SubjectsSubjects(version: 978)
Course, academic year 2025/2026
   Login via CAS
MSTR Elective Seminar - NMAG475
Title: Výběrový seminář z MSTR
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2025
Semester: both
E-Credits: 2
Hours per week, examination: 0/2, C [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Note: you can enroll for the course repeatedly
you can enroll for the course in winter and in summer semester
Guarantor: RNDr. Michal Hrbek, Ph.D.
doc. Mgr. Pavel Růžička, Ph.D.
Teacher(s): Mgr. Maroš Grego
RNDr. Michal Hrbek, Ph.D.
Mgr. Daria Pavlova
doc. Mgr. Pavel Růžička, Ph.D.
Class: M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Classification: Mathematics > Algebra
Interchangeability : NALG050
Annotation -
Universal elective seminar WS 2025/26: (1) Brown Representability Theorem (Michal Hrbek), (2) Seminar on representations of groups (Pavel Růžička).
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.09.2025)
Course completion requirements -

Active participance.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (28.10.2019)
Literature -
Brown Representability Theorem.

Neeman, Amnon. "The Grothendieck duality theorem via Bousfield’s techniques and Brown representability." Journal of the American Mathematical Society 9.1 (1996): 205-236.

Brown, Edgar H. "Cohomology theories." Annals of Mathematics 75.3 (1962): 467-484.

Seminar on representation of groups

Peter Woit , Quantum Theory, Groups and Representations, Springer Cham, 2017, pp. xxii + 668

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.09.2025)
Syllabus -
Brown Representability Theorem.
(1) Triangulated categories and functors as abstract setting for homotopical algebra.

(2) Brown representability theorem in several formulations.

(3) Applications in algebraic topology and algebraic geometry (Grothendieck duality).

Seminar on representation of groups
Knowledge in the scope of lectures Introduction to the group theory and Group representations.

We will read the Woit’s book on apllication of the representation theory in quantum physics. We shall understand how specific groups and their representations are used, and thus expand theoretical knowledge with non-trivial examples. Participants will take turns presenting chapters from the aforementioned book.

Prerequisites: Knowledge in the scope of lectures Introduction to the group theory and Group representations.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (23.09.2025)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html