SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Introduction to Theoretical Physics I - NAFY016
Title: Úvod do teoretické fyziky I
Guaranteed by: Institute of Theoretical Physics (32-UTF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information: http://utf.mff.cuni.cz/vyuka/AFY016/AFY016.htm
Note: enabled for web enrollment
Guarantor: doc. Mgr. David Heyrovský, Ph.D.
doc. RNDr. Otakar Svítek, Ph.D.
doc. RNDr. Robert Švarc, Ph.D.
Annotation -
Last update: T_KFES (29.04.2016)
Classical mechanics of particles: Lagrangian and Hamiltonian description. Kinematics and dynamics of rigid bodies (inertia tensor, Euler angles and equations). Vibrations of a string; solutions of the wave equation. Foundations of relativistic mechanics. Outline of syllabus: 1. Introduction and motivation. 2. Lagrangian formalism and Lagrange's equations. 3. Motion of planets and other applications. 4. Hamilton's canonical equations and Poisson brackets. 5. Rigid body mechanics. 6. Equation of a vibrating string and its solution. 7. Foundations of relativistic mechanics.
Aim of the course
Last update: prof. RNDr. Jiří Podolský, CSc., DSc. (04.10.2011)

Classical mechanics of point particles in the Lagrangian and Hamiltonian formalisms. Kinematics and dynamics of rigid bodies (the inertia tensor, Euler's angles and equations). Oscillations of a string and solutions of the wave equation. Introduction to relativistic mechanics. Main topics:

1. Introduction and motivation

2. Lagrangian formalism and Lagrange's equations

3. Motion of planets and further applications

4. Hamilton's canonical equations and the Poisson brackets

5. Mechanics of rigid bodies

6. Wave equation and its solutions

7. Foundations of relativistic mechanics

Course completion requirements - Czech
Last update: doc. Mgr. David Heyrovský, Ph.D. (11.10.2017)

Zápočet je nutnou podmínkou účasti u zkoušky. K jeho dosažení studenti během semestru získávají body za řešení čtyř domácích úkolů a jedné zápočtové písemky. Za každý úkol lze získat maximálně 10 bodů a za zápočtovou písemku 60 bodů, maximální celkový počet je tedy 100 bodů. Podmínkou zápočtu je dosažení minimálně 60 bodů. Při dosažení 80 a více bodů studenti nemusí studenti řešit písemnou část zkoušky. Průběžné získávání zápočtových bodů vylučuje opakování zápočtu.

Literature - Czech
Last update: prof. RNDr. Jiří Podolský, CSc., DSc. (04.10.2011)

[1] J. Horský, J. Novotný, M. Štefaník: Mechanika ve fyzice, Academia, Praha, 2001

[2] J. Kvasnica a kol.: Mechanika, Academia, Praha, 1988.

[3] J. W. Leech: Klasická mechanika, SNTL, Praha, 1970.

[4] K. R. Symon: Mechanics, Addison-Wesley, Reading, 1971.

[5] L. D. Landau, E. M. Lifšic: Mechanika, Fizmatgiz, Moskva, 1958.

Requirements to the exam - Czech
Last update: doc. Mgr. David Heyrovský, Ph.D. (06.10.2017)

Zkouška sestává z písemné a ústní části. Při dosažení minimálně 80 zápočtových bodů stačí složit ústní část zkoušky.

Písemná část bude sestávat ze tří příkladů z témat probraných na přednášce a procvičených na cvičení.

Ústní část zkoušky bude pokrývat sylabus předmětu v rozsahu probraném na přednášce.

Syllabus -
Last update: prof. RNDr. Jiří Podolský, CSc., DSc. (04.10.2011)
Introduction and motivation

Advantages of alternative formulations of some problems in physics. Illustrated by theories of gravity: Newton's gravitational force -> Poisson's equation (potential field) -> Einstein's equation (metric field, general relativity). Theoretical mechanics as formulation of Newton's laws of motion in various formalisms: for point masses, rigid bodies, and continuum. Motivation and outline of the course. Recalling the main ideas and principles of Newtonian mechanics. Limits of classical mechanics (relativistic and quantum mechanics).

Lagrangian formalism and Lagrange's equations

Generalized coordinates: don't use only (x,y,z). Occam's razor: don't use more coordinates than necessary. Configuration space: Zeno's paradox and independence of generalized velocities on generalized coordinates. Derivation of Lagrange's equations of the second kind. Lagrange's function L: cases without potential, with potential, with generalized potential (motion of a particle in a given electromagnetic field). Illustration: motion of a particle in the field of a central force. First integrals (cyclic coordinate -> conservation of the corresponding generalized momentum, explicit independence of L on time -> conservation of a generalized energy). Illustration: Binet's equation for motion in a central field.

Motion of planets and further applications

Kepler's problem: revolution of planets around the Sun. Derivation of Kepler's laws of planetary motion. Effective potential method. Comparison of classical and relativistic mechanics: motion around the Sun versus motion around a black hole, perihelion shift. Simplification of the problem of two bodies to motion of a single particle with reduced mass. The 3-body problem and celestial mechanics: a few words about deterministic chaos. Scattering of particles, the Rutherford formula for cross-section.

Hamilton's canonical equations and the Poisson brackets

Generalized momentum as a canonically conjugate variable. The concept of phase space with some illustrations (oscillator, damping, chaos). Hamiltonian function. Derivation of Hamilton's canonical equations. Illustrations of canonical equations (harmonic oscillator, particle in electromagnetic field). Importance of Hamiltonian formalism for quantum theory (the Schroedinger equation, the Feynman diagrams as an expansion of interaction Hamiltonian) and statistical physics (partition function). Definition, basic properties, and the algebra of Poisson's brackets. Their analogy with commutators in quantum mechanics.

Mechanics of rigid bodies

Recalling vectors and tensors in Euclidean space. Group of finite rotations and algebra of infinitesimal rotations. Definition of the vector of angular velocity. The rotation of a rigid body around fixed axis, the inertia tensor. Eigenvalues and eigenvectors, including an interpretation of the inertia ellipsoid. Kinetic energy of rotational motion. Euler's angles and Euler's kinematic equations. Euler's dynamical equations. Explicit examples: motion of a symmetrical gyroscope and symmetrical top.

Wave equation and its solutions

Transition from a finite system of point masses to a continuous system. Illustration: longitudinal and transverse oscillations of a string. Wave equation and basic methods of its solution: a) the d'Alembert method, b) separation of variables (normal modes, boundary and initial conditions, the Fourier analysis).

Foundations of relativistic mechanics

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html