
Problems

December 16, 2023

In the applications, software, etc., orthogonal transformations are often men-
tioned as “rotations”. Comment on this terminology, for simplicity considering
only transformations in R2.

1 Give a form of the linear transformation that is a rotation by an angle ϕ. Is
that an orthogonal transformation?

2. Do all orthogonal transformations have the form considered in Problem 1?

3. Show (in general,. not only in R2) that every orthogonal transformation pre-
serves distances and angles.

4. Is singular decomposition of a matrix unique?

5. Let A be a square matrix and let A = ULVT be its singular decomposition. Give
a characterization of the invertibility of A in terms of this singular decomposition.

6. “Every symmetric matrix A is similar to a diagonal matrix” - how does this
relate to its singular decomposition A = ULVT?

7. Let A = QΛQT, where Q is an orthogonal and Λ a diagonal matrix. Show that
the diagonal of Λ consists of eigenvalues and columns of Q of the corresponding
eigenvectors.

8. Let A = ULVT be a singular decomposition of matrix A. Show that the matrix
ATA can be diagonalized and demonstrate how.

9. Suppose that A is a symmetric matrix, A = QΛQT where Q is an orthogonal
and Λ a diagonal matrix. Find x for which xTAx is maximal, under the condition
that ‖x‖ = 1.
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10. Find the compact and general matrix form for the (sample) variance-covariance
matrix SY. Show with the help of this form that every SY is nonnegative definite.

11. Find the formula for SYA.

12. Suppose that y is a random vector now, and Var(y) is its variance-covariance
matrix. Find Var(Ay).

13. Describe what does it imply for the data if the variance-covariance matrix is
singular.

14. Show that the (sample) variance-covariance matrix computed from the scaled
data is the (sample) correlation matrix.

15. Let the singular decomposition of the data matrix Y is Y = ULVT. Show how
this decomposition can be used for computing the principal components.

16. Functions prcomp() and princomp() both compute principal components; if
they compute them directly from the data matrix (not from the variance-covariance
or correlation matrix), they give slightly different results. Figure out why – and
indicate how they can be reconciled.

17. Prove that principal components are uncorrelated (their sample correlation
is zero).

18. Suppose that A and B are p×q and q× p matrices, respectively. Show AB

and BA have the same nonzero eigenvalues.

19. Suppose that A is symmetric and nonnegative definite and B is positive
definite. The maximum of

xTAx

xTBx
for x 6= 0 is the largest eigenvalue of B−1A and is attained for the corresponding
eigenvector x.

20. Suppose that A is symmetric and nonnegative definite and B and C are
positive definite. The maximum of

(xTAy)2

(xTBx)(yTCy)

for x 6= 0 and y 6= 0 is the largest eigenvalue of both B−1AC−1AT and C−1AB−1AT,
and is attained for the corresponding eigenvectors x and y, respectively.

21. Verify that all stochastic assumptions (regression form) of the orthogonal
factor model (factors assumed uncorrelated) are preserved by a rotation by any
orthogonal matrix A.
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22. Given that all results of factor analysis are equivalent under a rotation by an
orthogonal matrix A: is the order of resulting factors essential?

23. Assuming that all stochastic assumptions (regression form) of the orthogonal
factor model (including the assumption of uncorrelated common factors) are
satisfied, calculate Cov(y, f).

24. If L is a p×m matrix, find L such that LLT has the minimal Hilbert-Schmidt
distance from the sample variance-covariance matrix SY = var(Y).

25. Let f and z be random vectors with respectively m and p components, such
that both E(f) = 0 and E(z) = 0. Show that an m × p matrix U minimizing
E‖f −Uz‖2 has the form U = Cov(f, z)[Var(z)]−1.

Problems 26 and 27, and possibly also Problem 28 are to be solved by experimen-
tation in R. Once you arrive to the solution, make some record of your session:
if it does not pose difficulties for you, print a transcript of the session, otherwise
at least write down some results.

26. Lecture notes say (page 113, “Remarks”) that canonical variates are usually
scaled so that the variance of them is one. Is it true for the R function cancor()?
How is it done there? You are not to provide a proof by examining the source
code, but verify your answer at least on two datasets.

27. Let x1,x2, . . . ,xm, y1,y2, . . . ,yn are two samples arising as results of in-
dependent random variables, all of them with the normal distribution with the
same variance; the mean of the xi’s is µx, the mean of the yi’s is µy. You can
test the equality µx = µy either (i) by the two sample t-test (function t.test()

in R) or (ii) by the F-test of the equality of all means in the one-way ANOVA
layout. Compare both approaches and summarize the result, on the basis of
experimentation with at least (and rather also at most) datasets.

28. Verify the approach to computing the canonical correlations via SVD, as
outlined on page 121 of Lecture Notes. You can do it either computationally
in R (one dataset being sufficient for this task), or mathematically.

The following two problems are to be solved in a strictly mathematical way.

29. Suppose that random vector Y = (Y1,Y2, . . . ,Yn)T has (multivariate) nor-
mal distribution N(µ,Σ), normal distribution with mean µ = (µ1,µ2, . . . ,µn)T

and variance-covariance matrix Σ. Show that Σ−1/2(Y − µ) has (multivariate)
normal distribution N(0, I), the normal distribution with mean zero and variance-
covariance matrix equal to the identity matrix I.
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30. Consider two possible situations: (i) random variables Y1,Y2, . . . ,Yn have
each (one-dimensional) normal distribution, and nothing else (in particular, in-
dependence) is assumed (ii) random vector (Y1,Y2, . . . ,Yn)T consisting of (the
coresponding) random variables has (multivariate) normal distribution. Com-
ment on a relationship of (i) and (ii): if there is some implication (one implies
another or vice versa), then prove it; if in general an implication does not hold,
show a counterexample.

31. Show that if the data matrix Y can be viewed as a matrix whose rows
are independent random vectors that have all distribution with mean µ and the
variance-covariance matrix Σ, then the sample variance-covariance matrix SY (as
defined in the lectures), is an unbiased estimator of Σ: that is, E(SY) = Σ.

32. Show that with normal distribution, orthogonal transformation preserves iid
property: if X1,X2, . . . ,Xn are independent random variables, each with the same
normal distribution with mean 0, then so are the components of the random
vector AX, where XT = (X1,X2, . . . ,Xn).

33. Prove the three properties stated on the transparency with the title “Wishart
distribution: first properties” (page 156).

34. Prove the property on the transparency with the title “Wishart distribution:
the most important property” (page 157).

35. Show that given a p× p symmetric positive definite matrix B and a b > 0,
we have for every positive definite p× p matrix Σ,

1

(det(Σ))b
e− tr(Σ−1B)/2v 6

1

(det(B))b
(2b)pbe−pb,

with equality holding only for Σ =
1

2b
B. (This proves that the maximum likelihood

estimators, as derived in the lectures, are really maximizing the likelihood.)

36. Suppose that Y is a random matrix with lines yT
i , where yi are iid random

vectors. Show that if A and B are (non-random) matrices such that ABT = O,
then the elements of AY and BY are uncorrelated. Use that to show that if the
(same) distribution of all yi is normal, then ȳ, the random vector of columnwise
sample means of Y, and SY, the (random) sample variance-covariance matrix
calculated out of Y, are independent.

37. Consider two-way layout modeling in (univariate) ANOVA, with two factors,
each with two levels: the mean µij, of every observation whose first factor is set
at i and second factor is set at j, is modeled as

µij = ν+αi +βj +γij, i = 1, 2, j = 1, 2.
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To have the model identified, we adopt the restrictions∑
i

αi = 0,
∑
j

βj = 0,
∑
i

γij = 0 for j = 1, 2,
∑
j

γij = 0 for i = 1, 2.

Show that in this model with these restrictions,

µ11 −µ12 −µ21 +µ22 = 0 is equivalent to γij = 0 for all i and j.

38. In the exposition of repeated measures, we never used in inferences about
contrasts more than p − 1 contrasts simultaneously. Explain why - briefly but
thoroughly, with an eye on the methodology we used.

39. Refer to the transparencies entitled “Paired T 2” and “And two-sample T 2”,
momentarily on pages 208 and 209. Apparently, the methods are not equivalent,
as the p-values are different. Explain what is going on: what are the methods
used, what are their assumptions, etc.

40. Refer to the (corrected) transparency entitled “Some insights” (momentarily
page 226). Prove all statements after “We have that”.

41. Provide necessary detailed explanation for the transparency entitled “Likeli-
hood ratio motivation for Wilks’ Λ” (momentarily page 211 of the second set).
In particular, verify the formula for maximized likelihood under the model and
submodel, and also demonstrate the equivalence to the ratio of RSS to RSSH in
the univariate case.

42. Let y1, y2, . . . , yn be a random sample from N(µ,Σ), with the sample
mean ȳ and the sample variance-covariance matrix S. Consider one-dimensional
projections of this random sample: for given a, the one-dimensional random
sample is aTx1, aTx2, . . . , aTxn. Hotelling’s one-sample statistic T 2

a for such a
projected sample is nothing else than the square of one-sample t-statistic, where
the appropriate mean, sample mean and sample standard deviation depend on a

and respectively on µ, x̄ and S. Show that the Hotelling’s one-sample statistic
T 2 for the original (unprojected, p-dimensional sample) is equal to the maximum
of all projected statistics T 2

a , over all a 6= 0; that is, show that T 2 = maxa 6=0 T
2
a .

43. Is Canberra metric (as given in the transparencies) of some of its modifica-
tions really a metric? (Prove or disprove.)

44. Verify all claims stated on the transparency entitled “Recovering inner prod-
ucts” (currently page 250 of the 2nd set).

45. Prove the property stated in the first paragraph of the transparency entitled
“Duality to principal components” (currently page 250 of the 2nd set).
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46. Let C is a similarity matrix with elements cij, and let D be a dissimilarity
matrix with elements dij = (cii − 2cij + cjj)1/2. If C is nonnegative definite, then
D is Euclidean, that is, induced by some inner product.

47. Show that the tree distance between objects and/or clusters read out of a
dendrogram is an ultrametric.

48. Suppose that the original dissimilarity used in clustering is an ultrametric,
and an agglomerative method with single linkage is used. Prove (or disprove?):
the tree distance in the resulting dendrogram is an extension of the original
dissimilarity.

49. Suppose that the clusters in R2 arise as a mixture of distribution: as two
samples of size n (the same size is assumed just for simplicity) from two bivariate
normal distributions with expected values µ1 6= µ2 - for simplicity, assume that
their variance-covariance matrix is the same, Σ, and that ‖µ1 − µ2‖ = 10. If n
grows to ∞, what is the limit of the distance of two clusters that arise this way
(a) in the single linkage (b) complete linkage (c) average linkage?

50. For a collection of n data points in R2, consider the coordinatewise mean and
the coordinatewise median. Show that the mean is equivariant (that is, trans-
forms accordingly: mean of transformed data is their original mean transformed
by the same transformation) with respect to any orthogonal transformation (ro-
tation, say). Show that the coordinatewise median does not have this property.

51. Suppose that the data come from two classes, with prior probabilities π1 and
π2 = 1 − π1, and respective densities of classifiers f1(x) and f2(x). The classifi-
cation based on x has three possible results: 1, 2, and 3, the last corresponding
to “undecided”. The corresponding cost functions satisfy c(1|1) = c(2|2) = 0,
c(1|2) = c(2|1) = 1, and c(1|3) = c(2|3) = c. Derive the optimal Bayes classifi-
cation rule in this case. What does it reduce to when c = 1 and π1 = π2 = 0.5?

52. Consider supervised classification classifying into two classes, 1 and 2, on
the basis of the value x of classifiers considered realizations of random elements
X. Let π1 and π2 are prior probabilities for classes 1 and 2, and f1(x) and f2(x)

are the respective densities of X (for simplicity, assume they are with respect to
a Lebesgue measure on Rp). Derive the formulas for the posterior probabilities,
the conditional probabilities of the item belonging to classes 1 and 2 given X = x,
as shown in the transparency entitled “Special cases”.

53. Show that in the special case when f1 and f2 are multivariate normal, with
the same variance-covariance matrix, then the posterior probabilities have the
form shown on the transparency entitled “The connection to the LDA”.
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54. Suppose that a supervised classification method classifying into two classes,
1 and 2, enables you to predict (that is, to estimate/determine somehow) the
posterior probabilities for some given prior probabilities π1 and π2 = 1 − π1. (In
view of the fact that π2 = 1 −π1, one can consider the posterior probabilities to
be parametrized by π1 alone – and without loss of generality assume π1 = 1/2.)
Given the formulas for the posterior probabilities for given πg and true fg, one
can naturally posit that analogous formulas should be satisfied by the estimates
of the posterior probabilities and the estimates f̂g of fg. So, let us assume that
we can obtain q̂1(x, 1/2) and q̂2(x, 1/2) for any x; can we recover from these the
predictions q̂1(x,π1) and q̂2(x,π1) for any given π1? We cannot recover in general
recover the density estimates f̂1(x) and f̂0(x), but perhaps posterior probabilities
may be possible – show how, and then indicate how this could be applied for
incorporating prior probabilities into the method of k nearest neighbors.

55. Show that the rank of the matrix B defined on the transparency entitled
“LDA another way: Fisher’s linear discriminants” is K−1 (as stated on the next
transparancy “Fisher linear discriminants”).

56. Prove the equivalence to LDA when classification is done using all linear
discriminants, as stated on the transparency “And the classification rule based
on them”.

57. Show that the solution for ridge regression estimation prescription, the
vector β minimizing

(y− Xβ)T(y− Xβ) + λβTβ

is β = (XTX+ λI)−1XTy, regardless of the rank of X.

58. Prove the equivalence of the least squares regression to the LDA, as stated
on the transparency entitled “LDA as regression”.

59. Suppose that X = (X1,X2, . . . ,Xp)T and Y = (Y1,Y2, . . . ,Yq)T are random
vectors composed of indicator random variables, random variables that attain
only values 0 and 1. Let pij be the probability that both Xi and Yj are equal
to 1; the marginal probabilities of Xi and Yj being equal to 1 are then respectively

pi· =
∑
j

pij and p·j =
∑
i

pij

Let the variance covariance matrix of (XT,YT)T be

Var

(
X

Y

)
=

(
ΣXX ΣXY

ΣYX ΣYY

)
Show that the elements of ΣXY are pij − pi·p·j.
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60. Verify mathematically that the matrix R−1/2EC−1/2, as defined on the trans-
parency entitled “Correspondence analysis” (currently page 151 of the first set)
has 1 among its eigenvalues.

61. Verify mathematically that the elements of the matrix
√
nR−1/2EC−1/2 are

“Pearson residuals” (as claimed in the transparency entitled “Interpretation I”,
currently page 152 of the first set): their squares are the summands in the
Pearson χ2 statistics for testing independence in the contingency table.

62. Demonstrate the fact that when the points with one label and points with
another label are separated by a hyperplane, maximum likelihood estimation of
logistic regression collapses. For simplicity, consider only one-dimensional situa-
tion, with one classifier x, when for some c, all points with one label have xi < c
and all points with another label have xi > c.

63. Demonstrate that maximum likelihood estimates in logistic regression trans-
forms accordingly when 0 is relabeled to 1 and 1 is relabeled to 0.
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1. The following is a part of a specific output in software environment R of the
results for linear regression evaluated on 32 automobile models. The predicted
variable mpg, as usually summarized in a vector y, records consumption in miles
per gallon; the predictors, usually summarized in a matrix X, are various other
characteristics: number of cylinders, displacement, etc.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.30337 18.71788 0.657 0.5181

cyl -0.11144 1.04502 -0.107 0.9161

disp 0.01334 0.01786 0.747 0.4635

hp -0.02148 0.02177 -0.987 0.3350

drat 0.78711 1.63537 0.481 0.6353

wt -3.71530 1.89441 -1.961 0.0633 .

qsec 0.82104 0.73084 1.123 0.2739

vs 0.31776 2.10451 0.151 0.8814

am 2.52023 2.05665 1.225 0.2340

gear 0.65541 1.49326 0.439 0.6652

carb -0.19942 0.82875 -0.241 0.8122

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(a) What method was used to obtain the estimates? Give a concise definition in
the form of a minimization prescription; introduce additional notation if necessary.

(b) What are the necessary assumptions required for obtaining these results?
Illustrate, using matrix formalism, on the method used to obtain the results.

(c) How does the variable denoted as (Intercept) enter the matrix X?

(d) The last column gives p-values for the estimates: what stochastic assump-
tions are necessary to ensure validity of these p-values?

2. Suppose that instead of the original responses yi, we use cyi + d (such a
situation may occur, for instance, when measurement units are changed). How
do the estimates change? Give a short justification of your answer.
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