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Some matrix trix
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Eigenvalues and (spectral, Jordan) decomposition

Recall: if Ax = λx for a nonzero vector x 6= 0, then λ is called an
eigenvalue of A and x is its corresponding eigenvector (that is,
one of these eigenvectors, as any cx for c 6= 0 qualifies too)

Every symmetric matrix A can be written in a form A = ULUT,
where U is an orthogonal matrix (that is, UT = U−1) and L is a
diagonal matrix. It is easy to see then that the diagonal of L
consists of all eigenvalues and U consists of their corresponding
eigenvectors with unit norm.

A p× p symmetric matrix A thus has at most p eigenvalues; this
is true also in greater generality, but we will deal pretty much
exclusively with symmetric matrices, for which all eigenvalues and
eigenvectors are real

Matrices AB and BA (when both are square matrices) have the
same nonzero eigenvalues
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Eigenvalues determine

The decomposition shows that a symmetric matrix A is
nonnegative definite (xTAx > 0 for every x; sometimes they also
say positive semidefinite) if all its eigenvalues are nonnegative. In
such a case, we can form a square root of matrix: A1/2 = UL1/2UT

Matrix A is positive definite (xTAx > 0 for every x 6= 0) if all
eigenvalues are positive; then it is also invertible, as that is when
all eigenvalues are nonzero: the inverse in such a case is UL−1UT
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Trace

The trace of a (square) matrix is the sum of its diagonal elements:

tr(A) =
∑
i

aii

A useful property of the trace is

tr(AB) = tr(BA)

The “trace trick” uses this property - typically when one of the
products has dimension 1× 1, as then it is equal to its trace

The trace of a matrix is a sum of its eigenvalues

The eigenvalues of a symmetric and idempotent (AA = A) matrix
are either 1 or 1; its rank is thus equal to its trace
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The theorem of Eckart and Young

Let S be a symmetric nonnegative definite matrix; its best
approximation by a symmetric matrix, in the Hilbert-Schmidt norm,
that has rank at most m, is the matrix ULmUT, where S = ULUT

is the eigenvalue decomposition of S, and Lm is the matrix formed
from L by retaining the m largest eigenvalues, and replacing
everything else by zero.

Let A be an arbitrary matrix. The Hilbert-Schmidt distance of S
and A is

tr ((S− A)(S− A)T) = tr (UUT(S− A)UUT(S− A)T)

= tr (UT(S− A)UUT(S− A)TU)

= tr ((UTSU−UTAU)(UTSU−UTAU)T)

= tr ((L−UTAU)(L−UTAU)T) etc.
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Derivatives of functions with matrices

For a function F defined on p×q matrices we define:

∂F(X)

∂X
- a matrix with

∂F(X)

∂Xij
in i-th row and j-th column

We have:

∂aTx

∂x
= a

∂xTAx

∂x
= (A+ AT)x

∂aTXa

∂X
= aaT ∂ log det(X)

∂X
= (X−1)T
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Mathematical leftovers
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Convexity
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Probability tidbits
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Transformation of a density

Suppose that X is a p-dimensional random vector with density g(x),
and let Y = T(X), where T is a mapping from Rp to Rp possessing
an inverse T−1. If X has a probability density (with respect to the
Lebesgue measure on Rp) h(x), then Y has a density

h(T−1(x))|det(JT−1(x))| =
h(T−1(x))

|det(JT(x))|

where JT denotes the Jacobi matrix consisting of partial

derivatives
∂Ti(x)

∂xj

If T(x) = Ax+ b, then JT = A
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Nonparametric univariate statistics recalled:
kernel density estimation
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The probability density can be estimated?

> attach(Trackmen)

> plot(density(marathon))

> points(marathon,rep(0,length(marathon)),pch=4)
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Kernel density estimator

f̂(x) =
1

nb

∑
i

K

(
xi− x

b

)
kernel:

∫
K(u)du = 1 and also K(u) > 0

Examples: Gaussian (standard normal density), Epanechnikov,
Rectangular (Parzen), and others
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What does rectangular kernel mean? For b = 1, 1
n

∑
iK(xi− x) is

the relative proportion number of points falling into [x− 1/2,x+
1/2]; for general b, we obtain the relative proportion of points
falling into [x−b/2,x+b/2], divided by the length b of the interval.
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Different bandwidth

The same bandwidth b may not equally adapt to all parts of the
data
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Note: there may be better estimators...
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Nonparametric bivariate statistics missed:
smoothing splines
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History

Whittaker (1923), “graduation” of actuarial mortality table

Given y1,y2, . . . ,yn, find ŷ1, ŷ2, . . . , ŷn such that
n∑
i=1

(yi− ŷi)
2 + λ

∑
(∆2ŷi)

2 # min
ŷ

!

Here λ > 0. Objective: to rid the original data of fluctuations
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General functional fitting

We formulate the initial problem in a functional, that is, infinite-
dimensional space. No splines yet.

Given y1,y2, . . . ,yn, and x1 < x2 < · · · < xn, find f such that

- f(x1), . . . , f(xn) fit well y1,y2, . . . ,yn

- but at the same time, f is not too “wiggly”, not too “rough”

How to do it? First, we have to propose some measure of
“wiggliness”. We may

- take some derivative f the fitted function: f ′, or f′′, or f′′′

- then take its absolute value or square (only size of interest)

- and finally make it a global measure via integration

For instance, J(f) =

∫
(f ′′(x))2dx; or J(f) =

∫
|f ′′(x)|dx

Such J(f) will be referred to as (roughness) penalty.

To gain some small, partial insight about such a penalty, it may be
instructive to investigate for which f is J(f) = 0; for both examples
of J given above, it means that f is linear, f(x) = α+βx.
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Penalized fits

We seek a fit with guaranteed wiggliness
n∑
i=1

(yi− f(xi))
2 # min

f
! J(f) 6Λ (a tuning constant)

Via Lagrange multiplier theory, this equivalent task is
n∑
i=1

(yi− f(xi))
2 + λJ(f) # min

f
!

Here, λ > 0 is another tuning constant, with unambiguous (but
typically not explicit) relationship to Λ

Schoenberg (1964): smoothing splines
n∑
i=1

(yi− f(xi))
2 + λ

∫
(f ′′(x))2dx# min

f
!

There are mathematical details here, which we omit. However:
how come we can speak about splines?
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Because the solutions are splines

The solution of the smoothing spline problem is a natural cubic
spline, with knots at xi (and only xi)

Also, “natural”: it just says that outside of knots it continues
linearly. The first two derivatives (for a cubic spline) are to be
matched: that is, at the extremal knots the first derivative, and
also the second one, which is zero (second derivative of a linear
function)

Note: once f(xi) given, the solution is found by minimizing J(f)

That gives the linearity of f outside the knots; inside of the knots,
some further mathematics (it may be simply integration by parts)
shows that...

... the solution to the smoothing spline problem, exists within the
class of natural cubic splines, with knots at xi (and only at xi)
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Finitary perspective

The original problem acted in the general functional spaces; now,
however, we are in the finite dimensional space: all natural splines
with given knots (finite number of knots, right?) can be written
as linear combination of some (finite) basis functions

f(x) =
∑
j

bjgj(x)

With some skill, we rewrite everything as a finite-dimensional
problem in bj - and in fact a quadratic one, as

- we are doing least-squares fitting) problem

- and the penalty has some square in it too, so it can be written
as a quadratic form in bj
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And finally it is easy

So the original
n∑
i=1

(yi− f(xi))
2 + λ

∫d
c

(f ′′(x))2dx# min
f

!

becomes (y− Lb)T(y− Lb) + λbTGb# min
b

!

where L is a linear operator (=matrix) yielding the functional values
at the xi’s in terms of the bj’s, and G defines a quadratic form
related to the penalty

(the solution in fact solves the system LTL+ λGb = LTy)
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Remarks

The selection of the basis does not play a role, as long as the bases
are equivalent (they generate the same linear spaces, any function
that is a linear combination in one base, is a linear combination in
another one)

Thus, we have something more general than just bases here...

Technical issue in this particular case: if xi have duplicate values
among them, we should take some care; there is no problem in the
first, lack-of-fit part of the objective function, but the second,
penalty part, should involve only “cleaned” xi, with duplicates
removed.
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The tuning knob

So, we construct fits by trading off between the lack-of-fit criterion
and penalty. The extent of this trade-off is controled by smoothing,
regularization parameter λ.

It is a tuning parameter: looking at the original formulation, we
notice

- for large λ the penalty prevails: the fit is linear

- for λ→ 0 (λ = 0 won’t fly!) the lack-of-fit prevails: the fit, if
there are no duplicates in the xi’s, is just the spline interpolation
of the data

Note also the analogy in tree-based methods: R+α size

- the lack-of-fit criterion here is R

- the complexity measure (penalty) is size

- only λ is named α
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So what did we arrive to?

Originally, we faced problem of selecting the right spline: how
many knots, where to place them, ...

We somewhat mitigated the problem by the approach which

- put in many knots (in every xi; do we need more?)

- introduced a reasonable criterion (penalty) to distinguish
among various fits

- via regularization (fitting with penalty), we reduced the
problem with many loose ends to a problem with just one loose
end: λ
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Revenue passenger airmiles flown by US airlines
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> legend(locator(),lty=c(3,2,1),legend=c(’1.0’,’0.1’,’0.5’))

The legend command does not show λ but spar. A closer look at
help(smooth.spline) reveals that spar is a monotonous function of
λ, normed so that spar lies between 0 and 1.
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Finesses of the R implementation I

> plot(1937:1960,airmiles,xlab=’1947-1960’)

> title(expression(paste("Various ",lambda)))

> xx=seq(1937,1960,len=400)

> smsp=smooth.spline(1937:1960,airmiles,spar=1)

> lines(xx,predict(smsp,xx)$y,lty=3)

> smsp

Call:

smooth.spline(x = 1937:1960, y = airmiles, spar = 1)

Smoothing Parameter spar= 1 lambda= 0.9681153

Equivalent Degrees of Freedom (Df): 2.063613

Penalized Criterion: 197298405

GCV: 9840216

27



Finesses of the R implementation II

> smsp=smooth.spline(1937:1960,airmiles,spar=.1)

> lines(xx,predict(smsp,xx)$y,lty=2)

> smsp

Call:

smooth.spline(x = 1937:1960, y = airmiles, spar = 0.1)

Smoothing Parameter spar= 0.1 lambda= 3.045644e-07

Equivalent Degrees of Freedom (Df): 22.97617

Penalized Criterion: 34624.87

GCV: 792768.6

> smsp=smooth.spline(1937:1960,airmiles,spar=.5)

> lines(xx,predict(smsp,xx)$y)

> smsp

Call:

smooth.spline(x = 1937:1960, y = airmiles, spar = 0.5)

Smoothing Parameter spar= 0.5 lambda= 0.0002363563

Equivalent Degrees of Freedom (Df): 7.460656

Penalized Criterion: 6128442

GCV: 537681.1
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Some new statistics: regression
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Regularization: not only for splines, but general

Penalization techniques are nowadays widely used in many branches
of statistics and statistical machine learning. They come back to
techniques developed by Tikhonov, and others, under the name
regularization. Nowadays, “regularization” is understood in a
general sense, where the objective functions does not have to be
necessarily quadratic.

For instance, still for splines, one can consider an example of
penalized splines: splines with knots at xi penalized by basis
coefficients:

n∑
i=1

(yi−
∑
j

βjgj(xi))
2 + λ

∑
j

β2
j # min

β
!

that is ‖y− Lβ‖2
2 + λβTβ# min

β
!

Note that the penalty is different here!
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Regularization in regression

In classical least squares regression estimation, when β minimizing

(y− Xβ)T(y− Xβ)

is sought, the necessary condition to obtain a solution is that X
has full rank, or, equivalently XTX is invertible. If this is violated,
either exactly or approximately (for instance, when the number of
predictors exceeds the number of datapoints: p > n), alternative
estimation strategies have been proposed, most of these usually
referred to as regularization. An instance of these, the penalized
approach, amends the minimized function by a so-called penalty ;
in an ridge regression (originally proposed just for the problems
when the matrix XTX has problems with invertibility) the penalty
is the square of the `2 norm, resulting in the minimized function

(y− Xβ)T(y− Xβ) + λβTβ

where λ > 0 is a tuning parameter, quantifying the “strength” of
the regularization; for every λ > 0, there exists the minimizer β
that can be obtained as a solution of

(XTX+ λI)β = XTy

- note that the matrix (XTX+ λI) is invertible for any λ > 0
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Atomic pursuit (LASSO)

A variation of the ridge regression is the atomic pursuit, also known
as LASSO, which instead of the `2 one uses the `1 penalty; if
β = (β1,β2, . . . ,βp)T, the minimized function is

(y− Xβ)T(y− Xβ) + λ
∑
j

|βj|

What makes this version attractive is that while for λ > 0 it still
handles situations when X is not of full rank (for instance when
p > n, the number of variables used as predictors is greater than
the number of all observations), the absolute value in the penalty
causes the resulting vector β of estimates to be sparse - to contain
only few nonzero elements

This is unlike the ridge regression, which returns solutions that are
rather nonzero; even for the regressors that do not have predictive
value for the response, it tends to return estimates that are small
in magnitude, but still not exactly zero
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