 2mn.

3.3 some canonical polytope families 41

As a consequence we obtain the following.

Proposition 3.3.13. Let DNF-CERT = {P1,P2, . . .} be a family of poly-
topes where Pn = SAT(ϕn) and ϕn a DNF formula with n varibles and
poly(n) clauses. Then, xc(DNF-CERT) = poly(n).

Part II

R E C I P E S

會則事同一家 With realization, things make one family;
不會萬別千差 Without realization, things are separated in

a thousand ways.
不會事同一家 Without realization, things make one family;
會則萬別千差 With realization, things are separated in

a thousand ways.

— The Gateless Gate: Case 16 [38]

4
T U R I N G R E D U C T I O N S

In Section 3.1 we saw some simple observations that make it possible
to translate bounds on extension complexity of a polytope P to that
of another polytope Q simply by demonstrating that Q essentially
contains P (cf. Propositions 3.1.21, 3.1.22, and 3.1.23). Now we will
see actual examples where these observations are put to use.

4.1 relatives of cut polytopes

4.1.1 Cut polytope for minors of a graph

Definition 4.1.1. Let G = (V ,E) be a graph. A graph H = (V ′,E ′) is
called a minor of G if an isomorphic copy of H can be obtained from
G by a sequence of the following operations.

•Vertex deletion : V ′ = V \ {v} and E ′ = E \ {e ∈ E | v ∈ e}
for some vertex v ∈ V .

•Edge deletetion : V ′ = V and E ′ = E \ {e}

for some edge e ∈ E.

•Edge contraction : V ′ = (V \ {u, v})∪ {w} and

E ′ = E \ {e ∈ E|u ∈ e∨ v ∈ e}
∪ {(w, z)|(x, z) ∈ E, x ∈ {u, v}, z /∈ {u, v}}

for some u, v ∈ V and w /∈ V .

It turns out that extension complexity is a monotone property un-
der taking minors.

Proposition 4.1.2. Let G be a graph and let H be a minor of G, then some
face of CUT�(G) is an EF of CUT�(H). In particular,

xc(CUT�(G)) > xc(CUT�(H)).

Proof. See [2], Theorem 12 (Appendix D).

Using this together with Proposition 3.3.6 we can conclude the fol-
lowing.

Proposition 4.1.3. The extension complexity of CUT�(G) for a graph G
with a Kn minor is at least 2Ω(n).

The cut polytope of the tripartite graph K1,n,n is called the Bell in-
equality polytope and plays an important role in Quantum Physics
for the study of quantum entanglement [5]. We can conclude that this
polytope cannot be represented by a polynomial number of inequali-
ties even if we allow extra variables.

45

46 turing reductions

Proposition 4.1.4. xc(CUT�(K1,n,n)) = 2
Ω(n).

Proof. Pick any matching of size n between the vertices in each of
the two parts of cardinality n. Contracting the edges in this matching
yields Kn+1 and the result follows.

So we see that a large clique as a minor is sufficient for the cut
polytope of a graph to have high extension complexity. Is it also nec-
essary? Before we answer this question (in the negative) we discuss a
polytope whose relation to cut polytope will become clear in Subsec-
tion 4.1.3.

4.1.2 Stable set for cubic planar graphs

Definition 4.1.5. Let G = (V ,E) be a graph. The convex hull of char-
acteristic vectors of the independent sets in G is called the stable set
polytope of G and is denoted by STAB(G). Any polytope P such that
P = STAB(G) for some graph G is called a STAB polytope.

Since finding the largest independent set in arbitrary graphs is an
NP-hard problem, it would be very surprising if the clan STAB of
STAB polytopes had polynomial extension complexity. Indeed this is
not the case and this clan was also one of the first to be shown to have
superpolynomial extension complexity.

Proposition 4.1.6. xc(STAB) = 2Ω(
√
n).

Proof. See [27], Theorem 10 (Appendix A).

In fact a family of STAB polytopes of cubic planar graphs can al-
ready has superpolynomial extension complexity.

Proposition 4.1.7. There exists a family STAB of STAB polytopes of cubic
planar graphs such that xc(STAB) = 2Ω(4

√
n).

Proof. See [2], Corollary 5 (Appendix D).

4.1.3 Cut Polytope for K6 minor-free graphs

In Subsection 4.1.1 we saw that a large clique as a minor is sufficient
for the cut polytope of a graph to have high extension complexity.
Now we will see that a large clique minor is not necessary for high
extension complexity of the cut polytope. In particular, there are K6-
minor free graphs whose cut polytopes have large extension complex-
ity. Note that if a n-vertex graph G has no K5-minor then CUT�(G)
has O(n3) extension complexity [21]. Contrast this with the fact that
the MAXCUT problem is solvable in polynomial time on K5 minor-
free graphs but becomes NP-hard on K6 minor-free graphs.

Definition 4.1.8. Let G = (V ,E) be any graph with V = {1, . . . ,n}.
The suspension G ′ of G is obtained by adding an extra vertex labeled
0 with edges to all vertices V .

4.2 embedding arguments from turing reductions 47

The operation of creating suspension of a graph is actually what
relates the CUT and the STAB polytopes with each other.

Proposition 4.1.9. Let G = (V ,E) be a graph and let G ′ be a suspension
over G. Then STAB(G) is the projection of a face of CUT�(G ′).

Proof. See [2], Theorem 13 (Appendix D).

By Proposition 4.1.6 we we have a family of cubic planar graphs
whose STAB polytopes give a family with superpolynomial exten-
sion complexity. Planar graphs do not contain K5 as a minor and so
the suspension of any planar graph is K6 minor-free. This gives us a
family of K6-minor graphs whose cut polytopes have high extension
complexity.

Proposition 4.1.10. There exists a family CUT ′ of CUT polytopes of K6
minor-free graphs such that xc(CUT ′) = 2Ω(4

√
n).

This provides a sharp contrast for the complexity of the cut poly-
tope for graphs in terms of their minors. As noted earlier, for any K5
minor-free graph G with n vertices CUT�(G) has an extension of size
O(n3) whereas the above result shows that there are K6 minor-free
graphs whose cut polytope has superpolynomial extension complex-
ity.

4.2 embedding arguments from turing reductions

The central technique used in the previous section was to argue that a
polytope P can be obtained as a projection of some face of polytope Q
and then using the fact that xc(P) is large to argue that xc(Q) must be
large too. How difficult is it to come up with a reduction that shows
such an embedding?

Surprisingly it is quite common that for a polytope family related
to an NP-hard problem the standard NP-hardness reduction also
gives the desired embedding of one polytope family into another. In
fact, the proofs of Propositions 4.1.7 and 4.1.9 are based on standard
NP-hardness reductions for the associated problems. Now we present
some more examples where the standard reductions suffice.

4.2.1 Traveling Salesman

Definition 4.2.1. Let G be a graph. The traveling salesman polytope of
G – denoted by TSP(G) – is the convex hull of all Hamiltonian cycles
of G. Any polytope P such that P = TSP(G) for some graph G will
be referred to as a TSP polytope. The clan of all TSP polytopes is
denoted by TSP.

Similar to the CUT clan, complete graphs a canonical hard class of
graphs for the extension complexity of the TSP clan. This is because
of the following.

Proposition 4.2.2. Let G be a graph on n vertices. Then TSP(G) is a face
of TSP(Kn).

48 turing reductions

Proof. For any edge (i, j) missing in G, restrict to the face of TSP(Kn)
defined by the valid inequality xij = 0.

The TSP problem asks whether a given graph contains a tour vis-
iting every vertex exactly once and is known to be NP-hard. In fact,
the standard NP-hardness reduction can be used to show superpoly-
nomial lower bound on the extension complexity of the TSP clan.

Proposition 4.2.3. xc(TSP) = 2Ω(4
√
n).

Proof. See [27], Theorem 12 (Appendix A).

Rothvoß [55] has improved the above bound to show that in fact
xc(TSP) = 2Ω(

√
n). His bound again uses a standard embedding

argument from perfect matching to TSP, but his lower bound for the
perfect matching polytope uses new tools which are out of scope for
us.

4.2.2 Subset sum

Definition 4.2.4. Given n integers a> = (a1, . . . ,an) and another
integer b, the subset sum problems asks whether any subset of the
set {a1, . . . ,an} sums exactly to b. Define the subset sum polytope
SUBSETSUM(a,b) as the convex hull of all characteristic vectors of
the subsets of a whose sum is exactly b.

SUBSETSUM(a,b) := conv
({
x ∈ {0, 1}n|a>x = b

})
A polytope P which is SUBSETSUM(a,b) for some integers a,b will
be a SUBSETSUM polytope.

The subset sum problem is, then, equivalent to asking whether the
SUBSETSUM polytope for a given integer vector a and integer b is
empty.

A related knapsack polytope can be defined as

KNAPSACK(a,b) := conv
({
x ∈ {0, 1}n|a>x 6 b

})
Using the standard NP-hardness reduction for the subset sum prob-

lem one can show the following.

Proposition 4.2.5. For every 3SAT formula ϕ with n variables and m
clauses, there exists an integer vector a(ϕ)> = (a1, . . . ,a2n+2m) and
integer b(ϕ) such that SAT(ϕ) is a projection of SUBSETSUM(a,b).

Proof. See [2], Theorem 6 (Appendix D).

It immediately follows using Proposition 3.3.11 that there is a fam-
ily of SUBSETSUM polytopes with high extension complexity.

Proposition 4.2.6. Let SUBSETSUM be the clan of all SUBSETSUM
polytopes. Then, xc(SUBSETSUM) = 2Ω(

√
n).

Since the polytope SUBSETSUM(a,b) is a face of KNAPSACK(a,b),
we have the following.

Proposition 4.2.7. Let KNAPSACK be the clan of of KNAPSACK poly-
topes. Then, xc(KNAPSACK) = 2Ω(

√
n).

4.2 embedding arguments from turing reductions 49

4.2.3 3d-matching

Definition 4.2.8. Consider a hypergraph G = ([n],E), where E con-
tains triples (i, j,k) for some distinct i, j,k ∈ [n]. A subset E ′ ⊆ E is
said to be a 3-dimensional matching if all the triples in E ′ are disjoint.
The 3d-matching polytope 3DM(G) is defined as the convex hull of
the characteristic vectors of every 3d-matching of G. That is,

3DM(G) := conv({χ(E ′) | E ′ ⊆ E is a 3d-matching})

It is often customary to consider only hypergraphs defined over
three disjoint set of vertices X, Y,Z such that the hyperedges are sub-
sets of X× Y × Z. Observe that any hypergraph G can be converted
into a hypergraph H in such a form by making three copies of the
vertex set V ,V ′,V ′′ and using a hyperedge (i, j ′,k ′′) in H if and only
if (i, j,k) is a hyperedge in G.

Exercise 4.2.9. Show that xc(3DM(G)) = Θ(xc(3DM(H))).

Definition 4.2.10. A polytope P is said to be a 3DM polytope if P =

3DM(G) for some hypergraph G.

The 3d-matching problem asks: given a hypergraph G, does there
exist a 3d-matching that covers all vertices? This problem is known to
be NP-complete and was one of Karp’s 21 problems proved to be NP-
complete [31, 42]. This problem can be solved by linear optimization
over the polytope 3DM(G) and therefore it is to be expected that
3DM(G) would not have a polynomial size EF for every hypergraph
G.

Proposition 4.2.11. For the clan 3DM of 3DM polytopes we have that
xc(3DM) = 2Ω(4

√
n).

This follows from the following Proposition whose proof relies on
the standard NP-hardness reduction for the 3d-matching problem.

Proposition 4.2.12. Let ϕ be a CNF formula with n variables and m
clauses. Then there exists a hypergraph H = (V ,E) with |V | = O(nm)

and |E| = O(nm) such that SAT(ϕ) is the projection of a face of 3DM(H).

Proof. See [2], Corollary 3 (Appendix D).

4.2.4 Induced matchings

Definition 4.2.13. A matching in a graph G = (V ,E) is called induced
if there is no edge in G between any pair of matching edges.

Stockmeyer and Vazirani [58] and Cameron [15] proved that the
problem of finding a maximum cardinality induced matching is NP-
hard.

Definition 4.2.14. Let G be a graph. The convex hull of all induced
matchings G is called the induced matching polytope of G and is de-
noted by IndMatch(G). A polytope P is said to be an IndMatch poly-
tope if there exists a graph G such that P = IndMatch(G).

50 turing reductions

Using the reduction in [15] one can show the following.

Proposition 4.2.15. For every n there exists a bipartite graph Gn with
O(n) edges and vertices such that xc(IndMatch(G)) = 2Ω(4

√
n).

Proof. See [1], Theorem 1 (Appendix H).

This implies the existence of a family with high extension complex-
ity.

Proposition 4.2.16. There exists a family INDMATCH of IndMatch poly-
topes such that xc(INDMATCH) = 2Ω(4

√
n).

4.2.5 Maximal matchings

Definition 4.2.17. A matching in a graph G = (V ,E) is called maximal
if its edge set is not included in a larger matching.

It is known that finding the minimum maximal matching is NP-
hard [64].

Definition 4.2.18. Let G be a graph. The convex hull of all maximal
matchings of G is called the maximal matching polytope of G and
is denote it by MaxMatch(G). Accordingly a polytope P is called a
MaxMatch polytope if P = MaxMatch(G) for some graph G.

Since the perfect matching polytope of K2n has extension complex-
ity 2Ω(n), we clearly have that the clan of MaxMatch polytopes has
high extension complexity. However one can use the standard proof
of NP-hardness of minimum maximal matching to show superpoly-
nomial bound as well.

The only hurdle in using the reduction of [64] is that the reduction
is from CNF formulae of special kind, namely formulae with at most
one nonnegated literal and at most two negated literals in each clause.
High extension complexity for the SAT polytopes of formulae of this
specific kind can be shown by a fairly simple reduction.

Proposition 4.2.19. For every n there exists a 3-CNF formula ϕn with
O(n) variables and clauses such xc(SAT(ϕn)) 6= poly(n). Furthermore, in
every clause of ϕn every variable appears at most twice non-negated and at
most once negated.

Proof. See [1], Theorem 2 (Appendix H).

The reduction of [64] then gives the following.

Proposition 4.2.20. For every n there exists a bipartite graph G = (V1 ∪
V2,E) with O(n) vertices and edges, such that xc(MaxMatch(G)) 6= poly(n).

Proof. See [1], Theorem 3 (Appendix H).

Thus we have the following.

Proposition 4.2.21. Let MAXMATCH be the clan of MaxMatch poly-
topes. Then, xc(MAXMATCH) 6= poly(n).

4.2 embedding arguments from turing reductions 51

4.2.6 Edge disjoint matching and perfect matching

Given a bipartite graph G(V1 ∪ V2,E) and a natural number k, it is
NP-hard to decide whether G contains a perfect matching M and a
matching M ′ of size k such that M and M ′ do not share an edge [52].

For a given graphGwith n vertices andm edges consider an encod-
ing of a perfect matching and a matching using variables x1, . . . , xm,
y1, . . . ,ym as follows. For a subset of edges encoding a perfect match-
ing M and a matching M ′ of size k we construct a vector with

xi =

1, if ei ∈M
0, if ei /∈M

, yi =

1, if ei ∈M ′

0, if ei /∈M ′

Definition 4.2.22. Let G = (V ,E) be a graph. Define the polytope
MPM(G,k) to be the convex hull of all the vectors encoding an edge
disjoint perfect matching and a matching of size at least k. As usual,
a polytope P such that P = MPM(G,k) for some graph G and natural
number k is called an MPM polytope.

We would like to remark that one can also define a “natural” poly-
tope here without using separate variables for a matching and a per-
fect matching and instead using the characteristic vectors of all sub-
sets of edges that are an edge-disjoint union of a matching and a
perfect matching. However, the formulation that we consider allows
different cost functions to be applied to the matching and the perfect
matching.

Using the reduction in [52], one can show that for every n there
exists a bipartite graph Gn with O(n) vertices and a constant 0 < c <
1
2 such that MPM(G, cn) has extension complexity super polynomial
in n. Again the reduction in [52] is from MAX-2-SAT, so we first need
to prove a super polynomial lower bound for the SAT polytopes of
2-CNF formulas.

Proposition 4.2.23. For every n there exists a 2-SAT formula ϕn with n
variables such that xc(SAT(ϕn)) = 2Ω(4

√
n).

Proof. See [1], Theorem 4 (Appendix H).

As a side remark, the 2-SAT instances required in the above theo-
rem are always satisfiable.

Proposition 4.2.24. For every n there exists a bipartite graph Gn on n
vertices and a constant 0 < c < 1

2 such that xc(MPM(G, cn)) 6= poly(n).

Proof. See [1], Theorem 5 (Appendix H).

Thus, we have the following.

Proposition 4.2.25. There exists a family MPM of MPM polytopes such
that xc(MPM) 6= poly(n).

52 turing reductions

4.3 difficulities in handling general reductions

Seeing so many NP-hardness reductions yield superpolynomial ex-
tension complexity lower bounds for the associated polytopes, it was
suspected1 that it may be possible to prove a meta result. A result sim-
ilar to: “A problem is in PTIME if and only if the associated polytope
has polynomial extension complexity”. Notwithstanding what “asso-
ciated polytope of a problem” meant, this was shown to be impos-
sible in a remarkable paper [55] that showed that the perfect match-
ing polytope has exponential extension complexity (See Proposition
3.1.13).

It should be noted that it may still be possible to have the poly-
topes associated with NP-complete problems always have superpoly-
nomial extension complexity. However a more likely scenario may be
that the answer depends crucially on how one associates polytopes
with problems, and for various choices of such associations the exten-
sion complexity may be trivially exponential while for others trivially
polynomial, and for yet others very difficult to determine.

In any case, for all we know PTIME reductions that are allowed
for proving NP-hardness may be as powerful as NP itself and so
being able to translate superpolynomial lower bounds on extension
complexity using arbitrary polynomial reductions may be too much
to ask.

1 At least by the present author

5
C O M PA C T L A N G U A G E S

Let ϕ be a boolean formula. Consider the following languages:

L = {x |x encodes a satisfiable boolean formula }

L((ϕ)) = {x |ϕ(x) = 1 }

The former language consists of all strings that encode1 all satisfi-
able boolean formulae, while the later language consists of all satis-
fying assignments of a given boolean formula. Which of these repre-
sents the boolean satisfiability problem more naturally?

Reasonable people will agree that there is no correct choice of a
natural polytope for a problem. One complication is that there vari-
ous kinds of problems: decision, optimization, enumeration, etc, and
very similar problems can have very different behaviour if the notion
of problem changes.

Example 5.0.1. Checking whether a bipartite graph has a perfect
matching can be solved by a simple polynomial time algorithm. A
related problem where one wants to count the number of bipartite
matchings is #P-hard.

Therefore one can pick any clan of polytopes, that they consider rea-
sonable, as representing a given problem but it can be asked whether
the extension complexities of that particular choice of polytopes re-
flect some underlying complexity measure of the problems. Often
the most immediate choice of polytopes does not really correspond
well to the computational complexity.

Example 5.0.2. The clan EP of perfect matching polytopes is a nat-
ural choice for the underlying decision problem: given a graph G,
does it have a perfect matching? While the computational problem
is polynomial time solvable, the extension complexity of Edmonds’
polytopes is exponential.

One reason for such complication is that wildly different kinds of
problems are defined over the same set of objects. For example, over
the set of graphs and their perfect matchings, we can ask natural de-
cision, optimization, and counting questions. The first two are poly-
nomial time solvable while the last one is #P-hard.

Our perspective of the situation will be as follows. Algorithms will
be identified with Turing machines with five tapes2.

• A two-way read-only input tape.

1 Assume that some (arbitrary but fixed) encoding of boolean formulae as binary
strings.

2 This does not make the Turing machines special.

53

54 compact languages

• An auxiliary read-only input tape than can be read only from
left to right.

• A two-way read-write work tape.

• A two-way write-only output tape.

• An auxiliary write-only output tape that can be written only
from left to right.

Computational problems are then questions about existence of Tur-
ing machines of the above kind with various restrictions on the con-
sumption of resources such as space consumed on the work tape or
the overall time, and on the relation between the contents of the input
tapes and the output tapes when the machine halts.

5.1 problems as languages

For us computational problems will just be questions about an under-
lying language. Various natural problems can be modeled in this way.
Usually a specific computational problem comes with an underlying
language L. The specific problem at hand is then some question about
the language L (or about strings of this language).

5.1.1 Membership Problem

The membership problems asks whether a given string belongs to a
particular language. We will denote such problems by mem(L).

Example 5.1.1. Let L = {x |x encodes a satisfiable boolean formula }.
The problem mem(L) then is just the familiar boolean satisfiability
problem where an encoding of the input has been agreed upon.

5.1.2 Optimization Problem

The optimization problem for a particular language L comes equipped
with a function that assigns a real number to every string in the lan-
guage and one is interested in finding the “best” string from L.

A particularly important class of such problems is one of linear
optimization. Given a cost vector c ∈ Rn one is interested in a string
x∗ ∈ L with |x∗| = n such that for every x ∈ L with |x| = n we have
that c>x∗ > c>x.

We will denote by opt(L) the problem of maximizing a linear func-
tion over all members of L that have length n.

Example 5.1.2. Given a linear cost function and a boolean formula ϕ,
find a satisfying assignment (if any) of minimum cost.

5.1.3 Enumeration Problem

The canonical enumeration problem for a particular language L – de-
noted by enum(L) – is as follows: given a number n enumerate all
members of L that have length n.

5.2 compact languages 55

Example 5.1.3. Enumerate all satisfying assignments of a given boolean
formula.

5.1.4 Sampling Problem

The canonical sampling problem for a particular language L – de-
noted by sample(L) – is as follows: given a number n produce a
length n member of L with a given probability distribution.

Example 5.1.4. Given a boolean formula, produce a satisfying assign-
ment (if any) uniformly at random.

5.1.5 Counting problem

The canonical counting problem for a particular language L – denoted
by count(L) – is as follows: given a number n how many members of
L have length exactly n?

Example 5.1.5. How many satisfying assignents does a given boolean
formula have?

5.2 compact languages

5.2.1 Languages to Polytopes

For every natural number n define the set L(n) := {x ∈ {0, 1}n | x ∈ L}.
Viewing each string x ∈ L(n) as a column vector, and ordering the
strings lexicographically, we can view the set L(n) as a matrix of size
n× |L(n)|. Thus we are in a position to naturally associate a family
of polytopes with a given language and the extension complexity of
these polytopes can serve as a natural measure of how hard is it to
model these languages as Linear Programs.

That is, one can associate with L, the family of polytopes P(L) =

{P(L(1)),P(L(2)), . . .} and the extension complexity xc(P(L)) is then
an intrinsic measure of complexity of the language L.

Example 5.2.1. Matching polytope of complete graphs with a canon-
ical (say lexicographic) ordering on the edges. The associated lan-
guage consists of the characteristic vectors of all perfect matchings
of Kn for n ∈N.

Definition 5.2.2. The extension complexity of a language L – denoted
by xc(L) – is defined by xc(L) := xc(P(L)).

Now we are ready to define the class of languages that we are
interested in: namely, the languages that have small extension com-
plexities.

Definition 5.2.3. CF is the class of languages admitting Compact ex-
tended Formulations and is defined as

CF = {L ⊆ {0, 1}∗ | ∃c > 0 s.t. xc(L) 6 nc}

56 compact languages

5.2.2 Easy problems for Compact languages

Let L be a compact language. That is for each n ∈ N the polytope
P(L(n)) has small extension complexity. What does that give us in
terms of solving computational problems related to L? Naturally, one
would need such an extended formulation itself to be efficiently com-
putable. It may very well happen that a polytope has a small exten-
sion but the actual numbers needed to represent any small sized ex-
tension require very large precision. In fact it is unknown whether
small extension complexity using real numbers implies small exten-
sion complexity using rational numbers.

Notwithstanding the previous discussion, let us assume that lan-
guage L has a small extension that is also efficiently constructible. By
efficiently constructible, we mean that given nwe can construct an ex-
tension of P(L(n)) requiring poly(n) bits to describe in time poly(n).
What do we gain in this case?

Proposition 5.2.4. Let L have an efficiently constructible extended for-
mulation of size s(n). Then, mem(L) and opt(L) can be solved in time
poly(s(n) +n).

Proof. Let Q = {(x,y | Ax+ By 6 c} be an EF of P(L(n). Checking
whether a given x∗ belongs to L or not can be done by checking the
feasibility of Q ∩ {x = x∗}. The problem opt(()L) is also easily solved
by standard Linear Programming.

Proposition 5.2.5. Let L have an efficiently constructible extended formu-
lation of size s(n). Then, enum(L) and sample(()L) can be solved in time
poly(s(n) +n+ h(n)) where h(n) is the number of strings of length n.

Proof. This follows from the fact that vertices of a zero-one polytope
can be enumerated in strongly polynomial time [14]. For the method
of Bussiek and Lübbecke to work, we only need to check whether a
given face of the zero-one polytope is empty or not.

For the sampling problem one can just start the enumeration and
select any of the output string uniformly at random on the fly. Note
that one does not have to store the entire output to select an element
with uniform distribution.

Proposition 5.2.6. The problem count(L) may be #P-hard even if P(L(n))
has small size.

Proof. This follows from the fact that the polytope of perfect match-
ings of bipartite graphs has small description, but counting the num-
ber of perfect matchings in bipartite graphs is #P-hard.

5.3 closure properties

Now we discuss the closure properties of the class CF with respect to
some common operations on formal languages. The operations that
we consider are as follows.

5.3 closure properties 57

• Complement : L = {x | x /∈ L}
• Union : L1 ∪ L2 = {x | x ∈ L1 ∨ x ∈ L2}
• Intersection : L1 ∩ L2 = {x | x ∈ L1 ∧ x ∈ L2}
• Set difference : L1 \ L2 = {x | x ∈ L1 ∧ x /∈ L2}
• Concatenation : L1L2 = {xy | x ∈ L1 ∧y ∈ L2}
• Kleene star : L∗ = L∪ LL∪ LLL∪ LLLL∪ . . .

Proposition 5.3.1. CF is not closed under taking complement.

Proof. Consider the family CNF-CERT of polytopes discussed in Sub-
section 3.3.2. Let Φ be the family of boolean formulae correspond-
ing to this polytope family, and let L be the language consisting of
all binary strings that correspond to a vertex of some polytope in
CNF-CERT. That is, L is the language of all cut vectors of Kn for
n ∈N, viewed as binary strings.

Now consider the family of DNF formulaeΦ = {ϕ |ϕ ∈Φ}. Notice
that the language of all certifying assignments of formulae in Φ is
precisely L.

We see that P(L) = DNF-CERT while P(L) = CNF-CERT. Propo-
sitions 3.3.11 and 3.3.13 state that xc(DNF-CERT) = poly(n) while
xc(CNF-CERT) 6= poly(n). Therefore L ∈ CF and L /∈ CF.

Proposition 5.3.2. CF is closed under taking union.

Proof. Let L1 and L2 be two languages. Then, xc(L1 ∪ L2) 6 xc(L1) +
xc(L2) (cf. Proposition 3.2.5).

Proposition 5.3.3. CF is not closed under taking intersection.

Proof. Let L1 be a language such that a string x ∈ L1 if and only if it
satisfies the following properties.

• |x| = (n+ 1)
(
n
2

)
for some natural number n, and

• xij(n+1) = xiji ⊕ xijj if the characters are indexed as xijk with
1 6 i < j 6 n, 1 6 k 6 n+1.

We claim that xc(L1) = O(n3). Indeed P
(
L1
(
(n+ 1) ·

(
n
2

)))
is the

product of polytopes

Pij =
{
x ∈ {0, 1}n+1 | xn+1 = xi ⊕ xj

}
for 1 6 i < j 6 n and xc(Pij) = O(n) (cf. Example 3.1.26).

Now let L2 be a language such that a string x ∈ L2 if and only if it
satisfies the following properties.

• |x| = (n+ 1)
(
n
2

)
for some natural number n, and

• xi1j1k = xi2j2k for all k ∈ [n], i 6= j ∈ [n]

Each polytope P
(
L1
(
(n+ 1) ·

(
n
2

)))
is just an embedding of���n+(n2)

in R(n+1)(n2) and therefore, xc(L2) = O(n2).
Finally, observe that form = (n+1)

(
n
2

)
the polytope P((L1∩L2)(m))

when projected to the coordinates labelled xij(n+1) is just the poly-
tope CUT�n (cf. Proposition 3.3.3). Therefore, xc(L1 ∩L2) = 2Ω(n) and
even though L1,L2 ∈ CF, the intersection L1 ∩ L2 /∈ CF.

58 compact languages

Proposition 5.3.4. CF is not closed under taking set difference.

Proof. The complete language {0, 1}∗ clearly belongs to CF. For any
language L we have L = {0, 1}∗ \ L. If CF were closed under taking
set-difference, it would also be closed under taking complements. But
as pointed out in Proposition 5.3.1, it is not.

Proposition 5.3.5. CF is closed under concatenation.

Proof. P(L1L2(n)) is the union of the polytopes P(L1(i))× P(L2(n−

i)) for i ∈ [n]. Therefore, using Propositions 3.2.3 and 3.2.5 we have
that xc(L1L2) 6 n(xc(L1) + xc(L2)).

Proposition 5.3.6. CF is closed under taking Kleene star.

Proof. Let L ∈ CF. For 0 6 k 6 n, consider the polytope Pk defined
as

Pk := conv









en+1i+1

0i

x

0n−i−k

en+1
i+|x|+1



∈ {0, 1}3n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ L
∧ |x| = k

∧ 0 6 i 6 n− k






Define P := ∪nj=0Pj. Then, xc(P) 6
n∑
k=0

xc(Pk) 6
n∑
k=0

(n xc(P(L(k)))) 6

O(n2 xc(L)).
Let S0 be the face of P defined by the first n coordinates being 0

and the (n+1)-th coordinate being 1. Construct Si+1 by taking the
glued product of Si with P over the last n+1 coordinates of Si and
the first n+1 coordinates of Q.

Take the face R of Sn defined by the last n coordinates being 0 and
the (n+1)-th penultimate coordinate being 1. Then, R is an EF for
P(L∗(n)). Moreover, xc(R) 6 xc(Sn) 6 (n+ 1) xc(P) 6 O(n3 xc(L)).

Therefore, xc(L∗) = O(n3 xc(L)) and L∗ ∈ CF.

6
O N E - PA S S L A N G U A G E S

6.1 online turing machines

An online Turing machine is a two tape Turing machine where one
of the tapes stores the input and can be read only from left to right.
The second tape is the work tape and the machine can read and write
freely on it and the head is free to move in any direction. The space
consumed on the worktape in the worst case is the measure of space
complexity.

6.1.1 History

Online Turing machines that require only logarithmic space on the
work tape were considered by Hartmanis, Immerman, and Mahaney
[36] to restrict the power of reductions between two problems. Tra-
ditionally, for establishing equivalence of problems arbitrary polyno-
mial time reduction between them is allowed. In the light of the fact
that we do not know whether PTIME is different from NP, such re-
ductions may be misleading. In fact, even the possibly smaller class
of LOGSPACE problems are not known to be different from the class
NP and so even logspace reductions between problems may be mis-
leading about their true complexity.

It is known that one-pass logspace Turing machines can only accept
regular languages [57, 59] and therefore if two problems are reducible
to each other using only one-pass logspace reduction, they are equiv-
alent in a stronger sense.

6.1.2 Determinism vs. Non-determinism

For online Turing machines requiring at least logarithmic space, non-
determinism allows provably stronger machines. Non-regular lan-
guages can be accepted by non-deterministic machines using logarith-
mic space while any one-pass deterministic logspace Turing machine
can only accept regular languages [59].

6.2 extension complexity of one-pass languages

Definition 6.2.1. The complexity class k-NSPACE(s(n)) is the class
of languages accepted by a k-pass non-deterministic Turing machines
using space s(n). Similarly, the complexity class k-DSPACE(s(n)) is
the class of languages accepted by a k-pass deterministic Turing ma-
chine using space s(n).

What is the extension complexity of any language in this class?
Before we answer this we note the following.

59

60 one-pass languages

Proposition 6.2.2. L ∈ k-NSPACE(s(n)) =⇒ L ∈ 1-NSPACE(ks(n)).
Proof. Let Mn be the Turing machine that accepts strings of length n.
We will simulate Mn using a multi-tape single pass nondeterministic
Turing machine called the simulator S. S is supplied with p(n) work
tapes. S starts by guessing the initial work state of Mn at the start of
i-th pass and writing them on the i-th work tape. S then simulates (us-
ing extra space on each work tape) each of the passes independently
starting from their respective initial configuration. Once the entire in-
put has been scanned, the simulator verifies that the work space of
Mn on the i-th tape at the end of the pass matches the guess for the
initial content for the (i+ 1)-th tape. S will accept only if the last tape
is in an accepting state.

To store the content of work tape and the current state, S needs
s(n) + o(s(n)) space for each pass. Thus S uses a single pass and
total space of p(n)s(n)(1+ o(1)). By Proposition 6.2.8 the extension
complexity of the strings accepted by Mn is then 2O(p(n)s(n))n.

Thus for our purposes it suffices to restrict our attention to single
pass TMs. In the next subsection we describe the polytope associated
with walks in a directed graph, that will help us bound the extension
complexity of such languages.

6.2.1 Walks in directed graphs

Definition 6.2.3. Let D = (V ,A) be a directed graph with every edge
labeled either zero or one. Consider two nodes u, v ∈ V and a walk ω
of length n from u to v. The signature of ω – denoted by σω – is the
sequence of edge labels along the walk ω. The node u is called the
source of the walk and the node v the destination.

Definition 6.2.4. Consider the convex hull of all zero-one vectors of
the form (u,σ, v) where u and v are indices of two nodes in D and σ
is the signature of some walk of length n from u to v. This polytope
– denoted by Pmarkov(D,n) – is called the Markovian polytope of D.

Proposition 6.2.5. Let D = (V ,A) be directed graph (possibly with self-
loops and multiple edges) with every edge labeled either zero or one. Then,
Pmarkov(D,n) has extension complexity at most 2|V |+ |A| ·n.

Proof. Let us encode every vertex of D with a zero-one vector of
length V such that the unit vector ei represents vertex i.

Define polytope Ptrans ⊂ {0, 1}|V |+1+|V | with (a, z,b) ∈ {0, 1}|V |+1+|V |

a vertex of Ptrans if and only if it encodes a possible transition in D.
That is, a and b encode vertices of V , and the coordinate z represents
the label of the edge following which one can move from a to b. Since
Ptrans has at most |E| vertices xc(Ptrans) 6 |E| (cf: Proposition 3.1.19).

Let P0 be the convex hull of (i,ei) for i ∈ V and Pf be the convex
hull of (ei, i) for i ∈ V . Observe that the two polytopes are the same
except for relabeling of coordinates. Also, xc(P0) = xc(Pf) 6 |V |.

Let P1 = Ptrans. For 2 6 i 6 n, construct the polytope Pi by glueing
the last |V | coordinates of Pi−1 with the first |V | coordinates of Ptrans.
By Proposition 3.2.4 we have that xc(Pn) 6 |E| ·n.

6.2 extension complexity of one-pass languages 61

Finally, let P be the polytope obtained by glueing last |V | coordi-
nates of P0 with the first |V | coordinates of Pn, and then glueing the
last |V | vertices of the result with the first |V | coordinates of Pf. Note
that xc(P) 6 2|V |+ |E| ·n.

To complete the proof, notice that P is an extended formulation for
Pmarkov(D,n). In particular, projecting out every coordinate except the
ones corresponding to the source node in P0, the ones correspond-
ing to the destination node in Pf, and ones that correspond to the
z coordinates in all the copies of Ptrans produces exactly the vertices
of Pmarkov(D,n). The z-coordinate corresponding to the i-th copy of
Ptrans corresponds to the i-th index of signatures in the vectors in
Pmarkov(D,n).

6.2.2 Extension complexity of single-pass machines

Definition 6.2.6. The configuration graph for input of length n for a
given one-pass Turing machine (deterministic or non-determinisitic)
is constructed as follows. For each fixed n, consider the directed
graph whose nodes are marked with a label consisting of s(n) +
dlog (s(n))e characters. The labels encode the complete configuration
of the Turing machine: the content of the worktape and head posi-
tion on the worktape. We make directed edges between two nodes u
and v if the machine can reach from configuration u to configuration
v by a sequence of transitions with exactly one input bit read in be-
tween. The directed edge is labeled by the input bit read during this
sequence of transition.

Finally, we add two special nodes: a start node with a directed edge
to each possible starting configuration of the machine, and a finish
node with a directed edge from each possible accepting configuration.
Each of these directed edges are labeled by zero.

Proposition 6.2.7. The configuration graph for input of length n for a one-
pass Turing machine has O(2s(n)s(n)) nodes. If the Turing machine is non-
deterministic, this graph has O(4s(n)(s(n))2) edges. If the Turing machine
is deterministic then this graph has O(2s(n)s(n)) edges.

Proof. The bound for number of nodes is clear from the construction
of the configuration graph. We can have at most two transition edges
between any two (possibly non-distinct) nodes: one corresponding to
reading a zero on the input tape, and one corresponding to reading
a one. Therefore, asymptotically the configuration graph can have at
most square of the number of nodes.

For deterministic Turing machine, each node in the configuration
graph has exactly two outgoing edges (possibly to the same node).
Therefore the number of edges is asymptotically the same as the num-
ber of vertices.

Now Proposition 6.2.5 can be used to bound the extension complex-
ity of language accepted by one-pass machines.

Proposition 6.2.8. Let L ∈ 1-NSPACE(s(n)). Then,

xc(L) = O(4s(n)(s(n))2 ·n).

62 one-pass languages

Proof. Let L ∈ 1-NSPACE(s(n)) be a language. That is, there exists
a Turing machine that when supplied with a string on the one-way
input tape uses at most s(n) cells on the worktape, makes a single
pass over the input and then accepts or rejects the input. If the input
string is in L, some sequence of non-deterministic choices lead the
machine to an accepting state, otherwise the machine always rejects.

The length-n strings that are accepted by such a Turing machine
correspond exactly to the signatures of length n+ 2 walks on the cor-
responding configuration graph D. The first and the last character
of these strings is always zero. Therefore, an extended formulation
for P(L(n)) is obtained by taking the face of Pmarkov(D,n+ 2) corre-
sponding to walks that start and the start node and finish at the finish
node. By Proposition 6.2.5 Pmarkov(D,n+ 2) has extension complex-
ity O(4s(n)(s(n))2 · n, and by Proposition 3.1.23 so does the desired
face.

If L is accepted by a one-pass deterministic TM then one can do
better because the configuration graph has fewer edges.

Proposition 6.2.9. Let L ∈ 1-DSPACE(s(n)). Then,

xc(L) = O(2s(n)s(n) ·n).

6.2.3 Extensions for multiple-pass machines

Proposition 6.2.10. Let L ∈ p-NSPACE(s(n)). Then,

xc(L) = 2O(p(n)s(n))n.

Proof. This follows immediately from Propositions 6.2.2 and 6.2.8.

Proposition 6.2.11. Let M be a (not necessarily uniform) family of deter-
ministic online Turing machines. Let the number of passes and the space used
by the family be bounded by functions, p(n), s(n) respectively. Let L(M) be
the language accepted by M. Then, xc(L(M)) 6 2O(p(n)s(n))n.

Proposition 6.2.12. If L is accepted by a fixed-pass non-deterministic logspace
Turing machine then L ∈ CF.

We end this section with the following remark. For a language to be
compact (that is, to have polynomial extension complexity), it is suf-
ficient to be accepted by an online Turing machine (deterministic or
not) that requires only logarithmic space. However, this requirement
is clearly not necessary. This can be proved by contradiction: Suppose
that the condition is necessary. Then the class of compact languages
must be closed under taking intersection. (Simply chain the two ac-
cepting machines and accept only if both do). Since we have already
established (cf. Proposition 5.3.3) that the class of compact languages
is not closed under taking intersection, we have a contradiction.

6.3 applications 63

6.3 applications

6.3.1 Streaming lower bounds

Reading Proposition 6.2.10 in reverse readily yields lower bounds in
the streaming model of computation. We illustrate this by an exam-
ple.

Example 6.3.1. We know that the perfect matching polytope of the
complete graph Kn has extension complexity 2Ω(n). Any p(n)-pass
algorithm requiring space s(n), that correctly determines whether a
given stream of

(
n
2

)
is the characteristic vector of a perfect matching

in Kn, must have p(n)s(n) = Ω(n). This bound applies even to non-
deterministic algorithms.

In fact Proposition 6.2.5 provides an even stronger lower bound.

Definition 6.3.2. Let L ⊆ {0, 1}n be a language. L is said to be online µ-
magic if there exists a Turing machine T that accepts Lwith the follow-
ing oracle access. On an input of length n on the one-way input tape,
the machine T scans the input only once. T may prepare its working
tape to describe any well-formed function f : {0, 1}µ(n) → {0, 1}mu(n)

and a particular input x and invoke the oracle that changes the con-
tents of the work-tape to f(x). The machine must always reject strings
not in L. For strings in L there must be some possible execution re-
sulting in accept.

Notice that even the working of such a machine can be encoded in
terms of the configuration graph where the transitions may depend
arbitrarily but in a well-formed way on the contents of the work-tape.

Proposition 6.3.3. If the set of characteristic vectors of perfect matchings in
Kn are accepted by an online µ-magic Turing machine, then µ(n) = Ω(n).

Thus we see that extension complexity lower bounds highlight
deep limitations of the streaming model: even powerful oracles do
not help solve in sublinear space problems that are LOGSPACE solv-
able if the one-way restriction on the input is removed.

6.3.2 Upper bounds from online algorithms

Parity Polytope

As an example, consider the language containing strings where the
last bit indicates the parity of the previous bits. This language can
be accepted by a deterministic logspace turing machine requiring a
single pass over the input and a single bit of space. Therefore, the
parity polytope has extension complexity O(n).

The parity polytope is known to have extension complexity at most
4n− 4 [16].

64 one-pass languages

Integer Partition Polytope

For non-negative integer n the Integer Partition Polytope, Pn, is de-
fined as

Pn := conv{x ∈ Zn+|

n∑
k=1

kxk = n}.

It is known that xc(Pn) = O(n3) [50].
Consider the polytope in Rdlogne×n that encodes each xi as a bi-

nary string. For example, for n = 4 the vector (2, 1, 0, 0) is encoded as
(1, 0, 0, 1, 0, 0, 0, 0). This polytope is clearly an extended formulation of
the Integer Partition Polytope. Call this polytope BIPPn. The follow-
ing single pass determinisitic algorithm accepts a string (x1, x2, . . . , xn) ∈
{0, 1}dlogne×n if and only if the string represents a vertex of BIPPn.

Data : Binary string of length ndlogne
Result : Accept if the input encodes a vertex of the BIPPn
s = 0; i = 0; l = 0;
while i < n do

b =read_next_bit;
if (s+ (i+ 1)2lb) > n then

reject;
else

s = (s+ (i+ 1)2lb);
l = (l+ 1)%dlogne;
if l == 0 then

i++;
end

end
end
if s == n then

accept;
else

reject;
end

Algorithmus 1 : One pass algorithm for accepting vertices of BIPPn.
The above algorithm together with Proposition 6.2.9 shows that

xc(IPPn) 6 xc(BIPPn) 6 O(n3 log2 n).

Knapsack Polytopes

Let (a,b) = (a1,a2, . . . ,an,b) be a given sequence of (non-negative)
integers. The Knapsack polytope KS(a,b) is defined as

KS(a,b) := {x ∈ {0, 1}n|
n∑
i=1

aixi 6 b}.

The Knapsack polytope is known to have extension complexity
super-polynomial in n. However, optimizing over KS(a,b) can be
done via dynamic programming in time O(nW) where W is the
largest number among a1, . . . ,an,b.

Suppose the integers ai,b are arriving in a stream with a bit in
between indicating whether xi = 0 or xi = 1. With a space of W
bits, an online Turing machine can store and update

∑n
i=1 aixi. At

the end, it can subtract b and accept or reject depending on whether
the result is 0 or not. Any overflow during intermediate steps can be

6.3 applications 65

used to safely reject the input. Therefore, the extension complexity of
the Knapsack polytope is O(nW logW). Note however the extension
obtained this way is actually an extended formulation of a polytope
encoding all the instances together with their solutions.

Languages in co-DLIN

Let L be a language generated by a determinisitic linear grammar
[37]. The following result was proved by Babu, Limaye, and Varma
[6].

Proposition 6.3.4 (BLV). Let L ∈ DLIN. Then there exists a probabilistic
one-pass streaming algorithm using O(logn) space that accepts every string
in L and rejects every other string with probability at least 1/nc.

Using the above algorithm together with Proposition 6.2.10 we get
the following.

Proposition 6.3.5. If L ∈ DLIN, then L ∈ CF.

Part III

VA R I AT I O N S

A novice was trying to fix a broken Lisp machine by turning
the power off and on.

Knight, seeing what the student was doing, spoke sternly: "You
cannot fix a machine by just power-cycling it with no
understanding of what is going wrong."

Knight turned the machine off and on. The machine worked.

— Tom Knight and the Lisp Machine [53]

7
F P T E X T E N D E D F O R M U L AT I O N S

7.1 parameterized extension complexity

Most of the bounds seen so far (specially in Chapter 4) were only in
terms of the ambient dimension n. For example the perfect matching
polytope EP(Kn) for the complete graph Kn was seen to have exten-
sion complexity 2Θ(n). What about other graphs on n vertices? It was
shown by Barahona [7] that for planar graphs the perfect matching
polytope has polynomial extension complexity. Gerard [32] showed
that if G is a n-vertex graph of genus g, then xc(EP(G)) 6 nO(g).

In this chapter we shall see results of similar type. We have already
seen some results on parametrized extension complexity although it
was not made explicit so far.

Example 7.1.1. Let each 0/1 polytope P ∈ Rn be parameterized by
the minimum number of clauses in any DNF formula ϕ such that
P = SAT(ϕ). Denoting this parameter by µ, one can use Proposition
3.3.13 to conclude that xc(ZERO−ONE) = O(µn).

In other words, the clan of 0/1 polytopes has polynomial exten-
sion complexity when parameterized by the size of the smalled DNF
formula describing the vertex set of the polytopes.

Definition 3.1.5 can be used to formally speak about parametrized
extension complexity of a family (and therefore a clan) of polytopes.
Recall that for a family of polytopes there is exactly1 one polytope
Pn ⊂ Rn in the family for each n ∈N.

Definition 7.1.2. Let P be a clan of polytopes and κ : P → N be a
parameter. Let g : N×N → N be a function. We will say that the
parameterized extension complexity of P is g(κ,n) if for every polytope
P ∈ P such that P ⊆ Rn we have that xc(P) = g(κ(P),n).

We will say that extension complexity of P or xc(P) is FPT if there
exists f : N → N and a constant c such that xc(P) 6 f(κ)nc, and if
no such function or constant exist then we will say that the extension
complexity of P is not FPT.

As described in Subsection 3.1.1, we will mostly use asymptotic
descriptions of functions whenever we use the above definition.

Example 7.1.3. The extension complexity of the clan ZERO−ONE

parameterized by the size of the smallest DNF formula describing the
vertices is FPT.

1 In case there is no such polytope explicitely present, the empty polytope can play
the desired role.

69

70 fpt extended formulations

7.2 the independent set polytope

The k-independent set problem asks one to decide whether a graph
has independent set of size at most k. When parameterized by k this
problem is W[1]−hard but is fixed-parameter tractable for graphs of
bounded expansion. The corresponding polytope has analogous be-
havior with respect to the extension complexity [30].

7.2.1 The k-independent set polytope

Definition 7.2.1. Let G = (V ,E) be a graph on n vertices. The k6-
independent set polytope of G – denoted by STABk6(G) – is defined to
be the convex hull of the independent sets of G that have size at most
k.

Alternatively, one could define the k=-independent set polytope of G
– denoted by STABk=(G) – to be the convex hull of all independent
sets of size exactly equal to k.

As far as extension complexity is concerned, either definition can
be used to define the clan of stable set polytopes parameterized by the
size of the independent set. This is because the extension complexities
of the two polytopes defined above are within a polynomial factor of
each other.

Proposition 7.2.2.

xc(STABk=(G)) 6 xc(STABk6(G)) 6
k∑
i=0

xc(STABi=(G)).

Proof. Clearly, STABk=(G) is a face of STABk6(G). Therefore, we have
that xc(STABk=(G)) 6 xc(STABk6(G)) (cf. Proposition 3.1.23).

On the other hand, STABk6(G) = conv(
⋃k
i=1 STABi=(G)), and there-

fore xc(STABk6(G)) 6
∑k
i=0 xc(STABi=(G)) by Proposition 3.2.5.

Therefore any bounds (whether lower or upper) that are valid for
xc(STABk=(G)) are also asymptotically valid for xc(STABk6(G)). To
simplify our notations, instead of either STABk6(G) or STABk=(G),
we will use STABk(G). In the rest of the chapter STABk(G) represents
STABk=(G) but with minor adjustments the same arguments can be
made using STABk6(G).

Buchanan [13] showed that the extension complexity of the sta-
ble set polytopes parametrized by the treewidth τ of the underlying
graph is 2O(τ)n.

Proposition 7.2.3. Let STAB be the clan of stable set polytopes parametrized
by the treewidth of the underlying graph. That is, let τ : STAB → N be
defined as τ(P) = min{τ(G) | P = STAB(G)}, where τ(G) is the treewidth
of graph G. Then, xc(STAB) 6 2O(τ)·n.

Proof. See [13], Theorem 3.

7.2 the independent set polytope 71

Buchanan also asked if the extension complexity of the stable set
polytope parametrized by the size of the independent set is FPT. We
next present the answer to this question (in the negative). The proof
relies on encoding cuts of the complete graph on roughly k logn ver-
tices as independent sets of size k2 in another graph whose size is not
too big. The result then follows from the fact that the cut polytope of
the initial graph has size Ω(nk).

7.2.2 Paired Local-Cut Graphs

Given positive integers k and n, we define a graph called a Paired
Local-Cut Graph and denoted by PLC(k,n).

First we create k2blognc vertices labeled with tuples (i,S) for i ∈ [k]

and S ⊆ [blognc]. These vertices will be called cut vertices. Then we
create 2

(
k
2

)
22blognc vertices labeled with tuples (i, j,S1,S2) where 1 6

i 6= j 6 k and S1,S1 ⊆ [blognc]. These vertices will be called pairing
vertices.

We add edges to these vertices of PLC(k,n) as follows. For each
fixed i ∈ [k] we add the edges between all cut nodes that have labels
(i,S). Furthermore, for each fixed pair i, j ∈ [k] we add the edges
between all pairing nodes that have labels (i, j,S1,S2). Finally, let u
be a cut vertex labeled (i,S) and let v be a pairing vertex labeled
(j1, j2,S1,S2). If i = j1 but S 6= S1 we add edge uv. Symmetrically, if
i = j2 but S 6= S2 we add edge uv.

For ease of exposition we will identify vertices of PLC(k,n) with
their labels whenever convenient.

Proposition 7.2.4. The number of vertices of the graph PLC(k,n) equals
2
(
k
2

)
22blognc + k2blognc 6 (kn)2.

Proposition 7.2.5. Let (i,S) and (j1, j2,S1,S2) be two vertices of PLC(k,n)
that are not joined by an edge. If i = j1 then S = S1, and if i = j2 then
S = S2.

This together with the next proposition will ensure that in any in-
dependent set I of PLC(k,n) that has size k2, every index i ∈ [k] can
be uniquely associated with a subset Si ⊆ blognc.
Proposition 7.2.6. Let I be an independent set in PLC(k,n). Then, |I| 6 k2.
Moreover, an equality holds if and only if I contains exactly one cut vertex
for each 1 6 i 6 k and exactly one pairing vertex for each 1 6 i 6= j 6 k.

Proof. Clearly, the set I can contain at most k cut vertices – at most
one vertex (i,Si) for each 1 6 i 6 k. Also, set I can contain at most
2
(
k
2

)
= k2−k pairing vertices – at most one vertex (i, j,Si,Sj) for each

ordered pair 1 6 i, j 6 k.

The vertices of STABk2(PLC(k,n)) are related to the vertices of the
polytope CUT�(Kr) where r = k blognc, in the following way. Denote
the vertices and edges of Kr by Vr and Er respectively, and group the
vertices of Kr into k groups, each of size blognc. Label the vertices
vij where 1 6 i 6 k and 1 6 j 6 blognc . Finally, order the vertices
lexicographically according to their labels.

72 fpt extended formulations

A cut vector of Kr – corresponding to a cut C – is a 0/1 vector of
length

(
r
2

)
whose coordinates correspond to whether an edge of Kr is

in the cut C or not. The edges of Kr are labeled with pairs (i1, j1, i2, j2)
where 1 6 i1, i2 6 k ; 1 6 j1, j2 6 blognc , and (i1, j1) 6 (i2, j2)
lexicographically. So, if z is a cut vector corresponding to a given cut
C ⊂ Er , then zi1,j1,i2,j2 = 1 if and only if the edge (i1, j1, i2, j2) is in
C. CUT�(Kr) is the convex hull of all such cut vectors.

Similarly, an independent-set vector of PLC(k,n) – corresponding
to an independent set I – is a 0/1 vector of length 2

(
k
2

)
22blognc +

k2blognc (cf. Prop. 7.2.4) whose coordinates correspond to whether
the corresponding vertex is in I or not. Recall that the cut vertices
of PLC(k,n) are labeled with a pair consisting of an index from [k],
and a subset of [blognc] . Also, the pairing vertices of PLC(k,n) are
labeled with a tuple consisting of two indices from [k] and two subsets
of [blognc] .

Let C be the set of all cuts in Kr, and let I be the set of all indepen-
dent sets of size k2 in PLC(k,n). Any cut C ∈ C creates a bipartition
(S,S) of the vertices of Kr. Recall that the vertices of Kr have been
split in k groups. The partition (S,S) thus induces a partition (Si,Si)
within each of these groups.

Proposition 7.2.7. For every pair of natural numbers (k,n) and r =

k blognc it holds that CUT�(Kr) is a projection of STABk2 (PLC (k,n)) .

Proof. See [30], Lemma 3.4 (Appendix F).

A lower bound on the extension complexity of STABk2(PLC(k,n))
immediately follows.

Proposition 7.2.8. There exists a constant c ′ > 0 such that for k,n ∈N,

xc (STABk2(PLC(k,n))) > nc ′k.

Proof. By Proposition 7.2.7, STABk2(PLC(k,n)) is an extended formu-
lation of CUT�(Kr) with r = kblognc. So any extended formulation
of STABk2(PLC(k,n)) is also an extended formulation of CUT�(Kr).
By proposition 3.3.6, xc

(
CUT�(Kr)

)
> 2Ω(r). Therefore,

xc
(
STABk2(PLC(k,n))

)
> xc

(
CUT�(Kr)

)
> 2Ω(r) > nc ′k

for some constant c ′ > 0.

We can now easily conclude that the parameterized extension com-
plexity of STAB parameterized by the size of the independent sets is
not FPT.

Proposition 7.2.9. There does not exist any function f : N→ R such that
xc(STABk(G)) 6 f(k) · nO(1) for all natural numbers k and all graphs G
on n vertices.

Proof. Suppose, on the contrary, that such a function f exists. That is,
there is a constant c such that for every pair of natural numbers (`,m)

and for all m-vertex graphs G it holds that xc(STAB`(G)) 6 f(`) ·mc.

7.3 fpt upper bounds 73

Given a pair (k,n) of natural numbers consider the graph PLC(k,n).
By Proposition 7.2.8, we have that xc (STABk2(PLC(k,n))) > nc

′k

for some constant c ′ > 0. On the other hand, from our assumption
for ` = k2 and m 6 (kn)2 we have that xc (STABk2(G)) 6 f(k2) ·
(kn)2c. Therefore, nc

′k 6 f(k2) · (kn)2c and so c ′k logn 6 log f(k2)+

2c(logk + logn). This in turn implies that logn 6 log f(k2)+2c logk
c ′k−2c

which clearly cannot be true for any fixed k and arbitrary n, and
hence no such function f exists.

7.3 fpt upper bounds

Now we will see that FPT upper bounds exist for a large number of
interesting polytopes.

7.3.1 MSO Polytopes parametrized by Treewidth

In most cases, we stick to standard notation as given by Libkin [47]
and by Downey and Fellows [22]. We use the standard approach and
view every graphG = (V ,E) as a labeled graph I(G) = (VI,EI,LV ,LE),
called the incidence graph of G, where VI = V ∪ E, EI = {{v, e} | v ∈
e, e ∈ E}, LV = V and LE = E; this way, every MSO2 formula about
the original graph G can be turned into an MSO formula about I(G).
Since the treewidth of the incidence graph I(G) is at most tw(G) +
1 [43], this does not pose any limitation.

Also, for simplicity, we will work with a version of MSO that has
only set variables and a special predicate s of arity one to emulate
element variables (for every graph G = (V ,E) and every X ⊆ V ∪ E,
s(X) is true in G if and only if |X| = 1); it is easy to see that this
syntactical restriction does not mean any restriction in the expressive
power. All results can be extended to general finite structures where
the restriction on treewidth applies to the treewidth of their Gaifman
graph [22].

Formally, the set of MSO formulae is defined recursively as follows.
We assume an infinite supply of set variables X, Y,X1, For every
two variables X and Y, s(X), ver(X), edg(X), inc(X, Y), X ⊆ Y and
X = Y are formulae, namely atomic formulae. For a given graph G,
ver(X) or edg(X) is true, if X ⊆ LV or X ⊆ LE, resp.; inc(X, Y) is
true if and only if s(X), s(Y) are true and {x,y} ∈ EI where x is the
only element in X and y is the only element in Y. If ϕ,ψ1 and ψ2 are
formulae then ¬ϕ, ψ1 ∧ψ2 and ∃Xϕ(X) are formulae.

A variable X is free in ϕ if it does not appear in any quantification in
ϕ. If ~X is the tuple of all free variables in ϕ, we write ϕ(~X). A variable
X is bound in ϕ if it is not free. By qr(ϕ) we denote the quantifier rank
of ϕ which is the number of quantifiers of ϕ when transformed into
the prenex form (i.e., all quantifiers are in the front of the formula).

For a given MSO formulaϕ(~X) withm free set variables X1, . . . ,Xm,
we define a polytope of satisfying assignments on a given graph G
with n vertices in a natural way. We encode any assignment of ver-
tices of G to the sets X1, . . . ,Xm as follows. For each Xi in ϕ and each

74 fpt extended formulations

v in G, we introduce a binary variable yvi . We set yvi to be one if v ∈ Xi
and zero otherwise. For a given 0/1 vector y, we say that y satisfies ϕ
if interpreting the coordinates of y as described above yields a satis-
fying assignment for ϕ. The polytope of satisfying assignments, also
called the MSO polytope, is defined as

MSOϕ(G) = conv ({y ∈ {0, 1}nm | y satisfies ϕ}) .

Proposition 7.3.1. For every graph G on n vertices with τ(G) = τ and for
every ϕ ∈MSO, xc(MSOϕ(G)) = f(|ϕ|, τ) ·n where f is some computable
function.

Proof. See [44], Theorem 2 (Appendix G).

In fact the extended formulation can be efficiently constructed.

Proposition 7.3.2. Let G be a graph of treewidth τ and let ϕ be an MSO
formula. An extended formulation for MSOϕ(G) (with size bounded as men-
tioned in Proposition 7.3.1) can be constructed in time f ′(|ϕ|, τ) ·n, for some
computable function f ′.

Proof. See [44], Theorem 3 (Appendix G).

In the language that we have adopted so far it means that the ex-
tension complexity of MSO polytopes, when parameterized by the
treewidth of the underlying graph and the size of the MSO formula,
is FPT.

7.3.2 FO Polytopes parameterized by Expansion

The first-order logic of graphs (abbreviated as FO) applies the standard
language of first-order logic to a graph G viewed as a relational struc-
ture with the domain V(G) and the single binary (symmetric) relation
E(G). For example, the formula ι(x1, . . . , xk) ≡

∧
i 6=j
(
¬edge(xi, xj)∧

xi 6= xj
)

asserts that {x1, . . . , xk} is an independent set of size ex-
actly k. A slightly more involved example describes a vertex cover
tuple as γ(x1, . . . , xk) ≡ ∀y,z

(
edge(y, z)→ ∨k

i=1(y = xi ∨ z = xi)
)
.

To any FO formula φ(x1, . . . , xk) and a graph, one can assign a
polytope in the following way. For an ordered k-tuple of verticesW =

(w1, . . . ,wk) ∈ V(G)k we thus define its characteristic vector χW of
length k|V(G)| by

χWv,i =

{
1 if v = wi,

0 otherwise.

Note that χW always satisfies
∑
v∈V(G) χ

W
v,i = 1 for each i = 1, . . . ,k,

by the definition.
If W = (w1, . . . ,wk) ∈ V(G)k is such that φ(w1, . . . ,wk) holds true

in G, we write G |= φ(w1, . . . ,wk). We can now give the following
definition:

Definition 7.3.3 (FO polytope). Let φ(x1, . . . , xk) be an FO formula
with k free variables. The (first-order) φ-polytope of G, denoted by

7.3 fpt upper bounds 75

FOPφ(G), is defined to be the convex hull of the characteristic vec-
tors of every k-tuple of vertices of G such that φ(w1, . . . ,wk) holds
true in G. That is,

FOPφ(G) = conv

({
χW ∈ {0, 1}n

∣∣∣∣∣
W = (w1, . . . ,wk) ∈ V(G)k,

G |= φ(w1, . . . ,wk)

})
.

FO polytopes are quite general. For example, the polytopes STABk(G)
defined earlier is easily seen to be an instance of an FO polytope.

Proposition 7.3.4. Let ι(x1, . . . , xk) ≡
∧
i 6=j
(
¬edge(xi, xj)∧ xi 6= xj

)

(the k-independent set formula). For every graph G, the ι-polytope FOPι(G)
is an extension of STABk(G).

Proof. If G has n vertices then

STABk(G) =

{
y ∈ Rn

∣∣∣∣∣ yv =
k∑
i=1

χWv,i, χ
W ∈ FOPι(G)

}
.

Therefore, STABk(G) is a projection of FOPι(G) given by the projec-
tion map described by yv =

∑k
i=1 χ

W
v,i for all vertices v of G.

We say that an FO formula φ(x1, . . . , xk) is existential FO if it can be
written as φ(x1, . . . , xk) ≡ ∃y1 . . . y`ψ(x1, . . . , xk,y1, . . . ,y`), where
ψ is quantifier-free. The number ` of quantified variables in φ is called
the quantifier rank of φ.

Proposition 7.3.5. Let φ(x1, . . . , xk) be an existential FO formula with k
free variables and quantifier rank `. Also, let G be any graph class of bounded
expansion. Then there exists a computable function f : N → N, depending
on the expansion function of G, such that

xc
(
FOPφ(G)

)
6 f(k+ `) ·n

holds for every integer n and every n-vertex graph G ∈ G. Furthermore, an
explicit extension of FOPφ(G) of size at most f(k+ `) · n can be found in
linear time for fixed k, ` and G.

Proof. See [30], Theorem 20 (Appendix F).

8
H - F R E E E X T E N D E D F O R M U L AT I O N S

Since linear programming is in P we will not be able to solve an N P-
hard problem X in polynomial time by linear programming unless
P = N P. On the other hand, since linear programming is P-complete,
we will not be able to prove a super-polynomial lower bound on solv-
ing X by a linear program (LP) without showing that P 6= N P. One
way to make progress on this problem is to consider restricted ver-
sions of linear programming which have two properties:

property (1): Problems in P will still be solvable in polynomial
time even in the restricted version of linear programming.

property (2): Known N P-hard problems with natural LP formula-
tions will have provable super-polynomial lower bounds under
the restricted version of linear programming.

Note that results of type (1) and (2) will still be true, independently
of whether or not P = N P.

Here we propose a stronger version of extension complexity which
satisfies property (1). We also exhibit some N P-hard problems that
satisfy property (2). In the proposed model we concentrate on the
separation problem rather than the polynomial time equivalent opti-
mization problem.

8.1 H-free extensions

Definition 8.1.1. Let P = P(A , b) be a polytope and let H be a set
of valid inequalities for P. We delete from Ax 6 b all inequalities
that are redundant with respect to H and call the resulting (possibly
empty) polyhedron PH. The H-free extension complexity of P with re-
spect to the inequalities H is defined to be the extension complexity of
PH.

Let X be some computational problem that can be solved by an LP
over a polytope Q. For the applications considered in this chapter, it
is convenient to consider the case where Q is given by an implicit de-
scription of its vertices. So for the matching problem, Q is the convex
hull of all 0/1 matching vectors, and for the TSP problem it is the
convex hull of all 0/1 incidence vectors of Hamiltonian circuits.

Let H = H(Q) be a possibly super-polynomial size set of valid in-
equalities for Q equipped with an H-separation oracle. We can solve
the separation problem for Q for a point x by first solving it for H
and then, if necessary, for QH. Suppose x is not in Q. If x is not in H
we get a violated inequality by the oracle. Otherwise x must violate a
facet of QH. We will allow separation for QH to be performed using
any extension Q ′H of QH by explicitly checking the facets of Q ′H for

77

78 H-free extended formulations

the lifting of x. We call Q ′H an H-free EF for Q. Using this separation
algorithm and the ellipsoid method we have a way to solve LPs over
Q. We call such a restricted method of solving LPs an H-free LP for Q.

Definition 8.1.2. Let Q be a polytope and H be a set of inequalities
valid for Q. We say that an H-free EF for Q has polynomial size if:

(a) The H-separation oracle runs in polynomial time and

(b) xc(QH) is polynomial in the input size of X.

In this case we also have an H-free LP forQ that runs in polynomial
time. On the other hand, if for given H, xc(QH) is super-polynomial
in the size of X then we say that all H-free LPs for X run in super-
polynomial time. Note that this statement is independent of whether
or not P = NP. When H is empty all of the above definitions reduce
to standard definitions for EFs and extension complexity.

Example 8.1.3. For the matching problem if H is the set of odd-set
inequalities then QH is empty. In this case we have an H-free EF for
matching of poly-size even though matching has exponential exten-
sion complexity.

This example generalizes to show that every problem X in P has
a poly-size H-free EF for some H. Indeed, since LP is P-complete, X
can be solved by optimizing over a polytope Q. Let H be the entire
facet list F(Q) so that QH is again empty. Optimization over Q can be
performed in polynomial time so, by the equivalence of optimization
and separation, separation over H can be performed in polynomial
time also. Therefore (a) and (b) are satisfied as required.

For the TSP, let H be the sub-tour constraints. In this case QH is
non-empty and in fact one can show (cf. next section) that it has
exponential extension complexity. Therefore H-free LPs for the TSP
require exponential time, extending the existing extension complexity
result for this problem.

We remark that H is an essential parameter here. Matching, for
example, has poly-size H-free extension complexity when H are the
odd set inequalities, but not whenH is empty. Nevertheless, any prob-
lem with poly-size H-free extension complexity for some H can of
course be solved in polynomial time. For a given hard problem, one
gets stronger hardness results by letting H be larger and larger sets of
poly-size separable inequalities, as long as one can still prove thatQH
has super-polynomial extension complexity. We give some examples
to illustrate this in subsequent sections.

8.2 matching problems

Recall that Edmonds’ polytope has the following halfspace represen-
tation[23]: ∑

e∈S
xe 6 (|S|− 1)/2, S ⊆ V , |S| is odd (7)

0 6 xe 6 1, e ∈ E. (8)

8.2 matching problems 79

Let H be this half-space representation of Q. Since optimization
over Q can be performed in polynomial time by Edmonds’ algorithm
there is a polynomial time separation algorithm for H. It follows that
the matching problem has a poly-size H-free EF.

In the next three subsections we give NP-hard generalizations of
the matching problem which have super-polynomial lower bounds
on their H-free extension complexity, where H are the odd set in-
equalities (7).

8.2.1 Induced matchings

LetQ be the convex hull of the incidence vectors of all induced match-
ings in G. Let H be the odd set inequalities (7). Clearly H are valid for
Q, and as remarked above, they admit a polynomial time separation
oracle. It can be shown that xcH(Q) is super-polynomial.

Proposition 8.2.1. xcH(Q) is super-polynomial.

Proof. Since Proposition 4.2.15 applies to bipartite graphs G, each of
the odd set inequalities (7) is redundant for the induced matching
polytope of G. Therefore the H-free extension complexity of the in-
duced matching polytope is super polynomial in the worst case.

Although this example offers an example of H-free extension com-
plexity, it suffers from one obvious weakness. For every graph, all of
the inequalities in H are redundant with respect to Q even for non-
bipartite graphs! A graph is called hypomatchable if the deletion of any
vertex yields a graph with a perfect matching. Pulleyblank proved in
1973 (see [48]) that facet-inducing inequalities in (7) correspond to
subsets S that span 2-connected hypomatchable subgraphs of G. Let
x be the incidence vector for any matching M in G that satisfies such
an inequality as an equation. Since S spans a 2-connected subgraph,
M cannot be an induced matching.

In order to avoid such trivial cases it is desirable that most, if not
all, inequalities of H define facets for at least one polytope Q that
corresponds to some instance of the given problem.

8.2.2 Maximal matchings

Again, since the graphs G in Proposition 4.2.20 are bipartite, each of
the odd set inequalities (7) is redundant for the maximal matching
polytope of G. Therefore the H-free extension complexity of the in-
duced matching polytope is super polynomial in the worst case.

This example differs from the example in the previous subsection
in that (7) are facet defining for maximum matching polytopes of non-
bipartite graphs. To see this, fix a graph G and odd-set S of its vertices.
Pulleyblanks’s characterisation [48] states that (7) is facet defining for
the matching polytope of G whenever S spans a 2-connected hypo-
matchable subgraph. The only matchings in G that lie on this facet
have precisely (|S|− 1)/2 edges from the set S and are therefore max-
imal on S. Each of these matchings can be extended to a maximal

80 H-free extended formulations

matching in G which appears as a vertex of MM(G). Therefore, pro-
vided these extensions do not lie in a lower dimensional subspace and
MM(G) is full dimensional, (7) is also facet inducing for MM(G) for
the given set S. For example, the odd cycles C2k+1, k > 3 with the
addition of a chord cutting off a triangle are a family of such graphs.

8.2.3 Edge disjoint matching and perfect matching

Note that for every pair of odd subsets S1,S2 of G two odd set in-
equalities can be written: one corresponding to the odd set inequali-
ties for perfect matching polytope on variables xi, and the other cor-
responding to the odd set inequalities for matching polytope on vari-
ables yi. For a subset of vertices S, let δ(S) denote the subset of edges
with exactly one endpoint in S. The two sets of inequalities are:∑

e∈δ(S1)
xe > 1, S1 ⊆ V , |S1| is odd (9)

∑
e∈S2

ye 6
|S2|− 1

2
, S2 ⊆ V , |S2| is odd (10)

Again the graphs G in the Proposition 4.2.24 are bipartite so each of
the odd set inequalities (9,10) is redundant for MPM(G). Therefore
taking H to be the set of these inequalities we have that the H-free
extension complexity of the these polytopes is super polynomial in
the worst case.

8.3 the tsp polytope

Recall that an undirected TSP instance X is defined by a set of integer
weights wij, 1 6 i < j 6 n, for each edge of the complete graph
Kn. A tour is a Hamiltonian cycle in Kn defined by a permutation
of its vertices. It is required to compute a tour of minimum weight.
We define the polytope Q to be the convex hull of the 0/1 incidence
vectors x = (xij : 1 6 i < j 6 n} of the tours. It is known that
xc(Q) = 2Ω(n) [55].

We define H to be the set of subtour elimination constraints:∑
i,j∈S,i 6=j

xij 6 |S|− 1, S ⊆ {1, 2, ...,n− 1}, |S| > 2. (11)

xij > 0, 1 6 i < j 6 n (12)

It is well known that the subtour elimination constraints can be
polynomial time separated by using network flows. These constraints
by themselves define the convex hull of all forests in Kn−1 and Martin
[49] has given an EF for them that has size O(n3).

Therefore, xc(QH) = 2Ω(n), otherwise together with Martin’s re-
sult and Proposition 3.2.6), it would imply an upper bound of 2o(n)

for the travelling salesman polytope. It follows that every H-free LP
for the TSP runs in exponential time, where H are the subtour in-
equalities.

8.3 the tsp polytope 81

8.3.1 Comb inequalities for TSP

Definition 8.3.1. For a graph G = (V ,E), a comb is defined by a
subset of vertices H called the handle and a set of subsets of vertices
Ti, 1 6 i 6 k where k is an odd number at least three. The sets Ti
are called the teeth. The handle and the teeth satisfy the following
properties:

H∩ Ti 6= ∅, (13)

Ti ∩ Tj = ∅, ∀i 6= j (14)

H \

k⋃

i=1

Ti 6= ∅ (15)

The following inequality is valid for the TSP polytope of G and
is called the comb inequality for the comb defined by handle H and
teeth Ti as above.

x(δ(H)) +

k∑
i=1

x(δ(Ti)) > 3k+ 1

Grötschel and Padberg [34] showed that every comb inequality de-
fines a facet of TSPn for each n > 6. It is not known whether separat-
ing over comb inequalities is NP-hard, neither is a polynomial time
algorithm known.

For a given comb C and a TSP tour T of G, the slack between the
corresponding comb inequality and T is denoted by slcomb(C, T).

8.3.2 2-matching inequalities

Definition 8.3.2. A comb inequality corresponding to a handle H and
k teeth Ti is called a 2-matching inequality if each tooth Ti has size
exactly two.

In particular this means that |H ∩ Ti| = 1 and |Ti \H| = 1 for each
1 6 i 6 k. These inequalities are sometimes also referred to as blos-
som inequalities. Padberg and Rao [51] gave a polynomial time algo-
rithm to separate over the 2-matching inequalities.

8.3.2.1 Simple comb inequalities

Definition 8.3.3. A comb inequality corresponding to a handle H and
k teeth Ti is called a simple comb inequality if |H∩ Ti| = 1 or |Ti \H| =
1 for each 1 6 i 6 k.

Simple comb inequalities contain all the 2-matching inequalities. It
is not known whether one can separate over them in polynomial time.

8.3.2.2 (h, t)-uniform comb inequalities

Let us define a subclass of comb inequalities called (h, t)-uniform comb
inequalities associated with what we will call (h, t)-uniform combs for
arbitrary 1 6 h < t.

82 H-free extended formulations

Definition 8.3.4. A comb, with handle H and k teeth Ti, is said be
(h, t)-uniform if |Ti| = t and H∩ Ti = h, for all 1 6 i 6 k.

8.3.3 Odd set inequalities for perfect matching

Definition 8.3.5. Let V denote the vertex set of Kn. For every odd
set U ⊆ V the following inequality is valid for the perfect matching
polytope PMn and is called an odd set inequality.

x(δ(U)) > 1

For a given odd set S and a perfect matching M of Kn, the slack
between the corresponding odd set inequality and M is denoted by
slodd(S,M).

8.3.4 t-subdivided prisms of a graph

Definition 8.3.6. A prism over a graph G is obtained by taking two
copies of G and connecting corresponding vertices.

It is helpful to visualise this as stacking the two copies one over the
other and then connecting corresponding vertices in the two copies by
a vertical edge. A t-subdivided prism is then obtained by subdividing
the vertical edges by putting t− 2 extra vertices on them. See Figure
6 for an example.

Figure 6: A 5-subdivided prism over K4.

Let G be the t-subdivided prism of Kn. Let the vertices of the two
copies be labeled u11, . . . ,u1n and ut1, . . . ,utn. As a shorthand we will
denote the path u1i ,u2i , . . . ,uti as u1i uti . Similarily, uti u1i will de-
note uti , . . . ,u

2
i ,u1i .

The graph G has path u1i uti for all i ∈ [n] and (u1i ,u1j), (u
t
i ,u

t
j)

for all i 6= j, i, j ∈ [n]. Thus G has tn vertices and 2
(
n
2

)
+ (t − 1)n

edges.

8.3.5 Motivation

The motivation for looking at t-subdivided prisms stems from a sim-
ple observation which we state in the form of a proof of the following
proposition:

8.3 the tsp polytope 83

Proposition 8.3.7. Let 2MP(n) be the convex hull of the incidence vectors
of all 2-matchings of the complete graph Kn. Then, xc(2MP(n)) > 2Ω(n).

Proof. Let G be a graph with n vertices and m edges and let G ′ be
the 3-subdivided prism of G. G ′ has 3n vertices and 2m+ 2n edges.
Any 2-matching in G ′ contains all the vertical edges and thus when
restricted to a single copy – say the bottom one – of G gives a match-
ing in G. Conversely, any matching in G can be extended to a (not
necessarily unique) 2-matching in G ′.

Taking G as Kn we obtain a G ′ that is a subgraph of K3n. The 2-
matching polytope of G ′ lies on a face of the 2-matching polytope
of the complete graph on 3n vertices (corresponding to all missing
edges having value 0). Therefore, the extension complexity of the 2-
matching polytope 2MP(n) is at least as large as that of the perfect
matching polytope. That is, xc(2MP(n)) > 2Ω(n).

The above generalizes to P-matching polytopes for arbitrary P in the
obvious way, and is probably part of folklore1.

The generalization of the 3-subdivided prism to larger subdivisions
allows us to be able to argue not only about the 2-matching inequal-
ities – which are the facet-defining inequalities for the 2-matching
polytope – but also about comb inequalities by using the vertical
paths as teeth for constructing combs.

8.3.6 Uniform combs of odd sets

Let n and t be positive integers. In the following we will assume that
n is a multiple of t. Since we are interested in asymptotic statements
only, this does not result in any loss of generality. Let G be the t-
subdivided prism of Kn/t for some t > 2. Given an odd set S and a
perfect matching M in Kn/t, and arbitrary 1 6 h < t, we are inter-
ested in constructing a comb C and a TSP tour T in Kn such that the
following conditions hold:

(C1): C is a (h, t)-uniform comb.

(C2): C depends only on S and 2 edges of M.

(C3): T depends only on M.

(C4): slcomb(C, T) = slodd(S,M).

If such a pair (C, T) of a comb and a TSP tour is shown to exist
for every pair (S,M) of an odd set and a perfect matching, then we
can show that any EF-protocol for computing the slack slcomb(C, T)
can be used to construct an EF-protocol for computing slodd(S,M)

due to condition (C4). Furthermore, due to conditions (C2) and (C3)
the number of bits required for the later protocol will not be much
larger than the number of bits required for the former, as C can be
locally constructed from S after an exchange of two edges, and T can
be locally constructed from M.

1 W. Cook (private communication) attributes the same argument to T. Rothvoß

84 H-free extended formulations

Figure 7: Construction of a comb from
given odd set: The odd set consists of 5
vertices displayed as big filled circles in
the bottom copy. The corresponding han-
dle consists of all vertices represented by
filled circles. The teeth are represented by
the vertical ellipsoidal enclosures.
The big circles represent vertices of the
original graph and their top copies. The
small circles represent the h-th copy, while
the other copies have been omitted here.
Bold edges at the bottom are matching
edges. All other edges displayed are just
for illustration of the relationship of vari-
ous copies of vertices.

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

Now we show that such a pair does exist if at least two edges of M
are contained in S and |S| > 5.

Proposition 8.3.8. Let (S,M) be a pair of an odd set and a perfect matching
in Kn/t, and let 1 6 h < t. Suppose that |S| > 5, and let w1,w2,w3,w4 ∈
S be distinct with (w1,w2) and (w3,w4) in M. Then, there exists a pair
(C, T) of a comb C and a TSP tour T in Kn satisfying the four conditions
(C1)–(C4).

Proof. Let |S| = s. For simplicity of exposition, we assume that the
vertices of S are labeled w1, . . . ,ws. By wji, we denote the copy of wi
in the j-th layer of the t-subdivided prism over Kn/t.

The comb C is constructed as follows. The handle H is obtained by
taking all vertices in S and the copies w21, . . . ,wt1 and w23, . . . ,wt3. For
every other vertex w ∈ S the vertices w2, . . . ,wh are also added to
H. The teeth Ti are formed by pairing each vertex v in S \ {w1,w3}
with its copies v2, . . . , vt producing s− 2 teeth. See Figure 7 for an
illustration. Since s > 5 is odd, the number of teeth is odd and at least
3. Thus, the constructed comb is (h, t)-uniform satisfying conditions
(C1) and (C2), and the corresponding comb inequality is

x(δ(H)) +

s−2∑
i=1

x(δ(Ti)) > 3(s− 2) + 1. (16)

To construct a tour T from the given perfect matching M such
that conditions (C3) and (C4) are satisfied, we start with a subtour
(w11 wt1,wt3 w13,w14 wt4,wt2 w12,w11). At each stage we maintain
a subtour that contains all matching edges on the induced vertices in
the lower copy, the edge (wt1,wt3), and at least one top edge differ-
ent from (wt1,wt3). Clearly the starting subtour satisfies these require-
ments. As long as we have some matching edges in M that are not in
our subtour, we pick an arbitrary edge (wa,wb) in M and extend our
subtour as follows. Select a top edge (wtq,wtr) different from (wt1,wt3),
remove the edge and add the path (wtq,wta w1a,w1b wtb,wtr). The
new subtour contains the selected perfect matching edge (w1a,w1b),
the paths w1a wta and w1b wtb and has one more top edge distinct
from (wt1,wt3) than in the previous subtour. See Figure 8 for an exam-
ple.

8.3 the tsp polytope 85

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

(a) The initial tour going
through w11, wt1, wt3, w13,
w14, wt4, wt2, w12, w11

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

(b) Adding a new match-
ing edge (w5,w6) by re-
moving (wt2,wt4)

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

(c) The final tour

Figure 8: Constructing a TSP tour from a perfect matching.

At the completion of the procedure, we have a TSP tour that satis-
fies the following properties:

1. Each edge of M is used in the tour.

2. Each vertical path w1i wti for all i ∈ [n] is used in the tour.

3. Edge (wt1,wt3) is used in the tour.

From the construction, edges in |δ(H) ∩ T | are precisely the edges
in |δ(S) ∩M| together with s−2 other edges exiting the comb: one
through each of the s−2 teeth. Therefore, |δ(H) ∩ T | = |δ(S) ∩M| +

s− 2. Also, the tour T enters and exits each teeth precisely once so
|δ(Ti) ∩ T | = 2 for each of the s−2 teeth. Substituting these values in
the inequality 16, we obtain the slack slcomb(C, T) = |δ(S) ∩M|+ (s−

2) + 2(s − 2) − 3(s − 2) − 1 = slodd(S,M). This completes the proof
because the pair (C, T) satisfies conditions (C1)–(C4).

Using the existence of the pair (C, T) as described earlier and the
fact that any EF-protocol for the perfect matching polytope requires
an exchange of a linear number of bits, we will lower bound the
number of bit exchanged by any EF-protocol computing the slack
of (h, t)-uniform comb inequalities with respect to TSP tours. In the
next section we will use the following proposition multiple times by
fixing different values for the parameters h and t.

Proposition 8.3.9. Any EF-protocol computing the slack of (h, t)-uniform
comb inequalities with respect to the TSP tours of Kn, requires an exchange
of Ω(n/t) bits. Equivalently, the extension complexity of the polytope of
(h, t)-uniform comb inequalities is 2Ω(n/t).

Proof. Due to Proposition 3.1.13 and 3.1.25, it suffices to show if such
a protocol uses r bits, then an EF-protocol for the perfect matching
polytope for Kn/t can be constructed, that uses r+O(log (n/t)) bits.
The protocol for computing the slack of an odd set inequality with
respect to a perfect matching in Kn/t works as follows.

86 H-free extended formulations

Suppose Alice has an odd set S in Kn/t, with |S| = s, and Bob has a
matching M in Kn/t. The slack of the odd-set inequality correspond-
ing to S with respect to matching M in the perfect matching polytope
for Kn/t is |δ(S)∩M|− 1.

We assume that s > 5. Otherwise, Alice can send the identity of the
entire set S with at most 4 log (n/t) bits and Bob can output the slack
exactly.

Alice first sends an arbitrary vertex w1 ∈ S, to Bob. Bob replies
with the matching vertex of w1, say w2. Alice then sends another
arbitrary vertex w3 ∈ S,w3 6= w2 to Bob who again replies with the
matching vertex for w3, say w4. So far the number of bits exchanged
is 4 dlog (n/t)e.

Now there are two possibilities: either at least one of the vertices
w2,w4 is not in S, or both w2,w4 are in S. Alice sends one bit to
communicate which of the possibilities has occurred and accordingly
they switch to one of the two protocols as described next.

In the former case, Alice has identified an edge, say e, in δ(S)∩M.
Now Bob selects an edge e ′ of his matching uniformly at random (i.e.
with probability 2/n) and sends it to Alice. If e ′ is in δ(S) \ {e}, Alice
outputs n/2. Otherwise, Alice outputs zero. The expected contribu-
tion by edges in (δ(S)∩M) \ {e} is then exactly one while the expected
contribution of all other edges is zero. Therefore the expected output
is |δ(S) ∩M| − 1, and the number of bits exchanged for this step is
dlogme where m is the number of edges in Kn/t. Thus the total cost
in this case is O(log (n/t)) bits.

In the latter case, the matching edges (w1,w2) and (w3,w4) lie
inside S. Alice constructs a comb C in the t-subdivided prism of
Kn/t, and Bob a TSP tour T in the t-subdivided prism of Kn/t such
that (C, T) satisfies conditions (C1)–(C4). By Proposition 8.3.8 they
can do this without exchanging any more bits. Since sl comb(C, T) =

slodd(S,M), they proceed to compute the corresponding slack with
the new inequality and tour, exchanging r bits. The total number of
bits exchanged in this case is r+ 4 dlog (n/t)e+ 1 = r+O(log (n/t)).

8.3.7 lower bounds

In this section we consider the extension complexity of the polytope
of comb inequalities and H-free extension complexity of the TSP poly-
tope when H is the set of simple comb inequalities. As we will see,
the results in this section are obtained by instantiating Proposition
8.3.9 with different values of the parameters h and t.

8.3.8 Extension complexity of Comb inequalities

We show that the polytope defined by the Comb inequalities has high
extension complexity.

Proposition 8.3.10. Let COMB(n) be the polytope defined by the intersec-
tion of all comb inequalities for TSPn. Then xc(COMB(n)) > 2Ω(n).

8.3 the tsp polytope 87

Proof. Suppose there exists an EF-protocol that computes the slack of
COMB(n) that uses r bits. Since (1, 2)-uniform comb inequalities are
valid for TSPn we can use the given protocol to compute the slack
of these inequalities with respect to the TSP tours of Kn using r bits.
Then, using Proposition 8.3.9, the slack matrix of the perfect matching
polytope for Kn/2 can be computed using r+O(logn) bits. By Propo-
sition 3.1.13 and 3.1.25, this must be Ω(n). Finally, by Proposition
3.1.25 this implies that xc(COMB(n)) > 2Ω(n).

8.3.9 H-free extension complexity

Let Ch,t be the set of (h, t)-uniform comb inequalities for fixed values
of h and t. Observe that, since at least three teeth are required to
define a comb and the handle must contain some vertex not in any
teeth, for (h, t)-uniform combs on n vertices we must have t 6

⌊
n−1
3

⌋
.

So for any values of 1 6 h < t 6
⌊
n−1
3

⌋
, the set Ch,t is a nonempty

set of facet-defining inequalities for TSPn, and for any other values
of h and t the set Ch,t is empty.

Proposition 8.3.11. If H is a set of inequalities valid for the polytope TSPn,
such that H ∩ Ch,t = ∅ for some nonempty Ch,t, then the H-free extension
complexity of TSPn is at least 2Ω(n/t).

Proof. Let 1 6 h < t be integers such that H ∩ Ch,t = ∅. That is, the
set H does not contain any (h, t)-uniform comb inequalities. Let P be
the polytope formed from TSPn by throwing away any facet-defining
inequalities that are in H. Then, any EF-protocol computing the slack
matrix of P correctly must use Ω(n/t) bits due to Proposition 8.3.9.
The claim then follows from Proposition 3.1.25.

The previous proposition shows that for every set H of valid in-
equalities of TSPn, if the extension complexity of the TSP polytope
becomes polynomial after removing the inequalities in H, then H

must contain some inequalities from every (h, t)-uniform comb in-
equality class, for all t = o(n/ logn).

Exercise 8.3.12. Show that the statement can be made stronger by
replacing the requirement H ∩ Ch,t = ∅ with |H ∩ Ch,t| 6 poly(n).
(Hint: See the discussion in Section 8.3).

We can use the previous proposition to give lower bounds for H-
free extension complexity of the TSP polytope with respect to impor-
tant classes of valid inequalities by simply demonstrating some class
of (h, t)-uniform comb inequalities that has been missed.

2-matching inequalities

Proposition 8.3.13. Let P be the polytope obtained by removing the 2-
matching inequalities from the TSP polytope. Then, xc(P) = 2Ω(n).

Proof. The 2-matching inequalities are defined by combs for which
each tooth has size exactly two. Therefore the set of (1, 3)-uniform
combs are not 2-matching inequalities, and Proposition 8.3.11 applies.

88 H-free extended formulations

Simple comb inequalities

Proposition 8.3.14. Let P is the polytope obtained by removing the set of
simple comb inequalities from the TSP polytope. Then, xc(P) = 2Ω(n).

Proof. Recall that a comb is called simple if |H∩ Ti| = 1 or |Ti \H| = 1
for all 1 6 i 6 k where k is the (odd) number of teeth in the comb
and H is the handle. Clearly, (2, 4)-uniform combs are not simple and
Proposition 8.3.11 applies.

As mentioned before, simple comb inequalities define a superclass
of 2-matching inequalities and a polynomial time separation algo-
rithm is known for 2-matching inequalities. Althought a similar result
was claimed for simple comb inequalities, the proof was apparently
incorrect, as pointed out by Fleischer et al. [29]. This latter paper in-
cludes a polynomial time separation algorithm for the wider class of
simple domino-parity inequalities that we do not consider here.

It remains unknown whether there exists a polynomial time sepa-
ration algorithm for the (h, t)-uniform comb inequalities.

9
W E A K E X T E N D E D F O R M U L AT I O N S

9.1 p-completeness of linear programming

It is well established that Linear Programming is P-complete with re-
spect to logspace reductions. That is, any problem in P can be reduced
to a Linear Programming problem using a logspace reduction. On
the other hand it is now also known that the perfect matching poly-
tope has exponential extension complexity. That is any polytope that
projects to the perfect matching polytope of the complete graph K2n
requires at least 2Ω(n) inequalities to describe. These two facts may
appear contradictory at first sight. How come the perfect matching
problem is solvable in polynomial time and yet the polytope requires
exponential size?

The previous conundrum is easily resolved if one notices subtle dif-
ferences between decision and optimization problems, and between
“reduction to a Linear Program” and “extension complexity of the
perfect matching polytope”. Extended formulations require the fea-
sible region of the LP formulations to project exactly to the perfect
matching polytope, while a reduction to a Linear Programming prob-
lem may produce other polytopes as a feasible region. Based on the
particular objective function (that is, a particular instance) the reduc-
tion may produce different polytopes. At the heart of this issue is the
fact that logspace reductions can do fairly non-trivial computation
with the objective function. Indeed, it is not even known whether
LOGSPACE 6= NP. So for all we know, the reduction may as well
solve the perfect matching problem and produce a trivial LP instance.

One may still obtain reasonable and interesting statements if one
were to ask the following: Can we obtain a small Linear Program for
perfect matching even if the input instance is allowed to be modified
only in very restricted ways? The answer obviously depeneds on how
this question is formulated in a precise way. We will give one inter-
pretation and obtain small Linear Programs for problems in P/poly.
Before we formalize anything we start with an example.

Definition 9.1.1. Let n be an even integer and let x be a binary vec-
tor of length

(
n
2

)
. We let G(x) = (V ,E) denote the graph with edge

incidence vector given by x, let n be the number of its vertices and
m = 1>x the number of its edges. Furthermore, let wx = 1 if G(x)
has a perfect matching and zero otherwise. We define the polytope
PMn as:

PMn = conv

{(
x

wx

)∣∣∣∣∣ x ∈ {0, 1}(
n
2)

}
(17)

PMn may be visualized by starting with a hypercube in dimension(
n
2

)
and embedding it in one higher dimension with extra coordi-

89

90 weak extended formulations

nate w. For vertices of the cube corresponding to graphs with perfect
matchings w = 1 else w = 0. It is easy to see that PMn has precisely
2(
n
2) vertices. EPn is closely related to PMn, in fact it forms a face.

Proposition 9.1.2. EPn is a face of PMn and can be defined by

EPn =

{
x

∣∣∣∣∣

(
x

w

)
∈ PMn ∩

{
1>x+ (1−w)n2 =

n

2

}}
(18)

Proof. We first show that the inequality

1Tx+ (1−w)n2 > n
2

(19)

is valid for PMn. We need only verify it for the extreme points (x,wx)
given in (17). If wx = 0, (19) holds since 1Tx+ n2 > n

2 . Otherwise
wx = 1, x is the incidence vector of graph containing a perfect match-
ing, so 1Tx > n/2. The vectors x with wx = 1 and 1Tx = n/2 are the
incidence vectors of perfect matchings of Kn and are precisely those
used to define EPn.

For a given input graph G(x̄) = (V ,E) we define the vector c by:

cij = 1 ij ∈ E cij = −1 ij 6∈ E 1 6 i < j 6 n (20)

and let d be a constant such that 0 < d 6 1/2. We construct the LP:

z∗ = max z = c>x+ dw (21)(
x

w

)
∈ PMn

Proposition 9.1.3. For any edge incidence vector x̄ ∈ [0, 1](
n
2) let m =

1>x̄. The optimum solution to (21) is unique, z∗ = m+ d if G(x̄) has a
perfect matching, and z∗ = m otherwise.

Proof. See [4], Proposition 2 (Appendix J).

9.2 weak extended formulations

Let X denote a poly-time decision problem defined on binary input
vectors x = (x1, ..., xq), and an additional bit wx, where wx = 1 if
x results in a "yes" answer and wx = 0 otherwise. We define the
polytope P as:

P = conv

{(
x

wx

)∣∣∣∣∣ x ∈ {0, 1}q
}

(22)

For a given binary input vector x̄ we define the vector c by:

cj = 1 x̄j = 1 and cj = −1 x̄j = 0 1 6 j 6 q (23)

and let d be a constant such that 0 < d 6 1/2. As before we construct
an LP:

z∗ = max z = c>x+ dw (24)(
x

w

)
∈ P

9.2 weak extended formulations 91

The following proposition can be proved in an identical way to Propo-
sition 9.1.3.

Proposition 9.2.1. For any x̄ ∈ [0, 1]q letm = 1>x̄. The optimum solution
to (24) is unique, z∗ = m+d if x̄ has a "yes" answer and z∗ = m otherwise.

Definition 9.2.2. Let Q be a polytope which is a subset of the (q+ t)-
cube with variables labeled x1, ..., xq,y1, ...,yt. We say that Q has the
x-0/1 property if each of the 2q ways of assigning 0/1 to the x variables
uniquely extends to a vertex (x>,y>)> of Q and, furthermore, y is
0/1 valued. Q may have additional fractional vertices.

In polyhedral terms, this says that the intersection of Q with the
hyperplanes xj = ej, j = 1, ...,q is a 0/1 vertex, for each assignment
of zero or one to the ej’s. We can show that we can solve a poly-
time decision problem X by replacing P in (21) by a polytope Q of
polynomial size, while maintaining the same objective functions. We
call Q a weak extended formulation as it does not necessarily project
onto P.

Definition 9.2.3. A polytope

Q =




x

w

s


 ∈ [0, 1]q+1+r

∣∣∣∣∣∣∣∣
Ax+bw+Cs 6 h


is a weak extended formulation (WEF) of P if

• Q has the x-0/1 property.

• For any binary vector x̄ ∈ [0, 1]q let m = 1>x̄. Let c be defined
by (23) and let 0 < d 6 1/2. The optimum solution

z∗ = max

c>x+ dw
∣∣∣∣∣∣∣∣



x

w

s


 ∈ Q


is unique and takes the value z∗ = m+d if x̄ has a "yes" answer.
Otherwise z∗ < m+ d and for all sufficiently small d, z∗ = m

and is unique.

For example, let X be the perfect matching problem so that P =

PMn. Let Q = Qn be a WEF as given by this definition. It follows
from Proposition 9.1.3 that we can determine whether an input graph
G has a perfect matching by solving an LP over either PMn or Qn
using the same objective function which is derived directly from the
edge adjacency vector of G.

Example 9.2.4. Consider n = 2 giving PM2 = conv{(0, 0)>, (1, 1)>}. A
WEF, for example, is given by:

Q2 = conv{(0, 0, 0)>, (1, 1, 1)>, (1/4, 1, 1/2)>}

Initially let d = 1/2. When G(x̄) is an edge, m = 1, c12 = 1 and z =
c>x+ dw obtains the same optimum solution of z∗ = 3/2 = m+ d

92 weak extended formulations

over both PM2 and Q2. When G(x̄) is a non-edge, m = 0, c12 = −1

and z = c>x+ dw obtains the optimum solution of z∗ = 0 = m over
PM2 and z∗ = 1/4 < 1/2 = m+ d over Q2, at the fractional vertex
(1/4, 1, 1/2)>. However, if 0 < d < 1/4 then z = c>x+dw obtains the
unique optimum solution of z∗ = 0 = m over both PM2 and Q2. We
see that Q2 projects onto a triangle in the (x,w)-space, whereas PM2

is a line segment.

9.3 weak extension for P/poly

In order to show that Linear Programming is P-complete, Valiant [61]
gave a construction to transform boolean circuits into a linear sized
set of linear inequalities with the x-0/1 property (where xi are the
variables corresponding to the inputs of the circuit); a similar con-
struction was used by Yannakakis [63] in the context of the Hamilto-
nian Circuit problem. One can show that Valiant’s construction im-
plies the following.

Proposition 9.3.1. Every decision problem X in P/poly admits a weak
extended formulation Q of polynomial size.

Valiant’s point of view is slightly different from ours in that he
explicitly fixes the values of the input variables before solving an LP-
feasibility problem (as opposed to using different objective functions
with a fixed set of inequalities). Showing that the result of this fixing
is a 0/1-vertex is precisely our x-0/1 property.

We begin with a standard definition1:

Definition 9.3.2. A (boolean) circuit with q inputs x = (x1 , x2 , . . . , xq)
is a directed acyclic graph in which each of its t nodes, called gates,
is either an AND(∧) gate, an OR(∨) or a NOT(¬) gate. We label each
gate by its output bit. One of these gates is designated as the output
gate and gives output bit w. The size of a circuit is the number of gates
it contains and its depth is the maximal length of a path from an input
gate to the output gate.

For example, the circuit shown in Figure 9 can be used to compute
whether or not a graph on 4 nodes has a perfect matching. The input
is the binary edge-vector of the graph and the output is w = 1 if the
graph has a matching (e.g. G1) or w = 0 if it does not (e.g. G2). If
the graph has a perfect matching, exactly one of y12 , y13 or y14 is
one, defining the matching. For each gate we have labeled the output
bit by a new variable. We will construct a polytope from the circuit
by constructing a system of inequalities on the same variables.

From an AND gate, say y12 = x12 ∧ x34 , we generate the inequal-
ities:

x12 + x34 − y12 6 1

−x12 + y12 6 0 (25)

−x34 + y12 6 0

y12 > 0

1 See, e.g., the text by Savage [56]

9.3 weak extension for P/poly 93

Scanned by CamScanner

Figure 9: A circuit to compute whether a 4 node graph has a perfect match-
ing

The system (25) defines a polytope in three variables whose 4 ver-
tices represent the truth table for the AND gate:

x12 x34 y12

0 0 0

0 1 0

1 0 0

1 1 1

Note that the variables x12, x34 define a 2-cube and so the polytope
is an extension of the 2-cube. In the terminology of the last section, it
has the {x12, x34}-0/1 property.

From an OR gate, say s3 = y12 ∨y13, we generate the inequalities:

−y12 −y13 + s3 6 0

y12 − s3 6 0 (26)

y13 − s3 6 0

s3 6 1

The system (26) defines a polytope in three variables whose 4 ver-
tices represent the truth table for the OR gate, as can easily be checked.
Indeed, this polytope has the {y12,y13}-0/1 property.

From a NOT gate, say ȳ12 = ¬y12, we could generate the equation

ȳ12 = 1−y12 (27)

However it is equivalent to just replace all instances of ȳ12 by 1−
y12 in the inequality system, and this is what we will do in the sequel.

The circuit in Figure 9 contains 5 AND gates and 2 OR gates. By
suitably replacing variables in (25) and (26) we obtain a system of
28 inequalities in 13 variables. As just mentioned, the NOT gates are
handled by variable substitution rather than explicit equations. Let
Q4 denote the corresponding polytope. It will follow by the general
argument below that Q4 is a weak extended formulation (WEF) of
PM4.

94 weak extended formulations

It can be shown that the above construction can be applied to any
boolean circuit C to obtain a polytope Q which has the 0/1 property
with respect to the inputs of C.

Proposition 9.3.3 ([61]). Let C be a boolean circuit with q input bits x =

(x1, x2, ..., xq), t gates labeled by their output bits y = (y1,y2, ...,yt)
and with circuit output bit w = yt. Construct the polytope Q with 4t
inequalities and q+ t variables using the systems (25) and (26) respectively.
Q has the the x-0/1 property and for every input x the value of w computed
by C corresponds to the value of yt in the unique extension (x>,y>)> ∈ Q
of x.

Proof. See [4], Lemma 1 (Appendix J).

This allows one to construct a WEF for any problem in P/poly.

Proposition 9.3.4. Let C be a circuit that solves a decision problem X with
q input bits x = (x1, x2, ..., xq) and has associated polytope P as defined in
(22). The polytope Q constructed in Proposition 9.3.3 is a WEF for P.

Proof. See [4], Lemma 2 (Appendix J).

Since each gate in the circuit gives rise to 4 inequalities and one
new variable, we have the following.

Proposition 9.3.5. Let X be a decision problem with corresponding polytope
P defined by (22). A set of circuits for X with size p(n) generate a WEF Q
for P with 4p(n) inequalities and variables.

B I B L I O G R A P H Y

[1] David Avis and Hans Raj Tiwary. “A generalization of exten-
sion complexity that captures P.” In: Information Processing Let-
ters 115.6-8 (2015), pp. 588–593. doi: 10.1016/j.ipl.2015.02.
005.

[2] David Avis and Hans Raj Tiwary. “On the extension complex-
ity of combinatorial polytopes.” In: Mathematical Programming
153.1 (2015), pp. 95–115. doi: 10.1007/s10107-014-0764-2.

[3] David Avis and Hans Raj Tiwary. “On the H-free extension
complexity of the TSP.” In: Optimization Letters (2016), pp. 1–11.
issn: 1862-4480. doi: 10.1007/s11590-016-1029-1.

[4] David Avis, David Bremner, Hans Raj Tiwary, and Osamu Watan-
abe. “Polynomial size linear programs for non-bipartite match-
ing problems and other problems in P.” In: CoRR abs/1408.0807

(2014). eprint: arXiv:1408.0807.

[5] David Avis, Hiroshi Imai, Tsuyoshi Ito, and Yuuya Sasaki. “Two-
party Bell inequalities derived from combinatorics via triangu-
lar elimination.” In: Journal of Physics A: Mathematical and Gen-
eral 38.50 (2005), p. 10971. doi: 10.1088/0305-4470/38/50/007.

[6] Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish
Varma. “Streaming algorithms for language recognition prob-
lems.” In: Theoretical Computer Science 494 (2013), pp. 13–23. doi:
10.1016/j.tcs.2012.12.028.

[7] Francisco Barahona. “On cuts and matchings in planar graphs.”
In: Mathematical Programming 60 (1993), pp. 53–68. doi: 10.1007/
BF01580600.

[8] Gábor Braun and Sebastian Pokutta. “Common information
and unique disjointness.” In: Proc. FOCS. 2013. doi: 10.1109/
FOCS.2013.79.

[9] Gábor Braun, Samuel Fiorini, Sebastian Pokutta, and David
Steurer. “Approximation Limits of Linear Programs (Beyond
Hierarchies).” In: Mathematics of Operations Research 40.3 (2015),
pp. 756–772. doi: 10.1287/moor.2014.0694.

[10] Gábor Braun, Rahul Jain, Troy Lee, and Sebastian Pokutta. “In-
formation theoretic approximations of the nonnegative rank.”
In: Electronic Colloquium on Computational Complexity (ECCC) 20

(2013), p. 158. url: http://eccc.hpi-web.de/report/2013/
158.

[11] Mark Braverman and Ankur Moitra. “An information complex-
ity approach to extended formulations.” In: Proc. STOC. 2013,
pp. 161–170. doi: 10.1145/2488608.2488629.

95

http://dx.doi.org/10.1016/j.ipl.2015.02.005
http://dx.doi.org/10.1016/j.ipl.2015.02.005
http://dx.doi.org/10.1007/s10107-014-0764-2
http://dx.doi.org/10.1007/s11590-016-1029-1
arXiv:1408.0807
http://dx.doi.org/10.1088/0305-4470/38/50/007
http://dx.doi.org/10.1016/j.tcs.2012.12.028
http://dx.doi.org/10.1007/BF01580600
http://dx.doi.org/10.1007/BF01580600
http://dx.doi.org/10.1109/FOCS.2013.79
http://dx.doi.org/10.1109/FOCS.2013.79
http://dx.doi.org/10.1287/moor.2014.0694
http://eccc.hpi-web.de/report/2013/158
http://eccc.hpi-web.de/report/2013/158
http://dx.doi.org/10.1145/2488608.2488629

96 Bibliography

[12] Jop Briët, Daniel Dadush, and Sebastian Pokutta. “On the ex-
istence of 0/1 polytopes with high semidefinite extension com-
plexity.” In: Mathematical Programming 153.1 (2015), pp. 179–199.
doi: 10.1007/s10107-014-0785-x.

[13] Austin Buchanan and Segiy Butenko. Tight extended formulations
for independent set. Available on Optimization Online. 2014. url:
http://www.optimization-online.org/DB_HTML/2014/09/

4540.html.

[14] Michael R. Bussieck and Marco E. Lübbecke. “The vertex set of
a 0/1-polytope is strongly P-enumerable.” In: Computational Ge-
ometry 11.2 (1998), pp. 103–109. doi: 10.1016/S0925-7721(98)
00021-2.

[15] Kathie Cameron. “Induced matchings.” In: Discrete Applied Math-
ematics 24.1-3 (1989), pp. 97–102. doi: 10.1016/0166-218X(92)
90275-F.

[16] Robert D. Carr and Goran Konjevod. “Polyhedral Combina-
torics.” In: Tutorials on Emerging Methodologies and Applications in
Operations Research. Vol. 76. International Series in Operations
Research & Management Science. 2005, pp. 2–1–2–46. isbn: 978-
0-387-22826-6.

[17] Lewis Carroll. Through the Looking Glass. Penguin Books, 1871.

[18] Siu On Chan, James R. Lee, Prasad Raghavendra, and David
Steurer. “Approximate Constraint Satisfaction Requires Large
LP Relaxations.” In: Proc. FOCS. 2013, pp. 350–359. doi: 10 .

1109/FOCS.2013.45.

[19] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli.
“Extended formulations in combinatorial optimization.” In: 4OR
8.1 (2010), pp. 1–48. doi: 10.1007/s10288-010-0122-z.

[20] Michele Conforti and Kanstantsin Pashkovich. “The projected
faces property and polyhedral relations.” In: Mathematical Pro-
gramming 156.1-2 (2016), pp. 331–342. doi: 10.1007/s10107-
015-0882-5.

[21] Michel Marie Deza and Monique Laurent. Geometry of cuts and
metrics. Vol. 15. Algorithms and Combinatorics. Springer-Verlag,
1997, pp. xii, 587. doi: 10.1007/978-3-642-04295-9.

[22] Rodney G. Downey and Michael R. Fellows. Fundamentals of
Parameterized Complexity. Texts in Computer Science. Springer,
2013, I–SSS, 3–707. isbn: 978-1-4471-5558-4; 978-1-4471-5559-1.

[23] Jack Edmonds. “Maximum Matching and a Polyhedron with
0, 1 Vertices.” In: Journal of Research of the National Bureau of Stan-
dards 69 B (1965), pp. 125–130.

[24] Yuri Faenza, Samuel Fiorini, Roland Grappe, and Hans Raj Ti-
wary. “Extended formulations, nonnegative factorizations, and
randomized communication protocols.” In: Mathematical Pro-
gramming 153.1 (2015), pp. 75–94. doi: 10.1007/s10107-014-
0755-3.

http://dx.doi.org/10.1007/s10107-014-0785-x
http://www.optimization-online.org/DB_HTML/2014/09/4540.html
http://www.optimization-online.org/DB_HTML/2014/09/4540.html
http://dx.doi.org/10.1016/S0925-7721(98)00021-2
http://dx.doi.org/10.1016/S0925-7721(98)00021-2
http://dx.doi.org/10.1016/0166-218X(92)90275-F
http://dx.doi.org/10.1016/0166-218X(92)90275-F
http://dx.doi.org/10.1109/FOCS.2013.45
http://dx.doi.org/10.1109/FOCS.2013.45
http://dx.doi.org/10.1007/s10288-010-0122-z
http://dx.doi.org/10.1007/s10107-015-0882-5
http://dx.doi.org/10.1007/s10107-015-0882-5
http://dx.doi.org/10.1007/978-3-642-04295-9
http://dx.doi.org/10.1007/s10107-014-0755-3
http://dx.doi.org/10.1007/s10107-014-0755-3

Bibliography 97

[25] Hamza Fawzi and Pablo A. Parrilo. “Exponential lower bounds
on fixed-size psd rank and semidefinite extension complexity.”
In: CoRR abs/1311.2571 (2013). url: http://arxiv.org/abs/
1311.2571.

[26] Samuel Fiorini, Thomas Rothvoß, and Hans Raj Tiwary. “Ex-
tended Formulations for Polygons.” In: Discrete & Computational
Geometry 48.3 (2012), pp. 658–668. doi: 10.1007/s00454-012-
9421-9.

[27] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Ti-
wary, and Ronald de Wolf. “Exponential Lower Bounds for
Polytopes in Combinatorial Optimization.” In: Journal of the ACM
62.2 (2015), p. 17. doi: 10.1145/2716307.

[28] Samuel Fiorini, Serge Massar, Manas K Patra, and Hans Raj Ti-
wary. “Generalized probabilistic theories and conic extensions
of polytopes.” In: Journal of Physics A: Mathematical and Theoreti-
cal 48.2 (2015), p. 025302. doi: 10.1145/2716307.

[29] Lisa Fleischer, Adam N. Letchford, and Andrea Lodi. “Polynomial-
Time Separation of a Superclass of Simple Comb Inequalities.”
In: Mathematics of Operations Research 31.4 (2006), pp. 696–713.
doi: 10.1287/moor.1060.0214.

[30] Jakub Gajarský, Petr Hliněný, and Hans Raj Tiwary. “Parame-
terized Extension Complexity of Independent Set and Related
Problems.” In: CoRR abs/1511.08841 (2015). eprint: arXiv:1511.
08841.

[31] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1990. isbn: 0716710455.

[32] Albertus M. H. Gerards. “Compact Systems for T-join and Per-
fect Matching Polyhedra of Graphs with Bounded Genus.” In:
Operations Research Letters 10.7 (Oct. 1991), pp. 377–382. issn:
0167-6377. doi: 10.1016/0167-6377(91)90038-Q.

[33] João Gouveia, Pablo A. Parrilo, and Rekha R. Thomas. “Lifts of
Convex Sets and Cone Factorizations.” In: Mathematics of Opera-
tions Research 38.2 (2013), pp. 248–264. doi: 10.1287/moor.1120.
0575.

[34] Martin Grötschel and Manfred Padberg. “On the symmetric
travelling salesman problem II: Lifting theorems and facets.”
In: Mathematical Programming 16.1 (1979), pp. 281–302. doi: 10.
1007/BF01582117.

[35] Branko Grünbaum. Convex polytopes. Graduate texts in mathe-
matics. Springer, 2003. isbn: 0-387-00424-6.

[36] Juris Hartmanis, Neil Immerman, and Stephen R. Mahaney. “One-
Way Log-Tape Reductions.” In: Proc. FOCS. 1978, pp. 65–72. doi:
10.1109/SFCS.1978.31.

[37] Colin de la Higuera and José Oncina. “Inferring Deterministic
Linear Languages.” In: Proc. COLT. 2002, pp. 185–200. doi: 10.
1007/3-540-45435-7_13.

http://arxiv.org/abs/1311.2571
http://arxiv.org/abs/1311.2571
http://dx.doi.org/10.1007/s00454-012-9421-9
http://dx.doi.org/10.1007/s00454-012-9421-9
http://dx.doi.org/10.1145/2716307
http://dx.doi.org/10.1145/2716307
http://dx.doi.org/10.1287/moor.1060.0214
arXiv:1511.08841
arXiv:1511.08841
http://dx.doi.org/10.1016/0167-6377(91)90038-Q
http://dx.doi.org/10.1287/moor.1120.0575
http://dx.doi.org/10.1287/moor.1120.0575
http://dx.doi.org/10.1007/BF01582117
http://dx.doi.org/10.1007/BF01582117
http://dx.doi.org/10.1109/SFCS.1978.31
http://dx.doi.org/10.1007/3-540-45435-7_13
http://dx.doi.org/10.1007/3-540-45435-7_13

98 Bibliography

[38] Hui-kai, Yuan-wu, Huikai, Yuanwu, Katsuki Sekida, and A. V.
Grimstone. Two Zen classics : Mumonkan and Hekiganroku / trans-
lated with commentaries by Katsuki Sekida ; edited and introduced by
A.V. Grimstone. English. 1st ed. Weatherhill New York, 1977, 413

p. ; isbn: 0834801310 0834801302.

[39] Volker Kaibel. Extended Formulations in Combinatorial Optimiza-
tion. Optima 85. 14 pages. 2011. url: http://www.mathopt.org/
Optima-Issues/optima85.pdf.

[40] Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis.
“Symmetry Matters for Sizes of Extended Formulations.” In:
SIAM Journal on Discrete Mathematics 26.3 (2012), pp. 1361–1382.
doi: 10.1137/110839813.

[41] Volker Kaibel and Stefan Weltge. “A Short Proof that the Exten-
sion Complexity of the Correlation Polytope Grows Exponen-
tially.” In: Discrete & Computational Geometry 53.2 (2015), pp. 397–
401. doi: 10.1007/s00454-014-9655-9.

[42] Richard M. Karp. “Reducibility Among Combinatorial Prob-
lems.” In: Proc. Symposium on the Complexity of Computer Com-
putations. 1972, pp. 85–103. url: http://www.cs.berkeley.edu/
~luca/cs172/karp.pdf.

[43] Phokion G. Kolaitis and Moshe Y. Vardi. “Conjunctive-Query
Containment and Constraint Satisfaction.” In: Journal of Com-
puter and System Sciences 61.2 (2000), pp. 302–332. doi: 10.1006/
jcss.2000.1713.

[44] Petr Kolman, Martin Koutecký, and Hans Raj Tiwary. “Exten-
sion Complexity, MSO Logic, and Treewidth.” In: Proceedings of
the 15th SWAT To appear (2016). eprint: arXiv:1507.04907.

[45] Eyal Kushilevitz and Noam Nisan. Communication complexity.
Cambridge University Press, 1997.

[46] Troy Lee and Dirk Oliver Theis. Support-based lower bounds for
the positive semidefinite rank of a nonnegative matrix. arXiv:1203.3961.
2012.

[47] Leonid Libkin. Elements of Finite Model Theory. Berlin: Springer-
Verlag, 2004. isbn: 3-540-21202-7.

[48] László Lovász and Michael D. Plummer. Matching theory. North-
Holland mathematics studies. Includes indexes. Amsterdam,
New York: North-Holland, 1986. isbn: 0-444-87916-1.

[49] R. Kipp Martin. “Using Separation Algorithms to Generate Mixed
Integer Model Reformulations.” In: Operations Research Letters
10.3 (Apr. 1991), pp. 119–128.

[50] Shmuel Onn and Vladimir A. Shlyk. “Some efficiently solvable
problems over integer partition polytopes.” In: Discrete Applied
Mathematics 180 (2015), pp. 135–140. doi: 10.1016/j.dam.2014.
08.015.

[51] Manfred W. Padberg and M. R. Rao. “Odd Minimum Cut-Sets
and b-Matchings.” In: Mathematics of Operations Research 7.1 (1982),
pp. 67–80. doi: 10.1287/moor.7.1.67.

http://www.mathopt.org/Optima-Issues/optima85.pdf
http://www.mathopt.org/Optima-Issues/optima85.pdf
http://dx.doi.org/10.1137/110839813
http://dx.doi.org/10.1007/s00454-014-9655-9
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://dx.doi.org/10.1006/jcss.2000.1713
http://dx.doi.org/10.1006/jcss.2000.1713
arXiv:1507.04907
http://dx.doi.org/10.1016/j.dam.2014.08.015
http://dx.doi.org/10.1016/j.dam.2014.08.015
http://dx.doi.org/10.1287/moor.7.1.67

Bibliography 99

[52] Dömötör Pálvölgyi. Partitioning to three matchings of given size is
NP-complete for bipartite graphs. Tech. rep. QP-2013-01. Egerváry
Research Group, Budapest, 2013.

[53] Eric Raymond. The new hacker’s dictionary. MIT Press, 1991.

[54] Thomas Rothvoß. “Some 0/1 polytopes need exponential size
extended formulations.” In: Mathematical Programming 142.1-2
(2013), pp. 255–268. doi: 10.1007/s10107-012-0574-3.

[55] Thomas Rothvoß. “The matching polytope has exponential ex-
tension complexity.” In: Proc. STOC. 2014, pp. 263–272. doi: 10.
1145/2591796.2591834.

[56] John E. Savage. Models of Computation: Exploring the Power of
Computation. http://cs.brown.edu/~jes/book, 2015.

[57] Richard Edwin Stearns, Juris Hartmanis, and Philip M. Lewis II.
“Hierarchies of memory limited computations.” In: Proc. Sympo-
sium on Switching Circuit Theory and Logical Design. 1965, pp. 179–
190. doi: 10.1109/FOCS.1965.11.

[58] Larry J. Stockmeyer and Vijay V. Vazirani. “NP-Completeness
of Some Generalizations of the Maximum Matching Problem.”
In: Information Processing Letters 15.1 (1982), pp. 14–19. doi: 10.
1016/0020-0190(82)90077-1.

[59] Andrzej Szepietowski. “Weak and Strong One-Way Space Com-
plexity Classes.” In: Information Processing Letters 68.6 (1998),
pp. 299–302. doi: 10.1016/S0020-0190(98)00176-8.

[60] Hans Raj Tiwary. “Extension Complexity of Formal Languages.”
In: ArXiv e-prints (Mar. 2016). arXiv: 1603.07786 [cs.CC].

[61] Leslie G. Valiant. “Reducibility by algebraic projections.” In:
Enseignement Mathématique (2) 28.3-4 (1982), pp. 253–268. issn:
0013-8584.

[62] Laurence A. Wolsey. “Using extended formulations in prac-
tice.” In: (2011). 14 pages. url: http : / / www . mathopt . org /

Optima-Issues/optima85.pdf.

[63] Mihalis Yannakakis. “Expressing Combinatorial Optimization
Problems by Linear Programs.” In: Journal of Computer and Sys-
tem Sciences 43.3 (1991), pp. 441–466. doi: 10.1016/0022-0000(91)
90024-Y.

[64] Mihalis Yannakakis and Fanica Gavril. “Edge dominating sets
in graphs.” In: SIAM Journal of Applield Mathematics 38 (1980),
pp. 364–372. doi: 10.1137/0138030.

[65] Günter M. Ziegler. Lectures on polytopes. Vol. 152. Graduate Texts
in Mathematics. Springer-Verlag, 1995, pp. ix+370.

http://dx.doi.org/10.1007/s10107-012-0574-3
http://dx.doi.org/10.1145/2591796.2591834
http://dx.doi.org/10.1145/2591796.2591834
http://cs.brown.edu/~jes/book
http://dx.doi.org/10.1109/FOCS.1965.11
http://dx.doi.org/10.1016/0020-0190(82)90077-1
http://dx.doi.org/10.1016/0020-0190(82)90077-1
http://dx.doi.org/10.1016/S0020-0190(98)00176-8
http://arxiv.org/abs/1603.07786
http://www.mathopt.org/Optima-Issues/optima85.pdf
http://www.mathopt.org/Optima-Issues/optima85.pdf
http://dx.doi.org/10.1016/0022-0000(91)90024-Y
http://dx.doi.org/10.1016/0022-0000(91)90024-Y
http://dx.doi.org/10.1137/0138030

Part IV

A P P E N D I X

A
E X P O N E N T I A L L O W E R B O U N D S F O R P O LY T O P E S
I N C O M B I N AT O R I A L O P T I M I Z AT I O N

The following article has appeared in Journal of the ACM and is in-
cluded here as an appendix for completeness.

103

17

Exponential Lower Bounds for Polytopes in Combinatorial
Optimization

SAMUEL FIORINI and SERGE MASSAR, Université libre de Bruxelles
SEBASTIAN POKUTTA, Georgia Institute of Technology
HANS RAJ TIWARY, Université libre de Bruxelles
RONALD DE WOLF, CWI and University of Amsterdam

We solve a 20-year old problem posed by Yannakakis and prove that no polynomial-size linear program (LP)
exists whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to
be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These
results were discovered through a new connection that we make between one-way quantum communication
protocols and semidefinite programming reformulations of LPs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.0 [Discrete Mathematics]: General

General Terms: Theory

Additional Key Words and Phrases: Combinatorial optimization, linear programming, communication com-
plexity, semidefinite programming, quantum communication complexity

ACM Reference Format:
Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf. 2015. Exponential
lower bounds for polytopes in combinatorial optimization. J. ACM 62, 2, Article 17 (April 2015), 23 pages.
DOI: http://dx.doi.org/10.1145/2716307

1. INTRODUCTION

Since the advent of the simplex method [Dantzig 1951], linear programming has become
a prominent tool for solving optimization problems in practice. On the theoretical side,
LPs can be solved in polynomial time via either the ellipsoid method [Khachiyan 1979]
or interior point methods [Karmarkar 1984].

In 1986–1987, there were attempts [Swart 1987] to prove P = NP by giving a
polynomial-size LP that would solve the traveling salesman problem (TSP). Due to

The author list is alphabetical.
S. Fiorini acknowledges support from the Actions de Recherche Concertées (ARC) fund of the French commu-
nity of Belgium. S. Massar acknowledges support from the European Commission under the projects QCS
(Grant No. 255961) and QALGO (Grant No. 600700). H. R. Tiwary was a postdoctoral researcher of the Fonds
National de la Recherche Scientifique (F.R.S.–FNRS). R. de Wolf was partially supported by a Vidi grant from
the Netherlands Organization for Scientific Research (NWO), by ERC Consolidator grant QPROGRESS, and
by the European Commission under the projects QCS (Grant No. 255961) and QALGO (Grant No. 600700).
Authors’ present addresses: S. Fiorini, Université libre de Bruxelles, Département de Mathématique, Algebra
and Combinatorics (CP 216), Boulevard du Triomphe, B-1050 Brussels, Belgium; S. Massar, Université libre
de Bruxelles, Laboratoire d’information quantique (CP 255), Boulevard du Triomphe, B-1050 Brussels,
Belgium; S. Pokutta, Georgia Institute of Technology, Groseclose 0205, Ofice 338, 765 Ferst Drive, Atlanta,
GA 30332; H. R. Tiwary, Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic; R. de Wolf, CWI, P.O. Box 94079,
NL-1090 GB Amsterdam, The Netherlands. Correspondence email: hansrajt@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee.
2015 Copyright is held by the author/owner(s). Publication rights licensed to ACM.
0004-5411/2015/04-ART17 $15.00
DOI: http://dx.doi.org/10.1145/2716307

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 105

17:2 S. Fiorini et al.

the large size and complicated structure of the proposed LP for the TSP, it was difficult
to show directly that the LP was erroneous. In a groundbreaking effort to refute all
such attempts, Yannakakis [1988] proved that every symmetric LP for the TSP has
exponential size (see Yannakakis [1991] for the journal version). Here, an LP is called
symmetric if every permutation of the cities can be extended to a permutation of all the
variables of the LP that preserves the constraints of the LP. Because the proposed LP
for the TSP was symmetric, it could not possibly be correct.

In his paper, Yannakakis left as a main open problem the question of proving that the
TSP admits no polynomial-size LP, symmetric or not. We solve this question by proving
a super-polynomial lower bound on the number of inequalities in every LP for the TSP.
We also prove such unconditional super-polynomial lower bounds for the maximum
cut and maximum stable set problems. Therefore, it is impossible to prove P = NP by
means of a polynomial-size LP that expresses any of these problems. Our approach
is inspired by a close connection between semidefinite programming reformulations of
LPs and one-way quantum communication protocols that we introduce here.

1.1. State of the Art

From Problems to Polytopes. For combinatorial optimization problems such as the
TSP, the feasible solutions can be encoded as points in a set X ⊆ {0, 1}d in such a
way that solving an instance of the problem amounts to optimizing a linear objective
function over X, with coefficients given by the instance. By taking the convex hull of
X, one obtains a polytope P := conv(X) (see Appendix A for background on polytopes).
Optimizing any linear function f (x) over X is equivalent to optimizing this function
f (x) over P = conv(X).

For example, for the TSP, we have a set X ⊆ {0, 1}(n
2) of 0/1-points that correspond to

a Hamiltonian cycle in the complete n-vertex graph Kn. The convex hull of these points
is the TSP polytope TSP(n) = conv(X). An instance of the TSP is given by the set of
edge-weights wi j . Solving this instance amounts to minimizing f (x) := ∑

i< j wi j xij over
all x ∈ TSP(n). This minimum is attained at a vertex of the polytope, that is, at a point
x ∈ X.

The idea of representing the set of feasible solutions of a problem by a polytope forms
the basis of a standard and powerful methodology in combinatorial optimization, see,
for example, Schrijver [2003].

Extended Formulations and Extensions. Resuming the previous discussion (and as-
suming that the problem is a minimization problem), we have min{ f (x) | x ∈ X} =
min{ f (x) | x ∈ P} = min{ f (x) | Ax � b}, where Ax � b is any linear description of P.
This turns any given instance of the combinatorial optimization problem into an LP,
however, over an implicit system of constraints, the LP is potentially large since it has
at least one inequality per facet of P. In fact, even for polynomially solvable problems,
the associated polytope P may have an exponential number of facets.

By working in an extended space, that is, considering extra variables y ∈ Rk besides
the original variables x ∈ Rd, it is often possible to decrease the number of constraints.
In some cases, a polynomial increase in dimension can be traded for an exponential
decrease in the number of constraints. This is the idea underlying extended formula-
tions.

Formally, an extended formulation (EF) of a polytope P ⊆ Rd is a linear system

E=x + F=y = g=, E�x + F�y � g� (1)

in variables (x, y) ∈ Rd+k, where E=, F=, E�, F� are real matrices with d, k, d, k
columns respectively, and g=, g� are column vectors, such that x ∈ P if and only if
there exists y such that (1) holds.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

106 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:3

The size of an EF is defined as the number of inequalities in the system. Another
possible definition of size would be the sum of the number of variables and total
number of constraints (equalities plus inequalities) defining the EF. This would make
little difference because if a polytope P ⊆ Rd has an EF with r inequalities, then it has
an EF with d + r variables, r inequalities and at most d + r equalities (see Remark 3.1
for a proof). If we assume that P is full-dimensional (otherwise, one may cheat and
make d artificially high), then d � r and thus the two measures of size are within a
constant of each other.

Notice that optimizing any (not necessarily linear) objective function f (x) over all
x ∈ P amounts to optimizing f (x) over all (x, y) ∈ Rd+k satisfying (1), provided (1)
defines an EF of P.

Here, we often restrict to EFs in slack form, that is, containing only equalities and
one nonnegativity inequality per additional variable:

Ex + Fy = g, y � 0. (2)

The proof of the factorization theorem (Theorem 3) shows that this can be done without
loss of generality, see Remark 3.1. In the following, we put EFs in slack form to ease
the generalization to arbitrary cones. Notice that the size of an EF in slack form can
equivalently be defined as the number of additional variables since the only inequalities
are from y � 0.

An extension of the polytope P is another polytope Q ⊆ Re such that P is the image
of Q under a linear map. We define the size of an extension Q as the number of facets
of Q. If P has an extension of size r, then it has an EF of size r. Conversely, it is known
that if P has an EF of size r, then it has an extension of size at most r (see Theorem 3).
In this sense, the concepts of EF and extension are equivalent.

The Impact of Extended Formulations. EFs have pervaded the areas of discrete opti-
mization and approximation algorithms for a long time. For instance, Balas’ disjunctive
programming [Balas 1985], the Sherali-Adams hierarchy [Sherali and Adams 1990],
the Lovász-Schrijver closures [Lovász and Schrijver 1991], lift-and-project [Balas et al.
1993], and configuration LPs are all based on the idea of working in an extended space.
Recent surveys on EFs in the context of combinatorial optimization and integer pro-
gramming are Conforti et al. [2010], Vanderbeck and Wolsey [2010], Kaibel [2011], and
Wolsey [2011].

Symmetry Matters. Yannakakis [1991] proved a 2�(n) lower bound on the size of any
symmetric EF of the TSP polytope TSP(n) (defined previously and in Section 3.4).
Although he remarked that he did “not think that asymmetry helps much”, it was
recently shown by Kaibel et al. [2010] (see also Pashkovich [2009]) that symmetry is a
restriction in the sense that there exist polytopes that have polynomial-size EFs but no
polynomial-size symmetric EF. This revived Yannakakis’s tantalizing question about
unconditional lower bounds. That is, bounds which apply to the extension complexity of
a polytope P, defined as the minimum size of an EF of P (irrespective of any symmetry
assumption).

0/1-Polytopes with Large Extension Complexity. The strongest unconditional lower
bounds so far were obtained by Rothvoss [2011]. By an elegant counting argument
inspired by Shannon’s theorem [Shannon 1949], it was proved that there exist 0/1-
polytopes in Rd whose extension complexity is at least 2d/2−o(d). However, Rothvoß’s
counting technique does not provide explicit 0/1-polytopes with an exponential exten-
sion complexity.

The Factorization Theorem. Yannakakis [1991] discovered that the extension com-
plexity of a polytope P is determined by certain factorizations of an associated matrix,

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 107

17:4 S. Fiorini et al.

called the slack matrix of P, that records for each pair (F, v) of a facet F and vertex v,
the algebraic distance of v to a valid hyperplane supporting F. Defining the nonnegative
rank of a matrix M as the smallest natural number r such that M can be expressed as
M = TU where T and U are nonnegative matrices (i.e., matrices whose elements are
all nonnegative) with r columns (in case of T) and r rows (in case of U), respectively, it
turns out that the extension complexity of every polytope P is exactly the nonnegative
rank of its slack matrix.

We point out that this result generalizes to any slack matrix of the polytope, which
may contain additional rows corresponding to faces F of P which are not facets and/or
additional columns corresponding to points v of P that are not vertices. This fact is
used in the proof of our lower bounds on extension complexity, starting with Theorem 7.

This factorization theorem led Yannakakis to explore connections between EFs and
communication complexity. Let S denote the slack matrix of the polytope P. He proved
that: (i) every deterministic communication protocol of complexity k computing S gives
rise to an EF of P of size at most 2k; (ii) the nondeterministic communication complexity
of the support matrix of S (i.e., the binary matrix that has 0-entries exactly where S
is 0) yields a lower bound on (the base-2 logarithm1 of) the extension complexity of
P, or more generally, the nondeterministic communication complexity of the support
matrix of every nonnegative matrix M yields a lower bound on (the base-2 logarithm
of) the nonnegative rank of M.2

Tighter Communication Complexity Connection. Faenza et al. [2011] proved that the
base-2 logarithm of the nonnegative rank of a matrix equals, up to a small additive
constant, the minimum complexity of a randomized communication protocol with non-
negative outputs that computes the matrix in expectation. In particular, every EF of
size r can be regarded as such a protocol of complexity log r + O(1) bits that computes
a slack matrix in expectation.

The Clique vs. Stable Set Problem. When P is the stable set polytope STAB(G) of a
graph G (see Section 3.3), the slack matrix of P contains an interesting row-induced
0/1-submatrix that is the communication matrix of the clique vs. stable set problem (also
known as the clique vs. independent set problem): its rows correspond to the cliques and
its columns to the stable sets (or independent sets) of graph G. The entry for a clique K
and stable set S equals 1 − |K ∩ S|. Yannakakis [1991] gave an O(log2 n) deterministic
protocol for the clique vs. stable set problem, where n denotes the number of vertices
of G. This gives a 2O(log2 n) = nO(log n) size EF for STAB(G) whenever the whole slack
matrix is 0/1, that is, whenever G is a perfect graph.

A notoriously hard open question is to determine the communication complexity (in
the deterministic or nondeterministic sense) of the clique vs. stable set problem. (For
recent results that explain why this question is hard, see Kushilevitz and Weinreb
[2009a, 2009b].) The best lower bound to this day is due to Huang and Sudakov [2012]:
they obtained a 6

5 log n− O(1) lower bound. Furthermore, they state a graph-theoretical
conjecture that, if true, would imply a �(log2 n) lower bound, and hence settle the
communication complexity of the clique vs. stable set problem. Moreover it would give
a worst-case n�(log n) lower bound on the extension complexity of stable set polytopes.
However, a solution to the Huang-Sudakov conjecture seems far away.

1All logarithms in this article are in base 2.
2The classical nondeterministic communication complexity of a binary communication matrix is defined
as �log B�, where B is the minimum number of monochromatic 1-rectangles that cover the matrix, see
Kushilevitz and Nisan [1997]. This last quantity is also known as the rectangle covering bound. It is easy to
see that the rectangle covering bound of the support matrix of any matrix M lower bounds the nonnegative
rank of M (see Theorem 4).

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

108 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:5

Factorization Theorem for General Cones. Gouveia et al. [2013] generalized Yan-
nakakis’s factorization theorem to other convex cones. There, the question is to know
which polytopes P ⊆ Rd can be described via a conic extended formulation

Ex + Fy = g, y ∈ C (3)

for some given closed, convex cone C ⊆ Rk. Cone C is said to be nice if C∗ + F⊥ is closed
for all faces F of C, where C∗ is the dual cone of C. It is known that the nonnegative
orthants and the PSD cones are nice. Gouveia et al. [2013] prove that, in case C is nice
and P has dimension at least 1, such a conic EF exists if and only if the slack matrix
S of P admits a factorization S = TU where (the transpose of) each row of T is in
C∗ and each column of U is in C. This implies the following factorization theorem for
semidefinite EFs: the semidefinite extension complexity of every polytope P equals the
PSD rank of its slack matrix S (see Theorem 13).

1.2. Our Contribution

Our contribution in this article is twofold.

—First, inspired by earlier work [de Wolf 2003], we define a 2n × 2n matrix M = M(n)
and show that the nonnegative rank of M is 2�(n) because the nondeterministic
communication complexity of its support matrix is �(n). The latter was proved by
de Wolf [2003] using the well-known disjointness lower bound of Razborov [1992].
We use the matrix M to prove a 2�(n) lower bound on the extension complexity of the
cut polytope CUT(n) (Section 3.2). That is, we prove that every EF of the cut polytope
has an exponential number of inequalities. Via reductions, we infer from this: (i) an
infinite family of graphs G such that the extension complexity of the corresponding
stable set polytope STAB(G) is 2�(

√
n), where n denotes the number of vertices of G

(Section 3.3); (ii) that the extension complexity of the TSP polytope TSP(n) is 2�(
√

n)

(Section 3.4).
In addition to simultaneously settling the previously mentioned open problems of

Yannakakis [1991] and Rothvoss [2011], our results provide a lower bound on the
extension complexity of stable set polytopes that goes much beyond what is implied
by the Huang-Sudakov conjecture (thanks to the fact that we consider a different
part of the slack matrix). Although our lower bounds are strong, unconditional, and
apply to explicit polytopes that are well known in combinatorial optimization, they
have very accessible proofs.

—Second, we generalize the tight connection between linear3 EFs and classical com-
munication complexity found by Faenza et al. [2011] to a tight connection between
semidefinite EFs and quantum communication complexity.4 We show that any rank-
r PSD factorization of a (nonnegative) matrix M gives rise to a one-way quantum
protocol computing M in expectation that uses log r + O(1) qubits and, conversely,
that any one-way quantum protocol computing M in expectation that uses q qubits
results in a PSD factorization of M of rank 2q. Via the semidefinite factorization
theorem, this yields a characterization of the semidefinite extension complexity of a
polytope in terms of the minimum complexity of (one-way) quantum protocols that
compute the corresponding slack matrix in expectation.

3In this paragraph, and later in Section 4, an EF (in the sense of the previous section) is called a linear EF.
The use of adjectives such as “linear,” “semidefinite,” or “conic” will help distinguishing the different types of
EFs.
4After a first version of this article appeared, Jain et al. [2013, Theorem 2] have used this notion of PSD rank
to characterize the number of qubits of communication between Alice and Bob needed to generate a shared
probability distribution.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 109

17:6 S. Fiorini et al.

Then, we give a complexity log r + O(1) quantum protocol for computing a nonneg-
ative matrix M in expectation, whenever there exists a rank-r matrix N such that
M is the entry-wise square of N. This implies in particular that every d-dimensional
polytope with 0/1 slacks has a semidefinite EF of size O(d).

Finally, we obtain an exponential separation between classical and quantum pro-
tocols that compute our specific matrix M = M(n) in expectation. On the one hand,
our quantum protocol gives a rank-O(n) PSD factorization of M. On the other hand,
the nonnegative rank of M is 2�(n) because the nondeterministic communication
complexity of the support matrix of M is �(n). Thus, we also obtain an exponential
separation between PSD rank and nonnegative rank.

We would like to point out that the lower bounds on the extension complexity of
polytopes established in Section 3 were obtained by first finding an efficient PSD
factorization or, equivalently, an efficient one-way quantum communication protocol
for the matrix M = M(n). In this sense, our classical lower bounds stem from quantum
considerations somewhat similar in style to Kerenidis and de Wolf [2004], Aaronson
[2006], and Aharonov and Regev [2004]. See Drucker and de Wolf [2011] for a survey
of this line of work.

We would also like to point out that the fact that a matrix M with a rank-r entrywise
square-root has a PSD-rank at most r + O(1), which follows from Theorem 16, was
also obtained by Gouveia et al. [2013], independently (since their results were not
publicly available at the time we performed our research) and in a different context.
Also, after a preprint of our paper had appeared, we learned that Klauck et al. [2011]
had independently found a matrix (similar but not quite the same as ours) with an
exponential separation between PSD rank and nonnegative rank.

1.3. Other Related and Subsequent Work

Yannakakis’s paper has deeply influenced the TCS community. In addition to the works
cited previously, it has inspired a whole series of papers on the quality of restricted
approximate EFs, such as those defined by the Sherali-Adams hierarchies and Lovász-
Schrijver closures starting with Arora et al. [2002] (Arora et al. [2006] for the journal
version), see, for example, Buresh-Oppenheim et al. [2006], Schoenebeck et al. [2007],
Fernandez de la Vega and Mathieu [2007], Charikar et al. [2009], Georgiou et al. [2009,
2010], and Benabbas and Magen [2010].

After the conference version of our article appeared, there has been a lot of follow-up
work, including on approximations. Braun et al. [2012] developed a general framework
for studying the power of approximate EFs, independent of specific hierarchies. In
particular, via lower bounds on the extension complexity of approximations of the cut
polytope, they showed that linear programs for approximating Max-Clique to within a
factor n1/2−ε need size at least 2�(nε). Similarly, they show the existence of a spectrahe-
dron of small size that cannot be approximated by any LP with a polynomial number
of inequalities within a factor of n1/2−ε . Braverman and Moitra [2013] used methods
from information complexity to show the same size lower bound even for approxima-
tion factor n1−ε ; Braun and Pokutta [2013] subsequently simplified and generalized
their result and Braun et al. [2013b] show that the amortized log nonnegative rank
is characterized by information. Such inapproximability results should be contrasted
with Håstad’s famous result [Håstad 1999] that it is hard to approximate Max-Clique
to within a factor n1−ε : Håstad’s result gives is a lower bound for all algorithms ap-
proximating Max-Clique and is conditional on the unproven assumption that RP
= NP,
while the results of Braun et al. [2012] and Braverman and Moitra [2013] are geometric
statements about the nonexistence of polynomial-size extended formulations.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

110 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:7

Braun et al. [2013a] analyze the average-case polyhedral complexity of the maximum
stable set problem showing that the extension complexity of the stable set polytope is
high for almost all graphs. Pokutta and Van Vyve [2013] proved lower bounds on
extension complexity for the knapsack problem, and Avis and Tiwary [2013] proved
lower bounds for the subset-sum and three-dimensional matching problems, as well as
others. Kaibel and Weltge [2013] gave a more direct proof of the lower bound for the
cut polytope, via bounding the measure of the largest rectangle in the slack matrix,
under the condition that this rectangle is contained in the support. However, they still
use the same set of 2n valid constraints that we use here (Lemma 6).

Chan et al. [2013] prove super-polynomial lower bounds on approximate EFs for
MAX CSPs (constraint satisfaction problems). In particular, they prove that every
(2 − ε)-approximate (linear) EF for Max-Cut has n�(log n

log log n) size. This is striking because
the celebrated approximation algorithm of Goemans and Williamson [1995] is based
on a �(n)-size semidefinite EF with an approximation factor of at most 1.14. Again,
the result of Chan et al. [2013] on Max-Cut matches the algorithmic hardness of the
problem Khot et al. [2007], which assumes the Unique Games Conjecture.

Rothvoss [2014] proves that the matching polytope has extension complexity 2�(n),
solving the second part of the main open problem in Yannakakis [1991]. This is the
first time such a strong bound is obtained for a polytope over which one can optimize
in polynomial time. Rothvoß’s groundbreaking result implies in particular that the
extension complexity of the TSP polytope is 2�(n), thus going beyond our 2�(

√
n) lower

bound.
Not much is known yet about lower bounds on semidefinite EFs. Extending the

work of Rothvoss [2011] and Briët et al. [2013] show that most 0/1 polytopes (i.e.,
polytopes that are the convex hull of a random subset of {0, 1}d) need exponentially
large semidefinite EFs. Fawzi and Parrilo [2013] give exponential lower bounds on
the size of semidefinite EFs of explicit polytopes in a restricted setting, where the
underlying cone is not the full PSD cone but rather a product of fixed-dimensional
PSD cones. Lee and Theis [2012] obtain polynomial lower bounds based on the support
pattern of slack matrices.

Finally, Fiorini et al. [2013] use the notion of conic extensions and its relation to
communication complexity to study generalized probabilistic theories, which are dif-
ferent from the usual classical or quantum-mechanical theories, and show that all
polynomially-definable 0/1-polytopes have small extension complexity with respect to
the completely positive cone.

1.4. Organization

The discovery of our lower bounds on extension complexity crucially relied on finding
the right matrix M and the right polytope whose slack matrix contains M. In our case,
we found these through a connection with quantum communication. However, these
quantum aspects are not strictly necessary for the resulting lower bound proof itself.
Hence, in order to make the main results more accessible to those without background
or interest in quantum computing, we start by giving a purely classical presentation of
those lower bounds.

In Section 2, we define our matrix M and lower bound the nondeterministic
communication complexity of its support matrix. In Section 3, we embed M in the
slack matrix of the cut polytope in order to lower bound its extension complexity;
further reductions then give lower bounds on the extension complexities of the
stable set, and TSP polytopes. In Section 4, we establish the equivalence of PSD
factorizations of a (nonnegative) matrix M and one-way quantum protocols that
compute M in expectation, and give an efficient quantum protocol in the case where

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 111

17:8 S. Fiorini et al.

some entry-wise square root of M has small rank. This is then used to provide an
exponential separation between quantum and classical protocols for computing a
matrix in expectation (equivalently, an exponential separation between nonnegative
rank and PSD rank). Concluding remarks are given in Section 5.

2. A SIMPLE MATRIX WITH LARGE RECTANGLE COVERING BOUND

In this section we consider the following 2n × 2n matrix M = M(n) with rows and
columns indexed by n-bit strings a and b, and real nonnegative entries:

Mab := (1 − aᵀb)2.

Note for later reference that Mab can also be written as

Mab = 1 − 〈2 diag(a) − aaᵀ, bbᵀ〉, (4)

where 〈·, ·〉 denotes the Frobenius inner product5 and diag(a) is the n×ndiagonal matrix
with the entries of a on its diagonal. Let us verify this identity, using a, b ∈ {0, 1}n:

1−〈2 diag(a) − aaᵀ, bbᵀ〉
= 1 − 2〈diag(a), bbᵀ〉 + 〈aaᵀ, bbᵀ〉
= 1 − 2aᵀb + (aᵀb)2 = (1 − aᵀb)2.

Let suppmat(M) be the binary support matrix of M, so

suppmat(M)ab =
{

1 if Mab
= 0,
0 otherwise.

For a given matrix, a rectangle is the Cartesian product of a set of row indices and
a set of column indices. In de Wolf [2003] it was shown that an exponential number
of (monochromatic) rectangles are needed to cover all the 1-entries of the support
matrix of M. Equivalently, the corresponding function f : {0, 1}n × {0, 1}n → {0, 1} has
nondeterministic communication complexity of �(n) bits. For the sake of completeness,
we repeat the proof here.

THEOREM 1 [DE WOLF 2003]. Every 1-monochromatic rectangle cover of suppmat(M)
has size 2�(n).

PROOF. Let R1, . . . , Rk be a 1-cover for f , that is, a set of (possibly overlapping) 1-
monochromatic rectangles in the matrix suppmat(M) that together cover all 1-entries
in suppmat(M).

We use the following result from Kushilevitz and Nisan [1997, Example 3.22 and
Section 4.6], which is essentially due to Razborov [1992].

There exist sets A, B ⊆ {0, 1}n × {0, 1}n and probability distribution μ on
{0, 1}n × {0, 1}n such that all (a, b) ∈ A have aᵀb = 0, all (a, b) ∈ B have
aᵀb = 1, μ(A) = 3/4, and there are constants α, δ > 0 (independent of n) such
that for all rectangles R,

μ(R ∩ B) � α · μ(R ∩ A) − 2−δn.

(For sufficiently large n, α = 1/135 and δ = 0.017 will do.)

5The Frobenius inner product is the component-wise inner product of two matrices. For matrices X and Y of
the same dimensions, this equals Tr[XᵀY]. When X is symmetric, this can also be written Tr[XY].

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

112 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:9

Since the Ri are 1-rectangles, they cannot contain elements from B. Hence, μ(Ri∩B) = 0
and μ(Ri ∩ A) � 2−δn/α. However, since all elements of A are covered by the Ri, we have

3
4

= μ(A) = μ

(
k⋃

i=1

(Ri ∩ A)

)
�

k∑
i=1

μ(Ri ∩ A) � k · 2−δn

α
.

Hence, k � 2�(n).

3. STRONG LOWER BOUNDS ON EXTENSION COMPLEXITY

Here we use the matrix M = M(n) defined in the previous section to prove that the
(linear) extension complexity of the cut polytope of the n-vertex complete graph is 2�(n),
that is, every (linear) EF of this polytope has an exponential number of inequalities.
Then, via reductions, we prove super-polynomial lower bounds for the stable set poly-
topes and the TSP polytopes. To start, let us define more precisely the slack matrix of
a polytope. For a matrix A, let Ai denote the ith row of A and let Aj denote the jth
column of A.

Let P = {x ∈ Rd | Ax � b} = conv(V) be a polytope, with A ∈ Rm×d, b ∈ Rm and V =
{v1, . . . , vn} ⊆ Rd. Then S ∈ Rm×n

+ defined as Sij := bi − Aiv j with i ∈ [m] := {1, . . . , m}
and j ∈ [n] := {1, . . . , n} is the slack matrix of P with respect to Ax � b and V . We
sometimes refer to the submatrix of the slack matrix induced by rows corresponding to
facets and columns corresponding to vertices simply as the slack matrix of P, denoted
by S(P).

Recall that

(1) an extended formulation (EF) of P is a linear system in variables (x, y) such that
x ∈ P if and only if there exists y satisfying the system;

(2) an extension of P is a polytope Q ⊆ Re such that there is a linear map π : Re → Rd

with π (Q) = P;
(3) the extension complexity of P is the minimum size (i.e., number of inequalities) of

an EF of P.

We denote the extension complexity of P by xc(P).

3.1. The Factorization Theorem

A rank-r nonnegative factorization of a (nonnegative) matrix M is a factorization M =
TU where T and U are nonnegative matrices with r columns (in case of T) and r
rows (in case of U), respectively. The nonnegative rank of M, denoted by rank+(M),
is thus simply the minimum rank among all nonnegative factorizations of M. Note
that rank+(M) is also the minimum r such that M is the sum of r nonnegative rank-1
matrices. In particular, the nonnegative rank of a matrix M is at least the nonnegative
rank of any submatrix of M.

The following factorization theorem was proved by Yannakakis (see also Fiorini et al.
[2011]). It can be stated succinctly as: xc(P) = rank+(S) whenever P is a polytope and
S a slack matrix of P. We include a sketch of the proof for completeness and we will
use the following lemma which follows easily from Farkas’s Lemma [Schrijver 2003;
Ziegler 1995] by first showing that 0ᵀx � 1 can be derived from the system.

LEMMA 2. Let P = {x ∈ Rd | Ax � b} be a (possibly unbounded) polyhedron that
admits a direction u ∈ Rd with −∞ < min{uᵀx | x ∈ P} < max{uᵀx | x ∈ P} < +∞, and
cᵀx � δ a valid inequality for P. Then there exist nonnegative multipliers λ ∈ Rd such
that λᵀ A = cᵀ and λᵀb = δ, that is, cᵀx � δ can be derived as a nonnegative combination
from Ax � b. In particular, this holds whenever P is a polytope of dimension at least 1 or

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 113

17:10 S. Fiorini et al.

whenever P is an unbounded polyhedron that linearly projects to a polytope of dimension
at least 1.

We are ready to state Yannakakis’s factorization theorem.

THEOREM 3 [YANNAKAKIS 1991]. Let P = {x ∈ Rd | Ax � b} = conv(V) be a polytope
with dim(P) � 1, and let S denote the slack matrix of P with respect to Ax � b and V .
Then the following are equivalent for all positive integers r:

(i) S has nonnegative rank at most r;
(ii) P has an extension of size at most r (i.e., with at most r facets);

(iii) P has an EF of size at most r (i.e., with at most r inequalities).

PROOF. It should be clear that (ii) implies (iii). We prove that (i) implies (ii), and then
that (iii) implies (i).

First, consider a rank-r∗ nonnegative factorization S = TU of the slack matrix of
P, where r∗ � r. Notice that we may assume that no column of T is zero, because
otherwise r∗ can be decreased. We claim that P is the image of

Q := {(x, y) ∈ Rd+r∗ | Ax + T y = b, y � 0}
under the projection πx : (x, y) �→ x onto the x-space. We see immediately that πx(Q) ⊆ P
since T y � 0. To prove the inclusion P ⊆ πx(Q), it suffices to remark that for each point
v j ∈ V the point (v j,U j) is in Q since

Av j + TU j = Av j + b − Av j = b and U j � 0.

Since no column of T is zero, Q is a polytope. Moreover, Q has at most r∗ � r facets,
and is thus an extension of P of size at most r. This proves that (i) implies (ii).

Second, suppose that the system

E=x + F=y = g=, E�x + F�y � g�

with (x, y) ∈ Rd+k defines an EF of P with at most r inequalities. Let Q ⊆ Rd+k denote
the set of solutions to this system. Thus, Q is a (not necessarily bounded) polyhedron.
For each point v j ∈ V , pick w j ∈ Rk such that (v j, w j) ∈ Q. Because

Ax � b ⇐⇒ ∃y : E=x + F=y = g=, E�x + F�y � g�,

each inequality in Ax � b is valid for all points of Q. Let SQ be the nonnegative
matrix that records the slacks of the points (v j, w j) with respect to the inequalities
of E�x + F�y � g�, and then of Ax � b. By construction, the submatrix obtained
from SQ by deleting the rows corresponding to the inequalities of E�x + F�y � g�

and leaving only those corresponding to the inequalities of Ax � b is exactly S, thus
rank+(S) � rank+(SQ). Furthermore, by Lemma 2, any valid inequality cᵀx � δ is a
nonnegative combination of inequalities of the system Ax � b and thus every row of SQ
is a nonnegative combination of the first r rows of SQ. Thus, rank+(SQ) � r. Therefore,
rank+(S) � r. Hence, (iii) implies (i).

Remark 3.1. By the factorization theorem, if polytope P ⊆ Rd has an EF of size r,
then its slack matrix S has a nonnegative factorization S = TU of rank r. But then
Ax+T y = b, y � 0 is an EF of P in slack form with d+r variables, r inequalities and m
equalities, where m is the number of rows in the linear description Ax � b of P. Notice
that if m > d + r some of these equalities will be redundant, and that there always
exists a subset of at most d + r equalities defining the same subspace. By removing
redundant equalities from the EF, we can assume that there are at most d+r equalities
in the EF.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

114 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:11

We would like to emphasize that we will not restrict the slack matrix to have rows
corresponding only to the facet-defining inequalities. This is not an issue since append-
ing rows corresponding to redundant6 inequalities does not change the nonnegative
rank of the slack matrix. This fact was already used in the second part of the previous
proof.

Theorem 3 shows in particular that we can lower bound the extension complexity of P
by lower bounding the nonnegative rank of its slack matrix S; in fact, it suffices to lower
bound the nonnegative rank of any submatrix of the slack matrix S corresponding to an
implied system of inequalities. To that end, Yannakakis made the following connection
with nondeterministic communication complexity. Again, we include the (easy) proof
for completeness.

THEOREM 4 [YANNAKAKIS 1991]. Let M be any matrix with nonnegative real entries
and suppmat(M) its support matrix. Then rank+(M) is lower bounded by the rectangle
covering bound for suppmat(M).

PROOF. If M = TU is a rank-r nonnegative factorization of M, then S can be written
as the sum of r nonnegative rank-1 matrices:

S =
r∑

k=1

T kUk.

Taking the support on each side, we find

supp(S) =
r⋃

k=1

supp(T kUk)

=
r⋃

k=1

supp(T k) × supp(Uk).

Therefore, suppmat(M) has a 1-monochromatic rectangle cover with r rectangles.

3.2. Cut and Correlation Polytopes

Let Kn = (Vn, En) denote the n-vertex complete graph. For a set X of vertices of Kn,
we let δ(X) denote the set of edges of Kn with one endpoint in X and the other in its
complement X̄. This set δ(X) is known as the cut defined by X. For a subset F of edges
of Kn, we let χ F ∈ REn denote the characteristic vector of F, with χ F

e = 1 if e ∈ F
and χ F

e = 0 otherwise. The cut polytope CUT(n) is defined as the convex hull of the
characteristic vectors of all cuts in the complete graph Kn = (Vn, En). That is,

CUT(n) := conv
{
χδ(X) ∈ REn | X ⊆ Vn

}
.

We will not deal with the cut polytopes directly, but rather with 0/1-polytopes that
are linearly isomorphic to them. Two polytopes are called linearly isomorphic if one
can be obtained from the other by applying an invertible linear map. It is easy to check
that, if P1 and P2 are linearly isomorphic, then they have same number of vertices and
facets. Furthermore, any extended formulation for one can be converted to an extended
formulation of the other using the same transformation. So any bound on the extension
complexity of one polytope applies to any other polytope that is linearly isomorphic to it.
The correlation polytope (or Boolean quadric polytope) COR(n) is defined as the convex

6An inequality of a linear system is called redundant if removing the inequality from the system does not
change the set of solutions.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 115

17:12 S. Fiorini et al.

hull of all the rank-1 binary symmetric matrices of size n × n. In other words,

COR(n) := conv{bbᵀ ∈ Rn×n | b ∈ {0, 1}n}.
We use the following known result.

THEOREM 5 [DE SIMONE 1990]. For all n, COR(n) is linearly isomorphic to CUT(n+1).

Consider the matrix M defined in Section 2. Because M is nonnegative, Eq. (4) gives
us a linear inequality that is satisfied by all vertices bbᵀ of COR(n), and hence (by
convexity) is satisfied by all points of COR(n):

LEMMA 6. For all a ∈ {0, 1}n, the inequality

〈2 diag(a) − aaᵀ, x〉 � 1 (5)

is valid for COR(n). Moreover, the slack of vertex x = bbᵀ with respect to (5) is precisely
Mab.

We remark that (5) is weaker than the hypermetric inequality [Deza and Laurent
1997] 〈diag(a) − aaᵀ, x〉 � 0, in the sense that the face defined by the former is strictly
contained in the face defined by the latter. Nevertheless, we persist in using (5). Now,
we prove the main result of this section.

THEOREM 7. There exists some constant C > 0 such that, for all n,

xc(CUT(n + 1)) = xc(COR(n)) � 2Cn .

In particular, the extension complexity of CUT(n) is 2�(n).

PROOF. The equality is implied by Theorem 5. Now, consider any system of linear
inequalities describing COR(n) starting with the 2n inequalities (5), and a slack matrix
S with respect to this system and {bbᵀ | b ∈ {0, 1}n}. Next delete from this slack matrix
all rows except the 2n first rows. By Lemma 6, the resulting 2n × 2n matrix is M. Using
Theorems 3, 4, and 1, and the fact that the nonnegative rank of a matrix is at least the
nonnegative rank of any of its submatrices, we have

xc(COR(n)) = rank+(S)
� rank+(M)

� 2Cn

for some positive constant C.

In their follow-up work, Kaibel and Weltge [2013] proved that one can take C =
log(3/2) ≈ 0.58.

3.3. Stable Set Polytopes

A stable set S (also called an independent set) of a graph G = (V, E) is a subset S ⊆ V of
the vertices such that no two of them are adjacent. For a subset S ⊆ V , we let χ S ∈ RV

denote the characteristic vector of S, with χ S
v = 1 if v ∈ S and χ S

v = 0 otherwise. The
stable set polytope, denoted STAB(G), is the convex hull of the characteristic vectors
of all stable sets in G, that is,

STAB(G) := conv{χ S ∈ RV | S stable set of G}.
Recall that a polytope Q is an extension of a polytope P if P is the image of Q under

a linear projection.

LEMMA 8. For each n, there exists a graph Hn with O(n2) vertices such that STAB(Hn)
contains a face that is an extension of COR(n).

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

116 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:13

Fig. 1. The edges and vertices of Hn corresponding to vertices i, j and edge i j of Kn.

PROOF. Consider the complete graph Kn with vertex set Vn := [n]. For each vertex i
of Kn, we create two vertices labeled ii, ii in Hn and an edge between them. Let us label
the edges of Kn in the following way. The edge between vertices i and j with i < j gets
the label i j. Now, for each edge i j of Kn, we add to Hn four vertices labeled i j, i j, i j, i j
and all possible six edges between them. We further add the following eight edges to
Hn:

{i j, ii}, {i j, j j}, {i j, ii}, {i j, j j},
{i j, ii}, {i j, j j}, {i j, ii}, {i j, j j}.

See Figure 1 for an illustration. The number of vertices in Hn is 2n + 4(n
2).

Thus, the vertices and edges of Kn are represented by cliques of size 2 and 4 re-
spectively in Hn. We will refer to these as vertex-cliques and edge-cliques, respectively.
Consider the face F = F(n) of STAB(Hn) whose vertices correspond to the stable sets
containing exactly one vertex in each vertex-clique and each edge-clique. (The vertices
in this face correspond exactly to stable sets of Hn with maximum cardinality.)

Consider the linear map π : RV (Hn) → Rn×n mapping a point x ∈ RV (Hn) to the point
y ∈ Rn×n such that yij = yji = xij for i � j. In this equation, the subscripts in yij and yji
refer to an ordered pair of elements in [n], while the subscript in xij refers to a vertex
of Hn that corresponds either to a vertex of Kn (if i = j) or to an edge of Kn (if i
= j).

We claim that the image of F under π is COR(n), hence F is an extension of COR(n);
observe that it suffices to consider 0/1 vertices as F is a 0/1 polytope and the projection
is an orthogonal projection. Indeed, pick an arbitrary stable set S of Hn such that
x := χ S is on face F. Then, define b ∈ {0, 1}n by letting bi := 1 if ii ∈ S and bi := 0
otherwise (i.e., ii ∈ S). Notice that for the edge i j of Kn we have i j ∈ S if and only if
both vertices ii and j j belong to S. Hence, π (x) = y = bbᵀ is a vertex of COR(n). This
proves π (F) ⊆ COR(n). Now pick a vertex y := bbᵀ of COR(n) and consider the unique
maximum stable set S that contains vertex ii if bi = 1 and vertex ii if bi = 0. Then,
x := χ S is a vertex of F with π (x) = y. Hence, π (F) ⊇ COR(n). Thus, π (F) = COR(n).
This concludes the proof.

Our next lemma establishes simple monotonicity properties of the extension com-
plexity used in our reduction.

LEMMA 9. Let P, Q, and F be polytopes. Then, the following hold:

(i) if F is an extension of P, then xc(F) � xc(P);
(ii) if F is a face of Q, then xc(Q) � xc(F).

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 117

17:14 S. Fiorini et al.

PROOF. The first part is obvious because every extension of F is in particular an
extension of P. For the second part, notice that a slack matrix of F can be obtained from
the (facet-vs-vertex) slack matrix of Q by deleting columns corresponding to vertices
not in F. Now apply Theorem 3.

Using previous results, we can prove the following result about the worst-case ex-
tension complexity of the stable set polytope.

THEOREM 10. For all n, one can construct a graph Gn with n vertices such that the
extension complexity of the stable set polytope STAB(Gn) is 2�(

√
n).

PROOF. Without loss of generality, we may assume n � 18. For an integer p � 3,
let f (p) := |V (Hp)| = 2p + 4(p

2). Given n � 18, we define p as the largest integer
with f (p) � n. Now let Gn be obtained from Hp by adding n − f (p) isolated vertices.
Then STAB(Hp) is linearly isomorphic to a face of STAB(Gn). Using Theorem 7 in
combination with Lemmas 8 and 9, we find that

xc(STAB(Gn)) � xc(STAB(Hp))
� xc(COR(p))

= 2�(p)

= 2�(
√

n).

3.4. TSP Polytopes

Recall that TSP(n), the traveling salesman polytope or TSP polytope of Kn = (Vn, En), is
defined as the convex hull of the characteristic vectors of all subsets F ⊆ En that define
a tour of Kn. That is,

TSP(n) := conv{χ F ∈ REn | F ⊆ En is a tour of Kn}.
We now prove that the polytope COR(n) is the linear projection of a face of TSP(O(n2)),

implying the following.

LEMMA 11. For each n, there exists a positive integer q = O(n2) such that TSP(q)
contains a face that is an extension of COR(n).

PROOF. Recall that

COR(n) = conv{bbᵀ ∈ Rn×n | b ∈ {0, 1}n}.
To prove the lemma, we start with constructing a graph Gn with q = O(n2) vertices
such that the tours of Gn correspond to the n × n rank-1 binary symmetric matrices
bbᵀ, where b ∈ {0, 1}n. This is done in three steps:

(i) define a 3SAT formula φn with n2 variables such that the satisfying assignments
of φn bijectively correspond to the matrices bbᵀ, where b ∈ {0, 1}n;

(ii) construct a directed graph Dn with O(n2) vertices such that each directed tour of Dn
defines a satisfying assignment of φn, and conversely each satisfying assignment
of φn has at least one corresponding directed tour in Dn;

(iii) modify the directed graph Dn into an undirected graph Gn in such a way that the
tours of Gn bijectively correspond to the directed tours of Dn.

Step (i). For defining φn we use Boolean variables Cij ∈ {0, 1} for i, j ∈ [n] and let

φn :=
∧

i, j∈[n]
i
= j

[(Cii ∨ C jj ∨ Cij) ∧ (Cii ∨ Cjj ∨ Cij) ∧ (Cii ∨ C jj ∨ Cij) ∧ (Cii ∨ Cjj ∨ Cij)].

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

118 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:15

Fig. 2. Gadget for the kth variable occurring in p clauses.

Fig. 3. Gadgets for clauses in case the kth variable appears negated in the mth clause and non-negated in
the m′th clause.

The four clauses (Cii ∨ C jj ∨ Cij), (Cii ∨ Cjj ∨ Cij), (Cii ∨ C jj ∨ Cij), and (Cii ∨ Cjj ∨ Cij)
model the equation Cij = Cii ∧ C jj . Hence, C ∈ {0, 1}n×n satisfies φn if and only if there
exists b ∈ {0, 1}n such that Cij = bi ∧ bj for all i, j ∈ [n], or in matrix language, C = bbᵀ.

Step (ii). To construct a directed graph Dn whose directed tours correspond to the
satisfying assignments of φn we use the standard reduction from 3SAT to HAMPATH
[Sipser 1996].

We order the variables of φn arbitrarily and construct a gadget for each variable as
follows. Suppose that the kth variable occurs in p clauses. We create a chain of 3p + 1
nodes, labeled vk,1,. . . , vk,3p+1, where each node vk,� with � < 3p + 1 is connected to the
next node vk,�+1 with two opposite directed edges. Figure 2 illustrates this. Traversing
this chain from left to right is interpreted as setting the kth variable to false and
traversing it from right to left is interpreted as setting the kth variable to true. We also
have two nodes sk, tk connected to this chain with directed edges (sk, vk,1), (sk, vk,3p+1),
(vk,1, tk) and (vk,3p+1, tk) creating a diamond structure.

Next, we order the clauses of φn arbitrarily and create a node for each clause. The
node for the mth clause is denoted by wm. We connect these extra nodes to the gadgets
for the variables as follows. Suppose, as before, that the kth variable appears in p
clauses. Consider the �th of these clauses in which the kth variable appears, and let m
be the index of that clause. If the kth variable appears negated in the mth clause then
we add the path vk,3�−1, wm, vk,3�. Otherwise, the kth variable appears nonnegated in
the mth clause and we add the path vk,3�, wm, vk,3�−1. Figure 3 illustrates this.

Next we connect the gadgets corresponding to the variables by identifying tk with
sk+1 for 1 � k < n2. Finally, we add a directed edge from tn2 to s1. Figure 4 illustrates
the final directed graph obtained.

To see why the directed tours of the final directed graph Dn define satisfying assign-
ments of our Boolean formula φn, observe that each directed tour of Dn encodes a truth
assignment to the n2 variables depending on which way the corresponding chains are
traversed. Because a directed tour visits every node and because the node wm corre-
sponding to a clause can be visited only if we satisfy it, the truth assignment satisfies
φn. Conversely, every satisfying assignment of φn yields at least one directed tour in
Dn. (If the mth clause is satisfied by the value of more than one variable, we visit wm
only once, from the chain of the first variable whose value makes the clause satisfied.)

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 119

17:16 S. Fiorini et al.

Fig. 4. Final graph. Directed edges incident to nodes wm depend on the actual ordering of variables and
clauses in Boolean formula φn.

Step (iii). For each node v of Dn we create a path vin, vmid, vout in the (undirected)
graph Gn. For each directed edge (v,w) of Dn, we add to the graph Gn an edge between
vout and win. As is easily seen, the tours of Gn bijectively correspond to the directed
tours of Dn. Note that Gn has q := 3(n(n− 1) · 13 + n · (3n− 2) + n2 + 4n(n− 1)) = O(n2)
vertices.

Consider the face F of TSP(q) defined by setting to 0 all variables xe corresponding
to non-edges of Gn, so that the vertices of F are the characteristic vectors of the tours
of Gn. To conclude the proof, we give a linear projection π : x �→ y := π (x) mapping F
to COR(n). For x ∈ REq and i, j ∈ [n], we let yij = xe, where e is the edge (vout,k,2, vin,k,1)
of Gn corresponding to the directed edge (vk,2, vk,1) and k is the index of the variable Cij
of φn. It follows from this discussion that π maps the face F of TSP(q) to COR(n). The
lemma follows.

The final theorem in this section follows from Theorem 7, Lemmas 9 and 11, using
an argument similar to that used in the proof of Theorem 10.

THEOREM 12. The extension complexity of the TSP polytope TSP(n) is 2�(
√

n).

4. QUANTUM COMMUNICATION AND PSD FACTORIZATIONS

In this section, we explain the connection with quantum communication. This yields
results that are interesting in their own right, and also clarifies where the matrix M
of Section 2 came from.

For a general introduction to quantum computation we refer to Nielsen and Chuang
[2000] and to Mermin [2007], and for quantum communication complexity we refer
to de Wolf [2002] and to Buhrman et al. [2010]. For our purposes, an r-dimensional
quantum state ρ is an r×r PSD matrix of trace 1.7 A k-qubit state is a state in dimension
r = 2k. If ρ has rank 1, it can be written as an outer product |φ〉〈φ| of some unit column

7For simplicity, we restrict to real rather than complex entries, which does not significantly affect the results.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

120 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:17

vector |φ〉 and its conjugate transpose 〈φ| (which is a row vector). This |φ〉 is sometimes
called a pure state. We use |i〉 to denote the pure state vector that has 1 at position i
and 0s elsewhere. A quantum measurement (POVM) is described by a set of PSD
matrices {Eθ }θ∈�, each labeled by a real number θ , and summing to the r-dimensional
identity:

∑
θ∈� Eθ = I. When measuring state ρ with this measurement, the probability

of outcome θ equals Tr[Eθρ]. Note that if we define the PSD matrix E := ∑
θ∈� θ Eθ ,

then the expected value of the measurement outcome is
∑

θ∈� θ Tr[Eθρ] = Tr[Eρ].

4.1. PSD Factorizations

Analogous to nonnegative factorizations and nonnegative rank, one can define PSD
factorizations and PSD rank. A rank-r PSD factorization of an m × n matrix M is a
collection of r × r symmetric positive semidefinite matrices T1, . . . , Tm and U 1, . . . ,U n

such that the Frobenius product 〈Ti,U j〉 = Tr[(Ti)ᵀU j] = Tr[TiU j] equals Mij for all
i ∈ [m], j ∈ [n]. The PSD rank of M is the minimum r such that M has a rank-r PSD
factorization. We denote this by rankPSD(M).

Here, we show that rankPSD(M) can be expressed in terms of the amount of com-
munication needed by a one-way quantum communication protocol for computing M
in expectation (Corollary 15). Before doing so, we state the geometric interpretation of
rankPSD(M) when M is a slack matrix.

For a positive integer r, we let Sr
+ denote the cone of r ×r symmetric positive semidef-

inite matrices embedded in Rr(r+1)/2 in such a way that, for all y, z ∈ Sr
+, the scalar

product zᵀy is the Frobenius product of the corresponding matrices. A semidefinite
EF of size r is a conic EF with respect to C = Sr

+, that is, a system Ef + Fy = g,
y ∈ Sr

+ such that P = {x ∈ Rd | ∃y : Ef + Fy = g, y ∈ Sr
+}. We call the set

Q = {(x, y) ∈ Rd+r(r+1)/2 | Ex + Fy = g, y ∈ Sr
+} a semidefinite extension of P. The

semidefinite extension complexity of polytope P, denoted by xcSDP(P), is the minimum
r such that P has a semidefinite EF of size r. Observe that (Sr

+)∗ = Sr
+.

The following result follows from Gouveia et al. [2013]:

THEOREM 13. Let P = {x ∈ Rd | Ax � b} = conv(V) be a polytope of dimension at
least 1. Then the slack matrix S of P with respect to Ax � b and V has a factorization
S = T U so that (Ti)ᵀ,U j ∈ Sr

+ if and only if there exists a semidefinite extension
Q = {(x, y) ∈ Rd+r(r+1)/2 | Ex + Fy = g, y ∈ Sr

+} with P = πx(Q).

4.2. Quantum Protocols

A one-way quantum protocol with r-dimensional messages can be described as follows.
On input i, Alice sends Bob an r-dimensional state ρi. On input j, Bob measures the
state he receives with a POVM {Ej

θ } for some nonnegative values θ , and outputs the
result. We say that such a protocol computes a matrix M in expectation, if the expected
value of the output on respective inputs i and j, equals the matrix entry Mij . Analogous
to the equivalence between classical protocols and nonnegative factorizations of M
established by Faenza et al. [2011], such quantum protocols are essentially equivalent
to PSD factorizations of S.

THEOREM 14. Let M ∈ Rm×n
+ be a matrix. Then the following holds.

(i) A one-way quantum protocol with r-dimensional messages that computes M in
expectation, gives a rank-r PSD factorization of M.

(ii) A rank-r PSD factorization of M gives a one-way quantum protocol with (r + 1)-
dimensional messages that computes M in expectation.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 121

17:18 S. Fiorini et al.

PROOF. The first part is straightforward. Given a quantum protocol as above, define
Ej := ∑

θ∈� θ Ej
θ . Clearly, on inputs i and j the expected value of the output is Tr[ρi Ej] =

Mij .
For the second part, suppose we are given a PSD factorization of a matrix M, so we

are given PSD matrices T1, . . . , Tm and U 1, . . . ,U n satisfying Tr[TiU j] = Mij for all
i, j. In order to turn this into a quantum protocol, define τ = maxi Tr[Ti]. Let ρi be
the (r + 1)-dimensional quantum state obtained by adding a (r + 1)st row and column
to Ti/τ , with 1 − Tr[Ti]/τ as (r + 1)st diagonal entry, and 0s elsewhere. Note that ρi
is indeed a PSD matrix of trace 1, so it is a well-defined quantum state. For input j,
derive Bob’s (r + 1)-dimensional POVM from the PSD matrix U j as follows. Let λ be
the largest eigenvalue of U j , and define Ej

τλ to be U j/λ, extended with a (r + 1)st row
and column of 0s. Let Ej

0 = I − Ej
τλ. This is positive semidefinite because the largest

eigenvalue of Ej
τλ is 1. Hence, the two operators Ej

τλ and Ej
0 together form a well-defined

POVM. The expected outcome (on inputs i, j) of the protocol induced by the states and
POVMs that we just defined, is

τλ Tr
[
Ej

τλρi
] = Tr[TiU j] = Mij,

so the protocol indeed computes M in expectation.

We obtain the following corollary which summarizes the characterization of semidef-
inite EFs:

COROLLARY 15. For a polytope P with slack matrix S, the following are equivalent:

(i) P has a semidefinite extension Q = {(x, y) ∈ Rd+r(r+1)/2 | Ex + Fy = g, y ∈ Sr
+};

(ii) the slack matrix S has a rank-r PSD factorization;
(iii) there exists a one-way quantum communication protocol with (r + 1)-dimensional

messages (i.e., using �log(r + 1)� qubits) that computes S in expectation (for the
converse we consider r-dimensional messages).

4.3. A General Upper Bound on Quantum Communication

Now we provide a quantum protocol that efficiently computes a nonnegative matrix M
in expectation, whenever there is a low rank matrix N whose entry-wise square is M.

THEOREM 16. Let M be a matrix with nonnegative real entries, N be a rank-r matrix
of the same dimensions such that Mij = N2

i j . Then there exists a one-way quantum
protocol using (r + 1)-dimensional pure-state messages that computes M in expectation.

PROOF. By Corollary 15, it suffices to give a rank-r PSD factorization of M. To this
end, let ti, uj be r-dimensional real vectors such that Nij = tᵀ

i uj ; such vectors exist
because N has rank r. Define r × r PSD matrices Ti := tit

ᵀ
i and U j := uju

ᵀ
j . Then

Tr[TiU j] = (
tᵀ
i uj

)2 = N2
i j = Mij,

hence we have a rank-r PSD factorization of M.

Note that, if M is a 0/1-matrix, then we may take N = M, hence any low-rank 0/1-
matrix can be computed in expectation by an efficient quantum protocol. If this M is
the slack matrix for a polytope P ⊆ Rd, then it is easy to see that its rank is at most
d+1: the slack Mij = bi − Aiv j of a constraint Aix � bi with respect to a point v j ∈ P can
be written as the inner product between the two (d + 1)-dimensional vectors (bi,−Ai)
and (1, v j). We thus obtain the following corollary (implicit in Theorem 4.2 of Gouveia
et al. [2010]) which also implies a compact (i.e., polynomial size) semidefinite EF for
the stable set polytope of perfect graphs, reproving the previously known result by

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

122 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:19

Lovász [1979, 2003]. We point out that the result still holds when dim(P)+2 is replaced
by dim(P) + 1, see Gouveia et al. [2013]; this difference is due to normalization.

COROLLARY 17. Let P be a polytope such that S(P) is a 0/1 matrix. Then xcSDP(P) �
dim(P) + 2.

4.4. Quantum vs Classical Communication, and PSD vs Nonnegative Factorizations

We now give an example of an exponential separation between quantum and classical
communication in expectation, based on the matrix M of Section 2. This result actually
preceded and inspired the results in Section 3.

THEOREM 18. For each n, there exists a nonnegative matrix M ∈ R2n×2n
that can be

computed in expectation by a quantum protocol using log n + O(1) qubits, while any
classical randomized protocol needs �(n) bits to compute M in expectation.

PROOF. Consider the matrix N ∈ R2n×2n
whose rows and columns are indexed by

n-bit strings a and b, respectively, and whose entries are defined as Nab = 1 − aᵀb.
Define M ∈ R2n×2n

+ by Mab = N2
ab. This M is the matrix from Section 2. Note that N

has rank r � n + 1 because it can be written as the sum of n + 1 rank-1 matrices.
Hence, Theorem 16 immediately implies a quantum protocol with (n + 2)-dimensional
messages that computes M in expectation.

For the classical lower bound, note that a protocol that computes M in expectation
has positive probability of giving a nonzero output on input a, b if and only if Mab > 0.
With a message m in this protocol we can associate a rectangle Rm = A × B where
A consists of all inputs a for which Alice has positive probability of sending m, and
B consists of all inputs b for which Bob, when he receives message m, has positive
probability of giving a nonzero output. Together these rectangles will cover exactly
the nonzero entries of M. Accordingly, a c-bit protocol that computes M in expectation
induces a rectangle cover for the support matrix of M of size 2c. Theorem 1 lower
bounds the size of such a cover by 2�(n), hence c = �(n).

Together with Theorem 14 and the equivalence of randomized communication com-
plexity (in expectation) and nonnegative rank established in Faenza et al. [2011], we
immediately obtain an exponential separation between nonnegative rank and PSD
rank.

COROLLARY 19. For each n, there exists M ∈ R2n×2n

+ , with rank+(M) = 2�(n) and
rankPSD(M) = O(n).

In fact a simple rank-(n+1) PSD factorization of M is the following: let Ta := (1
−a)(1

−a)ᵀ

and U b := (1
b)(1

b)ᵀ, then Tr[TaU b] = (1 − aᵀb)2 = Mab.

5. CONCLUDING REMARKS

In addition to proving the first unconditional super-polynomial lower bounds on the
size of linear EFs for the cut polytope, stable set polytope, and TSP polytope, we
demonstrate that the rectangle covering bound can prove strong results in the context
of EFs. In particular, it can be super-polynomial in the dimension and the logarithm of
the number of vertices of the polytope, settling an open problem of Fiorini et al. [2011].

The exponential separation between nonnegative rank and PSD rank that we prove
here (Theorem 18) actually implies more than a super-polynomial lower bound on the
extension complexity of the cut polytope. As noted in Theorem 5, the polytopes CUT(n)
and COR(n − 1) are affinely isomorphic. Let Q(n) denote the polyhedron isomorphic
(under the same affine map) to the polyhedron defined by (5) for a ∈ {0, 1}n. Then
(i) every polytope (or polyhedron) that contains CUT(n) and is contained in Q(n) has

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 123

17:20 S. Fiorini et al.

exponential extension complexity; (ii) there exists a low complexity spectrahedron that
contains CUT(n) and is contained in Q(n). (A spectrahedron is any projection of an
affine slice of the positive semidefinite cone.) This was used in Braun et al. [2012] to
establish the existence of a spectrahedron that cannot be well approximated by linear
programs of polynomial size.

An important problem also left open in Yannakakis [1991] is whether the perfect
matching polytope has a polynomial-size linear EF. Yannakakis proved that every
symmetric EF of this polytope has exponential size, a striking result given the fact
that the perfect matching problem is solvable in polynomial time. He conjectured that
asymmetry also does not help in the case of the perfect matching polytope. Because it is
based on the rectangle covering bound, our argument does not yield a super-polynomial
lower bound on the extension complexity of the perfect matching polytope. This ques-
tion was recently answered in the affirmative in Rothvoss [2014], showing that the
extension complexity of the perfect matching polytope is 2�(n). This groundbreaking re-
sult is based on a general lower bound called the hyperplane separation bound, which
was used implicitly, for example, in Braun et al. [2012].

As mentioned at the end of the introduction, the new connections developed have
already inspired much follow-up research in particular about approximate EFs. Here
are two concrete questions left open for future work: (i) find a slack matrix that has
an exponential gap between nonnegative rank and PSD rank; (ii) prove that the cut
polytope has no polynomial-size semidefinite EF (that would rule out SDP-based algo-
rithms for optimizing over the cut polytope, in the same way that this article ruled out
LP-based algorithms).

Our final remark concerns the famous log-rank conjecture [Lovász and Saks 1993].
It states that the deterministic communication complexity of a (finite) Boolean matrix
M is upper bounded by a polynomial in the logarithm of its rank rank(M). On the
one hand, this conjecture is equivalent to the following statement: log(rank+(M)) �
polylog(rank(M)) for all Boolean matrices M. On the other hand, we know that
rankPSD(M) = O(rank(M)) for all Boolean matrices M by Theorem 16. Using the in-
terpretation of the nonnegative and PSD rank of M in terms of classical and quantum
communication protocols computing M in expectation (see Faenza et al. [2011] and
Theorem 14), we see that the log-rank conjecture is equivalent to the conjecture that
classical protocols computing M in expectation are at most polynomially less efficient
than quantum protocols. Accordingly, one way to prove the log-rank conjecture would
be to give an efficient classical simulation of such quantum protocols for Boolean M
(for non-Boolean M, we already exhibited an exponential separation in this article).

APPENDIX

A. BACKGROUND ON POLYTOPES

A (convex) polytope is a set P ⊆ Rd that is the convex hull conv(V) of a finite set of
points V . Equivalently, P is a polytope if and only if P is bounded and the intersection
of a finite collection of closed halfspaces. This is equivalent to saying that P is bounded
and the set of solutions of a finite system of linear inequalities and possibly equalities
(each of which can be represented by a pair of inequalities).

Let P ⊆ Rd be a polytope. A closed halfspace H+ that contains P is said to be valid
for P. In this case, the hyperplane H that bounds H+ is also said to be valid for P. A
face of P is either P itself or the intersection of P with a valid hyperplane. Every face
of a polytope is again a polytope. A face is called proper if it is not the polytope itself.
A vertex is a minimal nonempty face. A facet is a maximal proper face. An inequality
cᵀx � δ is said to be valid for P if it is satisfied by all points of P. The face it defines

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

124 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:21

is F := {x ∈ P | cᵀx = δ}. The inequality is called facet-defining if F is a facet. The
dimension of a polytope P is the dimension of its affine hull aff(P).

Every (finite or infinite) set V such that P = conv(V) contains all the vertices of
P. Conversely, letting vert(P) denote the vertex set of P, we have P = conv(vert(P)).
Suppose now that P is full dimensional, that is, dim(P) = d. Then, every (finite) system
Ax � b such that P = {x ∈ Rd | Ax � b} contains all the facet-defining inequalities of
P, up to scaling by positive numbers. Conversely, P is described by its facet-defining
inequalities.

If P is not full dimensional, these statements have to be adapted as follows. Every
(finite) system describing P contains all the facet-defining inequalities of P, up to
scaling by positive numbers and adding an inequality that is satisfied with equality
by all points of P. Conversely, a linear description of P can be obtained by picking one
inequality per facet and adding a system of equalities describing aff(P).

A 0/1-polytope in Rd is simply the convex hull of a subset of {0, 1}d.
A (convex) polyhedron is a set P ⊆ Rd that is the intersection of a finite collection of

closed halfspaces. A polyhedron P is a polytope if and only if it is bounded.
For more background on polytopes and polyhedra, see the standard reference [Ziegler

1995].

Note added in proof. Lee et al. [2015] have very recently proved super-polynomial
lower bounds on the semidefinite extension complexity of the cut, TSP, and stable set
polytopes, thereby answering one of the open questions raised in Section 5.

ACKNOWLEDGMENTS

We thank Kota Ishihara for carefully reading the manuscript and pointing out an error in a previous
version of the text. We thank Monique Laurent for information about hypermetric inequalities, and the
three anonymous STOC’12 referees as well as one JACM referee for suggesting improvements to the text.
Sebastian Pokutta would like to thank Alexander Martin for the inspiring discussions and support. Ronald
de Wolf thanks Giannicola Scarpa and Troy Lee for useful discussions.

REFERENCES

S. Aaronson. 2006. Lower bounds for local search by quantum arguments. SIAM J. Comput. 35, 4, 804–824.
(Earlier version in STOC’04).

D. Aharonov and O. Regev. 2004. Lattice problems in NP ∩ coNP. In Proceedings of FOCS 2004. 362–371.
S. Arora, B. Bollobás, and L. Lovász. 2002. Proving integrality gaps without knowing the linear program. In

Proceedings of FOCS 2002. 313–322.
S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. 2006. Proving integrality gaps without knowing the linear

program. Theory Comput. 2, 19–51.
D. Avis and H. R. Tiwary. 2013. On the Extension Complexity of Combinatorial Polytopes. In Proceedings of

ICALP(1) 2013. 57–68.
E. Balas. 1985. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.

SIAM J. Algeb. Disc. Meth. 6, 466–486.
E. Balas, S. Ceria, and G. Cornuéjols. 1993. A lift-and-project algorithm for mixed 0-1 programs. Math. Prog.

58, 295–324.
S. Benabbas and A. Magen. 2010. Extending SDP integrality gaps to Sherali-Adams with applications to

quadratic programming and MaxCutGain. In Proceedings of IPCO 2010. 299–312.
G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. 2012. Approximation limits of linear programs (beyond

hierarchies). In Proceedings of FOCS 2012. 480–489.
G. Braun, S. Fiorini, and S. Pokutta. 2013a. Average case polyhedral complexity of the maximum stable set

problem. arXiv:1311.4001.
G. Braun, R. Jain, T. Lee, and S. Pokutta. 2013b. Information-theoretic approximations of the nonnegative

rank. ECCC Report no. 158 (2013).
G. Braun and S. Pokutta. 2013. Common information and unique disjointness. In Proceedings of FOCS 2013.

688–697.

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 125

17:22 S. Fiorini et al.

M. Braverman and A. Moitra. 2013. An information complexity approach to extended formulations. In
Proceedings of STOC 2013. 161–170.

J. Briët, D. Dadush, and S. Pokutta. 2013. On the existence of 0/1 polytopes with high semidefinite extension
complexity. In Algorithms ESA 2013, Lecture Notes in Computer Science, vol. 8125, Springer, 217–228.

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf. 2010. Nonlocality and communication complexity. Rev.
Modern Phys. 82, 665.

J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. 2006. Rank bounds and integrality gaps
for cutting planes procedures. Theory Comput. 2, 65–90.

S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. 2013. Approximate Constraint Satisfaction Requires
Large LP Relaxations. In Proceedings of FOCS 2013, 350–359.

M. Charikar, K. Makarychev, and Y. Makarychev. 2009. Integrality gaps for Sherali-Adams relaxations. In
Proceedings of STOC 2009. 283–292.

M. Conforti, G. Cornuéjols, and G. Zambelli. 2010. Extended formulations in combinatorial optimization.
4OR 8, 1–48.

G. B. Dantzig. 1951. Maximization of a linear function of variables subject to linear inequalities. In Activity
Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons Inc.,
New York, 339–347.

C. De Simone. 1990. The cut polytope and the Boolean quadric polytope. Disc. Math. 79, 71–75.
M. M. Deza and M. Laurent. 1997. Geometry of Cuts and Metrics. Algorithms and Combinatorics Series,

vol. 15, Springer-Verlag.
A. Drucker and R. de Wolf. 2011. Quantum proofs for classical theorems. Theory Comput. Graduate Surveys

2.
Y. Faenza, S. Fiorini, R. Grappe, and H. R. Tiwary. 2011. Extended formulations, non-negative factorizations

and randomized communication protocols. arXiv:1105.4127.
H. Fawzi and P. A. Parrilo. 2013. Exponential lower bounds on fixed-size PSD rank and semidefinite extension

complexity. arXiv:1311.2571.
W. Fernandez de la Vega and C. Mathieu. 2007. Linear programming relaxation of Maxcut. In Proceedings

of SODA 2007. 53–61.
S. Fiorini, V. Kaibel, K. Pashkovich, and D. O. Theis. 2011. Combinatorial bounds on nonnegative rank and

extended formulations. arXiv:1111.0444.
S. Fiorini, S. Massar, M. K. Patra, and H. R. Tiwary. 2013. Generalised probabilistic theories and conic

extensions of polytopes. CoRR abs/1310.4125.
K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis. 2010. Integrality gaps of 2 − o(1) for vertex cover SDPs

in the Lovász-Schrijver hierarchy. SIAM J. Comput. 39, 3553–3570.
K. Georgiou, A. Magen, and M. Tulsiani. 2009. Optimal Sherali-Adams gaps from pairwise independence.

In Proceedings of APPROX-RANDOM 2009. 125–139.
M. X. Goemans and D. P. Williamson. 1995. Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145.
J. Gouveia, P. A. Parrilo, and R. R. Thomas. 2010. Theta bodies for polynomial ideals. SIAM J. Optim. 20,

2097–2118.
J. Gouveia, P. A. Parrilo, and R. R. Thomas. 2013. Lifts of convex sets and cone factorizations. Math. Oper.

Res. 38, 2, 248–264.
J. Håstad. 1999. Clique is Hard to Approximate within n1−ε . Acta Math. 182, 105–142. (Earlier version in

Proceedings of FOCS 1996.)
H. Huang and B. Sudakov. 2012. A counterexample to the Alon-Saks-Seymour conjecture and related prob-

lems. Combinatorica 32, 2, 205–219.
R. Jain, Y. Shi, Z. Wei, and S. Zhang. 2013. Efficient protocols for generating bipartite classical distributions

and quantum states. IEEE Trans. Inf. Theory 59, 8, 5171–5178.
V. Kaibel. 2011. Extended formulations in combinatorial optimization. Optima 85, 2–7.
V. Kaibel, K. Pashkovich, and D. O. Theis. 2010. Symmetry matters for the sizes of extended formulations.

In Proceedings of IPCO 2010. 135–148.
V. Kaibel and S. Weltge. 2013. A short proof that the extension complexity of the correlation polytope grows

exponentially. Discrete Computa. Geom. 53, 2, 396–401.
N. Karmarkar. 1984. A new polynomial time algorithm for linear programming. Combinatorica 4, 373–395.
I. Kerenidis and R. de Wolf. 2004. Exponential lower bound for 2-query locally decodable codes via a quantum

argument. J. Comput. Syst. Sci. 69, 3, 395–420. (Earlier version in STOC 2003).

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

126 appendix

Exponential Lower Bounds for Polytopes in Combinatorial Optimization 17:23

L. G. Khachiyan. 1979. A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 5,
1093–1096.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. 2007. Optimal inapproximability results for MAX-CUT
and other 2-variable CSPs? SIAM J. Comput. 37, 1, 319–357.

H. Klauck, T. Lee, and S. Zhang. 2011. An explicit and exponential separation between randomized and
quantum correlation complexities. Unpublished manuscript from Oct/Nov 2011. Personal communi-
cation between Troy Lee and Ronald de Wolf, December 2011 at Centre for Quantum Technologies,
Singapore.

E. Kushilevitz and N. Nisan. 1997. Communication Complexity. Cambridge University Press.
E. Kushilevitz and E. Weinreb. 2009a. The communication complexity of set-disjointness with small sets and

0-1 intersection. In Proceedings of FOCS 2009. 63–72.
E. Kushilevitz and E. Weinreb. 2009b. On the complexity of communication complexity. In Proceedings of

STOC 2009. 465–474.
J. R. Lee, P. Raghavendra, and D. Steurer. 2015. Lower bounds on the size of semidefinite programming

relaxations. In Proceedings of STOC 2015.
T. Lee and D. O. Theis. 2012. Support-based lower bounds for the positive semidefinite rank of a nonnegative

matrix. arXiv:1203.3961.
L. Lovász. 1979. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1–7.
L. Lovász. 2003. Semidefinite programs and combinatorial optimization. In Recent Advances in Algorithms

and Combinatorics. CMS Books Math./Ouvrages Math, SMC Series, vol. 11, Springer, 137–194.
L. Lovász and M. Saks. 1993. Communication complexity and combinatorial lattice theory. J. Comput. Syst.

Sci. 47, 322–349.
L. Lovász and A. Schrijver. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim.

1, 166–190.
N. D. Mermin. 2007. Quantum Computer Science: An Introduction. Cambridge University Press.
M. A. Nielsen and I. L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge Uni-

versity Press.
K. Pashkovich. 2009. Symmetry in extended formulations of the permutahedron. arXiv:0912.3446.
S. Pokutta and M. Van Vyve. 2013. A note on the extension complexity of the knapsack polytope. Oper. Res.

Lett. 41, 4, 347–350.
A. A. Razborov. 1992. On the distributional complexity of disjointness. Theoret. Comput. Sci. 106, 2, 385–390.
T. Rothvoss. 2011. Some 0/1 polytopes need exponential size extended formulations. arXiv:1105.0036.
T. Rothvoss. 2014. The matching polytope has exponential extension complexity. In Proceedings of STOC

2014. 263–272.
G. Schoenebeck, L. Trevisan, and M. Tulsiani. 2007. Tight integrality gaps for Lovasz-Schrijver LP relax-

ations of vertex cover and max cut. In Proceedings of STOC 2007. 302–310.
A. Schrijver. 2003. Combinatorial Optimization. Polyhedra and Efficiency. Springer-Verlag.
C. E. Shannon. 1949. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 25, 59–98.
H. D. Sherali and W. P. Adams. 1990. A hierarchy of relaxations between the continuous and convex hull

representations for zero-one programming problems. SIAM J. Disc. Math. 3, 411–430.
M. Sipser. 1996. Introduction to the Theory of Computation. PWS, Boston, MA.
E. R. Swart. 1986; revision 1987. P = NP. Tech. rep., University of Guelph.
F. Vanderbeck and L. A. Wolsey. 2010. Reformulation and decomposition of integer programs. In 50 Years

of Integer Programming 1958-2008, M. Jünger, Th, M. Liebling, D. Naddef, G. L. Nemhauser, W. R.
Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds., Springer, 431–502.

R. de Wolf. 2002. Quantum communication and complexity. Theoret. Comput. Sci. 287, 337–353.
R. de Wolf. 2003. Nondeterministic quantum query and communication complexities. SIAM J. Comput. 32,

681–699.
L. A. Wolsey. 2011. Using extended formulations in practice. Optima 85, 7–9.
M. Yannakakis. 1988. Expressing combinatorial optimization problems by linear programs (extended ab-

stract). In Proceedings of STOC 1988. 223–228.
M. Yannakakis. 1991. Expressing combinatorial optimization problems by linear programs. J. Comput.

System Sci. 43, 3, 441–466.
G. M. Ziegler. 1995. Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer-Verlag.

Received July 2012; revised November 2013 and September 2014; accepted January 2015

Journal of the ACM, Vol. 62, No. 2, Article 17, Publication date: April 2015.

appendix 127

B
E X T E N D E D F O R M U L AT I O N S , N O N N E G AT I V E
FA C T O R I Z AT I O N S , A N D R A N D O M I Z E D
C O M M U N I C AT I O N P R O T O C O L S

The following article has appeared in Mathematical Programming and
is included here as an appendix for completeness.

129

Math. Program., Ser. B (2015) 153:75–94
DOI 10.1007/s10107-014-0755-3

FULL LENGTH PAPER

Extended formulations, nonnegative factorizations,
and randomized communication protocols

Yuri Faenza · Samuel Fiorini · Roland Grappe ·
Hans Raj Tiwary

Received: 28 May 2013 / Accepted: 27 January 2014 / Published online: 19 February 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract An extended formulation of a polyhedron P is a linear description of a
polyhedron Q together with a linear map π such that π(Q) = P . These objects are
of fundamental importance in polyhedral combinatorics and optimization theory, and
the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in
J Comput Syst Sci 43(3):441–466, 1991) provides a surprising connection between
extended formulations and communication complexity, showing that the smallest size
of an extended formulation of P equals the nonnegative rank of its slack matrix
S. Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2c,
where c is the complexity of any deterministic protocol computing S. In this paper,

A previous and reduced version of this paper appeared in the Proceedings of ISCO 2012.

H. R. Tiwary: Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS).

Y. Faenza
Institut de mathématiques d’analyse et applications, EPFL, Lausanne, Switzerland
e-mail: yuri.faenza@epfl.ch

S. Fiorini
Département de Mathématique, Université libre de Bruxelles,
CP 216, Boulevard du Triomphe, 1050 Brussels, Belgium
e-mail: sfiorini@ulb.ac.be

R. Grappe
Laboratoire d’Informatique de Paris-Nord, UMR CNRS 7030, Institut Galilée,
Université Paris-Nord, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
e-mail: roland.grappe@lipn.univ-paris13.fr

H. R. Tiwary (B)
Department of Applied Mathematics (KAM), Institute of Theoretical Computer Science (ITI),
Charles University, Malostranské nám. 25, 11800 Prague 1, Czech Republic
e-mail: hansraj@kam.mff.cuni.cz

123

appendix 131

76 Y. Faenza et al.

we show that the latter result can be strengthened when we allow protocols to be
randomized. In particular, we prove that the base-2 logarithm of the nonnegative
rank of any nonnegative matrix equals the minimum complexity of a randomized
communication protocol computing the matrix in expectation. Using Yannakakis’
factorization theorem, this implies that the base-2 logarithm of the smallest size of an
extended formulation of a polytope P equals theminimumcomplexity of a randomized
communication protocol computing the slack matrix of P in expectation. We show
that allowing randomization in the protocol can be crucial for obtaining small extended
formulations. Specifically, we prove that for the spanning tree and perfect matching
polytopes, small variance in the protocol forces large size in the extended formulation.

Mathematics Subject Classifcation 52B05

1 Introduction

Extended formulations are a powerful tool for minimizing linear or, more generally,
convex functions over polyhedra (see, e.g., Ziegler [28] for background on polyhedra
and polytopes). Consider a polyhedron P in R

d and a convex function f : R
d → R,

that has to be minimized over P . If a small size linear description of P is known, then
minimizing f over P can be done efficiently using an interior point algorithm, or the
simplex algorithm if f is linear and theoretical efficiency is not required.

However, P can potentially have many facets. Or worse: it can be that no explicit
complete linear description of P is known. This does not necessarily make the given
optimization problem difficult. A fundamental result of Grötschel, Lovász and Schri-
jver [11] states that if there exists an efficient algorithm solving the separation problem
for P , then optimizing over P can be done efficiently. However, this result uses the
ellipsoid algorithm, which is not very efficient in practice. Thus it is desirable to avoid
using the ellipsoid algorithm.

Now suppose that there exists a polyhedron Q in a higher dimensional space R
e

such that P is the image of Q under a linear projection π : R
e → R

d . The polyhedron
Q together with the projection π defines an extension of P , while we call extended
formulation of P any description of Q by means of linear inequalities and equations,
together with the map π . Minimizing f over P amounts to minimizing f ◦π over Q.
If Q has few facets, then we can resort to an interior point algorithm or the simplex
algorithm to solve the optimization problem. Of course, one should also take into
account the size of the coefficients in the linear description of Q and in the matrix of
π . But this can essentially be ignored for 0/1-polytopes P [21].

The success of extended formulations is due to the fact that a moderate increase in
dimension can result in a dramatic decrease in the number of facets. For instance, P
can have exponentially many facets, while Q has only polynomially many.Wewill see
examples of this phenomenon later in this paper. For more examples, and background,
see the recent surveys by Conforti, Cornuéjols and Zambelli [4], Kaibel [13] and
Wolsey [26].

Extensions provide an interesting measure of how “complex” a polyhedron is:
define the size of an extension Q of P as the number of facets of Q and the extension

123

132 appendix

Randomized communication protocols 77

complexity of a polyhedron P as the minimum size of any extension of P . Follow-
ing [9], we denote this number by xc(P). The size of an extended formulation of P is
the number of inequalities of the linear system (hence, neither equations nor variables
are taken into account). Note that the size of an extended formulation is at least the
size of the associated extension, and any extension Q has an extended formulation
describing Q with the same size.

This paper builds onYannakakis’ seminal paper [24].Webriefly reviewhis contribu-
tion, postponing formal definitions to Sect. 2. Because we mainly consider polytopes,
we assume from now on that P is bounded, that is, P is a polytope. (This is not a major
restriction.) Yannakakis’ factorization theorem (Theorem 1) states that to each size-r
extension of a polytope P corresponds a rank-r nonnegative factorization of some
matrix S(P) associated to P , called the slack matrix, and conversely to each rank-r
nonnegative factorization of S(P) corresponds a size-r extension of P . In particular,
the extension complexity xc(P) equals the smallest rank of a nonnegative factorization
of S(P), that is, the nonnegative rank of S(P).

In [24], Yannakakis also shows that every lg r -complexity deterministic protocol
computing a nonnegative matrix M determines a rank-r nonnegative factorization
of M .1 By the aforementioned factorization theorem, this implies that one can pro-
duce extended formulations (and hence upper bounds to the extension complexity)
via deterministic communication protocols. Yannakakis used this to obtain a quasi-
polynomial nO(log n)-size extension for the stable set polytope of a n-vertex perfect
graph.

Our contribution The main goal of this paper is to strengthen the connection between
nonnegative rank of matrices (and hence, extension complexity of polytopes) and
communication protocols. Firstwe give a brief overviewof our results and then provide
more details along with an outline of the paper. Our contribution is threefold:

– We pinpoint the “right” model of communication protocol, that exactly corre-
sponds to nonnegative factorizations. We remark that this was done independently
byZhang [27]. Proving such a correspondence is an important conceptual step since
it gives a third equivalent way to think about extensions of polytopes, besides pro-
jections of polytopes and nonnegative factorizations. Communication protocols
are very versatile and we hope that this paper will convince discrete optimizers to
add this tool to their arsenal.

– We provide examples of already known extensions, seen as communication pro-
tocols, and also of new extensions obtained from communication protocols.

– We prove that the randomization allowed in our protocols is sometimes necessary
for obtaining small size extensions.We give a general condition under which small
variance in the protocol implies that the size of the corresponding extension is large,
which in particular applies to the perfect matching polytope and spanning tree
polytope. This indicates that Yannakakis’ approach for the stable set polytope of a
perfect graph cannot work for the perfect matching polytope or spanning tree poly-
tope, since his protocol is deterministic and hence the corresponding variance zero.

1 Throughout this paper, we use lg for binary logarithm.

123

appendix 133

78 Y. Faenza et al.

More specifically, we define a new model of randomized communication protocols
computing the matrix in expectation. This generalizes the one used by Yannakakis
in [24] (see Sect. 3; our definition differs substantially from the usual notion of of
random protocol computing a matrix with high probability, which can be found e.g.
in [16]). Our protocols perfectly model the relation between the nonnegative factor-
ization of a matrix and communication complexity: in fact, we show that the base-2
logarithm of the nonnegative rank of any nonnegative matrix (rounded up to the next
integer) equals the minimum complexity of a randomized communication protocol
computing the matrix in expectation (Theorem 2). By Yannakakis’ factorization the-
orem, this implies a new characterization of the extension complexity of polytopes
(Corollary 3).

We then provide evidence that these protocols are substantially more powerful than
the deterministic ones used, e.g., by Yannakakis. In fact, one can associate to each
protocol a variance (see Sect. 3.3) which, roughly speaking, indicates the “amount of
randomness” of the protocol: protocols with variance zero are deterministic protocols.
We show that no compact formulation for the spanning tree polytope arises from
protocols with small variance (see Sect. 6.3), while we provide a randomized protocol
that produces the O(n3) formulation for the spanning tree polytope of Kn due to
Martin [19] (see Sect. 5.2).

We also investigate the existence of compact extended formulation for thematching
polytope—a fundamental open problem in polyhedral combinatorics. Yannakakis [24]
(see also [14]) proved that every symmetric extension of the perfect matching polytope
of the complete graph Kn has exponential size (we do not formally define symmetric
here, since we shall not need it; the interested reader may refer to [24]). We show
that a negative result similar to the one of the spanning tree polytope holds true for
matchings: no compact formulation for the matching polytope arises from protocols
with small variance (see Sect. 6). Thus, in particular, deterministic protocols cannot
be used to provide compact extended formulations for the perfect matching polytope.
We also provide a randomized protocol that produces a O(1.42n) formulation for the
matching polytope implicit in Kaibel, Pashkovich and Theis [14] (see Sect. 5.3). The
negative results on both the spanning tree and the matching polytopes are obtained
via a general technique that exploits known negative results on the communication
complexity of the set disjointness problem.

Wewould like to remark that the results contained in this paperwere, at a conceptual
level, an important stepping stone for the strong lower bounds on the extension com-
plexities of the cut, stable set and TSP polytopes of Fiorini, Massar, Pokutta, Tiwary
and de Wolf [8].

2 Preliminary definitions and results

2.1 The factorization theorem and related concepts

Consider a polytope P in R
d with m facets and n vertices. Let h1, …, hm be m

affine functions on R
d such that h1(x) � 0, …, hm(x) � 0 are all the facet-defining

inequalities of P . Let also v1, …, vn denote the vertices of P . The slack matrix of P is
the nonnegative m × n matrix S = S(P) = (si j) with si j = hi (v j). Also note that the

123

134 appendix

Randomized communication protocols 79

facet-defining inequalities can be defined up to any positive scaling factor. It should
be clear that such a scaling does not alter the non-negative rank of a matrix. To see
this let S = AB and let S′ be a matrix obtained by multiplying the i-th row of S by
λ > 0. Then, S′ = A′B where A′ is obtained by multiplying the i-th row of A by λ.

A rank-r nonnegative factorization of a nonnegative matrix S is an expression of
S as a product S = AB where A and B are nonnegative matrices with r columns
and r rows, respectively. The nonnegative rank of S, denoted by rank+(S), is the
minimum nonnegative integer r such that S admits a rank-r nonnegative factoriza-
tion [3]. Observe that the nonnegative rank of S can also be defined as the minimum
nonnegative integer r such that S is the sum of r nonnegative rank-1 matrices.

In a seminal paper, Yannakakis [24] proved, among other things, that the extension
complexity of a polytope is precisely the nonnegative rank of its slack matrix (see
also [9]).

Theorem 1 (Yannakakis’ factorization theorem) For all polytopes P that are neither
empty or a point,

xc(P) = rank+(S(P)).

Before going on, we sketch the proof of half of the theorem. Assuming P = {x ∈
R
d : Ex � g}, consider a rank-r nonnegative factorization S(P) = FV of the slack

matrix of P . Then it can be shown that Q := {(x, y) ∈ R
d+r : Ex + Fy = g, y � 0}

is an extension of P . Notice that Q has at most r facets, and r extra variables.2 Taking
r = rank+(S(P)) implies xc(P) � rank+(S(P)). Moreover, since P is a polytope,
one can also assume that Q is bounded, as shown by the following lemma.

Lemma 1 Let P = {x ∈ R
d : Ex � g} be a polytope, let S(P) = FV be a rank-r

nonnegative factorization of the slack matrix of P with r := rank+(S(P)), and let
Q := {(x, y) ∈ R

d+r : Ex + Fy = g, y � 0}. Then Q is bounded.

Proof The polyhedron Q is unbounded if and only if its recession cone rec(Q) =
{(x, y) ∈ R

d+r : Ex + Fy = 0, y � 0} contains some nonzero vector. Since P is
bounded and the image of Q under the projection (x, y) �→ x is P , we have x = 0
for every point (x, y) ∈ rec(Q). Therefore, Q is unbounded if and only if the system
Fy = 0, y � 0 has a solution y �= 0. But any such y represents 0 as a non-trivial
conical combination of the column vectors of F . Since F is nonnegative, this is only
possible if one of the columns of F is identically zero, which would contradict the
minimality of r . �	

2.2 Polytopes relevant to this work

Now we describe briefly various families of polytopes relevant to this paper. For a
more detailed description of these polytopes, we refer the reader to Schrijver [22].

2 The extended formulation for Q given above potentially has a large number of equalities, but recall we
only consider the number of inequalities in the size of the extended formulation. The reasons for this are
twofold: first, one can ignore most of the equalities after picking a small number of linearly independent
equalities; and second, our concern in this paper is mainly the existence of certain extensions.

123

appendix 135

80 Y. Faenza et al.

Let I be a finite ground set. The characteristic vector of a subset J ⊆ I is the vector
χ J ∈ R

I defined as

χ J
i =

{
1 if i ∈ J
0 if i /∈ J

for i ∈ I . For x ∈ R
I , we let x(J) := ∑

i∈J xi .
Throughout this section, G = (V, E) denotes a (finite, simple, undirected) graph.

For a subset of vertices U ⊆ V , we denote the edges of the subgraph induced by U
as E[U]. The cut defined by U , denoted as δ(U), is the set of edges of G exactly one
of whose endpoints is in U . That is,

E[U] = {uv ∈ E : u ∈ U, v ∈ U }, and

δ(U) = {uv ∈ E : u ∈ U, v /∈ U }.

Later in this paper, we will often take G to be the complete graph Kn with vertex
set V (Kn) = [n] := {1, . . . , n} and edge set E(Kn) = {i j : i, j ∈ [n], i �= j}.

2.2.1 Spanning tree polytope

A spanning tree of G is a tree T = (V (T), E(T)) (i.e., a connected graph without
cycles) whose set of vertices and edges respectively satisfy V (T) = V and E(T) ⊆ E .
The spanning tree polytope of G is the convex hull of the characteristic vectors of the
spanning trees of G, i.e.,

Pspanning tree(G) = conv{χ E(T) ∈ R
E : T spanning tree of G}.

Edmonds [6] showed that this polytope admits the following linear description (see
also [22, page 861]):

x(E[U]) � |U | − 1 for nonempty U � V,

x(E) = |V | − 1,
xe � 0 for e ∈ E .

This follows, e.g., from the fact that the spanning tree polytope of G is the base
polytope of the graphic matroid of G.

2.2.2 Perfect matching polytope

A perfect matching of G is set of edges M ⊆ E such that every vertex of G is incident
to exactly one edge in M . The perfect matching polytope of the graph G is the convex
hull of the characteristic vectors of the perfect matchings of G, i.e.,

Pperfect matching(G) = conv{χM ∈ R
E : M perfect matching of G}.

123

136 appendix

Randomized communication protocols 81

Edmonds [5] showed that the perfect matching polytope of G is described by the
following linear constraints (see also [22, page 438]):

x(δ(U)) � 1 for U ⊆ V with |U | odd, |U | � 3

x(δ({v})) = 1 for v ∈ V,

xe � 0 for e ∈ E .

2.2.3 Stable set polytope

A stable set S (often also called an independent set) of G is a subset of the vertices
such that no two of them are adjacent. A clique K of G is a subset of the vertices
such that every two of them are adjacent. The stable set polytope STAB(G) of a graph
G(V, E) is the convex hull of the characteristic vectors of the stable sets in G, i.e.,

STAB(G) = conv{χ S ∈ R
V : S stable set of G}.

No complete linear description of the stable set polytope for arbitrary graphs is
known. It is, however, known that the following inequalities are valid for STAB(G)

for any graph G:

x(K) � 1 for cliques K of G, (1)

xv � 0 for v ∈ V . (2)

Inequalities (1) are called the clique inequalities. See Schrijver [22] for details.
A graph G is called perfect if the chromatic number of every induced subgraph

equals the size of the largest clique of that subgraph. It is known that G is perfect if
and only if inequalities (1) and (2) completely describe STAB(G) [2].

3 Communication complexity

We start by an overview of the standard model of deterministic communication proto-
cols, as described in detail in the book by Kushilevitz and Nisan [16]. We follow this
with a detailed description of our notion of a randomized protocol (with private ran-
dom bits and nonnegative outputs) computing a function in expectation. This differs
significantly from the standard definition in the literature where randomized protocols
usually compute a function exactly with high probability.

3.1 Deterministic protocols

Let X, Y , and Z be arbitrary finite sets with Z ⊆ R+, and let f : X × Y → Z be
a function. Suppose that there are two players Alice and Bob who wish to compute
f (x, y) for some inputs x ∈ X and y ∈ Y . Alice knows only x and Bob knows only y.
They must therefore exchange information to be able to compute f (x, y). (We assume
that each player possesses unlimited computational power.)

123

appendix 137

82 Y. Faenza et al.

The communication is carried out as a protocol that is agreed upon beforehand by
Alice and Bob, on the sole basis of the function f . At each step of the protocol, one
of the players has the token. Whoever has the token sends a bit to the other player,
that depends only on their input and on previously exchanged bits. This is repeated
until the value of f on (x, y) is known to both players. The minimum number of
bits exchanged between the players in the worst case to be able to evaluate f by any
protocol is called the communication complexity of f.

3.2 Randomized protocols and computation in expectation

A protocol can be viewed as a rooted binary tree where each node is marked either
Alice or Bob. The leaves have vectors associated with them. An execution of the
protocol on a particular input is a path in the tree starting at the root. At a node owned
by Alice, following the path to the left subtree corresponds to Alice sending a zero
to Bob and taking the right subtree corresponds to Alice sending a one to Bob; and
similarly for nodes owned by Bob.

More formally, we define a randomized protocol (with private random bits and
nonnegative outputs) as a rooted binary tree with some extra information attached
to its nodes. Let X and Y be finite sets, as above. Each node of the tree has a
type, which is either X or Y . To each node v of type X are attached two func-
tion p0,v, p1,v : X → [0, 1]; to each node v of type Y are attached two functions
q0,v, q1,v : Y → [0, 1]; and to each leaf v is attached a nonnegative vector �v that is
a column vector of size |X | for leaves of type X and a row vector of size |Y | for leaves
of type Y . The functions pi,v and q j,v define transition probabilities, and we assume
that p0,v(x)+ p1,v(x) � 1 and q0,v(y)+q1,v(y) � 1. Figure 1 shows an example of a
protocol.

An execution of the protocol on input (x, y) ∈ X × Y is a random path that
starts at the root and descends to the left child of an internal node v with probability

(a) (b)

Fig. 1 Illustration of a (non-optimal) randomized protocol computing a matrix in expectation, a protocol
as a tree, b the associated communication matrix

123

138 appendix

Randomized communication protocols 83

p0,v(x) if v is of type X and q0,v(y) if v is of type Y , and to the right child of v with
probability p1,v(x) if v is of type X and q1,v(y) if v is of type Y . With probability
1 − p0,v(x) − p1,v(x) and 1 − q0,v(y) − q1,v(y) respectively, the execution stops at
v. For an execution stopping at leaf v with vector �v , the value of the execution is
defined as the entry of�v that corresponds to input x ∈ X if v is of type X , and y ∈ Y
if v is of type Y . For an execution stopping at an internal node, the value is defined to
be 0.

For each fixed input (x, y) ∈ X × Y , the value of an execution on input (x, y) is
a random variable. If we let Z ⊆ R+ as before, we say that the protocol computes a
function f : X × Y → Z in expectation if the expectation of this random variable on
each (x, y) ∈ X × Y is precisely f (x, y).

The complexity of a protocol is the height of the corresponding tree.
Given an ordering x1, …, xm of the elements of X , and y1, …, yn of the elements

of Y , we can visualize the function f : X × Y → Z as a m × n nonnegative matrix
S = S(f) such that Si, j = f (xi , y j) for all (i, j) ∈ [m] × [n]. The matrix S is
called the communication matrix of f . Below, as is natural, we will not always make
a distinction between a function and its communication matrix.

These formal definitions capture the informal ones given above. Observe that the
nodes of type X are assigned to Alice, and those of type Y to Bob. Observe also that
Alice and Bob have unlimited resources for performing their part of the computation.
It is only the communication between the two players that is accounted for. When
presenting a protocol, we shall often say that one of the two players sends an integer k
rather than a binary value. This should be interpreted as the player sending the binary
encoding of k or, as a (sub)tree of height �lg k�. Finally, our definitions are such
that the complexity of a protocol equals the number of bits exchanged by Alice and
Bob.

3.3 Normalized variance

Since the output of a randomized protocol—as defined above—is a random variable,
one can define its variance. However, we would like to refine the notion of variance
so that protocols computing different scalings of the same matrix have the same vari-
ance. This is essential since the nonnegative rank of a matrix is an invariant under
scaling and, as we will see in the next section, there is an equivalence between the
nonnegative rank of a matrix S and the smallest complexity protocol computing S in
expectation.

Let S be a nonnegative matrix and suppose there exists a protocol of complexity
c computing S in expectation. Let ξi, j denote the random variable corresponding to
the output of the protocol on input (xi , y j) ∈ X × Y. That is E[ξi, j] = Si, j . The
normalized variance σ 2 of the protocol is defined as the maximum variance of the
random variables ξ ′

i, j = ξi, j
Si, j

for the nonzero entries of S. That is

σ 2 = max
(i, j)|Si, j �=0

Var(ξi, j/Si, j)

123

appendix 139

84 Y. Faenza et al.

4 Factorizations versus protocols

Theorem 2 If there exists a randomized protocol of complexity c computing a matrix
S ∈ R

X×Y+ in expectation, then lg rank+(S) � c. Conversely, if the nonnegative rank
of matrix S ∈ R

m×n+ is r , then there exists a randomized protocol computing S in
expectation, whose complexity is at most �lg r�. In other words, if cmin(S) denotes the
minimum complexity of a randomized protocol computing S in expectation, we have

cmin(S) = �lg rank+(S)�.

Proof Suppose there exists a protocol of complexity c computing S in expectation.
Each node v of the protocol has a corresponding traversal probability matrix Pv ∈
R

X×Y+ such that, for all inputs (x, y) ∈ X × Y , the entry Pv(x, y) is the probability
that an execution on input (x, y) goes through node v.

Let v1, …, vk denote the nodes of type X on the unique path from the root to the
parent of v, and let w1, …, w	 denote the nodes of type Y on this path. Then we have

Pv(x, y) =
k∏

i=1

pαi ,vi (x) ·
	∏

j=1

qβ j ,w j (y),

where αi is either 0 or 1 depending on if the path goes the left or right subtree at vi ,
and similarly for β j . We immediately see that Pv is a rank one matrix of the form avbv

where av is a column vector of size |X | and bv is a row vector of size |Y |.
Finally, let LX and LY be the set of all leaves of the protocol that are of type

X and Y respectively and let �v denote the (column or row) vector of values at
a leaf v ∈ LX ∪ LY . Because the protocol computes S in expectation, for all inputs
(x, y) ∈ X×Y we have S(x, y) = ∑

v∈LX
�v(x)Pv(x, y)+∑

w∈LY
Pw(x, y)�w(y).

Thus, S = ∑
v∈LX

(�v ◦av)bv +∑
v∈LY

aw(bw ◦�w),where ◦ denotes the Hadamard
product. Therefore, it is possible to express S as a sum of at most |LX ∪ LY | � 2c

nonnegative rank one matrices. Hence, rank+(S) � 2c, that is, lg rank+(S) � c.
To prove the other part of the theorem, let A ∈ R

m×r+ and B ∈ R
r×n+ be nonnegative

matrices such that S = AB. By scaling, we can assume that the maximum row sum
of A is 1. Otherwise, we replace A and B by �−1A and �B respectively, where �

denotes the maximum row sum of A.
The protocol is as follows: Alice knows a row index i , and Bob knows a column

index j . Together they want to compute Si, j in expectation, by exchanging as few bits
as possible. They proceed as follows. Let δi := ∑

k Ai,k � 1. Alice selects a column
index k ∈ [r] according to the probabilities found in row i of matrix A, sends this
index to Bob, and Bob outputs the entry of B in row k and column j . With probability
1 − δi Alice does not send any index to Bob and the computation stops with implicit
output zero (see Sect. 3.2).

This randomized protocol computes the matrix S in expectation. Indeed, the
expected value on input (i, j) is

∑r
k=1 Ai,k Bk, j = Si, j . Moreover, the complexity

of the protocol is precisely �lg(r)�. �	

123

140 appendix

Randomized communication protocols 85

We would like to remark that our contruction of a factorization from a protocol
is similar to the one used by Krause [17] to construct an approximate factorization
from a protocol. However his discussion was limited to traditional definitions of a
randomized protocol and hence could not produce exact factorizations.

The above theorem together with Theorem 1 gives us the following corollary:

Corollary 3 Let P be a polytope with associated slack matrix S = S(P), such that
P is neither empty or a point. If there exists a randomized protocol of complexity c
computing S in expectation, then xc(P) � 2c. Conversely, if xc(P) = r , then there
exists a randomized protocol computing S in expectation, whose complexity is at most
�lg r�. In other words, if cmin(S) denotes the minimum complexity of a randomized
protocol computing S in expectation, we have

cmin(S(P)) = �lg xc(P)�.

The concrete polytopes considered in this paper have some facet-defining inequal-
ities enforcing nonnegativity of the variables along with other facet-defining inequal-
ities. The next lemma and its corollary will allow us to ignore the rows corresponding
to nonnegativity inequalities, and focus on the non-trivial parts of the slack matrices.

Lemma 2 Let S be a nonnegative matrix. Let R1, R2 be a partition of the rows of S
defining partition of S into S1 and S2. If there exist randomized protocols computing
S1 and S2 in expectation with complexity c1 and c2 respectively, then there exists a
randomized protocol complexity computing S with complexity 1 + max{c1, c2}.

Proof When Alice gets a row index of S she sends a bit to Bob to indicate whether
the corresponding row lies in R1 or R2. Now that both Alice and Bob know whether
they want to compute an entry in S1 or S2, they use the protocol for that particular
submatrix. �	

Corollary 4 Let P ⊆ R
d+ be a polytope and let S′(P) denote the submatrix of S(P)

obtained by deleting the rows corresponding to nonnegativity inequalities. If there is a
complexity c randomized protocol for computing S′(P) in expectation, then there is a
complexity 1+max{c, �lg d�} randomized protocol for computing S(P) in expectation.

Proof For computing the part of S(P) that is deleted in S′(P), which corresponds
to nonnegativity inequalities, we use the obvious protocol where Alice sends her row
number to Bob and Bob computes the slack. Since at most d facets of P are defined
by nonnegativity inequalities, this protocol has complexity �lg d�. The corollary thus
follows from Lemma 2. �	

For the protocols constructed here, we will always have c � �lg d�. Because of
Corollary 4, we can thus ignore the nonnegativity inequalities without blowing up the
size of any extension by more than a factor of 2. Moreover, in terms of lower bounds,
it is always safe to ignore inequalities because the nonnegative rank of a matrix cannot
increase when rows are deleted.

123

appendix 141

86 Y. Faenza et al.

5 Examples

In this section, we give three illustrative examples of protocols defining nonnegative
factorizations of various slack matrices, and thus (via Corollary 3) extensions of the
corresponding polytopes. The first one gives a O(n3)-size extension of the stable
set polytope of a claw-free perfect graph. The second one is a reinterpretation of a
well-known O(n3)-size extended formulation for the spanning tree polytopes due to
Martin [19]. Our interpretation allows for a more general result. In particular we prove
new upper bounds for the spanning tree polytopes for minor-free graphs. The third
one concerns the perfect matching polytopes and is implicit in Kaibel, Pashkovich and
Theis [14].

5.1 The stable set polytope of a claw-free perfect graph

A graph G is called claw-free if no vertex has three pairwise non-adjacent neighbors.
Even though the separation problem for STAB(G) for claw-free graphs is polynomial-
time solvable, no explicit description of all its facets is known (see, e.g., [22, page
1216]). Recently Faenza, Oriolo, and Stauffer [7] provided (non-compact) extended
formulations for this polytope, while Galluccio et al. [10] gave a complete description
of the facets for claw-free graphs with at least one stable set of size greater than or
equal to four, and no clique-cutsets. Also, recall that for a perfect graph G the facets
of STAB(G) are defined by inequalities (1) and (2) (see Sect. 2.2.3).

LetG be a claw-free, perfect graphwith n vertices.We give a deterministic protocol
that computes the slack matrix of the stable set polytope STAB(G) of G. Because G
is perfect, the (non-trivial part of the) slack matrix of STAB(G) has the following
structure: it has one column per stable set S inG, and each one of its rows corresponds
to a clique K in G. The entry for a pair (K , S) equals 0 if K and S intersect (in which
case they intersect in exactly one vertex) and 1 if K and S are disjoint (note that we
are ignoring the |V | rows that correspond to nonnegativity inequalities (2). This can
be done safely, see Corollary 4).

Consider the communication problem in which Alice is given a clique K of G, Bob
is given a stable set S of G, and Alice and Bob together want to compute 1− |K ∩ S|.
Alice starts and sends the name of any vertex u of her clique K to Bob. Then Bob
sends the names of all the vertices of his stable set S that are in N (u) ∪ {u} to Alice,
where N (u) denotes the neighborhood of u in G. Finally, Alice can compute K ∩ S
because this intersection is contained in N (u) ∪ {u} and Alice knows all vertices of
S ∩ (N (u) ∪ {u}). She outputs 1 − |K ∩ S|. Because G is claw-free, there are at
most two vertices in S ∩ (N (u) ∪ {u}), thus at most 3 lg n + O(1) bits are exchanged
by Alice and Bob. It follows that there exists an extension (and hence, an extended
formulation) of STAB(G) of size O(n3). Notice that the normalized variance of our
protocol is zero, because it is deterministic.

We obtain the following result.

Proposition 1 For every perfect, claw-free graph G with n vertices, STAB(G) has
an extended formulation of size O(n3).

123

142 appendix

Randomized communication protocols 87

Fig. 2 Illustration of the
protocol for the slack of MST
polytope. The black vertices are
those in U . The green directed
edges are those for which Alice
outputs a non-zero value. The
number of such edges is the
number of connected
components of T [U] minus one
(color figure online)

5.2 The spanning tree polytope

Let Pspanning tree(G) denote the spanning tree polytope of a graph G = (V, E) (see
Sect. 2.2.1). The (non-trivial part of the) slackmatrix of P has one columnper spanning
tree T and one row per proper nonempty subset U of vertices. The slack of T with
respect to the inequality that corresponds toU is the number of connected components
of the subgraph of T induced by U (denoted by T [U] below) minus one.

In terms of the corresponding communication problem, Alice has a proper non-
empty set U and Bob a spanning tree T . Together, they wish to compute the slack of
the pair (U, T). Alice sends the name of some (arbitrarily chosen) vertex u inU . Then
Bob picks an edge e of T uniformly at random and sends to Alice the endpoints v and
w of e as an ordered pair of vertices (v,w), where the order is chosen in such a way
that w is on the unique path from v to u in the tree. That is, he makes sure that the
directed edge (v,w) “points” towards the root u. Then Alice checks that v ∈ U and
w /∈ U , in which case she outputs n − 1; otherwise she outputs 0.

The resulting randomized protocol is clearly of complexity lg |V | + lg |E |+ O(1).
Moreover, it computes the slack matrix in expectation because for each connected
component of T [U] distinct from that which contains u, there is exactly one directed
edge (v,w) that will leadAlice to output a non-zero value, see Fig. 2 for an illustration.
Since she outputs (n−1) in this case, the expected value of the protocol on pair (U, T)

is (n − 1) · (k − 1)/(n − 1) = k − 1, where k is the number of connected components
of T [U]. Therefore, we obtain the following result.

Proposition 2 For every graph G with n vertices and m edges, Pspanning tree(G) has
an extended formulation of size O(mn).

The above result is implicit in Martin [19], although the paper only states the
following corollary. More specifically, variables zi, j,k such that i j is not an edge of
G can be deleted from his O(n3)-size extended formulation, so that the resulting
formulation has size O(mn).

Corollary 5 Pspanning tree(Kn) has extended formulation of size O(n3), where Kn is
the complete graph on n vertices.

Corollary 6 Let G be an H minor-free graph, where H is a graph with h vertices,
then Pspanning tree(G) has extended formulation of size O(n2h

√
lg h).

123

appendix 143

88 Y. Faenza et al.

Proof It is known that any H minor-free graph G with n vertices has at most
O(nh

√
lg h) edges, where h is the number of vertices of H [23]. The result follows.

�	
We remark that when G is planar, Pspanning tree(G) has an extended formulation of

size O(n) [25]. It is natural to ask whether a linear size extended formulation also
exists for general H minor-free graphs. So far, the best that seems to be known is the
upper bound in Corollary 6.

Finally, it can be easily verified that the normalized variance of the protocol given
above is σ 2 = n − 2, which is large compared to the previous protocol.

5.3 Perfect matching polytope

For the next example, we will need the fact that one can cover Kn with k =
O(2n/2poly(n)) balanced complete bipartite graphs G1,…, Gk in such a way that
every perfect matching of Kn is a perfect matching of at least one of the Gi ’s. We say
that X ⊆ [n] is an (n/2)-subset of [n] if |X | = n/2. Given a matching M of Kn and a
(n/2)-subset X of [n], we say that X is compatible with M if all the edges of M have
exactly one end in X .

Lemma 3 Let n be an even positive integer. Then, there exists a collection of k =
O(2n/2√n ln n) (n/2)-subsets X1,…, Xk of [n] such that for every perfect matching
M of Kn at least one of the subsets Xi is compatible with M.

Proof Finding a minimum size such collection X1, …, Xk amounts to solving a set
covering instance that we formulate by an integer linear program. For each (n/2)-
subset X , we define a variable binary variable λ(X). For each perfect matching M ,
these variables have to satisfy the constraint

∑{λ(X) : X is compatible with M} � 1.
The goal is to minimize

∑
λ(X), the sum of all variables λ(X).

A feasible fractional solution to this linear program is to let λ∗(X) = 1/2n/2.
This gives a feasible fractional solution because each perfect matching M is com-
patible with exactly 2n/2 (n/2)-subsets X , so

∑{λ∗(X) : X is compatible with
M} = 2n/2(1/2n/2) = 1. (By symmetry considerations, it is in fact possible to argue
that this solution is actually optimal.) The cost of this fractional solution λ∗ is

∑
λ∗(X) = 1

2n/2

(
n
n/2

)
� 2n/2

√
n

,

for n sufficiently large. By Lovász’s analysis of the greedy algorithm for the set cov-
ering problem [18], there exists a feasible integer solution λ of cost at most (1+ ln u)

times the fractional optimum, where u is the number of elements to cover. By what
precedes, this is at most

(
1 + ln

n!
2n/2(n/2)!

)
2n/2

√
n

= O(2n/2√n lg n),

from which the result follows directly. �	

123

144 appendix

Randomized communication protocols 89

Assume thatn is even and let P denote theperfectmatchingpolytopeof the complete
graph Kn with vertex set [n], see Sect. 2.2.2. The (non-trivial part of the) slack matrix
of P has one column per perfect matching M , and its rows correspond to odd sets
U ⊆ [n]. The entry for a pair (U, M) is |δ(U) ∩ M | − 1 (recall that δ(U) denotes the
set of edges that have one endpoint inU and the other endpoint inU , the complement
of U).

We describe a randomized protocol for computing the slack matrix in expectation,
of complexity at most (1/2 + ε)n, where ε > 0 can be made as small as desired by
taking n large. First, Bob finds an (n/2)-subset X ⊆ [n] that is compatible with his
matching M , and tells the name of this subset to Alice, see Lemma 3. Then Alice
checks which of X and X contains the least number of vertices of her odd set U .
Without loss of generality, assume it is X . IfU ∩ X = ∅ then, becauseU ⊆ X̄ and X
is compatible with M , Alice can correctly infer that the slack is |U | − 1, and outputs
this number. Otherwise, she picks a vertex u of U ∩ X uniformly at random and send
its name to Bob. He replies by sending the name of u′, the mate of u in the matching
M . Alice then checks whether u′ is in U or not. If u′ is not in U , then she outputs
|U | − 1. Otherwise u′ is in U , and she outputs |U | − 1− 2|U ∩ X |. Telling the name
of X can be done in at most n/2 + lg

√
n + lg lg n + O(1) bits, see Lemma 3. The

extra amount of communication is 2 lg n + O(1) bits. In total, at most (1/2+ ε)n bits
are exchanged, for n sufficiently large (ε > 0 can be chosen arbitrarily).

Now, we check that the protocol correctly computes the slack matrix of the perfect
matching polytope. Letting E[U] denote the edges of the complete graph with both
endpoints in U , the expected value output by Alice (in the case U ∩ X �= ∅) is

(|U | − 1)
|U ∩ X | − |E[U] ∩ M |

|U ∩ X | + (|U | − 1 − 2|U ∩ X |) |E[U] ∩ M |
|U ∩ X |

= |U | − 1 − 2|U ∩ X | |E[U] ∩ M |
|U ∩ X |

= |U | − 2|E[U] ∩ M | − 1

= |δ(U) ∩ M | − 1.

We obtain the following result.

Proposition 3 Let ε > 0. For every large enough even nonnegative integer n, the
polytope Pperfect matching(Kn) has an extended formulation of size at most 2(1/2+ε)n.

We remark that our extension has size at most 2(1/2+ε)n � (1.42)n , whereas the

main result of Yannakakis [24] gives a lower bound of

(
n
n/4

)
� (1.74)n for the size

of any symmetric extension.

6 When low variance forces large size

We have seen that every extension of a polytope P corresponds to a randomized
protocol computing its slack matrix S = S(P) in expectation and vice-versa. Now we

123

appendix 145

90 Y. Faenza et al.

show that if the set disjointness matrix can be embedded in a certain way in a matrix
S (see below for definitions), then efficient protocols computing S in expectation
necessarily have large variance. We prove that such an embedding can be found for
the slack matrices of the perfect matching polytope and also, surprisingly, of the
spanning tree polytope.

6.1 Embedding the set disjointness matrix

The set disjointness problem is the following communication problem: Alice and Bob
each are given a subset of [n]. Theywish to determinewhether the two subsets intersect
or not. In other words, Alice and Bob have to compute the set disjointness matrix DISJ
defined byDISJ(A, B) = 1 if A and B are disjoint subsets of [n], and DISJ(A, B) = 0
if A and B are non-disjoint subsets of [n]. The set disjointness problem plays a central
role in communication complexity, comparable to the role played by the satisfiability
problem in NP-completeness theory [1].

It is known that any randomized protocol that computes the disjointness function
with high probability (that is, the probability that the value output by the protocol is
correct is, for each input, bounded from below by a constant strictly greater than 1/2)
has Ω(n) complexity [15,20].

Consider a matrix S ∈ R
X×Y+ . An embedding of the set disjointness matrix on [n]

in S is defined by two maps α : 2[n] → X and β : 2[n] → Y such that

∀A, B ⊆ [n] : DISJ(A, B) = 1 ⇐⇒ S(α(A), β(B)) = 0. (3)

Notice that this kind of embedding could be called “negative” because zeros in the
set disjointness matrix correspond to non-zeros in S.

We remark that “positive” embeddings of the set disjointness matrix force up the
rank of S, because the rank of any matrix with the same support as the set disjointness
matrix on [n] is at least 2n [12]. This is not desirable because the nonnegative rank
of S is always at least its rank. Thus the lower bound on the nonnegative rank of S
obtained from such a “positive” embedding would be useless in our context (the rank
of the slack matrix S(P) of polytope P equals dim(P) + 1).

However, “positive” embeddings the unique set disjointness matrix, that is the
restriction of the set disjointness matrix to pairs (A, B) such that |A ∩ B| � 1, do
not have this problem of forcing up the rank. Actually, “positive” embeddings of the
unique set disjointness matrix led to the main result of Fiorini et al. [8].

Theorem 7 Let S ∈ R
X×Y+ be a matrix in which the set disjointness matrix on [n]

can be embedded. Consider a randomized protocol computing S in expectation. If
the probability that the protocol outputs a non-zero value, given an input (x, y) with
S(x, y) > 0, is at least p = p(n), then the protocol has complexity Ω(np). In
particular, by Chebyshev’s inequality, the complexity is Ω(n(1 − σ 2)), where σ 2

denotes the normalized variance of the protocol.

Proof Let c be the complexity of the protocol computing S in expectation. From
this protocol, we obtain a new protocol, this time for the set disjointness problem,

123

146 appendix

Randomized communication protocols 91

by mapping each input pair (A, B) ∈ 2[n] × 2[n] to the corresponding input pair
(α(A), β(B)) ∈ X × Y (Alice and Bob can do this independently of each other),
running the original protocol �1/p� times, and outputting 0 if at least one of the
executions led to a non-zero value or 1 otherwise.

The new protocol always outputs 1 for every disjoint pair (A, B) because of (3)
(remember that our protocols have nonnegative outputs), and outputs 0 most of the
times for non-disjoint pairs (A, B). More precisely, the probability of outputting 0

in case (A, B) is non-disjoint is at least 1 − (1 − p)
1
p � 1 − e−1 > 1/2, where

e is Euler’s number. The theorem follows then directly from the fact that the new
protocol has complexity O(c/p) and from the fact that the set disjointness problem
has randomized communication complexity Ω(n). �	

6.2 The perfect matching polytope

First, we construct an embedding of the set disjointness matrix in the slack matrix of
the perfect matching polytope. Then, we discuss implications for extensions of the
perfect matching polytope.

Lemma 4 There exists an embedding of the set disjointness matrix on [n] in the slack
matrix of the perfectmatchingpolytope for perfectmatchings of K 	, where	 � 3n+14.

Proof Let k � n + 4 denote the first multiple of 4 that is strictly greater than n, and
let 	 := 3k + 2 � 3n + 14.

For two subsets A and B of [n], we define an odd set U := α(A) and a perfect
matching M := β(B) as follows.

First, we add the dummy element n + 1 to B in case |B| is odd, so that both B
and [k] − B contain an even number of elements. Note that this does not affect the
intersection of A and B because A is contained in [n]. Then, we let U := {i : i ∈
A} ∪ {i + k : i ∈ A} ∪ {3k + 1}.

Second, we define M by adding matching edges to the partial matching {{i, i + k} :
i ∈ [k] − B} ∪ {{i + k, i + 2k} : i ∈ B} ∪ {{3k + 1, 3k + 2}} in such a way that each
of the extra edges matches two consecutive unmatched vertices both in {i : i ∈ [k]}
or both in {i + 2k : i ∈ [k]}. See Fig. 3 for an example.

It can be easily verified that A and B are disjoint if and only if the slack for (U, M)

is zero. Hence, the maps α : A �→ U and β : B �→ M define the desired embedding
of the set disjointness matrix. �	

Let P denote the perfect matching polytope of Kn . Consider a size-r extension
of P and a corresponding complexity-�lg r� protocol computing S(P) in expectation
(the existence of such a protocol is guaranteed by Theorems 1 and 2). Lemma 4 and
Theorem 7 together imply that r = 2Ω(n(1−σ 2)), where σ 2 is the normalized variance
of the protocol. For instance, deterministic protocols for computing the slack matrix
of the perfect matching polytope give rise to exponential size extensions (σ 2 = 0 in
this case). The same holds if σ 2 is a constant with 0 < σ 2 < 1. When σ 2 is about
(n − 1)/n or more, the bound given by Theorem 7 becomes trivial.

123

appendix 147

92 Y. Faenza et al.

Fig. 3 Constructing an odd set
and a perfect matching from a
set disjointness instance

6.3 Spanning tree polytopes

We prove that similar results hold for the spanning tree polytope of Kn as well. This
is surprising, because for this polytope an extension of size O(n3) exists.

Lemma 5 There exists an embedding of the set disjointness matrix on [n] in the slack
matrix of the spanning tree polytope of K 2n+1.

Proof Let 	 := 2n+1. Recall that the rows and columns of (the non-trivial part of) the
slack matrix of the spanning tree polytope of K 	 respectively correspond to subsetsU
and spanning trees T . The entry for a pair (U, T) is zero iff the subgraph of T induced
by U is connected.

Given an instance of the set disjointness problem with sets A, B ⊆ [n], we define
U := α(A) and T := β(B) as follows. For every i ∈ [n] add the edge {i, 2n + 1} to
T . For every i ∈ B add the edge {n+ i, i} to T and for every i ∈ [n]− B add the edge
{n + i, 2n + 1} to T . See Fig. 4 for an example.

Finally, we letU := {n+ i : i ∈ A}∪{2n+1}. As is easily seen, T [U] is connected
iff A ∩ B = ∅. Indeed, if i ∈ A ∩ B then n + i and 2n + 1 are in different connected
components of T [U]. Moreover, if A ∩ B = ∅ then T [U] is a star with 2n + 1 as
center. �	

Therefore, the “low variance forces large size” phenomenon we exhibited for the
perfect matching polytope also holds for the spanning tree polytope. Incidentally,
the O(n3)-size extension for the spanning tree polytope of Kn can be obtained via
randomized protocols, but not via deterministic ones. This is because Lemma 5 and
Theorem7 implies that any extension for the spanning tree polytope that corresponds to
a deterministic protocolmust have exponential size. (Notice that the value of p = p(n)

for the protocol given in Sect. 5.2 is roughly 1/n.)

123

148 appendix

Randomized communication protocols 93

Fig. 4 The spanning tree T for
B = {1, 2, 4} and n = 7. Black
vertices are those of the form i
or n + i where i ∈ B

7 Concluding remarks

Given a perfect matching M and an odd set U as above there is always an edge in
δ(U) ∩ M . But it is not clear if such an edge can be found using a protocol with
sublinear communication. Now we show that if such an edge can be found using few
bits then the perfect matching polytope has an extension of small size. As one of the
referees pointed out, this fact can be considered as folklore.

Theorem 8 Suppose Alice is given an odd set U ⊆ [n] and Bob is given a perfect
matching M of Kn. Furthermore, suppose that Bob knows an edge e ∈ δ(U) ∩ M.
Then, there exists a randomized protocol of complexity 2 lg n + O(1) that computes
the slack for the pair (U, M) in expectation.

Proof The protocol works as follows. Bob picks an edge e′ from M \ {e} uniformly
at random and sends it to Alice. She outputs |M | − 1 = n/2 − 1 if e′ ∈ δ(U) and 0
otherwise.The expectedvalueof the protocol is (|M |−1)·(|δ(U)∩M |−1)/(|M |−1) =
|δ(U) ∩ M | − 1, as required. Bob needs to send the endpoints of the edge e′ to Alice
and this requires 2 lg n + O(1) bits. �	

The theorem above implies that if an edge in δ(U) ∩ M can be computed using a
protocol requiring o(n) bits, then there exists an extension for the perfect matching
polytope of subexponential size. We leave it as an open question to settle the existence
of such a protocol.

Acknowledgments The authors thank Sebastian Pokutta and Ronald de Wolf for their useful feedback.
The research of Faenza was supported by the German Research Foundation (DFG) within the Priority Pro-
gramme 1307 Algorithm Engineering. The research of Grappe was supported by the Progetto di Eccellenza
2008–2009 of the Fondazione Cassa di Risparmio di Padova e Rovigo. The research of Fiorini was partially
supported by the Actions de Recherche Concertées (ARC) fund of the French community of Belgium. The
research of Tiwary was supported by the Fonds National de la Recherche Scientifique (F.R.S.–FNRS). The
authors would also like to thank the anonymous referees for their helpful comments.

References

1. Chattopadhyay, A., Pitassi, T.: The story of set disjointness. SIGACT News 41(3), 59–85 (2010)
2. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory B 18, 138–154 (1975)

123

appendix 149

94 Y. Faenza et al.

3. Cohen, J.E., Rothblum, U.G.: Nonnegative ranks, decompositions, and factorizations of nonnegative
matrices. Linear Algebra Appl. 190, 149–168 (1993)

4. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. 4OR
8(1), 1–48 (2010)

5. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. Res. Nat. Bur. Stand. 69B,
125–130 (1965)

6. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)
7. Faenza, Y., Oriolo, G., Stauffer, G.: Separating stable sets in claw-free graphs via Padberg-Rao and

compact linear programs. In: Rabani, Y. (ed.) Proceedings of the 23rdAnnual ACM-SIAMSymposium
on Discrete Algorithms (SODA 2012), pp. 1298–1308. SIAM, Japan (2012)

8. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formu-
lations: exponential separation and strong lower bounds. In: Proceedings of the 44th ACMSymposium
on Theory of Computing (STOC 2012), pp. 95–106 (2012)

9. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and
extended formulations. Discret. Math. 313(1), 67–83 (2013)

10. Galluccio, A., Gentile, C., Ventura, P.: The stable set polytope of claw-free graphs with large stability
number. Electron. Notes Discrete Math. 36, 1025–1032 (2010)

11. Grötschel,M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, volume
2 of Algorithms and Combinatorics., 2nd edn. Springer, Berlin (1993)

12. Høyer, P., de Wolf, R.: Improved quantum communication complexity bounds for disjointness and
equality. In Proceedings of STACS, pp. 299–310 (2002)

13. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)
14. Kaibel, V., Pashkovich, K., Oliver, D.: Theis. Symmetry matters for the sizes of extended formulations.

In: Proceedings of IPCO, pp. 135–148 (2010)
15. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection.

SIAM J. Discr. Math. 5(4), 545–557 (1992)
16. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge

(1997)
17. Krause, M.: Geometric arguments yield better bounds for threshold circuits and distributed computing.

Theor. Comput. Sci. 156(1&2), 99–117 (1996)
18. Lovász, L.: On the ratio of optimal integral and fractional covers. DiscreteMath. 13(4), 383–390 (1975)
19. Richard, K.M.: Using separation algorithms to generate mixed integer model reformulations. Oper.

Res. Lett. 10(3), 119–128 (1991)
20. Razborov, A.A.: On the distributional complexity of disjointness. Theor. Comput. Sci. 106(2), 385–390

(1992)
21. Rothvoß, T.: Some 0/1 polytopes need exponential size extended formulations. arXiv:1105.0036 (2011)
22. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. A and B, Volume 24 of

Algorithms and Combinatorics. Springer, Berlin (2003)
23. Thomason, A.: The extremal function for complete minors. Journal of Combinatorial Theory. Series

B, Volume 81, Number 2. Academic Press, Inc., NY (2001)
24. Yannakakis,M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst.

Sci. 43(3), 441–466 (1991)
25. Williams, J.C.: A linear-size zero–one programming model for the minimum spanning tree problem

in planar graphs. Networks 39(1), 53–60 (2002)
26. Wolsey, L.A.: Using extended formulations in practice. Optima 85, 7–9 (2011)
27. Zhang, S.: Quantum Strategic Game Theory. In Proceedings of the 3rd Innovations in, Theoretical

Computer Science, pp. 39–59 (2012)
28. Ziegler, G.M.: Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer, Berlin

(1995)

123

150 appendix

C
E X T E N D E D F O R M U L AT I O N S F O R P O LY G O N S

The following article has appeared in Discrete and Computational Ge-
ometry and is included here as an appendix for completeness.

151

Discrete Comput Geom (2012) 48:658–668
DOI 10.1007/s00454-012-9421-9

Extended Formulations for Polygons

Samuel Fiorini · Thomas Rothvoß ·
Hans Raj Tiwary

Received: 13 August 2011 / Revised: 24 February 2012 / Accepted: 28 February 2012 /
Published online: 16 March 2012
© Springer Science+Business Media, LLC 2012

Abstract The extension complexity of a polytope P is the smallest integer k such
that P is the projection of a polytope Q with k facets. We study the extension com-
plexity of n-gons in the plane. First, we give a new proof that the extension com-
plexity of regular n-gons is O(logn), a result originating from work by Ben-Tal and
Nemirovski (Math. Oper. Res. 26(2), 193–205, 2001). Our proof easily generalizes
to other permutahedra and simplifies proofs of recent results by Goemans (2009),
and Kaibel and Pashkovich (2011). Second, we prove a lower bound of

√
2n on

the extension complexity of generic n-gons. Finally, we prove that there exist n-
gons whose vertices lie on an O(n) × O(n2) integer grid with extension complexity
Ω(

√
n/

√
logn).

Keywords Extended formulations · Polygon · Polytope · Lower bound

1 Introduction

Consider a (convex) polytope P in Rd . An extension (or extended formulation) of
P is a polytope Q in Re such that P is the image of Q under a linear projection
from Re to Rd . The main motivation for seeking extensions Q of the polytope P is
perhaps that the number of facets of Q can sometimes be significantly smaller than

S. Fiorini · H.R. Tiwary (�)
Department of Mathematics, Université Libre de Bruxelles, Brussels, Belgium
e-mail: htiwary@ulb.ac.be

S. Fiorini
e-mail: sfiorini@ulb.ac.be

T. Rothvoß
Department of Mathematics, MIT, Cambridge, USA
e-mail: rothvoss@math.mit.edu

appendix 153

Discrete Comput Geom (2012) 48:658–668 659

Fig. 1 Proof by picture that the
extension complexity of a
regular 8-gon is at most 6. Here
P ⊆ R2 is a regular 8-gon,
Q ⊆ R3 is a polytope
combinatorially equivalent to a
3-cube, and π : R3 → R2 is a
linear projection map such that
π(Q) = P

that of P . This phenomenon has already found numerous applications in optimiza-
tion, and in particular linear and integer programming. To our knowledge, systematic
investigations began at the end of the 1980s with the work of Martin [13] and Yan-
nakakis [17], among others. Recently, the subject is receiving an increasing amount
of attention. See, e.g., the surveys by Conforti, Cornuéjols and Zambelli [4], Vander-
beck and Wolsey [16], and Kaibel [10].

A striking example, which is relevant to this paper, arises when P is a regular n-
gon in R2. As follows from results of Ben-Tal and Nemirovski [2], for such a polytope
P , one can construct an extension Q with as few as O(logn) facets. It remained an
open question to determine to which extent such a dramatic decrease in the number
of facets is possible when P is a non-regular n-gon.1 This is the main question we
address in this paper.

Before giving an outline of the paper, we state a few more definitions. The size
of an extension Q is simply the number of facets of Q. The extension complexity of
P is the minimum size of an extension of P , denoted as xc(P). See Fig. 1 for an
illustration.

Notice that the extension complexity of every n-gon is Ω(logn). This follows
from the fact that any extension Q with k facets has at most 2k faces. Since each
face of P is the projection of a face of the extension Q, it follows that Q must have
at least log2 f facets if P has f faces [7]. Thus if P is an n-gon, we have xc(P) �
log2(2n + 2) = Ω(logn). When P is a regular n-gon, we have xc(P) = �(logn).

One of the fundamental results that can be found in Yannakakis’ groundbreaking
paper [17] is a characterization of the extension complexity of a polytope in terms
of the non-negative rank of its slack matrix. Although this is discussed in detail in
Sect. 2, we include a brief description here. To each polytope P one can associate a
matrix S(P) that records, in the entry that is in the ith row and j th column, the slack
of the j th vertex with respect to the ith facet. This matrix is the ‘slack matrix’ of P .
It turns out that computing xc(P) amounts to determining the minimum number r

such that there exists a factorization of the slack matrix of P as S(P) = T U , where
T is a non-negative matrix with r columns and U is a non-negative matrix with r

rows. Such a factorization is called a ‘rank r non-negative factorization’ of the slack
matrix S(P).

In Sect. 3, we give an explicit O(logn) rank non-negative factorization of the slack
matrix of a regular n-gon. This provides a new proof that the extension complexity

1This was posed as an open problem during the First Cargese Workshop on Combinatorial Optimization.

154 appendix

660 Discrete Comput Geom (2012) 48:658–668

of every regular n-gon is O(logn). Our proof technique directly generalizes to other
polytopes, such as the permutahedron. In particular, we obtain a new proof of the
fact that the extension complexity of the n-permutahedron is O(n logn), a result due
to Goemans [7]. Our approach builds on a new proof of this result by Kaibel and
Pashkovich [11] but is different because it works by directly constructing a non-
negative factorization of the slack matrix.

In Sect. 4, we prove that there exist n-gons whose extension complexity is at least√
2n. However, the proof uses polygons whose coordinates are transcendental num-

bers, which is perhaps not entirely satisfactory. For instance, one might ask whether
a similar result holds when the encoding length of each vertex of the polygon is
O(logn).

In Sect. 5, we settle this last question by proving the existence of n-gons whose
vertices belong to an O(n) × O(n2) integer grid and with extension complexity
Ω(

√
n/

√
logn). This is inspired by recent work of one of the authors on the ex-

tension complexity of 0/1-polytopes [14].

2 Slack Matrices and Non-negative Factorizations

Consider a polytope P in Rd with m facets and n vertices. Let A1x � b1, . . . ,Amx �
bm denote the facet-defining inequalities of P , where A1, . . . ,Am are row vectors. Let
also v1, . . . , vn denote the vertices of P . The slack matrix of P is the non-negative
m × n matrix S = S(P) with Sij = bi − Aivj .

A rank r non-negative factorization of a non-negative matrix S is an expression
of S as product S = T U where T and U are non-negative matrices with r columns
and r rows, respectively. The non-negative rank of S, denoted by rank+(S), is the
minimum number r such that S admits a rank r non-negative factorization [3].

The following theorem is (essentially) due to Yannakakis, see also [6].

Theorem 1 (Yannakakis [17]) For all polytopes P ,

xc(P) = rank+
(
S(P)

)
.

To conclude this section, we briefly indicate how to obtain extensions from non-
negative factorizations, and prove half of Theorem 1. Assuming P = {x ∈ Rd : Ax �
b}, consider a rank r non-negative factorization S(P) = T U of the slack matrix of
P . Then it can be shown that the image of the polyhedron Q := {(x, y) ∈ Rd+r |
Ax + Ty = b, y � 0} under the projection Rd+r → Rd : (x, y) �→ x is exactly P .
Notice that Q has at most r facets. Now if we take r = rank+(S(P)), then Q is
actually a polytope [5]. Thus Q is an extension of P with at most rank+(S(P))

facets, and hence xc(P) � rank+(S(P)).

3 Regular Polygons

First, we give a new proof of the tight logarithmic upper bound on the extension
complexity of a regular n-gon. This result is implicit in work by Ben-Tal and Ne-
mirovski [2] (although for n being a power of two). Another proof can be found in

appendix 155

Discrete Comput Geom (2012) 48:658–668 661

Kaibel and Pashkovich [11]. Then, we discuss a generalization of the proof to related
higher-dimensional polytopes.

Theorem 2 Let P be a regular n-gon in R2. Then xc(P) = O(logn).

Proof Without loss of generality, we may assume that the origin is the barycenter of
P . After numbering the vertices of P counterclockwise as v1, . . . , vn, we define a
sequence �0, . . . , �q−1 of axes of symmetry of P , as follows.

Initialize i to 0, and k to n. While k > 1, repeat the following steps:

• define �i as the line through the origin and the midpoint of vertices v� k
2 � and v� k+1

2 �;

• replace k by 	 k+1
2
;

• increase i by one.

Define q as the final value of i. Thus, q is the number of axes of symmetry �i defined.
Note that when k = k(i) is odd, then �i passes through one of the vertices of P . Note
also that q = O(logn). For each i = 0, . . . , q − 1, one of the two closed half-planes
bounded by �i contains v1. We denote it �+

i . We denote the other by �−
i .

Now, consider a vertex v of P . We define the folding sequence v(0), v(1), . . . , v(q)

of v as follows. We let v(0) := v, and for i = 0, . . . , q − 1, we let v(i+1) denote the
image of v(i) by the reflection with respect to �i if v(i) is not in the half-space �+

i ,
and we let v(i+1) := v(i) otherwise. In other words, v(i+1) is the image of v(i) under
the conditional reflection with respect to half-plane �+

i . By construction, we always
have v(q) = v1.

Next, consider a facet F of P . The folding sequence F (0), F (1), . . . ,F (q) of
facet F is defined similarly as the folding sequence of vertex v. Pick any inequal-
ity aT x � β defining F . We let a(0) := a, and for i = 0, . . . , q − 1, we let a(i+1)

denote the image of a(i) under the conditional reflection with respect to �+
i . Then

F (i) is the facet of P defined by (a(i))T x � β . The last facet F (q) in the folding se-
quence is always either the segment [v1, v2] or the segment [v1, vn]. See Fig. 2 for an
illustration with n = 15, and thus q = 4.

Fig. 2 A 15-gon with four axes
of symmetry, a vertex- and a
facet-folding sequence

156 appendix

662 Discrete Comput Geom (2012) 48:658–668

Finally, we define a non-negative factorization S(P) = T U of the slack matrix of
P , of rank 2q = O(logn). Below, let d(x, �i) denote the distance of x ∈ R2 to line �i .

In the left factor of the factorization, the row corresponding to facet F is of
the form (t0, . . . , tq−1), where ti := (

√
2d(a(i), �i),0) if a(i) is not in �+

i and
ti := (0,

√
2d(a(i), �i)) otherwise. Similarly, in the right factor, the column corre-

sponding to vertex v is of the form (u0, . . . , uq−1)
T , where ui := (0,

√
2d(v(i), �i))

T

if v(i) is not in �+
i and ui := (

√
2d(v(i), �i),0)T otherwise.

The correctness of the factorization rests on the following simple observation: for
i = 0, . . . , q −1 the slack of v(i+1) with respect to F (i+1) equals the slack of v(i) with
respect to F (i) plus some correction term. If a(i) and v(i) are on opposite sides of �i ,
then the correction term is 2d(a(i), �i)d(v(i), �i). Otherwise, it is zero (no correction
is necessary). Indeed, letting ni denote a unit vector normal to �i , and assuming that
v(i) and a(i) are on opposite sides of �i , we have

β − (
a(i)

)T
v(i) = β − (

a(i)
)T (

v(i) − 2
(
nT

i v(i)
)
ni + 2

(
nT

i v(i)
)
ni

)

= β − (
a(i+1)

)T
v(i+1) − 2

((
a(i)

)T
ni

)(
nT

i v(i)
)

= β − (
a(i+1)

)T
v(i+1) + 2d

(
a(i), �i

)
d
(
v(i), �i

)
.

When v(i) and a(i) are on the same side of �i , we obviously have

β − (
a(i)

)T
v(i) = β − (

a(i+1)
)T

v(i+1).

Observe that the slack of v(q) with respect to F (q) is always 0. The theorem fol-
lows. �

The n-permutahedron is the polytope of dimension n − 1 in Rn whose n! vertices
are the points obtained by permuting the coordinates of (1,2, . . . , n)T . It has 2n − 2
facets, defined by the inequalities

∑
j∈S xj � g(|S|) for all proper non-empty subsets

S of [n] := {1,2, . . . , n}, where g(S) := (
n+1

2

) − (
n−|S|+1

2

)
.

Let j and k denote two elements of [n] such that j < k. We denote Hj,k the
hyperplane defined by xj = xk , and H+

j,k the closed half-space defined by xj � xk .

Applying the conditional reflection with respect to H+
j,k to a vector x ∈ Rn amounts to

swapping the coordinates xj and xk if and only if xj > xk . Intuitively, the conditional
reflection with respect to H+

j,k sorts the coordinates xj and xk .
The proof of Theorem 2 can be modified to give a new proof of the existence of

O(n logn) size extension of the n-permutahedron [7], as follows. Since there ex-
ists a sorting network of size O(n logn) for sorting n inputs, a celebrated result
of Ajtai, Komlós and Szemerédi [1], there exist q = O(n logn) half-spaces H+

j0,k0
,

H+
j1,k1

, . . . ,H+
jq−1,kq−1

such that sequentially applying the conditional reflection with

respect to H+
ji ,ki

for i = 0, . . . , q − 1 to any point x ∈ Rn, sorts this point x.
Therefore, the folding sequence of any vertex v of the n-permutahedron always

ends with the vertex (1,2, . . . , n)T . Moreover, the folding sequence of the facet de-
fined by

∑
j∈S xj � g(|S|) always ends with the facet defined by

∑n
j=n−|S|+1 xj �

appendix 157

Discrete Comput Geom (2012) 48:658–668 663

g(|S|). Note that this last facet contains the vertex (1,2, . . . , n)T . Hence the proof
technique used above for a regular n-gon extends to the n-permutahedron.

In fact, it turns out that the proof technique further extends to the permutahedron of
any finite reflection group. One simply has to choose the right sequence of conditional
reflections. Such sequences were constructed by Kaibel and Pashkovich [11], with the
help of Ajtai–Komlós–Szemerédi sorting networks. Thus we can re-prove their main
results about permutahedra of finite reflection groups. Our proof is different in the
sense that we explicitly construct a non-negative factorization of the slack matrix.

4 Generic Polygons

We begin by recalling some basic facts about field extensions (see, e.g., Hungerford
[9], Lang [12], or Stewart [15]). Let L be a field and K be a subfield of L. Then L is
an extension field of K , and L/K is a field extension. We say that the field extension
L/K is algebraic if every element of L is algebraic over K , that is, for each element
of L there exists a non-zero polynomial with coefficients in K that has the element
as one of its roots.

For α1, . . . , αq ∈ L, the inclusion-wise minimal subfield of L that contains both K

and {α1, . . . , αq} is denoted by K({α1, . . . , αq}), or simply K(α1, . . . , αq). It is also

the subfield formed by all fractions f (α1,...,αq)

g(α1,...,αq)
where f and g are polynomials with

coefficients in K and g(α1, . . . , αq) �= 0.
A subset X of L is said to be algebraically independent over K if no non-trivial

polynomial relation with coefficients in K holds among the elements of X. The tran-
scendence degree of the field extension L/K is defined as the largest cardinality of
an algebraically independent subset of L over K . It is also the minimum cardinality
of a subset Y of L such that L/K(Y) is algebraic.

We say that a polygon in R2 is generic if the coordinates of its vertices are distinct
and form a set that is algebraically independent over the rationals.

Theorem 3 If P is a generic convex n-gon in R2 then xc(P) �
√

2n.

Proof Let α1, . . . , α2n denote the coordinates of the n vertices of P , listed in any
order. Thus X := {α1, . . . , α2n} is algebraically independent over Q.

Now suppose that P is the projection of a d-dimensional polytope Q with k facets.
Without loss of generality, we may assume that Q lives in Rd and that the projection
is onto the two first coordinates.

Consider any linear description of Q. This description is defined by k(d + 1)

real numbers: the kd entries of the constraint matrix and the k right-hand sides. We
denote these reals as β1, . . . , βk(d+1). By Cramer’s rule, each αi can be written as

αi = fi(β1,...,βk(d+1))

gi (β1,...,βk(d+1))
where fi and gi are polynomials with rational coefficients and

gi(β1, . . . , βk(d+1)) �= 0. In particular, this means that each αi is in the extension field
L := Q(β1, . . . , βk(d+1)).

Since X is algebraically independent over Q and X ⊆ L, the transcendence degree
of L/Q is at least 2n. But on the other hand, the transcendence degree of L/Q is at
most k(d + 1). Indeed, letting Y := {β1, . . . , βk(d+1)}, we have Q(Y) = L and thus

158 appendix

664 Discrete Comput Geom (2012) 48:658–668

L/Q(Y) is algebraic. It follows that k(d + 1) � 2n. Since k � d + 1, we see that
k2 � 2n, hence k �

√
2n. �

5 Polygons with Integer Vertices

Since encoding transcendental numbers would require an infinite number of bits,
an objection might be raised that Theorem 3 is not very satisfying. In this section
we provide a slightly weaker lower bound with polygons whose vertices can be en-
coded efficiently. In particular we will now show that for every n there exist polygons
with vertices on an O(n) × O(n2) grid and whose extension complexity is large. To
do this we will need a slightly modified version of a rounding lemma proved by
Rothvoß [14], see Lemma 5 below.

For a matrix A let A� (resp. A�) denote the �th row (resp. �th column) of A. Sim-
ilarly, for a subset I of row indices of A, let AI denote the submatrix of A obtained
by picking the rows indexed by the elements of I .

Let T and U be m × r and r × n non-negative matrices. Since below T and U

will be respectively the left and right factor of a factorization of some slack matrix,
we can assume that no column of T is identically zero and, similarly, no row of U is
identically zero. The pair T ,U is said to be normalized if ‖T �‖∞ = ‖U�‖∞ for every
� ∈ [r]. Since multiplying a column � of T by λ > 0 and simultaneously dividing row
� of U by λ leaves the product T U unchanged, we can always scale the rows and
columns of two matrices so that they are normalized without changing T U .

Lemma 4 (Rothvoß [14]) If the pair T ,U is normalized, then max{‖T ‖∞,‖U‖∞} �√‖T U‖∞.

Proof Let S := T U . Suppose, for the sake of contradiction, that the assertion does not
hold. Without loss of generality, we may assume that ‖T ‖∞ >

√‖T U‖∞. Thus Ti� >√‖T U‖∞ for some indices i and �. Since T ,U is normalized, ‖U�‖∞ = ‖T �‖∞ >√‖T U‖∞ and there must be an index j such that U�j >
√‖T U‖∞. Then Sij �

Ti�U�j > ‖T U‖∞, which is a contradiction. �

Consider a set of n convex independent points V in the plane lying on an integer
grid of size polynomial in n, its convex hull P := conv(V), and X := Z2 ∩ P . The
next crucial lemma (adapted from a similar result in [14]) implies that the description
of an extension Q := {(x, y) | Ax + Ty = b, y ≥ 0} for P —potentially containing
irrational numbers—can be rounded such that an integer point x is in X if and only
if there is a y ≥ 0 such that Āx + T̄ y ≈ b̄ holds for the rounded system. Moreover,
all coefficients in the rounded system come from a domain which is bounded by a
polynomial in n.

Lemma 5 For d,N ≥ 2 let V = {v1, . . . , vn} ⊆ Zd be a convex independent and
non-empty set of points with ‖vi‖∞ � N for i ∈ [n]. Let P := conv(V) and
let X := P ∩ Zd . Denote r := xc(P) and Δ := ((d + 1)N)d . Then there are

appendix 159

Discrete Comput Geom (2012) 48:658–668 665

matrices Ā ∈ Z(d+r)×d, T̄ ∈ (1
4r(d+r)Δ

Z+)(d+r)×r and a vector b̄ ∈ Zd+r with

‖Ā‖∞,‖b̄‖∞,‖T̄ ‖∞ � Δ such that

X =
{
x ∈ Zd | ∃y ∈ [0,Δ]r : ‖Āx + T̄ y − b̄‖∞ � 1

4(d + r)

}
.

Proof Let Ax � b be a non-redundant description of P with integral coefficients. We
may assume (see, e.g., [8, Lemma D.4.1]) that ‖A‖∞,‖b‖∞ � Δ = ((d + 1)N)d .
Since xc(P) = r , by Yannakakis’ Theorem 1 there exist matrices T ∈ Rm×r+ and
U ∈ Rr×n+ such that S := T U is the slack matrix of P , and P = {x ∈ Rd | ∃y ∈
Rr : Ax + Ty = b, y � 0}. Without loss of generality assume that the pair T ,U is
normalized. Note that

‖S‖∞ = max
i∈[m]
j∈[n]

(bi − Aivj) � Δ + dNΔ � Δ2.

Since T ,U are normalized, using Lemma 4, we have that ‖T ‖∞ � Δ and ‖U‖∞ �
Δ.

Let W := span({(Ai, Ti) | i ∈ [m]}) be the row span of the constraint matrix of
the system Ax + Ty = b and let k := dim(W) be the dimension of W . Choose I ⊆
{1, . . . ,m} of size |I | = k such that the volume of the parallelepiped spanned by the
vectors {(Ai, Ti) | i ∈ I }, denoted by vol({(Ai, Ti) | i ∈ I }), is maximized. Let T ′

I be
the matrix obtained from rounding the coefficients of TI to the nearest multiple of

1
4r(d+r)Δ

. Our choice will be Ā := AI , T̄ := T ′
I and b̄ := bI . Let

Y :=
{
x ∈ Zd | ∃y ∈ [0,Δ]r : ∥∥AIx + T ′

I y − bI

∥∥∞ � 1

4(d + r)

}
.

Then it is sufficient to show that X = Y .

Claim 6 X ⊆ Y .

Proof of claim Consider an arbitrary vertex vj ∈ V . Since, S = T U , we can choose
y := Uj � 0 such that Avj + Ty = b. Since T ,U are normalized, we have that
‖y‖∞ � ‖U‖∞ � Δ. Note that ‖T − T ′‖∞ � 1

4r(d+r)Δ
. By the triangle inequality,

∥∥AIvj + T ′
I y − bI

∥∥∞ �
∥∥AIvj + TI y − bI︸ ︷︷ ︸

=0

+(
T ′

I − TI

)
y
∥∥∞

� r · ∥∥T ′
I − TI

∥
∥∞︸ ︷︷ ︸

� 1
4r(d+r)Δ

· ‖y‖∞︸ ︷︷ ︸
�Δ

� 1

4(d + r)
.

Thus vj ∈ Y and hence V ⊆ Y . It follows that X ⊆ Y . �

Claim 7 X ⊇ Y .

160 appendix

666 Discrete Comput Geom (2012) 48:658–668

Proof of claim We show that x ∈ Zd\X implies x /∈ Y . Since x /∈ X and X ⊆ P , there
must be a row � with A�x > b�. Since A, b and x are integral, one even has A�x �
b� + 1. Note that in general � is not among the selected constraints with row indices
in I . But there are unique coefficients λ ∈ Rk such that we can express constraint
A�x + T�y = b� as a linear combination of those with indices in I , i.e.

(
A�,T�

) =
∑

i∈I

λi

(
Ai,Ti

)
.

It is easy to see that
∑

i∈I λibi = b�, since otherwise the system Ax + Ty = b could
not have any solution (x, y) at all and P = ∅. The next step is to bound the coeffi-
cients λi . Here we recall that by Cramer’s rule,

|λi | = vol({(Ai′ , Ti′) | i′ ∈ I\{i} ∪ {�}})
vol({(Ai′ , Ti′) | i′ ∈ I }) � 1,

since we picked I such that vol({(Ai′ , Ti′) | i′ ∈ I }) is maximized. Fix an arbitrary
y ∈ [0,Δ]r , then

1 � |A�x − b�︸ ︷︷ ︸
�1

+ T�y︸︷︷︸
�0

| =
∣∣
∣∣
∑

i∈I

λi(Aix − bi + Tiy)

∣∣
∣∣

�
∑

i∈I

|λi |︸︷︷︸
�1

·|Aix − bi + Tiy|

� (d + r) · ‖AIx − bI + TI y‖∞ (1)

using the triangle inequality and the fact that |I | � d + r . Again making use of the
triangle inequality yields

‖AIx − bI + TI y‖∞ = ∥∥AIx − bI + T ′
I y + (

TI − T ′
I

)
y
∥∥∞

�
∥∥AIx − bI + T ′

I y
∥∥∞ + r · ∥∥TI − T ′

I

∥∥∞︸ ︷︷ ︸
� 1

4r(d+r)Δ

· ‖y‖∞︸ ︷︷ ︸
�Δ

�
∥∥AIx − bI + T ′

I y
∥∥∞ + 1

4(d + r)
. (2)

Combining (1) and (2) gives ‖AIx − bI + T ′
I y‖∞ � 1

d+r
− 1

4(d+r)
> 1

4(d+r)
for all

y ∈ [0,Δ]r and consequently x /∈ Y . �

The theorem follows. Note that by padding zeros, we can ensure that Ā, T̄ and b̄

have exactly d + r rows. �

Now we are ready to prove our lower bound for the extension complexity of poly-
gons.

Theorem 8 For every n ≥ 3, there exists a convex n-gon P with vertices in [2n] ×
[4n2] and xc(P) = Ω(

√
n/

√
logn).

appendix 161

Discrete Comput Geom (2012) 48:658–668 667

Proof The 2n points of the set Z := {(z, z2) | z ∈ [2n]} are obviously convex inde-
pendent. In other words, every subset X ⊆ Z of size |X| = n yields a different convex
n-gon. The number of such n-gons is

(2n
n

)
� 2n. Let R := max{xc(conv(X)) | X ⊆

Z, |X| = n}. Lemma 5 provides a map Φ which takes X as input and provides the
rounded system (Ā, T̄ , b̄). (If the choice of A, b and I is not unique, make an arbi-
trary canonical choice.) By padding zeros, we may assume that this system is of size
(2 + R) × (3 + R).

Also, Lemma 5 guarantees that for each system (Ā, T̄ , b̄), the corresponding set
X can be reconstructed. In other words, the map Φ must be injective and the num-
ber of such system must be at least 2n. Thus it suffices to determine the number of
such systems: the entries in each system (Ā, T̄ , b̄) are integer multiples of 1

4r(d+r)Δ
=

1
4r(2+r)144n4 for some r ∈ [R] using d = 2, N = 4n2, Δ = (12n2)2 = 144n4. Since no

entry exceeds Δ, for each entry there are at most 1 + ∑R
r=1(165888 r(2 + r)n8) �

cn11 many possible choices for some fixed constant c (note that R � n). Thus the
number of such systems is bounded by (cn11)(3+R)·(2+R) � 2c′ logn·R2

for some con-
stant c′.

We conclude that 2c′ log2 n·R2 � 2n and thus R = Ω(
√

n/
√

logn). �

6 Concluding Remarks

Although the two lower bounds presented here on the worst case extension complex-
ity of a n-gon are Ω̃(

√
n), it is plausible that the true answer is Ω̃(n). We leave this

as an open problem.

Acknowledgements We thank Stefan Langerman for suggesting the proof of Theorem 3. We also thank
Volker Kaibel and Sebastian Pokutta for stimulating discussions. Finally, we thank the anonymous referee
for his comments which helped improving the text. S. Fiorini supported by the Actions de Recherche
Concertées (ARC) fund of the Communauté française de Belgique. T. Rothvoß supported by Feodor Lynen
Fellowship of the Alexander von Humboldt Foundation, ONR Grant N00014-11-1-0053 and NSF Contract
CCF-0829878. H.R. Tiwary supported by Fonds National de la Recherche Scientifique (F.R.S.–FNRS).

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n logn) sorting network. In: Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC’83, pp. 1–9. ACM, New York (1983)

2. Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math. Oper.
Res. 26(2), 193–205 (2001)

3. Cohen, J.E., Rothblum, U.G.: Nonnegative ranks, decompositions, and factorizations of nonnegative
matrices. Linear Algebra Appl. 190, 149–168 (1993)

4. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization.
4OR 8(1), 1–48 (2010)

5. Conforti, M., Faenza, Y., Fiorini, S., Grappe, R., Tiwary, H.R.: Extended formulations, non-negative
factorizations and randomized communication protocols. http://arxiv.org/abs/1105.4127 (2011)

6. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and
extended formulations. Working paper (2011)

7. Goemans, M.: Smallest compact formulation for the permutahedron. http://math.mit.edu/~goemans/
PAPERS/permutahedron.pdf (2009)

162 appendix

668 Discrete Comput Geom (2012) 48:658–668

8. Hindry, M., Silverman, J.H.: Diophantine Geometry: An Introduction, 1st edn. Springer, Berlin
(2000)

9. Hungerford, T.W.: Algebra. Graduate Texts in Mathematics. Springer, New York (1974)
10. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)
11. Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection relations. In: Pro-

ceedings of the 15th Conference on Integer Programming and Combinatorial Optimization (2011, to
appear)

12. Lang, S.: Algebra, Graduate Texts in Mathematics. Springer, Berlin (2002)
13. Martin, R.K.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res.

Lett. 10(3), 119–128 (1991)
14. Rothvoß, T.: Some 0/1 polytopes need exponential size extended formulations. http://arxiv.org/

abs/1105.0036 (2011)
15. Stewart, I.: Galois Theory, 3rd edn. Chapman & Hall/CRC Mathematics. Chapman & Hall/CRC,

Boca Raton (2004)
16. Vanderbeck, F., Wolsey, L.A.: Reformulation and decomposition of integer programs. In: Jünger, M.,

et al. (eds.) 50 Years of Integer Programming 1958–2008, pp. 431–502. Springer, Berlin (2010)
17. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput.

Syst. Sci. 43(3), 441–466 (1991)

appendix 163

D
O N T H E E X T E N S I O N C O M P L E X I T Y O F
C O M B I N AT O R I A L P O LY T O P E S

The following article has appeared in Mathematical Programming and
is included here as an appendix for completeness.

165

Math. Program., Ser. B (2015) 153:95–115
DOI 10.1007/s10107-014-0764-2

FULL LENGTH PAPER

On the extension complexity of combinatorial polytopes

David Avis · Hans Raj Tiwary

Received: 1 April 2013 / Accepted: 3 February 2014 / Published online: 14 February 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract In this paper we extend recent results of Fiorini et al. on the extension com-
plexity of the cut polytope and related polyhedra. We first describe a lifting argument
to show exponential extension complexity for a number of NP-complete problems
including subset-sum and three dimensional matching. We then obtain a relationship
between the extension complexity of the cut polytope of a graph and that of its graph
minors. Using this we are able to show exponential extension complexity for the cut
polytope of a large number of graphs, including those used in quantum information
and suspensions of cubic planar graphs.

Mathematics Subject Classification 52B05

Electronic supplementary material The online version of this article (doi:10.1007/s10107-014-0764-2)
contains supplementary material, which is available to authorized users.

D. Avis
GERAD and School of Computer Science, McGill University,
3480 University Street, Montreal, Quebec H3A 2A7, Canada
e-mail: avis@cs.mcgill.ca

D. Avis
Graduate School of Informatics, Kyoto University,
Sakyo-ku, Yoshida Yoshida, Kyoto 606-8501, Japan

H. R. Tiwary (B)
Department of Mathematics, Université Libre de Bruxelles,
Boulevard du Triomphe, 1050 Brussels, Belgium
e-mail: hans.raj.tiwary@ulb.ac.be

Present address:
H. R. Tiwary
Department of Applied Mathematics (KAM), Institute of Theoretical Computer Science (ITI),
Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic
e-mail: hansraj@kam.mff.cuni.cz

123

appendix 167

96 D. Avis, H. R. Tiwary

1 Introduction

Cut polytope and related polytopes The cut polytope arises in many application areas
and has been extensively studied. Formal definitions of this polytope and its relatives
are given in the next section. A comprehensive compilation of facts about the cut
polytope is contained in the book by Deza and Laurent [7]. Optimization over the
cut polytope is known as the max cut problem, and was included in Karp’s original
list of problems that he proved to be NP-hard. For the complete graph with n nodes,
a complete list of the facets of the cut polytope CUT�

n is known for n ≤ 7 (see
Section 30.6 of [7]), as well as many classes of facet inducing valid inequalities. The
hypermetric inequalities (see Chapter 28 of [7]) are examples of such a class, and it
is known that an exponential number of them are facet inducing. Less is known about
classes of facets for the cut polytope of an arbitrary graph, CUT�(G). Interest in such
polytopes arises because of their application to fundamental problems in physics.

In quantum information theory, the cut polytope arises in relation to Bell inequali-
ties. These inequalities, a generalization of Bell’s original inequality [4], were intro-
duced to better understand the nonlocality of quantum physics. Bell inequalities for
two parties are inequalities valid for the cut polytope of the complete tripartite graph
K1,n,n . Avis, Imai, Ito and Sasaki [1] proposed an operation named triangular elim-
ination, which is a combination of zero-lifting and Fourier-Motzkin elimination (see
e.g. [15]) using the triangle inequality. They proved that triangular elimination maps
facet inducing inequalities of the cut polytope of the complete graph to facet inducing
inequalities of the cut polytope of K1,n,n . Therefore a standard description of such
polyhedra contains an exponential number of facets.

In [2] the method was extended to obtain facets of CUT�(G) for an arbitrary graph
G from facets of CUT�

n . For most, but not all classes of graphs, CUT�(G) has an
exponential number of facets. An interesting exception are the graphs with no K5
minor. Results of Seymour for the cut cone, extended by Barahona and Mahjoub to
the cut polytope (see Section 27.3.2 of [7]), show that the facets in this case are just
projections of triangle inequalities. It follows that the max cut problem for a graph G
on n vertices with no K5 minor can be solved in polynomial time by optimizing over
the semi-metric polytope, which has O(n3) facets. Another way of expressing this is
to say that in this case CUT�(G) has O(n3) extension complexity, a notion that will
be discussed next.

Extended formulations and extensions Even for polynomially solvable problems, the
associated polytopemay have an exponential number of facets. Byworking in a higher
dimensional space it is often possible to decrease the number of constraints. In some
cases, a polynomial increase in dimension can yield an exponential decrease in the
number of constraints. The previous paragraph contained an example of this.

For NP-hard problems the notion of extended formulations also comes into play.
Even though a natural LP formulation of such a problem in original space has expo-
nential size, this does not rule out a polynomial size formulation in higher dimensions.

In a groundbreaking paper, Yannakakis [14] proved that every symmetric LP for
the Traveling Salesman Problem (TSP) has exponential size. Here, an LP is called
symmetric if every permutation of the cities can be extended to a permutation of all

123

168 appendix

Extension complexity of combinatorial polytopes 97

the variables of the LP that preserves the constraints of the LP. This result refuted
various claimed proofs of a polynomial time algorithm for the TSP. In 2012 Fiorini
et al. [8] proved that the cut polytope (associated with the max cut problem) also
requires exponential size if it is to be solved as an LP. Using this result, they were
able to drop the symmetric condition, required by Yannakakis, to get a general super
polynomial bound for LP formulations of the TSP.

Our contributions and outline of the paper In this paper, we provide more examples
of some polytopes associated with hard combinatorial problems as a way to illustrate a
general technique for proving lower bounds for the extension complexity of a polytope.
The rest of the paper is organized as follows.

In the next sectionwe give background on cut polytopes, a summary of the approach
in [14] and [8], and discuss a general strategy for proving lower bounds. In Sect. 3 we
discuss four polytopes arising from the 3SAT, subset sum, 3-dimensional matching,
and the maximum stable set problems, and prove superpolynomial extension com-
plexity for them. For the stable set polytope, we improve the result of [8] by proving
superpolynomial lower bounds for the stable set polytope of cubic planar graphs.

In Sect. 4 we first reprove the result of [8] for the cut polytope directly without
introducing the isomorphic correlation polytope, thus avoiding the introduction of the
covariance mapping. We then prove how the bounds propagate when one takes the
minors of a graph. We use our results to prove superpolynomial lower bounds for the
Bell-inequality polytope CUT�(K1,n,n) described above. This shows that a complete
list of Bell inequalities, for the set up with two persons and n binary measurements
each, must have superpolynomial size no matter what the dimension of the underlying
set of variables is.

As already noted, the max cut problem can be solved in polynomial time for graphs
that are K5 minor free and their cut polytope has a polynomial size extended formu-
lation. Planar graphs are a subset of this class. A suspension of a graph is formed by
adding an additional vertex and joining it to all of the graph’s original vertices. Bara-
hona [3] proved that the max cut problem is NP-hard for suspensions of planar graphs
and hence for K6 minor-free graphs. We show that this class of graphs has superpoly-
nomial extension complexity. In fact, the graphs used in our proof are suspensions of
cubic planar graphs.

2 Preliminaries

We briefly review basic notions about the cut polytope and extension complexity used
in later sections. Definitions, theorems and other results for the cut polytope stated
in this section are from [7], which readers are referred to for more information. We
assume that readers are familiar with basic notions in convex polytope theory such
as convex polytope, facet, projection and Fourier–Motzkin elimination. Readers are
referred to a textbook [15] for details.

Throughout this paper, we use the following notation. For a graph G = (V, E) we
denote the edge between two vertices u and v by uv, and the neighborhood of a vertex
v by NG(v). We let [n] denote the integers {1, 2, . . . , n}.

123

appendix 169

98 D. Avis, H. R. Tiwary

2.1 Cut polytope and its relatives

The cut polytope of a graph G = (V, E), denoted CUT�(G), is the convex hull of
the cut vectors δG(S) of G defined by all the subsets S ⊆ V in the |E |-dimensional
vector spaceRE . The cut vector δG(S) ofG defined by S ⊆ V is a vector inRE whose
uv-coordinate is defined as follows:

δuv(S) =
{
1 if |S ∩ {u, v}| = 1,

0 otherwise,
for uv ∈ E .

If G is the complete graph Kn , we simply denote CUT�(Kn) by CUT�
n .

For completeness, although we will not use it explicitly, we define the correlation
polytope COR�

n . For each subset S ⊆ {1, 2, . . . , n} we define the correlation vector
π(S) of length (n + 1)n/2 by setting π(S)i j = 1 if and only if i, j ∈ S, for all
1 ≤ i ≤ j ≤ n. COR�

n is the convex hull of the 2n correlation vectors π(S). A linear
map, known as the covariance map, shows the one-to-one correspondence of COR�

n

and CUT�
n+1 (see [7], Ch. 5).

For a subset F of a set E , the incidence vector of F (in E)1 is the vector x ∈ {0, 1}E
defined by xe = 1 for e ∈ F and xe = 0 for e ∈ E\F . Using this term, the definition
of the cut vector can also be stated as follows: δG(S) is the incidence vector of the cut
set {uv ∈ E | |S∩{u, v}| = 1} in E . When G = Kn we simply denote the cut-vectors
by δ(S).

We now describe an important well-known general class of valid inequalities for
CUT�

n (see, e.g. [7], Ch. 28).

Lemma 1 For any n ≥ 2, let b1, b2, . . . , bn be any set of n integers. The following
inequality is valid for CUT�

n :

∑
1≤i< j≤n

bi b j xi j ≤
⌊(∑n

i=1 bi
)2

4

⌋
(1)

Proof Let δ(S) be any cut vector for the complete graph Kn . Then

∑
1≤i< j≤n

bi b jδ(S)i j =
(∑

i∈S
bi

) (∑
i /∈S

bi

)
(2)

Now observe that if the sum of the bi is even the floor sign is redundant and an
elementary calculation shows that the right hand side of (2) is bounded from above by
the right hand side of (1). If the sum of the bi is odd then the same calculation gives
an upper bound of (

∑n
i=1 bi +1)(

∑n
i=1 bi −1)/4 = (

∑n
i=1 bi)

2/4−1/4 on the right
hand side of (2) and the lemma follows. ��

1 The set E is sometimes not specified explicitly when E is clear from the context or the choice of E does
not make any difference.

123

170 appendix

Extension complexity of combinatorial polytopes 99

The inequality (1) is called hypermetric (respectively, of negative type) if the inte-
gers bi can be partitioned into two subsets whose sum differs by one (respectively,
zero). A simple example of hypermetric inequalities are the triangle inequalities,
obtained by setting three of the bi to be+/− 1 and the others to be zero. Themost basic
negative type inequality is non-negativity, obtained by setting one bi to 1, another one
to −1, and the others to zero. We note in passing that Deza (see Section 6.1 of [7])
showed that each negative type inequality could be written as a convex combination
of hypermetric inequalities, so that none of them are facet inducing for CUT�

n .
For any fixed n there are an infinite number of hypermetric inequalities, but all but

a finite number are redundant. This non-trivial fact was proved by Deza, Grishukhin
and Laurent (see [7] Section 14.2) and allows us to define the hypermetric polytope,
which we will refer to again later.

2.2 Extended formulations and extensions

In this paper we make use of the machinery developed and described in Fiorini et al.
[8]. A brief summary is given here and the reader is referred to the original paper for
more details and proofs.

An extended formulation (EF) of a polytope P ⊆ R
d is a linear system

Ex + Fy = g, y � 0 (3)

in variables (x, y) ∈ R
d+r , where E, F are real matrices with d, r columns respec-

tively, and g is a column vector, such that x ∈ P if and only if there exists y such that
(3) holds. The size of an EF is defined as its number of inequalities in the system. Note
that for extended formulations written in the form Ex + Fy = g, y � 0, the size
also equals the number of new variables y as well as the dimension of the nonnegative
cone y � 0.

An extension of the polytope P is another polytope2 Q ⊆ R
e such that P is the

image of Q under a linear map. Define the size of an extension Q as the number of
facets of Q. Furthermore, define the extension complexity of P , denoted by xc (P), as
the minimum size of any extension of P .

For a matrix A, let Ai denote the i th row of A and A j to denote the j th column of
A. Let P = {x ∈ R

d | Ax � b} = conv(V) be a polytope, with A ∈ R
m×d , b ∈ R

m

and V = {v1, . . . , vn} ⊆ R
d . Then M ∈ R

m×n+ defined as Mi j := bi − Aiv j with
i ∈ [m] := {1, . . . ,m} and j ∈ [n] := {1, . . . , n} is the slack matrix of P w.r.t.
Ax � b and V . We call the submatrix of M induced by rows corresponding to facets
and columns corresponding to vertices the minimal slack matrix of P and denote it
by M(P). Note that the slack matrix may contain columns that correspond to feasible
points that are not vertices of P and rows that correspond to valid inequalities that
are not facets of P , and therefore the slack matrix of a polytope is not a uniquely
defined object. However every slack matrix of P must contain rows and columns

2 Even though an extension can also be a polyhedron and not necessarily a polytope, we will consider only
those extensions that are polytopes. It is not difficult to see that for a polytope the extension with smallest
size would indeed be a polytope.

123

appendix 171

100 D. Avis, H. R. Tiwary

corresponding to facet-defining inequalities and vertices, respectively. As observed in
[8], for proving bounds on the extension complexity of a polytope P it suffices to take
any slack matrix of P . Throughout the paper we refer to the minimal slack matrix of
P as the slack matrix of P and any other slack matrix as a slack matrix of P .

A rank-r nonnegative factorization of a (nonnegative) matrix M is a factorization
M = QR where Q and R are nonnegative matrices with r columns (in case of
Q) and r rows (in case of R), respectively. The nonnegative rank of M (denoted by:
rank+(M)) is thus simply theminimum rank of a nonnegative factorization ofM . Note
that rank+(M) is also the minimum r such that M is the sum of r nonnegative rank-1
matrices. In particular, the nonnegative rank of a matrix M is at least the nonnegative
rank of any submatrix of M .

The following theorem shows the equivalence of nonnegative rank of the slack
matrix, extension and size of an EF.

Theorem 1 (Yannakakis [14]) Let P = {x ∈ R
d | Ax � b} = conv(V) be a polytope

with dim(P) � 1 with a slack matrix M. Then the following are equivalent for all
positive integers r :

(i) M has nonnegative rank at most r;
(ii) P has an extension of size at most r (that is, with at most r facets);
(iii) P has an EF of size at most r (that is, with at most r inequalities).

For a given matrix M let suppmat(M) be the binary support matrix of M , so

suppmat(M)ab =
{
1 if Mab 	= 0,
0 otherwise.

A rectangle is the Cartesian product of a set of row indices and a set of column
indices. The rectangle covering bound is the minimum number of monochromatic
rectangles are needed to cover all the 1-entries of the support matrix of M . In general
it is difficult to calculate the nonnegative rank of a matrix but sometimes a lower bound
can be obtained as shown in the next theorem.

Theorem 2 (Yannakakis [14]) Let M be any matrix with nonnegative real entries and
suppmat(M) its support matrix. Then rank+(M) is lower bounded by the rectangle
covering bound for suppmat(M).

The following 2n × 2n matrix M∗ = M∗(n) with rows and columns indexed by
n-bit strings a and b, and real nonnegative entries

M∗
ab := (aᵀb − 1)2.

is very useful for obtaining exponential bounds on the EF of various polytopes. This
follows from the following result which itself is a consequence of a result of Razborov
[13].

Theorem 3 (De Wolf [6]) Every 1-monochromatic rectangle cover of suppmat
(M∗(n)) has size 2Ω(n).

Corollary 1 rank+ (M∗(n)) � 2Ω(n).

Using these ingredients, Fiorini et al. [8] proved the following fundamental result,

123

172 appendix

Extension complexity of combinatorial polytopes 101

Theorem 4 (Lower Bound Theorem) Let M(n) denote the slack matrix, of CUT�
n,

extended with a suitably chosen set of 2n redundant inequalities. Then M∗(n − 1)
occurs as a submatrix of M(n) and hence CUT�

n has extension complexity 2Ω(n).

They further proved a 2Ω(
√
n) lower bound on the size of extended formulations for

the traveling salesman polytope, TSP(n), by embedding CUT�
n as a face of TSP(m)

where m = O(n2). A similar embedding argument was used to show the same lower
bound applies to the stable set polytope, STAB(Gn) of a graph Gn on n vertices.

2.3 Proving lower bounds for extension complexity

Suppose one wants to prove a lower bound on the extension complexity for a polytope
P . Theorem 4 provides a way to do it from scratch: construct a non-negative matrix
that has a high non-negative rank and then show that this matrix occurs as a submatrix
of a slack matrix of P . Clearly this can be very tricky since there exists neither a
general framework for creating such a matrix for each polytope, nor a general way of
using a result for one class of polytopes for another.

We now note two observations that are useful in translating results from one poly-
tope to another. Let P and Q be two polytopes. Then,

Proposition 1 If P is a projection of Q then xc (P) � xc(Q).

Proposition 2 If P is a face of Q then xc (P) � xc(Q).

Naturally there are many other cases where the conditions of neither of these propo-
sitions apply and yet a lower bounding argument for one polytope can be derived from
another. However we would like to point out that these two propositions already seem
to be very powerful. In fact, out of the three lower bounds proved by Fiorini et al. [8]
two (for TSP(n) and STAB(Gn) for some n vertex graph Gn) use these propositions,
while the lower bound on the cut polytope is obtained by showing a direct embedding
of M∗(n) in the slack matrix of CUT�

n .
Fiorini et al. [8] first showM∗(n) is a submatrix of the slackmatrix of the correlation

polytope COR�
n and then use its affine equivalence with CUT�

n+1. This is followed
by an embedding of CUT�

n+1 as a face of STAB(G(n2)) where G(n2) is a graph
with O(n2) vertices and O(n2) edges implying a worst case lower bound of 2Ω(

√
n)

for the extension complexity of the stable set polytope of a graph with n vertices.
Similarly, worst case lower bounds are obtained for the traveling salesman polytope
by embedding COR�

n in a face of TSP(n2).
In the next section we will use these propositions to show superpolynomial lower

bounds on the extension complexities of polytopes associated with four NP-hard prob-
lems.

3 Polytopes for some NP-hard problems

In this section we use the method of Sect. 2.3 to show super polynomial extension
complexity for polytopes related to the following problems: subset sum, 3-dimensional

123

appendix 173

102 D. Avis, H. R. Tiwary

matching and stable set for cubic planar graphs. These proofs are derived by applying
this method to standard reductions from 3SAT, which is our starting point.

3.1 3SAT

For any given 3SAT formula Φ with n variables in conjunctive normal form define
the polytope SAT(Φ) as the convex hull of all satisfying assignments. That is,

SAT(Φ) := conv({x ∈ {0, 1}n | Φ(x) = 1})

The following theorem and its proof are implicit in [8],making use of the correlation
polytope. We provide the proof for completeness, stated this time in terms of the cut
polytope.

Theorem 5 For every n there exists a 3SAT formulaΦ with O(n) variables and O(n)

clauses such that xc(SAT(Φ)) � 2Ω(
√
n).

Proof For the complete graph Km we define a boolean formula Φm in conjunctive
normal form over the variables xi j for i, j ∈ {1, . . . ,m} such that every clause in Φm

has three literals and CUT�(Km) is a projection of SAT(Φm).
Consider the relation xi j = xii ⊕ x j j , where ⊕ is the xor operator. The boolean

formula

(xii ∨ x j j ∨ xi j) ∧ (xii ∨ x j j ∨ xi j) ∧ (xii ∨ x j j ∨ xi j) ∧ (xii ∨ x j j ∨ xi j)

is true if and only if xi j = xii ⊕ x j j for any assignment of the variables xii , x j j and
xi j .

Now define Φm as

Φm :=
∧

i, j∈[m]
i 	= j

[
(xii ∨ x j j ∨ xi j) ∧ (xii ∨ x j j ∨ xi j) ∧ (xii ∨ x j j ∨ xi j) ∧ (xii ∨ x j j ∨ xi j)

]
.

It is easy to see that any vertex of SAT(Φm) can be projected to a vertex of
CUT�(Km) by projecting out the variables xii for i ∈ {1, . . . ,m} since xi j = 1
if and only if xii and x j j are assigned different values, and hence the assignment
defines a cut in Km . Furthermore, any vertex of CUT�(Km) can be extended to any
of the two assignments that correspond to the cut defined by the vector. That is, if a
cut vector of CUT�(Km) partitions the set of vertices into S and S then extending the
cut vector by assigning xii = 1 if i ∈ S and xii = 0 if i ∈ S (or the other way round)
defines a satisfying assignment for Φm and therefore a vertex of SAT(Φm).

Therefore, CUT�(Km) is a projection of SAT(Φm), and by Proposition 1 we can
conclude that xc(SAT(Φm)) � xc(CUT�(Km)) � 2Ω(m). Note that Φm has O(n2)
variables and clauses. Therefore, we have the desired result. ��

123

174 appendix

Extension complexity of combinatorial polytopes 103

3.2 Subset sum

The subset sumproblem is a special case of the knapsack problem.Given a set of n inte-
gers A = {a1, . . . , an} and another integerb, the subset sumproblems askswhether any
subset of A sums exactly to b. Define the subset sum polytope SUBSETSUM(A, b) as
the convex hull of all characteristic vectors of the subsets of Awhose sum is exactly b.

SUBSETSUM(A, b) := conv

({
x ∈ {0, 1}n |

n∑
i=1

ai xi = b

})

The subset sum problem then is asking whether SUBSETSUM(A, b) is empty for
a given set A and integer b. Note that this polytope is a face of the knapsack polytope

KNAPSACK(A, b) := conv

({
x ∈ {0, 1}n |

n∑
i=1

ai xi � b

})

In this subsection we prove that the subset sum polytope (and hence the knapsack
polytope) can have superpolynomial extension complexity.

Theorem 6 For every 3SAT formula Φ with n variables and m clauses, there exists
a set of integers A(Φ) and integer b with |A| = 2n + 2m such that SAT(Φ) is the
projection of SUBSETSUM(A, b).

Proof Suppose formula Φ is defined in terms of variables x1, x2, . . . , xn and clauses
C1,C2, . . . ,Cm . We use a standard reduction from 3SAT to subset sum (e.g., [5],
Section 34.5.5). We define A(Φ) and b as follows. Every integer in A(Φ) as well as b
is an (n + m)-digit number (in base 10). The first n digit correspond to the variables
and the last m digits correspond to each of the clauses.

b j =
{
1, if 1 � j � n

4, if n + 1 � j � n + m
.

Next we construct 2n integers vi , v
′
i for i ∈ {1, . . . , n}.

vi j =
{
1, if j = i or xi ∈ C j−n

0, otherwise
,

v′
i j =

{
1, if j = i or xi ∈ C j−n

0, otherwise
.

Finally, we construct 2m integers si , s′
i for i ∈ {1, . . . ,m}.

si j =
{
1, if j = n + i

0, otherwise
,

123

appendix 175

104 D. Avis, H. R. Tiwary

Table 1 The base 10 numbers
created as an instance of
subset-sum for the 3SAT
formula
(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x2 x3 C1 C2 C3 C4

v1 1 0 0 1 0 1 0

v′
1 1 0 0 0 1 0 1

v2 0 1 0 0 1 1 0

v′
2 0 1 0 1 0 0 1

v3 0 0 1 1 1 0 0

v′
3 0 0 1 0 0 1 1

s1 0 0 0 1 0 0 0

s′1 0 0 0 2 0 0 0

s2 0 0 0 0 1 0 0

s′2 0 0 0 0 2 0 0

s3 0 0 0 0 0 1 0

s′3 0 0 0 0 0 2 0

s4 0 0 0 0 0 0 1

s′4 0 0 0 0 0 0 2

b 1 1 1 4 4 4 4

s′
i j =

{
2, if j = n + i

0, otherwise
.

We define the set A(Φ) = {v1, . . . , vn, v′
1, . . . , v

′
n, s1, . . . , sm, s′

1, . . . , s
′
m}. Table 1

illustrates the construction for the 3SAT formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

Consider the subset-sum instance with A(Φ), b as constructed above for any 3SAT
instanceΦ. Let S be any subset of A(Φ). If the elements of S sum exactly to b then it is
clear that for each i ∈ {1, . . . , n} exactly one of vi , v′

i belong to S. Furthermore, setting
xi = 1 if vi ∈ S or xi = 0 if v′

i ∈ S satisfies every clause. Thus the characteristic
vector of S restricted to {v1, . . . , vn} is a satisfying assignment for the corresponding
SAT formula.

Also, if Φ is satisfiable then the instance of subset sum thus created has a solution
corresponding to each satisfying assignment: Pick vi if xi = 1 or v′

i if xi = 0 in an
assignment. Since the assignment is satisfying, every clause is satisfied and so the sum
of digits corresponding to each clause is at least 1. Therefore, for a clause C j either
s j or s′

j or both can be picked to ensure that the sum of the corresponding digits is
exactly 4. Note that there is unique way to do this.

This shows that every vertex of the subset sum polytope SUBSETSUM(A(Φ), b)
projects to a vertex of SAT(Φ) and every vertex of SAT(Φ) can be lifted to a vertex
of SUBSETSUM(A(Φ), b). The projection is defined by dropping every coordinate
except those corresponding to the numbers vi in the reduction described above. The
lifting is defined by the procedure in the preceding paragraph. Hence, SAT(Φ) is a
projection of SUBSETSUM(A(Φ), b). ��

Combining the preceding two theorems we obtain the following.

123

176 appendix

Extension complexity of combinatorial polytopes 105

Corollary 2 For every natural number n � 1, there exists an instance A, b of the
subset-sum problem with O(n) integers in A such that xc(SUBSETSUM(A, b)) �
2Ω(

√
n).

As mentioned above, the polytope SUBSETSUM(A, b) is a face of KNAPSACK
(A, b) and hence Corollary 2 implies a superpolynomial lower bound for theKnapsack
polytope. We would like to note that a similar bound for the Knapsack polytope was
proved recently and independently by Pokutta and Vyve [12].

3.3 3d-matching

Consider a hypergraph G = ([n], E), where E contains triples for some i, j, k ∈ [n]
where i, j, k are distinct. A subset E ′ ⊆ E is said to be a 3-dimensional matching if
all the triples in E ′ are disjoint. The 3d-matching polytope 3DM(G) is defined as the
convex hull of the characteristic vectors of every 3d-matching of G. That is,

3DM(G) := conv
({

χ(E ′) | E ′ ⊆ E is a 3d-matching
})

It is often customary to consider only hypergraphs defined over three disjoint set
of vertices X,Y, Z such that the hyperedges are subsets of X × Y × Z . Observe that
any hypergraph G can be converted into a hypergraph H in such a form by making
three copies of the vertex set V, V ′, V ′′ and using a hyperedge (i, j ′, k′′) in H if and
only if (i, j, k) is a hyperedge in G. The following lemma shows that xc(3DM(G)) is
less than or equal to xc(3DM(H)). Since we are interested in superpolynomial lower
bounds, it suffices for our purposes to consider the former form.

Lemma 2 Let G = ([n], E) be a hypergraph on n vertices. Consider the hypergraph
H = ([3n], E ′) where (i, n + j, 2n + k) ∈ E ′ iff (i, j, k) ∈ E. Then, xc(3DM(G)) �
xc(3DM(H)).

Proof Identifying the variables corresponding to the hyperedge (i, j, k) in 3DM(G)

with the variable corresponding to the hyperedge (i, n + j, 2n + k), i < j < k in
3DM(H), we see that 3DM(G) is a projection of 3DM(H). Thus by Proposition 1
xc(3DM(G)) � xc(3DM(H)). ��

The 3d-matching problem asks: given a hypergraph G, does there exist a 3d-
matching that covers all vertices? This problem is known to be N P-complete and
was one of Karp’s 21 problems proved to be N P-complete [9,11]. Note that this prob-
lem can be solved by linear optimization over the polytope 3DM(G) and therefore it is
to be expected that 3DM(G) would not have a polynomial size extended formulation.

In this subsection, we show that the 3d-matching polytope has superpolynomial
extension complexity in the worst case. We prove this using a standard reduction from
3SAT to 3d-Matching used in the NP-completeness proof for the later problem (See
[9]). The form of this reduction, which is very widely used, employs a gadget for
each variable along with a gadget for each clause. We omit the exact details for the
reduction here because we are only interested in the correctness of the reduction and
the variable gadget (See Fig. 1).

123

appendix 177

106 D. Avis, H. R. Tiwary

Fig. 1 Gadget for a variable

In the reduction, any 3SAT formula Φ is converted to an instance of a 3d-matching
by creating a set of hyperedges for every variable (See Fig. 1) along with some other
hyperedges that does not concern us for our result. The crucial property that we require
is the following: any satisfiable assignment ofΦ defines some (possiblymore than one)
3d-matching. Furthermore, in any maximal matching either only the light hyperedges
or only the dark hyperedges are picked, corresponding to setting the corresponding
variable to, say, true or false respectively. Using these facts we can prove the following:

Theorem 7 Let Φ be an instance of 3SAT and let H be the hypergraph obtained by
the reduction above. Then SAT(Φ) is the projection of a face of 3DM(H).

Proof Let the number of hyperedges in the gadget corresponding to a variable x
be 2k(x). Then, the number of hyperedges picked among these hyperedges in any
matching in H is at most k(x). Therefore, if y1, . . . , y2k(x) denote the variables cor-

responding to these hyperedges in the polytope 3DM(H) then
∑2k(x)

i=1 yi � k(x) is a
valid inequality for 3DM(H). Consider the face F of 3DM(H) obtained by adding
the equation

∑2k(x)
i=1 yi = k(x) corresponding to each variable x appearing in Φ.

Any vertex of 3DM(H) lying in F selects either all light hyperedges or all dark
hyperedges. Furthermore, if in such a vertex of 3DM(H), light vertices are picked from
the gadget corresponding to a variable x then the corresponding satisfying assignment
sets x to true. Since, in any vertex of 3DM(H) that lies in F all variables corresponding
to light edges have the same value (the value of variable x in the corresponding sat-
isfying assignment), projecting out all variables except one variable yi corresponding
to any fixed (arbitrarily chosen) light hyperedge for each variable in Φ gives a valid
satisfying assignment for Φ and thus a vertex of SAT(Φ). Conversely, any vertex of
SAT(Φ) can be extended to a vertex of 3DM(H) lying in F .

123

178 appendix

Extension complexity of combinatorial polytopes 107

Fig. 2 Gadget to remove a crossing

Therefore, SAT(Φ) is the projection of F . ��
The number of vertices in H is O(nm) where n is the number of variables and m

the number of clauses in Φ. Considering only the 3SAT formulae with high extension
complexity from Sect. 3.1, we have m = O(n). Therefore, considering only the
hypergraphs arising from such 3SAT formulae and using Propositions 1 and 2, we
have that

Corollary 3 For every natural number n � 1, there exists a hypergraph H with O(n)

vertices such that xc(3DM(H)) � 2Ω(n1/4).

3.4 Stable set for cubic planar graphs

Now we show that STAB(G) can have superpolynomial extension complexity even
when G is a cubic planar graph. Our starting point is the following result proved by
Fiorini et al. [8].

Theorem 8 (Fiorini et al. [8]) For every natural number n � 1 there exists a graph
G such that G has O(n) vertices and O(n) edges, and xc(STAB(G)) � 2Ω(

√
n).

We start with this graph and convert it into a cubic planar graph G ′ with O(n2)
vertices and extension complexity at least 2Ω(

√
n).

3.4.1 Making a graph planar

For making any graph G planar without reducing the extension complexity of the
associated stable set polytope, we use the same gadget used by Garey, Johnson and
Stockmeyer [10] in the proof of NP-completeness of finding maximum stable set in
planar graph. Start with any planar drawing of G and replace every crossing with the
gadget H with 22 vertices shown in Fig. 2 to obtain a graphG ′. The following theorem
shows that STAB(G) is the projection of a face of STAB(G ′).

Theorem 9 Let G be a graph and let G ′ be obtained from a planar embedding of G
by replacing every edge intersection with a gadget shown in Fig. 2. Then, STAB(G)

is the projection of a face of STAB(G ′).

123

appendix 179

108 D. Avis, H. R. Tiwary

Table 2 Values of si j i\ j 2 1 0

2 9 8 7

1 9 9 8

0 8 8 7

Proof Let H1, . . . , Hk be the gadgets introduced in G to obtain G ′. Any stable set S
of G ′ contains some, or possibly no, vertices from the gadgets introduced. For any
gadget H ∈ {H1, . . . , Hk}, let VH denote the set of vertices of H . Then, S ∩ VH is a
stable set for H . Denote by si j the size of maximum independent set in H containing
exactly i vertices out of {v1, v′

1} and exactly j vertices out of {v2, v′
2}. Table 2 lists

the values of si j for i, j ∈ {1, 2}. The table is essentially Table 1 from [10] but their
table lists the size of the minimum vertex cover and so we subtract the entries from
the number of nodes in the gadget which is 22.

Aswe see, every stable set of H has nomore than9vertices andhence
∑

i∈VH
xi � 9

is a valid inequality for STAB(G ′). Consider the face

F := STAB(G ′)
k⋂

i=1

⎧⎨
⎩x |

∑
j∈VHi

x j = 9

⎫⎬
⎭

Consider any stable set S of G ′ lying in the face F . It is clear that at least one vertex
must be picked in S out of each {v1, v′

1} and {v2, v′
2}. Therefore, for any edge (u, v) in

G it is not possible that both u, v are in S and hence projecting out the vertices from
the gadgets we get a valid stable set for G. Alternatively, any independent set from G
can be extended to a stable set in G ′ by selecting the appropriate maximum stable set
from each of the gadgets. Therefore, STAB(G) is a projection of F . ��

Since for any graph G with O(n) edges, the number of gadgets introduced k �
O(n2), we have that the graph G ′ in the above theorem has at most O(n2) vertices and
edges. Therefore we have a planar graph G ′ with at most O(n2) vertices and O(n2)
edges. This together with Theorem 8, Theorem 9, Proposition 1, and Proposition 2
yields the following corollary.

Corollary 4 For every n there exists a planar graph G with O(n2) vertices and O(n2)
edges such that xc(STAB(G)) � 2Ω(

√
n).

3.4.2 Making a graph cubic

Suppose we have a graph G and we transform it into another graph G ′ by performing
one of the following operations:

ReduceDegree Replace a vertex v of G of degree δ � 4 with a cycle Cv =
(v1, v

′
1, . . . , vδ, v

′
δ) of length 2δ and connect the neighbors of v to

alternating vertices (v1, v2, . . . , vδ) of the cycle (See Fig. 3a).
RemoveBridge Replace any degree two vertex v in G by a four cycle v1, v2, v3, v4.

Let u and w be the neighbors of v in G. Then, add the edges (u, v1)

and (v3, w). Also add the edge (v2, v4) in the graph (See Fig. 3b).

123

180 appendix

Extension complexity of combinatorial polytopes 109

(a) (b)

Fig. 3 Gadgets. a Replace a degree 4 vertex, b remove a degree two vertex

RemoveTerminal Replace any vertex with degree either zero or one with a triangle.
In case of degree one, attach any one vertex of the triangle to the
neighbor. For example, if uv is an edge with v a vertex of degree
one, then we replace v with a triangle and attach u to an arbitrary
vertex of the triangle.

Theorem 10 Let G be any graph and let G ′ be obtained by performing any number
of operation ReduceDegree, RemoveBridge, or RemoveTerminal described above on
G. Then STAB(G) is the projection of a face of STAB(G ′).

Proof It suffices to show that the theorem is true for a single application of either of
the three operations.

Consider an application of the operation ReduceDegree. Let C be the gadget that
was used to replace a vertex v in G to obtain G ′. Let VC denote the set of vertices of
C . Then, for any stable set S of G ′, the set S ∩ VC is a stable set for C . Every stable
set of C has no more than δ = |C |/2 vertices and hence ∑

v∈VC xv � |C |/2 is a valid
inequality for STAB(G ′). Consider the face

F := STAB(G ′)
k⋂

i=1

⎧⎨
⎩x |

∑
v∈VCi

xv = |Ci |/2
⎫⎬
⎭

Any stable set S lying in the face F must either select all vertices (v′
1, . . . , v

′
δ) or

(v1, . . . , vδ) for each cycle C of length 2δ. Furthermore, if S contains any neighbor
of v then the former set of vertices must be picked in S. Also, any stable set of G can
be extended to a stable set of G ′ that lies in F . For each stable set in F projecting out
every vertex of the cycles introduced except any one that has degree 3 gives us a valid
stable set of G and therefore, STAB(G) is the projection of a face of STAB(G ′).

On the other hand, suppose operation RemoveBridge is used to transform any
graph G into a graph G ′. Let C be the gadget used to replace a vertex v in G. Let
VC = (v1, v2, v3, v4) denote the set of vertices of C . Then, for any stable set S in
G ′, the set S ∩ VC is a stable set for C . It is easy to see that every stable set of C
satisfies the inequality xv1 + xv3 + 2(xv2 + xv4) � 2 and hence it is a valid inequality
for STAB(G ′). Define hC to be the equality obtained from the previous inequality for
a gadget C and consider the face

123

appendix 181

110 D. Avis, H. R. Tiwary

F := STAB(G ′)
k⋂

i=1

hCi

Any stable set S of G ′ lying in the face F must either select vertices (v1, v3) or one
of v2 or v4 for each gadget C . Furthermore, if S contains any neighbor of v then it
contains exactly one of v2 or v4 but not both. Also, any stable set of G can be extended
to a stable set of G ′ that lies in F . For each stable set in F projecting out every vertex
of the gadget and using the map xv = xv2 + xv4 gives us a valid stable set of G and
therefore, STAB(G) is the projection of F , a face of STAB(G ′).

Finally it is easy to see that ifG ′ is obtained by applying operation RemoveTerminal
on a graph G then STAB(G) is a projection of STAB(G ′). ��

If G has n vertices and m edges then first applying operation ReduceDegree until
every vertex has degree at most 3, and then applying operation RemoveBridge and
RemoveTerminal repeatedly until no vertex of degree 0, 1 or 2 is left, produces a graph
that has O(n +m) vertices and O(n +m) edges. Furthermore, any application of the
three operations do not make a planar graph non-planar. Combining this fact with
Theorem 10, Corollary 4, Proposition 1, and Proposition 2, we have

Corollary 5 For every natural number n � 1 there exists a cubic planar graph G
with O(n) vertices and edges such that xc(STAB(G)) � 2Ω(n1/4).

In summary, starting from a graph whose stable set polytope has high extension
complexity, we trade edges for vertices by replacing intersections with vertices thus
ensuring planarity at the cost of making the number of vertices quadratic. Then we
make the planar graph cubic with just a linear blowup. Taken together, we end up with
a cubic planar graph with a quadratic number of vertices and edges compared to the
original graph but whose stable set polytope has complexity as large as that of the
original graph. The quadratic blowup in the number of vertices results in the lower
bound becoming 2Ω(n1/4) from 2Ω(

√
n).

4 Extended formulations for CUT�(G) and its relatives

We use the results described in the previous section to obtain bounds on the extension
complexity of the cut polytope of graphs. We begin by reviewing the result in [8] for
CUT�

n using a direct argument that avoids introducing correlation polytopes. For
any integer n ≥ 2 consider the integers b1 = · · · = bn−1 = 1 and bn = 3 − n. Let
b = (b1, b2, . . . , bn) be the corresponding n-vector. Inequality (1) for this b-vector is
easily seen to be of negative type and can be written

∑
1≤i< j≤n−1

xi j ≤ 1 + (n − 3)
n−1∑
i=1

xin . (4)

Lemma 3 Let S be any cut in Kn not containing vertex n and let δ(S) be its corre-
sponding cut vector. Then the slack of δ(S) with respect to (4) is (|S| − 1)2.

123

182 appendix

Extension complexity of combinatorial polytopes 111

Proof

1 + (n − 3)
n−1∑
i=1

δ(S)in −
∑

1≤i< j≤n−1

δ(S)i j = 1 + (n − 3)|S| − |S|(n − |S| − 1)

= |S|2 − 2|S| + 1.

��
Let us label a cut S by a binary n-vector a where ai = 1 if and only if i ∈ S. Under
the conditions of the lemma we observe that the slack (|S| − 1)2 = (aT b − 1)2 since
we have an = 0 and b1 = · · · = bn−1 = 1. Now consider consider any subset T of
{1, 2, . . . , n − 1} and set bi = 1 for i ∈ T, bn = 3 − |T | and bi = 0 otherwise. We
form a 2n−1 by 2n−1 matrix M as follows. Let the rows and columns be indexed by
subsets T and S of {1, 2, . . . , n−1}, labeled by the n-vectors a and b as just described.
A straight forward application of Lemma 3 shows that M = M∗(n − 1). Hence using
the fact that the non-negative rank of a matrix is at least as large as that of any of its
submatrices, we have that every extended formulation of CUT�

n has size 2Ω(n).
Recall the hypermetric polytope, defined in Sect. 2.1, is the intersection of all

hypermetric inequalities. As remarked, nonnegative type inequalities are weaker than
hypermetric inequalities and so valid for this polytope. In addition all cut vertices
satisfy all hypermetric inequalities. Therefore M = M∗(n − 1) is also a submatrix of
a slack matrix for the hypermetric polytope for Kn . So this polytope also has extension
complexity at least 2Ω(n).

Finally let us consider the polytope, whichwe denote Pn , defined by the inequalities
used to define rows of the slackmatrixM above.Wewill show thatmembership testing
for Pn is co-NP-complete.

Theorem 11 Let Pn be the polytope defined as above, and let x ∈ R
n(n−1)/2. Then it

is co-NP-complete to decide if x ∈ Pn.

Proof Clearly if x /∈ Pn then this can be witnessed by a violated inequality of type
(4), so the problem is in co-NP.

To see the hardness we do a reduction from the clique problem: given graph G =
(V, E) on n vertices and integer k, does G have a clique of size at least k? Since a
graph has a clique of size k if and only if its suspension has a clique of size k + 1
we can assume wlog that G is a suspension with vertex vn connected to every other
vertex.

Form a vector x as follows:

xi j =

⎧⎪⎨
⎪⎩
1/k, if j = n

2/k, if j 	= n and i j ∈ E

−n2 otherwise

,

Fix an integer t, 2 ≤ t ≤ n and consider a b-vector with bn = 3 − t , and with
t − 1 other values of bi = 1. Without loss of generality we may assume these are

123

appendix 183

112 D. Avis, H. R. Tiwary

labeled 1, 2, . . . , t − 1. Let T be the induced subgraph of G on these vertices. The
corresponding non-negative type inequality is:

∑
1≤i< j≤t−1

xi j ≤ 1 + (t − 3)
t−1∑
i=1

xin . (5)

Suppose T is a complete subgraph. Then the left hand side minus the right hand
side of (5) is

2(t − 1)(t − 2)

2k
−

(
1 + (t − 3)(t − 1)

k

)
= t − k − 1

k
.

This will be positive if and only if t ≥ k+1, in which case x violates (5). On the other
hand if T is not a complete subgraph then the left hand side of (5) is always negative
and so the inequality is satisfied. Therefore x satisfies all inequalities defining rows of
M if an only if G has no clique of size at least k. ��

4.1 Cut polytope for minors of a graph

A graph H is a minor of a graph G if H can be obtained from G by contracting some
edges, deleting some edges and isolated vertices, and relabeling. In the introduction
we noted that if an n vertex graph G has no K5-minor then CUT�(G) has O(n3)
extension complexity. We will now show that the extension complexity of a graph G
can be bounded from below in terms of its largest clique minor.

Lemma 4 Let G be a graph and let H be obtained by deleting an edge e of
G, then CUT�(G) is an extension of CUT�(H). In particular, xc(CUT�(G)) �
xc(CUT�(H)).

Proof Any vertex v of CUT�(H) defines a cut on graph H . Let H1 and H2 be the
two subsets of vertices defined by this cut. Consider the same subsets over the graph
G, and the corresponding cut vector for G. This vector is the same as v extended with
a coordinate corresponding to the edge e in G which was removed to obtain H . The
value on this coordinate is 0 if the end points of this edge belong to different sides of
the cut and 1 otherwise. In either case, every vertex of CUT�(G) projects to a vertex
of CUT�(H) and every vertex of CUT�(H) can be lifted to a vertex of CUT�(G).

Therefore, CUT�(G) is an extended formulation of CUT�(H) and hence by
Proposition 1

xc(CUT�(G)) � xc(CUT�(H)).

��
Lemma 5 Let G be a graph and let H be obtained by deleting a vertex v of
G, then CUT�(G) is an extension of CUT�(H). In particular, xc(CUT�(G)) �
xc(CUT�(H)).

The proof is analogous to that of Lemma 4.

123

184 appendix

Extension complexity of combinatorial polytopes 113

Lemma 6 Let G be a graph and let H be obtained by contracting an edge e =
(u, v) of G, then CUT�(H) is the projection of a face of CUT�(G). In particular,
xc(CUT�(G)) � xc(CUT�(H)).

Proof Suppose that the vertices u, v are contracted to a new vertex labeled u in H .
Consider the inequality xe � 0. This is a valid inequality for CUT�(G). Consider the
face

F = CUT�(G) ∩ {xe = 0}.

Consider any vertex of F . Project out xe and also xe′ for any e′ = (v,w) if (u, w)

is an edge in G. Clearly this linear map projects every vertex in F to a vertex of
CUT�(H). Also, any vertex of CUT�(H) can be lifted to a vertex of CUT�(G)

lying in F as follows. Set xe = 0, and for an edge e′ = (v,w) in G we set xvw = xuw.
It is easy to check that this is a valid cut for G that lies in F .

It is thus clear that CUT�(H) is obtained as the projection of a face of CUT�(G)

by setting xe = 0 for the contracted edge e. Hence by Proposition 2

xc(CUT�(G)) � xc(CUT�(H)).

��
Combining Lemma 4, 5, and 6 we get the following theorem.

Theorem 12 Let G be a graph and H be a minor of G. Then,

xc(CUT�(G)) � xc(CUT�(H)).

Using the above theorem togetherwith the result of [8] that the extension complexity
of CUT�(Kn) is at least 2Ω(n) we get the following result.

Corollary 6 The extension complexity of CUT�(G) for a graph G with a Kn minor
is at least 2Ω(n).

Using this theorem we can immediately prove that the Bell inequality polytopes
mentioned in the introduction have exponential complexity.

Corollary 7 The extension complexity of CUT�(K1,n,n) is at least 2Ω(n).

Proof Pick any matching of size n between the vertices in each of the two parts
of cardinality n. Contracting the edges in this matching yields Kn+1 and the result
follows. ��

4.2 Cut polytope for K6 minor-free graphs

Let G = (V, E) be any graph with V = {1, . . . , n}. Consider the suspension G ′ of G
obtained by adding an extra vertex labeled 0 with edges to all vertices V .

123

appendix 185

114 D. Avis, H. R. Tiwary

Theorem 13 Let G = (V, E) be a graph and let G ′ be a suspension over G. Then
STAB(G) is the projection of a face of CUT�(G ′).

Proof The polytope STAB(G) is defined over variables xi corresponding to each of
the vertex i ∈ V whereas the polytope CUT�(G ′) is defined over the variables xi j for
i, j ∈ {0, . . . , n}.

Any cut vertex C of CUT�(G ′) defines sets S, S such that xi j = 1 if and only if
i ∈ S, j ∈ S. We may assume that 0 ∈ S by interchanging S and S if necessary. For
every edge e = (k, l) in G consider an inequality he := {x0k + x0l − xkl � 0}. It is
clear that he is a valid inequality for CUT�(G ′) for all edges e in G. Furthermore, he
is tight for a cut vector in G ′ if and only if either k, l do not lie in the same cut set or
k, l both lie in the cut set containing 0. Therefore consider the face

F := CUT�(G ′)
⋂

(i, j)∈E
{x0i + x0 j − xi j = 0}.

Each vertex in F can be projected to a valid stable set in G by projecting onto the
variables x01, x02, . . . , x0n . Furthermore, every stable set S in G can be extended to
a cut vector for G ′ by taking the cut vector corresponding to S, S ∪ {0}. Therefore,
STAB(G) is the projection of a face of CUT�(G ′). ��

Using this theorem it is easy to show the existence of graphs with a linear number
of edges that do not have K6 as a minor and yet have a high extension complexity. In
fact we get a slightly sharper result.

Theorem 14 For every n � 2 there exists a graph G which is a suspension of a planar
graph and for which xc(CUT�(G)) � 2Ω(n1/4).

Proof Consider a planar graphG = (V, E)with n vertices forwhich xc(STAB(G)) �
2Ω(n1/4). Corollary 5 guarantees the existence of such a graph for every n. Then the
suspension over G has n + 1 vertices and a linear number of edges. The theorem then
follows by applying Theorem 13 together with Propositions 1 and 2. ��

The above theorem provides a sharp contrast for the complexity of the cut poly-
tope for graphs in terms of their minors. As noted in the introduction, for any K5
minor-free graph G with n vertices CUT�(G) has an extension of size O(n3)whereas
the above result shows that there are K6 minor free graphs whose cut polytope has
superpolynomial extension complexity.

5 Concluding remarks

We have a given a simple polyhedral procedure for proving lower bounds on the
extension complexity of a polytope. Using this procedure and some standard NP-
completeness reductions we were able to prove lower bounds on the extension com-
plexity of various well-known combinatorial polytopes. For the cut polytope in par-
ticular, we are able to draw a sharp line, in terms of minors, for when this complexity
becomes super polynomial.

123

186 appendix

Extension complexity of combinatorial polytopes 115

Nevertheless the procedure is not completely ‘automatic’ in the sense that any NP-
completeness reduction of a certain type, say using gadgets, automatically gives a
result on the extension complexity of related polytopes. This would seem to be a very
promising line of future research.

Acknowledgments Research of the first author is supported by the NSERC and JSPS. The second author
was supported by FNRS, Belgium as a postdoctoral researcher during this research.

References

1. Avis, D., Imai, H., Ito, T., Sasaki, Y.: Two-party bell inequalities derived from combinatorics via
triangular elimination. J. Phys. A Math. Gen. 38(50), 10971–10987 (2005)

2. Avis, D., Imai, H., Ito, T.: Generating facets for the cut polytope of a graph by triangular elimination.
Math. Program. 112(2), 303–325 (2008)

3. Barahona, F.: The max-cut problem on graphs not contractible to K5. Oper. Res. Lett. 2(3), 107–111
(1983). ISSN 0167–6377

4. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1(3), 195–290 (1964)
5. Corman, T.H., Leiserson, C. E., Rivest, R. L.: Introduction to Algorithms. MIT Press, Cambridge, MA

(2009). ISBN 0-262-03141-8
6. de Wolf, R.: Nondeterministic quantum query and communication complexities. SICOMP. SIAM J.

Comput. 32, 681–699 (2003)
7. Deza,M.M., Laurent,M.: Geometry of Cuts andMetrics, Volume 15 ofAlgorithms andCombinatorics.

Springer, Berlin (1997)
8. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formu-

lations: exponential separation and strong lower bounds. In: STOC, pp. 95–106 (2012)
9. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

W.H. Freeman, San Francisco, CA (1979)
10. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor.

Comput. Sci. 1, 237–267 (1976)
11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Com-

plexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
12. Pokutta, S., Vyve, M.V.: A note on the extension complexity of the knapsack polytope. Optimization

Online (2013)
13. Razborov, A.A.: On the distributional complexity of disjointness. Theor. Comput. Sci. 106(2), 385–390

(1992)
14. Yannakakis,M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst.

Sci. 43(3), 441–466 (1991)
15. Ziegler, G.M.: Lectures on Polytopes, Volume 152 of Graduate Texts in Mathematics. Springer, Berlin

(1995)

123

appendix 187

E
E X T E N S I O N C O M P L E X I T Y O F F O R M A L
L A N G U A G E S

The following article is unpublished and is under peer review. It is
included here as an appendix for completeness.

189

ar
X

iv
:s

ub
m

it/
15

46
45

6
 [

cs
.C

C
]

 2
8

A
pr

 2
01

6

Extension Complexity of Formal Languages1

Hans Raj Tiwary
hansraj@kam.mff.cuni.cz

KAM/ITI, Charles University,
Malostranské nám. 25,

118 00 Prague 1, Czech Republic

Abstract

In this article we undertake a study of extension complexity from the perspective of formal
languages. We define a natural way to associate a family of polytopes with binary languages.
This allows us to define the notion of extension complexity of formal languages. We prove several
closure properties of languages admitting compact extended formulations. Furthermore, we give
a sufficient machine characterization of compact languages. We demonstrate the utility of this
machine characterization by obtaining lower bounds in streaming models and upper bounds on
extension complexities of several polytopes.

Keywords: Extended formulations, formal languages

1This work was partially supported by grant no. P202-13/201414 of GAČR

Preprint submitted to arXiv April 28, 2016

appendix 191

1. Introduction

A polytope Q is said to be an extended formulation of a polytope P if P can be described
as a projection of Q. Measuring the size of a polytope by the number of inequalities required
to describe it, one can define the notion of extension complexity of a polytope P – denoted by
xc(P) – to be the size of the smallest possible extended formulation.

Let ϕ be a boolean formula. Consider the following polytopes:

SAT = conv {x |x encodes a satisfiable boolean formula}
SAT(ϕ) = {x |ϕ(x) = 1}

The former polytope consists of all strings that encode2 satisfiable boolean formulae, while
the latter language consists of all satisfying assignments of a given boolean formula. Which of
these represents the boolean satisfiability problem more naturally?

Reasonable people will agree that there is no correct choice of a natural polytope for a
problem. One complication is that there are various kinds of problems: decision, optimization,
enumeration, etc, and very similar problems can have very different behaviour if the notion of
problem changes.

Several recent results have established superpolynomial lower bounds on the extension com-
plexity of specific polytopes. For example Fiorini et. al [1] showed that polytopes associated
with MAX-CUT, TSP, and Independent Set problems do not admit polynomial sized extended
formulations. Shortly afterwards Avis and the present author [2] showed that the same holds
for polytopes related to many other NP-hard problems. Subsequently Rothvoß [3] showed that
even the perfect matching polytope does not admit polynomial sized extended formulation.
These results have been generalized in multiple directions and various lower bounds have been
proved related to approximation [4, 5, 6] and semidefinite extensions [7, 8, 9].

A few fundamental questions may be raised about such results:

• How does one choose (a family of) polytopes for a specific problem?

• To what extent does this choice affect the relation between extension complexity of the
chosen polytope and the complexity of the underlying problem?

• What good are extension complexity bounds anyway3?

The intent of this article is to say something useful (and hopefully interesting) about such
problems. In particular, our main contributions are the following:

• We define formally the notion of extension complexity of binary language. Our definition
is fairly natural and we do not claim any novelty here. This however is a required step
towards any systematic study of problems that admit small extended formulations.

• We define formally what it means to say that a language admits small extended formu-
lation. Again we do not claim novelty here since Rothvoß mentions similar notion in one
of the first articles showing existence of polytopes with high extension complexity [10].

2Assume some (arbitrary but fixed) encoding of boolean formulae as binary strings.
3Perfect Matching remains an easy problem despite exponential lower bound on the extension complexity of

the perfect matching polytope. What does an exponential lower bound for the cut polytope tell us about the
difficulty of the MAX-CUT problem?

1

192 appendix

• We prove several closure properties of languages that admit compact extended formula-
tions. Some of these results are trivial and some follows from existing results. For a small
number of them we need to provide new arguments.

• We prove a sufficient condition in terms of walks on graphs and in terms of accepting Tur-
ing Machines, for a language to have polynomial extension complexity. We show how this
characterization can be used to prove space lower bounds for non-deterministic streaming
algorithms, and also to construct small extended formulations for various problems by
means of a small “verifier algorithm”. We provide some small examples to this end.

2. Background Material and Related Work

2.1. Polytopes and Extended Formulations

A polytope P ⊆ Rd is a closed convex set defined as intersection of a finite number of
inequalities. Alternatively, it can be defined as the convex hull of a finite number of points.
Any polytope that is full-dimensional has a unique representation in terms of the smallest
number of defining inequalities or points. The size of a polytope is defined to be the smallest
number of inequalities required to define it. For the purposes of this article all polytopes will
be assumed to be full-dimensional. While in doing so, no generality is lost for our discussion,
we will refrain from discussing such finer points. We refer the reader to [11] for background on
Polytopes.

A polytope Q is called an Extended Formulation or simply EF of a polytope P , if P can
be obtained as a projection of Q. The extension complexity of a polytope, denoted by xc(P),
is defined to be the smallest size of any possible EF of P .

Extended formulations have a long history of study. Here we refer to only a handful of
work that are closely related to this article. For more complete picture related to extended
formulations, we refer the reader to the excellents surveys by Conforti et al. [12] and by Kaibel
[13] as a point to start.

We will use the following known results related to extended formulations.

Theorem 1 (Balas). Let P1 and P2 be polytopes and let P = conv(P1 ⊎ P2), where ⊎ denotes
the convex hull of the union. Then xc(P) 6 xc(P1) + xc(P2) + 2.

2.2. Online Turing machines

In this article we would be interested in online variants of Turing machines. Informally
speaking, these machines have access to two tapes: an input tape where the head can only
move from left to right (or stay put where it is) and a work tape where the work head can
move freely. When the machine halts, the final state determines whether the input has been
accepted or not. Such machines - like usual Turing machines - can be either deterministic or
non-deterministic. For a non-deterministic machine accepting a binary language L we require
that if x /∈ L then the machine rejects x for all possible nondeterministic choices, and if x ∈ L
then there be some set of non-deterministic choices that make the machine accept L.

The working of an online Turing machine can be thought of as the working of an online
algorithm that makes a single pass over the input and decides whether to accept or reject the
input. Natural extensions allow the machine to make more than one pass over the input.

2

appendix 193

Definition 1. The complexity class k-NSPACE(s(n)) is the class of languages accepted by
a k-pass non-deterministic Turing machines using space s(n). Similarly, the complexity class
k-DSPACE(s(n)) is the class of languages accepted by a k-pass deterministic Turing machine
using space s(n).

The classes 1L and 1NL were introduced by Hartmanis, Mahaney, and Immerman [14, 15] to
study weaker forms of reduction. In our terminology the class 1L would be 1-DSPACE(log n)
while the class 1NL would be 1-NSPACE(log n). The motivation for defining these classes
was that if we do not know whether P is different from NP or not, then using a polynomial
reduction may not be completely justified in saying that a problem is as hard or harder than
another problem, and weaker reductions are probably more meaningful. In any case, these
languages have a rich history of study. It is known that non-determinism makes one-pass
machines strictly more powerful for s(n) = Ω(log n) [16].

2.3. Glued Product of Polytopes

Let P1 ⊆ Rd1+k and P2 ⊆ Rd2+k be two 0/1 polytopes with vertices vert(P1), vert(P2)
respectively. The glued product of P1 and P2 where the glueing is done over the last k coordinates
is defined to be:

P1 ×k P2 := conv







x
y
z


 ∈ {0, 1}d1+d2+k

∣∣∣∣∣∣

(
x
z

)
∈ vert(P1),

(
y
z

)
∈ vert(P2)



 .

It is known [17, 18] that if every vertex of P1 and P2 contains at most one 1 in the last k
coordinates then xc(P1 ×k P2) 6 xc(P1) + xc(P2). We will use this to show that languages in
the class 1NL admit polynomial extended formulations. In particular we will use the following
Lemma.

Lemma 1. [17] Let P1 ⊆ Rd1+k and P2 ⊆ Rd2+k be two 0/1 polytopes such that the every vertex
of P1 and P2 contains at most one nonzero coordinate entry among the k-coordinates used for
the glueing. Then,

xc(P1 ×k P2) 6 xc(P1) + xc(P2).

3. Polytopes for Formal Languages

Let L ⊆ {0, 1}∗ be a language over the 0/1 alphabet. For every natural number n define
the set L(n) := {x ∈ {0, 1}n | x ∈ L}. Viewing each string x ∈ L(n) as a column vector, and
ordering the strings lexicographically, we can view the set L(n) as a matrix of size n× |L(n)|.
Thus we are in a position to naturally associate a family of polytopes with a given language
and the extension complexity of these polytopes can serve as a natural measure of how hard is
it to model these languages as Linear Programs.

That is, one can associate with L, the family of polytopes P(L) = {P (L(1)), P (L(2)), . . .}
with P (L(n)) := conv{x | x ∈ L}. The extension complexity xc(P(L)) is then an intrinsic
measure of complexity of the language L.

3

194 appendix

Extension complexity of Languages

Definition 2. The extension complexity of a language L – denoted by xc(L) – is defined by
xc(L) := xc(P(L)).

We say that the extension complexity of L, denoted by xc(L) is f(n), where f : N → R+ is a
non-negative non-decreasing function on natural numbers, if for every polytope P (L(n)) ∈ P(L)
we have that xc(P (L(n))) = f(n). One can immediately see that this definition is rather useless
in its present form since for different values of n, the corresponding polytopes in P(L) may
have extension complexities that are not well described by a simple function. For example, the
perfect matching polytope would have no strings of length n if n is not of the form

(
r
2

)
for some

even positive integer r. To avoid such trivially pathological problems, we will use asymptotic
notation to describe the membership extension complexity of languages.

We will say that xc(L) = O(f) to mean that there exists a constant c > 0 and a natural
number n0 such that for every polytope P (L(n)) ∈ P(L) with n > n0 we have xc(P (L(n))) 6
cf(n).

We will say that xc(L) = Ω(f) to mean that there exists a constant c > 0 and such that
for every natural number n0 there exists an n > n0 such that xc(P (L(n))) > cf(n). Note the
slight difference from the usual Ω notation used in asymptotic analysis of algorithms 4. The
intent here is to be able to say that a polytope family of a certain language contains an infinite
family of polytopes that have high extension complexity.

Finally, we will say that xc(L) = Θ(f) to mean that xc(L) = O(f) as well as xc(L) =
Ω(f). To give an example of the notation, recent result of Rothvoß[3] proving that perfect
matching polytope has high extension complexity would translate in our setting to the following
statement:

Theorem. [3] Let L be the language consisting of the characteristic vectors of perfect matchings
of complete graphs. Then, there exists a constant c > 1 such that xc(L) = Ω(cn).

One can extend the above notation to provide more information by being able to use func-
tions described by asysmptotic notation as well. For example, knowing that the perfect match-
ing polytope for Kn has extension complexity at most 2

n
2 [19] together with Rothvoß’ result

one could say that the language of all perfect matchings of complete graphs has extension
complexity 2Θ(n).

Proposition 1. For every language L ⊆ {0, 1}∗ we have xc(L) 6 xc(L) + xc(L) 6 2n.

Proof. The first inequality is trivial. For the last inequality, observe that L(n) and L(n) has
at most 2n vertices altogether.

4. Languages with small extension complexities

Now we are ready to define the class of languages that we are interested in: namely, the
languages that have small extension complexities.

Definition 3. CF is the class of languages admitting Compact extended Formulations and is
defined as

CF = {L ⊆ {0, 1}∗ | ∃c > 0 s.t. xc(L) 6 nc}

4This usage, however, is common among number theorists.

4

appendix 195

4.1. Some canonical examples

For any given boolean formula ϕ with n variables define the polytope SAT(ϕ) to be the
convex hull of all satisfying assignments and UNSAT(ϕ) to be the convex hull of all non-
satisfying assigments. That is,

SAT(ϕ) := conv({x ∈ {0, 1}n | ϕ(x) = 1}),
UNSAT(ϕ) := conv({x ∈ {0, 1}n | ϕ(x) = 0})

Let n ∈ N and m = n2. For the complete graph Kn define a 3SAT boolean formula ϕm such
that CUT�(Kn) is a projection of SAT(ϕm). Consider the relation xij = xii ⊕ xjj, where ⊕ is
the xor operator. The boolean formula

(xii ∨ xjj ∨ xij) ∧ (xii ∨ xjj ∨ xij) ∧ (xii ∨ xjj ∨ xij) ∧ (xii ∨ xjj ∨ xij)

is true if and only if xij = xii ⊕ xjj for any assignment of the variables xii,xjj and xij .
Therefore we define ϕm (with m = n2) as

ϕm :=
∧

i,j∈[n]
i6=j

[
(xii ∨ xjj ∨ xij) ∧ (xii ∨ xjj ∨ xij)∧
(xii ∨ xjj ∨ xij) ∧ (xii ∨ xjj ∨ xij)

]
. (1)

We will call the family of CNF formulae defined by 1 to be the CUTSAT family. It is easy
to see the following.

Proposition 2. xc(SAT(ϕm)) = 2Ω(n), where m = n2.

Proof. The satisfying assignments of ϕm when restricted to the variables xij with i 6= j are
exactly the cut vectors of Kn and every cut vector of Kn can be extended to a satisfying
assignment of ϕ.

Proposition 3. xc(UNSAT(ϕm)) 6 O(n4).

Proof. Let ϕ be a DNF formula with n variables andm clauses. We can show that xc(SAT(ϕ)) 6
O(mn).

If ϕ consists of a single clause then it is just a conjunction of some literals. In this case
SAT(ϕ) is a face of the n-hypercube and has xc(SAT(ϕ)) 6 2n. Furthermore, for DNF formulae
ϕ1,ϕ2 we have that SAT(ϕ1 ∨ ϕ2) = SAT(ϕ1) ⊎ SAT(ϕ2)). Therefore, using Theorem 1
repeatedly we obtain that for a DNF formula ϕ with n variables and m clauses SAT(ϕ) 6
O(mn).

5. Closure properties of compact languages

Now we discuss the closure properties of the class CF with respect to some common oper-
ations on formal languages. The operations that we consider are as follows.

• Complement : L = {x | x /∈ L}
• Union : L1 ∪L2 = {x | x ∈ L1 ∨ x ∈ L2}
• Intersection : L1 ∩L2 = {x | x ∈ L1 ∧ x ∈ L2}
• Set difference : L1 \L2 = {x | x ∈ L1 ∧ x /∈ L2}
• Concatenation : L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}
• Kleene star : L∗ = L ∪LL ∪LLL ∪LLLL ∪ . . .

5

196 appendix

Proposition 4. CF is not closed under taking complement.

Proof. Let Φ be the family of 3CNF formula containing CUTSAT formula for m = n2 and
containing some tautology with m variables for all other m. Let Lsat be the language containing
satisfying assignments of formulae in this family. Similarly, let Lunsat be the language containing
non-satisfying assignments of formulae in this family.

It is easy to see that Lsat = Lunsat. Now, Lunsat ∈ CF due to Proposition 3 while Lsat /∈ CF
due to Proposition 2.

Proposition 5. CF is closed under taking union.

Proof. Let L1 and L2 be two languages. Then, xc(L1∪L2) 6 xc(L1)+xc(L2)+2 (cf. Theorem
1).

Proposition 6. CF is not closed under taking intersection.

Proof. Let L1 be a language such that a string x ∈ L1 if and only if it satisfies the following
properties.

• |x| = (n+ 1)
(n
2

)
for some natural number n, and

• xij(n+1) = xiji ⊕ xijj if the characters are indexed as xijk with 1 6 i < j 6 n, 1 6 k 6
n+1.

We claim that xc(L1) = O(n3). Indeed P
(
L1

(
(n+ 1) ·

(
n
2

)))
is the product of polytopes

Pij =
{
x ∈ {0, 1}n+1 | xn+1 = xi ⊕ xj

}

for 1 6 i < j 6 n and xc(Pij) = O(n).
Now let L2 be a language such that a string x ∈ L2 if and only if it satisfies the following

properties.

• |x| = (n+ 1)
(n
2

)
for some natural number n, and

• xi1j1k = xi2j2k for all k ∈ [n], i 6= j ∈ [n]

Each polytope P
(
L1

(
(n+ 1) ·

(n
2

)))
is just an embedding of ���n+(n2)

in R(n+1)(n2) where ���k

is the k-dimensional hypercube. Therefore, xc(L2) = O(n2).
Finally, observe that for m = (n + 1)

(
n
2

)
the polytope P ((L1 ∩ L2)(m)) when projected to

the coordinates labelled xij(n+1) is just the polytope CUT�
n (cf. Proposition 2). Therefore,

xc(L1 ∩L2) = 2Ω(n) and even though L1,L2 ∈ CF , the intersection L1 ∩L2 /∈ CF .

Proposition 7. CF is not closed under taking set difference.

Proof. The complete language {0, 1}∗ clearly belongs to CF . For any language L we have
L = {0, 1}∗ \ L. If CF were closed under taking set-difference, it would also be closed under
taking complements. But as pointed out in Proposition 4, it is not.

Proposition 8. CF is closed under concatenation.

Proof. P (L1L2(n)) is the union of the polytopes P (L1(i))×P (L2(n− i)) for i ∈ [n]. Therefore,
we have that xc(L1L2) 6 O(n(xc(L1) + xc(L2))).

6

appendix 197

Proposition 9. CF is closed under taking Kleene star.

Proof. Let L ∈ CF . For 0 6 k 6 n, consider the polytope Pk defined as

Pk := conv











en+1
i+1

0i

x
0n−i−k

en+1
i+|x|+1




∈ {0, 1}3n+2

∣∣∣∣∣∣∣∣∣∣

x ∈ L
∧ |x| = k
∧ 0 6 i 6 n− k








Define P := ∪n
j=0Pj . Then, xc(P) 6

n∑

k=0

xc(Pk) 6
n∑

k=0

(n xc(P (L(k)))) 6 O(n2 xc(L)).

Let S0 be the face of P defined by the first n coordinates being 0 and the (n+1)-th coordinate
being 1. Construct Si+1 by taking the glued product of Si with P over the last n+1 coordinates
of Si and the first n+1 coordinates of Q.

Take the face R of Sn defined by the last n coordinates being 0 and the (n+1)-th penultimate
coordinate being 1. Then, R is an EF for P (L∗(n)).Moreover, xc(R) ≤ xc(Sn) 6 (n+1) xc(P) 6
O(n3 xc(L)).

Therefore, xc(L∗) = O(n3 xc(L)) and L∗ ∈ CF .

6. Computational power of compact languages

We would like to start the discussion in this section by pointing out that in the class of
compact languages is in some sense too powerful. This power comes just from non-uniformity
in the definition.

Proposition 10. CF contains undecidable languages.

It is easy to construct undecidable languages that are in CF . Take any uncomputable
function f : N → {0, 1} and define the language L containing all strings of length n if f(n) = 1
and no strings of length n if f(n) = 0. The extension complexity of L is Θ(2n).

At the moment we do not want to start a discussion about controlling the beast that non-
uniformity unleashes. Rather we will focus on something more positive. We will show that
if a language is accepted by a non-deterministic LOGSPACE online Turing machine, then its
extension complexity is polynomial. This brings into fold many non-regular languages already.
And as we will see, this characterization allows us to give simple proofs for polynomial extension
complexity for some polytopes.

Before we proceed, we would also like to point out that, in the following discussion, the
assumption on the input tape being accessed in a one-way fashion is not something one can
remove easily. There are languages in LOGSPACE and AC0 that have exponential extension
complexity: for example, the string of all perfect matchings of Kn.

6.1. Polytopes of walks in graphs

Definition 4. Let D = (V,A) be a directed graph with every edge labeled either zero or one.
Consider two nodes u, v ∈ V and a walk ω of length n from u to v. The signature of ω – denoted
by σω – is the sequence of edge labels along the walk ω. The node u is called the source of the
walk and the node v the destination.

7

198 appendix

Definition 5. Consider the convex hull of all zero-one vectors of the form (u, σ, v) where u and
v are indices of two nodes in D and σ is the signature of some walk of length n from u to v.
This polytope – denoted by Pmarkov(D,n) – is called the Markovian polytope of D.

Proposition 11. Let D = (V,A) be directed graph (possibly with self-loops and multiple edges)
with every edge labeled either zero or one. Then, Pmarkov(D,n) has extension complexity at
most 2|V |+ |A| · n.

Proof. Let us encode every vertex of D with a zero-one vector of length V such that the unit
vector ei represents vertex i.

Define polytope Ptrans ⊂ {0, 1}|V |+1+|V | with (a, z, b) ∈ {0, 1}|V |+1+|V | a vertex of Ptrans if
and only if it encodes a possible transition in D. That is, a and b encode vertices of V , and the
coordinate z represents the label of the edge following which one can move from a to b. Since
Ptrans has at most |E| vertices xc(Ptrans) 6 |E|.

Let P0 be the convex hull of (i,ei) for i ∈ V and Pf be the convex hull of (ei, i) for
i ∈ V . Observe that the two polytopes are the same except for relabeling of coordinates. Also,
xc(P0) = xc(Pf) 6 |V |.

Let P1 = Ptrans. For 2 6 i 6 n, construct the polytope Pi by glueing the last |V | coordinates
of Pi−1 with the first |V | coordinates of Ptrans. By Lemma 1 we have that xc(Pn) 6 |E| · n.

Finally, let P be the polytope obtained by glueing last |V | coordinates of P0 with the first
|V | coordinates of Pn, and then glueing the last |V | vertices of the result with the first |V |
coordinates of Pf . Note that xc(P) 6 2|V |+ |E| · n.

To complete the proof, notice that P is an extended formulation for Pmarkov(D,n). In
particular, projecting out every coordinate except the ones corresponding to the source node
in P0, the ones corresponding to the destination node in Pf , and ones that correspond to the
z coordinates in all the copies of Ptrans produces exactly the vertices of Pmarkov(D,n). The
z-coordinate corresponding to the i-th copy of Ptrans corresponds to the i-th index of signatures
in the vectors in Pmarkov(D,n).

6.2. Polytopes for Online Turing Machines

Proposition 12. Let L ∈ k-NSPACE(s(n)). Then, L ∈ 1-NSPACE(ks(n)).

Proof. Let Mn be the Turing machine that accepts strings of length n. We will simulate Mn

using a multi-tape single pass nondeterministic Turing machine called the simulator S. S is
supplied with p(n) work tapes. S starts by guessing the initial work state of Mn at the start of
i-th pass and writing them on the i-th work tape. S then simulates (using extra space on each
work tape) each of the passes independently starting from their respective initial configuration.
Once the entire input has been scanned, the simulator verifies that the work space of Mn on
the i-th tape at the end of the pass matches the guess for the initial content for the (i + 1)-th
tape. S will accept only if the last tape is in an accepting state.

To store the content of work tape and the current state, S needs s(n) + o(s(n)) space for
each pass. Thus S uses a single pass and total space of p(n)s(n)(1 + o(1)). By Proposition 14
the extension complexity of the strings accepted by Mn is then 2O(p(n)s(n))n.

Thus for our purposes it suffices to restrict our attention to single pass TMs.

Definition 6. The configuration graph for input of length n for a given one-pass Turing ma-
chine (deterministic or non-determinisitic) is constructed as follows. For each fixed n, consider

8

appendix 199

the directed graph whose nodes are marked with a label consisting of s(n) + ⌈log (s(n))⌉ char-
acters. The labels encode the complete configuration of the Turing machine: the content of the
worktape and head position on the worktape. We make directed edges between two nodes u and
v if the machine can reach from configuration u to configuration v by a sequence of transitions
with exactly one input bit read in between. The directed edge is labeled by the input bit read
during this sequence of transition.

Finally, we add two special nodes: a start node with a directed edge to each possible starting
configuration of the machine, and a finish node with a directed edge from each possible accepting
configuration. Each of these directed edges are labeled by zero.

Proposition 13. The configuration graph for input of length n for a one-pass Turing ma-
chine has O(2s(n)s(n)) nodes. If the Turing machine is non-deterministic, this graph has
O(4s(n)(s(n))2) edges. If the Turing machine is deterministic then this graph has O(2s(n)s(n))
edges.

Proof. The bound for number of nodes is clear from the construction of the configuration graph.
We can have at most two transition edges between any two (possibly non-distinct) nodes: one
corresponding to reading a zero on the input tape, and one corresponding to reading a one.
Therefore, asymptotically the configuration graph can have number of edges that is at most
square of the number of nodes.

For deterministic Turing machine, each node in the configuration graph has exactly two
outgoing edges (possibly to the same node). Therefore the number of edges is asymptotically
the same as the number of vertices.

Now Proposition 11 can be used to bound the extension complexity of language accepted
by one-pass machines.

Proposition 14. Let L ∈ 1-NSPACE(s(n)). Then, xc(L) = O(4s(n)(s(n))2 · n).

Proof. Let L ∈ 1-NSPACE(s(n)) be a language. That is, there exists a Turing machine that
when supplied with a string on the one-way input tape uses at most s(n) cells on the worktape,
makes a single pass over the input and then accepts or rejects the input. If the input string
is in L, some sequence of non-deterministic choices lead the machine to an accepting state,
otherwise the machine always rejects.

The length-n strings that are accepted by such a Turing machine correspond exactly to the
signatures of length n+2 walks on the corresponding configuration graph D. The first and the
last character of these strings is always zero. Therefore, an extended formulation for P (L(n))
is obtained by taking the face of Pmarkov(D,n + 2) corresponding to walks that start and the
start node and finish at the finish node. By Proposition 11 Pmarkov(D,n + 2) has extension
complexity O(4s(n)(s(n))2 · n, and so does the desired face.

If L is accepted by a one-pass deterministic TM then one can do better because the config-
uration graph has fewer edges.

Proposition 15. Let L ∈ 1-DSPACE(s(n)). Then, xc(L) = O(2s(n)s(n) · n).

6.3. Extensions for multiple-pass machines

Proposition 16. Let L ∈ p-NSPACE(s(n)). Then, xc(L) = 2O(p(n)s(n))n.

Proof. This follows immediately from Propositions 12 and 14.

9

200 appendix

Proposition 17. Let M be a (not necessarily uniform) family of deterministic online Turing
machines. Let the number of passes and the space used by the family be bounded by func-
tions, p(n), s(n) respectively. Let L(M) be the language accepted by M . Then, xc(L(M)) 6
2O(p(n)s(n))n.

Proposition 18. If L is accepted by a fixed-pass non-deterministic LOGSPACE Turing ma-
chine then L ∈ CF .

We end this section with the following remark. For a language to be compact (that is,
to have polynomial extension complexity), it is sufficient to be accepted by an online Turing
machine (deterministic or not) that requires only logarithmic space. However, this requirement
is clearly not necessary. This can be proved by contradiction: Suppose that the condition
is necessary. Then the class of compact languages must be closed under taking intersection.
(Simply chain the two accepting machines and accept only if both do). Since we have already
established (cf. Proposition 6) that the class of compact languages is not closed under taking
intersection, we have a contradiction.

7. Applications

7.1. Streaming lower bounds

Reading Proposition 16 in converse immediately yields lower bounds in the streaming model
of computation. We illustrate this by an example.

Example 1. We know that the perfect matching polytope of the complete graph Kn has exten-
sion complexity 2Ω(n). Any p(n)-pass algorithm requiring space s(n), that correctly determines
whether a given stream of

(n
2

)
is the characteristic vector of a perfect matching in Kn, must

have p(n)s(n) = Ω(n). This bound applies even to non-deterministic algorithms.

In fact Proposition 11 provides an even stronger lower bound.

Definition 7. Let L ⊆ {0, 1}n be a language. L is said to be online µ-magic if there exists
a Turing machine T that accepts L with the following oracle access. On an input of length n
on the one-way input tape, the machine T scans the input only once. At any time (possibly
multiple times) during the scanning of the input, T may prepare its working tape to describe
any well-formed function f : {0, 1}µ(n) → {0, 1}µ(n) and a particular input x and invoke the
oracle that changes the contents of the work-tape to f(x). The machine must always reject
strings not in L. For strings in L there must be some possible execution resulting in accept.

Notice that the working of even such a machine can be encoded in terms of the configuration
graph where the transitions may depend arbitrarily but in a well-formed way on the contents
of the work-tape.

Proposition 19. If the set of characteristic vectors of perfect matchings in Kn are accepted by
an online µ-magic Turing machine, then µ(n) = Ω(n).

Thus we see that extension complexity lower bounds highlight deep limitations of the
streaming model: even powerful oracles do not help solve in sublinear space problems that
are LOGSPACE solvable if the one-way restriction on the input is removed.

10

appendix 201

7.2. Upper bounds from online algorithms

Parity Polytope

As an example, consider the language containing strings where the last bit indicates the
parity of the previous bits. This language can be accepted by a deterministic LOGSPACE
turing machine requiring a single pass over the input and a single bit of space. Therefore, the
parity polytope has extension complexity O(n).

The parity polytope is known to have extension complexity at most 4n− 4 [20].

Integer Partition Polytope

For non-negative integer n the Integer Partition Polytope, IPPn, is defined as

IPPn := conv{x ∈ Zn
+|

n∑

k=1

kxk = n}.

It is known that xc(IPPn) = O(n3) [21].
Consider the polytope in R⌈logn⌉×n that encodes each xi as a binary string. For example,

for n = 4 the vector (2, 1, 0, 0) is encoded as (1, 0, 0, 1, 0, 0, 0, 0). This polytope is clearly
an extended formulation of the Integer Partition Polytope. Call this polytope BIPPn. The
following single pass determinisitic algorithm accepts a string (x1, x2, . . . , xn) ∈ {0, 1}⌈log n⌉×n

if and only if the string represents a vertex of BIPPn.
Data: Binary string of length n⌈log n⌉
Result: Accept if the input encodes a vertex of the BIPPn
s = 0; i = 0; l = 0;
while i < n do

b =read next bit;

if (s + (i + 1)2lb) > n then
reject;

else

s = (s + (i + 1)2lb);
l = (l + 1)%⌈log n⌉;
if l == 0 then

i + +;
end

end

end
if s == n then

accept;
else

reject;
end

Algorithm 1: One pass algorithm for accepting vertices of BIPPn.

The above algorithm together with Proposition 15 shows that xc(IPPn) 6 xc(BIPPn) 6
O(n3 log2 n).

Knapsack Polytopes

For a given sequence of (non-negative) integers (a, b) = (a1, a2, . . . , an, b), the Knapsack
polytope KS(a, b) is defined as

KS(a, b) :=

{
x ∈ {0, 1}n

∣∣∣∣∣
n∑

i=1

aixi 6 b

}
.

The Knapsack polytope is known to have extension complexity super-polynomial in n.
However, optimizing over KS(a, b) can be done via dynamic programming in time O(nW)
where W is the largest number among a1, . . . , an, b.

Suppose the integers ai, b are arriving in a stream with a bit in between indicating whether
xi = 0 or xi = 1. With a space of W bits, an online Turing machine can store and update

11

202 appendix

∑n
i=1 aixi. At the end, it can subtract b and accept or reject depending on whether the result

is 0 or not. Any overflow during intermediate steps can be used to safely reject the input.
Therefore, the extension complexity of the Knapsack polytope is O(nW logW). Note however
the extension obtained this way is actually an extended formulation of a polytope encoding all
the instances together with their solutions.

Languages in co-DLIN

Let L be a language such that L is generated by a determinisitic linear grammar [22]. The
following was proved by Babu, Limaye, and Varma [23].

Theorem 2 (BLV). Let L ∈ DLIN. Then there exists a probabilistic one-pass streaming
algorithm using O(log n) space that accepts every string in L and rejects every other string with
probability at least 1/nc.

Using the above algorithm together with Proposition 16 we get the following.

Proposition 20. If L ∈ DLIN, then L ∈ CF .

8. Conclusion and Outlook

We have initiated a study of extension complexity of formal languages in this article. We
have shown various closure properties of compact languages. This is only a first step in what
we hope will be a productive path. We have proved a sufficient machine characterization of
compact languages in terms of acceptance by online Turing machines. This property is clearly
not necessary. What – in terms of computational complexity – characterizes whether or not a
language can be represented by small polytopes? We do not know (yet).

References

References

[1] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, R. de Wolf, Exponential lower bounds for
polytopes in combinatorial optimization, J. ACM 62 (2) (2015) 17. doi:10.1145/2716307.

[2] D. Avis, H. R. Tiwary, On the extension complexity of combinatorial polytopes, Math.
Program. 153 (1) (2015) 95–115. doi:10.1007/s10107-014-0764-2.

[3] T. Rothvoß, The matching polytope has exponential extension complexity, in: Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, 2014,
pp. 263–272. doi:10.1145/2591796.2591834.

[4] G. Braun, R. Jain, T. Lee, S. Pokutta, Information-theoretic approximations of the non-
negative rank, ECCC:2013-158.

[5] S. Chan, J. Lee, P. Raghavendra, D. Steurer, Approximate constraint satisfaction requires
large LP relaxations, FOCS’13 (2013).

[6] G. Braun, S. Fiorini, S. Pokutta, D. Steurer, Approximation Limits of Linear Programs
(Beyond Hierarchies), in: Proc. FOCS 2012, 2012, pp. 480–489.

12

appendix 203

[7] H. Fawzi, P. Parrilo, Exponential lower bounds on fixed-size psd rank and semidefinite
extension complexity, arXiv:1311.2571 (2013).

[8] J. Briët, D. Dadush, S. Pokutta, On the existence of 0/1 polytopes with high semidefinite
extension complexity (2013).

[9] T. Lee, D. O. Theis, Support-based lower bounds for the positive semidefinite rank of a
nonnegative matrix, arXiv:1203.3961 (2012).

[10] T. Rothvoß, Some 0/1 polytopes need exponential size extended formulations, Math. Pro-
gram. 142 (1-2) (2013) 255–268. doi:10.1007/s10107-012-0574-3.

[11] G. M. Ziegler, Lectures on polytopes, Vol. 152 of Graduate Texts in Mathematics,
Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona-
Budapest, 1995.

[12] M. Conforti, G. Cornuéjols, G. Zambelli, Extended formulations in combinatorial opti-
mization, Annals OR 204 (1) (2013) 97–143.

[13] V. Kaibel, Extended formulations in combinatorial optimization, Optima 85 (2011) 2–7.

[14] J. Hartmanis, N. Immerman, S. R. Mahaney, One-way log-tape reductions, in: 19th An-
nual Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18
October 1978, 1978, pp. 65–72. doi:10.1109/SFCS.1978.31.

[15] Hartmanis, Mahaney, Languages simultaneously complete for one-way and two-way log-
tape automata, SICOMP: SIAM Journal on Computing 10.

[16] Szepietowski, Weak and strong one-way space complexity classes, IPL: Information Pro-
cessing Letters 68.

[17] F. Margot, Composition de polytopes combinatoires: une approche par projection, Ph.D.
thesis, École polytechnique fédérale de Lausanne (1994).

[18] M. Conforti, K. Pashkovich, The projected faces property and polyhedral relations, Math-
ematical Programming (2015) 1–12doi:10.1007/s10107-015-0882-5.

[19] Y. Faenza, S. Fiorini, R. Grappe, H. R. Tiwary, Extended formulations, nonnegative factor-
izations, and randomized communication protocols, Math. Program. 153 (1) (2015) 75–94.
doi:10.1007/s10107-014-0755-3.

[20] R. Carr, G. Konjevod, Polyhedral combinatorics, in: H. G (Ed.), Tutorials on Emerging
Methodologies and Applications in Operations Research, Vol. 76 of International Series in
Operations Research & Management Science, Springer New York, 2005, pp. 2–1–2–46.

[21] S. Onn, V. A. Shlyk, Some efficiently solvable problems over integer partition polytopes,
Discrete Applied Mathematics 180 (2015) 135–140.

[22] C. de la Higuera, J. Oncina, Inferring deterministic linear languages, in: Compu-
tational Learning Theory, 15th Annual Conference on Computational Learning The-
ory, COLT 2002, Sydney, Australia, July 8-10, 2002, Proceedings, 2002, pp. 185–200.
doi:10.1007/3-540-45435-7_13.

13

204 appendix

[23] A. Babu, N. Limaye, J. Radhakrishnan, G. Varma, Streaming algorithms
for language recognition problems, Theor. Comput. Sci. 494 (2013) 13–23.
doi:10.1016/j.tcs.2012.12.028.

14

appendix 205

F
PA R A M E T E R I Z E D E X T E N S I O N C O M P L E X I T Y O F
I N D E P E N D E N T S E T A N D R E L AT E D P R O B L E M S

The following article is unpublished and is under peer review. It is
included here as an appendix for completeness.

207

ar
X

iv
:1

51
1.

08
84

1v
2

 [
cs

.C
C

]
 1

8
Fe

b
20

16

Parameterized Extension Complexity of Independent Set and Related
Problems

Jakub Gajarskýa, Petr Hliněnýa, Hans Raj Tiwaryb

aFaculty of Informatics, Masaryk University Brno, Czech Republic.
bKAM/ITI, MFF, Charles University in Prague, Czech Republic.

Abstract

Let G be a graph on n vertices and STABk(G) be the convex hull of characteristic vectors of its
independent sets of size at most k. It is known that optimizing over STABk(G) is W [1]-hard and is
FPT tractable for graphs of bounded expansion. We show analogous results for the extension complexity
of STABk(G). In particular, we show that when G is a graph from a class of bounded expansion then
xc(STABk(G)) 6 O(f(k) · n) for some function f (depending only on the class). This result can be
extended in a simple way to a wide range of similarly defined graph polytopes. In case of general graphs
we show that there is no function f such that, for all natural numbers k and for all graphs on n vertices,
the extension complexity of STABk(G) is at most f(k) · nO(1).

Keywords: FPT extension complexity, independent set, FO logic

1. Introduction

Polyhedral (aka LP) formulations of combinatorial problems belong to the basic toolbox of combina-
torial optimization. In a nutshell, a set of feasible solutions of some problem is suitably encoded by a set
of vectors, whose convex hull forms a polytope over which one can then optimize using established tools.
A polytope Q is said to be an extended formulation or extension of a polytope P if P is a projection
of Q. Measuring the size of a polytope by the minimum number of inequalities required to describe it,
one can define the extension complexity of a polytope to be the smallest size extension of the polytope.
This notion has a rich history in combinatorial optimization where by adding extra variables one can
sometimes obtain significantly smaller polytopes. For some recent survey on extended formulations in
the context of combinatorial optimization and integer programming see [1, 2, 3, 4].

Since linear (or indeed convex) optimization of a polytope P can instead be indirectly done by
optimizing over an extended formulation of P , this concept provides a powerful model for solving
many combinatorial problems. Various Linear Program (LP) solvers exist today that perform quite
well in practice and it is desirable if a problem can be modeled as a small-sized polytope over which
one can use an existing LP solver for linear optimization. However, in recent year super-polynomial
lower bound on the extension complexity of polytopes associated with many combinatorial problems
have been established. These bounds have been generalized to various settings, such as convex extended
formulations, approximation algorithms, etc. These results are too numerous for a comprehensive listing
but we refer the interested readers to some of the landmark papers in this regard [5, 6, 7, 8].

Many of the recent lower bounds on the extension complexity of various combinatorial polytopes
mimic the computational complexity of the underlying problem. For example, it is known that the
extension complexities of polytopes related to various NP-hard problems are super-polynomial [5, 9, 10,
6]. One satisfying feature of these lower bounds is that they are independent of traditional complexity-
theoretic assumptions such as P 6= NP . Though, there also exist polytopes corresponding to polynomial

Email addresses: xgajar@fi.muni.cz (Jakub Gajarský), hlineny@fi.muni.cz (Petr Hliněný),
hansraj@kam.mff.cuni.cz (Hans Raj Tiwary)

Preprint submitted to arXiv February 19, 2016

appendix 209

time solvable optimization problems whose extension complexity is super-polynomial. In particular, the
perfect matching polytope was shown to have super-polynomial extension complexity by Rothvoß [7].

Notwithstanding the latter weakness, one can ask the related questions in the realm of parameterized
complexity theory. In this rapidly grown field each problem instance comes additionally equipped with
an integer parameter, and the “efficient” class denoted by FPT (fixed-parameter tractable) is the one of
problems solvable, for every fixed value of the parameter, in polynomial time of degree independent of
the parameter. See Section 2 for details.

Similarly as parameterized complexity provides a finer resolution of algorithmic tractability of prob-
lems, parameterized polytopes extensions can provide a finer resolution of extension complexities of
polytopes of the problems. We follow this direction of research with a case study of the independent-set
polytope of a graph, naturally parameterized by the solution size. We confirm that the extension com-
plexity of the independent-set polytope indeed mimics the parameterized complexity of the underlying
problem, in the following sense:

• We prove that this polytope does not have FPT extension for all graphs (Section 3), but

• an FPT extensions of it exists on every graph class of bounded expansion (Section 4).

We conclude the paper with a straightforward extension of this result to many other similarly defined
problems, namely those expressible in existential FO logic of graphs (Section 5), followed by some
further thoughts on the topic (Section 6).

2. Preliminaries

We follow standard terminology of graph theory and consider finite simple undirected graphs. We
refer to the vertex and edge sets of a graph G as to V (G) and E(G), respectively. In particular, an
independent set X of vertices of a graph is such that no two elements of X are joined by an edge. By
a cut in a graph G we mean an edge cut, that is a minimal (by inclusion) set of edges C ⊆ E(G) such
that G \ C has more connected components than G.

For fundamental concepts of parameterized complexity we refer the readers, e.g., to the mono-
graph [11]. Here we just very briefly recall the needed notions. Considering a problem P with input of
the form (x, k) ∈ Σ∗ × N (where k is a parameter), we say that A is fixed-parameter tractable (shortly
FPT) if there is an algorithm solving A in time f(k) ·nO(1) where f is an arbitrary computable function.
In the (parameterized) k-independent set problem the input is (G, k) where G is a graph and k ∈ N,
and the question is whether G has an independent set of size at least k.

There is no known FPT algorithm for the k-independent set problem in general and, in fact, the the-
ory of parameterized complexity [11] defines complexity classesW [t], t ≥ 1, such that the k-independent
set problem is complete for W [1]. Problems that are W [1]-hard do not admit an FPT algorithm unless
the Exponential Time Hypothesis fails.

2.1. Fixed-parameter extension complexity

The size of a polytope P , denoted by size(P), is defined to be the number of facets of P , which
is the minimum number of inequalities needed to describe P if it is full-dimensional. A polytope Q is
called an extension of a polytope P if P can be obtained as a linear projection of Q. As a shorthand
we will say that in this case Q is an EF of P . As noted in the Introduction, the following is a useful
notion:

Definition 2.1 (Extension complexity). The extension complexity of a polytope P , denoted by xc(P),
is defined to be the size of the smallest extension. More precisely,

xc(P) := min
Q an EF of P

size(Q).

2

210 appendix

In the context of fixed-parameter extension complexity, we deal with families of polytopes Pn where
n ∈ N, and a parameter k. For example, for the independent set problem parameterized by a nonnegative
integer k, the family Pn could be the family of k-independent set polytopes (cf. Subsection 2.2) for a
family of n-vertex graphs. The prime question is whether there exists a computable function f such
that xc(P) ≤ f(k) · nO(1) for all k, n and all P ∈ Pn. As a shorthand we will say in such case that the
collection of families {Pn : n ∈ N} has FPT extension complexity (analogously to the FPT complexity
class).

Buchanan in a recent article [12] studied the fixed-parameter extension complexity of the k-vertex
cover problem, and proved that for any graph G with n vertices, the k-vertex cover polytope has
extension complexity at most O(ckn) for some constant c < 2. Hence this is a nontrivial example
of a polytope class with FPT extension complexity. Buchanan also raised the question whether the
k-independent set polytope (Definition 2.4) admits an FPT extension. We answer this in the negative
in Theorem 3.6. Note that our negative answer does not rely on any complexity theoretical assumptions
(such as FPT 6=W [1]).

We also look at the positive side of the k-independent set problem. It is known that this problem
admits an FPT algorithm (w.r.t. k) on quite rich restricted graph classes, e.g., on classes of bounded
expansion [13] (see Subsection 2.3 for the definition). While this finding, in general, does not imply
anything about the extension complexity of the k-independent set polytope, we manage to apply the
tools of [13] in our setting, and confirm – in Theorem 4.3 – FPT extension complexity of the k-
independent set polytope on any graph class of bounded expansion. We also study a meta-generalization
of this result in Section 5.

In the course of proving aforementioned Theorems 3.6 and 4.3, we are going to use the following
established results on the topic of polytope extension complexity.

Theorem 2.2 (Balas [14]). Let P1, P2, . . . , Ps be polytopes and let P := conv(
⋃s

i=1 Pi). Then, xc(P) 6
s+

∑s
i=1 xc(Pi).

For a graph G, a cut vector is a 0/1 vector of length |E(G)| whose coordinates correspond to whether
an edge of G is in a cut C ⊆ E(G) or not. The cut polytope is then a convex hull of all the cut vectors
of G. Our negative result relies on the following lower bound.

Theorem 2.3 (Fiorini et al. [5]). The extension complexity of the cut polytope of the complete graph
Kn on n vertices is 2Ω(n).

2.2. The k-independent set polytope

Let G be a graph on n vertices. Every subset of vertices of G can be encoded as a characteristic
vector of length n. That is, for a subset S ⊆ V , define the characteristic vector χS as follows:

χS
v =

{
1 if v ∈ S
0 otherwise

Definition 2.4 (independent set polytope). The k-independent set polytope of G, denoted by STABk(G),
is defined to be the convex hull of the characteristic vectors of every independent set of size at most k.
That is,

STABk(G) = conv
({
χS ∈ {0, 1}n| S ⊆ V is an independent set of G; |S| 6 k

})
.

In case that k = n we simply speak about the independent set polytope of G ; STAB(G).

Alternatively, one could define the polytope STAB=
k (G) to be the convex hull of all independent sets

of size exactly equal to k. That is,

STAB=
k (G) = conv

({
χS ∈ {0, 1}n| S ⊆ V is an independent set of G; |S| = k

})
.

To simplify our situation, we note the following:

3

appendix 211

Lemma 2.5. xc(STAB=
k (G)) 6 xc(STABk(G)) 6 k +

∑k
i=0 xc(STAB

=
i (G)).

Proof. Clearly, STAB=
k (G) is a face of STABk(G). Therefore, xc(STAB

=
k (G)) 6 xc(STABk(G)).

On the other hand, STABk(G) = conv(
⋃k

i=1 STAB
=
i (G)), and therefore xc(STABk(G)) 6 k +∑k

i=0 xc(STAB
=
i (G)) by Theorem 2.2.

The above Lemma 2.5 shows that any bounds (lower or upper) that are valid for xc(STAB=
k (G)) are

also asymptotically valid for xc(STABk(G)). Therefore, in the rest we will use the notation STABk(G)
to actually mean STAB=

k (G), to keep the notation uncluttered. We stress that this is just for simplicity
of notation and does not cause any loss of generality.

We shall also use the following result.

Theorem 2.6 (Buchanan and Butenko [15]). The extension complexity of a graph’s independent set
polytope is O(2twn), where n is the number of vertices and tw denotes its treewidth.

Note that Buchanan and Butenko give an explicit description of an extension of the independent
set polytope.

2.3. Sparsity and bounded expansion

A useful toolbox in our research is the theory of sparse graph classes, largely developed by Nešetřil
and Ossona de Mendez. We follow their monograph [16].

We start by defining the notion of edge contraction. Given an edge e = uv of a graph G, we let G/e
denote the graph obtained from G by contracting the edge e, which amounts to deleting the endpoints
of e, introducing a new vertex we and making it adjacent to all vertices in the union of the neighborhoods
of u and v (excluding u, v themselves). A minor of G is a graph obtained from a subgraph of G by
contracting zero or more edges. In a more general view, if H is isomorphic to a minor of G, then we
call H a minor of G as well, and we write H � G.

Alternatively, H is a minor of G if there exists a bijection ψ : V (H) → {V1, . . . , Vp} where V1, . . . , Vp
are pairwise disjoint subsets of V (G) inducing connected subgraphs of G, and uv ∈ E(H) only if there is
an edge in G with an endpoint in each of ψ(u) and ψ(v). If, moreover, it is required that each subgraph
G[Vi] has radius at most d, meaning that there exist ci ∈ Vi (a center) such that every vertex in Vi is
within distance at most d from ci in G[Vi]; then H is called a shallow minor at depth d of G (shortly, a
d-shallow minor).

Note that if u, v ∈ V (H) in a d-shallow minor, and u1 ∈ ψ(u) and v1 ∈ ψ(v), then dG(u1, v1) ≤
(2d+1) ·dH (u, v). The class of d-shallow minors of G is denoted by G∇d, and this is extended to graph
classes G as well; G∇d =

⋃
G∈G G∇d.

One of the most prominent [16] notions of “sparsity” for graph classes is the following one:

Definition 2.7 (Grad and bounded expansion [17]). Let G be a graph class. Then the greatest reduced
average density of G with rank d is defined as

∇d(G) = sup
H∈G∇d

|E(H)|
|V (H)| .

A graph class G has bounded expansion if there exists a function f : N → R (called the expansion
function) such that for all d ∈ N, ∇d(G) ≤ f(d).

We provide a brief informal explanation of Definition 2.7. A graph to be considered “sparse” should
not, in particular, contain subgraphs with relatively many edges. Since G∇0 is the set of all subgraphs of
G, this is captured by 2∇0(G) being the maximum average degree over all subgraphs of G. However, the
definition requires more; even after contracting edges up to limited depth d, the resulting shallow minors
stay free of relatively dense subgraphs, with the maximum average degree bounded by 2∇d(G) ≤ 2f(d).

For example, the class P of all planar graphs has bounded expansion (even with a constant expansion
function). On the other hand, a class Q obtained from all cliques by subdividing each edge twice,
although also having relatively few edges, does not have bounded expansion since Q∇1 contains all
graphs.

4

212 appendix

3. Lower Bound: Paired Local-Cut Graphs

We use a shorthand notation [n] = {1, 2, . . . , n}. Given positive integers k and n, we define a graph
called a Paired Local-Cut Graph and denoted PLC(k, n).

First we create k2⌊logn⌋ vertices labeled with tuples (i, S) for i ∈ [k] and S ⊆ [⌊logn⌋]. These
vertices will be called cut vertices. Then we create 2

(
k
2

)
22⌊log n⌋ vertices labeled with tuples (i, j, S1, S2)

where 1 6 i 6= j 6 k and S1, S1 ⊆ [⌊logn⌋]. These vertices will be called pairing vertices.
We add edges to these vertices of PLC(k, n) as follows. For each fixed i ∈ [k] we add the edges

between all cut nodes that have labels (i, S). Furthermore, for each fixed pair i, j ∈ [k] we add the edges
between all pairing nodes that have labels (i, j, S1, S2). Finally, let u be a cut vertex labeled (i, S) and
let v be a pairing vertex labeled (j1, j2, S1, S2). If i = j1 but S 6= S1 we add edge uv. Symmetrically, if
i = j2 but S 6= S2 we add edge uv.

For ease of exposition we will identify vertices of PLC(k, n) with their labels whenever convenient.

Observation 3.1. The number of vertices of the graph PLC(k, n) equals
2
(
k
2

)
22⌊log n⌋ + k2⌊logn⌋ 6 (kn)2.

Observation 3.2. Let (i, S) and (j1, j2, S1, S2) be two vertices of PLC(k, n) that are not joined by an
edge. If i = j1 then S = S1, and if i = j2 then S = S2.

This together with the next lemma will ensure that in any independent set I of PLC(k, n) that has
size k2, every index i ∈ [k] can be uniquely associated with a subset Si ⊆ ⌊logn⌋.

Lemma 3.3. Let I be an independent set in PLC(k, n). Then, |I| 6 k2. Moreover, an equality holds if
and only if I contains exactly one cut vertex for each 1 6 i 6 k and exactly one pairing vertex for each
1 6 i 6= j 6 k.

Proof. Clearly, the set I can contain at most k cut vertices – at most one vertex (i, Si) for each 1 6 i 6 k.
Also, I can contain at most 2

(
k
2

)
= k2 − k pairing vertices – at most one vertex (i, j, Si, Sj) for each

ordered pair 1 6 i, j 6 k.

We will now relate the vertices of STABk2(PLC(k, n)) with the vertices of the polytope CUT(Kr)
where r = k ⌊logn⌋, to be defined as follows. We denote the vertices and edges of the complete graph
Kr (on r vertices) by Vr and Er , respectively. We group the vertices of Kr into k groups, each of size
⌊logn⌋ , and label the vertices vij where 1 6 i 6 k and 1 6 j 6 ⌊logn⌋ . Finally, we order the vertices
lexicographically according to their labels.

A cut vector of Kr – corresponding to a cut C – is a 0/1 vector of length
(
r
2

)
whose coordinates

correspond to whether an edge of Kr is in the cut C or not. The edges of Kr are labeled with pairs
(i1, j1, i2, j2) where 1 6 i1, i2 6 k ; 1 6 j1, j2 6 ⌊logn⌋ , and (i1, j1) 6 (i2, j2) lexicographically. So,
if z is a cut vector corresponding to a given cut C ⊂ Er , then zi1,j1,i2,j2 = 1 if and only if the edge
(i1, j1, i2, j2) is in C. CUT(Kr) is the convex hull of all such cut vectors.

Similarly, an independent-set vector of PLC(k, n) – corresponding to an independent set I – is a 0/1
vector of length 2

(
k
2

)
22⌊logn⌋ + k2⌊log n⌋ (see Observation 3.1) whose coordinates correspond to whether

the corresponding vertex is in I or not. Recall that the cut vertices of PLC(k, n) are labeled with a
pair consisting of an index from [k], and a subset of [⌊logn⌋] . Also, the pairing vertices of PLC(k, n)
are labeled with a tuple consisting of two indices from [k] and two subsets of [⌊logn⌋] .

Let C be the set of all cuts in Kr, and let I be the set of all independent sets of size k2 in PLC(k, n).
Any cut C ∈ C creates a bipartition (S, S) of the vertices of Kr. Recall that the vertices of Kr have
been split in k groups. The partition (S, S) thus induces a partition (Si, Si) within each of these groups.

Lemma 3.4. For every pair of natural numbers (k, n) and r = k ⌊logn⌋ it holds that CUT(Kr) is a
projection of STABk2 (PLC (k, n)) .

Proof. Let s denote the length of the independent set vectors of STABk2(PLC(k, n)). That is s =

2
(
k
2

)
22⌊log n⌋ + k2⌊logn⌋. We describe an affine map π : Rs → R(r2) such that for every vertex C of

CUT(Kr) there exists a vertex of I of STABk2 (PLC(k, n)) such that π(I) = C . Moreover, for every

5

appendix 213

vertex I of STABk2(PLC(k, n)) we show that π(I) is a vertex of CUT(Kr). Since π is an affine map,
this will complete the proof.

First we identify the coordinates of Rs with vertices of PLC(k, n). To make it easy to refer to this
identification we label the coordinates with tuples (i, j, S1, S2) defined as follows. For a coordinate
corresponding to a cut vertex (i, S) we label the coordinate with (i, i, S, S). For a coordinate corre-
sponding to a pairing vertex (i, j, S1, S2) we label the coordinate with the same label. Similarly, we

identify the coordinates of R(r2) with the pairs of vertices of Kr, i.e, the coordinate corresponding to
an edge between two distinct vertices viℓ1 and vjℓ2 is to be labeled with the integer tuple (i, ℓ1, j, ℓ2),

assuming that viℓ1 6 vjℓ2 (that is, i 6 j and if i = j then ℓ1 < ℓ2). Also note that 1 6 i, j 6 k and
1 6 ℓ1, ℓ2 6 ⌊logn⌋.

Given a vector y ∈ Rs we define π(y) := z ∈ R(r2) where

zi1,ℓ1,i2,ℓ2 =





∑

S1⊆[⌊logn⌋]
S2⊆[⌊logn⌋]

ℓ1 /∈S1
ℓ2∈S2

yi1,i2,S1,S2 +
∑

S1⊆[⌊logn⌋]
S2⊆[⌊logn⌋]

ℓ1∈S1

ℓ2 /∈S2

yi1,i2,S1,S2 if i1 6= i2,

∑

S⊆[⌊logn⌋]
ℓ1 /∈S
ℓ2∈S

yi1,i1,S,S +
∑

S⊆[⌊logn⌋]
ℓ1∈S
ℓ2 /∈S

yi1,i1,S,S if i1 = i2 .

Let y ∈ Rs be a vertex of STABk2(PLC(k, n)). That is, y is the characteristic vector of an indepen-
dent set I ∈ I. Since I is of size k2, for every 1 6 i 6 k exactly one cut vertex (i, Si) is picked in I, by
Lemma 3.3. Furthermore, by Observation 3.2, for any pairing vertex (i1, i2, S, S

′) picked in I the sets
S, S′ are unique for given i1, i2; if i = i1 then S = Si, and if i = i2 then S′ = Si. Consider the subsets
S(I), S(I) of vertices of Kr defined as follows:

S(I) =
{
vij | 1 6 i 6 k; j ∈ Si

}

S(I) =
{
vij | 1 6 i 6 k; j /∈ Si

}

It is not difficult to see that π(y) is exactly the characteristic vector of the cut defined by S(I), S(I)
because zi1,ℓ1,i2,ℓ2 = 1 if and only if vi1ℓ1 and vi2ℓ2 do not both lie in S(I) or both in S(I).

On the other hand, if z is the characteristic vector of a cut defined by subsets S, S of vertices of Kr,
then we can define Si = S∩

{
vij | 1 6 j 6 ⌊logn⌋

}
so that

{
(i, Si)|1 6 i 6 k

}
∪
{
(i, j, Si, Sj)|1 6 i < j 6 k

}

is an independent set I of PLC(k, n) whose size is k2 and whose characteristic vector projects to z un-
der π.

Hence π defines a projection from PLC(k, n) to CUT(Kr).

Corollary 3.5. There exists a constant c′ > 0 such that for k, n ∈ N,

xc (STABk2(PLC(k, n))) > nc′k.

Proof. By Lemma 3.4, STABk2(PLC(k, n)) is an extended formulation of CUT(Kr) with r = k⌊logn⌋.
So any extended formulation of STABk2(PLC(k, n)) is also an extended formulation of CUT(Kr). By
Theorem 2.3, xc

(
CUT(Kr)

)
> 2Ω(r). Therefore, xc

(
STABk2(PLC(k, n))

)
> xc

(
CUT(Kr)

)
> 2Ω(r) >

nc′k for some constant c′ > 0.

We can now easily finish with the main result of this section.

Theorem 3.6. There is no function f : N → R such that xc(STABk(G)) 6 f(k) · nO(1) for all natural
numbers k and all graphs G on n vertices.

6

214 appendix

Proof. Suppose, on the contrary, that such a function f does exist. That is, there is a constant c such
that for every pair of natural numbers (ℓ,m) and for allm-vertex graphsG it holds that xc(STABℓ(G)) 6
f(ℓ) ·mc.

Given a pair (k, n) of natural numbers consider the graph PLC(k, n). By Corollary 3.5, we have that
xc (STABk2(PLC(k, n))) > nc′k for some constant c′ > 0. On the other hand, from our assumption for
ℓ = k2 and m 6 (kn)2 we have that xc (STABk2 (G)) 6 f(k2) · (kn)2c. Therefore, nc′k 6 f(k2) · (kn)2c
and so

c′k logn 6 log f(k2) + 2c(log k + logn)

(c′k − 2c) logn 6 log f(k2) + 2c log k.

Clearly, the latter cannot hold true for a sufficiently large but fixed parameter k and arbitrary n,
a contradiction. Hence no such function f exists.

4. Upper Bound: Bounded Expansion Classes

While Theorem 3.6 asserts that FPT extensions are not possible for the k-independent set polytopes
of all graphs, there is still a good chance to prove a positive result for restricted classes of graphs. An
example of such restriction is, by a simple modification of Theorem 2.6, presented by graph classes of
bounded tree-width; although, this is somehow too restrictive. We show that in the case of k being a
fixed parameter, one can go much further.

The underlying idea of our approach can be informally explained as follows. Imagine we can “guess”,
in advance, a (short) list of well-structured subgraphs of our graph such that every possible independent
set is fully contained in at least one of them. Then we can separately construct an independent set
polytope for each one of the subgraphs, and make their union at the end (Theorem 2.2). This ambitious
plan indeed turns out to be viable for graph classes of bounded expansion (Definition 2.7), and the
key to the success is a combination of a powerful structural characterization of bounded expansion
(Theorem 4.2) with the size bound k on the independent sets.

In order to state the desired structural characterization, we need the notion of treedepth. In this con-
text, a rooted forest is a disjoint union of rooted trees. The height of a rooted forest is the maximum dis-
tance from one of the forest’s roots to a vertex in the same tree. The closure clos(F) of a rooted forest F
is the graph with the vertex set

⋃
T∈F V (T) and the edge set {xy : x is an ancestor of y in a tree of F}.

The treedepth td(G) of a graph G is the minimum height plus one of a rooted forest F such that
G ⊆ clos(F).

For simplicity, we skip here the rather complicated definition of treewidth (which is never directly
used in our arguments, anyway). Instead, we just use the following fact which is easy to establish
directly from the definitions:

Observation 4.1. For any G, the treewidth of G is at most the treedepth of G minus one.

The amazing connection between graph classes of bounded expansion and treedepth is captured by
the notion of low treedepth coloring: For an integer d ≥ 1, an assignment of colors to the vertices of
a graph G is a low tree-depth coloring of order d if, for every s = 1, 2, . . . , d, the union of any s color
classes induces a subgraph of G of treedepth at most s.

In particular, every low tree-depth coloring of G is a proper coloring of G (but not the other way
round), and the union of any two color classes induces a forest of stars. The following result is crucial:

Theorem 4.2 (Nešetřil and Ossona de Mendez [13, 17]). If G is a class of graphs of bounded expansion,
then there is a function NG : N → N (depending on the expansion function of G) such that for any graph
G ∈ G and k, there exists a low tree-depth coloring of order k of G using at most NG(k) colors. This
coloring can be found in linear time for fixed k.

We are now ready to state and prove the main theorem of this section.

7

appendix 215

Theorem 4.3. Let G be any graph class of bounded expansion. Then there exists a computable function
f : N → N, depending on the expansion function of G, such that

xc
(
STABk(G)

)
6 f(k) · n

holds for every integer n and every n-vertex graph G ∈ G. Moreover, an explicit extension of STABk(G)
of size at most f(k) · n can be found in linear time for fixed k and G.

Proof. Since G is a graph class of bounded expansion, by Theorem 4.2 we can for any G ∈ G and
given k find an assignment c : V (G) → [NG(k)] such that c is a low tree-depth coloring of order k.

Let Jk :=
(
[NG(k)]

k

)
denote the set of k-element subsets of [NG(k)], and let a subgraph GJ ⊆ G where

J ∈ Jk, be defined as the subgraph of G induced on
⋃

j∈Jk
c−1(j) – the color classes indexed by J .

Note the following two immediate facts:

a) by the definition, each GJ , J ∈ Jk, is of treedepth at most |J | = k;

b) for every setX ⊆ V (G) (independent or not) of size |X | ≤ k, there is J ∈ Jk such thatX ⊆ V (GJ).

Consequently,

STABk(G) = conv
(⋃

J∈Jk

STABk(GJ)
)

and it is sufficient to bound the extension complexity of each STABk(GJ).
By (a) and Observation 4.1, tw(GJ) ≤ k − 1 and Theorem 2.6 applies here: xc

(
STABk(GJ)

)
6

O(2k · |GJ |) 6 O(2k · n) 6 c′2k · n for a suitable constant c′. Then, by Theorem 2.2, we have

xc
(
STABk(G)

)
6 |Jk|+

∑

J∈Jk

xc
(
STABk(GJ)

)

6 |Jk| · (1 + c′2k · n) 6
(
NG(k)
k

)
(1 + c′2k) · n 6 f(k) · n .

Note that this extended formulation can be constructed in linear time for fixed k since the low tree-
depth coloring in Theorem 4.2 can be found in linear time, the extended formulation in Theorem 2.6
is explicit, and the extended formulation of union of polytopes can be constructed in linear time from
the extensions of the component polytopes [14].

5. Generalizing the Upper Bound

The tools used in Section 4 for graph classes of bounded expansion apply not only to the particular
case of independent sets of size at most k, but to a much wider range of problems. This can be
formulated as a meta-result about graph polytopes definable in the first-order logic.

The first-order logic of graphs (abbreviated as FO) applies the standard language of first-order logic
to a graph G viewed as a relational structure with the domain V (G) and the single binary (symmetric)
relation E(G). For example, the formula ι(x1, . . . , xk) ≡ ∧

i6=j

(
¬edge(xi, xj) ∧ xi 6= xj

)
asserts that

{x1, . . . , xk} is an independent set of size exactly k. A slightly more involved example describes a vertex

cover tuple as γ(x1, . . . , xk) ≡ ∀y,z
(
edge(y, z) → ∨k

i=1(y = xi ∨ z = xi)
)
.

To any FO formula φ(x1, . . . , xk) one can assign a graph polytope, although this task is not as
straightforward as with the independent set polytope since the order of arguments of φ matters, and
the same vertex may be repeated among the arguments. For an ordered k-tuple of vertices W =
(w1, . . . , wk) ∈ V (G)k we thus define its characteristic vector χW of length k|V (G)| by

χW
v,i =

{
1 if v = wi,
0 otherwise.

Note that χW always satisfies
∑

v∈V (G) χ
W
v,i = 1 for each i = 1, . . . , k, by the definition.

IfW = (w1, . . . , wk) ∈ V (G)k is such that φ(w1, . . . , wk) holds true inG, we writeG |= φ(w1, . . . , wk).
We can now give the following definition:

8

216 appendix

Definition 5.1 (FO polytope). Let φ(x1, . . . , xk) be an FO formula with k free variables. The (first-
order) φ-polytope of G, denoted by FOPφ(G), is defined to be the convex hull of the characteristic
vectors of every k-tuple of vertices of G such that φ(w1, . . . , wk) holds true in G. That is,

FOPφ(G) = conv
({
χW ∈ {0, 1}n|W = (w1, . . . , wk) ∈ V (G)k, G |= φ(w1, . . . , wk)

})
.

This definition is closely related to Definition 2.4 via the following observation:

Lemma 5.2. Let ι(x1, . . . , xk) ≡
∧

i6=j

(
¬edge(xi, xj) ∧ xi 6= xj

)
(the k-independent set formula). For

every graph G, the ι-polytope FOPι(G) is an extension of STABk(G).

Proof. If G has n vertices then STABk(G) =
{
y ∈ Rn

∣∣∣ yv =
∑k

i=1 χ
W
v,i, χ

W ∈ FOPι(G)
}
. Therefore,

STABk(G) is a projection of FOPι(G) given by the projection map described by yv =
∑k

i=1 χ
W
v,i for all

vertices v of G.

Using the decomposition provided by Theorem 4.2, we can in fact obtain a more general result which
we will discuss now. We will use the following weaker form1 of a recent result of Kolman et al. [18].

Theorem 5.3 ((Kolman, Koutecký and Tiwary [18])). Let φ(x1, . . . , xk) be an existential FO formula
with k free variables and ℓ quantifiers. Then there exists a computable function g : N × N → N, such
that

xc
(
FOPφ(G)

)
6 g(k + ℓ, τ) · n

holds for every integer n and every n-vertex graph G of treewidth τ . Furthermore, this extension can
be computed in linear time for fixed k, ℓ and τ .

We are now able to directly extend Theorem 4.3 to the following restrictive fragment of FO logic.
We say that an FO formula φ(x1, . . . , xk) is existential FO if it can be written as φ(x1, . . . , xk) ≡
∃y1 . . . yℓ ψ(x1, . . . , xk, y1, . . . , yℓ), where ψ is quantifier-free. The number ℓ of quantified variables in φ
is called the quantifier rank of φ.

Theorem 5.4. Let φ(x1, . . . , xk) be an existential FO formula with k free variables and quantifier
rank ℓ. Also, let G be any graph class of bounded expansion. Then there exists a computable function
f : N → N, depending on the expansion function of G, such that

xc
(
FOPφ(G)

)
6 f(k + ℓ) · n

holds for every integer n and every n-vertex graph G ∈ G. Furthermore, an explicit extension of
FOPφ(G) of size at most f(k + ℓ) · n can be found in linear time for fixed k, ℓ and G.

Since the proof of Theorem 5.4 is a straightforward extension of the proof of Theorem 4.3, we skip
it in this restricted paper.

Proof. We start with two simple facts of model theory:

a) If H is an induced subgraph of G, and H |= φ(w1, . . . , wk) for w1, . . . , wk ∈ V (H), then G |=
φ(w1, . . . , wk) (since φ is existential).

b) If G |= φ(w1, . . . , wk) for any W = {w1, . . . , wk} ⊆ V (G), then there is U ⊆ V (G), |U | ≤ ℓ, such
that G[W ∪ U] |= φ(w1, . . . , wk) where G[W ∪ U] is the subgraph of G induced on W ∪ U (since
the quantifier rank of existential φ is ≤ ℓ).

1The result of Kolman et al. applies to Monadic Second Order logic: a logic that subsumes FO logic.

9

appendix 217

We can hence apply the same technique as in the proof of Theorem 4.3 – using a low treedepth
coloring c of G now by NG(k + ℓ) colors from Theorem 4.2. Again, let Jk+ℓ :=

(
[NG(k+ℓ)]

k+ℓ

)
denote the

set of (k + ℓ)-element subsets of [NG(k + ℓ)], and let a subgraph GJ ⊆ G where J ∈ Jk+ℓ, be defined
as the subgraph of G induced on

⋃
j∈Jk+ℓ

c−1(j) – the color classes of c indexed by J . By a),b) we
immediately get

FOPφ(G) = conv

(⋃
J∈Jk+ℓ

FOPφ(GJ)

)
.

From Theorems 2.2 and 5.3 (via Observation 4.1) we then analogously conclude

xc
(
FOPφ(G)

)
6 |Jk+ℓ|+

∑

J∈Jk+ℓ

xc
(
FOPφ(GJ)

)

6 |Jk+ℓ| ·
(
1 + g(k + ℓ, k + ℓ− 1) · n

)
6 f(k + ℓ) · n .

Again, this extended formulation can be constructed in linear time for fixed k, ℓ.

6. Conclusions

We have begun to study the question: to which extent FPT tractability of the k-independent
set problem on graph classes is related to the FPT extension complexity of the (corresponding) k-
independent-set polytope? Not surprisingly, we confirm that there cannot be FPT extensions of this
polytope in the class of all graphs (note, though, that our proof is absolute and does not rely on the
assumption FPT 6= W [1]). On the other hand, the k-independent-set problem is linear-time FPT
tractable on graph classes of bounded expansion [13], and we construct a linear FPT extension for its
polytope on such classes. This positive result easily carries over to all existential FO problems of graphs.

There are two possible directions of future research in this regard:

1. A graph class G is nowhere dense [16] if there is no integer d such that G∇d contains all graphs.
Every graph class of bounded expansion is nowhere dense, but the converse is not true. The
k-independent-set problem is also known to be in FPT on every nowhere dense class, which
follows from a more general result of [19]. It is natural to ask whether the same can hold for the
fixed-parameter extension complexity of its polytope.

2. The deep tractability results of [20, 19] (on bounded expansion and nowhere dense classes, re-
spectively) address problems in full FO logic of graphs, i.e., allowing also for universal quantifiers
in the problem expression. This suggests that perhaps, for every FO formula φ, the related φ-
polytope can also have FPT extension complexity on, say, graph classes of bounded expansion.
Though, the involved proof techniques of [20, 19] do not seem to easily translate to the extension
complexity setting.

In a broader view, one may regard the property of (the problem polytope) having an FPT extension
complexity as a finer (case-by-case) resolution of the class FPT. For an explanation; the well-established
assumption FPT 6=W [1] implies that problems not in FPT do not have FPT extensions, while on the
other hand the example of the matching polytope [7] suggests that there may also be FPT problems
whose polytopes do not have FPT extensions. We believe this task is worth further detailed investiga-
tion.

One may try to proceed even further and ask a general question:

3. Is it true that all W [t]-hard problems for some t ≥ 1 do not admit FPT extensions?

However, this question is not even easy to formulate since the polytope we associate with a problem
remains a specific choice which by no means is the only choice.

Moreover, it can be argued that either possible answer to the very broad question (3) would be
a significant breakthrough in the complexity world. Say, since some FPT problems such as k-vertex
cover do admit FPT extensions [12], an affirmative answer to (3) would imply that this problem is

10

218 appendix

not W [t]-complete and so FPT 6= W [t]. On the other hand, if the answer to (3) was no, then this
would imply the existence of non-uniform FPT circuits for W [t]-complete problems which is considered
unlikely.

References

[1] M. Conforti, G. Cornuéjols, G. Zambelli, Extended formulations in combinatorial optimization,
4OR 8 (2010) 1–48.

[2] F. Vanderbeck, L. A. Wolsey, Reformulation and decomposition of integer programs, in: M. J.
et al. (Ed.), 50 Years of Integer Programming 1958-2008, Springer, 2010, pp. 431–502.

[3] V. Kaibel, Extended formulations in combinatorial optimization, Optima 85 (2011) 2–7.

[4] L. A. Wolsey, Using extended formulations in practice, Optima 85 (2011) 7–9.

[5] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, R. de Wolf, Exponential lower bounds for polytopes
in combinatorial optimization, J. ACM 62 (2) (2015) 17.

[6] G. Braun, S. Fiorini, S. Pokutta, D. Steurer, Approximation limits of linear programs (beyond
hierarchies), Math. Oper. Res. 40 (3) (2015) 756–772. doi:10.1287/moor.2014.0694.

[7] T. Rothvoß, The matching polytope has exponential extension complexity, in: Proc. of the 46th
ACM Symposium on Theory of Computing, (STOC), 2014, pp. 263–272.

[8] S. Chan, J. Lee, P. Raghavendra, D. Steurer, Approximate constraint satisfaction requires large
LP relaxations, FOCS’13 (2013).

[9] D. Avis, H. R. Tiwary, On the extension complexity of combinatorial polytopes, in: Proc. ICALP(1)
2013, 2013, pp. 57–68.

[10] S. Pokutta, M. Van Vyve, A note on the extension complexity of the knapsack polytope, Operations
Research Letters 41 (4) (2013) 347–350.

[11] R. G. Downey, M. R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer
Science, Springer, 2013. doi:10.1007/978-1-4471-5559-1.

[12] A. Buchanan, Extended formulations for vertex cover, available on Optimization Online (2015).

[13] J. Nešetřil, P. Ossona de Mendez, Linear time low tree-width partitions and algorithmic conse-
quences, in: STOC’06, ACM, 2006, pp. 391–400. doi:10.1145/1132516.1132575.

[14] E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, Discrete
Applied Mathematics 89 (1–3) (1998) 3–44.

[15] A. Buchanan, S. Butenko, Tight extended formulations for independent set, available on Optimiza-
tion Online (2014).

[16] J. Nešetřil, P. Ossona de Mendez, Sparsity: Graphs, Structures, and Algorithms, Vol. 28 of Algo-
rithms and Combinatorics, Springer, 2012.

[17] J. Nešetřil, P. Ossona de Mendez, Grad and classes with bounded expansion I. Decompositions,
European J. Combin. 29 (3) (2008) 760–776.

[18] P. Kolman, M. Koutecký, H. R. Tiwary, Extension complexity, mso logic, and treewidth, CoRR
abs/1507.04907.
URL http://arxiv.org/abs/1507.04907

11

appendix 219

[19] M. Grohe, S. Kreutzer, S. Siebertz, Deciding first-order properties of nowhere dense graphs, in:
STOC’14, ACM, 2014, pp. 89–98. doi:10.1145/2591796.2591851.

[20] Z. Dvořák, D. Král’, R. Thomas, Deciding first-order properties for sparse graphs, in: FOCS’10,
IEEE Computer Society, 2010, pp. 133–142.

12

220 appendix

G
E X T E N S I O N C O M P L E X I T Y, M S O L O G I C , A N D
T R E E W I D T H

The following articles has been accepted for publication in the pro-
ceedings of the 15th Scandinavian Symposium and Workshop on Algo-
rithm Theory. It is included here as an appendix for completeness.

221

Extension Complexity, MSO Logic, and
Treewidth ∗

Petr Kolman1, Martin Koutecký1, and Hans Raj Tiwary1

1 Department of Applied Mathematics (KAM) & Institute of Theoretical
Computer Science (ITI),
Faculty of Mathematics and Physics (MFF), Charles University in Prague,
Czech Republic.
{kolman,koutecky,hansraj}@kam.mff.cuni.cz

Abstract
We consider the convex hull Pϕ(G) of all satisfying assignments of a given MSO2 formula ϕ on a
given graph G. We show that there exists an extended formulation of the polytope Pϕ(G) that
can be described by f(|ϕ|, τ) · n inequalities, where n is the number of vertices in G, τ is the
treewidth of G and f is a computable function depending only on ϕ and τ.

In other words, we prove that the extension complexity of Pϕ(G) is linear in the size of the
graph G, with a constant depending on the treewidth of G and the formula ϕ. This provides a
very general yet very simple meta-theorem about the extension complexity of polytopes related
to a wide class of problems and graphs.

1998 ACM Subject Classification F.2.2, F.4.1, G.1.6, G.2.1, G.2.2

Keywords and phrases Extension Complexity – FPT – Courcelle’s Theorem – MSO Logic

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.

1 Introduction

In the ’70s and ’80s, it was repeatedly observed that various NP-hard problems are solvable
in polynomial time on graphs resembling trees. The graph property of resembling a tree was
eventually formalized as having bounded treewidth, and in the beginning of the ’90s, the
class of problems efficiently solvable on graphs of bounded treewidth was shown to contain
the class of problems definable by the Monadic Second Order Logic (MSO2) (Courcelle [11],
Arnborg et al. [1], Courcelle and Mosbah [13]). Using similar techniques, analogous results for
weaker logics were then proven for wider graph classes such as graphs of bounded cliquewidth
and rankwidth [12]. Results of this kind are usually referred to as Courcelle’s theorem for a
specific class of structures.

In this paper we study the class of problems definable by the MSO logic from the
perspective of extension complexity. While small extended formulations are known for
various special classes of polytopes, we are not aware of any other result in the theory of
extended formulations that works on a wide class of polytopes the way Courcelle’s theorem
works for a wide class of problems and graphs.
Our Contribution. We prove that satisfying assignments of an MSO2 formula ϕ on a graph
of bounded treewidth can be expressed by a “small” linear program. More precisely, there
exists a computable function f such that the convex hull – Pϕ(G) – of satisfying assignments

∗ This research was partially supported by the project P202-13/201414 of GA ČR.

© Petr Kolman, Martin Koutecký and Hans R. Tiwary;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. ; pp. :1–:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

appendix 223

XX:2 Extension Complexity, MSO Logic, and Treewidth

of ϕ on a graph G on n vertices with treewidth τ can be obtained as the projection of a
polytope described by f(|ϕ|, τ) · n linear inequalities; we call Pϕ(G) the MSO polytope. All
our results can be extended to general finite structures where the restriction on treewidth
applies to the treewidth of their Gaifman graph [30].

Our proof essentially works by “merging the common wisdom” from the areas of extended
formulations and fixed parameter tractability. It is known that dynamic programming can
usually be turned into a compact extended formulation [32, 18], and that Courcelle’s theorem
can be seen as an instance of dynamic programming [26], and therefore it should be expected
that the polytope of satisfying assignments of an MSO formula of a bounded treewidth graph
be small.

However, there are a few roadblocks in trying to merge these two folklore wisdoms. For
one, while Courcelle’s theorem being an instance of dynamic programming in some sense
may be obvious to an FPT theorist, it is far from clear to anyone else what that sentence
may even mean. On the other hand, being able to turn a dynamic program into a compact
polytope may be a theoretical possibility for an expert on extended formulations, but it
is by no means an easy statement for an outsider to comprehend. What complicates the
matters even further is that the result of Martin et al. [32] is not a result that can be used
in a black box fashion. That is, a certain condition must be satisfied to get a compact
extended formulation out of a dynamic program. This is far from a trivial task, especially
for a theorem like Courcelle’s theorem.

The rest of the article is organized as follows. In Section 2 we review some previous
work related to Courcelle’s theorem and extended formulations. In Section 3 we describe
the relevant notions related to polytopes, extended formulations, graphs, treewidth and
MSO logic. In Section 4 we prove the existence of compact extended formulations for MSO
polytopes parameterized by the length of the given MSO formula and the treewidth of the
given graph. In Section 5 we describe how to efficiently construct such a polytope given a
tree decomposition of a graph.

2 Related Work

2.1 MSO Logic vs. Treewidth
Because of the wide relevance of the treewidth parameter in many areas (cf. the survey of
Bodlaender [5]) and the large expressivity of the MSO and its extensions (cf. the survey of
Langer et al. [27]), considerable attention was given to Courcelle’s theorem by theorists from
various fields, reinterpreting it into their own setting. These reinterpretations helped uncover
several interesting connections.

The classical way of proving Courcelle’s theorem is constructing a tree automaton A in
time only dependent on ϕ and the treewidth τ , such that A accepts a tree decomposition of
a graph of treewidth τ if and only if the corresponding graph satisfies ϕ; this is the automata
theory perspective [11]. Another perspective comes from finite model theory where one can
prove that a certain equivalence on the set of graphs of treewidth at most τ has only finitely
many (depending on ϕ and τ) equivalence classes and that it behaves well [16]. Another
approach proves that a quite different equivalence on so-called extended model checking
games has finitely many equivalence classes [23] as well; this is the game-theoretic perspective.
It can be observed that the finiteness in either perspective stems from the same roots.

Another related result is an expressivity result: Gottlob et al. [16] prove that on bounded
treewidth graphs, a certain subset of the database query language Datalog has the same

224 appendix

P. Kolman, M. Koutecký and H. R. Tiwary XX:3

expressive power as the MSO. This provides an interesting connection between the automata
theory and the database theory.

2.2 Extended Formulations
Sellmann, Mercier, and Leventhal [34] claimed to show compact extended formulation for
binary Constraint Satisfaction Problems (CSP) for graphs of bounded treewidth, but their
proof is not correct [33]. The first two authors of this paper gave extended formulations for
CSP that has polynomial size for instances whose constraint graph has bounded treewidth [25]
using a different technique. Bienstock and Munoz [3] prove similar results for the approximate
and exact version of the problem. In the exact case, Bienstock and Munoz’s bounds are
slightly worse than those of Kolman and Koutecký [25]. It is worth noting that CSPs are a
restricted subclass of problems that can be modeled using MSO logic. Laurent [28] provides
extended formulations for the independent set and max cut polytopes of size O(2τn) for
n-vertex graphs of treewidth τ and, independently, Buchanan and Butenko [8] provide an
extended formulation for the independent set polytope of the same size.

A lot of recent work on extended formulations has focussed on establishing lower bounds
in various settings: exact, approximate, linear vs. semidefinite, etc. (See for example
[15, 2, 6, 29]). A wide variety of tools have been developed and used for these results includ-
ing connections to nonnegative matrix factorizations [37], communication complexity [14],
information theory [7], and quantum communication [15] among others.

For proving upper bounds on extended formulations, several authors have proposed
various tools as well. Kaibel and Loos [19] describe a setting of branched polyhedral systems
which was later used by Kaibel and Pashkovich [20] to provide a way to construct polytopes
using reflection relations.

A particularly specific composition rule, which we term glued product (cf. Subsection 3.1),
was studied by Margot in his PhD thesis [31]. Margot showed that a property called the
projected face property suffices to glue two polytopes efficiently. Conforti and Pashkovich [10]
describe and strengthen Margot’s result to make the projected face property to be a necessary
and sufficient condition to describe the glued product in a particularly efficient way.

Martin et al. [32] have shown that under certain conditions, an efficient dynamic pro-
gramming based algorithm can be turned into a compact extended formulation. Kaibel [18]
summarizes this and various other methods.

3 Preliminaries

3.1 Polytopes, Extended Formulations and Extension Complexity
For background on polytopes we refer the reader to Grünbaum [17] and Ziegler [38]. To
simplify reading of the paper for the audience that is not working often in the area of
polyhedral combinatorics, we provide here a brief glossary of common polyhedral notions
that are used in this article.

A hyperplane in Rn is a closed convex set of the form {x|aᵀx = b} where a ∈ Rn, b ∈ R.
A halfspace in Rn is a closed convex set of the form {x|aᵀx 6 b} where a ∈ Rn, b ∈ R.
The inequality aᵀx 6 b is said to define the corresponding halfspace. A polytope P ⊆ Rn
is a bounded subset defined by intersection of finite number of halfspaces. A result of
Minkowsky-Weyl states that equivalently, every polytope is the convex hull of a finite number
of points. Let h be a halfspace defined by an inequality aᵀx 6 b; the inequality is said to

SWAT 2016

appendix 225

XX:4 Extension Complexity, MSO Logic, and Treewidth

be valid for a polytope P if P = P ∩ h. Let h be a halfspace defined by a valid inequality
aᵀx 6 b; then, P ∩ {x|aᵀx = b} is said to be a face of P .

Note that, taking a to be the zero vector and b = 0 results in the face being P itself. Also,
taking a to be the zero vector and b = 1 results in the empty set. These two faces are often
called the trivial faces and they are polytopes “living in” dimensions n and −1, respectively.
Every face - that is not trivial - is itself a polytope of dimension d where 0 6 d 6 n− 1.

It is not uncommon to refer to three separate (but related) objects as a face: the actual
face as defined above, the valid inequality defining it, and the equation corresponding to the
valid inequality. While this is clearly a misuse of notation, the context usually makes it clear
as to exactly which object is being referred to.

The zero dimensional faces of a polytope are called its vertices, and the (n−1)-dimensional
faces are called its facets.

Let P be a polytope in Rd. A polytope Q in Rd+r is called an extended formulation or
an extension of P if P is a projection of Q onto the first d coordinates. Note that for any
linear map π : Rd+r → Rd such that P = π(Q), a polytope Q′ exists such that P is obtained
by dropping all but the first d coordinates on Q′ and, moreover, Q and Q′ have the same
number of facets.

The size of a polytope is defined to be the number of its facet-defining inequalities.
Finally, the extension complexity of a polytope P , denoted by xc(P), is the size of its
smallest extended formulation. We refer the readers to the surveys [9, 35, 18, 36] for details
and background of the subject and we only state three basic propositions about extended
formulations here.

I Proposition 1. Let P be a polytope with a vertex set V = {v1, . . . , vn}. Then xc(P) 6 n.

Proof. Let P = conv ({v1, . . . , vn}) be a polytope. Then, P is the projection of

Q =
{

(x, λ)
∣∣∣∣∣x =

n∑

i=1
λivi;

n∑

i=1
λi = 1;λi > 0 for i ∈ {1, . . . , n}

}
.

It is clear that Q has at most n facets and therefore xc(P) 6 n. J

I Proposition 2. Let P be a polytope obtained by intersecting a set H of hyperplanes with a
polytope Q. Then xc(P) 6 xc(Q).

Proof. Note that any extended formulation of Q, when intersected with H, gives an extended
formulation of P . Intersecting a polytope with hyperplanes does not increase the number of
facet-defining inequalities (and only possibly reduces it). J

The (cartesian) product of two polytopes P1 and P2 is defined as

P1 × P2 = conv ({(x, y) | x ∈ P1, y ∈ P2}) .

I Proposition 3. Let P1, P2 be two polytopes. Then

xc(P1 × P2) 6 xc(P1) + xc(P2) .

Proof. Let Q1 and Q2 be extended formulations of P1 and P2, respectively. Then, Q1 ×Q2
is an extended formulation of P1 × P2. Now assume that Q1 = {x | Ax 6 b} and Q2 =
{y | Cy 6 d} and that these are the smallest extended formulations of P1 and P2, resp. Then

Q1 ×Q2 = {(x, y) | Ax 6 b, Cy 6 d} .

That is, we have an extended formulation of P1 × P2 of size at most xc(P1) + xc(P2). J

226 appendix

P. Kolman, M. Koutecký and H. R. Tiwary XX:5

We are going to define the glued product of polytopes, a slight generalization of the usual
product of polytopes. We use a case where the extension complexity of the glued product
of two polytopes is upper bounded by the sum of the extension complexities of the two
polytopes, and use it in Section 4 to describe a small extended formulation for the MSO
polytope Pϕ(G) on graphs with bounded treewidth.

Let P ⊆ Rd1+k and Q ⊆ Rd2+k be 0/1-polytopes defined by m1 and m2 inequalities
and with vertex sets vert(P) and vert(Q), respectively. Let IP ⊆ {1, . . . d1 + k} be a subset
of coordinates of size k, IQ ⊆ {1, . . . d2 + k} be a subset of coordinates of size k, and let
I ′P = {1, . . . d1 + k} \ IP . For a vector x, and a subset I of coordinates, we denote by x|I the
subvector of x specified by the coordinates I. The glued product of P and Q, (glued) with
respect to the k coordinates IP and IQ, denoted by P ×k Q, is defined as

P ×k Q = conv
({

(x|I′
P
, y) ∈ Rd1+d2+k | x ∈ vert(P), y ∈ vert(Q), x|IP

= y|IQ

})
.

We adopt the following convention while discussing glued products in the rest of this
article. In the above scenario, we say that P ×k Q is obtained by gluing P and Q along the
k coordinates IP of P with the k coordinates IQ of Q. If, for example, these coordinates
are named z in P and w in Q, then we also say that P and Q have been glued along the z
and w coordinates and we refer to the coordinates z and w as the glued coordinates. In the
special case that we glue along the last k coordinates, the definition of the glued product
simplifies to

P ×k Q = conv
({

(x, y, z) ∈ Rd1+d2+k | (x, z) ∈ vert(P), (y, z) ∈ vert(Q)
})
.

This notion was studied by Margot [31] who provided a sufficient condition for being able
to write the glued product in a specific (and efficient) way from the descriptions of P and Q.
We will use this particular way in Lemma 1. The existing work [31, 10], however, is more
focused on characterizing exactly when this particular method works. We do not need the
result in its full generality and would be interested in a very specific case for our purposes,
so we will describe the terms that we will use in our context and then state a specific version
of Margot’s result.

I Lemma 1 (Gluing lemma). Let P and Q be 0/1-polytopes and let the k (glued) coordinates
in P be labeled z1, . . . , zk, and the k (glued) coordinates in Q be labeled w1, . . . , wk. Suppose
that 1ᵀz 6 1 is valid for P and 1ᵀw 6 1 is valid for Q. Then xc(P ×k Q) 6 xc(P) + xc(Q).

As mentioned before, this is a special case of Margot’s result, but for completeness we
include a proof.

Proof. Let (x′, z′, y′, w′) be a point from P × Q ∩ {(x, z, y, w)|z = w}. Observe that the
point (x′, z′) is a convex combination of points (x′, 0), (x′, e1), . . . , (x′, ek) from P with
coefficients (1−∑k

i=1 z
′
i), z′1, z′2, . . . , z′k where ei is the i-th unit vector. Similarly, the point

(y′, w′) is a convex combination of points (y′, 0), (y′, e1), . . . , (y′, ek) from Q with coefficients
(1−∑k

i=1 w
′
i), w′1, w′2, . . . , w′k. Notice that for every j ∈ [k], (x′j , ej , y′j) is a point from the

glued product. As wi = zi for every i ∈ [k], we conclude that (x′, w′, z′) ∈ P ×k Q. Thus, by
Proposition 2 the extension complexity of P ×k Q is at most that of P ×Q which is at most
xc(P) + xc(Q) by Proposition ??. J

3.2 Graphs and Treewidth
For notions related to the treewidth of a graph and nice tree decomposition, in most cases
we stick to the standard terminology as given in the book by Kloks [22]; the only deviation

SWAT 2016

appendix 227

XX:6 Extension Complexity, MSO Logic, and Treewidth

is in the leaf nodes of the nice tree decomposition where we assume that the bags are empty.
For a vertex v ∈ V of a graph G = (V,E), we denote by δ(v) the set of neighbors of v in G,
that is, δ(v) = {u ∈ V | {u, v} ∈ E}.

A tree decomposition of a graph G = (V,E) is a tree T in which each node a ∈ T has an
assigned set of vertices B(a) ⊆ V (called a bag) such that

⋃
a∈T B(a) = V with the following

properties:
for any uv ∈ E, there exists a node a ∈ T such that u, v ∈ B(a).
if v ∈ B(a) and v ∈ B(b), then v ∈ B(c) for all c on the path from a to b in T .

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of T minus
one. The treewidth tw(G) of a graph G is the minimum treewidth over all possible tree
decompositions of G.

A nice tree decomposition is a tree decomposition with one special node r called the root
in which each node is one of the following types:

Leaf node: a leaf a of T with B(a) = ∅.
Introduce node: an internal node a of T with one child b for which B(a) = B(b) ∪ {v} for
some v ∈ B(a).
Forget node: an internal node a of T with one child b for which B(a) = B(b) \ {v} for
some v ∈ B(b).
Join node: an internal node a with two children b and c with B(a) = B(b) = B(c).

For a vertex v ∈ V , we denote by top(v) the topmost node of the nice tree decomposition T
that contains v in its bag. For any graph G on n vertices, a nice tree decomposition of G
with at most 8n nodes can be computed in time O(n) [4, 22].

Given a graph G = (V,E) and a subset of vertices {v1, . . . , vd} ⊆ V , we denote by
G[v1, . . . , vd] the subgraph of G induced by the vertices v1, . . . , vd. Given a tree decomposition
T and a node a ∈ V (T), we denote by Ta the subtree of T rooted in a, and by Ga the subgraph
of G induced by all vertices in bags of Ta, that is, Ga = G[

⋃
b∈V (Ta) B(b)]. Throughout

this paper we assume that for every graph, its vertex set is a subset of N. We define the
following operator σ: for any set U = {v1, v2, . . . , vl} ⊆ N, σ(U) = (vi1 , vi2 , . . . , vil) such
that vi1 < vi2 · · · < vil .

For an integer m ≥ 0, an [m]-colored graph is a pair (G, ~V) where G = (V,E) is a graph
and ~V = (V1, . . . , Vm) is an m-tuple of subsets of vertices of G called an m-coloring of G.
For integers m ≥ 0 and τ ≥ 0, an [m]-colored τ -boundaried graph is a triple (G, ~V , ~p) where
(G, ~V) is an [m]-colored graph and ~p = (p1, . . . , pτ) is a τ -tuple of vertices of G called a
boundary of G. If the tuples ~V and ~p are clear from the context or if their content is not
important, we simply denote an [m]-colored τ -boundaried graph by G[m],τ . For a tuple
~p = (p1, . . . , pτ), we denote by p the corresponding set, that is, p = {p1, . . . , pτ}.

Two [m]-colored τ -boundaried graphs (G1, ~V , ~p) and (G2, ~U, ~q) are compatible if the
function h : ~p → ~q, defined by h(pi) = qi for each i, is an isomorphism of the induced
subgraphs G1[p1, . . . , pτ] and G2[q1, . . . , qτ], and if for each i and j, pi ∈ Vj ⇔ qi ∈ Uj .

Given two compatible [m]-colored τ -boundaried graphs G[m],τ
1 = (G1, ~U, ~p) and G[m],τ

2 =
(G2, ~W, ~q), the join of G[m],τ

1 and G
[m],τ
2 , denoted by G

[m],τ
1 ⊕ G[m],τ

2 , is the [m]-colored
τ -boundaried graph G[m],τ = (G, ~V , ~p) where

G is the graph obtained by taking the disjoint union of G1 and G2, and for each i,
identifying the vertex pi with the vertex qi and keeping the label pi for it;
~V = (V1, . . . , Vm) with Vj = Uj ∪Wj and every qi replaced by pi, for each j;
~p = (p1, . . . , pτ) with pi being the node in V (G) obtained by the identification of
pi ∈ V (G1) and qi ∈ V (G2), for each i.

228 appendix

P. Kolman, M. Koutecký and H. R. Tiwary XX:7

Because of the choice of referring to the boundary vertices by their names in G[m],τ
1 , it does

not always hold that G[m],τ
1 ⊕ G[m],τ

2 = G
[m],τ
2 ⊕ G[m],τ

1 ; however, the two structures are
isomorphic and equivalent for our purposes (see below).

3.3 Monadic Second Order Logic and Types of Graphs
In most cases, we stick to standard notation as given by Libkin [30].

A vocabulary σ is a finite collection of constant symbols c1, c2, . . . and relation symbols
P1, P2, Each relation symbol Pi has an associated arity ri. A σ-structure is a tuple
A = (A, {cAi }, {PAi }) that consists of a universe A together with an interpretation of the
constant and relation symbols: each constant symbol ci from σ is associated with an element
cAi ∈ A and each relation symbol Pi from σ is associated with an ri-ary relation PAi ⊆ Ari .

To give an example, a graph G = (V,E) can be viewed as a σ1-structure (V, ∅, {E})
where E is a symmetric binary relation on V × V and the vocabulary σ1 contains a single
relation symbol. Alternatively, for another vocabulary σ2 containing three relation symbols,
one of arity two and two of arity one, one can view a graph G = (V,E) also as a σ2-structure
I(G) = (VI , ∅, {EI , LV , LE}), with VI = V ∪ E, EI = {{v, e} | v ∈ e, e ∈ E}, LV = V and
LE = E; we will call I(G) the incidence graph of G. In our approach we will make use of the
well known fact that the treewidths of G and I(G), viewed as a σ1- and σ2- structures as
explained above, differ by one at most [24].

The main subject of this paper are formulas for graphs in monadic second order logic
(MSO) which is an extension of first order logic that allows quantification over monadic
predicates (i.e., over sets of vertices). By MSO2 we denote the extension of MSO that allows
in addition quantification over sets of edges. As every MSO2 formula ϕ over σ1 can be
turned into an MSO1 formula ϕ′ over σ2 such that for every graph G, G |= ϕ if and only if
I(G) |= ϕ′ [folklore], for the sake of presentation we restrict our attention, without loss of
generality, to MSO1 formulae over the σ2 vocabulary. To further simplify the presentation,
without loss of generality (cf. [21]) we assume that the input formulae are given in a variant
of MSO1 that uses only set variables (and no element variables).

An important kind of structures that are necessary in the proofs in this paper are the [m]-
colored τ -boundaried graphs. An [m]-colored τ -boundaried graph G = (V,E) with boundary
p1, . . . , pτ colored with V1, . . . , Vm is viewed as a structure (VI , {p1, . . . , pτ}, {EI , LV , LE ,
V1, . . . , Vm}); for notational simplicity, we stick to the notation G[m],τ or (G, ~V , ~p). The
corresponding vocabulary is denoted by σm,τ .

A variable X is free in ϕ if it does not appear in any quantification in ϕ. If ~X is the tuple
of all free variables in ϕ, we write ϕ(~X). A variable X is bound in ϕ if it is not free. By qr(ϕ)
we denote the quantifier rank of ϕ which is the number of quantifiers of ϕ when transformed
into the prenex form (i.e., all quantifiers are at the beginning of the formula). We denote by
MSO[k, τ,m] the set of all MSO1 formulae ϕ over the vocabulary στ,m with qr(ϕ) ≤ k.

Two [m]-colored τ -boundaried graphs G[m],τ
1 and G[m],τ

2 are MSO[k]-elementarily equiva-
lent if they satisfy the same MSO[k, τ,m] formulae; this is denoted by G[m],τ

1 ≡MSO
k G

[m],τ
2 .

The main tool in the model theoretic approach to Courcelle’s theorem, that will also play a
crucial role in our approach, can be stated as the following theorem.

I Theorem 2 (follows from Proposition 7.5 and Theorem 7.7 [30]). For any fixed τ, k,m ∈ N,
the equivalence relation ≡MSO

k has a finite number of equivalence classes.

Let us denote the equivalence classes of the relation ≡MSO
k by C = {α1 . . . , αw}, fixing

an ordering such that α1 is the class containing the empty graph. Note that the size of

SWAT 2016

appendix 229

XX:8 Extension Complexity, MSO Logic, and Treewidth

C depends only on k, m and τ , that is, |C| = f(k,m, τ) for some computable function
f . For a given MSO formula ϕ with m free variables, we define an indicator function
ρϕ : {1, . . . , |C|} → {0, 1} as follows: for every i, if there exists a graph G[m],τ ∈ αi such that
G[m],τ |= ϕ, we set ρϕ(i) = 1, and we set ρϕ(i) = 0 otherwise; note that if there exists a
graph G[m],τ ∈ αi such that G[m],τ |= ϕ, then G′[m],τ |= ϕ for every G′[m],τ ∈ αi.

For every [m]-colored τ -boundaried graph G[m],τ , its type, with respect to the relation
≡MSO
k , is the class to which G[m],τ belongs. We say that types αi and αj are compatible if

there exist two [m]-colored τ -boundaried graphs of types αi and αj that are compatible;
note that this is well defined as all [m]-colored τ -boundaried graphs of a given type are
compatible. For every i ≥ 1, we will encode the type αi naturally as a binary vector {0, 1}|C|
with exactly one 1, namely with 1 on the position i.

An important property of the types and the join operation is that the type of a join of
two [m]-colored τ -boundaried graphs depends on their types only.

I Lemma 3 (Lemma 7.11 [30] and Lemma 3.5 [16]). Let G[m],τ
a , G[m],τ

a′ , G[m],τ
b and G[m],τ

b′

be [m]-colored τ -boundaried graphs such that G[m],τ
a ≡MSO

k G
[m],τ
a′ and G[m],τ

b ≡MSO
k G

[m],τ
b′ .

Then (G[m],τ
a ⊕G[m],τ

b) ≡MSO
k (G[m],τ

a′ ⊕G[m],τ
b′).

The importance of the lemma rests in the fact that for determination of the type of a join of
two [m]-colored τ -boundaried graphs, it suffices to know only a small amount of information
about the two graphs, namely their types. The following two lemmas deal in a similar way
with the type of a graph in other situations.

I Lemma 4 (implicitly in [16]). Let (Ga, ~X, ~p), (Gb, ~Y , ~q) be [m]-colored τ -boundaried graphs
and let (Ga′ , ~X ′, ~p′), (Gb′ , ~Y ′, ~q′) be [m]-colored (τ + 1)-boundaried graphs with Ga = (V,E),
Ga′ = (V ′, E′), Gb = (W,F), Gb′ = (W ′, F ′) such that
1. (Ga, ~X, ~p) ≡MSO

k (Gb, ~Y , ~q);
2. V ′ = V ∪{v} for some v 6∈ V , δ(v) ⊆ p, ~p is a subtuple of ~p′ and (Ga′ [V], ~X ′[V], ~p′[V]) =

(Ga, ~X, ~p);
3. W ′ = W∪{w} for some w 6∈W , δ(w) ⊆ q, ~q is a subtuple of ~q′ and (Gb′ [W], ~Y ′[W], ~q′[W]) =

(Gb, ~Y , ~q);
4. (Ga′ , ~X ′, ~p′) and (Gb′ , ~Y ′, ~q′) are compatible.
Then (Ga′ , ~X ′, ~p′) ≡MSO

k (Gb′ , ~Y ′, ~q′).

I Lemma 5 (implicitly in [16]). Let (Ga, ~X, ~p), (Gb, ~Y , ~q) be [m]-colored τ -boundaried graphs
and let (Ga′ , ~X ′, ~p′), (Gb′ , ~Y ′, ~q′) be [m]-colored (τ + 1)-boundaried graphs with Ga = (V,E),
Ga′ = (V ′, E′), Gb = (W,F), Gb′ = (W ′, F ′) such that
1. (Ga′ , ~X ′, ~p′) ≡MSO

k (Gb′ , ~Y ′, ~q′);
2. V ⊆ V ′, |V ′| = |V |+ 1, ~p is a subtuple of ~p′ and (Ga′ [V], ~X ′[V], ~p′[V]) = (Ga, ~X, ~p);
3. W ⊆W ′, |W ′| = |W |+ 1, ~q is a subtuple of ~q′ and (Gb′ [W], ~Y ′[W], ~q′[W]) = (Gb, ~Y , ~q).
Then (Ga, ~X, ~p) ≡MSO

k (Gb, ~Y , ~q).

3.4 Feasible Types
Suppose that we are given an MSO1 formula ϕ over σ2 with m free variables and a quantifier
rank at most k, a graph G of treewidth at most τ , and a nice tree decomposition T of the
graph G.

For every node of T we are going to define certain types and tuples of types as feasible.
For a node b ∈ V (T) of any kind (leaf, introduce, forget, join) and for α ∈ C, we say that α is
a feasible type of the node b if there exist X1, . . . , Xm ⊆ V (Gb) such that (Gb, ~X, σ(B(b))) is

230 appendix

P. Kolman, M. Koutecký and H. R. Tiwary XX:9

of type α where ~X = (X1, . . . , Xm); we say that ~X realizes type α on the node b. We denote
the set of feasible types of the node b by F(b).

For an introduce node b ∈ V (T) with a child a ∈ V (T) (assuming that v is the new
vertex), for α ∈ F(a) and β ∈ F(b), we say that (α, β) is a feasible pair of types for b if there
exist ~X = (X1, . . . , Xm) and ~X ′ = (X ′1, . . . , X ′m) realizing types α and β on the nodes a and
b, respectively, such that for each i, either X ′i = Xi or X ′i = Xi ∪ {v}. We denote the set of
feasible pairs of types of the introduce node b by Fp(b).

For a forget node b ∈ V (T) with a child a ∈ V (T) and for β ∈ F(b) and α ∈ F(a), we
say (α, β) is a feasible pair of types for b if there exists ~X realizing β on b and α on a. We
denote the set of feasible pairs of types of the forget node b by Fp(b).

For a join node c ∈ V (T) with children a, b ∈ V (T) and for α ∈ F(c), γ1 ∈ F(a) and
γ2 ∈ F(b), we say that (γ1, γ2, α) is a feasible triple of types for c if γ1, γ2 and α are mutually
compatible and there exist ~X1, ~X2 realizing γ1 and γ2 on a and b, respectively, such that
~X = (X1

1 ∪X2
1 , . . . , X

1
m ∪X2

m) realizes α on c. We denote the set of feasible triples of types
of the join node c by Ft(c).

We define an indicator function µ : C×V (G)×{1, . . . ,m} → {0, 1} such that µ(β, v, i) = 1
if and only if there exists ~X = (X1, . . . , Xm) realizing the type β on the node top(v) ∈ V (T)
and v ∈ Xi.

4 Extension Complexity of the MSO Polytope

For a given MSO1 formula ϕ(~X) over σ2 with m free set variables X1, . . . , Xm, we define
a polytope of satisfying assignments on a given graph G, represented as a σ2 structure
I(G) = (VI , ∅, {EI , LV , LE}) with domain of size n, in a natural way. We encode any
assignment of elements of I(G) to the sets X1, . . . , Xm as follows. For each Xi in ϕ and each
v in VI , we introduce a binary variable yvi . We set yvi to be one if v ∈ Xi and zero otherwise.
For a given 0/1 vector y, we say that y satisfies ϕ if interpreting the coordinates of y as
described above yields a satisfying assignment for ϕ. The polytope of satisfying assignments,
also called the MSO polytope, is defined as

Pϕ(G) = conv ({y ∈ {0, 1}nm | y satisfies ϕ}) .

I Theorem 6 (Extension Complexity of the MSO Polytope). For every graph G and for every
MSO1 formula ϕ, xc(Pϕ(G)) = f(|ϕ|, τ) · n where f is some computable function, τ = tw(G)
and n = |VI |.

Proof. Let T be a fixed nice tree decomposition of treewidth τ of the given graph G

represented as I(G) and let k denote the quantifier rank of ϕ and m the number of free
variables of ϕ. Let C be the set of equivalence classes of the relation ≡MSO

k . For each node b
of T we introduce |C| binary variables that will represent a feasible type of the node b; we
denote the vector of them by tb (i.e., tb ∈ {0, 1}|C|). For each introduce and each forget node
b of T , we introduce additional |C| binary variables that will represent a feasible type of the
child (descendant) of b; we denote the vector of them by db (i.e., db ∈ {0, 1}|C|). Similarly,
for each join node b we introduce additional |C| binary variables, denoted by lb, that will
represent a feasible type of the left child of b, and other |C| binary variables, denoted by rb,
that will represent a feasible type of the right child of b (i.e., lb, rb ∈ {0, 1}|C|).

We are going to describe inductively a polytope in the dimension given (roughly) by all
the binary variables of all nodes of the given nice tree decomposition. Then we show that its
extension complexity is small and that a properly chosen face of it is an extension of Pϕ(G).

First, for each node b of T , depending on its type, we define a polytope Pb as follows:

SWAT 2016

appendix 231

XX:10 Extension Complexity, MSO Logic, and Treewidth

b is a leaf. Pb consists of a single point Pb = {
|C|︷ ︸︸ ︷

100 . . . 0}.
b is an introduce or forget node. For each feasible pair of types (αi, αj) ∈ Fp(b) of the node
b, we create a vector (db, tb) ∈ {0, 1}2|C| with db[i] = tb[j] = 1 and all other coordinates
zero. Pb is defined as the convex hull of all such vectors.
b is a join node. For each feasible triple of types (αh, αi, αj) ∈ Ft(b) of the node b,
we create a vector (lb, rb, tb) ∈ {0, 1}3|C| with lb[h] = rb[i] = tb[j] = 1 and all other
coordinates zero. Pb is defined as the convex hull of all such vectors.

It is clear that for every node b in T , the polytope Pb contains at most |C|3 vertices, and,
thus, by Proposition 1 it has extension complexity at most xc(Pb) 6 |C|3. Recalling our
discussion in Section 3 about the size of C, we conclude that there exists a function f such
that for every b ∈ V (T), it holds that xc(Pb) 6 f(|ϕ|, τ).

We create an extended formulation for Pϕ(G) by gluing these polytopes together, starting
in the leaves of T and processing T in a bottom up fashion. We create polytopes Qb for each
node b in T recursively as follows:

If b is a leaf then Qb = Pb.
If b is an introduce or forget node, then Qb = Qa ×|C| Pb where a is the child of b and the
gluing is done along the coordinates ta in Qa and db in Pb.
If b is a join node, then we first define Rb = Qa ×|C| Pb where a is the left child of b and
the gluing is done along the coordinates ta in Qa and lb in Pb. Then Qb is obtained by
gluing Rb with Qc along the coordinates tc in Qc and rb in Rb where c is the right child
of b.

The following lemma states the key property of the polytopes Qb’s.

I Lemma 7. For every vertex y of the polytope Qb there exist X1, . . . , Xm ⊆ V (Gb) such that
(Gb, (X1, . . . , Xm), σ(B(b))) is of type α where α is the unique type such that the coordinate
of y corresponding to the binary variable tb(α) is equal to one.

Proof. The proof is by induction, starting in the leaves of T and going up towards the root.
For leaves, the lemma easily follows from the definition of the polytopes Pb’s.

For the inductive step, we consider an inner node b of T and we distinguish three cases:
If b is a join node, then the claim for b follows from the inductive assumptions for the
children of b, definition of a feasible triple, definition of the polytope Pb, Lemma 3 and
the construction of the polytope Qb.
If b is an introduce node or a forget node, respectively, then, analogously, the claim for
b follows from the inductive assumption for the child of b, definition of a feasible pair,
definition of the polytope Pb, Lemma 4 or Lemma 5, respectively, and the construction of
the polytope Qb.

J

Let c be the root node of the tree decomposition T . Consider the polytope Qc. From
the construction of Qc, our previous discussion and the Gluing lemma, it follows that
xc(Qc) 6

∑
b∈V (T) xc(Pb) 6 f(|ϕ|, τ) · O(n). It remains to show that a properly chosen

face of Qc is an extension of Pϕ(G). We start by observing that
∑|C|
i=1 tc[i] ≤ 1 and∑|C|

i=1 ρϕ(i)·tc[i] ≤ 1, where ρϕ is the indicator function, are valid inequalities for Qc.
Let Qϕ be the face of Qc corresponding to the valid inequality

∑|C|
i=1 ρϕ(i)·tc[i] ≤ 1.

Then Qϕ represents those [m]-colorings of G for which ϕ holds. The corresponding feasible
assignments of ϕ on G are obtained as follows: for every vertex v ∈ V (G) and every

232 appendix

P. Kolman, M. Koutecký and H. R. Tiwary XX:11

i ∈ {1, . . . ,m} we set yvi =
∑|C|
j=1 µ(αj , v, i)·ttop(v)[j]. The sum is 1 if and only if there exists

a type j such that ttop(v)[j] = 1 and at the same time µ(αj , v, i) = 1; by the definition of
the indicator function µ in Subsection 3.4, this implies that v ∈ Xi. Thus, by applying the
above projection to Qϕ we obtain Pϕ(G), as desired.

It is worth mentioning at this point that the polytope Qc depends only on the quantifier
rank k of ϕ and the number of free variables of ϕ. The dependence on the formula ϕ itself
only manifests in the choice of the face Qϕ of Qc and its projection to Pϕ(G). J

I Corollary 8. The extension complexity of the convex hull of all satisfying assignments of a
given MSO2 formula ϕ on a given graph G is linear in the size of the graph G.

5 Efficient Construction of the MSO Polytope

In the previous section we have proven that Pϕ(G) has a compact extended formulation
but our definition of feasible tuples and the indicator functions µ and ρϕ did not explicitly
provide a way how to actually obtain it efficiently. That is what we do in this section. We
also briefly mention some implications of our results for optimization versions of Courcelle’s
theorem.

As in the previous section we assume that we are given a graph G of treewidth τ and an
MSO formula ϕ with m free variables and quantifier rank k. We start by constructing a nice
tree decomposition T of G of treewidth τ in linear time.

Let C denote the set of equivalence classes of ≡MSO
k . Because C is finite and its size is

independent of the size of G (Theorem 2), for each class α ∈ C, there exists an [m]-colored
τ -boundaried graph (Gα, ~Xα, ~pα) of type α whose size is upper-bounded by a function of
k,m and τ . For each α ∈ C, we fix one such graph, denote it by W (α) and call it the witness
of α. Let W = {W (α) | α ∈ C}. The witnesses make it possible to easily compute the
indicator function ρϕ: for every α ∈ C, we set ρϕ(α) = 1 if and only if W (α) |= ϕ, and we
set ρϕ(α) = 0 otherwise.

I Lemma 9 (implicitly in [16] in the proof of Theorem 4.6 and Corollary 4.7). The set W and
the indicator function ρϕ can be computed in time f(k,m, τ), for some computable function f .

It will be important to have an efficient algorithmic test for MSO[k, τ]-elementary equiva-
lence. This can be done using the Ehrenfeucht-Fraïssé games:

I Lemma 10 (Theorem 7.7 [30]). Given two [m]-colored τ -boundaried graph G
[m],τ
1 and

G
[m],τ
2 , it can be decided in time f(m, k, τ, |G1|, |G2|) whether G[m],τ

1 ≡MSO
k G

[m],τ
2 , for some

computable function f .

I Corollary 11. Recognizing the type of an [m]-colored τ -boundaried graph G[m],τ can be
done in time f(m, k, τ, |G|), for some computable function f .

Now we describe a linear time construction of the sets of feasible types, pairs and triples
of types F(b), Fp(b) and Ft(b) for all relevant nodes b in T . In the initialization phase we
construct the set W, using the algorithm from Lemma 7. The rest of the construction is
inductive, starting in the leaves of T and advancing in a bottom up fashion towards the root
of T . The idea is to always replace a possibly large graph G

[m],τ
a of type α by the small

witness W (α) when computing the set of feasible types for the father of a node a.
Leaf node. For every leaf node a ∈ V (T) we set F(a) = {α1}. Obviously, this corresponds

to the definition in Section 3.

SWAT 2016

appendix 233

XX:12 Extension Complexity, MSO Logic, and Treewidth

Introduce node. Assume that b ∈ V (T) is an introduce node with a child a ∈ V (T)
for which F(a) has already been computed, and v ∈ V (G) is the new vertex. For every
α ∈ F(a), we first produce a τ ′-boundaried graph Hτ ′ = (Hα, ~q) from W (α) = (Gα, ~Xα, ~pα)
as follows: let τ ′ = | ~pα|+ 1 and Hα be obtained from Gα by attaching to it a new vertex
in the same way as v is attached to Ga. The boundary ~q is obtained from the boundary
~pα by inserting in it the new vertex at the same position that v has in the boundary of

(Ga, σ(B(a))). For every subset I ⊆ {1, . . . ,m} we construct an [m]-coloring ~Y α,I from ~Xα

by setting Y α,Ii = Xα
i ∪ {v}, for every i ∈ I, and Y α,Ii = Xα

i , for every i 6∈ I. Each of these
[m]-colorings ~Y α,I is used to produce an [m]-colored τ ′-boundaried graph (Hα, ~Y α,I , ~q) and
the types of all these [m]-colored τ ′-boundaried graphs are added to the set F(b) of feasible
types of b, and, similarly, the pairs (α, β) where β is a feasible type of some of the [m]-colored
τ ′-boundaried graph (Hα, ~Y α,I , ~q), are added to the set Fp(b) of all feasible pairs of types of
b. The correctness of the construction of the sets F(b) and Fp(b) for the node b of T follows
from Lemma 4.

Forget node. Assume that b ∈ V (T) is a forget node with a child a ∈ V (T) for which
F(a) has already been computed and that the d-th vertex of the boundary σ(B(a)) is
the vertex being forgotten. We proceed in a similar way as in the case of the introduce
node. For every α ∈ F(a) we produce an [m]-colored τ ′-boundaried graph (Hα, ~Y α, ~q)
from W (α) = (Gα, ~Xα, ~pα) as follows: let τ ′ = | ~pα| − 1, Hα = Gα, ~Y α = ~Xα and ~q =
(p1, . . . , pd−1, pd+1, . . . , pτ ′+1). For every α ∈ F(a), the type β of the constructed graph is
added to F(b), and, similarly, the pairs (α, β) are added to Fp(b). The correctness of the
construction of the sets F(b) and Fp(b) for the node b of T follows from Lemma 5.

Join node. Assume that c ∈ V (T) is a join node with children a, b ∈ V (T) for which F(a)
and F(b) have already been computed. For every pair of compatible types α ∈ F(a) and
β ∈ F(b), we add the type γ of W (α)⊕W (β) to F(c), and the triple (α, β, γ) to Ft(c). The
correctness of the construction of the sets F(c) and Ft(c) for the node b of T follows from
Lemma 3.

It remains to construct the indicator function µ. We do it during the construction of
the sets of feasible types as follows. We initialize µ to zero. Then, every time we process a
node b in T and we find a new feasible type β of b, for every v ∈ B(b) and for every i for
which d-th vertex in the boundary of W (β) = (Gβ , ~X, ~p) belongs to Xi, we set µ(β, v, i) = 1
where d is the order of v in the boundary of (Gb, σ(B(b)). The correctness follows from the
definition of µ and the definition of feasible types.

Concerning the time complexity of the inductive construction, we observe, exploiting
Corollary 9, that for every node b in T , the number of steps, the sizes of graphs that we
worked with when dealing with the node b, and the time needed for each of the steps, depends
on k, m and τ only. We summarize the main result of this section in the following theorem.

I Theorem 12. Under the assumptions of Theorem 6, the polytope Pϕ(G) can be constructed
in time f ′(|ϕ|, τ) · n, for some computable function f ′.

5.1 Courcelle’s Theorem and Optimization.

It is worth noting that even though linear time optimization versions of Courcelle’s theorem
are known, our result provides a linear size LP for these problems out of the box. Together
with a polynomial algorithm for solving linear programming we immediately get the following:

I Theorem 13. Given a graph G on n vertices with treewidth τ , a formula ϕ ∈ MSO with

234 appendix

P. Kolman, M. Koutecký and H. R. Tiwary XX:13

m free variables and real weights wiv, for every v ∈ V (G) and i ∈ {1, . . . ,m}, the problem

opt





∑

v∈V (G)

m∑

i=1
wiv · yiv

∣∣∣∣ y satisfies ϕ





where opt is min or max, is solvable in time polynomial in the input size.

6 Acknowledgements

We thank the anonymous reviewers for pointing out existing work and shorter proof of the
Glueing lemma, among various other improvements.

References
1 S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.

Journal of Algorithms, 12(2):308–340, June 1991.
2 D. Avis and H. R. Tiwary. On the extension complexity of combinatorial polytopes. In

Proc. ICALP(1), pages 57–68, 2013.
3 D. Bienstock and G. Munoz. LP approximations to mixed-integer polynomial optimization

problems. ArXiv e-prints, Jan. 2015.
4 H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. In Proc. STOC, pages 226–234, 1993.
5 H. L. Bodlaender. Treewidth: characterizations, applications, and computations. In Proc.

of WG, volume 4271 of LNCS, pages 1–14. Springer, 2006.
6 G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. Approximation limits of linear programs

(beyond hierarchies). Math. Oper. Res., 40(3):756–772, 2015.
7 G. Braun, R. Jain, T. Lee, and S. Pokutta. Information-theoretic approximations of the

nonnegative rank. Electronic Colloquium on Computational Complexity.
8 A. Buchanan and S. Butenko. Tight extended formulations for independent set, 2014.

Available on Optimization Online.
9 M. Conforti, G. Cornuéjols, and G. Zambelli. Extended formulations in combinatorial

optimization. Annals of Operations Research, 204(1):97–143, 2013.
10 M. Conforti and K. Pashkovich. The projected faces property and polyhedral relations.

Mathematical Programming, pages 1–12, 2015.
11 B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.

Information and Computation, 85:12–75, 1990.
12 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems

on graphs of bounded clique width. In Proc. of (WG), volume 1517 of LNCS, pages 125–150,
1998.

13 B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theoretical Computer Science, 109(1–2):49–82, 1 Mar. 1993.

14 Y. Faenza, S. Fiorini, R. Grappe, and H. R. Tiwary. Extended formulations, nonnegative
factorizations, and randomized com. protocols. Math. Program., 153(1):75–94, 2015.

15 S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Exponential lower bounds
for polytopes in combinatorial optimization. J. ACM, 62(2):17, 2015.

16 G. Gottlob, R. Pichler, and F. Wei. Monadic datalog over finite structures with bounded
treewidth. In Proc. PODS, pages 165–174, 2007.

17 B. Grünbaum. Convex Polytopes. Wiley Interscience Publ., London, 1967.
18 V. Kaibel. Extended formulations in combinatorial optimization. Optima, 85:2–7, 2011.

SWAT 2016

appendix 235

XX:14 Extension Complexity, MSO Logic, and Treewidth

19 V. Kaibel and A. Loos. Branched polyhedral systems. In Proc. IPCO, volume 6080 of
LNCS, pages 177–190. Springer, 2010.

20 V. Kaibel and K. Pashkovich. Constructing extended formulations from reflection relations.
In Proc. IPCO, volume 6655 of LNCS, pages 287–300. Springer, 2011.

21 L. Kaiser, M. Lang, S. Leßenich, and C. Löding. A Unified Approach to Boundedness
Properties in MSO. In Proc. of CSL, volume 41 of LIPIcs, pages 441–456, 2015.

22 T. Kloks. Treewidth: Computations and Approximations, volume 842 of LNCS. Springer,
1994.

23 J. Kneis, A. Langer, and P. Rossmanith. Courcelle’s theorem - A game-theoretic approach.
Discrete Optimization, 8(4):568–594, 2011.

24 P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction.
In Proc. PODS, 1998.

25 P. Kolman and M. Koutecký. Extended formulation for CSP that is compact for instances
of bounded treewidth. Arxiv, abs/1502.05361, 2015.

26 S. Kreutzer. Algorithmic meta-theorems. In Proc. of IWPEC, volume 5018 of LNCS, pages
10–12. Springer, 2008.

27 A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Practical algorithms for MSO model-
checking on tree-decomposable graphs. Computer Science Review, 13-14:39–74, 2014.

28 M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In
Emerging applications of algebraic geometry, pages 157–270. Springer, 2009.

29 J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite
programming relaxations. In Proc. STOC, pages 567–576, 2015.

30 L. Libkin. Elements of Finite Model Theory. Springer-Verlag, Berlin, 2004.
31 F. Margot. Composition de polytopes combinatoires: une approche par projection. PhD

thesis, École polytechnique fédérale de Lausanne, 1994.
32 R. K. Martin, R. L. Rardin, and B. A. Campbell. Polyhedral characterization of discrete

dynamic programming. Oper. Res., 38(1):127–138, Feb. 1990.
33 M. Sellmann. The polytope of tree-structured binary constraint satisfaction problems. In

Proc. CPAIOR, volume 5015 of LNCS, pages 367–371. Springer, 2008.
34 M. Sellmann, L. Mercier, and D. H. Leventhal. The linear programming polytope of binary

constraint problems with bounded tree-width. In Proc. CPAIOR, volume 4510 of LNCS,
pages 275–287. Springer, 2007.

35 F. Vanderbeck and L. A. Wolsey. Reformulation and decomposition of integer programs.
In 50 Years of Integer Programming 1958-2008, pages 431–502. Springer, 2010.

36 L. A. Wolsey. Using extended formulations in practice. Optima, 85:7–9, 2011.
37 M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J.

Comput. Syst. Sci., 43(3):441–466, 1991.
38 G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.

Springer-Verlag, 1995.

236 appendix

H
A G E N E R A L I S AT I O N O F E X T E N S I O N C O M P L E X I T Y
T H AT C A P T U R E S P

The following article has appeared in Information Processing Letters
and is included here as an appendix for completeness.

237

Information Processing Letters 115 (2015) 588–593

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A generalization of extension complexity that captures P

David Avis a,b, Hans Raj Tiwary c,∗
a GERAD and School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec, H3A 2A7, Canada
b Graduate School of Informatics, Kyoto University, Sakyo-ku, Yoshida, Kyoto 606-8501, Japan
c Department of Applied Mathematics (KAM) and Institute of Theoretical Computer Science (ITI), Charles University, Malostranské nám. 25,
118 00 Prague 1, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 April 2014
Accepted 8 February 2015
Available online 17 February 2015
Communicated by R. Uehara

Keywords:
Combinatorial problems
Computational complexity
Theory of computation
Polytopes
Extended formulations
Extension complexity
Lower bounds
Linear programming

In this paper we propose a generalization of the extension complexity of a polyhedron Q .
On the one hand it is general enough so that all problems in P can be formulated as linear
programs with polynomial size extension complexity. On the other hand it still allows non-
polynomial lower bounds to be proved for N P -hard problems independently of whether
or not P = N P . The generalization, called H-free extension complexity, allows for a set
of valid inequalities H to be excluded in computing the extension complexity of Q . We
give results on the H-free extension complexity of hard matching problems (when H are
the odd-set inequalities) and the traveling salesman problem (when H are the subtour
elimination constraints).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since linear programming is in P , we will not be able
to solve an N P -hard problem X in polynomial time (poly-
time) by linear programming unless P = N P . On the other
hand, since linear programming is P -complete, we will not
be able to prove a super-polynomial lower bound on solv-
ing X by any linear program (LP) without showing that
P �= N P . One way to make progress on this problem is to
consider restricted versions of linear programming which
have two properties.

Property (1): Problems in P will still be solvable in the
poly-time even in the restricted version of linear
programming.

Property (2): Known N P -hard problems with natural LP
formulations will have provable super-polynomial

* Corresponding author.
E-mail addresses: avis@cs.mcgill.ca (D. Avis), hansraj@kam.mff.cuni.cz

(H.R. Tiwary).

lower bounds under the restricted version of lin-
ear programming.

Note that results of type (1) and (2) will still be true,
independently of whether or not P = N P .

A candidate for such a restricted LP model is extension
complexity. In formulating optimization problems as LPs,
adding extra variables can greatly reduce the size of the
LP [4]. An extension of a polytope is such a formulation
that projects onto the original LP formulation of the prob-
lem. In this model, LP formulations of some problems in P
that have exponential size can be reduced to polynomial
size in higher dimensions. For example Martin [9] showed
that the minimum spanning tree problem has an extended
formulation of size O (n3) even though its natural formula-
tion requires exponentially many inequalities.

Various authors have shown that extended formula-
tions of various N P -hard problems have exponential lower
bounds on their size [14,7,1,11]. However this promising
restricted model for LP unfortunately does not satisfy prop-

http://dx.doi.org/10.1016/j.ipl.2015.02.005
0020-0190/© 2015 Elsevier B.V. All rights reserved.

appendix 239

D. Avis, H.R. Tiwary / Information Processing Letters 115 (2015) 588–593 589

erty (1): Rothvoß [12] recently proved that the matching
problem has exponential extension complexity.

Here we propose a stronger version of extension com-
plexity which satisfies property (1). We also exhibit some
N P -hard problems that satisfy property (2). In the pro-
posed model we concentrate on the separation problem
rather than the polynomial time equivalent optimization
problem.

Let Q be a polytope with half-space representation
F (Q) and let H be a valid set of inequalities for Q . We
delete from F (Q) all half-spaces that are redundant with
respect to H and call the resulting (possibly empty) poly-
hedron Q H . The H-free extension complexity of Q is defined
to be the extension complexity of Q H . If this extension
complexity is polynomial and H can be separated in poly-
time then we can solve LPs over Q in poly-time. Note that
this is true even if H itself has super-polynomial extension
complexity. On the other hand if Q H has super-polynomial
extension complexity, then even if H can be poly-time
separated, any LP that requires an explicit formulation of
Q H will have super-polynomial size. This allows us to
strengthen existing results on the extension complexity of
N P -hard problems. To illustrate this, we give results on the
H-free extension complexity of hard matching problems
(when H are the odd-set inequalities) and the traveling
salesman problem (when H are the subtour elimination in-
equalities).

2. Background

We begin by recalling some basic definitions related to
extended formulations of polytopes. The reader is referred
to [4,6] for more details. An extended formulation (EF) of a
polytope Q ⊆ Rd is a linear system

Ex + F y = g, y � 0 (1)

in variables (x, y) ∈ Rd+r , where E , F are real matrices
with d, r columns respectively, and g is a column vector,
such that x ∈ Q if and only if there exists y such that (1)
holds. The size of an EF is defined as its number of inequal-
ities in the system.

An extension of the polytope Q is another polytope
Q ′ ⊆ Re such that Q is the image of Q ′ under a linear
map. We define the size of an extension Q ′ as the num-
ber of facets of Q ′ . Furthermore, we define the extension
complexity of Q , denoted by xc(Q), as the minimum size
of any extension of Q .

For a matrix A, let Ai denote the ith row of A and A j

to denote the jth column of A. Let Q = {x ∈ Rd | Ax �
b} = conv(V) be a polytope, with A ∈ Rm×d , b ∈ Rm and
V = {v1, . . . , vn} ⊆ Rd . Then M ∈ Rm×n+ defined as Mij :=
bi − Ai v j with i ∈ [m] := {1, . . . , m} and j ∈ [n] := {1, . . . , n}
is the slack matrix of Q w.r.t. Ax � b and V .

We call the submatrix of M induced by rows corre-
sponding to facets and columns corresponding to vertices
the minimal slack matrix of Q and denote it by M(Q). Note
that the slack matrix may contain columns that correspond
to feasible points that are not vertices of Q and rows
that correspond to valid inequalities that are not facets
of Q , and therefore the slack matrix of a polytope is not

a uniquely defined object. However every slack matrix of
Q must contain rows and columns corresponding to facet-
defining inequalities and vertices, respectively.

As observed in [7], for proving bounds on the extension
complexity of a polytope Q it suffices to take any slack
matrix of Q . Throughout the paper we refer to the min-
imal slack matrix of Q as the slack matrix of Q and any
other slack matrix as a slack matrix of Q .

3. H -free extensions of polytopes

Let X be some computational problem that can be
solved by an LP over a polytope Q . For the applications
considered in this paper, it is convenient to consider the
case where Q is given by an implicit description of its ver-
tices. So for the matching problem, Q is the convex hull of
all 0/1 matching vectors, and for the TSP problem it is the
convex hull of all 0/1 incidence vectors of Hamiltonian cir-
cuits.

For the given polytope Q let F (Q) be a non-redundant
half-space representation. If Q has full dimension F (Q)

is unique and each half-space supports a facet of Q . Oth-
erwise we may assume that F (Q) is defined relative to
some canonical representation of the linearity space of Q .
Our restricted LP model will allow a restricted separation
oracle for Q .

Let H = H(Q) be a possibly super-polynomial size set
of valid inequalities for Q equipped with an H-separation
oracle. We delete from F (Q) all half-spaces that are re-
dundant with respect to H (that is, implied by the in-
equalities in H) and call the resulting (possibly empty)
polyhedron Q H .

We can solve the separation problem for Q for a
point x by first solving it for H and then, if necessary,
for Q H . Suppose x is not in Q . If x is not in H we get
a violated inequality by the oracle. Otherwise x must vi-
olate a facet of Q H . We will allow separation for Q H to
be performed using any extension Q ′

H of Q H by explicitly
checking the facets of Q ′

H for the lifting of x. We call Q ′
H

an H-free EF for Q. Using this separation algorithm and the
ellipsoid method we have a way to solve LPs over Q . We
call such a restricted method of solving LPs an H-free LP
for Q. The H-free extension complexity of Q is defined to be
xc(Q H).

We say that an H-free EF for Q has polynomial size if:

(a) The H-separation oracle runs in poly-time. That is,
there is a poly-time separation algorithm for the poly-
tope defined by the inequalities in H , and

(b) xc(Q H) is polynomial in the input size of X .

In this case we also have an H-free LP for Q that can
be solved in polynomial time. On the other hand, if for
given H , xc(Q H) is super-polynomial in the size of X then
we say that all H-free LPs for X require super-polynomial
size. Note that this statement is independent of whether
or not P = N P . When H is empty all of the above defini-
tions reduce to standard definitions for EFs and extension
complexity.

We illustrate these concepts with a few examples. For
the matching problem if H is the set of odd-set inequali-

240 appendix

590 D. Avis, H.R. Tiwary / Information Processing Letters 115 (2015) 588–593

ties then Q H is empty. In this case we have an H-free EF
for matching of poly-size even though matching has expo-
nential extension complexity.

This example generalizes to show that every problem X
in P has a poly-size H-free EF for some H . Indeed, since LP
is P -complete, X can be solved by optimizing over a poly-
tope Q . Let H be the entire facet list F (Q) so that Q H

is again empty. Optimization over Q can be performed in
poly-time so, by the equivalence of optimization and sep-
aration, separation over H can be performed in poly-time
also. Therefore (a) and (b) are satisfied as required.

For the TSP, let H be the sub-tour constraints. In this
case Q H is non-empty and in fact we will show in the
next section that it has exponential extension complexity.
Therefore H-free LPs for the TSP require exponential time,
extending the existing extension complexity result for this
problem.

We remark that H is an essential parameter here.
Matching, for example, has poly-size H-free extension
complexity when H are the odd-set inequalities, but not
when H is empty. Nevertheless, any problem with poly-
size H-free extension complexity for some H can of course
be solved in poly-time. For a given hard problem, one
gets stronger hardness results by letting H be larger and
larger sets of poly-size separable inequalities, as long as
one can still prove that Q H has super-polynomial exten-
sion complexity. We give some examples to illustrate this
in subsequent sections of the paper.

Before we proceed further, we note an intersection
lemma that will be useful for proving lower bounds for
H-free extensions of polytopes. This lemma is a polar for-
mulation of the following result of Balas [2]:

Lemma 1. Let P1 and P2 be two polytopes with extension com-
plexity r1 and r2 respectively. Then, the extension complexity of
conv(P1 ∪ P2) is at most r1 + r2 + 1.

Lemma 2. Let P1 and P2 be two polytopes with extension com-
plexity r1 and r2 respectively. Then, the extension complexity of
P1 ∩ P2 is at most r1 + r2 + 1.

Proof. If the intersection of P1 and P2 is not full dimen-
sional, then we can intersect the two polytopes with a
suitable affine subspace without increasing their extension
complexity. So it suffices to prove this result for the case
where P1 ∩ P2 is full dimensional.

Taking the polar dual of the two polytopes with respect
to some point in the interior of P1 ∩ P2, we see that (P1 ∩
P2)

∗ = conv(P∗
1 ∪ P∗

2). Since the slack matrix of the dual of
a polytope P is just the transpose of the slack matrix of P
(where the dual is obtained with respect to a point in the
interior of P), the dual has the same extension complexity.
Thus applying Lemma 1 we obtain the desired result. �
4. The travelling salesman problem (TSP)

An undirected TSP instance is defined by a set of in-
teger weights wij , 1 ≤ i < j ≤ n, for each edge of the
complete graph Kn . A tour is a Hamiltonian cycle in Kn

defined by a permutation of its vertices. It is required to

compute a tour of minimum weight. We define the poly-
tope Q to be the convex hull of the 0/1 incidence vec-
tors x = (xij : 1 ≤ i < j ≤ n) of the tours. It is known that
xc(Q) = 2�(n) [12].

We define H to be the set of subtour elimination con-
straints:

∑
i, j∈S,i �= j

xi j ≤ |S| − 1, S ⊆ {1,2, . . . ,n − 1}, |S| ≥ 2. (2)

xij ≥ 0, 1 ≤ i < j ≤ n (3)

It is well known that the subtour elimination con-
straints can be poly-time separated by using network
flows. These constraints by themselves define the convex
hull of all forests in Kn−1 and Martin [9] has given an EF
for them that has size O (n3).

Therefore, xc(Q H) = 2�(n) , otherwise together with
Martin’s result and the intersection lemma (Lemma 2), it
would imply an upper bound of 2o(n) for the travelling
salesman polytope. It follows that every H-free LP for the
TSP runs in exponential time, where H are the subtour
inequalities.

5. Matching problems

A matching in a graph G = (V , E) is a set of edges that
do not share any common vertices. Let n = |V |. A matching
is called perfect if it contains exactly n/2 edges. For a given
instance G we define the matching polytope Q to be the
convex hull of the 0/1 incidence vectors x = (xe : e ∈ E) of
matchings.

For any S ⊆ V and e ∈ E , we write that e ∈ S whenever
both endpoints of e are in S . Edmonds [5] proved that Q
has the following half-space representation:
∑
e∈S

xe ≤ (|S| − 1)/2, S ⊆ V , |S| is odd (4)

0 ≤ xe ≤ 1, e ∈ E. (5)

Rothvoß [12] recently proved that xc(Q) = 2�(n) and that
a similar result holds for the convex hull of all perfect
matchings. Let H be this half-space representation of Q .
Since optimization over Q can be performed in poly-time
by Edmonds algorithm there is a poly-time separation al-
gorithm for H . It follows that the matching problem has a
poly-size H-free EF.

In the next three subsections we give N P -hard gen-
eralizations of the matching problem which have super-
polynomial lower bounds on their H-free extension com-
plexity, where H are the odd-set inequalities (4). The
method used is similar to that described in detail in [1].

5.1. Induced matchings

A matching in a graph G = (V , E) is called induced if
there is no edge in G between any pair of matching edges.
Stockmeyer and Vazirani [13] and Cameron [3] proved that
the problem of finding a maximum cardinality induced
matching is N P -hard. Let Q be the convex hull of the inci-
dence vectors of all induced matchings in G . Let H be the
odd set inequalities (4). Clearly H are valid for Q , and as

appendix 241

D. Avis, H.R. Tiwary / Information Processing Letters 115 (2015) 588–593 591

remarked above, they admit a poly-time separation oracle.
We will prove that xc(Q H) is super-polynomial. Our proof
makes use of the reduction in [3].

Theorem 1. For every n there exists a bipartite graph G with
O (n) edges and vertices such that the induced matching poly-

tope of G has extension complexity 2�(4√n) .

Proof. For every graph G = (V , E) one can construct
in polynomial time another graph G ′ = (V ′, E ′) with
|V ′| = 2|V | and |E ′| = |V | + 28|E| such that the stable set
polytope of G is the projection of a face of the induced
matching polytope of G ′ [3]. Furthermore, G ′ is bipartite.
Since, for every n there exist graphs with O (n) edges and
vertices such that the stable set polytope of the graph has
extension complexity 2�(4√n) [1], the result follows. �

Since the above theorem applies to bipartite graphs G ,
each of the odd-set inequalities (4) is redundant for the
induced matching polytope of G . Therefore the H-free ex-
tension complexity of the induced matching polytope is
super-polynomial in the worst case.

Although this example offers an example H-free exten-
sion complexity, it suffers from one obvious weakness. For
every graph, all of the inequalities in H are redundant with
respect to Q even for non-bipartite graphs! A graph is
called hypomatchable if the deletion of any vertex yields a
graph with a perfect matching. Pulleyblank proved in 1973
(see [8]) that facet-inducing inequalities in (4) correspond
to subsets S that span 2-connected hypomatchable sub-
graphs of G . Let x be the incidence vector for any matching
M in G that satisfies such an inequality as an equation.
Since S spans a 2-connected subgraph, M cannot be an in-
duced matching.

In order to avoid such trivial cases it is desirable that
most, if not all, inequalities of H define facets for at least
one polytope Q that corresponds to some instance of the
given problem.

5.2. Maximal matchings

A matching in a graph G = (V , E) is called maximal if
its edge set is not included in a larger matching. Rather
naturally, we will call the convex hull of the character-
istic vectors of all maximal matchings of G the maximal
matching polytope of G and denote it by MM(G). It is
known that finding the minimum maximal matching is
N P -hard [15]. Now we show that for every n there ex-
ists a graph with n vertices such that MM(G) has super-
polynomial H-free extension complexity where H denotes
the set of odd cut inequalities.

For every 3-CNF formula φ we call the convex hull of
all satisfying assignments the satisfiability polytope of φ.

Theorem 2. For every n there exists a 3-CNF formula in
O (n) variables such that the satisfiability polytope has super-
polynomial extension complexity. Furthermore, in the formula
every variable appears at most twice non-negated and at most
once negated.

Proof. The statement is known to be true without the re-
striction on the number of occurrences of the literals [7,1].
To impose the restriction that every variable appear at
most twice non-negated and at most once negated, once
can perform the following simple operations.

For any given 3-CNF formula φ construct another for-
mula ψ as follows. For each variable xi , replace the oc-
currence of xi in a clause C j by the variable x j

i and the
occurrence of xi in a clause C j by the variable y j

i . Suppose
x1

i , . . . , x
k
i , y1

i , . . . , y
l
i are the variables replacing xi . We add

extra clauses corresponding to the conditions x j
i �⇒ x j+1

i ,
that is, x j

i ∨ x j+1
i for i = 1, . . . , k − 1. We also add more

clauses corresponding to the conditions y j
i �⇒ y j+1

i , that
is, y j

i ∨ y j+1
i for i = 1, . . . , l − 1. We add two additional

clauses: xk
i ∨ y1

i ensures that xk
i �⇒ y1

i and yl
i ∨ x1

i . en-
sures that yl

i �⇒ x1
i . Finally since the new clauses contain

two literals, they are converted to clauses with three liter-
als each in the usual way: duplicate each clause, add a new
variable to one clause and its complement to the other.
This gives a 3-CNF formula ψ with the required properties
and where the number of variables and clauses is polyno-
mial in the size of φ.

It is easy to see that the satisfiability polytope for φ
is obtained by projecting the satisfiability polytope of ψ
along one of the variables xk

i for each i. Therefore the ex-
tension complexity of the satisfiability polytope of ψ is
at least as high as that of φ and we have a family of
3-CNF formula with the desired restricted occurrences that
have super-polynomial extension complexity in the worst
case. �
Theorem 3. For every n there exists a bipartite graph G =
(V 1 ∪ V 2, E) such that MM(G) has extension complexity super-
polynomial in n.

Proof. For every restricted 3-SAT formula φ one can con-
struct, in polynomial time, a bipartite graph G such that
the maximal matching polytope MM(G) is an extended for-
mulation of the satisfiability polytope of φ. This can be
done using the exact same construction used in the NP-
hardness proof in [15]. Therefore, the extension complexity
of MM(G) is super-polynomial for the formulae used in
Theorem 2. �

Again, since the graphs G in the above theorem are bi-
partite, each of the odd-set inequalities (4) is redundant for
the maximal matching polytope of G . Therefore the H-free
extension complexity of the induced matching polytope is
super-polynomial in the worst case.

This example differs from the example in the previ-
ous subsection in that (4) are facet defining for maximum
matching polytopes of non-bipartite graphs. Too see this,
fix a graph G and odd-set S of its vertices. Pulleyblanks’s
characterisation [8] states that (4) is facet defining for the
matching polytope of G whenever S spans a 2-connected
hypomatchable subgraph. The only matchings in G that lie
on this facet have precisely (|S| −1)/2 edges from the set S
and are therefore maximal on S . Each of these match-
ings can be extended to a maximal matching in G which

242 appendix

592 D. Avis, H.R. Tiwary / Information Processing Letters 115 (2015) 588–593

appears as a vertex of MM(G). Therefore, provided these
extensions do not lie in a lower dimensional subspace and
MM(G) is full dimensional, (4) is also facet inducing for
MM(G) for the given set S . For example, the odd cycles
C2k+1, k ≥ 3 with the addition of a chord cutting off a tri-
angle are a family of such graphs.

5.3. Edge disjoint matching and perfect matching

Given a bipartite graph G(V 1 ∪ V 2, E) and a natural
number k, it is N P -hard to decide whether G contains a
perfect matching M and a matching M ′ of size k such that
M and M ′ do not share an edge [10].

For a given graph G with n vertices and m edges con-
sider a polytope in the variables x1, . . . , xm , y1, . . . , ym . For
a subset of edges encoding a perfect matching M and a
matching M ′ of size k the we construct a vector with

xi =
{

1, if ei ∈ M
0, if ei /∈ M

, yi =
{

1, if ei ∈ M ′
0, if ei /∈ M ′

Let us denote the convex hull of all the vectors encod-
ing an edge disjoint perfect matching and a matching of
size at least k as MPM(G, k). We would like to remark
that one can also define a “natural” polytope here with-
out using separate variables for a matching and a perfect
matching and instead using the characteristic vectors of
all subsets of edges that are an edge-disjoint union of a
matching and a perfect matching. However, the formula-
tion that we consider allows different cost functions to be
applied to the matching and the perfect matching.

Now we show that for every n there exists a bipar-
tite graph G with n vertices and a constant 0 < c < 1

2
such that MPM(G, cn) has extension complexity super-
polynomial in n. We will use the same reduction as in [10],
which is a reduction from MAX-2-SAT. So we first prove a
super-polynomial lower bound for the satisfiability poly-
tope of 2-SAT formulas.

Theorem 4. For every n there exists a 2-SAT formula φ in n
variables such that the satisfiability polytope of φ has extension
complexity at least 2�(4√n) .

Proof. It was shown in [1] that for every n there exists a
graph G with O (n) edges and vertices such that the sta-
ble set polytope of G has extension complexity 2�(4√n) .
Since the stable sets of a graph can be encodes as a 2-SAT
formula as:

∧
(i, j)∈E

(xi ∨ x j), we obtain a family of 2-SAT

formulas whose satisfiability polytope for extension com-
plexity at least 2�(4√n) . �

Note that the 2-SAT instances required in the above
theorem are always satisfiable.

Theorem 5. For every n there exists a bipartite graph G on n
vertices and a constant 0 < c < 1

2 such that MPM(G, cn) has
super-polynomial extension complexity.

Proof. The construction in [10] implicitly provides an algo-
rithm that given any 2-SAT formula φ with n variables and

m clauses constructs a bipartite graph G with 4mn + 4m
vertices and maximum degree 3 such that for k = 2mn + s,
there is an assignment of variables that satisfy at least s
clauses of φ if and only if G has and edge disjoint perfect
matching and a matching of size k. Further the satisfiabil-
ity polytope of φ is the projection of MPM(G, k) and so we
obtain a family of bipartite graphs with super-polynomial
extension complexity. �

Note that for every pair of odd subsets S1, S2 of G two
odd-set inequalities can be written: one corresponding to
the odd-set inequalities for perfect matching polytope on
variables xi , and the other corresponding to the odd-set
inequalities for matching polytope on variables yi . For a
subset of vertices S , let δ(S) denote the subset of edges
with exactly one endpoint in S . The two sets of inequalities
are:∑
e∈δ(S1)

xe � 1, S1 ⊆ V , |S1| is odd (6)

∑
e∈S2

ye � |S2| − 1

2
, S2 ⊆ V , |S2| is odd (7)

Again the graphs G in the above theorem are bipartite
so each of the odd-set inequalities (6), (7) is redundant for
MPM(G). Therefore taking H to be the set of these inequal-
ities we have that the H-free extension complexity of the
these polytopes is super-polynomial in the worst case.

6. Concluding remarks

We have proposed a generalization of extended formu-
lations and extension complexity which allows partial use
of an oracle to separate valid inequalities from a specified
set H . Our restricted LP model allows use of the oracle and
an explicit half-space representation of the remaining non-
redundant inequalities Q H . In this restricted LP model, all
problems in P are solvable in poly-time even if H itself has
super-polynomial extension complexity. On the other hand,
if xc(Q H) is super-polynomial then so is the running time
of any LP in our restricted model.

This model allows for progressively stronger lower
bounds as more valid inequalities are included in the
set H . For example, for the TSP, it would be of interest to
include poly-time separable comb inequalities along with
the subtour elimination inequalities in H and see if one
can still prove a super-polynomial bound on xc(Q H).

Acknowledgements

Research of the first author is supported by a Grant-
in-Aid for Scientific Research on Innovative Areas – Ex-
ploring the Limits of Computation, MEXT, Japan. Research
of the second author is partially supported by the Center
of Excellence – Institute for Theoretical Computer Science,
Prague (project P202/12/G061 of GA ČR).

References

[1] D. Avis, H.R. Tiwary, On the extension complexity of combinatorial
polytopes, in: ICALP (1), 2013, pp. 57–68.

appendix 243

D. Avis, H.R. Tiwary / Information Processing Letters 115 (2015) 588–593 593

[2] E. Balas, Disjunctive programming and a hierarchy of relaxations
for discrete optimization problems, SIAM J. Algebr. Discrete Methods
6 (3) (1985) 466–486.

[3] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1–3) (1989)
97–102.

[4] M. Conforti, G. Cornuéjols, G. Zambelli, Extended formulations in
combinatorial optimization, 4OR 8 (2010) 1–48.

[5] J. Edmonds, Maximum matching and a polyhedron with 0, 1 vertices,
J. Res. Natl. Bur. Stand. 69 B: 125–130 (1965).

[6] Y. Faenza, S. Fiorini, R. Grappe, H.R. Tiwary, Extended formulations,
nonnegative factorizations, and randomized communication proto-
cols, in: ISCO, 2012, pp. 129–140.

[7] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R. de Wolf, Linear
vs. semidefinite extended formulations: exponential separation and
strong lower bounds, in: STOC, 2012, pp. 95–106.

[8] L. Lovász, M. Plummer, Matching Theory, Akadémiai Kiadó, Budapest,
1986, also published as Vol. 121 of the North-Holland Mathematics
Studies, North-Holland Publishing, Amsterdam.

[9] R. Martin, Using separation algorithms to generate mixed inte-
ger model reformulations, Oper. Res. Lett. 10 (3) (Apr. 1991)
119–128.

[10] D. Pálvölgyi, Partitioning to three matchings of given size is NP-
complete for bipartite graphs, Technical Report QP-2013-01, Egerváry
Research Group, Budapest, 2013.

[11] S. Pokutta, M.V. Vyve, A note on the extension complexity of the
knapsack polytope, Inf. Process. Lett. 41 (4) (2013) 347–350.

[12] T. Rothvoß, The matching polytope has exponential extension com-
plexity, arXiv:1311.2369 [CoRR], 2013.

[13] L.J. Stockmeyer, V.V. Vazirani, NP-completeness of some generaliza-
tions of the maximum matching problem, Inf. Process. Lett. 15 (1)
(Aug. 1982) 14–19.

[14] M. Yannakakis, Expressing combinatorial optimization problems by
linear programs, J. Comput. Syst. Sci. 43 (3) (1991) 441–466.

[15] M. Yannakakis, F. Gavril, Edge dominating sets in graphs, SIAM J.
Appl. Math. 38 (1980) 364–372.

244 appendix

I
O N T H E H - F R E E E X T E N S I O N C O M P L E X I T Y O F T H E
T S P

The following article has been accepted for publication in Optimiza-
tion Letters and is in press. It is included here as an appendix for
completeness.

245

Optim Lett
DOI 10.1007/s11590-016-1029-1

ORIGINAL PAPER

On the H-free extension complexity of the TSP

David Avis1 · Hans Raj Tiwary2

Received: 29 June 2015 / Accepted: 16 March 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract It is known that the extension complexity of the TSP polytope for the com-
plete graph Kn is exponential in n even if the subtour inequalities are excluded. In this
article we study the polytopes formed by removing other subsets H of facet-defining
inequalities of the TSP polytope. In particular, we consider the case whenH is either
the set of blossom inequalities or the simple comb inequalities. These inequalities are
routinely used in cutting plane algorithms for the TSP. We show that the extension
complexity remains exponential even if we exclude these inequalities. In addition
we show that the extension complexity of polytope formed by all comb inequalities
is exponential. For our proofs, we introduce a subclass of comb inequalities, called
(h, t)-uniform inequalities, which may be of independent interest.

Keywords Traveling salesman polytope · Extended formulations ·
Comb inequalities · Lower bounds

1 Introduction

A polytope Q is called an extended formulation or an extension of polytope P if P
can be obtained as a projection of Q. Extended formulations are of natural interest in
combinatorial optimization because even if P has a large number of facets and vertices,
there may exist a small extended formulation for it, allowing one to optimize a linear

B Hans Raj Tiwary
hansraj@kam.mff.cuni.cz

David Avis
avis@i.kyoto-u.ac.jp

1 Graduate School of Informatics, Kyoto University, Sakyo-ku, Yoshida, Kyoto 606-8501, Japan

2 KAM/ITI, Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic

123

appendix 247

D. Avis, H. R. Tiwary

function over P indirectly by optimizing instead over Q. Indeed, many polytopes of
interest admit small extended formulations (see [3], for example, for a survey).

Recent years have seen many strong lower bounds on the size of extended for-
mulations. In particular, Fiorini et al. [5] showed superpolynomial lower bounds for
polytopes related to the MAX-CUT, TSP, and Independent Set problems. This was
extended to more examples of polytopes related to other NP-hard problems having
superpolynomial lower bounds [1,9]. Even though these results are remarkable, they
are hardly surprising since existence of a small extension for any of these polytopes
would have extremly unexpected consequences in complexity theory.

Subsequently, Rothvoß showed that the perfect matching polytope of Edmonds
does not admit a polynomial sized extended formulation [10], even though one can
separate over it in polynomial time despite the polytope having exponentially many
vertices and facets. To reconcile this apparent lack of power of compact extended
formulations to capture even “easy” problems like perfect matching, the authors of
this article introduced the notion of H-free extended formulations [2].

Intuitively, in this setting, given a polytope P (presumably with a high extension
complexity) and a set of valid inequalitiesH, onewould like to understand the extent to
which the inequalities inH cause a bottleneck in finding a good extended formulation
for P . More formally, theH-free extension complexity of a polytope P measures the
extension complexity of the polytope formed by removing the inequalities inH from
the facet-defining inequalities of P . Particularly interesting classes of inequalities, for
any polytope, are those for which one can construct an efficient separation oracle.

Clearly, in this setting, nothing interesting happens if the inequalities to be
“removed” are redundant. In this article, we consider the traveling salesman polytope
and study itsH-free extension complexity whenH is the set of simple comb inequal-
ities or the set of 2-matching inequalities. Both sets of inequalities form important
classes of inequalities for the TSP polytope. Whereas efficient separation algorithms
are known for the 2-matching inequalities, no such algorithm is known for comb
inequalities, which generalize the set of 2-matching inequalities [6,8].

In this article we identify a parameterized subset of comb inequalities which we call
(h, t)-uniform comb inequalities where the parameters require a uniform intersection
between the handle and all the teeth of the comb.We use these inequalities to show that
the intersection of comb inequalities defines a polytope with exponential extension
complexity. Furthermore we show that if H is a set of valid inequalities for the TSP
polytope such that H does not contain the (h, t)-uniform comb inequalities for some
values of parameters h and t , then theH-free extension complexity of the TSP polytope
on Kn is at least 2�(n/t). As corollaries we obtain exponential lower bounds for theH-
free extension complexity of the TSP polytope with respect to 2-matching inequalities
and simple comb inequalities.

The rest of this article is organized as follows. In the next section we describe the
comb and 2-matching inequalities and introduce the (h, t)-uniform comb inequalities.
We also introduce the central tool that we use: subdivided prisms of graphs. After
a brief motivation for the study of subdivided prisms in Sect. 3, we prove our main
lemma in Sect. 4. We show that over suitably subdivided prisms of the complete
graph, there exists a canonical way to translate perfect matchings into TSP tours that
can be done without regard to any specific comb inequality. This translation, together

123

248 appendix

On the H-free extension complexity of the TSP

with known tools developed in [4] connecting extension complexity with randomized
communication protocols gives the desired results for the problems of interest. Finally,
we discuss applications of the main result in Sect. 5.

2 Definitions

Let P be a polytope in R
d . The extension complexity of P—denoted by xc(P)—is

defined to be the smallest number r such that there exists an extended formulation Q
of P with r facets.

Let G = (V, E) be a graph. For any subset S of vertices, we denote the edges
crossing the boundary of S by δ(S). That is, δ(S) denotes the set of edges (u, v) ∈ E
such that |S ∩ {u, v}| = 1.

The TSP polytope for the complete graph Kn is defined as the convex hull of the
characteristic vectors of all TSP tours in Kn , and is denoted by TSPn . Similary, PMn

denotes the convex hull of all perfect matchings in Kn . We say that any inequality
aᵀx � b is valid for a polytope P if every point in P satisfies this inequality. For a
point v in P , the slack of v with respect to a valid inequality aᵀx � b is defined to be
the nonnegative number b − aᵀv.

2.1 Comb inequalities for TSP

For a graph G = (V, E), a comb is defined by a subset of vertices H called the handle
and a set of subsets of vertices Ti , 1 � i � k where k is an odd number at least
three. The sets Ti are called the teeth. The handle and the teeth satisfy the following
properties:

H ∩ Ti �= ∅, (1)

Ti ∩ Tj = ∅, ∀i �= j (2)

H\
k⋃

i=1

Ti �= ∅. (3)

The following inequality is valid for the TSP polytope of G and is called the comb
inequality for the comb defined by handle H and teeth Ti as above.

x(δ(H)) +
k∑

i=1

x(δ(Ti)) � 3k + 1.

Grötschel and Padberg [7] showed that every comb inequality defines a facet of TSPn
for each n � 6. It is not known whether separating over comb inequalities is NP-hard,
neither is a polynomial time algorithm known.

For a given comb C and a TSP tour T of G, the slack between the corresponding
comb inequality and T is denoted by slcomb(C, T).

123

appendix 249

D. Avis, H. R. Tiwary

2-Matching inequalities

A comb inequality corresponding to a handle H and k teeth Ti is called a 2-matching
inequality if each toothTi has size exactly two. In particular thismeans that |H∩Ti | = 1
and |Ti\H | = 1 for each 1 � i � k. These inequalities are sometimes also referred
to as blossom inequalities. Padberg and Rao [8] gave a polynomial time algorithm to
separate over the 2-matching inequalities.

Simple comb inequalities

A comb inequality corresponding to a handle H and k teeth Ti is called a simple comb
inequality if |H∩Ti | = 1 or |Ti\H | = 1 for each 1 � i � k. Simple comb inequalities
contain all the 2-matching inequalities. It is not known whether one can separate over
them in polynomial time.

(h, t)-uniform comb inequalities

Let us define a subclass of comb inequalities called (h, t)-uniform comb inequalities
associated with what we will call (h, t)-uniform combs for arbitrary 1 � h < t.
A comb, with handle H and k teeth Ti , is said be (h, t)-uniform if |Ti | = t and
H ∩ Ti = h, for all 1 � i � k.

2.2 Odd set inequalities for perfect matching

Let V denote the vertex set of Kn . A subset U ⊂ V is called an odd set if the
cardinality of U is odd. For every odd set U the following inequality is valid for the
perfect matching polytope PMn and is called an odd set inequality.

x(δ(U)) � 1.

For a given odd set S and a perfect matching M of Kn , the slack between the corre-
sponding odd set inequality and M is denoted by slodd(S, M).

2.3 t-Subdivided prisms of a graph

A prism over a graph G is obtained by taking two copies of G and connecting corre-
sponding vertices. It is helpful to visualise this as stacking the two copies one over the
other and then connecting corresponding vertices in the two copies by a vertical edge.
A t-subdivided prism is then obtained by subdividing the vertical edges by putting
t − 2 extra vertices on them. See Fig. 1 for an example.

Let G be the t-subdivided prism of Kn . Let the vertices of the two copies be labeled
u11, . . . , u

1
n and ut1, . . . , u

t
n . As a shorthand we will denote the path u1i , u

2
i , . . . , u

t
i as

u1i �uti . Similarily, uti�u1i will denote u
t
i , . . . , u

2
i , u

1
i .

123

250 appendix

On the H-free extension complexity of the TSP

Fig. 1 A 5-subdivided prism
over K4

The graph G has path u1i �uti for all i ∈ [n] and (u1i , u
1
j), (u

t
i , u

t
j) for all i �=

j, i, j ∈ [n]. Thus G has tn vertices and 2
(n
2

) + (t − 1)n edges.

3 Motivation

The motivation for looking at t-subdivided prisms stems from a simple observation
which we state in the form of a proof of the following proposition:

Proposition 1 Let 2MP(n) be the convex hull of the incidence vectors of all 2-
matchings of the complete graph Kn . Then, xc(2MP(n)) � 2�(n).

Proof Let G be a graph with n vertices and m edges and let G ′ be the 3-subdivided
prism of G. G ′ has 3n vertices and 2m + 2n edges. Any 2-matching in G ′ contains
all the vertical edges and thus when restricted to a single copy – say the bottom one –
of G gives a matching in G. Conversely, any matching in G can be extended to a (not
necessarily unique) 2-matching in G ′.

Taking G as Kn we obtain a G ′ that is a subgraph of K3n . The 2-matching polytope
of G ′ lies on a face of the 2-matching polytope of the complete graph on 3n vertices
(corresponding to all missing edges having value 0). Therefore, the extension com-
plexity of the 2-matching polytope 2MP(n) is at least as large as that of the perfect
matching polytope. That is, xc(2MP(n)) � 2�(n). 	

The above generalizes to p-matching polytopes for arbitrary p in the obvious way,
and is probably part of folklore.1

The generalization of the 3-subdivided prism to larger subdivisions allows us to be
able to argue not only about the 2-matching inequalities—which are the facet-defining
inequalities for the 2-matching polytope—but also about comb inequalities by using
the vertical paths as teeth for constructing combs.

1 W. Cook (private communication) attributes the same argument to T. Rothvoß.

123

appendix 251

D. Avis, H. R. Tiwary

4 Main tools

4.1 EF-protocols

Given amatrixM , a randomized communication protocol computingM in expectation
is a protocol between two players Alice and Bob. The players, having full knowledge
of the matrix M , agree upon some strategy. Next, Alice receives a row index i and Bob
receives a column index j . Based on their agreed-upon strategy and their respective
indices, they exchange a fewbits and either one of themoutputs a non-negative number,
say Xi j . For brevity, we will call such protocols EF-protocols. An EF-protocol is said
to correctly compute M if for every pair i, j of indices, E[Xi j] = Mi j , where E[Xi j]
is the expected value of the random variable Xi j .

The complexity of the protocol is measured by the number of bits exchanged by
Alice and Bob in the worst case. It is known that the base-2 logarithm of the extension
complexity of any polytope P is equal to the complexity of the best EF-protocol that
correctly computes the slack matrix of P [4]. We will use this fact to show our lower
bounds by showing that a sublinear EF-protocol for problems of our interest would
yield a sublinear EF-protocol for the slack matrix of the perfect matching polytope.
First we restate some known results about EF-protocols and extension complexity of
perfect matching polytope in a language that will be readily usable to us.

Proposition 2 [4] Let P be a polytope and S(P) its slack matrix. There exists an EF-
protocol of complexity �(k) that correctly computes S(P) if and only if there exists
an extended formulation of P of size 2�(k).

Combining lower bounds by Rothvoß [10] with the above mentioned equivalence
by Faenza et al. [4], it is easy to see that no sublinear protocol computes the slack
matrix of the perfect matching polytope.

Proposition 3 [10] Any EF-protocol that correctly computes the slack matrix of the
perfect matching polytope of Kn requires an exchange of �(n) bits.

4.2 Uniform combs of odd sets

Let n and t be positive integers. In the rest of the article we will assume that n is a
multiple of t . Since we are interested in asymptotic statements only, this does not result
in any loss of generality. Let G be the t-subdivided prism of Kn/t for some t � 2.
Given an odd set S and a perfect matching M in Kn/t , and arbitrary 1 � h < t , we are
interested in constructing a comb C and a TSP tour T in Kn such that the following
conditions hold:

(C1) C is a (h, t)-uniform comb.
(C2) C depends only on S and 2 edges of M.

(C3) T depends only on M.

(C4) slcomb(C, T) = slodd(S, M).

If such a pair (C, T) of a comb and a TSP tour is shown to exist for every pair
(S, M) of an odd set and a perfect matching, then we can show that any EF-protocol

123

252 appendix

On the H-free extension complexity of the TSP

for computing the slack slcomb(C, T) can be used to construct an EF-protocol for
computing slodd(S, M) due to condition (C4). Furthermore, due to conditions (C2)
and (C3) the number of bits required for the later protocol will not be much larger
than the number of bits required for the former, as C can be locally constructed from
S after an exchange of two edges, and T can be locally constructed from M.

Now we show that such a pair does exist if at least two edges of M are contained
in S and |S| � 5.

Lemma 1 Let (S, M) be a pair of an odd set and a perfect matching in Kn/t , and
let 1 � h < t . Suppose that |S| � 5, and let w1, w2, w3, w4 ∈ S be distinct with
(w1, w2) and (w3, w4) in M. Then, there exists a pair (C, T) of a comb C and a TSP
tour T in Kn satisfying the four conditions (C1)–(C4).

Proof Let |S| = s. For simplicity of exposition, we assume that the vertices of S
are labeled w1, . . . , ws . By w

j
i , we denote the copy of wi in the j-th layer of the

t-subdivided prism over Kn/t .

The comb C is constructed as follows. The handle H is obtained by taking all
vertices in S and the copiesw2

1, . . . , w
t
1 andw2

3, . . . , w
t
3. For every other vertexw ∈ S

the vertices w2, . . . , wh are also added to H. The teeth Ti are formed by pairing each
vertex v in S\{w1, w3} with its copies v2, . . . , vt producing s − 2 teeth. See Fig. 2
for an illustration. Since s � 5 is odd, the number of teeth is odd and at least 3. Thus,
the constructed comb is (h, t)-uniform satisfying conditions (C1) and (C2), and the
corresponding comb inequality is

x(δ(H)) +
s−2∑

i=1

x(δ(Ti)) � 3(s − 2) + 1. (4)

Fig. 2 Construction of a comb
from given odd set: the odd set
consists of five vertices
displayed as big filled circles in
the bottom copy. The
corresponding handle consists of
all vertices represented by filled
circles. The teeth are represented
by the vertical ellipsoidal
enclosures.
The big circles represent vertices
of the original graph and their
top copies. The small circles
represent the hth copy, while the
other copies have been omitted
here. Bold edges at the bottom
are matching edges. All other
edges displayed are just for
illustration of the relationship of
various copies of vertices

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

123

appendix 253

D. Avis, H. R. Tiwary

To construct a tour T from the given perfect matching M such that conditions
(C3) and (C4) are satisfied, we start with a subtour (w1

1�wt
1, w

t
3�w1

3, w
1
4�wt

4,

wt
2�w1

2, w
1
1).At each stage wemaintain a subtour that contains all matching edges on

the induced vertices in the lower copy, the edge (wt
1, w

t
3), and at least one top edge dif-

ferent from (wt
1, w

t
3).Clearly the starting subtour satisfies these requirements. As long

as we have some matching edges in M that are not in our subtour, we pick an arbitrary
edge (wa, wb) in M and extend our subtour as follows. Select a top edge (wt

q , w
t
r) dif-

ferent from (wt
1, w

t
3), remove the edge and add the path (wt

q , w
t
a�w1

a, w
1
b�wt

b, w
t
r).

The new subtour contains the selected perfect matching edge (w1
a, w

1
b), the paths

w1
a�wt

a and w1
b�wt

b and has one more top edge distinct from (wt
1, w

t
3) than in the

previous subtour. See Fig. 3 for an example.
At the completion of the procedure, we have a TSP tour that satisfies the following

properties:

1. Each edge of M is used in the tour.
2. Each vertical path w1

i �wt
i for all i ∈ [n] is used in the tour.

3. Edge (wt
1, w

t
3) is used in the tour.

From the construction, edges in |δ(H) ∩ T | are precisely the edges in |δ(S) ∩ M |
together with s−2 other edges exiting the comb: one through each of the s−2 teeth.
Therefore, |δ(H) ∩ T | = |δ(S) ∩ M | + s − 2. Also, the tour T enters and exits each
tooth precisely once so |δ(Ti) ∩ T | = 2 for each of the s−2 teeth. Substituting these
values in the inequality (4), we obtain the slack slcomb(C, T) = |δ(S) ∩ M | + (s −
2) + 2(s − 2) − 3(s − 2) − 1 = slodd(S, M). This completes the proof because the
pair (C, T) satisfies conditions (C1)–(C4). 	

We are finally ready to state the main Lemma of this article. Using the existence of
the pair (C, T) as described earlier and the fact that any EF-protocol for the perfect
matching polytope requires an exchange of a linear number of bits, we will lower
bound the number of bits exchanged by any EF-protocol computing the slack of
(h, t)-uniform comb inequalities with respect to TSP tours. In the next Section we
will use this Lemma multiple times by fixing different values for the parameters
h and t.

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

(a) The initial tour going through

w1
1 , w

t
1, w

t
3, w

1
3, w

1
4, w

t
4, w

t
2, w

1
2, w

1
1

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

Adding a new matching edge
(w5, w6) by removing (wt

2, w
t
4)

w1
1

w1
2 w1

5

w1
6

w1
8

w1
7

wt
7

wt
8

wt
6

wt
5

wt
2

wt
1

wt
3

wt
4

w1
3 w1

4

The final tour
(b)

(c)

Fig. 3 Constructing a TSP tour from a perfect matching

123

254 appendix

On the H-free extension complexity of the TSP

Lemma 2 Any EF-protocol computing the slack of (h, t)-uniform comb inequalities
with respect to the TSP tours of Kn, requires an exchange of �(n/t) bits. Equiva-
lently, the extension complexity of the polytope of (h, t)-uniform comb inequalities is
2�(n/t).

Proof Due to Proposition 3, it suffices to show if such a protocol uses r bits, then an
EF-protocol for the perfect matching polytope for Kn/t can be constructed, that uses
r + O(log (n/t)) bits. The protocol for computing the slack of an odd set inequality
with respect to a perfect matching in Kn/t works as follows.

Suppose Alice has an odd set S in Kn/t ,with |S| = s, and Bob has a matching M in
Kn/t . The slack of the odd-set inequality corresponding to S with respect to matching
M in the perfect matching polytope for Kn/t is |δ(S) ∩ M | − 1.

We assume that s � 5. Otherwise, Alice can send the identity of the entire set S
with at most 4 log (n/t) bits and Bob can output the slack exactly.

Alice first sends an arbitrary vertex w1 ∈ S, to Bob. Bob replies with the matching
vertex of w1, say w2. Alice then sends another arbitrary vertex w3 ∈ S, w3 �= w2 to
Bob who again replies with the matching vertex for w3, say w4. So far the number of
bits exchanged is 4 �log (n/t)�.

Now there are two possibilities: either at least one of the verticesw2, w4 is not in S,
or both w2, w4 are in S. Alice sends one bit to communicate which of the possibilities
has occurred and accordingly they switch to one of the two protocols as described
next.

In the former case, Alice has identified an edge, say e, in δ(S) ∩ M. Now Bob
selects an edge e′ of his matching uniformly at random (i.e. with probability 2/n)
and sends it to Alice. If e′ is in δ(S)\{e}, Alice outputs n/2. Otherwise, Alice outputs
zero. The expected contribution by edges in (δ(S) ∩ M)\{e} is then exactly one while
the expected contribution of all other edges is zero. Therefore the expected output
is |δ(S) ∩ M | − 1, and the number of bits exchanged for this step is �logm� where
m is the number of edges in Kn/t . Thus the total cost in this case is O(log (n/t))
bits.

In the latter case, the matching edges (w1, w2) and (w3, w4) lie inside S.

Alice constructs a comb C in the t-subdivided prism of Kn/t , and Bob a TSP
tour T in the t-subdivided prism of Kn/t such that (C, T) satisfies conditions
(C1)–(C4). By Lemma 1 they can do this without exchanging any more bits.
Since sl comb(C, T) = slodd(S, M), they proceed to compute the correspond-
ing slack with the new inequality and tour, exchanging r bits. The total number
of bits exchanged in this case is r + 4 �log (n/t)� + 1 = r + O(log (n/t)).

	

5 Applications

In this section we consider the extension complexity of the polytope of comb inequal-
ities and H-free extension complexity of the TSP polytope when H is the set of
simple comb inequalities. As we will see, the results in this section are obtained by
instantiating Lemma 2 with different values of the parameters h and t .

123

appendix 255

D. Avis, H. R. Tiwary

5.1 Extension complexity of Comb inequalities

We show that the polytope defined by the Comb inequalities has high extension com-
plexity.

Theorem 1 Let COMB(n) be the polytope defined by the intersection of all comb
inequalities for TSPn . Then xc(COMB(n)) � 2�(n).

Proof Suppose there exists an EF-protocol that computes the slack of COMB(n) that
uses r bits. Since (1, 2)-uniform comb inequalities are valid for TSPn we can use the
given protocol to compute the slack of these inequalities with respect to the TSP tours
of Kn using r bits. Then, using Lemma 2, the slack matrix of the perfect matching
polytope for Kn/2 can be computed using r + O(log n) bits. By Proposition 3, this
must be �(n). Finally, by Proposition 2 this implies that xc(COMB(n)) � 2�(n). 	

5.2 H-free extension complexity

Let Ch,t be the set of (h, t)-uniform comb inequalities for fixed values of h and t.
Observe that, since at least three teeth are required to define a comb and the handle
must contain some vertex not in any teeth, for (h, t)-uniform combs on n vertices we
must have t �

⌊ n−1
3

⌋
. So for any values of 1 � h < t �

⌊ n−1
3

⌋
, the set Ch,t is a

nonempty set of facet-defining inequalities for TSPn , and for any other values of h
and t the set Ch,t is empty.

Theorem 2 If H is a set of inequalities valid for the polytope TSPn, such that H ∩
Ch,t = ∅ for some nonempty Ch,t , then the H-free extension complexity of TSPn is at
least 2�(n/t).

Proof Let 1 � h < t be integers such that H ∩ Ch,t = ∅. That is, the set H does not
contain any (h, t)-uniform comb inequalities. Let P be the polytope formed fromTSPn
by throwing away any facet-defining inequalities that are inH. Then, any EF-protocol
computing the slack matrix of P correctly must use �(n/t) bits due to Lemma 2. The
claim then follows from Proposition 2. 	

The above theorem shows that for every setH of valid inequalities of TSPn , if the
extension complexity of the TSP polytope becomes polynomial after removing the
inequalities in H, then H must contain some inequalities from every (h, t)-uniform
comb inequality class, for all t = o(n/ log n).The theorem can easily bemade stronger
by replacing the requirementH∩Ch,t = ∅with |H∩Ch,t | � poly(n). (See the discus-
sion about H-free extension complexity of TSPn with respect to subtour inequalities
in Avis and Tiwary [2] for clarification.)

We can use the above theorem to give lower bounds forH-free extension complexity
of the TSP polytope with respect to important classes of valid inequalities by simply
demonstrating some class of (h, t)-uniform comb inequalities that has been missed.

2-Matching inequalities

Corollary 1 Let P be the polytope obtained by removing the 2-matching inequalities
from the TSP polytope. Then, xc(P) = 2�(n).

123

256 appendix

On the H-free extension complexity of the TSP

Proof The 2-matching inequalities are defined by combs for which each tooth has size
exactly two. Therefore the set of (1, 3)-uniform combs are not 2-matching inequalities,
and Theorem 2 applies. 	

Simple comb inequalities

Corollary 2 Let P is the polytope obtained by removing the set of simple comb
inequalities from the TSP polytope. Then, xc(P) = 2�(n).

Proof Recall that a comb is called simple if |H ∩ Ti | = 1 or |Ti\H | = 1 for all
1 � i � k where k is the (odd) number of teeth in the comb and H is the handle.
Clearly, (2, 4)-uniform combs are not simple and Theorem 2 applies.

As mentioned before, simple comb inequalities define a superclass of 2-matching
inequalities and a polynomial time separation algorithm is known for 2-matching
inequalities. Althought a similar result was claimed for simple comb inequalities,
the proof was apparently incorrect, as pointed out by Fleischer et al. [6]. This latter
paper includes a polynomial time separation algorithm for the wider class of simple
domino-parity inequalities that we do not consider here.

We leave as an open problem whether there exists a polynomial time separation
algorithm for the (h, t)-uniform comb inequalities.

Acknowledgments Research of the first author is supported by a Grant-in-Aid for Scientific Research on
Innovative Areas—Exploring the Limits of Computation, MEXT, Japan. Research of the second author is
partially supported by GA ČR Grant P202-13/201414.

References

1. Avis, D., Tiwary, H.R.: On the extension complexity of combinatorial polytopes. In: ICALP, pp. 57–68
(2013)

2. Avis, D., Tiwary, H.R.: A generalization of extension complexity that captures P. Inf. Process. Lett.
115(6–8), 588–593 (2015)

3. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. 4OR
8, 1–48 (2010)

4. Faenza, Y., Fiorini, S., Grappe, R., Tiwary, H.R.: Extended formulations, nonnegative factorizations,
and randomized communication protocols. In: ISCO, pp. 129–140 (2012)

5. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formu-
lations: exponential separation and strong lower bounds. In: STOC, pp. 95–106 (2012)

6. Fleischer, L., Letchford, A.N., Lodi, A.: Polynomial-time separation of a superclass of simple comb
inequalities. Math. Oper. Res. 31(4), 696–713 (2006)

7. Grötschel, M., Padberg, M.: On the symmetric travelling salesman problem II: lifting theorems and
facets. Math. Program. 16(1), 281–302 (1979)

8. Padberg, M., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 67–80 (1982)
9. Pokutta, S., Vyve, M.V.: A note on the extension complexity of the knapsack polytope. Oper. Res.

Lett. 41(4), 347–350 (2013)
10. Rothvoß, T.: The matching polytope has exponential extension complexity. In: STOC, pp. 263–272

(2014)

123

appendix 257

J
P O LY N O M I A L S I Z E L I N E A R P R O G R A M S F O R
P R O B L E M S I N P

The following article is unpublished and is under peer review. It is
included here as an appendix for completeness.

259

Polynomial size linear programs for problems in P

David Avis1,2 ∗ David Bremner3 † Hans Raj Tiwary4 ‡ Osamu Watanabe5 §

April 2, 2015

Abstract

A perfect matching in an undirected graph G = (V,E) is a set of vertex disjoint edges from E that
include all vertices in V . The perfect matching problem is to decide if G has such a matching. Recently
Rothvoß proved the striking result that the Edmonds’ matching polytope has exponential extension com-
plexity. Here for each n = |V | we describe a perfect matching polytope that is different from Edmonds’
polytope and define a weaker notion of extended formulation. We show that the new polytope has a weak
extended formulation (WEF) Q of polynomial size. For each graph G with n vertices we can readily con-
struct an objective function so that solving the resulting linear program over Q decides whether or not
G has a perfect matching. With this construction, a straightforward O(n4) implementation of Edmonds’
matching algorithm using O(n2) bits of space would yield a WEF Q with O(n6 logn) inequalities and
variables. The construction is uniform in the sense that, for each n, a single polytope is defined for the
class of all graphs with n nodes. The method extends to solve polynomial time optimization problems,
such as the weighted matching problem. In this case a logarithmic (in the weight of the optimum solution)
number of optimizations are made over the constructed WEF.

The method described in the paper involves the construction of a compiler that converts an algorithm
given in a prescribed pseudocode into a polytope. It can therefore be used to construct a polytope for any
decision problem in P which can be solved by a well defined algorithm. Compared with earlier results of
Dobkin-Lipton-Reiss and Valiant our method allows the construction of explicit linear programs directly
from algorithms written for a standard register model, without intermediate transformations. We apply
our results to obtain polynomial upper bounds on the non-negative rank of certain slack matrices related
to membership testing of languages in P/Poly.

Keywords: Polytopes, extended formulation, extension complexity, perfect matching, linear program-
ming, non-negative rank

1 Introduction

A perfect matching in an undirected graph G = (V,E) is a set of vertex disjoint edges from E that include all
vertices in V . We let n denote the number of vertices and assume n is even throughout the paper. The perfect
matching problem is to determine if G contains a perfect matching and this can be decided in polynomial
time by running Edmonds’ algorithm [7]. As well as this combinatorial algorithm, Edmonds also introduced a
related polytope [8] which we will call the Edmonds’ polytope EPn:

EPn = CH{x ∈ {0, 1}(n
2) : x is the edge-vector of a perfect matching in Kn} (1)

For any S ⊆ V and edge ij ∈ E, we write that ij ∈ δ(S) whenever exactly one of the vertices i and j is

∗Email: avis@cs.mcgill.ca
†Email: bremner@unb.ca
‡Email: hansraj@kam.mff.cuni.cz
§Email: watanabe@is.titech.ac.jp
1GERAD and School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec, Canada H3A 2A7.
2Graduate School of Informatics, Kyoto University, Sakyo-ku, Yoshida Yoshida, Kyoto 606-8501, Japan
3Faculty of Computer Science, University of New Brunswick
4Department of Applied Mathematics (KAM) and Institute of Theoretical Computer Science (ITI), Charles University, Mal-

ostranské nám. 25, 118 00 Prague 1, Czech Republic
5Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

1

ar
X

iv
:1

40
8.

08
07

v3
 [

cs
.D

M
]

 1
 A

pr
 2

01
5

appendix 261

in S. Edmonds [8] proved that EPn has the following halfspace representation:

∑

ij∈δ(S)

xij > 1, S ⊆ V, |S| > 3, |S| is odd

∑

ij∈δ(i)
xij = 1 i = 1, 2, ..., n

0 6 xij 6 1, 1 6 i < j 6 n

This description is exponential in size. Nevertheless, the perfect matching problem can be solved in
polynomial time by solving a linear program (LP) over this polytope. Indeed, define an objective function
cTx =

∑
16i<j6n cijxij , where cij = 1 if ij ∈ E and cij = 0 otherwise. The LP is:

z∗ = max z = cTx (2)

x ∈ EPn

It is easy to verify that if G has a perfect matching then z∗ = n/2 otherwise z∗ < n/2. Since the inequalities
defining EPn can be separated in polynomial time, the LP can be solved in polynomial time [12].

Since the perfect matching problem is in P, it seemed possible that EPn could be written as the projection
of a polytope with a polynomial size description. This is the topic of extension complexity (see, e.g., Fiorini et
al. [10]). We recall the basic definitions here, referring the reader to [10] for further details.

An extended formulation (EF) of a polytope Q ⊆ Rd is a linear system

Ex+ Fy = g, y > 0 (3)

in variables (x, y) ∈ Rq+r, where E,F are real matrices with q, r columns respectively, and g is a column
vector, such that x ∈ Q if and only if there exists y such that (3) holds. The size of an EF is defined as the
number of inequalities in the system.

An extension of the polytope Q is another polytope Q′ ⊆ Re such that Q is the image of Q′ under a linear
map. We define the size of an extension Q′ as the number of facets of Q′. Furthermore, we define the extension
complexity of Q, denoted by xc (Q), as the minimum size of any extension of Q.

Rothvoß [16] recently proved the surprising result that xc (EPn) is exponential. Since extension complexity
seemed a promising candidate to obtain computational models that separate problems in P from those that
are NP-hard, this was a setback. A way of strengthening extension complexity to handle this problem was
recently proposed by Avis and Tiwary [3].

Dobkin et al. [6] and Valiant [18] showed that linear programming is P-complete from which it follows
that every problem in P has an LP-formulation. We will review this result in Section 3 giving Valiant’s
construction. Valiant’s construction is for the non-uniform circuit model and so, of course, also applies to
uniform families of circuits. The main result is of this paper is to give a direct method to produce polynomial
size LPs from polynomial time algorithms. Specifically we will construct LPs directly from a polynomial time
algorithm expressed in pseudocode that solves a decision problem. Of course a trivial LP formulation can be
obtained by first solving the decision problem for a given input and setting c = 1 if the answer is yes and
c = 0 otherwise. Then solving the one dimensional LP: max cx, 0 6 x 6 1 solves the original problem. To
avoid such trivial LPs we limit how much work can be done in constructing the objective function. One such
limitation might be, for example, to insist that the objective function can be computed in linear time in terms
of the input size. The objective functions we consider in this paper satisfy this condition.

For concreteness, we focus on an explicit construction of a poly-size LP that can be used to solve the
perfect matching problem. Firstly we describe another ‘natural’ polytope, PMn, for the perfect matching
problem. Then we will introduce the notion of a weak extended formulation (WEF). Instead of requiring
projection onto PMn we will simply require that LPs solved over the WEF solve the original problem. The
objective function used is basically just a ±1 encoding of the input graph. The approach used is quite general
and can be applied to any problem in P for which an explicit algorithm is known. It extends to polynomial
time solvable optimization problems also. However in this case a logarithmic (in the weight of the optimum
solution) number of optimizations are made over the constructed WEF. Note that when an EF exists both the
optimization and decision problems can be solved in a single LP optimization. Hence a WEF is indeed weaker
than an EF in this sense. We discuss this further in Section 6.

The paper is organized as follows. In the next section we introduce a new polytope for the perfect match-
ing problem and give some basic results about its facet structure. We define the notion of weak extended

2

262 appendix

formulation and state the main theorem. In Section 3 we first give a simple example to illustrate the technique
we use to build extended formulations from boolean circuits. Then we prove the main theorem of the paper.
In Section 4 we generalize our method to algorithms given in pseudocode rather than as a circuit. We show
how programs written in a simple pseudocode can be converted to WEFs. Our method is modelled on Sahni’s
proof of Cook’s theorem given in [13]. Since our pseudocode is clearly strong enough to implement Edmonds’
algorithm in polynomial time, our method gives a poly-size WEF for the perfect matching problem. In Section
5 we use our main theorem to show that the non-negative rank of certain matrices is polynomially bounded
above. Finally in Section 6 we give some concluding remarks including a discussion of applying this technique
to polynomial time optimization problems such as the maximum weighted matching problem.

2 Polytopes for decision problems

2.1 Another perfect matching polytope

We use the notation 1t to denote the t-vector of all ones, dropping the subscript when it is clear from the
context. Let n be an even integer and let x be a binary vector of length

(
n
2

)
. We let G(x) = (V,E) denote the

graph with edge incidence vector given by x, let n be the number of its vertices and m = 1Tx the number of
its edges. Furthermore, let wx = 1 if G(x) has a perfect matching and zero otherwise. We define the polytope
PMn as:

PMn = CH{(x,wx) : x ∈ {0, 1}(n
2)} (4)

PMn may be visualized by starting with a hypercube in dimension
(
n
2

)
and embedding it in one higher

dimension with extra coordinate w. For vertices of the cube corresponding to graphs with perfect matchings

w = 1 else w = 0. It is easy to see that PMn has precisely 2(n
2) vertices. EPn is closely related to PMn, in fact

it forms a face.

Proposition 1. EPn is a face of PMn and can be defined by

EPn = {x : (x,w) ∈ PMn ∩ {1Tx+ (1− w)n2 =
n

2
}} (5)

Proof. We first show that the inequality

1Tx+ (1− w)n2 > n

2
(6)

is valid for PMn. We need only verify it for the extreme points (x,wx) given in (4). If wx = 0, (6) holds
since 1Tx + n2 > n

2 . Otherwise wx = 1, x is the incidence vector of graph containing a perfect matching, so
1Tx > n/2. The vectors x with wx = 1 and 1Tx = n/2 are the incidence vectors of perfect matchings of Kn

and are precisely those used to define EPn in (1).

For a given input graph G(x̄) = (V,E) we define the vector c = (cij) by:

cij = 1 ij ∈ E cij = −1 ij 6∈ E 1 6 i < j 6 n (7)

and let d be a constant such that 0 < d 6 1/2. We construct the LP:

z∗ = max z = cTx+ dw (8)

(x,w) ∈ PMn

Proposition 2. For any edge incidence vector x̄ ∈ [0, 1](
n
2) let m = 1T x̄. The optimum solution to (8) is

unique, z∗ = m+ d if G(x̄) has a perfect matching, and z∗ = m otherwise.

Proof. Let c be the objective function defined by (7) and set m = 1T x̄. Note that cT x̄ = m and that
cTx 6 m − 1 for any other vertex x of the

(
n
2

)
-cube. If G(x̄) has a perfect matching then (x,w) = (x̄, 1) is

a feasible solution to (8) with z = m + d. Since x 6= x̄, cTx + dw 6 m − 1 + d this is the unique optimum
solution.

If G(x̄) does not have a perfect matching then (x,w) = (x̄, 0) is a feasible solution to (8) with z = m.
Consider any other vertex x of the cube. Then z = cTx+dw 6 m−1 + 1/2 = m−1/2. It follows that z∗ = m
is the unique optimum solution.

3

appendix 263

2.2 Polytopes for decision problems and weak extended formulations

The basic ideas above can be extended to arbitrary polynomial time decision problems. Let X denote a poly-
time decision problem defined on binary input vectors x = (x1, ..., xq), and an additional bit wx, where wx = 1
if x results in a ”yes” answer and wx = 0 otherwise. We define the polytope P as:

P = CH{(x,wx) : x ∈ {0, 1}q} (9)

For a given binary input vector x̄ we define the vector c = (cj) by:

cj = 1 x̄j = 1 and cj = −1 x̄j = 0 1 6 j 6 q (10)

and let d be a constant such that 0 < d 6 1/2. As before we construct an LP:

z∗ = max z = cTx+ dw (11)

(x,w) ∈ P

The following proposition can be proved in an identical way to Proposition 2.

Proposition 3. For any x̄ ∈ [0, 1]q let m = 1T x̄. The optimum solution to (11) is unique, z∗ = m + d if x̄
has a ”yes” answer and z∗ = m otherwise.

By an n-cube we mean the n-dimensional hypercube whose vertices are the 2n binary vectors of length n.

Definition 1. LetQ be a polytope which is a subset of the (q+t)-cube with variables labeled x1, ..., xq, y1, ..., yt.
We say that Q has the x-0/1 property if each of the 2q ways of assigning 0/1 to the x variables uniquely extends
to a vertex (x, y) of Q and, furthermore, y is 0/1 valued. Q may have additional fractional vertices.

In polyhedral terms, this says that the intersection of Q with the hyperplanes xj = ej , j = 1, ..., q is a 0/1
vertex, for each assignment of zero or one to the ej ’s. We will show that we can solve a poly-time decision
problem X by replacing P in (8) by a polytope Q of polynomial size, while maintaining the same objective
functions. We call Q a weak extended formulation as it does not necessarily project onto P .

Definition 2. A polytope

Q = {(x,w, s) : x ∈ [0, 1]q, w ∈ [0, 1], s ∈ [0, 1]r, Ax+ bw + Cs 6 h}

is a weak extended formulation (WEF) of P if

• Q has the x-0/1 property.

• For any binary vector x̄ ∈ [0, 1]q let m = 1T x̄. Let c be defined by (10) and let 0 < d 6 1/2. The
optimum solution z∗ = max {cTx + dw : (x,w, s) ∈ Q} is unique and takes the value z∗ = m + d if x̄
has a ”yes” answer. Otherwise z∗ < m+ d and for all sufficiently small d, z∗ = m and is unique.

For example, let X be the perfect matching problem so that P = PMn. Let Q = Qn be a WEF as given by
this definition. It follows from Proposition 2 that we can determine whether an input graph G has a perfect
matching by solving an LP over either PMn or Qn using the same objective function which is derived directly
from the edge adjacency vector of G. As a very simple example, consider n = 2 giving PM2 = CH{(0, 0), (1, 1)}.
A WEF, for example, is given by:

Q2 = CH{(0, 0, 0), (1, 1, 1), (1/4, 1, 1/2)}

Initially let d = 1/2. When G(x̄) is an edge, m = 1, c12 = 1 and z = cTx + dw obtains the same optimum
solution of z∗ = 3/2 = m + d over both PM2 and Q2. When G(x̄) is a non-edge, m = 0, c12 = −1 and
z = cTx + dw obtains the optimum solution of z∗ = 0 = m over PM2 and z∗ = 1/4 < 1/2 = m + d over Q2,
at the fractional vertex (1/4,1,1/2). However, if 0 < d < 1/4 then z = cTx+ dw obtains the unique optimum
solution of z∗ = 0 = m over both PM2 and Q2. We see that Q2 projects onto a triangle in the (x,w)-space,
whereas PM2 is a line segment.

In the next section we prove the following result:

Theorem 1. Every decision problem X in P/poly admits a weak extended formulation Q of polynomial size.

4

264 appendix

3 From Circuits to Polytopes

In order to show that Linear Programming is P-complete, Valiant [18] gave a construction to transform
boolean circuits into a linear sized set of linear inequalities with the x-0/1 property (where xi are the variables
corresponding to the inputs of the circuit); a similar construction was used by Yannakakis [19] in the context
of the Hamiltonian Circuit problem. In this section we show that Valiant’s construction implies Theorem 1.
Valiant’s point of view is slightly different from ours in that he explicitly fixes the values of the input variables
before solving an LP-feasibility problem (as opposed to using different objective functions with a fixed set of
inequalities). Showing that the result of this fixing is a 0/1-vertex is precisely our x-0/1 property.

We begin with a standard definition1:

Definition 3. A (boolean) circuit with q input bits x = (x1, x2, ..., xq) is a directed acyclic graph in which
each of its t nodes, called gates, is either an AND(∧) gate, an OR(∨) or a NOT(¬) gate. We label each gate
by its output bit. One of these gates is designated as the output gate and gives output bit w. The size of a
circuit is the number of gates it contains and its depth is the maximal length of a path from an input gate to
the output gate.

For example, the circuit shown in Figure 1 can be used to compute whether or not a graph on 4 nodes has
a perfect matching. The input is the binary edge-vector of the graph and the output is w = 1 if the graph has
a matching (e.g. G1) or w = 0 if it does not (e.g. G2). If the graph has a perfect matching, exactly one of
y12, y13 or y14 is one, defining the matching. For each gate we have labeled the output bit by a new variable.
We will construct a polytope from the circuit by constructing a system of inequalities on the same variables.

Scanned by CamScanner

Figure 1: A circuit to compute whether a 4 node graph has a perfect matching

From an AND gate, say y12 = x12 ∧ x34, we generate the inequalities:

x12 + x34 − y12 6 1

−x12 + y12 6 0 (12)

− x34 + y12 6 0

y12 > 0

The system (12) defines a polytope in three variables whose 4 vertices represent the truth table for the

1See, e.g., the text by Savage [17]

5

appendix 265

AND gate:

x12 x34 y12

0 0 0

0 1 0

1 0 0

1 1 1

Note that the variables x12, x34 define a 2-cube and so the polytope is an extension of the 2-cube. In the
terminology of the last section, it has the {x12, x34}-0/1 property.

From an OR gate, say s3 = y12 ∨ y13, we generate the inequalities:

− y12 − y13 + s3 6 0

y12 − s3 6 0 (13)

y13 − s3 6 0

s3 6 1

The system (13) defines a polytope in three variables whose 4 vertices represent the truth table for the OR
gate, as can easily be checked. Indeed, this polytope has the {y12, y13}-0/1 property.

From a NOT gate, say ȳ12 = ¬y12, we could generate the equation

ȳ12 = 1− y12 (14)

However it is equivalent to just replace all instances of ȳ12 by 1− y12 in the inequality system, and this is
what we will do in the sequel.

The circuit in Figure 1 contains 5 AND gates and 2 OR gates. By suitably replacing variables in (12) and
(13) we obtain a system of 28 inequalities in 13 variables. As just mentioned, the NOT gates are handled by
variable substitution rather than explicit equations. Let Q4 denote the corresponding polytope. It will follow
by the general argument below that Q4 is a weak extended formulation (WEF) of PM4.

We now show that the above construction can be applied to any boolean circuit C to obtain a polytope Q
which has the 0/1 property with respect to the inputs of C.

Lemma 1 ([18]). Let C be a boolean circuit with q input bits x = (x1, x2, ..., xq), t gates labeled by their output
bits y = (y1, y2, ..., yt) and with circuit output bit w = yt. Construct the polytope Q with 4t inequalities and
q + t variables using the systems (12) and (13) respectively. Q has the the x-0/1 property and for every input
x the value of w computed by C corresponds to the value of yt in the unique extension (x, y) ∈ Q of x.

Proof. Since C is an acyclic directed graph it contains a topological ordering of its nodes (gates) and we can
assume that the labelling y1, y2, ..., yt is such an ordering. Note we can assume w = yt comes last since it
cannot be an input to any other gate. For any given input x the output of the circuit can be obtained by
evaluating each gate in the order y1, ..., yt. Since it is a topological ordering, each input for a gate has been
determined before the gate is evaluated.

We proceed by induction. Let Qk be the polytope defined by the 4k inequalities corresponding to gates
y1, ..., yk. The inductive hypothesis is that for k = 1, 2, ..., t

• Qk has the x-0/1 property, and

• for each x the value of yk calculated by C corresponds to the value of yk in the unique extension of x in
Qk.

This is clearly true for k = 1 as the analysis following (12) and (13) shows. We assume the hypothesis is true
for k = 1, 2, ..., j, where 1 6 j < t, and prove it for j + 1. Indeed, since Qj has the x-0/1 property for each x
the values of y1, ..., yj are uniquely defined and have 0/1 values. By induction they correspond to the values
computed by C. Therefore the analysis following (12) and (13) shows that yj+1 will also be uniquely defined,
0/1 valued, and will correspond to the value computed by C. This verifies the inductive hypothesis for j + 1
and since Q = Qt the proof is complete.

6

266 appendix

Lemma 2. Let C be a circuit that solves a decision problem X with q input bits x = (x1, x2, ..., xq) and has
associated polytope P as defined in (9). The polytope Q constructed in Lemma 1 is a WEF for P .

Proof. In order to make the correspondence with Definition 2 we relabel the variables in Q, constructed in
Lemma 1, so that s = (y1, y2, ..., yt−1) and w = yt. By Lemma 1 we know Q has the x-0/1 property so it
remains to prove the second condition in Definition 2.

Let x̄ be any binary q-vector and set m = 1T x̄. Since Q has the x-0/1 property x̄ extends to a unique
binary vertex (x̄, w̄, s̄) of Q. Define c as in (10). Fix some d, 0 < d 6 1/2 and consider the optimum solution

z∗ = max {cTx+ dw : (x,w, s) ∈ Q}.
Since Q has the x-0/1 property the maximum of cTx over Q is obtained at cT x̄ = m at the unique vertex
(x̄, w̄, s̄) of Q. For any other (x,w, s) ∈ Q, since x is in the q-cube and not equal to x̄, we have cTx < m and,
since w 6 1, z = cTx+ dw < m+ d. Therefore, if x̄ has a ”yes” answer then w = 1, z∗ = m+ d and (x̄, w̄, s̄)
is the unique optimum solution.

If x̄ has a ”no” answer then z = cT x̄ + dw̄ = m, since w̄ = 0. In this case the optimum z∗ may be
obtained at a fractional vertex (x,w, s). But then, as observed, cTx < m. Since w 6 1 we must have
z∗ = cTx + dw = m + d − εx̄, for some εx̄ > 0. So if d < εx̄ then z∗ = m is unique and obtained at (x̄, w̄, s̄).
By choosing d < min{εx : x ∈ {0, 1}q} we obtain the final part of the second condition of Definition 2. The
lemma follows. We remark that a suitable value of d (with a polynomial sized encoding) can be computed
using Hadamard bounds on determinants.

Theorem 1 follows from Lemmas 1 and 2. Since there is no limitation of uniformity on the circuits used,
the theorem holds for all decision problems in P/poly. Since each gate in the circuit gives rise to 4 inequalities
and one new variable, we have the following corollary.

Corollary 1. Let X be a decision problem with corresponding polytope P defined by (9). A set of circuits for
X with size p(n) generate a WEF Q for P with 4p(n) inequalities and variables.

In this section we showed how to construct a poly-size LP from a poly-size circuit so that the optimum
solution of the LP gives the output of the circuit. However it is not immediately clear how to use this to obtain
a polytope for the perfect matching problem. It would be required to convert Edmonds’ algorithm to a family
of circuits. In the next section we bypass this step by showing how to convert a simple pseudocode directly
into a polytope without first computing a circuit (See Theorem 2). This can be used to convert poly-time
algorithms into poly-size LPs directly.

We would like to remark that our construction in Theorem 2 of a WEF from a pseudocode may not be
optimal. For example, it would be possible to get roughly O(T (n) log T (n))- size circuits simulating a given
T (n)-time bounded Turing machine (see, e.g., Chapter 1 of [1]) from which we can construct a WEF with
O(T (n) log T (n)) inequalities. But since Turing Machines are not commonly used for designing algorithms, we
leave the interested reader to check whether a similar idea can be used to define a WEF with smaller size.

4 Constructing an LP from pseudocode

In this section we introduce a rudimentary pseudocode that can be used for decision problems. This pseudocode
follows the usual practices of specifying algorithms and the tradition of so-called register machines (see e.g. [5]).
We show how the code can be translated into a linear program, in a way similar to that shown for circuits in
the previous section. We assume there is a polynomial function p(n) so that the pseudocode terminates within
p(n) steps for any input of size n. We will show that the corresponding LP will also have polynomial size in n.

The pseudocode we use and its translation into an LP is adapted from a proof of Cook’s theorem given
in [13] which is attributed to Sartaj Sahni. In Sahni’s construction the underlying algorithm may be non-
deterministic, but we will consider only deterministic algorithms. Furthermore, Sahni describes how to convert
his pseudocode into a satisfiability expression. Although it would be possible to convert this expression into an
LP, considerable simplifications are obtained by doing a direct conversion from pseudocode to an LP. In this
section, for simplicity, we describe only those features of the pseudocode that are necessary for implementing
Edmonds’ algorithm for the perfect matching problem. Additional features would be needed to handle more
sophisticated problems, such as the weighted matching problem. For full details, the reader is referred to
Section 11.2 of [13].

Our pseudocode A has the following form. We assume W is a fixed integer which will represent the word
size for integer variables.

7

appendix 267

• Variables are binary valued except for indices, which are W -bit integers. Arrays of binary values are
allowed and may be one or two dimensional. Dimension information is specified at the beginning of A.
We let q(n) denote the maximum number of bits required to represent all variables for an input size of
n. Sahni argues that q(n) = O(p(n)) however in our case q(n) is significantly smaller. Statements in A

are numbered sequentially from 1 to l.

• An expression contains at most one boolean operator or is the incrementation of an index. Array variables
are not used in expressions but may be assigned to simple variables and vice versa.

• A contains no read statements and obtains input via its parameters. All other variables are initially zero.

• A may contain control statements go to k and if c = 1 then go to k endif. Here k is an instruction
number and c is a simple binary variable.

• A terminates by setting a binary variable w to one if the input results in a yes outcome and to zero
otherwise. The program then halts.

In our implementation we also allow higher level commands such while and for loops which are first pre-
compiled into the basic statements listed above. As a simple example, here is a pseudocode that produces
essentially the same result as the circuit in Figure 1.

y12 = x12 ∧ x34

y13 = 0
y14 = 0
if y12 then go to 50 endif
y13 = x13 ∧ x24

if y13 then go to 50 endif
y14 = x14 ∧ x23

if y14 then go to 50 endif
w = 0
return
50: w = 1
return

Note that the lines of the pseudocode which are executed depend on the input values x. This is different from
the circuit where all gates are executed for every input. We return to this point below.

The variables in the LP are denoted as follows. They correspond to variables in A as it is being executed
on a specific input I.

• Binary variables B(i, t), 1 6 i 6 q(n), 0 6 t < p(n).
B(i, t) represents the value of binary variable i in A after t steps of computation. For convenience we
may group W consecutive bits together as an integer variable i. I(i, j, t) represents the value of the j-th
bit of integer variable i in A after t steps of computation. The bits are numbered from right to left, the
rightmost bit being numbered 1.

• Binary arrays A binary arrayR[m],m = 0, 1, ..., u is stored in consecutive binary variablesB(α+m, t), 0 6
m 6 u, 0 6 t 6 p(n) from some base location α. The array index m is stored as a W -bit integer I(∗, ∗, t)
and so we must have u 6 2W − 1.

• 2-dimensional binary arrays A two dimensional binary array R[m][c], m = 0, 1, ..., u, c = 0, 1, ..., v is
stored in row major order in consecutive binary variables B[α+ j, t−1], 0 6 j 6 uv+u+ v, 0 6 t 6 p(n)
from some base location α. The array indices m and c are stored as a W -bit integers I(∗, ∗, t) and so we
must have u, v 6 2W − 1.

• Step counter S(i, t), 1 6 i 6 l, 1 6 t 6 p(n).
Variable S(i, t) represents the instruction to be executed at time t. It takes value 1 if line i of A is being
executed at time t and 0 otherwise.

8

268 appendix

All of the above variables are specifically bounded to be between zero and one in our LP. The last set
of variables, the step counter, indicates an essential difference between the circuit model and the pseudocode
model. In the former model, all gates are executed for each possible input. The gates can be executed in any
topological order consistent with the circuit. For the pseudocode model, however, the step to be executed at
any time t will usually depend on the actual input. For each time step t and line i of pseudocode we will
develop a system of inequalities which have the x-0/1 property, for some subset of variables x, if line i is
executed at time t. I.e., the inequalities should uniquely determine a 0/1 value of all variables given any 0/1
setting of the x variables. However, if step i is not executed at time t then the variables should be free to hold
any 0/1 values and these values will be determined by the step that is executed at time t. So in each set of
inequalities a control variable (in our case the variable S(i, t)) will appear for this purpose. More formally, we
make the following definition which generalizes Definition 1:

Definition 4. Let Cx+Dy 6 e be a system of inequalities that satisfy the x-0/1 property, i.e. each 0/1 setting
of the x variables uniquely defines a 0/1 setting of the y variables. Suppose that Cx+Dy 6 e+ 1 is feasible
for all 0/1 settings of x and y variables, and let z be a binary variable. The system 1z+Cx+Dy 6 e+1 has
the (z) controlled x-0/1 property.

Note that if z = 0 the new system is always feasible for any 0/1 setting of x and y. If z = 1 then the new
system reduces to the old system that has the x-0/1 property.

We now define the 5 different types of linear inequalities needed to simulate the pseudocode which, following
Sahni, we label C,D,E,F and G.2 Recall that the S(i, t)-variables ensure that at each time t a unique line i is
executed, taking the value S(i, t) = 1 if it is and 0 otherwise. The inequalities listed below all have the S(i, t)
controlled x-0/1 property, and so have the form S(i, t) + Cx+Dy 6 e+ 1 for suitably chosen C,D, e, x, y.

C: (Variable initialization) The variables B(i, 0), I(i, j, 0), 1 6 i 6 q(n), 1 6 j 6 W are set equal to their
initial value, if any, else set to zero.

D: (Step counter initialization) Instruction 1 is executed at time t = 1.

S(1, 1) = 1

E: (Unique step execution) A unique instruction is executed at each time t.

l∑

j=1

S(i, t) = 1, 1 6 t 6 p(n)

F: (Flow control) The instruction to execute at time t + 1 is determined, assuming we are at line i of A
at time t, i.e. S(i, t) = 1. If not, i.e. S(i, t) = 0, then all inequalities below are trivially satisfied.
This follows since the other variables are constrained to be between zero and one. There are 4 subcases
depending on the instruction at line i. Inequalities are generated for each t, 1 6 t 6 p(n).

(i) (assignment statement) Go to the next instruction.

S(i, t)− S(i+ 1, t+ 1) 6 0

(ii) (go to k)
S(i, t)− S(k, t+ 1) 6 0

(iii) (return) Loop on this line until time runs out.

S(i, t)− S(i, t+ 1) 6 0

(iv) (if c = 1 then go to k endif) We assume that bit c is represented by variable B(j, t− 1).

S(i, t) +B(j, t− 1)− S(k, t+ 1) 6 1

S(i, t)−B(j, t− 1)− S(i+ 1, t+ 1) 6 0

2Sahni also has a constraint set H which relates to the certificate checking function of his algorithm, and is not needed here.

9

appendix 269

When S(i, t) = 1 cases (i)-(iii) fix the next line to be executed and trivially have the controlled x-0/1
property, where x is empty. For (iv), note we have also the equations E above. When S(i, t) = 1,
if B(j, t − 1) = 1 then the first inequality fixes S(k, t + 1) = 1 otherwise the second inequality fixes
S(i+ 1, t+ 1) = 1. The inequalities (iv) have the controlled B(j, t− 1)-0/1 property.

G: (Control of variables) If we are at line i of A at time t, i.e. S(i, t) = 1, all variables are updated to
their correct values at time t + 1 following the execution of line i. If not, i.e. S(i, t) = 0, then all
inequalities below are trivially satisfied. Again there are several cases depending on the instruction at
line i. Inequalities are generated for each t, 1 6 t 6 p(n).

(i) (Reassignment of unchanged variables) All variables left unchanged at a given step t need to
be reassigned their previous values. For Let k index some bit unchanged at step t.

S(i, t) +B(k, t− 1)−B(k, t) 6 1

S(i, t)−B(k, t− 1) +B(k, t) 6 1

Note that when S(i, t) = 1 these inequalities imply that B(k, t − 1) = B(k, t). They have the
controlled B(k, t − 1)-0/1 property. Similar inequalities are generated for each integer variable
I(k, j, t), 1 6 j 6W .

In what follows, the above inequalities need to be generated for all variables B(k, t) and I(k, j, t) not
being assigned values at time t in the particular instruction i being considered.

(ii) (assignment: s = x and s = ¬x) Assume that x, s are stored in B(q, t − 1), B(s, t) respectively.
For s = x we generate the two inequalities:

S(i, t) +B(q, t− 1)−B(s, t) 6 1

S(i, t)−B(q, t− 1) +B(s, t) 6 1

When S(i, t) = 1 the inequalities imply B(s, t) = B(q, t − 1) as desired. They have the controlled
B(q, t− 1)-property. For s = ¬x we generate the two inequalities:

S(i, t) +B(q, t− 1) +B(s, t) 6 2

S(i, t)−B(q, t− 1)−B(s, t) 6 0

The analysis is similar to that for s = x.

(iii) (assignment: s = x⊕y) Assume that x, y, s are stored in B(q, t−1), B(r, t−1), B(s, t) respectively.

S(i, t) +B(q, t− 1)−B(r, t− 1)−B(s, t) 6 1

S(i, t)−B(q, t− 1)−B(r, t− 1) +B(s, t) 6 1

S(i, t)−B(q, t− 1) +B(r, t− 1)−B(s, t) 6 1

S(i, t) +B(q, t− 1) +B(r, t− 1) +B(s, t) 6 3

If S(i, t) = 1 then all constants on the right hand side are reduced by one and S(i, t) can be deleted.
It is easy to check the inequalities have the controlled {B(q, t − 1), B(r, t − 1)}-0/1 property, and
that for each such 0/1 assignment B(s, t) is correctly set.

(iv) (assignment: s = x∧y) Assume that x, y, s are stored in B(q, t−1), B(r, t−1), B(s, t) respectively.

S(i, t)−B(q, t− 1) +B(s, t) 6 1

S(i, t) −B(r, t− 1) +B(s, t) 6 1

S(i, t) +B(q, t− 1) +B(r, t− 1)−B(s, t) 6 2

If S(i, t) = 1 then all constants on the right hand side are reduced by one and S(i, t) can be deleted.
It is easy to check the inequalities have the controlled {B(q, t − 1), B(r, t − 1)}-0/1 property, and
that for each such 0/1 assignment B(s, t) is correctly set.

10

270 appendix

(v) (assignment: s = x ∨ y, s = x1 ∨ x2 ∨ ... ∨ xk)
Assume that x, y, s are stored in B(q, t− 1), B(r, t− 1), B(s, t) respectively.

S(i, t) +B(q, t− 1) −B(s, t) 6 1

S(i, t) +B(r, t− 1)−B(s, t) 6 1

S(i, t)−B(q, t− 1)−B(r, t− 1) +B(s, t) 6 1

The analysis is similar to G(iv) and is omitted. The inequalities have the controlled {B(q,t-1),B(r,t-
1)}-0/1 property.

The k-way or is an easy generalization which will be needed in the sequel, where we assume that
xj is stored in B(qj , t− 1), j = 1, 2, ..., k. It is defined by the following inequalities:

S(i, t) +B(qj , t− 1)−B(s, t) 6 1 1 6 j 6 k

S(i, t)−
k∑

j=1

B(qj , t− 1) +B(s, t) 6 1.

(vi) (increment integer variable) Assume that the integer variable is stored in I(q, j, t−1), 1 6 j 6W
and is to be incremented by 1. We require another integer I(r, j, t), 1 6 j 6 W to hold the binary
carries. On overflow, I(r,W, t) = 1 and I(q, j, t) = 0, 1 6 j 6 W . The incrementer makes use of
two previous operations, G(iii) and G(iv):

I(q, 1, t) = I(q, 1, t− 1)⊕ 1

I(r, 1, t) = I(q, 1, t− 1) ∧ 1

I(q, j, t) = I(q, j, t− 1)⊕ I(r, j − 1, t) 2 6 j 6W
I(r, j, t) = I(q, j, t− 1) ∧ I(r, j − 1, t) 2 6 j 6W

By appropriate formal substitution of variables, each of the above assignments is transformed into
inequalities of the form G(iii) and G(iv), which are controlled by the step counter S(i, t). It can be
verified that the full system satisfies the controlled {I(q, j, t), 1 6 j 6W}-0/1 property because for
each 0/1 setting of these variables all other variables are fixed by the above system of equations.

(vii) (equality test for integer variables) Assume that the integer variables are stored in I(q, j, t−1)
and I(r, j, t−1), 1 6 j 6W . We require W + 1 temporary variables w.l.o.g. B(j, t), 1 6 j 6W + 1.
If the two integer variables are equal then B(W + 1, t) is set to one else it is set to zero.

B(j, t) = I(q, j, t− 1)⊕ I(r, j, t− 1) 1 6 j 6W

B(W + 1, t) = ¬
W∨

j=1

B(j, t)

The first equations makes repeated use of G(iii) after appropriate substitution. By combining G(ii)
and the k-way or from G(v) we may implement the second equation by the inequalities.

S(i, t) +B(j, t) +B(W + 1, t) 6 2 1 6 j 6W

S(i, t)−
k∑

j=1

B(j, t)−B(W + 1, t) 6 0.

The inequalities have the controlled {I(q, j, t− 1), I(r, j, t− 1), 1 6 j 6W}-0/1 property.

(viii) (array assignment) R[m] = x (and x = R[m]) We assume that R has dimension u, is stored in
B[α+j, t−1], 0 6 j 6 u and that x is stored in B(x, t−1). We further assume that m is stored in an
integer variable I(m, k, t − 1), 1 6 k 6 W . We need additional binary variables M(j, t), 0 6 j 6 u
to hold intermediate results. Initially we write down some equations and then we use previous
results to convert these to inequalities. Firstly we need to discover the memory location for R[m].
For any 0 6 j 6 u let jW jW−1...j1 be the binary representation of j. Then we formally define for
k = 1, 2, ...,W

Tj(m, k, t− 1) =

{
I(m, k, t− 1) jk = 0
1− I(m, k, t− 1) jk = 1

11

appendix 271

Note this definition is purely formal and has nothing to do with the execution of A. We will assign
M(j, t) a value via the W -way or given in G(v). For 0 6 j 6 u:

S(i, t) + Tj(m, k, t− 1)−M(j, t) 6 1 1 6 k 6W (15)

S(i, t)−
W∑

k=1

Tj(m, k, t− 1) +M(j, t) 6 1

When S(i, t) = 1, it can be verified that M(j, t) = 0 whenever j = m and is one otherwise. Now
we may update all array elements of R at time t and make the assignment R[m] = x by the system
of inequalities, for all 0 6 j 6 u:

S(i, t) +B(x, t− 1)−B(α+ j, t)−M(j, t) 6 1

S(i, t)−B(x, t− 1) +B(α+ j, t)−M(j, t) 6 1

S(i, t) +B(α+ j, t− 1)−B(α+ j, t) +M(j, t) 6 2

S(i, t)−B(α+ j, t− 1) +B(α+ j, t) +M(j, t) 6 2

To understand these inequalities, first note that they are trivially satisfied unless S(i, t) = 1. When
j = k we have M(j, t) = 0 and the first two inequalities are tight. We have B(α+ j, t) = B(x, t− 1)
updating the array element to x. The second two inequalities are trivially satisfied. Otherwise
j 6= k, M(j, t) = 1, the first two inequalities are trivially satisfied and the second two are tight. We
have B(α + j, t) = B(α + j, t − 1) copying the array element over to time t from time t − 1. We
remark that there are O(uW) inequalities generated above.

Finally note that we can implement x = R[m] by using the inequalities

S(i, t) +B(x, t)−B(α+ j, t− 1)−M(j, t) 6 1

S(i, t)−B(x, t) +B(α+ j, t− 1)−M(j, t) 6 1

and letting the array R[m] be copied at time t using G(i). Both of these two inequality systems
have the controlled {B(x, t− 1), B(α+ j, t− 1), j = 0, ..., u}-0/1 property.

(ix) (2-dimensional array assignment) R[m][c] = x (or x = R[m][c]). This is a natural generalization
of G(viii). We assume that R has dimensions u and v, is stored in row major order in B[α+j, t−1],
0 6 j 6 uv+u+v and that x is stored in B(x, t−1). We further assume that m and c are stored in
an integer variables I(m, k, t− 1), I(c, k, t− 1), 1 6 k 6W respectively. We need additional binary
variables M(j, t), 0 6 j 6 u and N(j, t), 0 6 j 6 v to hold intermediate results. Firstly we need to
discover the memory location for R[m][c]. We again use the equations (15) for the row index.

For the column index, as in G(viii), for any 0 6 j 6 v let jW jW−1...j1 be the binary representation
of j. We formally define for k = 1, 2, ...,W

Tj(c, k, t− 1) =

{
I(c, k, t− 1) jk = 0
1− I(c, k, t− 1) jk = 1

We will assign N(j, t) a value via the W -way or given in G(v). For 0 6 j 6 v:

S(i, t) + Tj(c, k, t− 1)−N(j, t) 6 1 1 6 k 6W

S(i, t)−
W∑

k=1

Tj(c, k, t− 1) +N(j, t) 6 1

When S(i, t) = 1, it can be verified that N(j, t) = 0 whenever j = c and is one otherwise. Now we
may update all array elements of R at time t and make the assignment R[m][c] = x by the following

12

272 appendix

system of inequalities. For all 0 6 j1 6 u, 0 6 j2 6 v, r = j1(u+ 1) + j2:

S(i, t) +B(x, t− 1)−B(α+ r, t)−M(j1, t)−N(j2, t) 6 1

S(i, t)−B(x, t− 1) +B(α+ r, t)−M(j1, t)−N(j2, t) 6 1

S(i, t) +B(α+ r, t− 1)−B(α+ r, t) +M(j1, t) 6 2

S(i, t)−B(α+ r, t− 1) +B(α+ r, t) +M(j1, t) 6 2

S(i, t) +B(α+ r, t− 1)−B(α+ r, t) +N(j2, t) 6 2

S(i, t)−B(α+ r, t− 1) +B(α+ r, t) +N(j2, t) 6 2

The analysis is similar to G(viii). The above inequalities are all trivial unless S(i, t) = 1. Note
that for each j1 and j2, index r gives the relative location in the array. If j1 = m, j2 = c then
M(j1, t) = N(j2, t) = 0, the first two inequalities are tight and the last four loose. The first two
inequalities give B(α + r, t) = B(x, t − 1). Otherwise either M(j1, t) = 1 or N(j2, t) = 1 or both,
and the first two inequalities are trivially satisfied. In the former case the two middle inequalities
are tight and we have the equation B(α + r, t) = B(α + r, t − 1). In the latter case this equation
is formed from the last two inequalities. We remark that there are O(uv + uW + vW) inequalities
generated above.

For the assignment x = R[m][c] we need the inequalities

S(i, t) +B(x, t)−B(α+ r, t− 1)−M(j1, t)−N(j2, t) 6 1

S(i, t)−B(x, t) +B(α+ r, t− 1)−M(j1, t)−N(j2, t) 6 1

for r = j1(u+ 1) + j2. All array elements of R must also be copied from time t− 1 to time t as in
G(i).

Both of these two inequality systems have the controlled {B(x, t−1), B(α+j, t), j = 0, ..., uv+u+v}-
0/1 property.

Remark: In applications using graphs, a symmetric 2-dimensional array is often used to hold the
adjacency matrix. Such symetric matrices may be implemented in pseudocode by replacing a
statement such as R[m][c] = x by the two statements R[m][c] = x and R[c][m] = x. Assignment
statements such as x = R[m][c] may be left as is.

To show the correctness of the above procedure we give two lemmas that are analogous to Lemmas 1 and 2
of the last section. First we show that the above construction can be applied to any pseudocode A, written in
the language described, to produce a polytope Q which has the 0/1 property with respect to the inputs of A.

Lemma 3. Let A be a pseudocode, written in the above language, which takes n input bits x = (x1, x2, ..., xn),
and terminates by setting a bit w. Construct the polytope Q as described above relabelling B(0, p(n)) as w and
the additional variables as s = (s1, s2, ..., sN) for some integer N . Q has the the x-0/1 property and for every
input x the value of w computed by A corresponds to the value of w in the unique extension (x,w, s) ∈ Q of x.

Proof. (Sketch) As with Lemma 1 the proof is by induction, but this time we use the step counter. By
assumption A terminates after p(n) steps. Let k = 1, 2, ..., p(n) represent the step counter. Define Qk to be
the polytope consisting of precisely those inequalities in Q that use variables: B(i, t), 1 6 i 6 q(n), 1 6 t 6 k,
I(i, j, t), 1 6 i 6 q(n), 1 6 j 6W, 1 6 t 6 k and S(i, t), 1 6 i 6 l, 1 6 t 6 k.

• Qk has the x-0/1 property, and

• for each x, at step k, A with input x is executing line i corresponding to the unique index i where S(i, k) =
1 and all variables at that step have the values corresponding to the values of B(i, k), 1 6 i 6 q(n) and
I(i, j, k), 1 6 i 6 q(n), 1 6 j 6W .

The inequalities of Q1 consist of those in groups C, D, and part of E above and the induction hypothesis is
readily verified. We assume the hypothesis is true for k = 1, 2, ..., T , where 1 6 T < p(n), and prove it for
T + 1. Indeed, since Qk has the x-0/1 property for each x the values of all variables with index t 6 T have
been correctly set. It follows that for precisely one index i we have S(i, T) = 1, meaning that line i of the
pseudocode is executed at time T for this particular input. The inequalities defined in group G all have the

13

appendix 273

controlled x-0/1 property for the control variable S(i, T). The variables B and I with index t = T + 1 are
correctly set by the analysis in group G above. The analysis in group F implies that the values of S(i, T + 1)
will also be uniquely determined and 0/1, correctly indicating the next line of A to be executed at t = T + 1.
This verifies the inductive hypothesis for T + 1 and since Q = Qp(n) this concludes the proof.

The next lemma is simply a restatement of Lemma 2 in the context of our pseudocode rather than circuits.
The proof of Lemma 2 makes no reference to how Q was computed, so the same proof holds.

Lemma 4. Let A be a algorithm, written in the above pseudocode, which solves a decision problem X with
n input bits x = (x1, x2, ..., xn) and has associated polytope P as defined in (9). The polytope Q described in
Lemma 3 is a WEF for P .

Lemmas 3 and 4 justify the correctness of the method outlined in this section.
We now analyze the size of the WEF Q created. Recall that q(n) is the number of bits of storage required

by the algorithm A, which of course consists of a constant number of lines of pseudocode. The variables of
Q are the variables B(j, t), S(i, t) and additional temporary variables created in some of the groups C–G.
It can be verified that their number is O(p(n)q(n)). For fixed t, each of the sets of inequalities described in
groups C–G have size at most O(q(n)) except possibly the array assignment inequalities described in G(viii)
and G(ix). As remarked there, an array of dimension u generates O(uW) inequalities. A 2-dimensional array
of dimension r by c generates O(rc + rW + cW) inequalities. We may assume that W ∈ O(log n). Then
O(q(n) log n) is an upper bound the number of inequalities generated in either G(viii) or G(ix). Since t is
bounded by p(n) we see that the WEF has at most O(p(n)(q(n) log n)) inequalities also. We have:

Theorem 2. Let X be a decision problem with corresponding polytope P defined by (9). A algorithm for X
written in the pseudocode described above requiring q(n) space and terminating after p(n) steps generates a
WEF Q for P with O(p(n)q(n) log n) inequalities and variables.

Since Edmonds’ algorithm can be implemented in poly-time in the pseudocode presented our method gives
a polynomial size WEF for PMn. So for example, a straightforward O(n4) implementation of Edmonds’
algorithm using O(n2) space would yield a WEF with O(n6 log n) inequalities and variables. If the O(n2.5)
time algorithm of Even and Kariv [9] can be implemented in our pseudocode it would yield a considerably
smaller polytope.

We are currently building a compiler along the lines described here to automatically generate a WEF
corresponding to any given pseudocode. The elements described in C–G above have been implemented and
tested as well as a few small complete examples of pseudocode. The polytopes generated are rather large even
for short pseudocodes. For example, the pseudocode at the beginning of this section generated a polytope
with about 3200 inequalities!3 This should be compared with 28 inequalities for the circuit in Figure 1 and 4
odd set inequalities for Edmonds’ polytope EP4. Nevertheless the WEF generated by this method should be
significantly smaller than EPn even for relatively small n. The details of the implementation of the compiler
and its application to Edmonds’ algorithm will be described in a subsequent paper.

5 Connections to non-negative rank

In this section we reformulate the results in previous sections in terms of non-negative ranks of certain matrices.
Non-negative rank is a very useful tool that captures the extension complexity of polytopes [19]. We use a
slightly modified version of non-negative rank to given an alternate characterization of the complexity class
P/poly, which is the class of decision problems that can be solved in polynomial time given a polynomial size
advice string [1]. This characterization potentially opens the door to proving that a given problem does not
belong to P/poly by demonstrating high non-negative rank of the associated characteristic matrix. We will
come back to this discussion again after describing the characterization.

A matrix S is called non-negative if all its entries are non-negative. The non-negative rank of a non-negative
matrix S, denoted by rank+(S), is the smallest number r such that there exist non-negative matrices T and U
such that T has r columns, U has r rows and S = TU . If we require the left factor T in the above definition
to only contain numbers that can be encoded using a number of bits only polynomial in the number of bits
required to encode any entry of S then the smallest such r is called the succinct non-negative rank of S and is

3This polytope and other examples produced by the compiler can be found at http://www.cs.unb.ca/~bremner/research/

sparks_lp

14

274 appendix

denoted by rank⊕(S). To see the usefulness of this apparently asymmetric restriction on the factors, note that
when S is the slack matrix of a polytope Ax > b then such a factorization allows one to describe an extended
formulation for the polytope using only the entries of A, T and b. So if T is required to polynomial in the bit
complexity of the entries of S and then one can represent the polytope as the shadow of another polytope that
can be encoded using a polynomial number of bits.

Let Pin and Pout be two polytopes in Rk such that Pin ⊆ Pout. We say that such a pair defines a polytopal
sandwich. With every polytopal sandwich we can associate a non-negative matrix which encodes the slack
of the inequalities defining Pout with respect to the vertices of Pin. That is, if Pin = conv({v1, . . . , vn}) and
Pout = {x ∈ Rk | aᵀi x 6 bi, 1 6 i 6 m} then the slack matrix associated with the polytopal sandwich thus
defined is S(Pout, Pin) = S with Sij = bi − aᵀi vj . When Pin and Pout define the same polytope P we denote
the corresponding slack matrix simply as S(P). The next lemma shows the relation between the non-negative
rank of the slack of a polytopal sandwich and the smallest size polytope whose shadow fits in the sandwich.
We will assume that the polytopes defining our sandwiches are full-dimensional. The same lemma appears in
[4] and has roots in [11, 14]. However the proof is simple enough to attribute it to folklore.

Lemma 5. Let Pin = conv({v1, . . . , vn}) and Pout = {x ∈ Rk | aᵀi x 6 bi, 1 6 i 6 m}. Let P be a polytope with
smallest extension complexity such that Pin ⊆ P ⊆ Pout. Then, xc(P) = rank+(S(Pout, Pin)).

Proof. Suppose Pin ⊆ P ⊆ Pout. We can describe P as the convex hull of the vertices of P together with
the vertices of Pin. Similarly we can describe P as the intersection of all its facet-defining inequalities and
the facet-defining inequalities of Pout. Now the matrix S(Pout, Pin) is a submatrix of the slack matrix S(P)
of this particular representation of P. Therefore, rank+(S(P)) > rank+(S(Pout, Pin)). It is easy to see (see,
for example, [10]) that the non-negative rank of the slack matrix of a polytope is not changed by adding
redundant inequalities and points in its representation. Also, since the non-negative rank of the slack matrix
of a polytope is equal to its extension complexity ([10]), we have that xc(P) > rank+(S(Pout, Pin)).

Now, suppose that rank+(S(Pout, Pin)) = r. That is there exist non-negative matrices T and U with r
columns and rows respectively, such that S(Pout, Pin) = TU. Denote by Ti the i-th row of T and U j the j-th
column of U . Consider the polytope

Q = {(x, y) ∈ Rk+r | aᵀi x+ Tiy = bi, 1 6 i 6 m, y > 0}

and let
P = {x ∈ Rk | ∃y ∈ Rr, (x, y) ∈ Q}.

Since, by definition, P is a projection of Q and Q has at most r inequalities, we have that xc(P) 6
rank+(S(Pout, Pin)). If we show that Pin ⊆ P ⊆ Pout then xc(P) > rank+(S(Pout, Pin)), implying the lemma.

Suppose x ∈ P. Then ∃y, (x, y) ∈ Q. That is y > 0 and aᵀi x + Tiy = bi for all i. Since T is non-negative,
Tiy > 0 and therefore aᵀi x 6 bi for all i. That is, x ∈ Pout. Therefore, P ⊆ Pout.

Suppose x ∈ Pin. Then x =
∑n
j=1 λjvj ,

∑n
j=1 λj = 1, λj > 0, for some λ. Consider y =

∑n
j=1 λjU

j . Then,

for each i = 1, 2, ..,m we have that aᵀi x+Tiy =
∑n
j=1 λj(a

ᵀ
i vj +TiU

j) =
∑n
j=1 λj(bi) = bi. Clearly y > 0 since

U is non-negative. So (x, y) ∈ Q and thus x ∈ P. Therefore Pin ⊆ P. This completes the proof.

Note that given a polytopal sandwich Pin, Pout, any lower bound on the non-negative rank of its slack
matrix S(Pin, Pout) is also the lower bound on the succinct non-negative rank of S(Pin, Pout). Conversely, any
upper bound on the succinct non-negative rank of S(Pin, Pout) is also an upper bound on the non-negative
rank of S(Pin, Pout). In the next subsection we will define canonical polytopal sandwiches for binary languages
and discuss the relation of the non-negative rank and succinct non-negative rank of the associated slack matrix
with whether or not membership testing in the language belongs to P/poly or not.

5.1 Languages and their sandwiches

Let L ⊆ {0, 1}∗ be a language over the 0/1 alphabet. For every natural number n define the set L(n) as

L(n) := {x ∈ {0, 1}n | x ∈ L}

For every n consider the 2n × 2n non-negative matrix M(L(n)) defined as follows. Rows and columns of
M(L(n)) are indexed by 0/1 vectors a, b of length n and

Ma,b(L(n)) = aᵀ1n − 2aᵀb+ 1ᵀb+ α(a, b)

15

appendix 275

where

α(a, b) =




d if a ∈ L, b /∈ L
−d if a /∈ L, b ∈ L
0 otherwise

,

for some constant 0 < d < 1
2 . This constant is a universal constant that depends only on n and not on L. The

appropriate value of d can be obtained from Lemma 2 (See last part of the proof).
Corresponding to any language L let us define a polytopal sandwich given by a pair of polytopes. The

inner polytope is described by its vertices and is contained in the outer polytope, which in turn is described
by a set of inequalities. Both the vertices of the inner polytope and the inequalities for the outer polytope
depend only on the language L. We call such a sandwich the characteristic sandwich of L(n) and M(L(n)) is
the slack of this sandwich (Lemma 6).

Corresponding to every language L ⊆ {0, 1}∗ we define characteristic functions ψ : {0, 1}∗ → {0, 1} and
φ : {0, 1}∗ → {−1, 1}∗ with

ψ(x) =

{
1 if x ∈ L
0 if x /∈ L ,

φ(x)i =

{
1 if xi = 1
−1 if xi = 0

To make the connection with Section 2.2 note that ψ(x) will play the role of wx and φ(x) will play the role of the
objective function vector c. The inner polytope V (L(n)) is then defined to be conv({(x, ψ(x)) | x ∈ {0, 1}n}).
In terms of Section 2.2, V (L(n)) plays the role of P . In terms of matchings it is PMn. The outer polytope
H(L(n)) is defined by the inequalities

H(L(n)) :=

{
(x,w) ∈ Rn+1

∣∣∣∣
φ(a)ᵀx+ dw 6 aᵀ1+ d ∀a ∈ L(n)
φ(a)ᵀx+ dw 6 aᵀ1 ∀a /∈ L(n)

}
.

Note that the normal vectors of the inequalities defining H(L(n)) are just the optimization directions (c, d)
that were used in Section 2.2.

Lemma 6. The slack of H(L(n)) with respect to V (L(n)) is the matrix M(L(n)).

Proof. Consider two vectors a, b ∈ {0, 1}n. The slack of the inequality corresponding to φ(a) with respect to
(b, ψ(b)) is

{
aᵀ1+ d− dψ(b)− φᵀ(a)b if a ∈ L
aᵀ1− dψ(b)− φᵀ(a)b if a /∈ L

Observing that φ(a) = a− (1− a) = 2a− 1 we can see that aᵀ1− φᵀ(a)b = aᵀ1+ bᵀ1− 2aᵀb. Therefore
the slack of the inequality corresponding to φ(a) with respect to (b, ψ(b)) is




aᵀ1+ bᵀ1− 2aᵀb+ d if a ∈ L, b /∈ L
aᵀ1+ bᵀ1− 2aᵀb− d if a /∈ L, b ∈ L
aᵀ1+ bᵀ1− 2aᵀb otherwise

The following lemma is analogous to Proposition 3.

Lemma 7. Let P be a polytope such that V (L(n)) ⊆ P ⊆ H(L(n)). Then, deciding whether a vector a ∈ {0, 1}n
is in L or not can be achieved by optimizing over P along the direction (φ(a), d) for some constant 0 < d 6 1/2.

Proof. Let a be a given vector in {0, 1}n. Consider the maxima zv, zp, zh of φᵀ(a)x+dw when (x,w) ∈ V (L(n)),
(x,w) ∈ P, and (x,w) ∈ H(L(n)) respectively. Since V (L(n)) ⊆ P ⊆ H(L(n)) we have that zv 6 zp 6 zh. If
a ∈ L then zv = zh = aᵀ1+ d, otherwise zv = aᵀ1, zh 6 aᵀ1. Therefore whether zp = aᵀ1+ d or not tells us
whether a ∈ L or not.

Theorem 3. For any language L if membership testing in L belongs to the class P/poly, then M(L(n)) has
non-negative rank polynomial in n. Moreover if the succinct non-negative rank of M(L(n)) is polynomial in
n, then membership testing in L belongs to the class P/poly.

16

276 appendix

Proof. Suppose L belongs to the class P/poly, then we can construct a polynomial size polytope Q as in
Lemma 1. By the argument used in the proof of Lemma 2 we can see that the projection of Q onto the first
n+ 1 coordinates is contained in H(L(n)) and contains V (L(n)). Since M(L(n)) is the slack of H(L(n)) with
respect to V (L(n)), the non-negative rank of M(L(n)) is upper bounded by the extension complexity of any
polytope P sandwiched between the two polytopes (see proof of Lemma 5). Since the size of Q is a polynomial
in n and Q is the extension of some polytope that can be sandwiched between H(L(n)) and V (L(n)) we have
that rank+(M(L(n)) is a polynomial in n.

For the other direction, suppose that M(n) has succinct non-negative rank r which is polynomial in n.
Since M(n) is the slack of H(L(n)) with respect to V (L(n)), by Lemma 5 there exists a polytope P such that
the extension complexity of P is r and V (L(n)) ⊆ P ⊆ H(L(n)). In other words, there exists polytopes P and
Q such that Q has r facets, projects down to P and V (L(n)) ⊆ P ⊆ H(L(n)). Furthermore, the description of
Q contains only numbers polynomially bounded in n because the rank-r non-negative factorization is succinct
by our assumption. By Lemma 7 optimizing over P can be used to decide whether x ∈ L or not for a given
x. Furthermore, optimizing over P can be done by optimizing over Q instead. Since Q has polynomial size,
we can use interior point methods to do the optimization and so determine membership in L in polynomial
time.

The above theorem in principle paves a way to show that membership testing in a certain language is not
in P/poly. This can be done by showing that the non-negative rank of the associated sandwich is super-
polynomial. Various techniques exist to show lower bounds for the non-negative rank of matrices and have
been used to prove super-polynomial lower bounds for the extension complexity of important polytopes like the
CUT polytope, the TSP polytope, and the Perfect Matching polytope of Edmonds, among others [10, 16, 2, 15].
Whether one can apply such techniques to show super-polynomial lower bounds on the non-negative rank of
the slack of the characteristic sandwich of some language is left as as open problem.

6 Concluding remarks

The discussion in this paper was centred around decision problems and one may wonder if it can be applied
to optimization problems also. Before addressing this let us recall some discussion on the topic in Yannakakis’
paper [19]:

Linear programming is complete for decision problems in P; the P = NP? question
is equivalent to a weaker requirement of the LP (than that expressing the TSP
polytope), in some sense reflecting the difference between decision and optimization
problems. (P. 445, emphasis ours)

The term ”expressing” in the citation refers to an extended formulation of polynomial size. The method we
have described can indeed be used to construct polynomial sized LPs for optimization problems which have
polynomial time algorithms. Consider, for example, the problem of finding a maximum weight matching for
the complete graph Kn, where the edge weights are integers of length W bits. For simplicity we assume the
weights are non-negative, but a small extension would handle the general case. We construct a polytope P
as defined by (9) as follows. The binary vectors x have length Wn(n − 1)/2 + W + dlog2 ne, where the first
Wn(n − 1)/2 bits encode the edge weights and the remaining bits encode an integer k, 0 ≤ k < 2Wn. The
bit wx is defined by setting wx = 1 whenever the edge weights specified in x admit a matching of weight k or
greater and wx = 0 otherwise. Note that the unweighted maximum matching problem for graphs on n vertices
fits into this framework by setting W = 1.

Applying the method of Section 4 to the weighted version of Edmonds’ algorithm we obtain a polynomial
sized WEF Q for P . We can decide by solving a single LP over Q if a given weighted Kn has a matching
of weight at least k, for any fixed k: the last W + dlog2 ne coefficients of the objective function (10) vary
depending on k. Therefore, by binary search on k we can solve the maximum weight matching problem for a
given input by optimizing O(W + log n) times over Q with objective functions depending on k. We do not,
however, know how to solve the weighted matching problem by means of a single polynomially sized linear
program.

17

appendix 277

Acknowledgments

We would like to thank three anonymous referees of an extended abstract of an earlier version of this paper
for their helpful comments. This research is supported by a Grant-in-Aid for Scientific Research on Innovative
Areas – Exploring the Limits of Computation(ELC), MEXT, Japan. Research of the second author is partially
supported by NSERC Canada. Research of the third author is also partially supported by the Center of
Excellence – Institute for Theoretical Computer Science, Prague (project P202/12/G061 of GA ČR).

References

[1] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge University Press,
2009. ISBN 978-0-521-42426-4. URL http://www.cambridge.org/catalogue/catalogue.asp?isbn=

9780521424264.

[2] D. Avis and H. R. Tiwary. On the extension complexity of combinatorial polytopes. In ICALP (1), pages
57–68, 2013.

[3] D. Avis and H. R. Tiwary. A generalization of extension complexity that captures P. CoRR,
abs/1402.5950, 2014.

[4] G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. Approximation limits of linear programs (beyond
hierarchies). In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 480–489, 2012. doi: 10.1109/FOCS.2012.10. URL
http://dx.doi.org/10.1109/FOCS.2012.10.

[5] S. A. Cook and R. A. Reckhow. Time bounded random access machines. J. Comput. System Sci., 7:
354–375, 1973. ISSN 0022-0000. Fourth Annual ACM Symposium on the Theory of Computing (Denver,
Colo., 1972).

[6] D. P. Dobkin, R. J. Lipton, and S. P. Reiss. Linear programming is log-space hard for P. Inf. Process.
Lett., 8:96–97, 1979.

[7] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[8] J. Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. J. of Res. the Nat. Bureau of
Standards, 69 B:125–130, 1965.

[9] S. Even and O. Kariv. O(n2.5) algorithm for maximum matching in general graphs. In FOCS, pages
100–112, 1975.

[10] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Linear vs. semidefinite extended
formulations: exponential separation and strong lower bounds. In STOC, pages 95–106, 2012.

[11] N. Gillis and F. Glineur. On the geometric interpretation of the nonnegative rank, Sept. 04 2010. URL
http://arxiv.org/abs/1009.0880.

[12] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization, volume 2
of Algorithms and Combinatorics. Springer-Verlag, Berlin, second edition, 1993. ISBN 3-540-56740-2. doi:
10.1007/978-3-642-78240-4. URL http://dx.doi.org/10.1007/978-3-642-78240-4.

[13] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer Science Press, 1978.

[14] K. Pashkovich. Extended formulations for combinatorial polytopes. PhD thesis, Otto-von-Guericke-
Universitẗ, Magdeburg, 2012.

[15] S. Pokutta and M. V. Vyve. A note on the extension complexity of the knapsack polytope. To appear in
Operations Research Letters, 2013.

[16] T. Rothvoß. The matching polytope has exponential extension complexity. CoRR, abs/1311.2369, 2013.

[17] J. E. Savage. Models of Computation: Exploring the Power of Computation. http://cs.brown.edu/

~jes/book, 2015.

18

278 appendix

[18] L. G. Valiant. Reducibility by algebraic projections. Enseign. Math. (2), 28(3-4):253–268, 1982. ISSN
0013-8584.

[19] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Computer
and System Sciences, 43(3):441–466, 1991.

Appendices

A Valid inequalities and facets of PMn

We give here two classes of valid inequalities for PMn. Firstly, let M ⊆ E define a perfect matching in G. We
have:

w >
∑

ij∈M
xij −

n

2
+ 1 (16)

To see the validity of this inequality, note that if M is a perfect matching the sum becomes n/2 and the
inequality states that w > 1, i.e. G(x) has a perfect matching. We show below that the each inequality
of type (16) define a facet of PMn. Since the number of perfect matchings in Kn is the double factorial
(n−1)!! = (n−1) · (n−3)...3 ·1 the number of facet defining inequalities of PMn is therefore super-polynomial.

For a second set of valid inequalities, first let En be the set of edges of Kn. A proper subset S ⊂ En is
hypo-matchable if it has no matching of size n/2 but the addition of any other edge from En \ S to S yields
such a matching. Then we have:

w 6
∑

ij∈En\S
xij (17)

To see the validity of this inequality note that if the sum is zero then no edges from En \ S are in G(x). So
G(x) has no perfect matching and so w must be zero.

We now prove that the inequalities (16) are facet defining for PM2n, where we have replaced n by 2n to
avoid fractions. For any integer s we use the notations Is×s,1s×s and Os×s to represent, respectively, the s×s
identity matrix, matrix of all ones, and matrix of all zeroes. With only one subscript, the latter two notations
represent the corresponding vectors. For an integer n we let t = 2n(n−1). Without loss of generality, consider
a perfect matching M in K2n consisting of the n edges 12, 34, 56, ..., (2n − 1)2n and let Et be the t edges of
K2n that are not in M . We construct a set of t+ n = n(2n− 1) graphs G(x) for which inequality (16) is tight
and for which the x vectors are affinely independent. The corresponding (t+ n+ 1)× (t+ n+ 1)-matrix A of
edge vectors x is:

A =




It×t 1t×n 1t
On×t 1n×n − In×n On
Ot 1n 1


 (18)

We label the columns of A as follows. The first t columns correspond to the edges in Et listed in lexicographical
order by ij. The next n columns are indexed by the edges 12, 34, ..., (2n− 1)2n of M and the final column by
w. The first t rows of A consist of the edge vectors of graphs which contain M and precisely one other edge ij
not in M , arranged in lexicographic order by ij. This means that the top left hand block in A is the identity
matrix. Since all these graphs contain M , which is a perfect matching, all these remaining entries in the first
t rows of A are ones.

The next n rows of A correspond to graphs with edge vectors M \ {ij}, where ij ranges over the perfect
matching 12, 24, ..., (2n − 1)2n. Clearly the first block of these rows are all zeroes and the second block is
1n×n − In×n. The last column is all zero since none of these graphs has a perfect matching. The final row of
A corresponds to the graph M .

It is straight forward to perform row operations on A to transform it into an upper triangular matrix with
±1 on the main diagonal. This can be performed by subtracting the last row from the preceding n rows. The
middle block of A is now −In×n. Finally these rows can then be added to the last row, which is then divided
by n− 1. It is then all zero except for the last column, which is -1. This completes the proof.

19

appendix 279

D E C L A R AT I O N

The content of this work are based primarily on articles that I have
coauthored. In cases of works by others I have attempted to cite the
appropriate source correctly.

Prague, 2016

Hans Raj Tiwary

	Dedication
	Acknowledgments
	Preface
	Contents
	List of Figures
	Publications
	
	0 Introduction

	Ingredients
	1 Polytopes
	1.1 Basic Facts about Polytopes
	1.2 The role of embedding
	1.3 Some Common Operations

	2 Communication Complexity
	2.1 Nonnegative rank
	2.2 Communication Protocols
	2.3 Complexity of computing a function

	3 Extended Formulations
	3.1 Extension Complexity
	3.2 Effects of common operations
	3.3 Some canonical polytope families

	Recipes
	4 Turing Reductions
	4.1 Relatives of cut polytopes
	4.2 Embedding arguments from Turing Reductions
	4.3 Difficulities in handling General reductions

	5 Compact Languages
	5.1 Problems as Languages
	5.2 Compact Languages
	5.3 Closure properties

	6 One-pass Languages
	6.1 Online Turing Machines
	6.2 Extension Complexity of One-pass Languages
	6.3 Applications

	Variations
	7 FPT Extended Formulations
	7.1 Parameterized extension complexity
	7.2 The Independent Set Polytope
	7.3 FPT Upper bounds

	8 H-free Extended Formulations
	8.1 CH-free Extensions
	8.2 Matching problems
	8.3 The TSP Polytope

	9 Weak Extended Formulations
	9.1 P-completeness of Linear Programming
	9.2 Weak Extended Formulations
	9.3 Weak extension for P/poly

	Bibliography

	Appendix
	A Exponential Lower Bounds for Polytopes in Combinatorial Optimization
	B Extended Formulations, Nonnegative Factorizations, and Randomized Communication Protocols
	C Extended Formulations for Polygons
	D On the Extension Complexity of Combinatorial Polytopes
	E Extension Complexity of Formal Languages
	F Parameterized Extension Complexity of Independent Set and Related Problems
	G Extension Complexity, MSO Logic, and Treewidth
	H A generalisation of extension complexity that captures P
	I On the H-free Extension Complexity of the TSP
	J Polynomial size Linear Programs for Problems in P
	Declaration

