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vi INTRODUCTION

All monoids in the thesis are supposed to be commutative. The stable
equivalence on a monoid M , denoted by ∼s, is the least congruence on M
such that the quotient M s := M/ ∼s is cancellative. The congruence is
defined by x ∼s y if there exists z ∈ M such that x + z = y + z, for all
x, y ∈ M . The correspondence M 7→ M s extends canonically to a functor
that we denote by (−)s.
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Figure 1. Partially ordered Abelian groups, monoids, and
algebraic lattices

There is an universal map (−)∗ : M → M∗ sending monoids to Abelian
groups. Moreover the algebraic order on a monoid M induces a partial
order on the target Abelian group M∗; such that the image of the monoid
corresponds to the positive cone of M∗. The construction of the partially
ordered Abelian group M∗ for a given monoid M is an analogy of the con-
struction of the field of fractions of a given commutative ring. We consider
the set of formal differences between pairs of elements from M and an equiv-
alence relation, say ∼∗, on them. The equivalence is given by x−y ∼∗ z−u
provided that there is w ∈ M such that x + u + w = z + y + w. The map
(−)∗ is dermined by x 7→ [x − 0 ]∼∗ , x ∈ M . Again, the correspondence
is canonically functorial. Notice that the partially ordered Abelian group
M∗ is directed, that is, it is, as a group, generated by the positive cone. It
is straightforward to see that this is equivalent to the partial order on M∗
being upwards directed.

Let G+ := {p ∈ G | 0 ≤ p} denote the positive cone of a partially or-
dered Abelian group G. Observing that an order preserving homomorphism
G → H maps the positive cone G+ of G into the positive cone H+ of H,
we see that there is a functor (−)+ from the category of partially ordered
Abelian groups to monoids. Moreover, the composition (−)+ ◦ (−)∗ is nat-
urally equivalent to the functor ∼s.
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We denote by ≍ the least congruences on M such that M/≍ is a ⟨∨,0⟩-
semilattice and we set ∇(M) := M/≍. As in the previous cases, the corre-
spondence M → ∇(M) extends a functor.

The ideal lattice Id(S) of a ⟨∨,0⟩-semilattice S is an algebraic lattice
and, conversely, compact elements of an algebraic lattice L form a ⟨∨,0⟩-
semilattice, denoted by Lc. Both the correspondences extend to functors
that are inverse to each other (up to obvious natural equivalences).

Here are more ideal-type functors to consider. Firstly, the functor that
assigns to a monoid M the algebraic lattice Id(M) of all o-ideals of M .
Secondly, the functor G 7→ Id(G+) which assigns to a directed Abelian
group the algebraic lattice of all convex subgroups of G.

All the introduced functors are depicted in Figure 1. Note that the
diagram of functors is commutative (up to natural equivalences).
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Figure 2. Directed interpolation groups, refinement
monoids, and distributive algebraic lattices

We will be interested in structures that are mapped by the ideal functor
Id to algebraic lattices that are distributive. Starting from the bottom of
Figure 2, these are distributive ⟨∨,0⟩-semilattice (cf. [27, Section II.5]). In-
deed, a ⟨∨,0⟩-semilattice is distributive if and only if Id(S) is an algebraic
distributive lattice. Next we consider the class of refinement monoids, i.e,
the conical monoids that satisfy the Riesz refinement property. The maxi-
mal semilattice quotient ∇(M) of a refinement monoid M is a distributive
⟨∨,0⟩-semilattice and the lattice Id(M) of all o-ideals of M is distributive
(cf. [25, lemma 2.4]. Finally, a directed Abelian group G is an interpolation
group if and only if the positive cone G+ is a refinement monoid [21, Prop.
2.1]. In particular, the lattice Id(G) of all ideals (i.e, convex subgroups) of
a directed interpolation group is again distributive.

There are more structures in the picture as we tried to depict in Figure 3.
Given a ring R, we denote by V (R) the monoid of all isomorphism classes
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Figure 3. Regular rings, refinement monoids, and distribu-
tive ⟨∨,0⟩-semilattices

of finitely generated projective right R-modules with addition derived from
direct sums. If the ring R is (Von-Neumann) regular, the monoid V (R) sat-
isfies the Riesz refinement property (see [22, Corollary 2.7]). The partially
ordered Abelian group V (R)∗, denoted byK0(R), is called the Grothendieck
group of R. When we limit ourselves unital rings, it is appropriate to assign
to a ring R a partially ordered Abelian group K0(R) with an order-unit
corresponding to the isomorphism class [R ] and study the category of par-
tially ordered Abelian groups with order units (cf. [22, Chapter 15]). If the
ring R is regular, then K0(R) is a directed interpolation group.

We denote by L(R) the ⟨∨,0⟩-semilattice of all right finitely gener-
ated ideals of a ring R. For a regular ring, the ⟨∨,0⟩-semilattice L(R)
is closed under finite meets, therefore L(R) forms a lattice [22, Theorem
2.3]. Moreover, the lattice L(R) is modular and sectionally complemented
(complemented if R is with an unit element).

Congruences of sectionally complemented modular lattices correspond to
their neutral ideals (see [27, Section III.3.10]). In particular, ifR is a regular
ring, then the lattice Con(L(R)) is isomorphic to the lattice NId(L(R)) of
all neutral ideals of L(R). By [78, Lemma 4.2], an ideal of the lattice
L(R) (for a regular ring R) is neutral if and only if it contains with each
aR all principal ideals bR with bR ≃ aR. It follows that Con(L(R)) ≃
NId(L(R)) ≃ Id(R) (see [78, Lemma 4.3]), and so, the lattice Id(R) of two-
sided ideals of a regular ring R is distributive. Moreover, combining [78,
Corollary 4.4 and Proposition 4.6] we get the isomorphisms Conc(L(R)) ≃
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∇(V (R)) ≃ Idc(R) of distributive ⟨∨,0⟩-semilattices, for every regular ring
R.

We have seen that a distributive algebraic lattice that is isomorphic to
the lattice of two-sided ideals of a regular ring is at the same time isomor-
phic to the congruence lattice of a modular sectionally complemented lattice.
This brings a connection with the Congruence lattice problem, whether every
distributive algebraic lattice is isomorphic to the congruence lattice of a lat-
tice. The conjecture has an interesting history (see [86]) and remained open
four over sixty years until the counter-example was found by F. Wehrung
[83]. We will discuss the Congruence Lattice Problem in detail in Chapter 3.

In this thesis we study various representation problems, namely for dis-
tributive algebraic lattices (resp. corresponding distributive ⟨∨,0⟩-semilat-
tices), refinement monoids, or directed Abelian groups. For example, we ask
whether a given distributive algebraic lattice (or any algebraic lattice with
particular properties) is isomorphic to a lattice of all two sided ideals of a
regular ring, respectively, as a lattice of all compact subgroups of a directed
Abelian group. We might also restrict to some class of regular rings as,
for example, locally matricial algebras, or to some class of directed Abelian
groups, for example, dimension groups.

A more complex question is when we seek for a functorial solution, that
is, when we ask not only for representing a single object but for lifting
particular diagrams. Given a diagram ∆: J → C and a functor Ψ: B → C,
a lifting of ∆ with respect to Ψ is a functor Φ: J → B such that the
composition Ψ ◦ Φ is naturally equivalent to ∆.

The thesis consists of six chapters, each based on a single paper and
related to a particular realization or lifting problem.

Chapter 1 is based on the paper [66]:

Liftings of distributive lattices by locally matricial alge-
bras with respect to the Idc functor, Algebra Universalis
55 (2006), 239 – 257.

In the paper we study liftings with respect to the functor Idc from
the category of locally matricial algebras to the category of distributive
⟨∨,0⟩-semilattices. The problem goes back to [9]. In the unpublished notes
G. Bergman proved that

• every countable distributive ⟨∨,0⟩-semilattice,
• every strongly distributive ⟨∨,0⟩-semilattice (i.e., a ⟨∨,0⟩-semilat-
tice of all compact elements of the lattice of all hereditary subsets
of a poset),

are isomorphic to the ⟨∨,0⟩-semilattices of all finitely generated two-sided
ideals of locally matricial algebras. In [64] we developed a new construction
and besides reproving the Bergman’s results we have realized every distribu-
tive ⟨∨,0⟩-semilattices that is closed under finite meets, and so it forms a
distributive lattice, as the ⟨∨,0⟩-semilattice of all finitely generated two-
sided ideals of a locally matricial. In the presented paper [66] we simplify
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the construction from [64] and study possibilities of functorial solutions of
the problem. We construct

• a simple finite subcategory D•− of the category DLat of all dis-
tributive ⟨0,1⟩-lattices,

• a subcategory Df of DLat corresponding to a partially ordered
proper class, which cannot be lifted with respect to the Idc functor.

On the positive side we prove that every diagram in DLat indexed by a
partially ordered set and the subcategory DLatm of DLat whose objects
are all distributive ⟨0,1⟩-lattices and whose morphisms are ⟨∨,∧,0,1⟩-em-
beddings can be lifted with respect to the Idc functor.

Let us mention some applications of the results:

• The realization of distributive ⟨∨,0⟩-semilattices closed under fi-
nite meets by ⟨∨,0⟩-semilattices of all finitely generated ideals of
locally matricial algebras answers the Γ-invariant realization prob-
lem from [17]. Given an uncountable cardinal κ we let Bκ :=
P(κ)/ clubκ denote the Boolean algebra of all subsets of κ mod-
ulo the filter clubκ generated by all closed unbounded subsets of
κ. A 0-lattice L is strongly dense if the poset of its non-zero
elements contains a cofinal strictly decreasing chain. The dimen-
sion of a strongly dense ⟨0,1⟩-lattice L is the minimum length of
a cofinal strictly decreasing chain in L. Given a strongly dense
modular ⟨0,1⟩-lattice L of an uncountable dimension κ with a
cofinal strictly decreasing chain A = ⟨aα | α < κ⟩, we set

E(A) := {α < κ | ∃β ∈ (α, κ] : aα is not complemented over aβ},

where aα is complemented over aβ if there exists b ∈ L such that
aα∧b = aβ and aα∨b = 1. The Γ-invariant of the ⟨0,1⟩-lattice L
is the block E(A) ∈ Bκ. The block does not depend on the choice
of the cofinal strictly decreasing chain A (cf. [17]). According to
[17, Theorem 1.3], there is a distributive strongly dense ⟨0,1⟩-lat-
tice LE of dimension κ with a Γ-invariant E, for every E ∈ Bκ.
Passing to the ideal lattice Id(LE), we get a distributive algebraic

strongly dense ⟨0,1⟩-lattice of dimension κ with the Γ-invariant E.
Applying [64, Theorem 4.7] or Theorem 7.1 from Chapter 1, we
conclude that the lattice Id(LE) is isomorphic to the lattice of all
two-sided of a locally-matricial k-algebra R, where the field k can
be chosen arbitrarily. Then S := R⊗kR

op, where Rop denotes the
opposite ring to R, is again a locally matricial k-algebra, due to
[17, Lemma 2.1]. The original k-algebra R is naturally a right S-
module wia the multiplication given by a ·(b⊗c) = cab. Observing
that two-sided ideals of the k-algebra R bijectively correspond
to submodules of the right S-module R, we conclude that each
algebraic distributive lattice that is realized as the lattice of two-
sided ideals of a locally matricial algebra is realized as a submodule
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lattice of a module over a locally matricial algebra. In particular,
all Γ-invariants are realized.

• The other application of the result is related to the Congruence
Lattice Problem. In [69] E. T. Schmidt proved that every dis-
tributive 0-lattice is an image of a generalized Boolean lattice un-
der a distributive ⟨∨,0⟩-homomorphism, and consequently, it is
isomorphic to Conc(L) for a lattice L. Later, in [72] (see [71] for
an earlier weaker result), E. T. Schmidt proved that every finite
distributive lattice is the congruence lattice of a complemented
modular lattice. Applying our construction, we infer that every
distributive ⟨0,1⟩-lattice is isomorphic to Conc(L(R)) for a locally
matricial algebra R, hence its ideal lattice is representable as the
congruence lattice of a complemented modular lattice. The unit el-
ement is not essential in the construction, and so we can easily get
every distributive 0-lattice is isomorphic to the ⟨∨,0⟩-semilattice
Conc(L) for a sectionally complemented modular lattice L. This
gives the result first obtained by P. Pudlák [61]. The Pudlák’s
approach provides a functorial solution and his results are directly
(and independently) extended by Theorem 7.1.

Let us note that a different approach to the representations of distributive
0-lattices as Idc(R) of locally matricial algebras R, similar to the Bergman’s
constructins [9], is in [57] by M. Ploščica.

Chapter 2 is based on the paper [68]:

Distributive congruence lattices of congruence-permutable
algebras, Journal of Algebra 311 (2007), 96 – 116.

The paper is a joint work with Jǐŕı Tůma and Friedrich Wehrung. It closely
follows and extends results from [60] and [74]. In the earlier paper [78] F.
Wehrung defined the congruence splitting property of lattices. The class of
congruence splitting lattices (i.e. lattices satisfying the congruence splitting
property) is closed under direct limits and it contains all sectionally com-
plemented, all relatively complemented lattices, and all atomistic lattices.
The distributive ⟨∨,0⟩-semilattice Sκ (for κ ≥ ℵ2) constructed in [77] is
not isomorphic to the ⟨∨,0⟩-semilattice of all compact congruences of any
congruence splitting lattice. Since relatively complemented lattices are con-
gruence splitting, the ⟨∨,0⟩-semilattice Sκ (for κ ≥ ℵ2) is not isomorphic to
Conc(L(R)) (and, consequently, to Idc(R)) for any regular ring R.

It was in [78], where a uniform refinement property was used for the
first time. This is an infinite system of join-semilattice (or monoid) equa-
tions based on the Riesz refinement property that are satisfied for a certain
class of join-semilattices, the ⟨∨,0⟩-semilattices of compact congruences of
congruence splitting lattices in this case, and that do not hold for some
⟨∨,0⟩-semilattice, here Sκ. Similar strategy was applied in [60], [74], and
also in our paper [68].
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The observation that congruence splitting lattices have permutable con-
gruences lays behind [74]. Applying a variant of the uniform refinement
property, J. Tůma and F. Wehrung proved that Conc(FV(κ)), where FV(κ)
denotes the free lattice in a non-distributive lattice variety V with κ ≥ ℵ2

generators, is not isomorphic to the ⟨∨,0⟩-semilattice of all compact con-
gruences of any lattice with almost permutable congruences.

In the presented paper we show, using yet another modification of the
uniform refinement property, that the ⟨∨,0⟩-semilattice Conc(FV(κ)) is not
isomorphic to the ⟨∨,0⟩-semilattice of all compact congruences of any alge-
bra with almost permutable congruences. In particular, the algebraic dis-
tributive lattice Con(FV(κ)) is isomorphic neither to the normal subgroup
lattice of a group, nor to the submodule lattice of a module, nor the lattice
of convex subgroups of a lattice-ordered group. These three cases are dis-
cussed separately and in the first two of them, the cardinal bound ℵ2 (for
the set of compact elements of the algebraic distributive lattice) is proved
to be optimal. The negative result is obtained by proving that the algebraic
distributive lattice Con(FV(κ)) is not the range of any distance satisfying
the V-condition of type 3/2.

We also study the functorial solution of the problem. We consider the
category D of all surjective distances with morphisms being pairs of one-to-
one maps and the forgetful functor Π from D to the category of ⟨∨,0⟩-semi-
lattice with ⟨∨,0⟩-embeddings. On one side, we prove that the restriction
of the functor Π to the V-distances of type 2 (i.e, the distances satisfying
the V-condition of type 2) has a left inverse. On the other hand we find
an unliftable cube by V-ditances of type 3/2. Similar examples are stud-
ied in [74]. The mysterious connection between sizes of counter-examples
for representation problems and dimensions of unliftable cubes was later
ingeniously explained by P. Gillibert and F. Wehrung, see [38].

Chapter 3 is based on the paper [67]:

Free trees and the optimal bound in Wehrung’s theorem,
Fund. Math. 198 (2008), 217 – 228.

Following G. Birkhoff and O. Frink [11], the congruence lattice of a
lattice is algebraic and due to N. Funayama and T. Nakayama [20] it is
distributive. In early forties P. Dilworth observed that every finite distribu-
tive lattice is representable as a congruence lattice of a finite lattice and
conjectured that every algebraic distributive lattice is isomorphic to the
congruence lattice of a lattice. The conjecture, named as the Congruence
Lattice Problem, shortly CLP, turned to be a prominent open problem of
the lattice theory for over sixty years.

Many partial results was obtained, see [27, Appendix C] and the survey
paper [75] until a counter-example was constructed by F. Wehrung [83]. The
Wehrung’s counter-example has ℵω+1 compact elements. In Chapter 3 we
improve the size of the counter-example construcitng a distributive ⟨∨,0,1⟩-
semilattice of size ℵ2 such that is not the range of a weakly distributive
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⟨∨,0⟩-homomorphism from ConcA with 1 in its image, for any algebra A
with either a congruence-compatible structure of a ⟨∨,1⟩-semilattice or a
congruence-compatible structure of a lattice. In particular, our ⟨∨,0⟩-semi-
lattice is not isomorphic to the ⟨∨,0⟩-semilattice of compact congruences
of any lattice. Thus we provide a conter-example to CLP of the lowest
possible cardinality. The main ingredient of our proof is the modification of
Kuratowski’s Free Set Theorem, which involves what we call free trees.

• Chapter 4 is based on the paper [65]:

Countable chains of distributive lattices as maximal semi-
lattice quotients of positive cones of dimension groups,
Comment. Math. Univ. Carolin. 47 (2006), 11 – 20.

The Grothendieck group K0(R) of a regular ring R is a directed pre-
ordered Abelian group with interpolation. If the ring R is unit-regular,
then K0(R) is partially ordered and the positive cone K+

0 (R) corresponds
to the monoid V (R) of isomorphism classes of finitely generated projective
right R-modules.

Recall that a partially ordered Abelian group G is unperforated if np ≥ 0
implies that p ≥ 0 for all p ∈ G. A dimension group is an unperforated
directed partially ordered Abelian group with interpolation. A simplicial
directed Abelian group is a free abelian group of a finite rank n with a
basis, say, p1, . . . , pn with the positive cone Z+p1 × · · · × Z+pn. Dimen-
sion groups are exactly direct limits of simplicial directed Abelian groups
in the category of pre-ordered Abelian groups (with order-preserving group
homomorphisms) [16, Theorem 2.2].

Let us fix a field F. Locally matricial F-algebras are unit-regular and
their Grothendieck groups are dimension groups. Following [22, Chapter
15], we call direct limits of countable chains of matricial F-algebras ultrama-
tricial, and countable dimension groups ultrasimplicial. By [22, Theorem
15.24], every ultrasimplicial group appears as the Grothendieck group of an
ultramatricial F-algebra and the ultramatricial F-algebra is determined by
its Grothendieck group up to the Morita-equivalence [22, Corollary 15.27].
The first part of this correspondence extends to dimension groups of size
ℵ1, due to [24]. In particular, every dimension group of size at most ℵ1 is
represented as the Grothendieck group of a locally matricial F-algebra. On
the other hand, Grothendieck groups of size ℵ1 do not determine the locally
matricial algebras up to the Morita equivalence as in the countable case (see
[22, Example 15.28]). In [77] there is constructed a dimension group of size
ℵ2 that is not isomorphic to the Grothendieck group of any regular ring.

As depicted in Figure 1, if R is an unit-regular ring, we have the iso-
morphisms Id(K0(R)) ≃ Id(R). The question, whether every distributive
⟨∨,0⟩-semilattice S is isomorphic to ∇(G+) for some dimension group G
was stated as [37, Problem 1]. We solved this problem in [63], where we
constructed a counter-example of size ℵ2. Since every countable distributive
⟨∨,0⟩-semilattice S is isomorphic to the maximal semilattice quotient of the
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positive cone of a dimension group (see [37, Theorem 5.2]), only the case
of cardinality ℵ1 remained open. This was resolved by F. Wehrung [80],
who constructed a distributive ⟨∨,0,1⟩-semilattice Sω1 of size ℵ1 that is not
isomorphic to ∇(M) for any Riesz monoid with an order-unit of finite stable
rank. This readily implies that the ⟨∨,0,1⟩-semilattice Sω1 is not realized
as the maximal semilattice quotient of the positive cone of any dimension
group. As in some previously discussed constructions, he found a variant
of the uniform refinement property, here denoted by URPsr, that holds in
any Riesz monoid M with order-unit of finite stable rank but that is not
satisfied by Sω1 .

It follows from [80, Corollary 7.2] that every direct limit of a countable
sequence of distributive lattices and ⟨∨,0⟩-homomorphisms satisfies URPsr

and it was stated as [80, Problem 1], whether such a direct limit is iso-
morphic to ∇(G+) for a dimension group G. Recall that every distributive
⟨∨,0⟩-semilattice closed under finite meets is isomorphic to Idc(R) for a
locally-matricial algebra R and consequently to ∇(K0(R)+) for the dimen-
sion group K0(R) due to [64]. In Chapter 4 we give a negative answer to
this question by constructing an increasing countable chain of Boolean join-
semilattices, with all inclusion maps being ⟨∨,0,1⟩-homomorphisms, whose
union cannot be represented as the maximal semilattice quotient of the pos-
itive cone of any dimension group. Furthermore, we construct a similar
example with a countable chain of strongly distributive bounded join-semi-
lattices.

Chapter 5 is based on the paper [62]:

On the construction and the realization of wild monoids,
to appear in Archivum Mathematicum (Brno).

Many still open problems about the structure of regular rings have re-
formulations in terms of the corresponding monoids V (R) of isomorphism
classe of finitely generated projective right R-modules. Let us say that a
monoid M is realizable (by a regular ring R) if M ≃ V (R). According to
[22, Theorem 2.8], all such monoids are refinement monoids. The funda-
mental problem by K. R. Goodearl [23] asks which refinement monoids are
realizable. By [77] there are non-realizable refinement monoids of cardinal-
ity ℵ2 but there is not yet known a non-realizable refinement monoid of size
< ℵ2. Particularly interesting question is whether all countable refinement
monoids admit realization, indeed, the answer would shed light on a number
of related problems regarding regular rings or C∗-algebras.

Some comprehensive positive results were obtained so far, namely the
realization of monoids of row finite quivers [4, Theorems 4.2 and 4.4] and the
realization of finitely generated primitive monoids with all primes free [3,
Theorem 2.2]. These realizations are obtained via direct limit construction
and the monoids can be realized by regular F-algebras over an arbitrary field
F. On the other hand there are countable refinement monoids realizable by
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regular F-algebras over a countable field F but not over any uncountable
field (see [2, Sec. 4]).

Many positive realization results (in general context) are obtained by
direct limit construction from diagrams of finitely generated (or even finite)
objects, e.g., every distributive ⟨∨,0⟩-semilattice is a direct limit of finite
distributive ⟨∨,0⟩-semilattices (cf. [61, Fact 4 on p. 100]). This is not the
case of refinement monoids. Following [5] we call a refinement monoid time
provided that it is a direct limit of finitely generated refinement monoids
and wild otherwise. The existence of wild refinement monoids indicates
that the Goodeatl’s fundamental problem is essentially distinct from the
other, seemingly similar, realization problems.

An prominent example of a wild refinement monoid is due to G. Bergman
and K. R. Goodearl [22, Examples 4.26 and 5.10]. We study the example,
develop elementary methods of computing the monoids V (R) for directly-
finite regular rings R, and construct a class of directly finite non-cancellative
refinement (therefore wild) monoids realizable by regular algebras over an
arbitrary field.

Chapter 6 is based on the paper [50]:

A maximal Boolean sublattice that is not the range of a
Banaschewski function, to appear in Algebra Universalis.

This paper is a joint work with Samuel Mokrǐs.
A Banaschewki function on a bounded lattice L is a map β : L → L

such that a ≤ b implies β(b) ≤ β(a) and 1 = a ⊕ β(a), for all a, b ∈ L.
The terminology is motivated by the early result of B. Banaschewski that the
subspace lattice of a vector space admits such a map. Simultaneously we can
define a Banaschewski function on a ring R as a map f : R → Idem(R) such
that aR = f(a)R and aR ⊆ bR implies that f(a) E f(b), for all a, b ∈ R.
(Here e E f means that e = ef = fe, for all e, f ∈ Idem(R).) A connection
between these two notions of the Banaschewski function is established by
[84, Lemma 3.5]: An unital regular ring R admits a Banaschewski function
if and only if the complemented modular lattice L(R) does.

A notion replacing Banachewski function for lattices without a maximal
element is a Banaschewski measure [84, Definition 5.5]. Every countable
sectionally complemented lattice has a Banaschewski measure due to [84,
Corollary 5.6].

Yet another notion related to the Banaschewski function and the Ba-
naschewski measure is a Banschewski trace [84, Definition 5.1]. In [84,
Section 6] F. Wehrung discovered a close connection between exitence of
Banschewski traces (resp. Banschewski measures) and coorinatizability of
sectionally complemented modular lattices. This connection is applied in
[85] in order to construct a non-cordinatizable sectionally complemented
modular lattice of size ℵ1 with a large 4-frame. The example shows that the
variant of the Jónson’s coordinatization theorem that states that sectionally
complemented modular lattices L with large n-frames, for n ≥ 4, and with
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a contable cofinal chain is coordinatizable (see [45]) does not hold for larger
cardinalities.

We study ranges of Banaschewski functions on countable complemented
modular lattices. According to [84, Theorem 4.1 and Corollary 4.8], a count-
able complemented modular lattice L has a Banaschewski function with a
Boolean range and all the Boolean ranges of Banschewski functions on the
lattice L are isomorphic maximal Boolean sublattices of L. In [84, Prob-
lem 2] it is asked whether every maximal Boolean sublattice of a countable
complemented modular lattice L appears as a range of some Banaschewski
function and whether the maximal Boolean sublattices of L are isomor-
phic. We construct a countable complemented modular lattice S with two
non-isomorphic maximal Boolean sublattices H and G and we represent the
lattice H as the range of a Banaschewski function on S. Furthermore, we
prove that the lattice S is coordinatizable, in spite of not containing a 3-
frame. We show that the lattices H and G correspond to maximal Abelian
(regular) subalgebras of the regular algebra S realizing the lattice S.
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xviii BASIC CONCEPTS

We summarize basic concepts, more specific notions will be introduced
in each chapter.

Set theoretic notions. We will use the standard set theoretic notation
and terminology. We denote by P(W ) the set of all subsets of a set W .
Furthermore, we denote by [W ]<ω the set of all finite subsets of W and
by [W ]n the set of all n-element subset of W . We use |W | to denote the
cardinality of the set W .

Given a map f : U → V , we will use the same notation f : P(U) → P(V )
for the map sending X 7→ f(X) = {f(x) | x ∈ X}, for all X ⊆ U , and we
denote by f−1 : P(V ) → P(U) the map defined by Y 7→ {u ∈ U | f(u) ∈ Y },
for all Y ⊆ V .

We denote by On the class of all ordinal numbers. We identify each ordi-
nal number with the set of its predecessors, in particular, n := {0, . . . , n−1},
for each finite ordinal (i.e, non-negative integer) n. We denote by ω the first
infinite ordinal, and by ωn the first ordinal of size ℵn, for every positive
integer n. As in [83], we put ε(n) := n mod 2, for every integer n.

We denote by Z, N0, and N, the set of all, all non-negative, and all
positive integers, respectively. We use Q, and Q+, to denote the set of all
rational numbers, and the set of all positive rational numbers, respectively.
We denote by R the field of real numbers and by R+ := {r ∈ R | 0 ≤ r} the
set of all non-negative reals.

Partially ordered sets. Let ⟨P,≤⟩ be a partially ordered set. A subset
D of P is dense in P provided that for every p ∈ P , there is d ∈ D with
d ≤ p. Given p, q ∈ P , we write p ⊥ q if there is no element of P smaller than
both the elements p and q. A partially ordered set P is upwards directed
provided that for each finite F ⊆ P , there is p ∈ P such that f ≤ p for all
f ∈ F .

A subset H of a partially ordered set P is called hereditary (or lower)
provided that p ≤ h implies that p ∈ H, for all h ∈ H and p ∈ P . Dually, a
subset C of P is called co-hereditary (or upper) provided that c ≤ p implies
p ∈ C for all c ∈ C and p ∈ P .

For a subset X of a partially ordered set P , we denote by ↓P (X), (resp.
↑P (X)), the least hereditary, (resp. co-hereditary), subset of P containing
X. For a singleton set {x} = X ⊆ P we write ↓P (x), (resp. ↑P (x)), instead
of ↓P (X), (resp. ↑P (X)).

Let ⟨Q,≤⟩ be a partial ordered set and P ⊆ Q. We denote by Her(P,≤)
the lattice (necessarily distributive) of all hereditary subsets of P . We will
use the notation Her(P ) when the order ≤ is understood.

Category theory. Given a category C and objects a, b ∈ C, we denote
by homC(a, b) the collection of all morphisms from a to b. The identity
morphism a→ a in the category C is denoted by 1a.
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As in [75, Section 5], a diagram in a category C is a functor ∆: J → C,
where J is a small category. Often the category J will correspond to a
partially ordered set.

Let ∆: J → C and Φ: B → C be functors. We say that a functor
Ψ: J → B lifts ∆ with respect to Φ provided that the composition Φ ◦ Ψ
is naturally equivalent to the functor Θ (See Figure 4). In particular, if ∆
is an inclusion functor, we say that Ψ lifts J with respect to Φ. Note that
our definition of the “lifting of functors” corresponds to the definition of
the lifting of diagrams in [75, p. 455].

J
Ψ //

∆
��<

<<
<<

<<
<<

< B

Φ
����
��
��
��
��≃

vv

C

Figure 4. The lifting of a functor

Recall that a directed system in a category C is a diagram ∆: P → C,
where P is (a category represented by) an upwards directed poset. We will
call a colimit of a directed system a direct limit. We say that a functor
Φ: C → D preserves direct limits provided that Φ maps the direct limit of a
directed system ∆ in C to the direct limit of Φ ◦∆ in D (see [10, Definition
7.8.1]).

Congruences and universal algebra. For a subset F of an algebra
A, we denote by ΘA(F ), or by Θ(F ) ifA is understood, the least congruence
of A that identifies all elements of the set F . In particular, given elements
x,y ∈ A, we denote by ΘA(x,y) (or by Θ(x,y) if A is understood) the least
congruence of A identifying x and y. Furthermore, in case A is a lattice,
we put Θ+

A(x,y) := ΘA(x ∧ y,x). We denote by ConA the lattice of all
congruences of A and by ConcA the ⟨∨,0⟩-semilattice of all compact (i.e.,
finitely generated) congruences of A.

Let A be an algebra and Θ ∈ ConA. We say that an n-ary operation ϕ
on A is Θ-compatible if ⟨xi,yi⟩ ∈ Θ, for all i = 0, . . . , n− 1, implies that

⟨ϕ(x0, . . . ,xn−1), ϕ(y0, . . . ,yn−1)⟩ ∈ Θ,

for all xi,yi ∈ A, i = 0, . . . , n − 1. We say that the n-ary operation ϕ is
congruence compatible provided that ϕ is Θ-compatible for all Θ ∈ ConA
(cf. [58, 83]). In particular, a semilattice operation ∨, resp. ∧, on A is
congruence-compatible if ⟨x,y⟩ ∈ Θ implies that ⟨x ∨ z,y ∨ z⟩ ∈ Θ, resp.
⟨x ∧ z,y ∧ z⟩ ∈ Θ, for all x,y, z ∈ A and all Θ ∈ ConA.

We say that the algebra A has permutable congruences provided that
Θ ∨ Φ = Θ ◦ Φ = Φ ◦Θ, for all Θ,Φ ∈ ConA.
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Lattices and join-semilattices. A nonzero element x of a join-semi-
lattice S is called join-irreducible if x = y ∨ z implies that x = y or x = z
for all y, z ∈ S. We denote by J(S) the partially ordered set of all join-irre-
ducible elements of a join-semilattice S.

A ⟨∨,0⟩-semilattice S is distributive if for every a, b, c ∈ S satisfying
c ≤ a ∨ b, there are a′ ≤ a and b′ ≤ b such that a′ ∨ b′ = c. A distributive
⟨∨,0⟩-semilattice in which every element is a finite join of join-irreducible
elements will be called strongly distributive.

A join-homomorphism h : S → T is called weakly distributive at x ∈ S,
if for all y0,y1 ∈ T such that h(x) ≤ y0∨y1, there are x0,x1 ∈ S such that
x ≤ x0 ∨ x1 and h(xi) ≤ yi, for all i < 2 (see [83]). The homomorphism h
is weakly distributive if it is weakly distributive at every element of S.

Commutative monoids. All monoids are supposed to be commutative
and they will be written additively. A monoid M is equipped with the
algebraic preordering : x ≤M y provided that there is z ∈ M such that
x + z = y, for all x, y ∈ M . We denote by ≡M the equivalence relation
induced by the algebraic preordering ≤M ; that is, x ≡M y provided that
x ≤M y and y ≤M x, for all x, y ∈ M . We might drop the subscript M

when the monoid M is understood.
The class of all ⟨∨,0⟩-semilattices coincides with the class of all com-

mutative monoids with all elements idempotent. On the other hand, for
every commutative monoid M , there exists a least congruence, denoted
by ≍, on M such that M/≍ is a ⟨∨,0⟩-semilattice (see [25]). We set
∇(M) := M/≍. We call the monoid ∇(M) the maximal semilattice quo-
tient of M . The correspondence M → ∇(M) naturally extends to a direct
limits preserving functor from the category of all commutative monoids to
the category of all ⟨∨,0⟩-semilattices [25]. Given x ∈ M , we denote by x
the corresponding element in ∇(M).

A monoid M is conical provided that x + y = 0 =⇒ x = y = 0, for
all x, y ∈ M . A monoid M satisfies the Riesz refinement property provided
that whenever x1+x2 = y1+y2 inM , there are elements zij ∈ M , i, j = 1, 2,
such that

(0.1) xi = zi1 + zi2 and yj = z1j + z2j ,

for all i, j ∈ 1, 2. A refinement monoid is a conical monoid satisfying the
Riesz refinement property.

We say that M is a Riesz monoid provided that for all x, y, z ∈ M such
that x ≤ y+ z, there are y′ ≤ y and z′ ≤ z in M satisfying x = y′ + z′. Ev-
ery commutative monoid satisfying the Riesz refinement property is a Riesz
monoid while the converse is not true in general. Note that for join-sem-
ilattices, i.e., monoids in which every element is an idempotent, these two
properties coincide. Observe also that ⟨∨,0⟩-semilattices satisfying the re-
finement property are exactly distributive ⟨∨,0⟩-semilattices (cf. [27, Sec-
tion II.5]).
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A monoid M satisfies the interpolation property provided that for all
xi, yj ∈ M , i, j = 1, 2, with xi ≤M yj , for all i, j ∈ {1, 2}, there is z ∈ M
such that xi ≤M z ≤M yj , for all i, j ∈ 1, 2. A cancellative conical monoid
is a refinement monoid if and only if it satisfies the interpolation property
[21, Proposition 2.1]. In general, there are refinement monoids that do not
satisfy the interpolation property (cf. [51] and Chapter 4, Section 4).

Rings and modules. A ring R is (von Neumann) regular1 provided
that for every a ∈ R there is b ∈ R such that aba = a. There are many
characterizations of regular rings. Probably the most prominent one is that
a ring R is regular if and only if each right (resp. left) finitely generated
ideal of R is generated by an idempotent [22, Theorem 1.1].

An ideal I of a ring R is regular if for each element a ∈ I, there is b ∈ I
with a = aba. By [22, Lemma 1.3], an ideal of a regular ring is regular; in
fact, a ring R is regular if and only if both R/I and I are regular, for every
ideal I of R.

An Abelian regular ring is a ring R whose all idempotents are central.
For various characterizations of Abelian regular rings see [22, Theorem 3.2].
A maximal Abelian regular subalgebra of a regular algebra R is an Abelian
regular subalgebra ofR that is not properly contained in any Abelian regular
subalgebra of the ring R.

Given a ring R, we denote by FP(R) the class of all finitely generated
projective right R-modules. Given R-modules A and B, the notation A ≤
B means that A is a submodule of B and A . B denotes that the module
A is isomorphic to a submodule of B. We will use the notation A ≤⊕ B,
resp. A .⊕ B, to denote that A is a direct summand of B, resp. that A is
isomorphic to a direct summand of B.

An element e of a ring R is an idempotent if e = ee. We denote by
Idem(R) the set of all idempotents in the ring R. Idempotents e and f are
orthogonal provided that ef = fe = 0.

Given a ringR and rightR-modulesA andB, we denote by homR(A,B)
the set of all R-linear maps A → B. We denote by 0 the zero monoid, the
zero module, the zero vector space, depending on the context.

1It is common to shorten the title by dropping von Neumann and call the von Neu-
mann regular rings just regular (cf. [22]). We will follow this custom.
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Lifting of distributive lattices by locally matricial
algebras
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1. Introduction

This chapter follows [64], where we have proved that every distributive
⟨0,1⟩-lattice is, as a join-semilattice, isomorphic to the semilattice of finitely
generated ideals of a locally matricial algebra. Having discussed this result
with Friedrich Wehrung in a Summer School in Košická Belá, Slovakia, in
2003, we dealt with the question whether it can be solved functorially, that
is, whether there is a functor from the category DLat of distributive lattices
to the category of locally matricial algebras such that its composition with
the functor Idc, which assigns to a locally matricial algebra the lattice of
its finitely generated ideals, is equivalent to the identity functor. It is easily
rejected for the category of all distributive ⟨0,1⟩-lattices, however, it still
can be true if we restrict ourselves to its suitable subcategories. One such
restriction was made in [82], where F. Wehrung asked the following:

Problem [82, Problem 3].. Let F be a field. Does there exist a functor
Φ, from distributive ⟨0,1⟩-lattices with ⟨∨,∧,0,1⟩-embeddings to locally
matricial algebras over the filed F with F-linear (unital) ring homomorphisms
such that Idc ◦Φ is equivalent to the identity?

We are going to prove that such a functor Φ exists. Moreover, we prove
that every diagram of the category of distributive lattices can be lifted with
respect to the Idc functor and we illustrate on simple examples that these
results cannot be much improved. Our proofs are based on the result that
a functor to DLat can be lifted with respect to the Idc functor if and only
if it can be lifted with respect to the functor C : Bases → DLat; objects of
Bases are projections π : X → L from a setX on a distributive ⟨0,1⟩-lattice
L such that the pre-image of every element of L is infinite and morphisms
are commutative squares

F : X1

π1
��

f // X2

π2
��

L1
f

// L2

,

where f is ⟨∨,∧,0,1⟩-homomorphism, and f : X1 → X2 is a map satisfying
the property (5.1) below, and C denotes the forgetful functor which assigns
to an object π : X → L the distributive ⟨0,1⟩-lattice L and to a morphism
F = ⟨f,f⟩ the ⟨∨,∧,0,1⟩-homomorphism f (Corollary 6.3). Proving the ex-
istence of a lifting of a given functor to the category DLat with respect to
the functor C is much easier than proving the existence of its lifting with
respect to the functor Idc.

There has already appeared a number of papers related to the problem
of the representation of distributive ⟨∨,0,1⟩-semilattices as the semilattices
of finitely generated ideals of a von Neumann ring, in particular, of a lo-
cally matricial algebra. Thus, G. M. Bergman [9] has proved that every
distributive ⟨∨,0,1⟩-semilattice which either is countable or corresponds
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to the semilattice of all compact hereditary subsets of a partially ordered
set is isomorphic to the semilattice of locally matricial algebra. F. Wehrung
proved that every distributive ⟨∨,0,1⟩-semilattice is isomorphic to the semi-
lattice of finitely generated ideals of some von Neumann regular ring [79]
but it follows from his results in [81] that we cannot require the ring to be
unit regular, so not even locally matricial. Finally, the results in [77, 78]
give an example of a distributive ⟨∨,0,1⟩-semilattice which is not isomorphic
to the semilattice of finitely generated ideals of any von Neumann regular
ring. In [64], we have proved that a distributive ⟨0,1⟩-lattice is isomorphic
to the semilattice of finitely generated ideals of a locally matricial algebra.
A different proof, based on similar methods as the Bergman’s constructions
in [9], is given by M. Ploščica in [57].

2. Notation and terminology

We will apply a specific construction of direct limits in a category C
of algebras of a finitary type (cf. [10, Lemma 8.1.10]). Given an upwards
directed partially ordered set P and a directed system A := ⟨Ap, fp,q |
p < q in P ⟩ in C, we denote by A′ the disjoint union of the underlying sets
of the algebras Ap. Given p, q ∈ P , a ∈ Ap, and b ∈ Aq, we write a ∼ b if
there is r ≥ p, q in P such that the images of a and b in Ar coincide. Since
the poset P is upwards directed, the relation ∼ is an equivalence on A′.
We denote by [a ]∼ the block of the equivalence ∼ containing an element
a ∈ A′ and we use A to denote the set of all ∼-blocks in A′. For each
p ∈ P , the correspondence a 7→ [a ]∼ defines a map Fp : Ap → A. The set
A together with the maps Fp, p ∈ P , form a set-theoretic direct limit of
the directed system A. Since we deal with algebras of a finitary type, the
operations onAp-s induce operations on A, and so we get an algebraA, with
the universe A, such that the maps Fp are homomorphisms and ⟨A, Fp |
p ∈ P ⟩ is a direct limit of the directed system A in the category C (see
the proof of [10, Lemma 8.1.10]). We will denote by Lim−−→ this particular

construction, while the direct limit in the categorical sense (determined up
to isomorphisms) will be denoted by lim−→.

We will use the following notation:

• DLat := the category of all distributive bounded lattices (with
⟨∨,∧,0,1⟩-homomorphisms),

• DSem := the category of all distributive ⟨∨,0,1⟩-semilattices
(with ⟨∨,0,1⟩-homomorphisms),

• dsem := the full subcategory of DSem of all finite distributive
⟨∨,0,1⟩-semilattices,

• bool := the full subcategory of dsem of all finite Boolean ⟨∨,0,1⟩-
semilattices.

Let F be a commutative field. We denote by F-Alg the category of all
unital associative algebras over the field F. Let Idc denote the functor from
the category F-Alg to the category of ⟨∨,0,1⟩-semilattices which assigns to
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a F-algebra R the semilattice Idc(R) of all finitely generated ideals of R and
to a F-linear ring homomorphism φ : R → S the ⟨∨,0,1⟩-homomorphism
Idc(φ) : Idc(R) → Idc(S) given by I 7→ Sφ(I)S. It is straightforward to
verify that the functor Idc preserves direct limits.

A matricial F-algebra is an F-algebra of the form Mt1(F)×· · ·×Mtn(F),
where t1, . . . , tn are natural numbers and Mt(F) is the ring of all matrices
of type t × t over the commutative field F. A locally matricial F-algebra is
a direct limit of matricial F-algebras. We denote by F-Loc the category of
locally matricial F-algebras (with unital F-linear ring homomorphisms), and
by F-mat the full subcategory of F-Loc of all matricial F-algebras.

3. The category aux revised

In this section we define an auxiliary category aux. Objects of aux are
finite families BBB = {Bi | i ∈ I} of finite non-empty pairwise disjoint sets.

Let BBB1 = {Bi
1 | i ∈ I1} and BBB2 = {Bj

2 | j ∈ I2} be objects of aux. A
premorphism fromBBB1 toBBB2 consits from a set hhh = {hj | j ∈ I2} of bijections

hj :
∪
i∈I1

(
Aj,i ×Bi

1

)
→ Bj

2,

where AAA = {Aj,i | i ∈ I1 and j ∈ I2} is a family of (possibly empty) fi-
nite sets. We denote the collection of all premorphisms from BBB1 to BBB2 by

pre(BBB1,BBB2). Premorphisms hhh and h̃hh from BBB1 to BBB2 are equivalent, which

we denote by hhh ∼ h̃hh, provided that there exist maps gj,i : Aj,i → Ãj,i such
that

hj(a, b) = h̃j(gj,i(a), b)

for all a ∈ Aj,i and b ∈ Bi
1, as Figure 1 displays.

∪
i∈I1(A

j,i ×Bi
1)∪

i∈I1
(gj,i×1

Bi
1
)
��

hj

))SSS
SSS

SSS
SSS

SSS
SSS

∪
i∈I1(Ã

j,i ×Bi
1)

h̃j

// Bj
2

Figure 1. The equivalence of premorphisms

It is easy to see that the relation ∼ is an equivalence on pre(BBB1,BBB2), in
particular, all the maps gj,i are bijections.

We define morphisms in aux to be the blocks of the equivalence ∼.
The symbol [hhh ] denotes the block containing the premorphism hhh. Given
objects B1, B2, B3 in aux and premorphisms hhh1 ∈ pre(BBB1,BBB2) and hhh2 ∈
pre(BBB2,BBB3), we put

Ak,i :=
∪
j∈I2

(Ak,i
2 ×Aj,i

1 )
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and

hk((a2, a1), b) := hk2(a2, h
j
1(a1, b))

for all b ∈ Bi
1, a1 ∈ Aj,i

1 , and a2 ∈ Ak,j
2 . The family hhh = {hk | k ∈ I3} forms

a premorphism hhh from BBB1 to BBB3 which we denote by hhh2 ◦ hhh1 and which
we call the composition of premorphisms hhh2 and hhh1. It is proved in [64,
Lemma 2.2.] that the equivalence class hhh does not depend on the choice of
the representatives of the classes hhh2 and hhh1 and so we can define the com-
position of morphisms in aux by [hhh2 ] ◦ [hhh1 ] = [hhh2 ◦ hhh1 ]. The composition
of premorphisms is depicted in Figure 2. In [64, Section 2] we have veri-
fied that aux is a category. Recall, that the identity morphism at an object
BBB = {Bi | i ∈ I} in aux corresponds to the equivalence class of the collection
of maps hi : {i} ×Bi → Bi, (i, b) 7→ b.

∪
j∈I2

(
Ak,j

2 ×
(∪

i∈I1(A
j,i
1 ×Bi

1)
))

∪
j∈I2

(
1
A
k,j
2

×hj
1

)
��

≃ //
∪

i∈I1

(∪
j∈I2(A

k,j
2 ×Aj,i

1 )︸ ︷︷ ︸
Ak,i

×Bi
1

)

hk

wwppp
ppp

ppp
ppp

ppp
ppp

ppp
ppp

ppp
pp∪

j∈I2(A
k,j
2 ×Bj

2)

hk
2

��
Bk

3

Figure 2. The composition of premorphisms

To every object BBB = {Bi | i ∈ I} of aux, we have assigned the Boolean
semilattice Λ(BBB) := (P(I),∪) and given a morphism [hhh ] ∈ aux(B1, B2),
the correspondence

J 7→
{
j ∈ I2 |

∪
i∈J

Aj,i ̸= ∅
}
,

where J ∈ P(I1), determines a ⟨∨,0,1⟩-homomorphism Λ([hhh ]) : Λ(BBB1) →
Λ(BBB2). Thus we have defined a functor Λ from the category aux to the cate-
gory bool of finite Boolean join-semilattices. Further, given a commutative
field F, we have defined a functor ∆: aux → F-mat so that there is a natu-
ral equivalence η : Idc ◦∆ → Λ. As the consequence of [64, Lemma 2.9], we
get that

Proposition 3.1. The functor ∆: aux → F-mat lifts, via the natural
equivalence η : Idc ◦∆ → Λ, the functor Λ with respect to Idc (see Figure 3).
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aux
∆ //

Λ
��?

??
??

??
??

F-mat

Idc}}{{
{{
{{
{{
{{

η
≃

vv

bool

Figure 3. The lifting of Λ by Idc ◦∆

4. The correspondence B : dsem → bool revised

In [64, Section 1], we have defined a correspondence B : dsem → bool
as follows: For S ∈ dsem we define B(S) to be the finite Boolean ⟨∅,∪⟩-
semilattice P(J(S)) (recall that J(S) denotes the set of join-irreducible ele-
ments of the ⟨∨,0,1⟩-semilattice S. Given a homomorphism f : S1 → S2 in
dsem, we define its image B(f) : B(S1) → B(S2) to be the map sending

X 7→ {j ∈ J(S2) | j ≤ f(
∨
X)},

for all X ⊆ J(S1). The correspondence B preserves the composition of mor-
phisms but the image of the identity morphism at S may not be the identity
morphism at B(S). Indeed, B(1S) = 1B(S) if and only if the ⟨∨,0,1⟩-semi-
lattice S is Boolean.

For every S ∈ dsem denote by uS and vS the ⟨∨,0,1⟩-homomorphisms
defined by

(4.1)
uS :B(S) → S vS :S → B(S)

X 7→
∨
X x 7→ {j ∈ J(S) | j ≤ x}.

Observe that for every S ∈ dsem, uS◦vS = 1S, and for every homomorphism
f : S1 → S2 in dsem, vS2 ◦ f ◦ uS1 = B(f), that is, the following diagrams

(4.2) S

vS ��>
>>

>>
>

1S // S S1
f // S2

vS2��
B(S)

uS

@@������
B(S1)

uS1

OO

B(f)
// B(S2)

commute.

Lemma 4.1. Let P be an upwards directed partially ordered set without
maximal elements and ⟨Sp, fp,q | p < q in P ⟩ a directed system in dsem. If

⟨S, Fρ | p ∈ P ⟩ = lim−→⟨Sp, fp,q | p < q in P ⟩,
then

(4.3) ⟨S, Fρ ◦ uSp | p ∈ P ⟩ = lim−→⟨B(Sp),B(fp,q) | p < q in P ⟩.

Proof. We denote by Q the Cartesian product P × {0, 1} partially
ordered by ⟨p, i⟩ < ⟨q, j⟩ if and only if p < q. For every p ∈ P we put
S⟨p,0⟩ := Sp and S⟨p,1⟩ := B(Sp). For every ordered pair p < q in P we set
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f⟨p,0⟩,⟨q,0⟩ := fp,q, f⟨p,0⟩,⟨q,1⟩ := vq◦fp,q, f⟨p,1⟩,⟨q,0⟩ := fp,q◦up, and f⟨p,1⟩,⟨q,1⟩ :=
B(fp,q). It follows directly from the commutativity of diagrams (4.2) that

⟨S⟨p,i⟩, f⟨p,i⟩,⟨q,j⟩ | ⟨p, i⟩ < ⟨q, j⟩ in Q⟩

is a directed system in dsem.
We set f⟨p,0⟩ := Fρ : Sp → S and f⟨p,1⟩ := Fρ ◦ up : B(Sp) → S, for all

p ∈ P . We get readily from the definitions that

f⟨p,0⟩ = Fρ = fq ◦ fp,q = f⟨q,0⟩ ◦ f⟨p,0⟩,⟨q,0⟩,

for all p < q in P . We conclude that

⟨S, f⟨p,0⟩ | p ∈ P ⟩ = lim−→⟨S⟨p,0⟩, f⟨p,0⟩,⟨q,0⟩ | p < q in P ⟩

due to the assumption of the lemma.
Given p < q in P , we compute using (4.2) that

f⟨p,0⟩ = Fρ = fq ◦ fp,q = fq ◦ uq ◦ vq ◦ fp,q = f⟨q,1⟩ ◦ f⟨p,0⟩,⟨q,1⟩,
f⟨p,1⟩ = Fρ ◦ up = fq ◦ fp,q ◦ up = f⟨q,0⟩ ◦ f⟨p,1⟩,⟨q,0⟩,
f⟨p,1⟩ = fq ◦ fp,q ◦ up = fq ◦ uq ◦ vq ◦ fp,q ◦ up = fq ◦ uq ◦B(fp,q)

= f⟨q,1⟩ ◦ f⟨p,1⟩,⟨q,1⟩.

Since P has no maximal element, P ×{0} is cofinal in Q = P ×{0, 1}, hence

⟨S, f⟨p,i⟩ | p ∈ P and i ∈ {0, 1}⟩ = lim−→⟨S⟨p,i⟩, f⟨p,i⟩,⟨q,j⟩ | ⟨p, i⟩ < ⟨q, j⟩ in Q⟩.

Since P × {1} are cofinal in Q = P × {0, 1}, we conclude that

⟨S, f⟨p,1⟩ | p ∈ P ⟩ = lim−→⟨S⟨p,1⟩, f⟨p,1⟩,⟨q,1⟩ | p < q in P ⟩,

which is (4.3). �

Lemma 4.1 coincides with [64, Proposition 1.1]. Its proof is straightfor-
ward but it requires numbers of tedious verifications. Therefore we present
another shorter proof here. The proof is based only on the commutativity
of diagrams (4.2), and so it can be generalized for a similar situation in
an arbitrary category. However, we shall need it only in the presented form.

The proof of the following lemma is simple and we leave it to the reader.

Lemma 4.2. Let C be a category with direct limits. Let P and Q be
upwards directed partially ordered sets, ⟨Ap, fp,q | p < q in P ⟩, and ⟨Bp, gp,q |
p < q in Q⟩ directed systems in C, and ⟨A,Fρ | p ∈ P ⟩, ⟨B, gq | q ∈ Q⟩ their
direct limits, respectively. Suppose that for every p ∈ P , there exists p⋆ ∈ Q
and a homomorphism hp : Ap → Bp⋆ such that if p < q in P and p⋆, q⋆ < r in
Q, then qp⋆,r◦hp = qq⋆,r◦hq◦fp,q. Then there exists a unique homomorphism
h : A→ B such that h ◦ Fρ = gp⋆ ◦ hp, for all p ∈ P .
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5. Representation of distributive lattices revised

We denote by Bases the category whose objects are projections π : X →
L of a set X onto a distributive ⟨0,1⟩-lattice L, and whose morphisms are
commutative diagrams

F : X1

π1
��

f // X2

π2
��

L1
f

// L2

,

where π1 : X1 → L1 and π2 : X2 → L2 are objects of the category Bases,
f : L1 → L2 is a ⟨∨,∧,0,1⟩-homomorphism, and f : X1 → X2 is a map
satisfying

(5.1) f(x) = f(y) =⇒ π2(f(x)) = π2(f(y)) = 0,

for all x ̸= y in X1, with the obvious composition of morphisms and identi-
ties.

As before, we denote by C : Bases → DSem the forgetful functor, which
assigns to an object π : X → L the lattice L and to a morphism F = ⟨f,f⟩
the ⟨∨,∧,0,1⟩-homomorphism f .

Further we denote by bases the full subcategory of the category Bases
whose objects are projections of a finite set on a finite distributive lattice.

We shall now define a functor [ Ξ ] from the category bases to the cate-
gory aux: Given an object π : X → L in the category bases and an element
a ∈ L, we set

aπ := {x ∈ X | π(x) ≥ a}.
and given a morphism F = ⟨f,f⟩ in hombases(π1, π2) and an element a ∈ L1,
we define aF := f(aπ1).

Given a set X, we denote by To(X) the set of all total orders on X.
Given a total order α ∈ To(X), we denote by Her(X,α) the set of all
hereditary subsets (including the empty set) of X with respect to α. Given
a subset Y ⊆ X and α ∈ To(X), we denote by α � Y the restriction of the
total order α to Y .

Let X be a finite n-element set, α : α0 < · · · < αn−1, β : β0 < · · · < βn−1

total orders on X, and Y ⊆ X. We write α ∼Y β provided that for every
i < n, αi ̸= βi implies that αi, βi ∈ Y . Thus we have defined the equivalence
relation ∼Y on the set To(X). We denote by [α ]Y the equivalence class
containing the total order α ∈ To(X).

Let X1, X2 be finite sets and f : X1 → X2 a one-to-one map. Given

α : α0 < · · · < αn−1 ∈ To(X1)

we denote by fα the total order

fα : f(α0) < · · · < f(αn−1) ∈ To(f(X1)).
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Definition 5.1. Let π : X → L be an object of the category bases.
For every a ∈ J(L) we set

Ξ(π)a := {α ∈ To(aπ) | bπ /∈ Her(aπ ,α) for all b ∈ J(L) with a < b},
and [ Ξ ] (π) := {Ξ(π)a | a ∈ J(L)}.

Let

F : X1

π1
��

f // X2

π2
��

L1
f

// L2

be a morphism in bases, a ∈ J(L1), and b ∈ J(L2). If f(a) ̸≥ b, we put
domΞ(F )a,b := ∅. If f(a) ≥ b, then aF ⊆ bπ2 , and we denote by domΞ(F )a,b

the set of all classes
[
β′ ]

aF
, where γ ∈ To(bπ2), satisfying the following

properties:

(Ξ1) a
F ∈ Her(bπ2 ∩ f(X1),γ);

(Ξ2) c
π2 /∈ Her(bπ2 ,γ), for every c ∈ J(L2) satisfying b < c ≤ f(a).

Observe that the validity of (Ξ1), (Ξ2) does not depend on the choice
of the representative of the class [γ ]aF . As in [64], our construction makes
use of the following well-known property of lattice homomorphisms (cf. [49,
Exercise 2.63.10]).

Lemma 5.2. Let L1 and L2 be finite distributive lattices and f : L1 →
L2 a ⟨∨,∧,0,1⟩-homomorphism. Then for each b ∈ J(L2) there is c ∈
J(L1) such that f−1( ↑L2 (b)) = ↑L1 (c).

Corollary 5.3. Let πi : Xi → Li, i = 1, 2, be objects in bases, F =
⟨f,f⟩ : π1 → π2 a morphism in bases, and b ∈ J(L2). Then f

−1(bπ2) = cπ1,
for some c ∈ J(L1).

Lemma 5.4. Let

F : X1

π1
��

f // X2

π2
��

L1
f

// L2

be a morphism in bases and b ∈ J(L2). Then the correspondence

⟨[β ]aF ,α⟩ 7→ γ,

where γ ∈ To(bπ2) is such that γ ∼aF β and γ � aF = fα, defines a map

(5.2) Ξ(F )b :
∪

a∈J(L1)

(
domΞ(F )a,b × Ξ(π1)

a
)
→ Ξ(π2)

b.

Proof. Let a ∈ J(L1) and b ∈ J(L2). If f(a) ̸≥ b, then domΞ(F )a,b =
∅. Suppose that f(a) ≥ b, and let [δ]aF ∈ domΞ(F )a,b and α ∈ Ξ(π1)

a.
It follows from (5.1) that f � aπ1 is one-to-one, and so we can define fα.
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According to [64, Lemma 4.1], there is a unique γ ∈ To(bπ2) satisfying
γ ∼aF δ and γ � aF = fα.

We prove that γ ∈ Ξ(π2)
b. Towards a contradiction suppose that there

is d ∈ J(L2) such that b < d and dπ2 ∈ Her(bπ2 ,γ). It follows from
Corollary 5.3 that there is c ∈ J(L1) satisfying f−1(dπ2) = cπ1 . There-
fore cF = dπ2 ∩ f(X1), and so cF ∈ Her(bπ2 ∩ f(X1),γ). Applying (Ξ1) we
get that aF ∈ Her(bπ2 ∩ f(X1)), δ), hence a

F ∈ Her(bπ2 ∩ f(X1)),γ). It
follows that either cF ( aF or aF ⊆ cF , hence either a < c or c ≤ a in L1.

If a < c, then γ � aF = fα and cF ∈ Her((bπ2 ∩ f(X1)),γ). This
implies that cπ1 ∈ Her(α), which is in a contradiction with α ∈ Ξ(π1)

a.
If c ≤ a, then d ≤ f(a), that is, aF ⊆ dπ2 . By our assumption dπ2 ∈
Her(bπ2 ,γ). Since aF ∈ Her(bπ2 ∩ f(X1), δ) and γ �aF δ, we conclude that
dπ2 ∈ Her(bπ2 , δ). This contradicts (Ξ2), since then b < d ≤ f(a) and
dπ2 ∈ Her(bπ2 , δ). �

Lemma 5.5. The map Ξ(F )b, defined by (5.2), is a bijection.

Proof. First we prove that Ξ(F )b is onto. Let β be an arbitrary element
of Ξ(π2)

b. By Corollary 5.3, there exists c ∈ J(L1) with f
−1(bπ2) = cπ1 . It

follows that bπ2 ∩ f(X1) = cF . Since the set

A := {a′ ∈ J(L1) | a′F ∈ Her(bπ2 ∩ f(X1),β)}

contains c, it is non-empty. It is easy to see that the set {a′F | a′ ∈ A} is
totally ordered by inclusion. We denote by a the element of A corresponding
to the minimum aF and we denote by α the total order of aπ1 such that
fα = β � aF . Observe that α ∈ Ξ(π1)

a.
We prove that [β ]aF ∈ domΞ(F )a,b. Since a ∈ A, we have that aF ∈

Her(bπ2 ∩ f(X1),β). Let d ∈ J(L2) satisfy b < d < f(a). Then, since
β ∈ Ξ(π2)

b, we conclude that dπ2 /∈ Her(bπ2 ,β).
Finally we prove that the map Ξ(F )b is one-to-one. Let β ∈ domΞ(π2)

b

and let a ∈ J(L1), α ∈ Ξ(π1)
a be as in the previous paragraph. Suppose

that

Ξ(F )b(⟨
[
β̄
]
āF
, ᾱ⟩) = β,

for some ā ∈ J(L1), ᾱ ∈ Ξ(π1)
ā, and

[
β̄
]
āF

∈ domΞ(F )ā,b. From property

(Ξ1) we infer that āF ∈ Her(bπ2 ∩ f(X1)), β̄). Since β̄ ∼āF β, we have that
āF ∈ Her(bπ2 ∩ f(X1),β), and so ā ∈ A. By the definition, fᾱ = β � āF ,
and so it follows from the properties of Ξ(F )ā that āF is a minimal element

of the set {a′F | a′ ∈ A}, totally ordered by inclusion. We conclude that
ā = a. Now it is easy to see that ᾱ = α and

[
β̄
]
āF

=
[
β̄
]
aF

= [β ]aF . �

Corollary 5.6. Let F be a morphism in the category bases. Then
Ξ(F ) is a premorphism in the category aux.
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Definition 5.7. We say that a morphism

F : X1

π1
��

f // X2

π2
��

L1
f

// L2

in bases is efficient if for every b ∈ J(L2), there exists x ∈ X2 \ f(X1) with
π2(x) = b.

Lemma 5.8. Let

F : X1

π1
��

f // X2

π2
��

L1
f

// L2

be an efficient morphism in bases. Then domΞ(F )a,b ̸= ∅ if and only if
b ≤ f(a), for all a ∈ J(L1), b ∈ J(L2).

Proof. The implication “⇐” follows directly from the definition. We
prove the opposite one. Let a ∈ J(L1) and b ∈ J(L2) satisfy b ≤ f(a). Since
the morphism F is efficient, there is x ∈ X2 \ f(X1) with π2(x) = b. Let
α ∈ Ξ(π1)

a. We choose β : β0 < · · · < βn ∈ To(bπ2) such that x = β0 and
αF ∈ Her(bπ2 ∩ f(X1),β). It is straightforward that [β ]aF ∈ domΞ(F )a,b

and Ξ(F )b(⟨[β ]aF ,α⟩) = β. �

Corollary 5.9. If F = ⟨f,f⟩ : π1 → π2 is an efficient morphism, then
Λ([ Ξ(F ) ]) = B(f).

Lemma 5.10. Let

F : X1

π1
��

f // X2

π2
��

L1
f

// L2

and G : X2

π2
��

g // X3

π3
��

L2 g
// L3

be morphisms in bases. Then [ Ξ(G ◦ F ) ] = [ Ξ(G) ] ◦ [ Ξ(F ) ] .

Proof. According to the definition of the composition of premorphisms
in the category aux,

dom(Ξ(G) ◦ Ξ(F ))a,c =
∪

b∈J(L2)

domΞ(G)b,c × domΞ(F )a,b,

for all a ∈ J(L1), c ∈ J(L3). The composition (Ξ(G) ◦ Ξ(F ))c is a map
defined by the correspondence

⟨⟨
[
γ ′ ]

bG
,
[
β′ ]

aF
⟩,α⟩ 7→ Ξ(G)c

([
γ ′ ]

bG
,Ξ(F )b(⟨

[
β′ ]

aF
,α⟩)

)
.
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In order to prove that [ Ξ(G) ◦ Ξ(F ) ] = [ Ξ(G ◦ F ) ], we define maps ga,c

from dom(Ξ(G) ◦ Ξ(F ))a,c to domΞ(G ◦ F )a,c by

ga,c
(
⟨
[
γ ′ ]

bG
,
[
β′ ]

aF
⟩
)
=
[
γ ′′ ]

aG◦F ,

where γ ′′ ∈ To(cπ3) satisfies γ ′′ ∼bG γ ′ and γ ′′ � bG ∼aG◦F gβ′. Again, it is
easily seen that these properties determine γ ′′ uniquely.

Let a ∈ J(L1), b ∈ J(L2), and c ∈ J(L3)) satisfy f(a) ≥ b and g(b) ≥ c.
Let [γ ′ ]bG ∈ domΞ(G)b,c,

[
β′ ]

aF
∈ domΞ(F )a,b, and α ∈ Ξ(π1)

a. We
verify that

(5.3)
(Ξ(G) ◦ Ξ(F ))c

(([
γ ′ ]

bG
,
[
β′ ]

aF

)
,α
)
=

Ξ(G ◦ F )a,c
(
ga,c

([
γ ′ ]

bG
,
[
β′ ]

aF

)
,α
)
.

First we evaluate the left hand side of the equality (5.3):

(Ξ(G) ◦ Ξ(F ))c
(([

γ ′ ]
bG
,
[
β′ ]

aF

)
,α
)
=

Ξ(G)c
([

γ ′ ]
bG
,Ξ(F )b(

[
β′ ]

aF
,α)

)
=

Ξ(G)c(
[
γ ′ ]

bG
,β),

where β ∈ To(bπ2) satisfies β ∼aF β′ and β � aF = fα, and

Ξ(G)c(
[
γ ′ ]

bG
,β) = γ,

where γ ∈ To(cπ3) satisfies γ ∼bG γ ′, and γ � bG = gβ.
Now we compute the right hand side of (5.3):

Ξ(G ◦ F )a,c
(
ga,c

([
γ ′ ]

bG
,
[
β′ ]

aF

)
,α
)
=

Ξ(G ◦ F )a,c
([

γ ′′ ]
aG◦F ,α

)
,

where γ ′′ ∈ To(cπ3) satisfies γ ′′ ∼bG γ ′ and γ ′′ � bG ∼aG◦F gβ′, and

Ξ(G ◦ F )a,c
([

γ ′′ ]
aG◦F ,α

)
= δ,

where δ ∈ To(cπ3) satisfies δ ∼aG◦F γ ′′ and (g ◦ f)α = δ � aG◦F .
It remains to compare γ and δ. Since f(a) ≥ b, we have that aG◦F ⊆ bG.

The equality β � aF = fα implies gβ � aG◦F = (g ◦ f)α, and since γ � bG =
gβ, we infer that γ � aG◦F = (γ � bG) � aG◦F = (g ◦ f)α. Now γ � bG = gβ
and β ∼aF β′, thus γ � bG ∼aG◦F gβ′, and since γ ∼bG γ ′, we conclude that
γ ∼aG◦F γ ′′. This together with the equality (g ◦ f)α = γ � aG◦F implies
that δ = γ. �

Lemma 5.11. The equality [ Ξ(1π) ] = 1Ξ(π) holds true for all π ∈ bases.

Proof. Let

1π : X

π
��

1X // X

π
��

L
1X

// L
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be the identity morphism at an object π in bases. Note that by the defini-
tion of morphisms in the category bases, the equality 1X = 1L holds true.
Let a, b ∈ J(L). If a � b, then domΞ(1π)

a,b = ∅ by the definition. If a ≥ b,

then domΞ(1π)
a,b is a set of all

[
β′ ]

a1π
satisfying aπ = a1π ∈ Her(X,β′)

and cπ ̸∈ Her(X,β′), for all c ∈ J(L) satisfying b < c ≤ a. It follows that
a = b, hence β′ ∼a1π β′′ for all β′,β′′ ∈ To(bπ), whence domΞ(1π)

a,b is
a one-element set. This proves that [ Ξ(1π) ] = 1Ξ(π). �

Corollary 5.12. Let π be an object of a category bases and F a mor-
phism in bases. We set [ Ξ ] (π) := Ξ(π) and [ Ξ ] (F ) := [ Ξ(F ) ]. Then
the assignment [ Ξ ] forms a functor bases → aux.

The situation we have got at the moment is illustrated in Figure 4.
The arrow B : dsem → bool is dotted since B is not a functor; it only
preserves the composition of morphisms. The trapezium on the left is not
commutative but it commutes if we restrict ourselves to efficient morphisms.

bases
[ Ξ ] //

C

��

aux
∆ //

Λ
��?

??
??

??
??

F-mat

Idc}}{{
{{
{{
{{
{{

η
≃

vv

dsem
B

// bool

Figure 4

6. Lifting of the functor C with respect to Idc

Given an object π : X → L in Bases, we set Fin(π) := {ρ ∈ bases |
ρ ⊆ π}, i.e, Fin(π) denotes the set of all “finite” sub objects of π. Given
π : X → L ∈ Bases, and objects ρ ⊆ σ in Fin(π), we denote by ιρ,σ the
inclusion morphism from ρ to σ. Similarly, given π : X → L ∈ Bases, and
ρ ∈ Fin(π), we denote by ιρ,π the inclusion morphism ρ ↪→ π. Observe
that a composition of efficient morphisms is again efficient. Therefore we
can define an order relation “⊑” on the set Fin(π) as ρ ⊑ σ if ρ ⊆ σ and
the inclusion morphism ιρ,σ is efficient.

Given an object π ∈ bases, we put uπ := uCπ and vπ := vCπ . Observe
that uπ and vπ are the morphisms defined by (4.1).

We denote by m the composition ∆ ◦ [ Ξ ] : bases → F-mat. Recall
that [ Ξ ] is a functor due to Corollary 5.12. Now we show how to extend
the functor m to a functor M : Bases → F-Loc.

Let π : X → L be an object in Bases. Then the set Fin(π), partially
ordered by the relation ⊑, is upwards directed, and ⟨π, ιρ,π | ρ ∈ Fin(π)⟩
is a direct limit of the directed system ⟨ρ, ιρ,σ | ρ ⊑ σ in Fin(π)⟩ in the
category Bases. We set M(π) := Lim−−→⟨m(ρ),m(ιρ,σ) | ρ ⊑ σ in Fin(π)⟩
and we define M(ιρ,π) to be the corresponding limit morphisms.
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Let F : π1 → π2 be a morphism in Bases. For every ρ ∈ Fin(π1) we
select ρ⋆ ∈ Fin(π2) so that the image of F � ρ is contained in ρ⋆, and denote
by Fρ the morphism in hombases(ρ, ρ

⋆) that coincides with the restriction
F � ρ. It is straightforward that if ρ ⊑ σ in Fin(π1) and ρ⋆, σ⋆ ⊑ τ in
Fin(π2), then

(6.1) ιρ⋆,τ ◦ Fρ = ισ⋆,τ ◦ Fσ ◦ ιρ,σ .
ThusM(ιρ⋆,τ)◦m(Fρ) = M(ισ⋆,τ)◦m(Fτ)◦M(ιρ,σ), and, by Lemma 4.2,

there exists a unique F-linear ring homomorphism h : M(π1) → M(π2) sat-
isfying

(6.2) h ◦M(ιρ,π1) = M(ιρ⋆,π2) ◦m(Fρ),

for every ρ ∈ Fin(π1).

Lemma 6.1. The map h does not depend on the choice of the elements
ρ⋆.

Proof. For every ρ ∈ Fin(π1) we select another ρ⋆⋆ ∈ Fin(π2) so that
the image of F � ρ is contained in ρ⋆⋆, and we denote by F ⋆

ρ the morphism
in Bases(ρ, ρ⋆⋆) which coincides with the restriction F � ρ. Then, as above,
there exists a unique F-linear ring homomorphism h⋆ such that

h⋆ ◦M(ιρ,π1) = M(ιρ⋆⋆,π2) ◦m(F ⋆
ρ ),

for every ρ ∈ Fin(π). Now, for each ρ ∈ Fin(π1), we select ρ† ∈ Fin(π2)

such that ρ⋆, ρ⋆⋆ ⊑ ρ†, and denote by F †
ρ the morphism in Bases(ρ, ρ†)

corresponding to the restriction F � ρ. Since
ιρ⋆,ρ† ◦ Fρ = Fρ† ,

we have that

M(ιρ⋆,π2) ◦m(Fρ) = M(ιρ†,π2
) ◦M(ιρ⋆,ρ†) ◦M(Fρ) = M(ιρ†,π2

) ◦m(F †
ρ ),

whence the map h satisfies the equality

h ◦M(ιρ,π1) = M(ιρ†,π2
) ◦m(Fρ†),

for every ρ ∈ Fin(π1). Similarly we get that h⋆ satisfies

h⋆ ◦M(ιρ,π1) = M(ιρ†,π2
) ◦m(Fρ†),

for all ρ ∈ Fin(π1). From the unicity of such a map we deduce that h =
h⋆. �

We set m(F ) := h. It is straightforward that M : Bases → F-Loc is
a direct limits preserving functor.

We denote by ω-Bases the full subcategory of the category Bases whose
objects are π : X → L such that π−1({a}) is infinite for every a ∈ L, and
we set C† := C � ω-Bases.

Proposition 6.2. The functor M lifts the functor C† with respect to
the functor Idc.
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Proof. We have defined (Idc ◦M)(ρ) = (Idc ◦∆)([ Ξ ] (ρ)), for all ρ ∈
Bases, and so η[ Ξ ](ρ) is an isomorphism from (Idc ◦M)(ρ) to B(C(ρ)). We
abbreviate the notation putting ηρ := η[ Ξ ](ρ). Let F : π1 → π2 be a mor-
phism in Bases. By Corollary 5.9 we have that B(C(F )) = Λ([ Ξ(F ) ]).
Since η : Idc ◦ [ Ξ ] → Λ is a natural equivalence, we conclude that

(6.3) B(C(F )) = (ηπ2 ◦ (Idc ◦M)(F ) ◦ η−1
π1
.

Let π : X → L be an object in Bases. By the definition

⟨M(ρ),M(ιρ,π)⟩ρ∈Fin(π) = Lim−−→⟨M(ρ),M(ιρ,σ)⟩ρ⊑σ in Fin(π).

Since the functor Idc preserves direct limits, we infer that that

⟨IdcM(π), IdcM(ιρ,π)⟩ρ∈Fin(π)
is the direct limit

lim−→⟨(Idc ◦M)(ρ), (Idc ◦M)(ιρ,σ) | ρ ⊑ σ in Fin(π)⟩.
It follows from (6.3) that the directed system

⟨(Idc ◦M)(ρ), (Idc ◦M)(ιρ,σ) | ρ ( σ in Fin(π)⟩
is isomorphic, via the isomorphisms {ηρ | ρ ∈ Fin(π)}, to the directed system

⟨B(C(ρ)),B(C(ιρ,σ)) | ρ ⊑ σ in Fin(π)⟩.
Since π ∈ Bases, we infer that the partially ordered set Fin(π) has no
maximal elements. By Lemma 4.1 we get that

⟨C(π),C(ιρ,π) ◦ uρ | ρ ∈ Fin(π)⟩
is the direct limit

lim−→⟨B(C(ρ)),B(C(ιρ,σ)) | ρ ⊑ σ in Fin(π)⟩.
The isomorphisms {ηρ | ρ ∈ Fin(π)} induce a unique isomorphism

ηπ : (Idc ◦M)(π) → C(π)

such that

(6.4) ηπ ◦ (Idc ◦M)(ιρ,π) = C(ιρ,π) ◦ uρ ◦ ηρ .
for all ρ ∈ Fin(π).

Let F : π1 → π2 be a morphism in Bases. As above we select objects
ρ⋆ ∈ Fin(π2) and we define the morphisms Fρ , for all ρ ∈ Fin(π1). It follows
from (6.1) that

B(C(ιρ⋆,τ)) ◦B(C(Fρ)) = B(C(ισ⋆,τ)) ◦B(C(Fσ)) ◦B(C(ιρ,σ)),

for all ρ ⊆ σ in Fin(π1) and all τ ∈ Fin(π2) with ρ⋆, σ⋆ ⊑ τ. Applying
Lemma 4.2, we get that there is a unique homomorphism h : C(π1) → C(π2)
such that

(6.5) h ◦ C(ιρ,π1) ◦ uρ = C(ιρ⋆,π2) ◦ uρ⋆ ◦BC(Fρ),

for all ρ ∈ Fin(π). Now, it follows from (6.2) that

(6.6) (Idc ◦M)(F ) ◦ (Idc ◦M)(ιρ,π) = (Idc ◦M)(ιρ⋆,π2) ◦ (Idc ◦M)(Fρ).
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Applying (6.4) we derive from (6.6) that

(6.7) (Idc ◦M)(F )◦η−1
π1

◦C(ιρ,π1)◦uρ◦ηρ = η−1
π2

◦C(ιρ⋆,π2)◦uρ⋆◦B(C(Fρ))◦ηρ .

Composing (6.7) with ηπ2 from the left and with η−1
p from the right, we get

that

ηπ2 ◦ (Idc ◦M)(F ) ◦ η−1
π1

◦ C(ιρ,π1) ◦ uρ = C(ιρ⋆,π2) ◦ uρ⋆ ◦B(C(Fρ)),

which, according to Lemma 4.2, implies that ηπ2 ◦ (Idc ◦M)(F ) ◦ η−1
π1

= h.
Finally, since by the definition F ◦ ιρ,π1 = ιρ⋆,π2 ◦ Fρ , for all ρ ∈ Fin(π),

we have that

C(F ) ◦ C(ιρ,π1) ◦ uρ = C(ιρ⋆,π2) ◦ uρ⋆ ◦B(C(Fρ)).

We conclude that ηπ2 ◦ (Idc ◦M)(F ) ◦ η−1
π1

= h = C(F ), which proves the
proposition. �

Corollary 6.3. Let Φ: C → DSem be a functor whose image is in
DLat. The functor Φ can be lifted with respect to the functor C† if and only
if it can be lifted with respect to the functor Idc.

Proof. (⇒) Let Ψ: C → Bases be a functor that lifts Φ with respect
to to the functor C†. According to Proposition 6.2, we have that

Idc ◦M ◦Ψ ≃ C† ◦Ψ ≃ Φ,

whence the composition M ◦Ψ lifts the functor Φ with respect to the functor
Idc.

(⇐) Suppose that a functor Θ lifts the functor Φ with respect to the
functor Idc. Given a ring (in particular a locally matricial F-algebra) R, we
denote by RaR the two sided ideal of R generated by an element a ∈ R.
We define a functor Ψ: C → Bases as follows:

• Given an object c ∈ C, we set Ψ(c) : Θ(c)×ω → (Idc ◦Θ)(c) to be
the map given by ⟨a, n⟩ 7→ RaR;

• Given a morphism f : c1 → c2 in C, we define Ψ(f) to be the map
given by the commutative diagram

Ψ(f) : Θ(c1)× ω

Ψ(c1)
��

Θ(f)×ω // Θ(c2)× ω

Ψ(c2)
��

(Idc ◦Θ)(c1)
(Idc ◦Θ)(f)

// (Idc ◦Θ)(c2)

It is straightforward that the functor Ψ lifts the functor Φ with respect to
the functor C†. �

7. Existence and non-existence of liftings

We denote by DLatm the category whose objects are distributive ⟨0,1⟩-
lattices and whose morphisms are one-to-one ⟨∨,∧,0,1⟩-homomorphisms.
We apply Corollary 6.3 to prove that the category DLatm as well as every
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diagram in DLat has a lifting with respect to the functor Idc. We will start
with the category DLatm.

Theorem 7.1. The category DLatm has a lifting with respect to the
functor Idc.

Proof. In accordance with Corollary 6.3 it suffices to find a functor Φ
of the category DLatm with respect to the functor C†. It is easy, we only
have to guarantee that its image is in Bases. Let X be an infinite set. Given
a distributive ⟨0,1⟩-lattice L, we define Φ(L) to be the map L × X → L

defined by ⟨a, x⟩ 7→ a. Given a ⟨∨,∧,0,1⟩-embedding f : L1 → L2, we
define Φ(f) to be the morphism

Φ(f) : L1 ×X

Φ(L1)
��

f×1X // L2 ×X

Φ(L2)
��

L1
f

// L2

in the category ω-Bases. �

As opposed to Theorem 7.1, even a simple finite subcategory of the cat-
egory DLat cannot be lifted with respect to Idc, which is demonstrated in
Example 7.1. Before that, we define the notion of a ⟨0,1⟩-lattice homomor-
phism that separates zero.

Definition 7.2. We say that a ⟨0,1⟩-lattice homomorphism f : L1 →
L2 separates zero provided that f(a) > 0 for all 0 ̸= a ∈ L1.

Observe that if Idc(φ) separates zero for φ : R1 → R2 in F-Alg, then
the F-algebra homomorphism φ is one-to-one.

For an ordinal number α we denote by Cα a well-ordered chain of all
ordinals < α. Given ordinal numbers α and β, we denote by fα,β : Cα → Cβ

the zero separating ⟨0,1⟩-lattice-homomorphism

fα,β(γ) =

{
1 : γ > 0,

0 : γ = 0,

for all γ ∈ Cα. Let D•− be the diagram displayed in Figure 5.

C3

f3,3
))

1C3

55 C3
f3,2 // C2

Figure 5. The diagram D•−

Example 7.1. There is no lifting of the diagram D•− with respect to
the functor Idc.
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Proof. Assume that there is a lifting Φ of D•− with respect to the
functor Idc. Since f3,2 separates zero, Φ(f3,2) is one-to-one. It follows that

Φ(f3,2 ◦f3,3) = Φ(f3,2)◦Φ(f3,3) ̸= Φ(f3,2)◦Φ(1C3) = Φ(f3,2 ◦1C3) = Φ(f3,2),

while f3,2 ◦ f3,3 = f3,2. This is a contradiction. �
Theorem 7.3. Let J be a partially ordered set and D : J → DLat a dia-

gram in DLat. Then the diagram D has a lifting with respect to the functor
Idc.

Proof. Again, by Corollary 6.3, it suffice to find a lifting E of D with
respect to C. Let {Xj | j ∈ J} be a collection of infinite pairwise disjoint
sets. For every j ∈ J we set

Yj :=
∪

i≤j in J

D(i)×Xi,

and we let E(j) : Yj → D(j) be the map sending ⟨a, x⟩ ∈ D(i)×Xi to D(i→
j)(a) (observe that the map is onto because the maps D(j) × Xj → D(j)
are onto). Given j ≤ k in J , we let E(j → k) to be the morphism

E(i→ j) : Yj

E(j)
��

⊆ // Yk

E(k)
��

D(j)
D(j→k)

// D(k)

in ω-Bases. �
The last example represents the diagram (viewed as a subcategory) Df

of the category DLat corresponding to the partially ordered class (α runs
through the class of all ordinals) that cannot be lifted with respect to Idc
(see Figure 6) .

C2

C2

77ppppppppp
C3

@@����
. . . Cα

__>>>>

. . . (2 ≤ α ∈ On)

Figure 6. The subcategory Df

Example 7.2. We denote by Df a subcategory of DLat whose objects
are lattices {Cα | 2 ≤ α ∈ On}. Non-identity morphisms in Df are {fα,2 |
α ∈ On}. The subcategory Df has no lifting with respect to the functor
Idc.

Proof. Assume that there is a lifting Φ of Df with respect to the func-
tor Idc. Assume the contrary. Let α be an ordinal number whose cardinality
is bigger than |Φ(C2)|. Since fα,2 separates zero, Φ(fα,2) : Φ(Cα) → Φ(C2)
is an embedding. This contradicts that |Φ(Cα)| ≥ |α| > |Φ(C2)|. �
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1. Introduction

Representing algebraic lattices as congruence lattices of algebras of-
ten gives rise to very hard open problems. The most well-known of those
problems, the Congruence Lattice Problem, usually abbreviated CLP, asks
whether every distributive algebraic lattice is isomorphic to the congruence
lattice of some lattice, see the survey paper [75]. This problem has been
solved by the third author1 in [83]. For algebraic lattices that are not neces-
sarily distributive, there are several deep results, one of the most remarkable,
due to W.A. Lampe [47], stating that every algebraic lattice with compact
unit is isomorphic to the congruence lattice of some groupoid. This result is
further extended to join-complete, unit-preserving, compactness preserving
maps between two algebraic lattices [48]. Although some of our methods are
formally related to Lampe’s, for example the proof of Theorem 9.1 via Propo-
sition 4.6, we shall be concerned only about distributive algebraic lattices.
This topic contains some not so well-known but also unsolved problems, as,
for example, whether every distributive algebraic lattice is isomorphic to the
congruence lattice of an algebra in some congruence-distributive variety.

If one drops congruence-distributivity, then one would expect the prob-
lems to become easier. Consider, for example, the two following problems:

CGP: Is every distributive algebraic lattice isomorphic to the nor-
mal subgroup lattice of some group?

CMP: Is every distributive algebraic lattice isomorphic to the sub-
module lattice of some module?

The problem CGP was originally posed for finite distributive (semi)lattices
by E.T. Schmidt as [70, Problem 5]. A positive solution was provided by
H. L. Silcock, who proved in particular that every finite distributive lattice
D is isomorphic to the normal subgroup lattice of some finite group G (see
[73]). Later P. P. Pálfy proved that G may be taken finite solvable (see
[55]). However, the general question seemed open until now. Similarly, the
statement of CMP has been communicated to the authors by Jan Trlifaj,
and nothing seemed to be known about the general case.

A common feature of the varieties of all groups and of all modules over
a given ring is that they are congruence-permutable, for example, any two
congruences of a group are permutable. Thus both CGP and CMP are, in
some sense, particular instances of the following question:

CPP: Is every distributive algebraic lattice isomorphic to the con-
gruence lattice of some algebra with permuting congruences? [70,
Problem 3]

Although the exact formulation of [70, Problem 3] asked whether every Ar-
guesian algebraic lattice is isomorphic to the congruence lattice of an algebra

1F. Wehrung
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with permutable congruences, it was mentioned there that even the distribu-
tive case was open. Meanwhile, the Arguesian case was solved negatively by
M.D. Haiman in [40, 39], however, the distributive case remained open.

Recall that an algebra A has almost permutable congruences (see [74]),
if Θ∨Φ = Θ◦Φ∪Φ◦Θ, for all congruences Θ,Φ ∈ ConA (where the notation
Θ◦Φ stands for the usual composition of relations). The three-element chain
is an easy example of a lattice with almost permutable congruences but not
with permutable congruences. On the other hand, it is not difficult to verify
that every congruence almost permutable variety of algebras is congruence
permutable. The last two authors of the present paper2 obtained in [74]
negative congruence representation results of distributive semilattices by
lattices with almost permutable congruences, but nothing was said there
about arbitrary algebras with permutable congruences. Furthermore, our
attempts based on the “uniform refinement properties” introduced in that
paper failed, as these properties turned out to be quite lattice-specific.

In the present paper, we introduce a general framework that makes it
possible to extend the methods of [74] to arbitrary algebras, and thus solving
CPP—and, in fact, its generalization to algebras with almost permutable
congruences — negatively. Hence, both CGP and CMP also have negative
solutions. In fact, the negative solution obtained in CGP for groups extends
to loops, as the variety of all loops is also congruence-permutable. Another
byproduct is that we also get a negative solution for the corresponding prob-
lem for lattice-ordered groups.

Our counterexample is the same as in [60] and in [74], namely the con-
gruence lattice of a free lattice with at least ℵ2 generators in any non-
distributive variety of lattices. We also show that the size ℵ2 is optimal, by
showing that every distributive algebraic lattice with at most ℵ1 compact
elements is isomorphic to the submodule lattice of some module, and also to
the normal subgroup lattice of some locally finite group, see Theorems 6.1
and 7.3. We also prove that every distributive algebraic lattice with at most
countably many compact elements is isomorphic to the ℓ-ideal lattice of
some lattice-ordered group, see Theorem 8.3.

In order to reach our negative results, the main ideas are the following.

(i) Forget about the algebraic structure, just keep the partition lattice
representation.

(ii) State a weaker “uniform refinement property” that settles the neg-
ative result.

For Point (1), we are looking for a very special sort of lattice homomor-
phism of a given lattice into some partition lattice, namely, the sort that is
induced, as in Proposition 3.2, by a semilattice-valued distance, see Defini-
tion 3.1. For a ⟨∨,0⟩-semilattice S and a set X, an S-valued distance on
X is a map δ : X × X → S satisfying the three usual statements charac-
terizing distances (see Definition 3.1). Every such δ induces a map φ from

2J. Tůma and F. Wehrung
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S to the partition lattice of X (see Proposition 3.2), and if δ satisfies the
so-called V-condition, then φ is a join-homomorphism. Furthermore, the V-
condition of type n says that the equivalences in the range of φ are pairwise
(n+1)-permutable. Those “distances” have been introduced by B. Jónsson
for providing a simple proof of Whitman’s Theorem that every lattice can
be embedded into some partition lattice, see [43] or [27, Theorems IV.4.4
and IV.4.8].

While it is difficult to find a suitable notion of morphism between par-
tition lattices, it is easy to do such a thing with our distances, see Defini-
tion 3.1. This makes it possible to define what it means for a commutative
diagram of ⟨∨,0⟩-semilattice S to have a lifting, modulo the forgetful func-
tor, by distances. In particular, we prove, in Theorem 9.2, that the cube
Dac considered in [74, Section 7] does not have a lifting by any diagram of
V-distances “of type 3/2”, that is, the equivalences in the ranges of the corre-
sponding partition lattice representations cannot all be almost permutable.
This result had been obtained only for lattices in [74].

The original proof of Theorem 9.2 was our main inspiration for getting
a weaker “uniformrefinement property”, that we denote here by WURP=

(see Definition 4.1). First, we prove that if δ : X × X → S is an S-valued
V-distance of type 3/2 with range generating S, then the ⟨∨,0⟩-semilattice
Ssatisfies WURP=(see Theorem 4.3). Next, we prove that for any free lat-
tice F with at least ℵ2 generators in any non-distributive variety of lattices,
the compact congruence semilattice ConcF does not satisfy WURP=(see
Corollary 5.8). Therefore, ConF is not isomorphic to ConA, for any algebra
A with almost permutable congruences (see Corollary 5.7).

On the positive side, we explain why all previous attempts at finding
similar negative results for representations of type 2 (and above) failed. We
prove, in particular, that for every distributive ⟨∨,0⟩-semilattice S, there
exists a surjective V-distance δS : XS ×XS � S of type 2, which, moreover,
depends functorially on S(see Theorem 9.1). In particular, the diagram
D◃▹ considered in [76], which is not liftable, with respect to the congruence
lattice functor, in any variety whose congruence lattices satisfy a nontrivial
identity, is nevertheless liftable by V-distancesof type 2.

2. Preliminaries

The following statement of infinite combinatorics is due to C. Kuratowski
[46].

The Kuratowski’s Free Set Theorem [46]. Let n be a positive
integer and X a set. Then |X| ≥ n if and only if for every map ϕ : [X ]n →
[X ]<ω, there exists U ∈ [X ]n+1 such that u ̸∈ ϕ(U \ {u}), for any u ∈ U .

As in [60, 78], only the case n = 2 will be used.



3. V-DISTANCES OF TYPE n 23

3. V-distances of type n

Definition 3.1. Let S be a ⟨∨,0⟩-semilattice and let X be a set. A map
δ : X×X → S is an S-valued distance on X, if the following statements hold:

(i) δ(x, x) = 0, for all x ∈ X.
(ii) δ(x, y) = δ(y, x), for all x, y ∈ X.
(iii) δ(x, z) ≤ δ(x, y) ∨ δ(y, z), for all x, y, z ∈ X.

The kernel of δ is defined as {⟨x, y⟩ ∈ X ×X | δ(x, y) = 0}. The V-condition
on δ is the following condition:

For all x, y ∈ X and all a, b ∈ S such that δ(x, y) ≤ a∨b,
there are n ∈ ω \ {0} and x = z0, z1, . . . , zn+1 = y such
that for all i ≤ n, δ(zi, zi+1) ≤ a in case i is even, while
δ(zi, zi+1) ≤ b in case i is odd.

In case n is the same for all x, y,a, b, we say that the distance δ satisfies the
V-condition of type n, or is a V-distance of type n.

We say that δ satisfies the V-condition of type 3/2, or is a V-distance of
type 3/2, if for all x, y ∈ X and all a, b ∈ S such that δ(x, y) ≤ a ∨ b, there
exists z ∈ X such that either (δ(x, z) ≤ a and δ(z, y) ≤ b) or (δ(x, z) ≤ b
and δ(z, y) ≤ a).

We say that a morphism from λ : X×X → S to µ : Y ×Y → T is a pair
⟨f,f⟩, where f : S → T is a ⟨∨,0⟩-homomorphism and f : X → Y is a map
such that f(λ(x, y)) = µ(f(x), f(y)), for all x, y ∈ X. The forgetful functor
sends λ : X ×X → S to S and ⟨f,f⟩ to f .

Denote by EqX the lattice of all equivalence relations on a set X. For a
positive integer n, we say as usual that α0, α1 ∈ EqX are (n+1)-permutable,
if the compositions αi ◦ α1−i ◦ αi ◦ · · · ◦ αi+n mod 2 of length n + 1, are for
i = 0, 1 equal. In particular, 2-permutable is the same as permutable. With
every distance is associated a homomorphism to some EqX, as follows.

Proposition 3.2. Let S be a ⟨∨,0⟩-semilattice and let δ : X ×X → S

be an S-valued distance. Then one can define a map φ : S → EqX by the
rule φ(a) = {⟨x, y⟩ ∈ X ×X | δ(x, y) ≤ a}, for all a ∈ S. Furthermore,

(i) The map φ preserves all existing meets.
(ii) If δ satisfies the V-condition, then φ is a join-homomorphism.
(iii) If the range of δ join-generates S, then φ is an order-embedding.
(iv) If the distance δ satisfies the V-condition of type n, then all equiv-

alences in the range of φ are pairwise (n+ 1)-permutable.

Any algebra gives rise to a natural distance, namely the map ⟨x,y⟩ 7→
Θ(x,y) giving the principal congruences.

Proposition 3.3. Let n be a positive integer and let A be an algebra with
(n + 1)-permutable congruences. Then the semilattice ConcA of compact
congruences of A is join-generated by the range of a V-distance of type n.

Proof. Let δ : A×A → ConcA be defined by δ(x,y) = ΘA(x,y), the
principal congruence generated by ⟨x,y⟩, for all x,y ∈ A. The assumption
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that A has (n + 1)-permutable congruences means exactly that δ is a V-
distance of type n. �

Of course, A has almost permutable congruences if and only if the canon-
ical distance θA : A × A → ConcA satisfies the V-condition of type 3/2.
We shall focus attention on three often encountered varieties all members of
which have permutable (i.e., 2-permutable) congruences:

• The variety of all right modules over a given ring R. The congru-
ence lattice of a right module M is canonically isomorphic to the
submodule lattice SubM of M . We shall denote by SubcM the
⟨∨,0⟩-semilattice of all finitely generated submodules of M .

• The variety of all groups. The congruence lattice of a group G
is canonically isomorphic to the normal subgroup lattice SubG of
G. We shall denote by SubcG the ⟨∨,0⟩-semilattice of all finitely
generated normal subgroups of G.

• The variety of all ℓ-groups (i.e., lattice-ordered groups), see [1].
The congruence lattice of an ℓ-group G is canonically isomorphic
to the lattice IdℓG of all convex normal subgroups, or ℓ-ideals, of
G. We shall denote by IdℓcG the ⟨∨,0⟩-semilattice of all finitely
generated ℓ-ideals of G. Hence we obtain immediately the follow-
ing result.

Corollary 3.4.
(i) Let M be a right module over any ring R. Then SubcM is join-

generated by the range of a V-distance of type 1 on M .
(ii) Let G be a group. Then SubcG is join-generated by the range of

a V-distance of type 1 on G.
(iii) Let G be an ℓ-group. Then IdℓcG is join-generated by the range of

a V-distance of type 1 on G.

The V-distances corresponding to (i), (ii), and (iii) above are, respec-
tively, given by δ(x,y) = (x− y)R, δ(x,y) = [xy−1] (the normal subgroup
ofG generated by xy−1), and δ(x,y) = G(xy−1) (the ℓ-ideal ofG generated
by xy−1).

The assignments M 7→ SubcM , G 7→ SubcG, and G 7→ IdℓcG can
be canonically extended to direct limits preserving functors to the category
Sem0 of all ⟨∨,0⟩-semilattices with ⟨∨,0⟩-homomorphisms.

4. An even weaker uniform refinement property

The following infinitary axiomWURP= is a weakening of all the various
“uniform refinement properties” considered in [60, 74, 78]. Furthermore,
the proof that follows, aimed at obtaining Theorem 5.6, is very similar to
the proofs of [60, Theorem 3.3] and [74, Theorem 2.1].

Definition 4.1. Let e be an element in a ⟨∨,0⟩-semilattice S. We say
that S satisfiesWURP=(e), if there exists a positive integerm such that for
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all families ⟨ai | i ∈ I⟩ and ⟨bi | i ∈ I⟩ of elements of S such that e ≤ ai ∨ bi
for all i ∈ I, there are an m-sequence ⟨Iu | u < m⟩ of subsets of I such that∪

u<m Iu = I and a family ⟨ci,j | ⟨i, j⟩ ∈ I × I⟩ of elements of S such that
the following statements hold:

(i) ci,j ≤ ai ∨ aj and ci,j ≤ bi ∨ bj , for all u < m and all i, j ∈ Iu.
(ii) e ≤ aj ∨ bi ∨ ci,j , for all u < m and all i, j ∈ Iu.
(iii) ci,k ≤ ci,j ∨ cj,k, for all i, j, k ∈ I.

Say that S satisfies WURP=, if S satisfies WURP=(e) for all e ∈ S.

The following easy lemma is instrumental in the proof of Corollary 5.7.

Lemma 4.2. Let S and T be ⟨∨,0⟩-semilattices, let f : S → T be a weakly
distributive ⟨∨,0⟩-homomorphism, and let e ∈ S. If S satisfies WURP=(e),
then T satisfies WURP=(f(e)).

Theorem 4.3. Let S be a ⟨∨,0⟩-semilattice and δ : X × X → S a V-
distance of type 3/2 with range join-generating S. Then S satisfies WURP=.

Proof. Let e ∈ S. As S is join-generated by the range of δ, there
are a positive integer n and elements xℓ, yℓ ∈ X, for ℓ < n, such that
e =

∨
{δ(xℓ, yℓ) | ℓ < n}. For all i ∈ I and all ℓ < n, from δ(xℓ, yℓ) ≤ ai ∨ bi

and the assumption on δ it follows that there exists zi,ℓ ∈ X such that

(4.1)
either δ(xℓ, zi,ℓ) ≤ ai and δ(zi,ℓ, yℓ) ≤ bi

or δ(xℓ, zi,ℓ) ≤ bi and δ(zi,ℓ, yℓ) ≤ ai.

For all i ∈ I and all ℓ < n, denote by P (i, ℓ) and Q(i, ℓ) the following
statements:

P (i, ℓ) : δ(xℓ, zi,ℓ) ≤ ai and δ(zi,ℓ, yℓ) ≤ bi;

Q(i, ℓ) : δ(xℓ, zi,ℓ) ≤ bi and δ(zi,ℓ, yℓ) ≤ ai.

We shall prove that m = 2n is a suitable choice for witnessing WURP=(e).
We put

Iu := {i ∈ I | (∀ℓ ∈ u)P (i, ℓ) and (∀ℓ ∈ n \ u)Q(i, ℓ)}, for all u ∈ P(n).

We claim that I =
∪
{Iu | u ∈ P(n)}. Indeed, let i ∈ I, and put u = {ℓ < n |

P (i, ℓ)}. It follows from (4.1) that Q(i, ℓ) holds for all ℓ ∈ n \ u, whence
i ∈ Iu. Now we put

ci,j :=
∨
ℓ<n

δ(zi,ℓ, zj,ℓ),

for all i, j ∈ and we prove that the family ⟨ci,j | ⟨i, j⟩ ∈ I × I⟩ satisfies the
required conditions, with respect to the family ⟨Iu | u ∈ U⟩ of 2n subsets of
I. So, let i, j, k ∈ I. The inequality ci,k ≤ ci,j ∨ cj,k holds trivially. Now
suppose that i, j ∈ Iu, for some u ∈ U . Let ℓ < n. If ℓ ∈ u, then

δ(zi,ℓ, zj,ℓ) ≤ δ(zi,ℓ, xℓ) ∨ δ(xℓ, zj,ℓ) ≤ ai ∨ aj ,

δ(xℓ, yℓ) ≤ δ(xℓ, zj,ℓ) ∨ δ(zj,ℓ, zi,ℓ) ∨ δ(zi,ℓ, yℓ) ≤ aj ∨ ci,j ∨ bi,
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while if ℓ ∈ n \ u,
δ(zi,ℓ, zj,ℓ) ≤ δ(zi,ℓ, yℓ) ∨ δ(yℓ, zj,ℓ) ≤ ai ∨ aj ,

δ(xℓ, yℓ) ≤ δ(xℓ, zi,ℓ) ∨ δ(zi,ℓ, zj,ℓ) ∨ δ(zj,ℓ, yℓ) ≤ bi ∨ ci,j ∨ aj .

whence both inequalities δ(zi,ℓ, zj,ℓ) ≤ ai ∨ aj and δ(xℓ, yℓ) ≤ aj ∨ bi ∨ ci,j
hold in any case. It follows that ci,j ≤ ai ∨ aj and e ≤ aj ∨ bi ∨ ci,j .
Exchanging x and y in the argument leading to the first inequality also
yields that ci,j ≤ bi ∨ bj . �

Corollary 4.4. Let A be an algebra with almost permutable congru-
ences. Then ConcA satisfies WURP=.

Remark 4.5. In case the distance δ satisfies the V-condition of type
1, the statement WURP= in Theorem 4.3 can be strengthened by taking
m = 1 in Definition 4.1. Similarly, if A is an algebra with permutable
congruences, then ConcA satisfies that strengthening of WURP=. In par-
ticular, as any group, resp. any module, has permutable congruences, both
SubcG, for a group G, and SubcM , for a module M , satisfy the strength-
ening of WURP= obtained by taking m = 1 in Definition 4.1.

As we shall see in Theorem 5.6, not every distributive ⟨∨,0⟩-semilat-
tice can be join-generated by the range of a V-distance of type 3/2. The
situation changes dramatically for type 2. It is proved in [26, Appendix 7]
that any modular algebraic lattice is isomorphic to the congruence lattice of
an algebra with 3-permutable congruences. This easily implies the following
result; nevertheless, we provide a much more direct argument, which will be
useful for the proof of Theorem 9.1.

Proposition 4.6. Any distributive ⟨∨,0⟩-semilattice is the range of
some V-distance of type 2.

Proof. Let S be a distributive ⟨∨,0⟩-semilattice. We first observe that
the map µS : S× S → S defined by the rule

(4.2) µS(x, y) :=

{
x ∨ y, if x ̸= y,

0, if x = y

is a surjective S-valued distance on S. Now suppose that we are given a
surjective S-valued distance δ : X ×X → S, and let x, y ∈ X and a, b ∈ S

be such that δ(x, y) ≤ a ∨ b. Since S is distributive, there are a′ ≤ a and
b′ ≤ b such that δ(x, y) = a′ ∨ b′. We put X ′ = X ∪ {u, v}, where u and v
are two distinct outside points, and we extend δ to a distance δ′ on X ′ by
putting δ′(z, u) := δ(z, x)∨a′ and δ′(z, v) := δ(z, y)∨a′, for all z ∈ X, while
δ′(u, v) = b′. It is straightforward to verify that δ′ is an S-valued distance
on X ′ extending δ. Furthermore, δ′(x, u) = a′ ≤ a, δ′(u, v) = b′ ≤ b, and
δ′(v, y) = a′ ≤ a. Iterating this construction transfinitely, taking direct
limits at limit stages, yields an S-valued V-distance of type 2 extending
δ. �
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5. Failure of WURP= in ConcF, for F free bounded lattice

The main proof of the present section, that is, the proof of Theorem 5.6,
follows the lines of the proofs of [60, Theorem 3.3] and [74, Corollary 2.1].
However, there are a few necessary changes, mainly due to the new “uni-
form refinement property” not being the same as the previously considered
ones. As the new result extends to any algebra, and not only lattices (see
Corollary 5.7), we feel that it is still worthwhile to show the main lines of
the proof in some detail.

From now on until Lemma 5.5, we shall fix a non-distributive lattice vari-
ety V. For every set X, denote by BV(X) (or B(X) in case V is understood)
the bounded lattice in V freely generated by two-element chains si < ti, for
i ∈ X. Note that if Y is a subset of X, then there is a unique retraction
from B(X) onto B(Y ), sending each si to 0 and each ti to 1, for every
i ∈ X \ Y . Thus, we shall often identify B(Y ) with the bounded sublattice
of B(X) generated by all si and ti (i ∈ Y ). Moreover, the above mentioned
retraction from B(X) onto B(Y ) induces a retraction from ConcB(X) onto
ConcB(Y ). Hence, we shall also identify ConcB(Y ) with the corresponding
subsemilattice of ConcB(X).

Now we fix a set X such that |X| ≥ ℵ2. We denote, for all i ∈ X, by ai

and bi the compact congruences of B(X) defined by

(5.1) ai := Θ(0, si) ∨Θ(ti,1); bi := Θ(si, ti).

In particular, note that ai ∨ bi = 1, the largest congruence of B(X).
Now, towards a contradiction, suppose that there are a positive integer n,

a decomposition X =
∪
{Xk | k < n}, and a family ⟨ci,j | ⟨i, j⟩ ∈ X ×X⟩ of

elements of ConcB(X) witnessing the statement that ConcB(X) satisfies
WURP=(1), where 1 denotes the largest congruence of B(X). We pick
k < n such that |Xk| = |X|. By “projecting everything on B(Xk)” (as in
[74, page 224]), we might assume that Xk = X.

Since the Con functor preserves direct limits, for all i, j ∈ X, there
exists a finite subset F ({i, j}) of X such that both ci,j and cj,i belong to
ConcB(F ({i, j})). By Kuratowski’s Theorem, there are distinct elements
0, 1, 2 ofX such that 0 ̸∈ F ({1, 2}), 1 ̸∈ F ({0, 2}), and 2 ̸∈ F ({0, 1}). Denote
by π : B(X) � B({0, 1, 2}) the canonical retraction. For every i ∈ {0, 1, 2},
denote by i′ and i′′ the other two elements of {0, 1, 2}, arranged in such a
way that i′ < i′′. We put di := (Conc π)(ci′,i′′), for all i ∈ {0, 1, 2}.

Applying the semilattice homomorphism Conc π to the inequalities sat-
isfied by the elements ci,j yields

(5.2) d0 ⊆ a1 ∨a2, b1 ∨ b2; d1 ⊆ a0 ∨a2, b0 ∨ b2; d2 ⊆ a0 ∨a1, b0 ∨ b1;

(5.3) d0 ∨ a2 ∨ b1 = d1 ∨ a2 ∨ b0 = d2 ∨ a1 ∨ b0 = 1;

(5.4) d1 ⊆ d0 ∨ d2.

As in [60, Lemma 2.1], it is not hard to prove the following.
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Lemma 5.1. The congruence di belongs to ConcB({i′, i′′}), for all i ∈
{0, 1, 2}.

Since V is a non-distributive variety of lattices, it follows from a classical
result of lattice theory that V contains as a member some lattice M ∈
{M3,N5}. Decorate the lattice M with three 2-element chains xi < yi (for
i ∈ {0, 1, 2}) as in [60], which we illustrate on Figure 1.
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•y2 = a

• x1 = b
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��
�

•y0 = c
??

??
?

•
x0 = x2 = 0

Figure 1. The decorations of M3 and N5.

The relevant properties of these decorations are summarized in the two
following straightforward lemmas.

Lemma 5.2. The decorations defined above satisfy the following inequal-
ities

x0 ∧ y1 ≤ x1; y1 ≤ x1 ∨ y0; x1 ∧ y0 ≤ x0; y0 ≤ x0 ∨ y1;
x1 ∧ y2 ≤ x2; y2 ≤ x2 ∨ y1; x2 ∧ y1 ≤ x1; y1 ≤ x1 ∨ y2,

but y2 � x2 ∨ y0.

Lemma 5.3. The sublattice of M generated by {x′i, x′′i , y′i, y′′i } is distribu-
tive, for all i ∈ {0, 1, 2}.

Now we shall denote byD be the free product (i.e., the coproduct) of two
2-element chains, say u0 < v0 and u1 < v1, in the variety of all distributive
lattices. The lattice D is diagrammed on Figure 2.

The join-irreducible elements of D are u0, u1, v0, v1, u
′
0 := u0 ∧ v1, u′1 :=

u1∧v0, and w := v0∧v1. Since D is finite distributive, its congruence lattice
is finite Boolean, with seven atoms p := ΘD(p∗, p), for p ∈ J(D) (where p∗
denotes the unique lower cover of p in D), that is,

u0 = Θ+
D(u0, v1); u1 = Θ+

D(u1, v0);

v0 = Θ+
D(v0, u0 ∨ v1); v1 = Θ+

D(v1, u1 ∨ v0);
u′
0 = Θ+

D(u0 ∧ v1, u1); u′
1 = Θ+

D(u1 ∧ v0, u0);
w = ΘD((u0 ∧ v1) ∨ (u1 ∧ v0), v0 ∧ v1).

For all i ∈ {0, 1, 2}, let πi : B({i′, i′′}) → D be the unique lattice homo-
morphism sending si′ 7→ u0, ti′ 7→ v0, si′′ 7→ u1, and ti′′ 7→ v1. Furthermore,
denote by ρ : B({0, 1, 2}) → M the unique lattice homomorphism sending
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si 7→ xi and ti 7→ yi (for all i ∈ {0, 1, 2}); denote by ρi the restriction of ρ
to B({i′, i′′}).

We shall restate [60, Lemma 3.1] here for convenience.

Lemma 5.4. Let L be any distributive lattice, let a, b, a′, b′ be elements
of L. Then the equality Θ+

L(a, b) ∩Θ+
L(a

′, b′) = Θ+
L(a ∧ a

′, b ∨ b′) holds.

Now we put ei := (Conc πi)(di), for all i ∈ {0, 1, 2}.
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•
u0 ∧ u1 = 0

Figure 2. The distributive lattice D.

Lemma 5.5. The containments e− ⊆ ei ⊆ e+ hold for all i ∈ {0, 1, 2},
where we put

e− = Θ+
D(u0 ∧ v1, u1) ∨Θ+

D(v1, u1 ∨ v0),
e+ = Θ+

D(u0 ∧ v1, u1) ∨Θ+
D(v1, u1 ∨ v0) ∨Θ+

D(u1 ∧ v0, u0) ∨Θ+
D(v0, u0 ∨ v1).

Proof. Applying Conc πi to the inequalities (5.2) and (5.3) yields the
following inequalities:

(5.5) ei ⊆ Θ(0, u0) ∨Θ(0, u1) ∨Θ(v0, 1) ∨Θ(v1, 1),

(5.6) ei ⊆ Θ(u0, v0) ∨Θ(u1, v1),

(5.7) ei ∨Θ(0, u1) ∨Θ(v1, 1) ∨Θ(u0, v0) = 1.

By using Lemma 5.4 and the distributivity of ConD, we obtain, by meeting
(5.5) and (5.6), the inequality ei ⊆ e+. On the other hand, by using (5.7)
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together with the equality

Θ(0, u1) ∨Θ(v1, 1) ∨Θ(u0, v0) = u0 ∨ u1 ∨ u′
1 ∨ v0 ∨w,

(see Figure 2), we obtain that e− = u′
0 ∨ v1 ⊆ ei. �

Now, for all i ∈ {0, 1, 2}, it follows from Lemma 5.3 that there exists a
unique lattice homomorphism φi : D → M such that φi◦πi = ρi. Since Conc
is a functor, we get from this and from Lemma 5.5 that for all i ∈ {0, 1, 2},

(5.8)

(Conc ρ)(di) = (Conc φi)(ei) ⊆ (Conc φi)(e
+) =

(Conc φi)(Θ
+(u0 ∧ v1, u1) ∨Θ+(v1, u1 ∨ v0)∨

Θ+(u1 ∧ v0, u0) ∨Θ+(v0, u0 ∨ v1)) =
Θ+(xi′ ∧ yi′′ , xi′′) ∨Θ+(yi′′ , xi′′ ∨ yi′)∨
Θ+(xi′′ ∧ yi′ , xi′) ∨Θ+(yi′ , xi′ ∨ yi′′).

while

(5.9)

(Conc ρ)(di) = (Conc φi)(ei) ⊇ (Conc φi)(e
−)

= (Conc φi)(Θ
+(u0 ∧ v1, u1) ∨Θ+(v1, u1 ∨ v0))

= Θ+(xi′ ∧ yi′′ , xi′′) ∨Θ+(yi′′ , xi′′ ∨ yi′).
In particular, we obtain, using Lemma 5.2,

(Conc ρ)(d0) = 0,

(Conc ρ)(d2) = 0,

while (Conc ρ)(d1) ⊇ Θ+(x0 ∧ y2, x2) ∨Θ+(y2, x2 ∨ y0) ̸= 0.

On the other hand, by applying Conc ρ to (5.4), we obtain that

(Conc ρ)(d1) ⊆ (Conc ρ)(d0) ∨ (Conc ρ)(d2),

a contradiction. Therefore, we have proved the following theorem.

Theorem 5.6. Let V be any non-distributive variety of lattices, let X
be any set such that |X| ≥ ℵ2. Denote by BV(X) the free product in V of
X copies of a two-element chain with a least and a largest element added.
Then ConcBV(X) does not satisfy WURP= at its largest element.

A “local” version of Theorem 5.6 is presented in Theorem 9.2.
Observe that ConcBV(X), being the semilattice of compact congruences

of a lattice, is distributive.
As in [60, Corollary 4.1], we obtain the following.

Corollary 5.7. Let L be any lattice that admits a lattice homomor-
phism onto a free bounded lattice in the variety generated by either M3 or N5

with ℵ2 generators. Then ConcL does not satisfy WURP=. In particular,
there exists no V-distance of type 3/2 with range join-generating ConcL.
Hence there is no algebra A with almost permutable congruences such that
ConL ≃ ConA.
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Proof. The first part of the proof goes like the proof of [60, Corollary
4.1], using Lemma 4.2. The rest of the conclusion follows from Theorem 4.3.

�

Corollary 5.8. Let V be any non-distributive variety of lattices and
let F be any free (resp., free bounded) lattice with at least ℵ2 generators in
V. Then there exists no V-distance of type 3/2 with range join-generating
ConcF. In particular, there is no algebra A with almost permutable congru-
ences such that ConF ≃ ConA.

By using Cor 3.4, we thus obtain the following.

Corollary 5.9. Let V be a non-distributive variety of lattices, let F be
any free (resp., free bounded) lattice with at least ℵ2 generators in V, and
put D := ConF—a distributive, algebraic lattice with ℵ2 compact elements.
Then there is no module M (resp., no group G, resp. no ℓ-group G) such

that SubM ≃ D (resp., SubG ≃ D, IdℓG ≃ D).

Hence, not every distributive algebraic lattice is isomorphic to the sub-
module lattice of some module, or to the normal subgroup lattice of some
group. However, our proof of this negative result requires at least ℵ2 com-
pact elements. As we shall see in Sections 6 and 7, the ℵ2 bound is, in both
cases of modules and groups, optimal.

6. Representing distributive algebraic lattices with at most ℵ1

compact elements as submodule lattices of modules

In this section we deal with congruence lattices of right modules over
rings.

Theorem 6.1. Every distributive ⟨∨,0⟩-semilattice of size at most ℵ1 is
isomorphic to the submodule lattice of some right module.

Proof. Let S be a distributive ⟨∨,0⟩-semilattice of size at most ℵ1. If
S has a largest element, then it follows from the main result of [79] that
S is isomorphic to the semilattice Idc(R) of all finitely generated two-sided
ideals of some (unital) von Neumann regular ring R.

In order to reduce ideals to submodules, we use a well-known trick.
As R is a bimodule over itself, the tensor product R = Rop ⊗ R can be
endowed with a structure of (unital) ring, with multiplication satisfying
(a⊗b) · (a′⊗b′) = (a′a)⊗(bb′) (both a′a and bb′ are evaluated in R). Then
R is a right R-module, with scalar multiplication given by x · (a⊗b) = axb,
and the submodules of RR are exactly the two-sided ideals of R. Hence,
SubcRR = Idc(R) ≃ S.

In case S has no unit, it is an ideal of the distributive ⟨∨,0,1⟩-semilat-
tice S′ = S ∪ {1} for a new largest element 1. By the previous paragraph,
S′ ≃ SubcM for some right module M , hence S ≃ SubcN where N is
the submodule of M consisting of those elements x ∈ M such that the
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submodule generated by x is sent to an element of S by the isomorphism
SubcM ≃ S′. �

The commutative case is quite different. For example, for the ideal
lattice of a commutative von Neumann regular ring R is finite, then, as
it is distributive and complemented; it must be Boolean. In particular, the
three-element chain is not isomorphic to the ideal lattice of any commutative
von Neumann regular ring. Even if regularity is removed, not every finite
distributive lattice is allowed. For example, one can prove the following
result: A finite distributive lattice D is isomorphic to the submodule lattice
of a module over some commutative ring if and only if D is isomorphic to
the ideal lattice of some commutative ring, if and only if D is a product
of chains. In particular, the square 2 × 2 with a new bottom (resp., top)
element added is not isomorphic to the submodule lattice of any module
over a commutative ring.

7. Representing distributive algebraic lattices with at most ℵ1

compact elements as normal subgroup lattices of groups

Every nonabelian simple group is “neutral” in the sense of [19]. Hence,
the direction (1) ⇒ (5) in [19, Theorem 8.5] yields the following well-known
result, which holds despite the failure of congruence-distributivity in the
variety of all groups.

Lemma 7.1. Let n < ω and ⟨Gi | i < n⟩ be a finite sequence of simple
non-abelian groups. Then the normal subgroups of

∏
i<nGi are exactly the

trivial ones, namely the products of the form
∏

i<nH i, where H i is either

Gi or {1Gi}, for all i < n. Consequently, Sub
(∏

i<nGi

)
≃ 2n.

We denote by F the class of all finite products of alternating groups of
the form An, for n ≥ 5. For a group homomorphism f : G → H, we denote
by Sub f : SubG → SubH the ⟨∨,0⟩-homomorphism that with any normal
subgroup X of G associates the normal subgroup of H generated by f(X).
The following square amalgamation result is crucial. It is an analogue for
groups of [28, Theorem 1] (for lattices) or [79, Theorem 4.2] (for regular
algebras over a division ring).

Lemma 7.2. Let G0,G1,G2 be groups in F and let f1 : G0 → G1 and
f2 : G0 → G2 be group homomorphisms. Let B be a finite Boolean semilat-
tice, and, for i ∈ {1, 2}, let gi : SubGi → B be ⟨∨,0⟩-homomorphisms such
that

(7.1) g1 ◦ Sub f1 = g2 ◦ Sub f2.

Then there are a group G in F, group homomorphisms gi : Gi → G, for
i ∈ {1, 2}, and an isomorphism α : SubG → B such that g1 ◦ f1 = g2 ◦ f2
and α ◦ Sub gi = gi for all i ∈ {1, 2}.
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Outline of proof. We follow the lines of the proofs of [28, Theorem
1] or [79, Theorem 4.2]. First, by decomposing B as a finite power of 2, ob-
serving that F is closed under finite direct products, and using Lemma 7.1,
we reduce to the case where B = 2, the two-element chain. Next, denot-
ing by h the ⟨∨,0⟩-homomorphism appearing on both sides of (7.1), we
put G′

0 = {x ∈ G0 | h([x ]) = 0} (where [x ] denotes, again, the normal
subgroup generated by x), and, similarly, G′

i = {x ∈ Gi | gi([x ]) = 0}, for
i ∈ {1, 2}. So G′

i is a normal subgroup of Gi, for all i ∈ {0, 1, 2}, and
replacing Gi by Gi/G

′
i makes it possible to reduce to the case where both

g1 and g2 separate zero while both f1 and f2 are group embeddings.
Hence the problem that we must solve is the following: given group

embeddings fi : G0 → Gi, for i ∈ {1, 2}, we must find a finite, simple, non-
abelian group G with group embeddings gi : Gi → G such that g1 ◦ f1 =
g2 ◦ f2. By the positive solution of the amalgamation problem for finite
groups (see [53, Section 15]), followed by embedding the resulting group
into some alternating group with index at least 5, this is possible. �

Now every distributive ⟨∨,0⟩-semilattice of size at most ℵ1 is the direct
limit of some direct system of finite Boolean ⟨∨,0⟩-semilattices and ⟨∨,0⟩-
homomorphisms; furthermore, we may assume that the indexing set of the
direct system is a 2-ladder, that is, a lattice with zero where every interval
is finite and every element has at most two immediate predecessors. Hence,
by imitating the method of proof used in [28, Theorem 2] or [79, Theorem
5.2], it is not difficult to obtain the following result.

Theorem 7.3. Every distributive ⟨∨,0⟩-semilattice of size at most ℵ1

is isomorphic to the finitely generated normal subgroup semilattice of some
group which is a direct limit of members of F.

Reformulating the result in terms of algebraic lattices rather than semi-
lattices, together with the observation that all direct limits of groups in F
are locally finite, gives the following.

Corollary 7.4. Every distributive algebraic lattice with at most ℵ1

compact elements is isomorphic to the normal subgroup lattice of some locally
finite group.

8. Representing distributive algebraic lattices with at most ℵ0

compact elements as ℓ-ideal lattices of ℓ-groups

The variety of ℓ-groups is quite special, as it is both congruence-distri-
butive and congruence-permutable. The following lemma does not extend
to the commutative case (for example, Z× Z cannot be embedded into any
simple commutative ℓ-group).

Lemma 8.1. Every ℓ-group can be embedded into some simple ℓ-group.
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Proof. It follows from [56, Corollary 5.2] that every ℓ-group G embeds
into an ℓ-group H in which any two positive elements are conjugate. In
particular, H is simple. �

The following result is a “one-dimensional” analogue for ℓ-groups of
Lemma 7.2.

Lemma 8.2. For any ℓ-group G, any finite Boolean semilattice B, and
any ⟨∨,0⟩-homomorphism f : IdℓcG → B, there are an ℓ-group H, an ℓ-

homomorphism f : G → H, and an isomorphism α : IdℓcH → B such that

f = α ◦ Idℓc f .

Proof. Suppose first that B = 2. Let G(x) denote the ℓ-ideal gen-
erated by x. Observing that I := {x ∈ G | f(G(x)) = 0} is an ℓ-ideal of
G, we let H be any simple ℓ-group extending G/I (see Lemma 8.1), we
let f : G → H be the composition of the canonical projection G � G/I

with the inclusion map G/I ↪→ H, and we let α : IdℓcH → 2 be the unique
isomorphism.

Now suppose that B = 2n, for a natural number n. For each i < n, we
apply the result of the paragraph above to the ith component f i : IdℓcG → 2
of f , getting a simple ℓ-group H i, an ℓ-homomorphism fi : G → H i, and
the isomorphism αi : IdℓcH i → 2. Then we put H :=

∏
i<nH i, f : x 7→

⟨fi(x) | i < n⟩, and we letα : IdℓcH → 2n be the canonical isomorphism. �

Theorem 8.3. Every distributive at most countable ⟨∨,0⟩-semilattice
is isomorphic to the semilattice of all finitely generated ℓ-ideals of some ℓ-
group.

Equivalently, every distributive algebraic lattice with (at most) count-
ably many compact elements is isomorphic to the ℓ-ideal lattice of some
ℓ-group.

Proof. It follows from [12, Theorem 3.1] (see also [25, Theorem 6.6])
that every distributive at most countable ⟨∨,0⟩-semilattice S can be ex-
pressed as the direct limit of a sequence ⟨Bn | n < ω⟩ of finite Boolean
semilattices, with all transition maps fn : Bn → Bn+1 and limiting maps
gn : Bn → S being ⟨∨,0⟩-homomorphisms. We fix an ℓ-group G0 with an

isomorphism α0 : IdℓcG0 � B0. Suppose having constructed an ℓ-group Gn

with an isomorphism αn : IdℓcGn → Bn. Applying Lemma 8.2 to fn ◦ αn,
we obtain an ℓ-group Gn+1, an ℓ-homomorphism fn : Gn → Gn+1, and an
isomorphism αn+1 : IdℓcGn+1 → Bn+ 1 such that fn ◦αn = αn+1 ◦ Idℓc fn.
Defining G as the direct limit of the sequence

G0
f0−→ G1

f1−→ G2
f2−→ · · · · · · ,

an elementary categorical argument yields an isomorphism from IdℓcG onto
the direct limit S of the sequence ⟨Bn | n < ω⟩. �
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9. Functorial representation by V-distances of type 2

Observe that the argument of Proposition 4.6 is only a small modification
(with a more simple-minded proof) of B. Jónsson’s proof that every modular
lattice has a type 2 representation, see [43] or [27, Theorem IV.4.8]. It
follows from Corollary 5.7 that “type 2” cannot be improved to “type 1”.
In view of Proposition 3.2, this is somehow surprising, as every distributive
lattice has an embedding with permutable congruences into some partition
lattice. This illustrates the observation that one can get much more from
a distance than from an embedding into a partition lattice. We shall now
present a strengthening of Proposition 4.6 that shows that the construction
can be made functorial. We introduce notations for the following categories:

(1) DSemm, the category of all distributive ⟨∨,0⟩-semilattices with
⟨∨,0⟩-embeddings.

(2) Dist, the category of all surjective distances of the form δ : X ×
X � S with kernel the identity and S a distributive ⟨∨,0⟩-semi-
lattice, with morphisms (see Definition 3.1) of the form

⟨f,f⟩ : X ×X

λ ��

⟨f,f⟩ // Y × Y

µ
��

S
f

// T

with both f and f one-to-one.
(3) Dist2, the full subcategory of Dist of all V-distances of type 2.

Furthermore, denote by Π: Dist → DSemm the forgetful functor (see
Definition 3.1).

Theorem 9.1. There exists a direct limits preserving functor

Φ: DSemm → Dist2

such that the composition Π ◦ Φ is equivalent to the identity.

Hence the functor Φ assigns to each distributive ⟨∨,0⟩-semilattice S a
set XS together with a surjective S-valued V-distance δS : XS ×XS � S of
type 2.

Proof. The proof of Proposition 4.6 depends of the enumeration order
of a certain transfinite sequence of quadruples ⟨x, y,a, b⟩, which prevents it
from being functorial. We fix this by adjoining all such quadruples simulta-
neously, and by describing the corresponding extension. So, for a distance
δ : X ×X → S, we put S− = S \ {0}, and

H(δ) = {⟨x, y,a, b⟩ ∈ X ×X × S− × S− | δ(x, y) = a ∨ b}.

For ξ := ⟨x, y,a, b⟩ ∈ H(δ), we put x0ξ = x, x1ξ = y, aξ = a, and bξ = b.

Now we put X ′ := X∪{uiξ | ξ ∈ H(δ)} and i ∈ {0, 1}, where the elements uiξ
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are pairwise distinct symbols outside X. We define a map δ′ : X ′ ×X ′ → S

by requiring δ′ to extend δ, with value zero on the diagonal, and by the rule

δ′(uiξ, u
j
η) =

{
|i− j| · bξ, if ξ = η,

aξ ∨ aη ∨ δ(xiξ, x
j
η), if ξ ̸= η,

δ′(uiξ, z) = δ′(z, uiξ) = δ(z, xiξ) ∨ aξ,

for all ξ, η ∈ H(δ), all i, j ∈ {0, 1}, and all z ∈ X.
It is straightforward, though somewhat tedious, to verify that δ′ is an

S-valued distance on X ′, that it extends δ, and that its kernel is the identity
of X ′ in case the kernel of δ is the identity of X (because the semilattice
elements aξ and bξ are non-zero). Furthermore, if S is distributive, then
every V-condition problem for δ of the form δ(x, y) ≤ a∨b can be refined to
a problem of the form δ(x, y) = a′ ∨ b′, for some a′ ≤ a and b′ ≤ b (because
S is distributive), and such a problem has a solution of type 2 for δ′. Namely,
in case both a′ and b′ are non-zero (otherwise the problem can be solved in
X), put ξ := ⟨x, y,a′, b′⟩, and observe that δ′(x, u0ξ) = a′, δ′(u0ξ , u

1
ξ) = b′,

and δ′(u1ξ , y) = a′.

Hence, if we put ⟨X0, δ0⟩ := ⟨X, δ⟩, then ⟨Xn+1, δn+1⟩ = ⟨X ′
n, δ

′
n⟩,

for all n < ω, and finally X :=
∪

n<ωXn and δ :=
∪

n<ω δn, the pair

Ψ(⟨X, δ⟩) = ⟨X, δ⟩ is an S-valued V-distance of type 2 extending ⟨X, δ⟩.
Every morphism ⟨f,f⟩ : ⟨X,λ⟩ → ⟨Y, µ⟩ in S extends canonically to a mor-
phism ⟨f ′,f⟩ : ⟨X ′, λ′⟩ → ⟨Y ′, µ′⟩ (the underlying semilattice map f is the
same), by defining

f ′(uiξ) := uifξ, for all ξ ∈ H(λ) and all i < 2,

where we put, of course,

f⟨x, y,a, b⟩ := ⟨f(x), f(y),f(a),f(b)⟩, for all ⟨x, y,a, b⟩ ∈ H(λ).

Hence, by an easy induction argument, ⟨f,f⟩ extends canonically to
a morphism Ψ(⟨f,f⟩) = ⟨f,f⟩ : ⟨X,λ⟩ → ⟨Y , µ⟩, and the correspondence
⟨f,f⟩ 7→ ⟨f,f⟩ is itself a functor. As the construction defining the corre-
spondence ⟨X, δ⟩ 7→ ⟨X ′, δ′⟩ is local, the functor Ψ preserves direct limits.

It remains to find something to start with, to which we can apply Ψ.
A possibility is to use the distance µS, given by (4.2), introduced in the
proof of Proposition 4.6. The correspondence S 7→ µS defines a functor,
in particular, if f : S → T is an embedding of distributive ⟨∨,0⟩-semilat-
tices, then the equality µT(f(x), f(y)) = f(µS(x, y)) holds, for all x, y ∈ S.
The desired functor Φ is given by Φ(S) = Ψ(⟨S, µS⟩), for any distributive
⟨∨,0⟩-semilattice S. �

In contrast with the result of Theorem 9.1, we shall isolate a finite,
“combinatorial” reason for the forgetful functor from V-distances of type
3/2 to distributive ⟨∨,0⟩-semilattices not to admit any left inverse. By
contrast, we recall that for V-distances of type 2, the corresponding result is
positive, see Theorem 9.1. In order to establish the negative result, we shall
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use the example Dac of [74, Section 7], and extend the corresponding result
from lattices with almost permutable congruences to arbitrary V-distances
of type 3/2.

We recall that Dac is the (commutative) cube of finite Boolean semilat-
tices represented on Figure 3, where P(X) denotes the powerset algebra of
a set X and e,f , g,h0,h1, and h2 are the ⟨∨,0⟩-homomorphisms (and, in
fact, ⟨∨,0,1⟩-embeddings) defined by their values on atoms as follows:

e(1) = {0, 1},

f :

{
{0} 7→ {0, 1},
{1} 7→ {2, 3},

g :

{
{0} 7→ {0, 2},
{1} 7→ {1, 3},

h0 :


{0} 7→ {0, 4, 7},
{1} 7→ {3, 5, 6},
{2} 7→ {2, 5, 6},
{3} 7→ {1, 4, 7},

h1 :


{0} 7→ {0, 4, 5, 7},
{1} 7→ {1, 4, 6, 7},
{2} 7→ {2, 5, 6, 7},
{3} 7→ {3, 4, 5, 6},

h2 :


{0} 7→ {0, 4, 6},
{1} 7→ {1, 5, 7},
{2} 7→ {3, 5, 7},
{3} 7→ {2, 4, 6},

P(8)

P(4)

h2

==zzzzzzz
P(4)

h1

OO
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f
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Figure 3. The cube Dac, unliftable by V-distances of type 3/2.

Theorem 9.2. The diagram Dac has no lifting, with respect to the forget-
ful functor, by distances, surjective at level 0 and satisfying the V-condition
of type 3/2 at level 1.

Proof. Suppose that the diagram of Figure 3 is lifted by a diagram of
distances, with distances λ : X ×X → 2, λi : Xi×Xi → P(2), µi : Yi×Yi →
P(4), and µ : Y × Y → P(8), for all i ∈ {0, 1, 2}, see Figure 4.

We assume that λ is surjective and that λi is a V-distance of type 3/2,
for all i ∈ {0, 1, 2}. Denote by fU,V the canonical map from U to V given by
this lifting, for U below V among X,X0, X1, X2, Y0, Y1, Y2, Y . After having
replaced each of those sets U by its quotient by the kernel of the corre-
sponding distance, and then by its image in Y under fU,Y , we may assume
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Figure 4. A commutative diagram of semilattice-valued distances

that fU,V is the inclusion map from U into V , for all U below V among
X,X0, X1, X2, Y0, Y1, Y2, Y .

Since λ is surjective, there are x, y ∈ X such that λ(x, y) = 1. For all
i ∈ {0, 1, 2},

λi(x, y) = e(λ(x, y)) = e(1) = {0, 1} = {0} ∪ {1},
thus, since λi satisfies the V-condition of type 3/2, there exists zi ∈ Xi such
that

(9.1)
either λi(x, zi) = {0} and λi(zi, y) = {1} (say, P (i))

or λi(x, zi) = {1} and λi(zi, y) = {0} (say, Q(i)).

So we have eight cases to consider, according to which combination of P
and Q occurs in (9.1) for i ∈ {0, 1, 2}. In each case, we shall obtain the
inequality

(9.2) µ(z0, z2) * µ(z0, z1) ∪ µ(z1, z2),
which will contradict the triangular inequality for µ.

Case 1. P (0), P (1), and P (2) hold. Then µ2(z0, x) = f(λ0(x, z0)) =
{0, 1} and µ2(x, z1) = g(λ1(x, z1)) = {0, 2}, whence µ2(z0, z1) ⊆ {0, 1, 2}.
Similarly, replacing x by y in the argument above, µ2(z0, y) = f(λ0(z0, y)) =
{2, 3} and µ2(y, z1) = g(λ1(z1, y)) = {1, 3}, whence µ2(z0, z1) ⊆ {1, 2, 3}.
Therefore, µ2(z0, z1) ⊆ {1, 2}. On the other hand, from

µ2(x, z0) ∪ µ2(z0, z1) = µ2(x, z1) ∪ µ2(z0, z1)
the converse inclusion follows, whence µ2(z0, z1) = {1, 2}. Similar compu-
tations yield that µ1(z0, z2) = µ0(z1, z2) = {1, 2}. Hence, we obtain the
equalities

µ(z0, z1) = h2µ2(z0, z1) = {1, 3, 5, 7},
µ(z0, z2) = h1µ1(z0, z2) = {1, 2, 4, 5, 6, 7},
µ(z1, z2) = h0µ0(z1, z2) = {2, 3, 5, 6}.

Observe that 4 belongs to µ(z0, z2) but not to µ(z0, z1) ∪ µ(z1, z2).
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Case 2. P (0), P (1), and Q(2) hold. As in Case 1, we obtain

µ2(z0, z1) = {1, 2} and µ1(z0, z2) = µ0(z1, z2) = {0, 3},

thus µ(z0, z1) = {1, 3, 5, 7}, µ(z0, z2) = {0, 3, 4, 5, 6, 7}, and µ(z1, z2) =
{0, 1, 4, 7}, which confirms (9.2) and thus causes a contradiction.

Case 3. P (0), Q(1), and P (2) hold. We obtain µ2(z0, z1) = µ0(z1, z2) =
{0, 3} and µ1(z0, z2) = {1, 2}, thus µ(z0, z2) = {1, 2, 4, 5, 6, 7}, µ(z0, z1) =
{0, 2, 4, 6}, and µ(z1, z2) = {0, 1, 4, 7}.

Case 4. P (0), Q(1), and Q(2) hold. We obtain

µ2(z0, z1) = µ1(z0, z2) = {0, 3} and µ0(z1, z2) = {1, 2},

thus µ(z0, z2) = {0, 3, 4, 5, 6, 7}, µ(z0, z1) = {0, 2, 4, 6}, and µ(z1, z2) =
{2, 3, 5, 6}.

Case 5. Q(0), P (1), and P (2) hold. We obtain

µ2(z0, z1) = µ1(z0, z2) = {0, 3} and µ0(z1, z2) = {1, 2},

thus µ(z0, z1) = {0, 2, 4, 6}, µ(z0, z2) = {0, 3, 4, 5, 6, 7}, and µ(z1, z2) =
{2, 3, 5, 6}.

Case 6. Q(0), P (1), and Q(2) hold. We obtain

µ2(z0, z1) = µ0(z1, z2) = {0, 3} and µ1(z0, z2) = {1, 2},

thus µ(z0, z1) = {0, 2, 4, 6}, µ(z0, z2) = {1, 2, 4, 5, 6, 7}, and µ(z1, z2) =
{0, 1, 4, 7}.

Case 7. Q(0), Q(1), and P (2) hold. We obtain

µ2(z0, z1) = {1, 2} and µ1(z0, z2) = µ0(z1, z2) = {0, 3},

thus µ(z0, z1) = {1, 3, 5, 7}, µ(z0, z2) = {0, 3, 4, 5, 6, 7}, and µ(z1, z2) =
{0, 1, 4, 7}.

Case 8. Q(0), Q(1), and Q(2) hold. We obtain

µ2(z0, z1) = µ1(z0, z2) = µ0(z1, z2) = {1, 2},

thus µ(z0, z1) = {1, 3, 5, 7}, µ(z0, z2) = {1, 2, 4, 5, 6, 7}, and µ(z1, z2) =
{2, 3, 5, 6}. In all cases, we obtain a contradiction. �

A “global” version of Theorem 9.2 is presented in Theorem 5.6. The
following corollary extends [74, Theorem 7.1] from lattices to arbitrary al-
gebras.

Corollary 9.3. The diagram Dac has no lifting, with respect to the
congruence lattice functor, by algebras with almost permutable congruences.

About other commonly encountered structures, we obtain the following.

Corollary 9.4. The diagram Dac has no lifting by groups with respect
to the Sub functor, and no lifting by modules with respect to the Sub functor.
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The following example offers a significant difference between the situa-
tions for groups and modules.

Example 9.1. The diagonal map 2 ↪→ 22 has no lifting, with respect to
the Sub functor, by modules over any ring. Indeed, suppose thatA ↪→ B×C
is such a lifting, with A, B, and C simple modules. Projecting on B
and on C yields that A is isomorphic to a submodule of both B and C,
whence, by simplicity, A, B, and C are pairwise isomorphic. But then,
B ×C ≃ B ×B has the diagonal as a submodule, so its submodule lattice
cannot be isomorphic to 22.

By contrast, every square of finite Boolean ⟨∨,0⟩-semilattices can be
lifted, with respect to the Sub functor, by groups, see Lemma 7.2.
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1. Introduction

Congruence lattices of universal algebras correspond to algebraic lattice.
By the theorem of N. Funayama and T. Nakayama [20], the congruence lat-
tice of a lattice is, in addition, distributive (see also [27, II. 3. Theorem 11]).
On the other hand, R. P. Dilworth proved that every finite distributive lat-
tice is isomorphic to the congruence lattice of a finite lattice (the result was
first published in Grätzer’s and Schmidt’s [29]) and he conjectured that
every distributive algebraic lattice is isomorphic to the congruence lattice
of a lattice (see again [29]). This conjecture, referred to as the Congru-
ence Lattice Problem, despite many attempts (see surveys [27, Appendix C]
and [75]), remained open for over sixty years until, recently, F. Wehrung
disproved it in [83].

The Wehrung’s solution involves a combination of new ideas, see, in par-
ticular, Lemmas 4.4, 5.1, and 6.2 in [83], and methods developed in earlier
papers, which originated in [77] and were pursued further in [59, 60, 68,
74, 78]. In these papers, counterexamples to various problems related to the
Congruence Lattice Problem were obtained. The optimal cardinality bound
for all these counterexamples is ℵ2, however Wehrung’s argument requires
an algebraic distributive lattice with at least ℵω+1 compact elements. In
the present paper, we improve Wehrung’s result by proving that there is a
counterexample of size ℵ2. As in the related cases, ℵ2 turns out to be the
optimal cardinality bound for a negative solution of the Congruence Lattice
Problem. Our proof closely follows Wehrung’s ideas. The main difference
consists in an enhancement of Kuratowski’s Free Set Theorem by a new
combinatorial principle which involves finite trees.

The Wehrung’s construction in [83] uses a ”free” distributive extension
of a ⟨∨,0⟩-semilattice; a functor that assigns to every ⟨∨,0⟩-semilattice a
distributive ⟨∨,0⟩-semilattice, constructed previously by M. Ploščica and
J. Tůma in [59]. The main features of this construction for the refutation of
the Congruence Lattice Problem are extracted in the so-called Evaporation
Lemma [83, Lemma 4.4]. We generalize this idea by defining a diluting
functor whose properties are sufficient to prove the Evaporation Lemma,
and we prove that the free distributive extension of a ⟨∨,0⟩-semilattice is,
indeed, a diluting functor.

Further, we modify Kuratowski’s Free Set Theorem, the combinatorial
essence of the above mentioned counterexamples. Given a set W and a map
ϕ : [W ]<ω → [W ]<ω, we define a free k-tree (with respect to ϕ), for every
positive integer k, which is a k-ary tree with some combinatorial properties
derived from the Kuratowski’s Free Set Theorem. We prove that a free k-
tree exists whenever the cardinality of the set W is at least ℵk−1, and we
apply the existence of a free 3-tree in every set of cardinality at least ℵ2 to
attain the optimal cardinality bound in the Wehrung’s result.
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2. Diluting functors

We denote by Sem0 the category of ⟨∨,0⟩-semilattices (with ⟨∨,0⟩-ho-
momorphisms).

Definition 2.1. An expanding functor on Sem0 is a pair ⟨Ψ, ι⟩, where
Ψ is an endofunctor Sem0 → Sem0 and ι is a natural transformation from
the identity functor on Sem0 to Ψ such that ιS : S → Ψ(S) is an embedding,
for every ⟨∨,0⟩-semilattice S. We shall denote the expanding functor above
by Ψ once the natural transformation ι is understood, and we shall identify
ιS(x) with x, for all x ∈ S.

An expanding functor Ψ: Sem0 → Sem0 is a diluting functor, pro-
vided that for all ⟨∨,0⟩-semilattices S and T and every ⟨∨,0⟩-homomor-
phism f : S → T, the following property is satisfied: for all v ∈ Ψ(S), and
u0,u1 ∈ Ψ(T), the inequality Ψ(f)(v) ≤ u0 ∨ u1 implies that there are
x0,x1 ∈ Ψ(S) and y ∈ S such that

f(y) ≤ u0 ∨ u1, Ψ(f)(xi) ≤ ui, for all i = 1, 2, and v ≤ x0 ∨ x1 ∨ y.

Let U , V be subsets of a ⟨∨,0⟩-semilattice S. We shall use the notation

U ∨ V := {u ∨ v | u ∈ U and v ∈ V }.

Lemma 2.2. Let S be a ⟨∨,0⟩-semilattice and Si, i = 0, 1, ⟨∨,0⟩-subse-
milattices of S such that S = S0 ∨ S1 and there are retractions ri : S → Si,
for i = 0, 1. Put si = Ψ(ri), for every i = 0, 1. Let ui ∈ Ψ(Si), i = 0, 1,
be such that si(u1−i) = 0, for all i = 0, 1. Then for every y ∈ S such that
y ≤ u0 ∨u1, there are yi ∈ Si, i = 0, 1, such that y ≤ y0 ∨ y1 and yi ≤ ui,
for all i = 0, 1.

Proof. We put yi := ri(y), for all i = 0, 1. Since S = S0∨S1, there are
elements y′

i ∈ Si, i = 0, 1, such that y = y′
0∨y′

1. Since the maps ri, i = 0, 1,
are retractions, y′

i ≤ ri(y) = yi, for all i = 0, 1, whence y ≤ y0 ∨ y1.
It remains to prove that yi ≤ ui, for all i = 0, 1. We fix i ∈ {0, 1}.

Since si � S = ri and si : Ψ(S) → Ψ(Si) is a retraction, si(ui) = ui. Since
si(u1−i) = 0, according to the assumption, we conclude that

(2.1) yi = si(y) ≤ si(u0 ∨ u1) = si(u0) ∨ si(u1) = si(ui) = ui.

�

We define Ψ0 to be the identity functor and, inductively, Ψn+1 = Ψ◦Ψn,
for all positive integers n. By our assumption, the inclusion map defines a
natural transformation from the identity functor on Sem0 to Ψ, therefore
we can define Ψ∞(S) =

∪
n∈ω Ψn(S) and Ψ∞(f) =

∪
n∈ω Ψn(f), for every

⟨∨,0⟩-semilattice S, and every ⟨∨,0⟩-homomorphism f : S → T, respec-
tively. again, the inclusion map defines a natural transformation from the
identity functor on Sem0 to Ψ∞. In particular, if Ψ is an expanding functor
on Sem0, then the functor Ψ∞ is expanding as well.
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Lemma 2.3. Let Ψ be a diluting functor on Sem0. Then the functor
Ψ∞ is diluting as well.

Proof. Let S and T be ⟨∨,0⟩-semilattices, and let f : S → T be a
⟨∨,0⟩-homomorphism. Let v ∈ Ψ∞(S) and u0,u1 ∈ Ψ∞(T) be such that
Ψ∞(f)(v) ≤ u0 ∨ u1. We are looking for x0,x1 ∈ Ψ∞(S) and y ∈ S such
that

f(y) ≤ u0 ∨ u1, Ψ∞(f)(xi) ≤ ui, for all i = 1, 2, and v ≤ x0 ∨ x1 ∨ y.

We shall argue by induction on the least natural number n such that v ∈
Ψn(S). If n = 0, we put x0 = x1 = 0, y = v, and we are done. Suppose that
v ∈ Ψn+1(S), for some positive integer n, and that the property is proved
at stage n. Let k ≥ n be a positive integer such that u0,u1 ∈ Ψk+1(T).
Denote by g the composition of the ⟨∨,0⟩-homomorphism Ψn(f) and the
inclusion map Ψn(T) ↪→ Ψk(T). By applying the assumption that Ψ is a
diluting functor to the ⟨∨,0⟩-homomorphism g : Ψm(S) → Ψk(T ), we obtain
elements x′

0,x
′
1 ∈ Ψm+1(S) and y′ ∈ Ψm(S) such that

g(y′) ≤ u0 ∨ u1, Ψ(g)(x′
i) ≤ ui, for all i = 0, 1, and v ≤ x′

0 ∨ x′
1 ∨ y′.

The inequality g(y′) ≤ u0∨u1 implies that Ψ∞(f)(y′) ≤ u0∨u1. Therefore,
by the induction hypothesis, there are elements x′′

0,x
′′
1 ∈ Ψ∞(S) and y ∈ S

such that

f(y) ≤ u0 ∨ u1, Ψ∞(f)(x′′
i ) ≤ ui, for all i = 0, 1, and y′ ≤ x′′

0 ∨ x′′
1 ∨ y.

Now it is easy to conclude that xi = x′
i ∨ x′′

i , for i = 0, 1, and y are the
desired elements. �

Let Set denote the category of all sets. Similarly as in [83], we denote
by Λ: Set → Sem0 the functor which assigns to a set W the ⟨∨,0,1⟩-semi-
lattice Λ(W ) defined by generators 1, and ax

0 , a
x
1 , for x ∈ W , subjected to

the relations

(2.2) ax
0 ∨ ax

1 = 1, for all x ∈W,

and which assigns to a map f : X → Y the unique ⟨∨,0,1⟩-homomorphism

Λ(f) : Λ(X) → Λ(Y ) such that Λ(f)(ax
i ) = a

f(x)
i , for all x ∈ X and all

i = 0, 1.
Given a finite subset A of W and a map φ : A → 2, we put aA

φ =∨
x∈A ax

φ(x). By the coming Corollary 3.2, the following lemma is a general-

ization of Wehrung’s original “Evaporation Lemma” [83, Lemma 4.4].

Lemma 2.4. Let Ψ be a diluting functor on Sem0. We set Φ := Ψ ◦ Λ.
Let W be a set, A0, A1 finite disjoint subsets of W , and w ∈W \ (A0 ∪A1).
Let v ∈ Φ(W \ {w}), φi : Ai → 2 be maps, and ui ∈ Φ(W \ A1−i), for all
i = 0, 1. If

v ≤ u0 ∨ u1 and ui ≤ aAi
φi
,aw

i , for all i = 0, 1,

then v = 0.
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Proof. We denote by f the inclusion map W \ {w} ↪→ W . Observe
that Λ(f) corresponds to the inclusion map Λ(W \ {w}) ↪→ Λ(W ). Since
the functor Ψ is diluting, there are elements x0,x1 ∈ Φ(W \ {w}) and
y ∈ Λ(W \ {w}) such that

y ≤ u0 ∨ u1, Φ(f)(xi) ≤ ui, for all i = 0, 1, and v ≤ x0 ∨ x1 ∨ y.

Fix i ∈ 0, 1. There is a unique retraction pi : Λ(W ) → Λ(W \{w}) satisfying
pi(a

w
i ) = 0 and pi(a

w
1−i) = 1. Set qi := Ψ(pi) : Φ(W ) → Φ(W \ {w}), and

observe that qi is a retraction of Φ(f). Since xi ∈ Φ(W \ {w}), the equality
qi(Φ(f)(xi)) = xi holds true. Since qi(a

w
i ) = 0, by our assumptions, and

Φ(f)(xi) ≤ ui ≤ aw
i , we conclude that xi = 0.

Let ri : Λ(W ) → Λ(W \ A1−i) be the unique retraction satisfying the

equality ri(a
A1−i
φ1−i ) = 0. We put si = Ψ(ri). From u1−i ≤ a

A1−i
φ1−i , it follows

that si(u1−i) = 0. By Lemma 2.2, there are yj ∈ Λ(W \A1−j) with yj ≤ uj ,

for all j = 0, 1, such that y ≤ y0∨y1. Since yj ≤ uj ≤ a
Aj
φj ,a

w
j and w ̸∈ Aj ,

we conclude that yj = 0, for all j = 0, 1. �

3. Free Distributive Extension is Diluting

We summarize the main properties of the construction of the extension
∆(S) of a ⟨∨,0⟩-semilattice S (see [59, Section 2]) referring to the outline
in [83, Sections 3,4]. We shall prove that the functor ∆ is diluting. For a
⟨∨,0⟩-semilattice S, we set Γ(S) = {⟨a, b, c⟩ ∈ S3 | c ≤ a ∨ b}. We say that
a finite subset v of Γ(S) is reduced, if the following properties are satisfied:

(i) the subset v contains exactly one triple of the form ⟨a,a,a⟩; we
define π(v) := a and v∗ := v \ {⟨a,a,a⟩}.

(ii) if both ⟨a, b, c⟩ ∈ v and ⟨b,a, c⟩ ∈ v, then a = b = c, for all
a, b, c ∈ S.

(iii) if ⟨a, b, c⟩ ∈ v∗, then a, b, c ̸≤ π(v), for all a, b, c ∈ S.

Observe that if v is a reduced subset of Γ(S) and u ⊆ v∗, then the subset
u ∪ {⟨0, 0, 0⟩} is reduced as well.

We denote by ∆(S) the set of all reduced subsets of Γ(S). By [59,
Lemma 2.1] (see also [83, Corollary 3.2]), ∆(S) is a ⟨∨,0⟩-semilattice with
respect to the partial ordering ≤ defined by

(3.1) v ≤ u
def⇐⇒ (∀⟨a, b, c⟩ ∈ v \ u)( either a ≤ π(u) or c ≤ π(u))

and the assignment v 7→ {⟨v,v,v⟩} is a ⟨∨,0⟩-embedding from S into ∆(S).
As in [83], we use the symbol ◃▹S to denote the elements of ∆(S) defined

by

◃▹S ⟨a, b, c⟩ :=


c if either a = b or b = 0 or c = 0,

0 if a = 0,

{⟨0, 0, 0⟩, ⟨a, b, c⟩} otherwise ,
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for all ⟨a, b, c⟩ ∈ Γ(S). Recall that

(3.2) x =
∨

⟨◃▹S ⟨a, b, c⟩ | ⟨a, b, c⟩ ∈ x⟩, for all x ∈ ∆(S).

due to [83, formula (3.3)]. By [83, Proposition 3.5], every ⟨∨,0⟩-homomor-
phism f : S → T extends to a unique ⟨∨,0⟩-homomorphism ∆(f) : ∆(S) →
∆(T) such that

(3.3) ∆(f)(◃▹S ⟨a, b, c⟩) = ◃▹T ⟨f(a), f(b), f(c)⟩, for all ⟨a, b, c⟩ ∈ Γ(S),

and the assignments S 7→ ∆(S) and f 7→ ∆(f) define a functor Sem0 →
Sem0. It follows that if f : S → T is a ⟨∨,0⟩-homomorphism, v ∈ S, and
u ∈ T, then

(3.4) ∆(f)(v) ≤ u if and only if ◃▹T ⟨f(a),f(b),f(c)⟩ ≤ u,

for all ⟨a, b, c⟩ ∈ v.

Lemma 3.1. The functor ∆ is diluting.

Proof. Let S and T be ⟨∨,0⟩-semilattices and f : S → T a ⟨∨,0⟩-ho-
momorphism. We have to verify that for every v ∈ ∆(S) and every u0,u1 ∈
∆(T) such that ∆(f)(v) ≤ u0 ∨ u1, there are elements x0,x1 ∈ ∆(S) and
y ∈ S satisfying

f(y) ≤ u0 ∨ u1, ∆(f)(xi) ≤ ui, for all i = 0, 1, and v ≤ x0 ∨ x1 ∨ y.

For all i = 0, 1 we set

xi := {⟨a, b, c⟩ ∈ v | ⟨f(a), f(b), f(c)⟩ ∈ u∗
i } ∪ {⟨0, 0, 0⟩}.

Observe that x0, x1, as subsets of v∗ ∪ {⟨0, 0, 0⟩}, are reduced. Therefore
we have that x0,x1 ∈ ∆(S). It follows from (3.3) that ∆(f)(xi) ≤ ui, for
all i = 0, 1. An easy application of [83, Lemma 3.1] yields that (u0∨u1)

∗ ⊆
u∗
0 ∪ u∗

1, and so ◃▹S ⟨a, b, c⟩ ≤ x0 ∨ x1, for every ⟨a, b, c⟩ ∈ v such that
⟨f(a), f(b), f(c)⟩ ∈ (u0 ∨ u1)

∗.
We define

ϱ⟨a, b, c⟩ :=

{
a if f(a) ≤ π(u0 ∨ u1),

c otherwise ,

and we put

y :=
∨

⟨ϱ⟨a, b, c⟩ | ⟨a, b, c⟩ ∈ v and ⟨f(a), f(b), f(c)⟩ /∈ (u0 ∨ u1)
∗⟩,

for all ⟨a, b, c⟩ ∈ v. Clearly, y ∈ S, and, by (3.1), ◃▹S ⟨a, b, c⟩ ≤ y, for all
⟨a, b, c⟩ ∈ v such that ⟨f(a), f(b), f(c)⟩ /∈ (u0 ∨u1)

∗. Thus we have proved
that ◃▹S ⟨a, b, c⟩ ≤ x0 ∨x1 ∨ y, for all ⟨a, b, c⟩ ∈ v, and so v ≤ x0 ∨x1 ∨ y,
due to (3.2).

Since ∆(f)(v) ≤ u0 ∨ u1, it follows from (3.1) that f(ϱ⟨a, b, c⟩) ≤
π(u0 ∨ u1), for every ⟨a, b, c⟩ ∈ v such that ⟨f(a), f(b), f(c)⟩ /∈ (u0 ∨ u1)

∗.
We conclude that f(y) ≤ u0 ∨ u1. �
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Observe that ∆(S) is distributive “relatively to” the ⟨∨,0⟩-semilattice
S, that is, for every a, b, c ∈ S with c ≤ a ∨ b, there are a′ ≤ a, b′ ≤ b in
∆(S) such that c = a′ ∨ b′. It follows that the ⟨∨,0⟩-semilattice ∆∞(S) is
distributive. Applying Lemma 2.3 we conclude that

Corollary 3.2. The functor ∆∞ is diluting. Moreover, ∆∞(S) is a
distributive ⟨∨,0⟩-semilattice, for every ⟨∨,0⟩-semilattice S.

Note that the functor ∆∞ corresponds to the functor D from [83].

4. Free Trees

Definition 4.1. Let k be a positive integer and W a set. Given a map
ϕ : [W ]k−1 → [W ]<ω, we say that a k-element subset A of W is free (with
respect to the map ϕ) provided that a /∈ ϕ(A \ {a}), for all a ∈ A.

The Kuratowski’s Free Set Theorem [46]. Let k be a positive
integer, W a set, and ϕ : [W ]k−1 → [W ]<ω a map. If |W | ≥ ℵk−1, then there
is a k-element free subset of W .

Let 0 ≤ n and 0 < k be integers. Given an integer 0 ≤ m ≤ n and a
map g : {m, . . . , n− 1} → k, we shall put

Treen,k(g) := {f : n→ k | f extends g}.
In particular, we will use the notation

Treen,k := Treen,k(∅) = {f | f : n→ k}.
Given integers 0 ≤ m < n, 0 ≤ i < k, and a map g : {m+1, . . . , n− 1} → k,
we shall use the notation

Treen,k(g, i) := {f ∈ Treen,k(g) | f(m) = i},
Treen,k(g,¬i) := {f ∈ Treen,k(g) | f(m) ̸= i}.

Definition 4.2. Let W be a set and ϕ : [W ]<ω → [W ]<ω a map. Let
0 < k and 0 ≤ n be integers. We say that a one-to-one map τ : Treen,k →W
is a free k-tree of height n (with respect to the map ϕ) provided that

(4.1) τ (Treen,k(g, i)) ∩ ϕ(τ (Treen,k(g,¬i))) = ∅,
for all 0 ≤ m < n, all 0 ≤ i < k, and all maps g : {m + 1, . . . , n − 1} → k.
We call the set rng τ := τ (Treen,k) the range of τ .

Lemma 4.3. Let W be a set and ϕ : [W ]<ω → [W ]<ω a map. Let k and n
be positive integers. Then each A ⊆ W with |A| ≥ ℵk−1 contains the range
of a free k-tree of height n.

Proof. We fix k and argue by induction on n. If n = 0, we pick τ (∅)
to be an arbitrary element of the set A. Suppose that the statement holds
up to an integer n ≥ 0. We shall prove that the set A contains the range
of a free k-tree, say τ , of height n + 1. We cut up the set A as a union
of pairwise disjoint subsets Aw, for w < ωk−1, each of cardinality at least
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ℵk−1. By the induction hypothesis, each of the sets Aw contains the range
of a free tree τw of height n. We define a map ψ : [ωk−1]

k−1 → [ωk−1]
<ω by

(4.2) ψ(X) := ⟨ν < ωk−1 | rng τ ν ∩ ϕ(
∪
w∈X

rng τw) ̸= ∅⟩,

for all X ∈ [ωk−1]
k−1. Since the sets rng Tw are pairwise disjoint and finite,

ψ(F ) is finite, for all F ∈ [ωk−1]
k−1. By Kuratowski’s Free Set Theorem

there is a k-element free subset, F := {w0, . . . , wk−1} ⊆ A, with respect to
the map ψ. We set τ (f) = τwf(n)

(f � n), for all f : (n + 1) → k. We claim
that τ : Treen+1,k → A is a free k-tree with respect to ϕ. In order to prove
the claim, we fix 0 ≥ m < n+ 1 and a map g : {m+ 1, . . . , n} → k.

If m = n, the only possibility is g = ∅. Then

τ (Treen+1,k(g, i)) = rng τwi , and

τ (Treen+1,k(g,¬i)) =
∪

j<k, j ̸=i

rng τwj ,

for all i < k. Since F is a free set with respect to ψ, we have that

rng τwi ∩ ϕ(
∪

j<k, j ̸=i

rng τwj ) = ∅,

by (4.2).
Suppose that m < n and set g′ := g � {m + 1, . . . , n − 1}. Let i < k.

Then the equalities

τ (Treen+1,k(g, i)) = τwg(n)
(Treen,k(g

′, i)),

τ (Treen+1,k(g,¬i)) = τwg(n)
(Treen,k(g

′,¬i)).

hold true. Since τwg(n)
is a free k-tree with respect to ϕ, we conclude that

τwg(n)
(Treen,k(g

′, i)) ∩ ϕ(τwg(n)
(Treen,k(g

′,¬i))) = ∅,

due to (4.1). �

5. The optimal bound in Wehrung’s Theorem

Let Ψ be an expanding functor on Sem0 satisfying the following prop-
erties:

• For all ⟨∨,0⟩-semilattice S and all families ⟨Si | i ∈ I⟩ of ⟨∨,0⟩-
subsemilattices of S, the equality

(5.1)
∩
i∈I

Ψ(Si) = Ψ
(∩

i∈I
Si

)
holds true.
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• For all nonempty upwards directed posets P and all families ⟨Sp |
p ∈ P ⟩ of ⟨∨,0⟩-semilattices such that Sp is a ⟨∨,0⟩-subsemilattice
of Sq, whenever p ≤ q in P , the equality

(5.2)
∪
p∈P

Ψ(Sp) = Ψ
( ∪

p∈P
Sp

)
holds true.

We put Φ := Ψ ◦ Λ. Then for every set W and every family ⟨Ui | i ∈ I⟩
of subsets of W , we have that∩

i∈I
Φ(Ui) = Φ

(∩
i∈I

Ui

)
,

and for every nonempty upwards directed poset P and every family ⟨Up |
p ∈ P ⟩ of subsets ofW such that Up ⊆ Uq, whenever p ≤ q in P , the equality∪

p∈P
Φ(Up) = Φ

( ∪
p∈P

Up

)
holds true.

It follows that given a set W and an element a ∈ Φ(W ), there is a
smallest finite F ⊆ W such that a ∈ Φ(F ). We shall call F the support of
aand denote it by supp(a) (see [83]). Now we are ready to rephrase [83,
Theorem 6.1]:

Theorem 5.1. Let W be a set of cardinality at least ℵ2, Ψ a diluting
functor satisfying properties (5.1) and (5.2), and let A be an algebra having
either a congruence-compatible structure of a ⟨∨,1⟩-semilattice or a congru-
ence compatible structure of a lattice. Then there does not exist a weakly
distributive ⟨∨,0⟩-homomorphism ConcA→ (Ψ ◦Λ)(W ) containing 1 in its
range.

Proof. As above, we put Φ := Ψ ◦ Λ. We assume for a contradic-
tion that there is a weakly distributive ⟨∨,0⟩-homomorphism h : ConcA →
Φ(W ) having 1 in its range. Since 1 is in the range of h, there is a finite sub-
set F of A such that h(ΘA(F )) = 1. We set a := 1, respectively, a :=

∨
F ,

if A has a congruence-compatible structure of a ⟨∨,1⟩-semilattice, respec-
tively, a lattice. We can without loss of generality assume that a ∈ F . Then
we have that∨

x∈F
h(ΘA(a,x)) = h(

∨
x∈F

ΘA(a,x)) = h(ΘA(F )) = 1.

We pick an arbitrary element w ∈W . Since the homomorphism h is weakly
distributive, there are congruences Θw

0 ,Θ
w
1 ∈ ConcA such that∨

x∈F
ΘA(a,x) ≤ Θw

0 ∨Θw
1 and h(Θw

i ) ≤ aw
i , for all i = 0, 1.

In particular, we have that ΘA(a,x) ≤ Θw
0 ∨Θw

1 , for all x ∈ F .
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We fix an element x ∈ F . Since ΘA(a,x) ≤ Θw
0 ∨Θw

1 , there are a positive
integer nw and elements x = zw0 , z

w
1 , . . . , z

w
nw

= a in A, such that

(5.3) h(ΘA(zwi , z
w
i+1)) ≤ aw

ε(i), for all i < nw.

(Recall that ε(i) = i mod 2.)
If A has a congruence-compatible structure of a ⟨∨,1⟩-semilattice, we

replace each zwi with zw0 ∨ · · · ∨ zwi and if A has a congruence-compatible
structure of a lattice, we replace each zwi with a ∧ (zw0 ∨ · · · ∨ zwi ). In both
the cases we obtain an increasing chain x = zw0 ≤ zw1 ≤ · · · ≤ zwnw

= a in A
such that (5.3) remains satisfied.

Let X be a subset of the algebra A. As in [83, Section 6], we denote
by Conc

X A the ⟨∨,0⟩-subsemilattice of ConcA generated by all principal
congruences ΘA(x,y), where x,y ∈ X. We denote by SU the join-sub-
semilattice of A generated by the set {zui | u ∈ U and 0 ≤ i ≤ nw}, and we
put

(5.4) ϕ(U) =
∪

{supp(h(Θ)) | Θ ∈ Conc
SU A},

for all U ⊆ W . Observe that if the subset U is finite, then both SU and
ϕ(U) are finite.

Since the size of the set W is at least ℵ2, there are a positive integer
n and a subset U of W of cardinality at least ℵ2 such that nu = n, for all
u ∈ U . The following crucial claim is analogous to [83, Lemma 6.2], giving
another illustration of the “erosion method”.

Claim 1. Let τ : Treen,3 → U be a free 3-tree with respect to the map ϕ
defined by (5.4). Then

(5.5) ΘA(a,
∨

{zτ (f)n−m | f ∈ Treen,2(g)}) = 0,

for all integers 0 ≤ m ≤ n and all maps g : {m, . . . , n− 1} → 2.

Proof of Claim 1. We shall argue by induction on m. If m = 0, then
the equality (5.5) is trivially satisfied for all maps g : {m, . . . , n − 1} → 2.
Let 0 ≤ m < n, g : {m+1, . . . , n−1} → 2, and suppose that (5.5) is satisfied
at stage n. We put

yi :=
∨

{zτ (f)n−m−1 | f ∈ Treen,2(g, i)},

for all i = 0, 1. We fix i ∈ {0, 1}. It is straightforward that

h(ΘA(a,yi)) = h(ΘA(a,
∨

{zτ (f)n−m−1 | f ∈ Treen,2(g, i)})) ≤(∨
{h(ΘA(z

τ (f)
n−m−1, z

τ (f)
n−m)) | f ∈ Treen,2(g, i)}

)
∨

h(ΘA(a,
∨

{zτ (f)n−m | f ∈ Treen,2(g, i)})).

We set

v := h(ΘA(a,
∨

{zτ (f)n−m−1 | f ∈ Treen,2(g)})) = h(ΘA(a,y0 ∨ y1)),
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Ui := {τ (f) | f ∈ Treen,2(g, i)}, and we let φi : Ui → 2 be the constant map
with the value ε(n−m− 1). By the induction hypothesis we have that

h(ΘA(a,
∨

{zτ (f)n−m | f ∈ Treen,2(g, i)})) = 0,

and from (5.3) we conclude that

h(ΘA(z
τ (f)
n−m−1, z

τ (f)
n−m)) ≤ a

τ (f)
ε(n−m−1),

for all f ∈ Treen,2(g, i). It follows that

h(ΘA(a,yi)) ≤
∨

{aτ (f)
ε(n−m−1) | f ∈ Treen,2(g, i)} = aUi

φi
.

Let u ∈ U be arbitrary. Applying the Erosion Lemma [83, Lemma 5.1],

we infer that there are uj ∈ Con
SUj∪{u}
c A such that v ≤ u0 ∨ u1 and both

uj ≤ au
ε(j) and uj ≤ h(ΘA(a,yj)), for all j = 0, 1. It follows that uj ≤ au

ε(j)

and uj ≤ a
Uj
φj , for all j = 0, 1.

Now suppose that u = τ (f), for some f ∈ Treen,3(g, 2). It follows
from (5.4) that supp(v) ⊆ ϕ({τ (f) | f ∈ Treen,2(g)}) = ϕ(U0 ∪ U1) and
supp(uj) ⊆ ϕ(Uj ∪{u}), for all j = 0, 1. Since τ is a free 3-tree with respect
to ϕ, we have that u ̸∈ ϕ(U0∪U1) and U1−j∩ϕ(Uj∪{u}) = ∅, for all j = 0, 1.
It follows that v ∈ Φ(W \ {u}) and uj ∈ Φ(W \ U1−j), for all j = 0, 1. By
our assumptions the functor Ψ is diluting. Therefore applying Lemma 2.4,
we conclude that v = 0 as desired . � Claim 1.

According to Lemma 4.3 there is a free 3-tree τ : Treen,3 → U . Applying
Claim 1, we get that

ΘA(a,
∨

{zτ (f)n−m | f ∈ Treen,2(g)}) = 0,

for all 0 ≤ m ≤ n and all maps g : {m, . . . , n− 1} → 2. If m = n and g = ∅
we have that∨

{zτ (f)n−m | f ∈ Treen,2(g)} =
∨

{zτ (f)0 | f : n→ 2} = x,

hence ΘA(a,x) = 0 for all x ∈ F . Therefore
∨

x∈F ΘA(a,x) = 0, which
leads to a contradiction. �

The functor ∆∞ is diluting due to Corollary 3.2 and it satisfies both
(5.1) and (5.2) due to [83, Lemma 3.6]. We put Φ := ∆∞ ◦ Λ.1 Since the
⟨∨,0⟩-semilattice ∆∞(S) is distributive for all ⟨∨,0⟩-semilattices S, we get
that

Corollary 5.2. Let W be a set of cardinality at most ℵ2. Then there is
no lattice L such that the ⟨∨,0⟩-semilattice Φ(W ) is isomorphic to ConcL.

1Note that this is the same Φ as in [83].
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A.P. Huhn [41, 42] (see also [27, Theorem 13 in Appendix C]) proved
that every distributive ⟨∨,0⟩-semilattice of size at most ℵ1 is isomorphic to
ConcL, for some lattice L. Moreover, the lattice L can be taken sectionally
complemented and modular [79, Corollary 5.3] or relatively complemented,
locally finite, and with zero [28]. In particular, in any of these cases, the
lattice L has permutable congruences (cf. [15]).



CHAPTER 4

Countable chains of distributive lattices and
dimension groups
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1. Introduction

Given a ring R, we denote by FP(R) the class of all finitely generated
projective right R modules. We denote by [A ] the isomorphism class of
a module A ∈ FP(R) and by V (R) the monoid of all isomorphism classes of
modules from FP(R), with the operation of addition defined by [A ]+[B ] =
[A⊕B ]. If the ring R is von Neumann regular, then the monoid V (R)
satisfies the Riesz refinement property and the semilattice L(R) of finitely
generated two-sided ideals of R is isomorphic to the maximal semilattice
quotient of V (R) [78, Proposition 4.6].

Modules A,B ∈ FP(R) are said to be stably equivalent provided that
there exists C ∈ FP(R) such that A ⊕ C ≃ B ⊕ C. We denote by [A ]s
the stable equivalence class of A ∈ FP(R), and by V s(R) the quotient
monoid {[A ]s | A ∈ FP(R)} of V (R) modulo the stable equivalence. We
set

K0(R) := {[A ]s − [B ]s | A,B ∈ FP(R)}
and we define a binary operation on K0(R) by

([A ]s − [B ]s) + ([C ]s − [D ]s) = [A⊕C ] s− [B ⊕D ]s.

This makes K0(R) be an abelian group equipped with the preorder ≤ deter-
mined by the positive cone V s(R), in particular, ([A ]s − [B ]s) ≤ ([C ]s −
[D ]s) if and only if there is E ∈ FP(R) such that A⊕D ⊕E ≃ C ⊕B.

If the ring R is unit-regular, then the equivalence and the stable equiva-
lence of modules from FP(R) coincide, V (R) = V s(R), andK0(R) is a par-
tially ordered abelian group. Moreover L(R) is isomorphic to the maximal
semilattice quotient of V (R) (denoted by ∇(V (R))). The monoid V (R)
satisfies the Riesz refinement property and it generates K0(R). If the ring
R is a direct limit of von Neumann regular rings whose primitive factors are
artinian, in particular, if R is a locally matricial algebra (over a field), then
K0(R) is in addition unperforated [22, Theorem 15.12], that is, K0(R) is
a dimension group (see [21, 16]).

Our study of representations of distributive ⟨∨,0⟩-semilattices in maxi-
mal semilattice quotients of dimension groups is motivated by the study of
representations of distributive ⟨∨,0⟩-semilattices as semilattices of two-sided
ideals of locally matricial algebras. G.M. Bergman [9] proved that every
countable distributive ⟨∨,0⟩-semilattice is isomorphic to the join-semilattice
of finitely generated ideals of some locally matricial algebra. By [24, The-
orem 1.1], a dimension group of size at most ℵ1 is isomorphic to K0(R) of
some locally matricial algebra. It follows that a distributive ⟨∨,0⟩-semilat-
tice of size ℵ1 is isomorphic to the semilattice of finitely generated ideals
of a locally matricial algebra if and only if it is isomorphic to the maximal
semilattice quotient of the positive cone of some dimension group (such a
group, if it exists, can be always taken of size at most ℵ1).

It follows from a direct construction in [79] that a distributive ⟨∨,0⟩-
semilattice of size ≤ ℵ1 is isomorphic to the ⟨∨,0⟩-semilattice Idc(R) of all
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finitely generated two sided ideals of a von Neumann regular ring R. On
the other hand, the construction of F. Wehrung [81] gives an example of
a distributive ⟨∨,0⟩-semilattice of size ℵ1 not isomorphic to the maximal
semilattice quotient of the positive cone of any dimension group, and there-
fore not isomorphic to the semilattice of finitely generated two-sided ideals
of any locally matricial algebra. The key idea of his construction consists
of the formulation of a semilattice property, denoted by URPsr [81, Defini-
tion 4.2], that is satisfied by the maximal semilattice quotient of the positive
cone of any dimension group, and the construction of a distributive ⟨∨,0⟩-
semilattice Sω1 of size ℵ1 that does not satisfy this property. In the same
paper [81] F. Wehrung proved that a direct limit of a countable chain of
distributive lattices and join-homomorphisms satisfies URPsr [81, Section 7]
and asked whether

Problem 1 [81]. Let S = lim−→n<ω
Dn with all Dn-s being distribu-

tive lattices with zero and all transition maps being ⟨∨,0⟩-homomorphisms.
Does there exists a dimension group G such that S ≃ ∇(G+)?

We solve this problem by constructing a union of a countable chain of
Boolean semilattices, resp.strongly distributive ⟨∨,0,1⟩-semilattices (such
that all inclusions are ⟨∨,0,1⟩-homomorphisms), not isomorphic to the max-
imal semilattice quotient of any Riesz monoid in which every nonzero ele-
ment is anti-idempotent, and therefore not isomorphic to the maximal semi-
lattice quotient of the positive cone of any dimension group.

2. Notation and terminology

We say that an element e of a monoid M is anti-idempotent provided
that 2ne ̸≤ ne (equivalently, (n+ 1)e ̸≤ ne), for every positive integer n.

We say that a subset D of a ⟨∨,0⟩-semilattice S is dense in S, if D is
a dense subset of the poset S \ {0}.

Let G be a partially ordered abelian group. We will use the notation
G+ := {x ∈ G | x ≥ 0} for the positive cone of G. The partially ordered
abelian group G is unperforated if nx ≥ 0 implies x ≥ 0 for every positive
integer n and all x ∈ G, and it is directed provided that each of its element is
the difference of a pair of elements from G+. It is easy to see that a partially
ordered abelian group is directed if and only if it is directed as a partially
ordered set. Furhermore, G is an interpolation group provided that for all
x0, x1, y0, and y1 in G with xi ≤ yj , for all i, j ∈ {0, 1}, there exists
z ∈ G such that xi ≤ z ≤ yj , for all i, j ∈ {0, 1}. A partially ordered abelian
group is an interpolation group if and only if its positive cone is a refinement
monoid [21, Proposition 2.1]. A dimension group is an unperforated directed
interpolation group.

By an ordered vector space we mean a partially ordered vector space
over the field of rational numbers such that the multiplication by positive
scalars is order-preserving. A dimension vector space is an ordered vector
space which, as a partially ordered abelian group, is a dimension group.
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Given a Boolean algebra B and an element b ∈ B, we denote by B � b
the Boolean algebra with the universe {x ∈ B | x ≤ b} and join and meet
operations inherited from B.

3. The construction

Let B be a Boolean algebra, F a filter of B, and I the dual ideal of the
filter F . Given a distributive ⟨∨,0⟩-semilattice S, we set

S×F B :=
(
(Sr {0})× F

)
∪
(
{0} × I

)
⊆ S×B

(see [63] and [81]). One readily sees that S×F B is a join-subsemilattice of
the cartesian product S×B. It could be proved similarly as [63, Lemma 3.3]
that if S is a distributive ⟨∨,0⟩-semilattice, then S ×F B is distributive as
well. We are going to reprove this fact by presenting the ⟨∨,0⟩-semilattice
S×F B as the union of a directed system of distributive ⟨∨,0⟩-semilattices.

Lemma 3.1. Let B be a Boolean algebra, F a filter of B and I the ideal
dual to F . If S is a distributive ⟨∨,0⟩-semilattice, then the ⟨∨,0⟩-semilattice
S×F B is distributive.

Proof. Let X ⊆ B be such that I = ↓X (B). We set

Sa := {⟨0, b⟩ | b ∈ B � a} ∪ {⟨x, b ∨ (−a)⟩ | x ∈ Sr {0} and b ∈ B � a},
for all a ∈ X. It is easy to see that Sa is a ⟨∨,0⟩-subsemilattice of S×F B

isomorphic to S× (B � a).
We prove that S ×F B is a directed union of the distributive ⟨∨,0⟩-

semilattices Sa-s. Trivially we have that {0} × I ⊆
∪

a∈X Sa. Let x be
a nonzero element of S and b ∈ F . Then −a ≤ b, for some a ∈ X, hence
(a∧b)∨(−a) = b, whence ⟨x, b⟩ ∈ Sa. Therefore (Sr{0})×F ⊆

∪
a∈X Sa,

and so we have proved that S ×F B =
∪

a∈X Sa. We get readily from
the definition that a ≤ c in X implies that Sa ⊆ Sc, which implies that
the union is directed. This completes the proof. �

Remark 3.2. Let

F := {X ⊆ ω | ω \X is finite}.
denote the Fréchet filter on P(ω). Then

S×F P(ω) = lim−→⟨S× P(n+ 1) | n ∈ ω⟩,
with the transition maps fn,m being ⟨∨,0⟩-embeddings

fn,m(⟨a, F ⟩) :=

{
⟨a, F ∪ {n+ 1, . . . ,m}⟩ if 0 < a,

⟨a, F ⟩ if 0 = a,

where n < m in ω, a ∈ S, and F ⊆ {0, . . . , n}. In particular, if the ⟨∨,0⟩-
semilattice S is Boolean or strongly distributive respectively then S×FP(ω)
is a directed union of a countable chain of Boolean ⟨∨,0⟩-semilattices or
strongly distributive ⟨∨,0⟩-semilattices. Furthermore if S has a greatest
element, then the transition maps are ⟨∨,0,1⟩-homomorphisms.
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We modify some notation from [63]. Let x, y be elements of a monoid
M . We set

Q(x/y) := {n/m | n,m ∈ N and kny ≤ kmx for some k ∈ N}.
Observe that the set Q(x/y) forms a lower interval in Q+. Indeed, if n′/m′ ≤
n/m and n/m ∈ Q(x/y), then kny ≤ kmx for some k ∈ N, whence knn′y ≤
kmn′x ≤ knm′x. We define (x/y) := supQ(x/y).

Lemma 3.3. Let x, y, and z be elements of a monoid M . Then the
following hold true:

(i) (na/y) = n(x/y) for all n ∈ N.
(ii) (x+ y/z) ≥ (x/z) + (y/z).
(iii) Suppose that M is a Riesz monoid and that y ∧ z = 0. Then z ≤

x+ y implies that z ≤ x. In particular, we have that (x+ y/z) =
(x/z) (cf. [63, Corollary 2.5]).

Proof. Property (i) follows from n′/nm ∈ Q(x/y) if and only if n′/m ∈
Q(nx/y), for all n′,m ∈ N.

(ii) It is obvious that if k/n ∈ Q(x/z) and l/n ∈ Q(y/z), then k/n+l/n ∈
Q(x+ y/z).

(iii) Suppose that z ≤ x + y in M . Since M is a Riesz monoid, there
are x′ ≤ x and y′ ≤ y satisfying z = x′ + y′. From y ∧ z = 0, it follows that
y′ = 0, whence z ≤ x. For the equality (x+ y/z) = (x/z), it suffices to check
that (x+ y/z) ≤ (x/z). If m,n, k ∈ N are such that kmz ≤ kn(x + y) =
knx+ kny, then kmz ≤ knx. This proves that (x+ y/z) ≤ (x/z). �

We denote by Rω
+ and R(ω)

+ respectively the monoid of all maps from
ω → R+ and the monoid of all maps from ω → R+ with a finite support,

and we let R denote the quotient R̂ := Rω
+/R

(ω)
+ . Furthermor, for every

f ∈ Rω
+ we denote by f̂ the image of f in R̂ and by f̂ the corresponding

element of ∇(R̂).
Let S be a ⟨∨,0⟩-semilattice, M a monoid, and h : S×F P(ω) → ∇(M)

an isomorphism. We fix Q := {qi | i ∈ ω} ⊆ M such that qi = h(⟨0, {i}⟩),
for all i ∈ ω, and a map fx : ω → Q+ given by the correspondence i 7→ (x/qi),
for all x ∈ M .

Lemma 3.4. Let M be a Riesz monoid. Suppose that the set Q = {qi |
i ∈ ω} consists of anti-idempotent elements from M . Then (x/qi) <∞, for
all i ∈ ω and all x ∈ M . Therefore fx is a map ω → R+, for all x ∈ M .

Proof. We fix i ∈ ω and x ∈ M . Let ⟨a, A⟩ ∈ S×F P(ω) be such that
x = h(⟨a, A⟩). Pick y ∈ M such that y = h(⟨a, Ar {i}⟩). Then x ≤ y∨qi,
hence x ≤ ny+nqi, for some positive integer n. We prove that (x/qi) ≤ 2n.
Suppose otherwise. Then 2nkqi ≤ kx, for some k ∈ N. It follows that
2nkqi ≤ kny + knqi. Since y ∧ qi = 0, we get from Lemma 3.3(iii) that
2nkqi ≤ knqi, which contradicts the assumption that qi is anti-idempotent.
Therefore (x/qi) ≤ 2n. �
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Lemma 3.5. If x = h(⟨a, A⟩) and y = h(⟨a, B⟩), then f̂x = f̂y, for all
a, b ∈ M .

Proof. There exists a finite F ⊆ ω such that A ∪ F = B ∪ F . We
pick z ∈ M satisfying z = h(⟨0, F ⟩). As follows, we get that ⟨a, A⟩ ≤
⟨a, B⟩∨ ⟨0, F ⟩ in S×FP(ω), hence x ≤ y∨z, whence x ≤ n(y+ z) for some
n ∈ N. Since z ∧ qi = 0, for all i ∈ ω r F , we have that

fx(i) ≤ fn(y+z)(i) = (ny + nz/qi) = n(y/qi)) = nfy(i),

due to Lemma 3.3. It follows that f̂x ≤ f̂y. Similarly we prove the opposite

inequality f̂y ≤ f̂x. �

Lemmas 3.4 and 3.5 entitle us to define a monotone map φh,Q : S →
∇(R̂) as follows: Given x ∈ S, we pick A ⊆ ω such that ⟨a, A⟩ ∈ S×F P(ω),

we put x := h(⟨a, A⟩), and we define φh,Q(a) := f̂x.

Lemma 3.6. Let M be a Riesz monoid, S a distributive ⟨∨,0⟩-semilat-
tice, and h : S×F P(ω) → ∇(M) an isomorphism. Let Q := {qi | i ∈ ω} be
a set of anti-idempotent elements of M satisfying qi = h(⟨0, {i}⟩), for all
i ∈ ω. Finally, let a ∈ S r {0} and {bw | w ∈W} be an uncountable set
of elements of S r {0} such that bw ≤ a, for all w ∈ W , and bw ∧ bv = 0,
for all v in W \ {w} (we will call {bw | w ∈W} a decomposition under a).
Then there exists w ∈W with φh,Q(bw) < φh,Q(a).

Proof. Let x, and yw, w ∈ W , be elements of M such that x =
h(⟨a, ω⟩) and yw = h(⟨bw, ω⟩), for all w ∈ W . Since bw ≤ a, we have that
yw ≤ x, for all w ∈W , and so there are positive integers mw, w ∈W , such
that yw ≤ mwx, for all w ∈ W . Since the set W is uncountable, there are
a positive integer m and an uncountable V ⊆ W such that mv = m, for all
v ∈ V . We can replace the element a with its multiple ma. Therefore we
can without loss of generality assume that m = 1.

Since the map φh,Q is monotone, we have that φh,Q(bv) ≤ φh,Q(a), for
all v ∈ V . Suppose for a contradiction that the equality φh,Q(bv) = φh,Q(a)
holds for all v ∈ V . Then there are positive integers nv and finite subsets
Fv ⊆ ω, v ∈ V , such that fx(j) ≤ nvfyv(j), for all j ∈ ω r Fv. Since the set
V is uncountable, there are n ∈ N and an infinite1 U ⊆ V such that nu = n,
for all u ∈ U . Let u0, . . . , un be distinct elements from U . According to
[81, Lemma 2.3] there are a finite F ⊆ ω and an element qF ∈ M with
qF = h(⟨0, F ⟩) satisfying

n∑
i=0

yui ≤ x+ qF .

1Observe that we can pick U uncountable.
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According to Lemma 3.3(ii), we have that
n∑

i=0

(yui/qj) ≤ (

n∑
i=0

yui/qj),

hence

(3.1)
n∑

i=0

fyui (j) ≤ fx+qF (j),

for all j ∈ ω. For all j ∈ ω \ F , the equality

(x+ qF /qj) = (x/qj)

holds due to Lemma 3.3(iii), hence we infer from (3.1) that

(3.2)
n∑

i=0

fyui (j) ≤ fx(j).

Since (F ∪
∪n

i=0 Fui) is finite, we can pick j ∈ ω \ (F ∪
∪n

i=0 Fui). We
conclude from (3.2) that

nfx(j) ≥ n

n∑
i=0

fyui (j) =

n∑
i=0

nfyui (j) ≥ (n+ 1)fx(j),

hence fx(j) = 0, whence (x/vj) = 0. This contradicts ⟨0, {j}⟩ ≤ ⟨a, ω⟩. �
Definition 3.7. Let κ be an infinite cardinal. We define the following

properties of a partially ordered set P :

(Aκ) Every decreasing sequence of elements of P of length at most κ
has a nonzero lower bound.

(B) For every p ∈ P , there exists an uncountable {pw | w ∈W} ⊆ P
such that pw < p for all w ∈W and pv ⊥ pw, for all v ̸= w in W .

Lemma 3.8. For every infinite cardinal κ, there exists a Boolean algebra
Bκ of size 2κ such that Bκ r {0} satisfies both (Aκ) and (B).

Proof. Given an ordinal number α, we denote by αW the set of all
maps α→W . We set

Pκ :=
∪

κ≤α<κ+

αW,

and we define an order on the Pκ by reverse inclusion, that is, f ≤ g, if f
is an extension of g, for all f, g ∈ Pκ. It is easy to see that Pκ is a tree of
cardinality 2κ satisfying both (Aκ) and (B). We denote by Lκ the sublattice
of Her(Pκ) generated by Pκ. Denote byBκ the Boolean algebra R-generated
by Lκ [27, II.4. Definition 2].2 Observe that for every a � b in Lκ, there
is f ∈ Pκ such that f ≤ b and f ∧ a = 0. By [27, II.4. Lemma 3] there
are a < b in Lκ such that b− a ≤ c, for all c ∈ Lκ. We pick f ∈ Pκ with
f ≤ b and f ∧ a = 0. It follows that f ≤ c, and so Pκ is a dense subset of

2Bκ is generated by Lκ as a ring and both Bκ and Lκ have the same bounds.
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Bκ. We conclude that Bκ r {0} satisfies both properties (Aκ) and (B). It
is straightforward that the cardinality of Bκ is 2κ. �

Proposition 3.9. Let κ be an infinite cardinal and S a distributive
⟨∨,0⟩-semilattice such that the partially ordered set S r {0} satisfies both
(Aκ) and (B). Suppose that there is an isomorphism h : S×FP(ω) → ∇(M),
where M a Riesz monoid and there are anti-idempotent elements qi, i ∈ ω,
in M such that qi = h(⟨0, {i}⟩), for all i ∈ ω. Then the ⟨∨,0,1⟩-semilattice

∇(R̂) contains a strictly decreasing sequence of length κ+.

Proof. By transfinite induction up to κ+, we define a sequence ⟨aα |
α < κ+⟩ of elements of S r {0} inducing a strictly decreasing sequence

⟨φh,Q(aα) | α < κ+⟩ of elements of ∇(R̂). We pick a0 to be any non-
zero element of S. Suppose now that the sequence ⟨aα | α ≤ β⟩ is de-
fined for an ordinal β < κ+. Since the poset S r {0} satisfies property
(B), there is a decomposition {bw | w ∈W} under aβ. It foolows from
Lemma 3.6 that φh,Q(aβ) > φh,Q(bw) for some w ∈ W , and therefore we
can define aβ+1 := bw. Let β < κ+ be a limit ordinal and suppose that we
have already defined a sequence ⟨aα | α < β⟩ such that ⟨φh,Q(aα) | α < β⟩
is strictly decreasing. According to (Aκ) there is a lower bound aβ of
{aα | α < β} in S r {0}. Since the map φh,Q is monotone, we conclude
that φh,Q(aα) > φh,Q(aα+1) ≥ φh,Q(aβ), for all α < β < κ+. �

We denote by λ the supremum of the lengths of all strictly decreasing

sequences in ∇(R̂).

Theorem 3.10. There is a directed union D of a countable chain of
Boolean join-semilattices (with (∨, 0, 1)-preserving inclusion maps), of car-
dinality 2λ, which is not isomorphic to ∇(M) for any Riesz monoid M in
which every nonzero element is anti-idempotent.

Proof. We set D := Bλ×FP(ω). As we have discussed in Remark 3.2,
the ⟨∨,0,1⟩-semilattice D is the direct limit of a countable chain of Boolean
lattices and one-to-one (∨, 0, 1)-preserving transition maps. It follows from
Lemma 3.8 that the poset Bλ r {0} satisfies both (Aλ) and (B). Since
M is a Riesz monoid in which every nonzero element is anti-idempotent,
the assertion follows from Proposition 3.9. It is straightforward that |D| =
|Bλ ×F P(ω)| = 2λ. �

Remark 3.11. This result contrasts with the answer to the analogue
of [81, Problem 1] for ⟨∨,0⟩-semilattice of compact congruences of lattices:
Every direct limit of a countable sequence of distributive lattices with zero
and ⟨∨,0⟩-homomorphisms is isomorphic to the semilattice ConcL of all
compact congruences of some relatively complemented lattice L with zero
[80, Corollary 21.3].

Theorem 3.12. There is a union H of a countable chain of strongly
distributive ⟨∨,0,1⟩-semilattices (with ⟨∨,0,1⟩-preserving inclusion maps)
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which is not isomorphic to the maximal semilattice quotient of any Riesz
monoid in which every nonzero element is anti-idempotent.

Proof. Let H′ denote the ⟨∨,0⟩-semilattice of all compact elements of
Her(Pλ). Similarly as in the proof of Theorem 3.10, we set H = H′×FP(ω).
The ⟨∨,0⟩-semilatticeH is a direct limit of a countable chain of strongly dis-
tributive ⟨∨,0,1⟩-semilattices and one-to-one ⟨∨,0,1⟩-preserving transition
maps due to Remark 3.2. We argue as in the proof of Theorem 3.10. �

Recall that a monoid M is said to be conical provided that x + y = 0
if and only if x = y = 0, for all x, y ∈ M . Since 2ne + x = ne implies
that 2(ne + x) = ne + x, for all x ∈ M , the conical monoids without
nonzero idempotent elements are exactly conical monoids with all elements
anti-idempotent. Notice that the positive cone of a dimension group forms
a conical monoid without nonzero idempotent elements satisfying the Riesz
refinement property.

Corollary 3.13. There is the union of a countable chain of Boolean
join-semilattices, respectively, the union of a countable chain of strongly
distributive ⟨∨,0,1⟩-semilattices, with ⟨∨,0,1⟩-preserving inclusion maps,
not isomorphic to ∇(M) for any conical Riesz monoid M without nonzero-
idempotent elements. In particular, it is not isomorphic to the maximal
semilattice quotient of the positive cone, ∇(G+), for any dimension group
G.

Recall (e.g. from [81]) that a monoid M is strongly separative provided
that x + y = 2y implies that x = y for all x, y ∈ M . An element e of
a monoid M has finite stable rank if there is a positive integer k such
that ke + x ≤ e + y implies that x ≤ y, for all x, y ∈ M . Observe that
every element of a strongly separative monoid has finite stable rank. In
a conical monoid, every nonzero idempotent element has infinite stable rank.
Therefore, we can replace the assumption that the monoidM has no nonzero
idempotent elements by any of the following statements:

• every element of M has finite stable rank,
• the monoid M is strongly separative

(compare to [81, Corollary 5.3]). We derive from Corollary 3.13 similar
consequences to the ones obtained from [81, Corollary 5.3] in [81, Section 6].
In particular, neither the ⟨∨,0,1⟩-semilattice D nor the ⟨∨,0,1⟩-semilattice
H (defined in Theorem 3.10 and Theorem 3.12, respectively) is isomorphic
to the join-semilattice of all finitely generated ideals of a strongly separative
von Neumann regular ring or the join-semilattice ConcL of all compact
congruences of a modular lattice L of locally finite length.

Remark 3.14. Observe that every element f̂ ∈ ∇(R̂) is represented by

a map with rational values. It follows that the cardinality of ∇(R̂) is 2ℵ0 ,
and so we have the estimate ℵ1 ≤ λ ≤ 2ℵ0 . Of course, if 2ℵ0 = ℵ1 and
2ℵ1 = ℵ2, then 2λ = ℵ2. On the other hand, ℵ2 < 2ℵ1 implies that ℵ2 < 2λ.
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1. Introduction

The commutative monoid V (R), assigned to a unital associative ring
R, consists of all isomorphism classes of finitely generated projective right
R-modules, with the operation induced from direct sums. Alternatively,
the monoid V (R) is defined as Murray-von Neumann equivalence classes of
idempotent ω × ω-matrices with finitely many nonzero entries over R.

For a von Neumann regular ring R, the monoid V (R) faithfully reflects
the structure of the ring. Not surprisingly, many of direct sum decompo-
sition problems of von Neumann regular rings have reformulation in terms
of the corresponding refinement monoids. Let us mention the separativity
problem whether there are non-isomorphic finitely generated projective right
R-modules M , N such that M ⊕M ≃ M ⊕N ≃ N ⊕N as a prominent
example (cf. [22, Problem 1]).

If R is a von Neumann regular ring or a C∗-algebra with real rank zero,
then the monoid V (R) satisfies the Riesz refinement property. The realiza-
tion problem [23] asks which refienement monoids are realized as V (R) of
von Neumann regular rings. As shows an example of F. Wehrung [77, Corol-
lary 2.12], not all of them. But the size of the Wehrung’s counter-example
is ≥ ℵ2, which leaves the realization problem open for refinement monoids
of smaller cardinalities. The countable case is particularly important for
the direct sum decomposition problems of von Neumann rings are usually
reduced to realization problems of certain countable refinement monoids.

There are classes of refinement monoids for which the realization problem
has a positive solution. The monoids M(E) associated to row-finite directed
graphs (cf. [7]) are realized functorially in [4]. The method used in [4] is
extended in [3], where finitely generated primitive monoids are realized. We
refer to [2] for a survey on this result.

The refinement monoids obtained by these canonical constructions have
a common feature; they are direct limits of finitely generated refinement
monoids. Such refinement monoids are called tame in [5]. The remaining
ones are wild. Two examples of wild monoids M and M are studied in
detail in [5] and realized in [6].

The refinement monoid M is non-cancellative but admits faithful state,
consequently, it cannot be realized as V (R) for any von Neumann regular
algebra over an uncountable field [3, Proposition 4.1]. Surprisingly, M is
realized by an exchange algebra over any field with involution [6, Theorem
4.10] as well as a regular algebra over a countable field [6, Theorem 5.5].
Note that the first such example goes back to [14].

The monoid M is a factor of M by an o-ideal and it is isomorphic to
V (S) for a regular algebra S invented by Bergman and Goodearl [22, Ex-
ample 5.10]. It is in some sense a canonical example of a wild monoid. the
modification of this construction was used by Moncasi who constructed a
directly finite regular Hermite ring such that K0(R) is not a Riesz group
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[51], in particular, the monoid V (R) does not satisfy the Riesz interpola-
tion property. Modifications of the Bergman-Goodearl construction play a
crucial role also in this paper.

The chapter consists of three parts. Firstly, we develop quite elementary
but useful methods of computing the monoid V (R) for a regular ring R.
We define a partial H-map from a hereditary subset H of a monoid and
we understand when the partial H-map map uniquely extends to a monoid
isomorphism. This idea leads to Lemma 3.5 that allows us to compute
the monoid V (R) of a regular ring R knowing the structure of the partial
monoid of its finitely generated right ideals. We refine Lemma 3.5 in Corol-
lary 3.9, which is designed to compute V (R) of directly finite regular rings
R; in this case it suffices to describe the ordered set of traces of idempotents
of the ring R.

In the second part of the chapter, consisting of Sections 4 and 5, we
construct a class of directly finite non-cancellative refinement monoids. In
Sections 4 we aim to construct a class of refinement monoids rich enough
to provide interesting examples with potential of further applications. In
Section 5 we restrict ourselves to particular refinement monoids B2n, n ∈ N,
obtained by the previous construction. We prove that the monoids B2n for
n ≥ 2, do not satisfy the Riesz interpolation property.

The remaining Sections 6-8 are devoted to construction of regular rings
R2n and the proof that V (R2n) ≃ B2n, for all positive integers n. The
auxiliary Section 6 is elementary linear algebra. In Section 7 we recall the
Goodearl’s modification [22, Example 5.10] of the Bergman’s example, de-
noted by R2, and we prove that B2 ≃ V (R2). In the final Section 8, we
generalize the constructions of Bergman and Goodearl. This results in rings
R2n such that V (R2n) ≃ B2n.

2. Preliminaries

A subset H of a monoid M is called hereditary provided that y ∈ H
and x ≤M y implies that x ∈ H, for all x, y ∈ M . Given a subset X of the
monoid M , we set

↓M (X) := {x ∈ M | ∃y ∈ X : x ≤M y}.

Thus ↓M (X) is the least hereditary subset ofM containingX. A hereditary
submonoid of the monoid M will be called an o-ideal of M . We will denote
by O(X)M the least o-ideal of M containing the set X, i.e.,

O(X)M := {x ∈ M | ∃ y1, . . . , yn ∈ X : x ≤M y1 + · · ·+ yn}.

When X = {x} is a singleton set, we will write shortly ↓M (x) and O(x)M .
An element u ∈ M is an order unit of M provided that O(u)M = M ;
equivalently, there is a positive integer λ such that x ≤M λu, for each
x ∈ M .



66 5. THE REALIZATION PROBLEM

3. Partial H-maps and their applications

Let M , N be monoids and H a hereditary subset of M . A partial
H-map is a one-to-one map α : H → N such that for all z ∈ H and all
u, v ∈ N , the equality α(z) = u + v holds true if and only if there are
(necessarily unique) x, y ∈ H such that α(x) = u, α(y) = v and x+ y = z.

By induction we readily prove that if α : H → N is a partial H-map,
then for all x ∈ M , all n ∈ N and all u1, . . . , un ∈ N : α(x) = u1+ · · ·+un if
and only if x = x1+· · ·+xn for (necessarily unique) xi ∈ H, i ∈ {1, 2, . . . , n},
such that ui = α(xi) for all i = {1, 2, . . . , n}.

Lemma 3.1. Let M , N be monoids and let H be a hereditary subset of
M . If α : H → N is a partial H-map then for all x, y, z ∈ H:

z = x+ y ⇐⇒ α(z) = α(x) + α(y).

Proof. If z = x+y, then α(z) = α(x)+α(y) readily by the definition of
a partial H-map. Conversely, the equality α(z) = α(x) + α(y) implies that
there are x′, y′ ∈ H such that z = x′ + y′, α(x) = α(x′) and α(y) = α(y′).
Since a partial H-map is by definition one-to-one, we conclude that x = x′

and y = y′. �
Keeping the setting of Lemma 3.1, we get by induction that for every

n ∈ N and all x, y1, . . . , yn ∈ H:

(3.1) x =
n∑

i=1

yi ⇐⇒ α(x) =
n∑

i=1

α(yi).

Lemma 3.2. Let M , N be refinement monoids and H a hereditary sub-
set of M . Then every partial H-map α : H → N extends to a unique
isomorphism β : O(H)M → O(α(H))N .

Proof. By the definition, for every x ∈ O(H)M there are n ∈ N and
y1, . . . , yn ∈ H with x ≤M y1 + · · · + yn. Since M is a refinement monoid,
there are xi ≤M yi, i = 1, . . . , n, such that x = x1 + · · · + xn. We define a
map β : O(H)M → N by x 7→ α(x1) + · · ·+ α(xn).

Claim 2. The map β is a well-defined monoid homomorphism.

Proof of Claim 2. Let x1+ · · ·+xm = y1+ · · ·+yn for some m,n ∈ N
and x1, . . . , xm, y1, . . . , yn ∈ H. Since M is a refinement monoid, there are
zij ∈ H such that xi =

∑n
j=1 zij for all i ≤ m and yj =

∑m
i=1 zij for all

j ≤ n. By (3.1) we have that α(xi) =
∑n

j=1 α(zij) for all i ≤ m and

α(yj) =
∑m

i=1 α(zij) for all j ≤ n. It follows that

m∑
i=1

α(xi) =
m∑
i=1

n∑
j=1

α(zij) =
n∑

j=1

m∑
i=1

α(zij) =
n∑

j=1

α(yj).

Thus the map β : O(H)M → N is well-defined. It is straightforward that it
is a monoid homomorphism. � Claim 2.
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Claim 3. The homomorphism β is one-to-one.

Proof of Claim 3. Suppose that β(x) = β(y) for some x, y ∈ O(H)M .
By the definition, there are m,n ∈ N and x′1, . . . , x

′
m, y

′
1, . . . , y

′
n ∈ H such

that x ≤M x′1 + · · ·+ x′m and y ≤M y′1 + · · ·+ y′n. Since M is a refinement
monoid, there are xi ≤M x′i, i = 1, . . . ,m, and yj ≤M y′j , j = 1, . . . , n, in

H such that x = x1 + · · · + xm and y = y1 + · · · + yn. Since β(x) = β(y),
we get that

∑m
i=1 α(xi) =

∑n
j=1 α(yj). Since N is a refinement monoid,

there are wi,j ∈ N such that α(xi) =
∑n

j=1wi,j , for all i = 1, . . . ,m, and

α(yj) =
∑m

i=1wi,j , for all j = 1, . . . , n. Since α is a partial H-map, there
are elements zi,j ∈ H such that

(3.2) wi,j = α(zi,j), for all i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n},
and

xi =
n∑

j=1

zi,j , for all i ∈ {1, 2, . . . ,m}.

Applying that α is a partial H-map again, we infer that there are elements
z′i,j ∈ H such that

(3.3) wi,j = α(z′i,j), for all i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n},
and

yj =

m∑
i=1

z′i,j , for all j ∈ {1, 2, . . . , n}.

Since the map α : H → N is by definition one-to-one, we get from (3.2) and
(3.3) that zi,j = z′i,j for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. It follows
that

x =

m∑
i=1

xi =

m∑
i=1

n∑
j=1

zi,j =

n∑
j=1

m∑
i=1

z′i,j =

n∑
j=1

yj = y.

This proves that β is one-to-one. � Claim 3.

Claim 4. The equality β(O(H)M ) = O(α(H))N holds true.

Proof of Claim 4. As we have shown above, each x ∈ O(H)M is
a sum of elements from H. It follows that β(O(H)M ) ⊆ O(α(H))N . It
is straightforward to see from the definition of a partial H-map, that the
image α(H) is a hereditary subset of N . Since N is a refinement monoid,
each element of O(α(H))N is a sum of elements of ↓N (α(H)). Therefore
O(α(H))N is a submonoid of N generated by α(H). From H ⊆ O(H)M we
infer that α(H) ⊆ β(O(H)M ). Since β(O(H)M ) is a submonid of N , we
conclude that O(α(H))N ⊆ β(O(H)M ). � Claim 4.

The three claims prove the lemma. �
Corollary 3.3. Let M , N be refinement monoids, u ∈ M , and

α : ↓M (u) → N a partial ↓M (u)-map. If u is an order unit in M
and α(u) is an order unit in N , then α extends to a unique isomorphism
β : M → N .
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LetR be a ring. Given a finitely generated rightR-moduleA, we denote
by [A] the isomorphism class of the module A, and by V (R) the monoid
of all isomorphism classes of finitely generated projective right R-modules
with the operation of addition defined by

[A] + [B] = [A⊕B],

for all A,B ∈ FP(R). As above, we will use ≤V (R) to denote the algebraic
preorder on V (R) and ≡V (R) to denote the corresponding equivalence re-
lation. If the ring R is regular, then V (R) is a refinement monoid due to
[22, Theorem 2.8].

Lemma 3.4. Let R be a ring and A, B finitely generated right R-
modules. Then [A] + [B] ≤V (R) [R] if and only if there are orthogonal
idempotents e, f ∈ R such that [eR] = [A] and [fR] = [B].

Proof. (⇐) Let e, f be orthogonal idempotents such that eR ≃ A and
fR ≃ B. Since the idempotents e and f are orthogonal, R = eR ⊕ fR ⊕
(1− e− f)R. Therefore A⊕B .⊕ R, hence [A] + [B] ≤V (R) [R]. (⇒) By

the assumption [A] + [B] ≤V (R) [R], hence A ⊕B .⊕ R. It follows that

R = A′ ⊕B′ ⊕C for some A′ ≃ A and B′ ≃ B. The projection R → A′

with the kernelB′⊕C corresponds to a left multiplication by an idempotent,
say e. Similarly, the projection R → B′ with the kernel A′⊕C corresponds
to a left multiplication by an idempotent, say f . As the composition of these
projections, in whatever order, is the zero endomorphism, the idempotents
e and f are orthogonal. Clearly eR = A′ ≃ A and fR = B′ ≃ B, hence
[eR] = [A] and [fR] = [B]. �

Lemma 3.5. Let R be a regular ring, N a refinement monoid, and
γ : Idem(R) → N a map satisfying:

(i) γ(e) = γ(f) ⇐⇒ [eR] = [fR], for all e, f ∈ Idem(R).
(ii) The equality x + y = γ(g) holds true for some x, y ∈ N and g ∈

Idem(R) if and only if there are orthogonal idempotents e, f ∈ R
such that γ(e) = x, γ(f) = y, and e+ f = g.

(iii) γ(1) is an order unit in N .

Then the map α : {[eR] | e ∈ Idem(R)} → N given by the correspondence
[eR] 7→ γ(e) extends to a (unique) isomorphism β : V (R) → N .

Proof. Put M := {[eR] | e ∈ Idem(R)}. It follows from (1) that the
α : M → N given by [eR] 7→ γ(e) is a well-defined one-to-one map. In view
of Lemma 3.4 property (2) implies that α is a partial ↓V ([R]) ([R])-map.
Property (3) says that α([R]) is an order unit in N and since [R] is clearly
an order unit in V ([R]), the map α extends to a (unique) isomorphism
β : V (R) → N due to Corollary 3.3. �

We set

trR(b) := {abc | b, c ∈ R} =
∪
a∈R

abR =
∪
c∈R

Rac,
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for every b ∈ R.

Lemma 3.6. Let e and f be idempotents of a ring R. Then

(3.4) [eR] ≤ [fR] ⇐⇒ trR(e) ⊆ trR(f).

Proof. (⇒) Suppose that [eR] ≤ [fR]. Then eR .⊕ fR, by the
definition. It follows that there is a surjective homomorphism φ : fR → eR.
Since f is an idempotent, φ extends to a homomorphism Φ : R → eR.
The homomorphism Φ corresponds to a left multiplication by an element
a = Φ(1) ∈ R. It follows that eR = afR, and consequently trR(e) ⊆ trR(f).

(⇐) If trR(e) ⊆ trR(f), then e ∈ afR for some a ∈ R. Since e is
an idempotent, the left multiplication by ea determines a surjective map
fR → eR. Since eR is a projective right R-module, we infer that eR .⊕

fR. Therefore [eR] ≤ [fR]. �
A right R-module A is directly finite provided that A ≃ A⊕B implies

that B = 0 for all right R-modules B, i.e, the module A it is not isomorphic
to any of its proper direct summands [22, page 49]. A ringR is directly finite
if it is directly finite as a right R-module. Note that this notion is left-right
symmetric as a ring R is directly finite if and only if ab = 1 implies ba = 1
for all a, b ∈ R (cf. [22, Lemma 5.1]).

Lemma 3.7. If a ring R is directly finite then

[eR] ≡V (R) [fR] =⇒ [eR] = [fR],

for all e, f ∈ Idem(R).

Proof. Let e, f ∈ Idem(R) and suppose that [eR] ≡V (R) [fR]. Then
there are A,B ∈ FP(R) such that [fR] = [eR]+[A] and [eR] = [fR]+[B],
i.e., fR ≃ eR⊕A and eR ≃ fR⊕B. It follows that

eR = fR⊕B ≃ eR⊕A⊕B,

hence

R = (1− e)R⊕ eR ≃ (1− e)R⊕ eR⊕A⊕B = R⊕A⊕B.

Since the ring R is directly finite, we conclude that A = B = 0, hence
eR ≃ fR, whence [eR] = [fR] �

Applying Lemma 3.6 we get that

Corollary 3.8. Let R be a directly finite ring. Then

[eR] = [fR] ⇐⇒ trR(e) = trR(f),

for all e, f ∈ Idem(R).

Combining Lemma 3.5 and Corollary 3.8 we conclude with

Corollary 3.9. Let R be a directly finite regular ring, let N be a
refinement monoid, and let γ : Idem(R) → N be a map satisfying:

(i) γ(e) = γ(f) ⇐⇒ trR(e) = trR(f), for all e, f ∈ Idem(R).
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(ii) The equality x + y = γ(g) holds true for some x, y ∈ N and g ∈
Idem(R) if and only if there are orthogonal idempotents e, f ∈ R
such that γ(e) = x, γ(f) = y, and e+ f = g.

(iii) γ(1) is an order unit in N .

Then the map α : {[eR] | e ∈ Idem(R)} → N given by the correspondence
[eR] 7→ γ(e) extends to a (unique) isomorphism β : V (R) → N .

4. Non-cancellative refinement monoids

In this section we recall a construction of refinement monoids that are,
under some simple conditions, non cancellative directly finite. It leads to
examples that will be realized as V (R) of regular rings, R, in the rest
of the paper. We seek both simplicity and generality hoping for further
applications of the construction.

Definition 4.1. Let M , G be monoids and ι : M → G a monoid
homomorphism. Given H ⊆ M a hereditary subset (w.r.t. the algebraic
preorder on M) and a submonoid F of G, we define a relation ΘF

H on the
monoid M by
(4.1)

x ≡ y (ΘF
H)

df⇐⇒

{
ι(x) + p = ι(y) + q for some p, q ∈ F : x, y /∈ H,

x = y : otherwise,

for all x, y ∈ M .

Lemma 4.2. Let ι : M → G be a monoid homomorphism, H a hereditary
subset of M , and F a submonoid of G. Then the relation ΘF

H defined by
(4.1) is a congruence of M .

Proof. We shall prove separately that ΘF
H is an equivalence relation

on M and that ΘF
H is compatible with the operation of addition.

Claim 5. ΘF
H is an equivalence relation.

Proof of Claim 5. The relation ΘF
H is clearly symmetric and reflex-

ive. Suppose that

(4.2) x ≡ y (ΘF
H) and y ≡ z (ΘF

H)

for some x, y, z ∈ M . Observe from definition (4.1) that x ≡ y (ΘF
H) implies

that either both x and y belong to H, in which case they are equal, or none
of them belong to H. Therefore, in order to verify transitivity of ΘF

H , there
are two cases to discuss:

Case 1: None of the elements x, y, z belong to H. In this case there are
p, q, r, s ∈ F such that

ι(x) + p = ι(y) + q and ι(y) + r = ι(z) + s.

It follows that ι(x)+ (p+ r) = ι(z)+ (q+ s), and since F is a submonoid of
G, we conclude that x ≡ z (ΘF

H).
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Case 2: All the elements x, y, z belong to H. In this case it follows
readily from (4.2) that x = y = z, and thus trivially x ≡ z (ΘF

H).

We conclude that ΘF
H is an equivalence relation on M . � Claim 5.

Claim 6. ΘF
H is compatible with addition.

Proof of Claim 6. Let xi ≡ yi (Θ
F
H) for some xi, yi ∈ M , i = 1, 2.

If all the elements xi, yi, i = 1, 2, belong to H, definition (4.1) gives that
xi = yi, for all i = 1, 2. It follows that x1 + x2 = y1 + y2,

Suppose that not all the elements xi, yi, i = 1, 2, belong to H. By
symmetry we can without loss of generality assume that x1 /∈ H. From
x1 ≡ y1 (Θ

F
H) we infer that y1 /∈ H as well. Since H is a hereditary subset of

M , we get that x1+x2, y1+y2 /∈ H. By definition (4.1), there are pi, qi ∈ F ,
i = 1, 2 (p2, q2 possibly zero when x2, y2 ∈ H) such that

ι(xi) + pi = ι(yi) + qi,

for all i = 1, 2. It follows that

ι(x1 + x2) + (p1 + p2) = ι(y1 + y2) + (q1 + q2).

Since F is closed under addition and none of the elements x1 + x2, y1 +
y2 belongs to H, we conclude from (4.1) that x1 + x2 ≡ y1 + y2 (Θ

F
H).

� Claim 6.

This concludes the proof. �
LetM be a monoid and Θ a congruence ofM . Given an element x ∈ M ,

we denote by [x ]Θ the Θ-block of x, i.e., [x ]Θ := {y ∈ M | x ≡ y (Θ)}. We
denote by M/Θ the quotient monoid of M by the congruence Θ.

Lemma 4.3. Let ι : M → G be a monoid homomorphism, H a proper
hereditary subset of M , and F a submonoid of G. Suppose that there are
x ̸= y in H and p, q ∈ F such that

(4.3) ι(x) + p = ι(y) + q.

Then the quotient monoid M/ΘF
H is not cancellative.

Proof. Since H is a proper subset of M , there is z ∈ M \ H. From
(4.3) we get that

(4.4) ι(z + x) + p = ι(z) + ι(x) + q = ι(z) + ι(y) + q = ι(z + y) + q

From (4.4) we infer that

z + x ≡ z + y (ΘF
H),

hence

[ z ]ΘF
H
+ [x ]ΘF

H
= [ z + x ]ΘF

H
= [ z + y ]ΘF

H
= [ z ]ΘF

H
+ [ y ]ΘF

H
.

On the other hand since x ̸= y in H, we get from Definition 4.1 that

[x ]ΘF
H
= {x} ̸= {y} = [ y ]ΘF

H
.

Therefore M/ΘF
H is not cancellative. �
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In the next lemma we show that under the assumptions that H = O is
an o-ideal and both O and G are cancellative, we can cancel elements from
the given hereditary subset.

Lemma 4.4. Let ι : M → G be a monoid homomorphism, O an order
ideal of M , and F a submonoid of G. Suppose that both O and G are
cancellative. Let x, y ∈ M and o ∈ O satisfy

(4.5) [x ]ΘF
O
+ [ o ]ΘF

O
= [ y ]ΘF

O
+ [ o ]ΘF

O
.

Then [x ]ΘF
O
= [ y ]ΘF

O
.

Proof. Equation (4.5) is equivalent to

x+ o ≡ y + o (ΘF
O).

First suppose that x+o ∈ O. Then also y+o ∈ O, and consequently x, y ∈ O
for O is an o-ideal. By Definition 4.1 we have that x+ o = y+ o ∈ O. Since
O is cancellative, we get that x = y.

Assume that x+ o /∈ O. Since o ∈ O and O is an o-ideal, we infer that
x /∈ O. Similarly we get that y /∈ O. According to Definition 4.1 there are
elements p, q ∈ F such that

ι(x) + ι(o) + p = ι(x+ o) + p = ι(y + o) + q = ι(y) + ι(o) + q.

Since F is cancellative, we get that

ι(x) + p = ι(y) + q,

hence [x ]ΘF
O
= [ y ]ΘF

O
, due to Definition 4.1. �

Let G be a group and F a submonoid of G. We set

F ♮ := {p− q | p, q ∈ F }.

Clearly, F ♮ is the subgroup of G generated by the monoid F .

Lemma 4.5. Let ι : M → G be a monoid homomorphism, H a hereditary
subset of M . Suppose that G is a group and let F be a submonoid of G.

Then ΘF
H = ΘF ♮

H .

Proof. It is clear that ΘF
H ⊆ ΘF ♮

H . We prove the opposite inclusion.

Let x and y be elements of M such that x ≡ y (ΘF ♮

H ). By Definition 4.1, we
have that x = y unless both x, y belong to M \ H. In this case there are
p, q ∈ F ♮ such that

(4.6) ι(x) + p = ι(y) + q.

Then there are pi, qi ∈ F , i = 1, 2, such that p = p1 − p2 and q = q2 − q1.
Substituting to (4.6) we get that

ι(x) + p1 + q1 = ι(y) + q2 + p2.

Therefore x ≡ y (ΘF
H). �
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Under the assumptions of Lemma 4.5 we may restrict ourselves to the
case when F is a subgroup of the groupG. Notice also that when ι : M → G
is the inclusion map and F is a group, we have that

(4.7) x ≡ y (ΘF
H) ⇐⇒

{
x = y + q for some q ∈ F : x, y /∈ H,

x = y : otherwise,

for all x, y ∈ M .
A monoid M is said to be directly finite provided that x+y = x implies

that y = 0 for all x, y ∈ M . We can see readily from the definitions, that the
monoid V (R) is directly finite if and only if all finitely generated projective
right R-modules are directly finite. Following [22, p. 50], this is equivalent
to all matrix rings Mn(R) being directly finite. As far as we know it is
still an open question whether the monoid V (R) of a directly finite regular
ring must be directly finite (cf. [22, Problem 1 on p. 344]). A sufficient
conditions for direct finiteness of the quotient monoids M/ΘF

H is given by
the following lemma:

Lemma 4.6. Let ι : M → G be a monoid homomorphism, H a hereditary
subset of M . Suppose that G is a group and let F be a subgroup of G such
that ι−1(F ) = 0. Then the quotient M/ΘF

H is directly finite whenever the
monoid M is directly finite.

Proof. Suppose that elements x, y ∈ M satisfy

[x ]ΘF
H
+ [ y ]ΘF

H
= [x ]ΘF

H
.

If x ∈ H, then x + y = x by the definition of ΘF
H and since M is directly

finite, we conclude that y = 0. Suppose that x /∈ H. According to (4.7)
there is q ∈ F such that

(4.8) ι(x) + ι(y) = ι(x) + q.

Since G is a group, we get from (4.8) that ι(y) = q, and so y ∈ ι−1(F ) = 0.
Therefore y = 0. �

In the proof of forthcoming Lemma 4.8 we will repeatedly make use of
the following:

Lemma 4.7. Let M be a monoid and Θ a congruence of M . Let xi, yi ∈
M , i = 1, 2, be such that

(4.9) [x1 ]Θ + [x2 ]Θ = [ y1 ]Θ + [ y2 ]Θ

and suppose that here are x′i, y
′
i, i = 1, 2, in M with xi ≡ x′i (Θ) and yi ≡

y′i (Θ) for all i = 1, 2 and

(4.10) x′1 + x′2 = y′1 + y′2.

If zij, i, j = 1, 2, is a refinement of (4.10), then [ zij ]Θ, i, j = 1, 2, is a
refinement of (4.9).
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Proof. Since Θ is a congruence of M , the equality x′i = zi1 + zi2
implies that [xi ]Θ = [x′i ]Θ = [ zi1 ]Θ + [ zi2 ]Θ and y′j = z1j + z2j implies

that [ yj ]Θ = [ y′j ]Θ = [ z1j ]Θ + [ z2j ]Θ, for all i, j ∈ 1, 2. Therefore, if zij ,

i, j = 1, 2, is a refinement of (4.10), then [ zij ]Θ, i, j = 1, 2, is a refinement
of (4.9). �

Lemma 4.8. Let M , G be monoids, O and order ideal of M , and F a
submonoid of G. Let ι : M → G be a one-to-one monoid homomorphism
such that for every x, y ∈ M \O and every p, q ∈ F there is r ∈ F satisfying
both ι(x)+p+r ∈ ι(M \O) and ι(y)+q+r ∈ ι(M \O). If M is a refinement
monoid, then the quotient M/ΘF

O is a refinement monoid as well.

Proof. We are to verify that the quotient monoid M/ΘF
O is conical

and that it satisfies the Riesz refinement property.

Claim 7. The quotient M/ΘF
O is conical.

Proof of Claim 7. Let

[x ]ΘF
O
+ [ y ]ΘF

O
= [ 0 ]ΘF

O
,

for some x, y ∈ M . This is equivalent to x+ y ≡ 0 (ΘF
O). Since 0 ∈ O, we

get from (4.1) that x+ y = 0. Since the monois M is conical, we conclude
that x = y = 0. � Claim 7.

Claim 8. The quotient M/ΘF
O satisfies the Riesz refinement property.

Proof of Claim 8. Suppose that xi, yi ∈ M , i = 1, 2, satisfy

(4.11) [x1 ]ΘF
O
+ [x2 ]ΘF

O
= [ y1 ]ΘF

O
+ [ y2 ]ΘF

O
,

and so equivalently

(4.12) x1 + x2 ≡ y1 + y2 (Θ
F
O).

We are going to discuss two complementary cases:
Case 1: Suppose that x1 + x2 ∈ O. With regard to definition (4.1), we

get from (4.12) that y1 + y2 ∈ O as well and that

(4.13) x1 + x2 = y1 + y2.

Since equality (4.13) has a refinement, (4.11) has a refinement as well due
to Lemma 4.7

Case 2: If x1 + x2 /∈ O, then y1 + y2 /∈ O as well, due to (4.12) and
(4.1). Since O is an o-ideal of M , in particular, it is closed under addition,
at least one of the elements x1, x2, as well as at least one of the elements
y1, y2 does not belong to O. By symmetry, we can assume without loss of
generality that both x2 and y2 are not in O. Since (4.12) holds true, there
are p, q ∈ F such that

(4.14) ι(x1 + x2) + p = ι(y1 + y2) + q,

due to definition (4.1). According to the assumptions, there is an element
r ∈ F such that ι(x2) + p + r ∈ ι(M \ O) and ι(y2) + q + r ∈ ι(M \ O).
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Let x′2, y
′
2 ∈ M \ O be the elements satisfying ι(x′2) = ι(x2) + p + r tand

ι(y′2) = ι(y2) + q + r. It follows from (4.14) that
(4.15)

ι(x1 + x′2) = ι(x1) + ι(x2) + p+ r = ι(x1 + x2) + p+ r

= ι(y1 + y2) + q + r = ι(y1) + ι(y2) + q + r = ι(y1 + y′2).

From (4.15) and the injectivity of ι we conclude that

(4.16) x1 + x′2 = y1 + y′2.

Since M is a refinement monoid, equation (4.16) has a refinement that
induces a refinemnt of (4.11) due to Lemma 4.7. � Claim 8.

The properties verified by Claims 7 and 8 mean that M/ΘF
O is a refine-

ment monoid. �

We state a corollary of Lemma 4.8 describing some cases when the for-
mulation of the assumptions can be reasonably simplified. It is going to be
applied in the next section.

Corollary 4.9. Let M , G be monoids, O and order ideal of M , and F
a submonoid of G. Let ι : M → G be a one-to-one monoid homomorphism
such that

(4.17) ι(M \O) + F ⊆ ι(M \O).

If M is a refinement monoid, then the quotient M/ΘF
O is a refinement

monoid. If G is a group then M/ΘF ♮

O is s a refinement monoid as well.

Proof. The fact that M/ΘF
O is a refinement monoid follows readily

from Lemma 4.8 as the assumptions of the lemma follow from (4.17). The

quotient M/ΘF ♮

O is a refinement monoid due to Lemma 4.5. �

5. The monoid A2n, B2n, and C2n

Let O be an o-ideal in a monoid M . We denote by ΘM
O the relation

on M defined by x ≡ y (ΘM
O ) provided that there are o, p ∈ O such that

x+o = y+p. Note that this definition is consistent with the notation of the
previous section assuming that we are given the identity map ι : M → M .

Lemma 5.1. Let M be a conical cancellative monoid. Let O be an o-ideal
of M such that

(5.1) o ≤ x for all o ∈ O and all x ∈ M \O.

Then M is a refinement monoid if and only if both O and M/ΘM
O are

refinement monoids.

Proof. (⇒) Suppose that M is a refinement monoid. An o-ideal of
a refinement monoid is clearly a refinement monoid, in particular O is a
refinement monoid.
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Suppose that

[x ]ΘM
O

+ [ y ]ΘM
O

= [x+ y ]ΘM
O

= [ 0 ]ΘM
O
,

for some x, y ∈ M . Note that it follows readily from the definition of the
congruence ΘM

O that [ 0 ]ΘM
O

= O. Therefore, x + y ∈ O, hence both x, y

belong to O, for O is an o-ideal. We conclude that [x ]ΘM
O

= [ y ]ΘM
O

=

[ 0 ]ΘM
O
, and so the quotient monoid M/ΘM

O is conical.

We are going to prove that M/ΘM
O satisfies the Riesz refinement prop-

erty. Let

(5.2) [x1 ]ΘM
O

+ [x2 ]ΘM
O

= [ y1 ]ΘM
O

+ [ y2 ]ΘM
O

inM/ΘM
O . Then, by the definition, there are o, p ∈ O such that x1+x2+o =

y1 + y2 + p. We set x′2 := x2 + o and y′2 := y2 + p. Then

(5.3) x1 + x′2 = x2 + y′2,

and since M satisfies the Riesz refinement property, the equation (5.3) has
a refinement. Clearly x′2 ≡ x2 + o (ΘM

O ) and y′2 ≡ y2 + p (ΘM
O ), and so this

refinement leads to a refinement of (5.2) in the quotient monoid M/ΘM
O .

(⇐). Suppose that both O and M/ΘM
O are refinement monoids. Note

that a monoid having a conical o-ideal is conical, in particular the monoid
M is conical. It remains to prove that M satisfies the Riesz refinement
property. Given elements o ∈ O and x ∈ M \ O, we denote by x − o the
unique element of M satisfying x = o+(x− o). Such an element exists due
to (5.1) and it is unique since M is cancellative.

Suppose that

(5.4) x1 + x2 = y1 + y2

for some xi, yj ∈ M , i, j = 1, 2. We aim to prove that the equation (5.4)
has a refinement. Up to symmetry, there are three cases to discuss.

Case 1: All xi, yj , i, j ∈ 1, 2, are from O. Since O satisfies the Riesz
refinement property, we find a refinement of (5.4) within O.

Case 2: Some but not all the elements appearing in (5.4) are in O.
Observe that in this case at most one of xi, i = 1, 2, as well as at most one
of yj , j = 1, 2, are from M \O. Therefore, we can without loss of generality
assume that x1, y1 ∈ M \O while y2 ∈ O. We put

z11 := x1 − y2, z12 := y2, z21 := x2, and z22 := 0.

Clearly
x1 = z11 + z12 = (x1 − y2) + y2,

x2 = z21 + z22 = x2 + 0, and

y2 = z12 + z22 = y2 + 0.

Thus we only need to verify that y1 = z11 + z21. This follows from

z11 + z21 + y2 = (x1 − y2) + x2 + y2 = x1 + x2 = y1 + y2

and the cancellativity of M .
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Case 3: All the elements xi, yj , i, j = 1, 2, are in M \O. Since M/ΘM
O

is a refinement monoid, there are zij , i, j = 1, 2, such that

[xi ]ΘM
O

= [ zi1 ]ΘM
O

+ [ zi2 ]ΘM
O
, for all i = 1, 2, and

[ yj ]ΘM
O

= [ z1j ]ΘM
O

+ [ z2j ]ΘM
O
, for all j = 1, 2.

This particularly means that there are oi, pi ∈ O, i = 1, 2, satisfying

xi + oi = zi1 + zi2 + pi, for both i = 1, 2.

Observe that since xi, yj ∈ M \O, for all i, j = 1, 2, either z11, z22 ∈ M \O
or z12, z21 ∈ M \O. We can without loss of generality assume that the first
one holds true. Set

uii := zii + oi − pi, for all i = 1, 2 and uij := zij for all i ̸= j in {1, 2},

and observe that

(5.5)
xi = ui1 + ui2, for all i = 1, 2,

[ yj ]ΘM
O

= [u1j ]ΘM
O

+ [u2j ]ΘM
O
, for all j = 1, 2,

and both u11, u22 belong to M \O. It follows from (5.5) that

(5.6) yj + qj = u1j + u2j + rj , j = 1, 2,

for some qj , rj ∈ O, j = 1, 2. Therefore

(5.7) y1 + y2 + q1 + q2 =

 2∑
i=1

2∑
j=1

uij

+ r1 + r2 = x1 + x2 + r2 + r2.

Since M is cancellative, we conclude from (5.4) and (5.7) that

q1 + q2 = r1 + r2.

Since O satisfies the Riesz refinement property, there are elements sij ∈ O,
i, j = 1, 2, such that

(5.8) qj = sj1 + sj2 and rj = s1j + s2j for all j = 1, 2.

Substituting from (5.8) to (5.6), we get that

(5.9) yj + sj1 + sj2 = u1j + u2j + s1j + s2j , for all j = 1, 2.

Since the monoid M is cancellative, we conclude from (5.9) that

(5.10)
y1 + s12 = u11 + u21 + s21 and

y2 + s21 = u12 + u22 + s12.

It follows from (5.5) and (5.10) that setting

v11 := u11 − s12, v12 := u12 + s12,

v21 := u21 + s21, v22 := u22 − s21,

we get a refinement of (5.4) in M . �
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Let n be a non-negative integer. Let

(5.11) An := (0× Nn
0 ) ∪ (N× Zn)

be a submonoid of the Cartesian power Zn+1. Note that being a submonoid
of a group, the monoid An is cancellatice. We denote by On the o-ideal of
An defined by On := 0× Nn

0 , and we set Un := An \On = N× Zn.

Corollary 5.2. The monoid An is a refinement monoid, for every
non-negative integer n.

Proof. It is straightforward to see that o ≤An x for every o ∈ On

and every x ∈ Un. Therefore property (5.1) of Lemma 5.1 is satisfied.
ClearlyOn, being a Cartesian product of refinement monoids, is a refinement
monoid. Observing that

An/Θ
An
On

≃ N0,

which is a refinement monoid as well, we conclude from Lemma 5.1 that An

is a refinement monoid. �
Lemma 5.3. Let n be a non-negative integer and ι : An → Zn+1 the

inclusion map. Then An/Θ
F
On

is a refinement monoid for every submonoid

F of Zn+1. Moreover

(a) if An ∩ F ♮ = 0 holds true, then An/Θ
F
On

is directly finite;

(b) if O♮
n ∩ F ♮ ̸= 0, then An/Θ

F
On

is not cancellative.

Proof. Firstly note that according to Lemma 4.5 we can without loss
of generality assume that F is a subgroup of Zn+1, i.e, that F = F ♮. Put
F+ := F ∩ (N0 × Zn) and observe that ι(Un) + F+ ⊆ ι(Un). Applying
Corollary 4.9 we conclude that An/Θ

F
On

is a refinement monoid.

Being a submonoid of Zn+1, the monoid An is cancellative and, a for-
tiori, directly finite. Then (a) follows readily from Lemma 4.6.

The assumption O♮
n ∩ F ♮ ̸= 0 implies that there are x ̸= y in On and

p, q ∈ F such that x − y = q − p, and so, equivalently, x + p = y + q.
Since ι is an inclusion map, the monoid An/Θ

F
On

is not cancellative due to
Lemma 4.3. �

Although the monoid An/Θ
F
On

might not be cancellative we can cancel
the elements from On due to Lemma 4.4.

Lemma 5.4. Let F be a non-trivial submonoid of Zn+1. If x, y ∈ An

and o ∈ On satisfy

(5.12) [x ]ΘF
On

+ [ o ]ΘF
On

= [ y ]ΘF
On

+ [ o ]ΘF
On

Then [x ]ΘF
On

= [ y ]ΘF
On

.

Fix a positive integer n. For an element x = ⟨x0, x1, . . . , xn⟩ ∈ Zn+1 we
set

σx := x0 + x1 + · · ·+ xn.
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We put Σ0
n = {x ∈ Zn+1 | x0 = 0 and σx = 0} and observe that Σ0

n is a
subgroup of Zn+1.

Corollary 5.5. Let F be a non-trivial subgroup of Σ0
n. Then An/Θ

F
On

is a non-cancellative directly finite refinement monoid.

Proof. Observe that An ∩ Σ0
n = 0 and On

♮ ∩ Σ0
n = Σ0

n. Now apply
Lemma 5.3. �

Given a positive integer n, let F 2n denote a subgroup of Z2n+1 generated
by ⟨0, 1,−1, . . . , 1,−1⟩. We set

B2n := A2n/Θ
F 2n
O2n

.

As F 2n is clearly a non-trivial subgroup of Σ0
2n, B2n is a non-cancellative

directly finite refinement monoid. We are going to realize the monoids B2n

as V (R2n) of regular rings R2n.
Before that, we prove that the monoidB4 (and consequently the monoids

B2n for all n ≥ 2) does not satisfy the Riesz interpolation property.

Proposition 5.6. The monoid B4 does not satisfy the Riesz interpola-
tion property.

Proof. Let x = ⟨x0, x1, . . . , x4⟩ and y = ⟨y0, y1, . . . , y4⟩ be elements of
A4. We observe readily from the definitions that if x0 = y0, then
(5.13)
[x ]

Θ
F 2
O2

<B4 [ y ]
Θ

F 2
O2

=⇒ σx < σy and [x ]
Θ

F 2
O2

= [ y ]
Θ

F 2
O2

=⇒ σx = σy.

We set
x1 := (1, 1, 1, 0, 0), x2 := (1, 1, 0, 1, 0),

y1 := (1, 1, 1, 1, 0), y2 := (1, 1, 1, 0, 1).

We see that x1, x2 ≤A4 y
1 and x1 ≤A4 y

2. Since σx1 = σx2 = 3 < 4 = σy1 =
σy2, we get that [x1 ]

Θ
F 4
O4

, [x2 ]
Θ

F 4
O4

<B4 [ y1 ]
Θ

F 4
O4

and [x1 ]
Θ

F 4
O4

<B4 [ y2 ]
Θ

F 4
O4

.

Since
y2 ≡ ⟨1, 2, 0, 1, 0⟩ (ΘF 4

O4
),

we have that also [x2 ]
Θ

F 4
O4

<B4 [ y2 ]
Θ

F 4
O4

. Suppose that there is a tuple

z = ⟨z0, z1, . . . , z4⟩ with
(5.14) [x1 ]

Θ
F 4
O4

, [x2 ]
Θ

F 4
O4

<B4 [ z ]
Θ

F 4
O4

<B4 [ y1 ]
Θ

F 4
O4

, [ y2 ]
Θ

F 4
O4

.

Since xi0 = yi0 = 1, for all i = 1, 2, we get that z0 = 1. From (5.14) and
(5.13) we get that 3 = σxi < σz < σyj = 4, i, j = 1, 2. This is absurd. �

Let n be a positive integer. We set x{2i−1,2j} := x2i−1 + x2j , for each
i, j ∈ {1, 2, . . . , n}, and we define

V 2n := {⟨x0, x{2i−1,2j}⟩i,j≤n | x0 ∈ N and x{2i−1,2j} ∈ Z for all i, j ≤ n}
and we setC2n := O2n∪V 2n. Observe that V 2n is a commutative semigroup

isomorphic to N × Zn2
and that C2n is a monoid with the operation of
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addition defined coordinate-wise on the two components O2n and V 2n and
by

p+ x := ⟨x0, p2i−1 + p2j + x{2i−1,2j}⟩i,j∈{1,2,...,n}
for all p = ⟨0, p1, . . . , p2n⟩ ∈ O2n and x = ⟨x0, x{2i−1,2j}⟩i,j≤n ∈ V 2n.

Let φ2n : A2n → C2n be a map corresponding to the identity on O2n

and sending

⟨x0, x1, x2 . . . , x2n⟩ 7→ ⟨x0, x{2i−1,2j}⟩i,j≤n ∈ V 2n,

whenever x0 > 0. It is straightforward to see that φ2n is a monoid homo-
morphism.

Let x = ⟨x0, . . . , x2n⟩, y = ⟨y0, . . . , y2n⟩ be elements from A2n satisfying
φ2n(x) = φ2n(y). Readily from the definition we see that x0 = y0. If
x0 = y0 = 0, then necessarily x = y. Suppose that x0 = y0 > 0. In this case
the equality φ2n(x) = φ2n(y) is equivalent to

(5.15) x2i−1 + x2j = y2i−1 + y2j

for all i, j ∈ {1, 2, . . . , n}. This is equivalent to
x1 − y1 = y2 − x2 = · · · = x2n−1 − y2n−1 = y2n − x2n,

which happens if and only if

x = y + λ⟨1,−1, . . . , 1,−1⟩,
for some λ ∈ Z. Therefore the kernel of the homomorphism φ2n coin-
cides with the congruence ΘF 2n

O2n
, and so φ2n factors through an embedding

ψ2n : B2n → C2n. This one is given by

(5.16) ψ2n([x ]ΘF 2n
O2n

) =

{
x = ⟨0, x1, x2, . . . , x2n⟩ if x ∈ O2n,

⟨x0, x{2i−1,2j}⟩i,j≤n if x ∈ U2n,

for every x = ⟨x0, x1, . . . , x2n⟩ ∈ A2n.
We say that a tuple ⟨x0, x{2i−1,2j}⟩i,j≤n ∈ V 2n is balanced provided that

(5.17) x{2i−1,2j} + x{2k−1,2l} = x{2k−1,2j} + x{2i−1,2l}

holds true for all i, j, k, l ∈ {1, 2, . . . , n}. We denote by W 2n the set of all
balanced tuples from V 2n and we set

D2n := O2n ∪W 2n.

It is straightforward to show that D2n is a submonoid of C2n. Observe also
that D2 = C2.

Lemma 5.7. The monoid D2n corresponds to φ2n(A2n), the image of
A2n under the monoid homomorphism φ2n : A2n → C2n.

Proof. As φ2n � O2n is the identity map, we have that φ2n(O2n) =
O2n. We are going to prove that φ2n(U2n) = V 2n.

Let x = ⟨x0, x1, . . . , x2n⟩ ∈ U2n. By the definition,

φ2n(x) = ⟨x0, x{2i−1,2j}⟩i,j≤n,
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where

x{2i−1,2j} = x2i−1 + x2j for all i, j ∈ {1, 2, . . . , n}.
Given i, j, k, l ∈ {1, 2, . . . , n}, we get straightaway that

x{2i−1,2j} + x{2k−1,2l} = x2i−1 + x2j + x2k−1 + x2l = x{2i−1,2l} + x{2k−1,2j},

and so φ2n(x) is a balanced tuple. Therefore φ2n(U2n) ⊆ V 2n.
Let ⟨x0, x{2i−1,2j}⟩i,j≤n ∈ V 2n be a balanced tuple. We set

(5.18) x2i−1 := x{2i−1,2n} and x2j := x{2j−1,2j} − x{2j−1,2n}

for all i, j = {1, 2, . . . , n} and we put x := ⟨x0, x1, . . . , x2n⟩. Since the tuple
⟨x0, x{2i−1,2j}⟩i,j≤n is balanced, we have the equality

x{2i−1,2j} + x{2j−1,2n} = x{2i−1,2n} + x{2j−1,2j},

hence

x2i−1,2j = x{2i−1,2n} + x{2j−1,2j} − x{2j−1,2n} = x2i−1 + x2j ,

for all i, j ∈ {1, 2, . . . , n}. It follows that ⟨x0, x{2i−1,2j}⟩i,j≤n = φ2n(x). Since
⟨x0, x{2i−1,2j}⟩i,j≤n ∈ V 2n, we have that x0 > 0, and so x ∈ U2n. Therefore
V 2n ⊆ φ2n(U2n). �

Corollary 5.8. The map defined by correspondence (5.16) is an iso-
morphism

ψ2n : B2n → D2n.

It is easy to gain insight into the algebraic preorder on A2n. Indeed,

x = ⟨x0, x1, . . . , x2n⟩ ≤A2n y = ⟨y0, y1, . . . , y2n⟩

if and only if either x0 < y0 or x0 = y0 and xi ≤ yi for all i ∈ {1, 2, . . . , n}.
We are going to show that the algebraic preorder on the monoidD2n behaves
analogously.

Let x = ⟨x0, . . .⟩ and y = ⟨y0, . . .⟩ be elements of D2n. We set

x≪ y ⇐⇒


x0 < y0

x0 = y0 = 0 and xi ≤ yi, for all i ∈ {1, 2, . . . , 2n},
x0 = y0 > 0 and x{2i−1,2j} ≤ y{2i−1,2j}, for all i, j ≤ n.

It is easy to see that ≪ is a partial order on the set D2n.

Lemma 5.9. Let x = ⟨x0, x{2i−1,2j}⟩i,j≤n ∈ V 2n, z = ⟨z0, z1, . . . , z2n⟩ ∈
U2n be such that x ≪ φ2n(z). There is w ∈ U2n such that w ≤A2n z and
x = φ2n(w).

Proof. We set

µ := min{z2j − x{1,2j} + z1 | j = 1, 2, . . . , n}

and

w0 := x0, w2j := x{1,2j} − z1 + µ, and w2i−1 := x{2i−1,2} + z1 − x{1,2} − µ,
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for every i, j ∈ {1, 2, . . . , n}. Since the tuple x is balanced, we have that

x{1,2j} + x{2i−1,2} = x{1,2} + x{2i−1,2j},

hence

x{2i−1,2} − x{1,2} = x{2i−1,2j} − x{1,2j},

whence

(5.19) w2i−1 = x{2i−1,2j} + z1 − x{1,2j} − µ,

for all i, j ∈ {1, 2, . . . , n}. It follows that

w2i−1 + w2j = x{2i−1,2j} + z1 − x{1,2j} − µ+ x{1,2j} − z1 + µ = x{2i−1,2j},

for all i, j ∈ {1, 2, . . . , n}. Since x0 = w0 by definition, we conclude that
x = φ2n(w). Let j ∈ {1, 2, . . . , n}. From µ ≤ z2j − x{1,2j} + z1 we get that

(5.20) w2j = x{1,2j} − z1 + µ ≤ x{1,2j} − z1 + z2j − x{1,2j} + z1 = z2j .

Let k ∈ {1, 2, . . . , n} be such that µ = z2k − x{1,2k} + z1. Then, with regard
to (5.19), we compute that

(5.21)

w2i−1 = x{2i−1,2k} + z1 − x{1,2k} − µ

= x{2i−1,2k} + z1 − x{1,2k} − z2k − x{1,2k} + z1

= x{2i−1,2k} − z2k ≤ x{2i−1,2k} − z2k.

Since x ≪ φ2n(z), we have that x{2i−1,2k} ≤ z2i−1 + z2k. Substituting to
(5.21), we conclude that

(5.22) w2i−1 ≤ x{2i−1,2k} − z2k ≤ z2i−1 + z2k − z2k = z2i−1,

for all i = {1, 2, . . . , n}. Since x ≪ φ2n(z), we have w0 = x0 ≤ z0. This
together with (5.20) and (5.22) implies that w ≤A2n z, which was to prove.

�

Proposition 5.10. Let x = ⟨x0, . . .⟩ and y = ⟨y0, . . .⟩ be elements of
D2n. Then x≪ y if and only if x ≤V 2n y.

Proof. If x ≤D2n y, there are x′ ≤A2n y
′ in A2n sutisfying x = φ2n(x

′)
and y = φ2n(y

′). Using the description of the algebraic preoreder in A2n,
it is easy to see that the relation x ≪ y holds true. On the other hand,
suppose that x ≪ y. If x0 ≤ y0 or x0 = y0 = 0, then x ≪ y clearly implies
that x ≤D2n y. In the remaining case when 0 < x0 = y0, the implication
x≪ y =⇒ x ≤D2n y follows from Lemma 5.9. �

6. Some linear algebra

We fix an arbitrary field F. All vector spaces are supposed to be over
F. Let U , V be vector spaces and f : U → V a linear map. We define a
dimension and a codimension of the map f by

(i) dim f := codimker f + dim img f ,
(ii) codim f := dimker f + codim img f .
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Observe that dim f = 2dim img f and dim f+codim f = dimU+dimV .
In particular, if dim f is finite, it is even.

Lemma 6.1. Let U be a vector space. Let f, g : U → V be linear maps
such that dim f and codim g are finite, and let h := f + g be the sum of the
linear maps. Then codimh is finite and

(6.1) dimkerh− codim img h = dimker g − codim img g.

Proof. We decompose U = ker g ⊕ X and we put Y := X ∩ ker f .
Now we set Z := h(Y ) = g(Y ) and we use g′, h′ : U/Y → V /Z to denote
the quotients of the maps g, h, respectively.

Observe that kerh′ = kerh + Y and ker g′ = ker g + Y . Since Y ⊆ X,
we have that Y ∩ ker g = 0. Since Y ⊆ ker f , we have that h � Y = g � Y ,
and so Y ∩ kerh = 0. It follows that

(6.2) dimkerh′ = dimkerh and dimker g′ = dimker g.

Clearly img h′ = img h+Z and img g′ = img g+Z. Since Z ⊆ img h∩ img g,
we conclude that

(6.3) codim img h′ = codim img h and codim img g′ = codim img g.

Since both codimker f and codimX = dimker g are finite, we have that
codimY is finite. As codim img g = codim g(X) is finite, and the codimen-
sion of Y in X is finite (cf. codimY is finite), codimZ = codim g(Y ) is
finite.

Clearly dimkerh′+codimkerh′ = codimY and dim img h′+codim img h′ =
codimZ. Since codimkerh′ ≤ codimY is finite, we have that codimkerh′ =
dim img h′. We conclude that

dimkerh′ − codim img h′ = codimY − codimZ

Similarly we prove that

dimker g′ − codim img g′ = codimY − codimZ,

and so

(6.4) dimkerh′ − codim img h′ = dimker g′ − codim img g′.

Equation (6.4) together with equalities (6.2) and (6.3) give (6.1). �
Lemma 6.2. Let f : U → V and g : V → W be homomorphisms of

vector spaces and h := g ◦ f their composition. Let X be a subspace of ker g
such that ker g decomposes as ker g = X ⊕ (img f ∩ ker g). Then

(6.5) codim f + codim g = codimh+ 2(dimX).

Proof. The lemma follows from these straightforward equalities:

dimkerh = dimker f + dim(img f ∩ ker g),

codim img h = codim img g + codim(img f + ker g),

codim img f = dimX + codim(img f + ker g),

dimker g = dimX + dim(img f ∩ ker g).
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�

The next lemma is “the reason why it works”. It is a crucial part of
Lemma 7.10.

Lemma 6.3. Let U be a vector space. Let x, u, yi, vi, i = 1, 2, be endo-
morphisms of the vector space U such that both codimx and codimu are
finite as well as all dim yi and dim vi, i = 1, 2, are finite. Put fi := x + yi
and gi := u+ vi, i = 1, 2, and set

h1 := g1 ◦ f1 = (u+ v1) ◦ (x+ u1),

h2 := f2 ◦ g2 = (x+ u2) ◦ (u+ v2).

Then

(6.6) codimh1+codimh2 ≥ max{codim f1+codim f2, codim g1+codim g2}.

Proof. We are going to prove that

(6.7) codimh1 + codimh2 ≥ codim g1 + codim g2.

The other inequality, namely codimh1 +codimh2 ≥ codim f1 +codim f2, is
symmetric. We choose decompositions

(6.8)
ker g2 = X ⊕ (img f1 ∩ ker g2) and

ker f2 = Y ⊕ (img g1 ∩ ker f2).

Applying Lemma 6.2, we get that

codimh1 + 2dimX = codim f1 + codim g1 and

codimh2 + 2dimY = codim f2 + codim g2.

Since, by the initial assumptions, codimu is finite and both dim vi, i = 1, 2,
are finite, the co-dimensions codim gi, i = 1, 2, are finite due to Lemma 6.1.
Thus it suffices to prove that

(6.9) 2(dimX + dimY ) ≤ codim g1 + codim g2.

Applying Lemma 6.1 again we get that

dimker g1−codim img g1 = dimkeru−codim img u = dimker g2−codim img g2,

hence

dimker g1 + codim img g2 = dimker g2 + codim img g1,

whence

(6.10) codim g1 + codim g2 = 2(dimker g2 + codim img g1).

It follows from (6.8) that dimX ≤ dimker g2 and dimY ≤ codim img g1.
This together with previous equality (6.10) implies inequality (6.9), and,
consequently, inequality (6.7). This concludes the proof. �

Lemma 6.4. Let f : U → U be an endomorphism of a vector space U of
a finite dimension. We denote by 1 the identity endomorphism of U . Then
codim(1 + f) is finite and even.
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Proof. We apply Lemma 6.1 putting g := 1 and h := g + f = 1 + f .
Note that dimker 1 = codim img 1 = 0. Thus it follows from (6.1) that
dimker(1 + f) = codim img(1 + f), hence codim(1 + f) = dimker(1 + f) +
codim img(1 + f) is even. �

7. The example of Bergman and Goodearl

In this section we recall Goodearl’s modification [22, Example 5.10] of
the Bergman’s example [22, Example 4.26] of a regular ring R2 which is not
unit-regular but the matrix rings Mn(R2) are directly finite for all positive
integers. The ring R2 is constructed as follows: Let T denote the ring F[[ t ]]
of all formal power series over a field F in an indeterminate t, and let k
denote the quotient field of T . Denote by S the ring of all a ∈ EndF(T )
such that there is a positive integer n and b ∈ k with (a − b)tnT = 0 (i.e.,
b tnT ⊆ T and the restriction a � tnT coincides with the multiplication by
b). It turns out that the element b ∈ k is unique and the correspondence
a 7→ b := φ(a) determines an F-algebra homomorphism φ : S → k (cf. [22,
Example 4.26]). Finally let us denote by Sop the opposite ring of the ring
S and set

R2 := {⟨a1, a2⟩ ∈ S × Sop | φ(a1) = φ(a2)}}.
Observe that every nonzero element a of T = F[[t]] is a product a = tna′ for
some n ∈ N0 and some invertible a′ ∈ T . Moreover, every nonzero b ∈ k is
of the form b = tzb′ for a unique (possibly negative) integer z and b′ ∈ T
invertible in T . Denote the unique exponent z by ν(b) and set ν(0) := 0. Let
b ̸= 0 be an element of k. Observe that whenever n+ ν(b) ≥ 0 for a positive

integer n, the left multiplication by b determines a bijection tnT → tn+ν(b)T .
Given an element a = ⟨a1, a2⟩ ∈ R2, we define φ(a) := φ(a1) = φ(a2).

For elements a ∈ S and a ∈ R2 we set ν(a) := ν(φ(a)) and ν(a) = ν(φ(a)),
respectively. Finally given an element a = ⟨a1, a2⟩ ∈ R2, we define dima :=
dim a1 + dim a2 and codima := codim a1 + codim a2.

1

Let a ∈ R2. Observe that φ(a) = 0 implies that dima is finite while
φ(a) ̸= 0 implies that codima is finite; the latter follows from the first
statement of Lemma 6.1.

Lemma 7.1. Let a be an element of the ring S. Then

(7.1)
φ(a) = 0 =⇒ dim a is even,

φ(a) = 1 =⇒ codim a is even.

Proof. It follows from the finiteness of dim a, codim a, respectively,
and Lemma 6.4. �

Corollary 7.2. Let a = (a1, a2) be an element of the ring R2. Then

(i) φ(a) = 0 implies that both the dimensions dim a1 and dim a2 are
even;

(ii) φ(a) ̸= 0 implies that codima is even.

1Note that this is consistent with the notation introduced in Section 6
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Proof. If φ(a) = 0, then both the dimensions dim a1 and dim a2 are
finite and (1) follows readily from Lemma L011. Suppose that a ∈ R2

satisfy φ(a) ̸= 0. Since R2 is a regular ring, there is an idempotent e ∈ R2

such that eR2 = aR2. Then clearly trR2(e) = trR2(a). From a ∈ trR2(e)
and e ∈ trR2(a) we get that codima ≤ codim e and codim e ≤ codima,
due to Lemma 6.3. Therefore codima = codim e. Since e is an idempotent
of a finite codimension, φ(e) = 1, and so the codimension of e is even due
to Lemma 7.1. �

Lemma 7.3. Let U i, V i, i = 1, 2, be finite-dimensional vector spaces
over a common field F, let a : U1 → U2 and b : V 1 → V 2 be linear maps.
Then dim a ≤ dim b if and only if there are linear maps r : U1 → V 1 and
s : V 2 → U2 such that a = sbr.

Proof. Folklore. �
Lemma 7.4. Let U be a vector space,

U = U0 ⊇ U1 ⊇ U2 ⊇ . . .

be a decreasing sequence of subspaces of U , and V a finite-dimensional
subspace of U . Suppose that

V ∩

(∩
i∈N

U i

)
= 0,

then there is a positive integer n such that V ∩Un = 0.

Proof. For every positive integer n we set V n := V ∩Un. Note that

(7.2) V = V 0 ⊇ V 1 ⊇ V 2 ⊇ . . .

is a decreasing sequence of subspaces of V such that
∩

i∈N V i = 0. Since V
is finite-dimensional, the sequence (7.2) is eventually stationary. Therefore
there is n ∈ N such that 0 = V n = V ∩Un. �

We set

I := {a ∈ S | φ(a) = 0}.
It is straightforward to see that I is an ideal of the ring S.

Lemma 7.5. For all a, b ∈ I, the following properties are equivalent:

(i) dim a ≤ dim b.
(ii) a ∈ trI(b).
(iii) a ∈ trS(b).

Proof. (1 ⇒ 2) Let U1 and V 1 denote complements of ker a and ker b,
respectively, in T (viewed as a vector space over the field F). We set U2 :=
img a and V 2 = img b and we denote by a′ : U1 → U2, resp. b

′ : V 1 → V 2

the restrictions a′ := a � U1, resp. b′ := b � V 1. Observe that dim a′ ≤
dim b′. Applying Lemma 7.3, we find homomorphisms r′ : U1 → V 1 and
s′ : V 2 → U2 such that a′ = s′b′r′. There are positive integers m and n
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such that U1 ∩ tmT = 0 = V 1 ∩ tnT due to Lemma 7.4. It follows that
there are r and s in EndF(T ) extending r′ and s′, satisfying tmT ⊆ ker r and
tnT ⊆ ker s, respectively. It follows that r, s ∈ I and that a = sbr, hence
a ∈ trI(b). The implication (2) ⇒ (3) is trivial and (3) ⇒ (1) follows from
Lemma 7.3. �

We set
J2 := {a ∈ R2 | φ(a) = 0},

and observe that J2 is an ideal of the ring R2. The next corollary follows
readily from Lemma 7.5.

Corollary 7.6. Let a = ⟨a1, a2⟩ and b = ⟨b1, b2⟩ be elements of the
ideal J2. The following properties are equivalent:

(i) dim ai ≤ dim bi, for all i = 1, 2.
(ii) a ∈ trJ2(b).
(iii) a ∈ trR2(b).

For each ordered pair m ≤ n of non-negative integers we denote by
em,n : T → T the projection onto

⊕n
i=m t

iF given by
∞∑
i=0

ait
i 7→

n∑
i=m

ait
i.

Lemma 7.7. Let λ be a positive integer and e = ⟨e1, e2⟩ an idempotent
of the ring R2 such that φ(e) ̸= 0. Then the following hold true:

(i) If codim e1 ≥ 2λ, there is f = ⟨f1, f2⟩ ∈ Idem(R2) with

codim f1 = codim e1 − 2λ

codim f2 = codim e2 + 2λ

and elements r, s ∈ R2 such that φ(r) = tλ, φ(s) = t−λ, and
f = ser.

(ii) If codim e2 ≥ 2λ, there is f = ⟨f1, f2⟩ ∈ Idem(R2) with

codim f1 = codim e1 + 2λ

codim f2 = codim e2 − 2λ

and elements r, s ∈ R2 such that φ(r) = t−λ, φ(s) = tλ, and
f = ser.

Proof. We prove property (1). Property (2) is symmetric. Since
φ(e) ̸= 0 and e is an idempotent, we have that φ(e) = 1. By the definition
(of the ring R2) there is a natural number n such that (ei − 1)tnT = 0,
in particular ker ei ∩ tnT = 0, for all i = 1, 2. For each i = 1, 2 we pick a
complement U i of t

nT ⊕ ker ei in T .
Observe that the restrictions ei � (tnT ⊕ U i) are one-to-one. Since

ei � tnT coincides with identity, we conclude that eiU i ∩ tnT = 0, for all
i = 1, 2. Since codim tnT = n is finite, we get that

codim img ei = codim(eiU i ⊕ tnT ) = codim(U i ⊕ tnT ) = dimker ei,
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hence codim ei = 2dimker ei, for both i = 1, 2. Since codim e1 ≥ 2λ, we get
that dimker e1 ≥ λ, hence dimU1 = codim tnT − dimker e1 ≤ n − λ. It
follows that there are F-linear maps

r′1 :
n−λ−1⊕
i=0

tiF → U1 and s′1 : e1U1 →
n−λ−1⊕
i=0

tiF

such that the composition s′1e1r
′
1 is an idempotent linear map with dim s′1e1r

′
1 =

2dimU1. Clearly dimU2 ≤ codim tnT = n. Therefore there are

r′2 :

n+λ−1⊕
i=0

tiF → U2 and s′2 : e2U2 →
n+λ−1⊕
i=0

tiF

such that s′2e2r
′
2 is idempotent and dim s′2e2r

′
2 = 2dimU2. We extend the

linear maps r′i, s
′
i, i = 1, 2, to F-endomorphisms of T by setting

r′1(t
n−λT ) = 0, r′2(t

n+λT ) = 0, and s′i(t
nT ⊕W i) = 0,

where W i are complements of tnT ⊕ eiU i, for both i = 1, 2. Observe that
r′i, s

′
i belong to I.

Let us define r : tn−λT → T n, resp. s : tnT → T n−λ, to be the F-liner
maps corresponding to multiplications by tλ, resp. t−λ, and we extend these

maps to F-endomorphisms of T by setting r(
⊕n−λ−1

i=0 tiF) = s(
⊕n

i=0 t
iF) =

0. Observe that both r and s belong to S.
We set ri := r + r′i and si = s + s′i, for both i = 1, 2. Then it is

straightforward from the constructions of the endomorphisms r, ri, s, and si
that φ(ri) = φ(r) = tλ, φ(si) = φ(s) = t−λ, and that fi = s′ieir

′
i = sieiri

are idempotents, for all i = 1, 2. Furthermore we have that

codim f1 = codim e1 − 2λ and codim f2 = codim e2 + 2λ.

Finally setting f := ⟨f1, f2⟩, r = ⟨r1, r2⟩, and s = ⟨s1, s2⟩, we get the desired
idempotent and elements of R2 such that f = ser. �

Observe that f ∈ trR2(e) and since codimf is finite, and it is an idem-
potent, we have that φ(f) = 1.

Lemma 7.8. Let e, f ∈ S \ I be idempotents. Then codim e ≥ codim f
if and only if there are elements r, s ∈ S such that φ(r) = φ(s) = 1 and
e = sfr. In particular, if any of the equivalent properties is satisfied, then
e ∈ trS(f).

Proof. (⇒) First suppose that e = sfr for some r, s ∈ T with φ(r) =
φ(s) = 1. Since e, f ∈ Idem(S) \ I, there is a positive integer n such
that (e − 1)tnT = (s − 1)tnT = (f − 1)tnT = (r − 1)tnT = 0. It follows
that etnT = ftnT = rtnT = stnT = tnT , hence e, f, r, s ∈ EndF(T )
induce endomorphisms e′, f ′, r′, and s′ of the finite-dimensional F-vector
space T /tnT . From codim e = codim e′, codim f = codim f ′, and dim e′ =
dim s′f ′r′ ≤ dim f ′, we deduce that

codim e = codim e′ = 2n− dim e′ ≥ 2n− dim f ′ = codim f ′ = codim f.
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(⇐) Suppose now that codim e ≥ codim f . Since e and f are idempotents
not in I, we have that φ(e) = φ(f) = 1. It follows that there is a positive
integer n such that (e − 1)tnT = (f − 1)tnT = 0. Therefore ker e ∩ tnT =
ker f ∩ tnT = 0. We pick subspaces U and V of the F-vector space T such
that

T = U ⊕ ker e⊕ tnT = V ⊕ ker f ⊕ tnT

and we set e′ := e � U , f ′ := f � V . Since ker e ∩ (U ⊕ tnT ) = 0 and
the restriction e � tnT coincides with the identity map, we have that eT =
eU ⊕ tnT . Similarly we prove that fT = fV ⊕ tnT . It follows that

dimU = dim eU = n− codim e

2
≤ n− codim f

2
= dim fV = dimV

and there are linear maps r′ : U → V and s′ : fV → eU such that e′ =
s′f ′r′. There are r, s ∈ EndF(W ) such that

r � U = r′, ker r ≥ ker e, and (r − 1)tnT = 0,

s � V = s′, ker s ≥ ker f, and (s− 1)tnT = 0.

We conclude that r and s are elements of S satisfying φ(r) = φ(s) = 1 and
e = sfr. As an immediate consequence we have that e ∈ trS(f). �

The next corollary will be applied in the forthcoming section.

Corollary 7.9. Let λ be a positive integer and e = ⟨e1, e2⟩ an idem-
potent in R2 \ J2. Then the following hold true:

(i) Suppose that codim e1 ≥ 2λ and let f = ⟨f1, f2⟩ be the idempotent
constructed in Lemma 7.7. Then there are elements r∗, s∗ ∈ R2

with φ(r∗) = t−λ and φ(s∗) ∈ tλ such that e = s∗fr∗.
(ii) Suppose that codim e2 ≥ 2λ and let f = ⟨f1, f2⟩ be the idempotent

constructed in Lemma 7.7. Then there are elements r∗, s∗ ∈ R2

with φ(r∗) = tλ and φ(s∗) ∈ t−λ such that e = s∗fr∗.

Proof. Both the cases are symmetric, we only prove (1). Suppose that
codim e1 ≥ 2λ. Then codim f2 = codim e2 + 2λ ≥ 2λ, and so there is an
idempotent g = ⟨g1, g2⟩ ∈ R2 with

(7.3)
codim g1 = codim f1 + 2λ = codim e1 and

codim g2 = codim f2 − 2λ = codim e2,

and element r′, s′ ∈ R2 such that φ(r′) = t−λ, φ(s′) = tλ, and g = s′fr′

due to Lemma 7.7. Applying Lemma 7.8, we get elements r′′, s′′ ∈ R2 with
φ(r′′) = φ(s′′) = 1 and

e = s′′gr′′ = s′′s′fr′r′′.

We put r∗ = r′r′′ and s∗ = s′′s′. It is straightforward to compute that

φ(r∗) = φ(r′r′′) = φ(r′)φ(r′′) = t−λ and φ(s∗) = φ(s′′r′) = φ(s′′)φ(s′) = tλ.

�
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Lemma 7.10. Let a, b ∈ R2 \ J2. Then a ∈ trR2(b) if and only if
codima ≥ codim b.

Proof. (⇒) It follows from Lemma 6.3 that

(7.4) codim cd ≥ max{codim c, codimd},
for all c,d ∈ R2 \ J2. If a ∈ trR2(b), then a = sbr for some s, r ∈ R2.
Observe that s, r /∈ J2, for otherwise a ∈ J2. Applying (7.4) twice, we get
that

codima = codim sbr ≥ codim br ≥ codim b.

(⇐) Suppose that codima ≥ codim b. Since R2 is regular there are idempo-
tents e = ⟨e1, e2⟩ and f = ⟨f1, f2⟩ such that eR2 = aR2 and fR2 = bR2,
respectively. As a consequence we get that

(7.5) trR2(e) = trR2(a) and trR2(f) = trR2(b).

By the already proved implication we have that

codim e = codima ≥ codim b = codimf .

By Lemma 7.7, there is an idempotent g = ⟨g1, g2⟩ ∈ trR2(f) such that
codim e1 ≥ codim g1 and codim e2 ≥ codim g2. By Lemma 7.8, there are
elements ri, si ∈ S, i = 1, 2, such that φ(ri) = φ(si) = 1 and ei = sigiri.
It follows that e ∈ trR2(g) ⊆ trR2(f), and so a ∈ trR2(a) = trR2(e) ⊆
trR2(f) = trR2(b) due to (7.5). �

Lemma 7.11. Let a = ⟨a1, a2⟩ and b = ⟨b1, b2⟩ be elements of the ring
R2. Then trR2(a) = trR2(b) if and only if either both a and b belong to
J2 and dim ai = dim bi for both i = 1, 2, or none of the elements a and b
belong to J2 and then codima = codim b.

Proof. (⇒) Assume that trR2(a) = trR2(b). Since J2 is a two-sided
ideal of R2, either both the elements a and b or none of them belong to J2.
If a, b ∈ J2, then both dim ai = dim bi, i = 1, 2, due to Corollary 7.6. In the
other case when a, b ∈ R2 \ J2, the equality codima = codim b holds true
due to Lemma 7.10. (⇐) This implication follows readily from Corollary 7.6
and Lemma 7.10. �

Lemma 7.12. Let g ∈ I be an idempotent, λ and µ non-negative integers
such that dim g = 2λ + 2µ. Then there is a pair e, f ∈ I of orthogonal
idempotents such that dim e = 2λ, dim f = 2µ, and g = e+ f .

Proof. Since g ∈ I, it is of a finite dimension, and so dim img g =
(dim g)/2 = λ+µ. We pick a decomposition img g = U⊕V with dimU = λ
and dimV = µ. Let e be an endomorphism of T such that ker e = ker g⊕U
and e � V = g � V . Putting f = g − e, we get a pair e, f of orthogonal
idempotents with the desired properties. �

Lemma 7.13. Let g ∈ S \ I be an idempotent, λ and µ non-negative
integers such that 2λ = codim g + 2µ. Then there is a pair e ∈ S \ I and
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f ∈ I of orthogonal idempotents such that codim e = 2λ, dim f = 2µ, and
g = e+ f .

Proof. From g ∈ S \ I we infer that dim img g is infinite. We find a
decomposition img g = U ⊕ V such that dimU = µ. Let f ∈ EndF(T ) be
such that ker f = ker g ⊕ V and f � U = g � U . Putting e = g − f , we get
a pair of orthogonal idempotents e ∈ S \ I and f ∈ I satisfying the desired
properties. �

Applying Lemma 7.13 we get that

Corollary 7.14. Let g ∈ R2 \ J2 be an idempotent. Let λ, µ1, µ2
be non-negative integers such that 2λ = codim g + 2µ1 + 2µ2. Then there
are orthogonal idempotents e ∈ R2 \ J2 and f = ⟨f1, f2⟩ ∈ J2 such that
codim e = 2λ, dim fi = 2µi, for all i = 1, 2, and g = e+ f .

Theorem 7.15. The monoid V (R2) is isomorphic to C2 = D2 and, via
the isomorphism ψ−1

2 : D2 → B2, also to B2.

Proof. We define a map γ : Idem(R2) → C2 by

e = ⟨e1, e2⟩ 7→

{
⟨0, dim e1

2 , dim e2
2 ⟩ if φ(e) = 0,

⟨1,− codim e
2 ,⟩ if φ(e) = 1,

and we verify that the properties (1-3) of Corollary 3.9 are satisfied. Prop-
erty (1) follows from Lemma 7.11.

Property (2) is a consequence of Lemma 7.12 in the case that φ(e) = 0
and Corollary 7.14 if φ(e) = 1. Observe that in the latter case, when
φ(e) = 1, if γ(e) = u + v for some u, v ∈ C2, one of them belongs to O2.
This is because

γ(e) = ⟨1,−codim e

2
⟩,

and so u0 + v0 = 1.
By the definition, γ(1) = ⟨1, 0⟩ which is an order-unit in C2, thus prop-

erty (3) holds true as well.
Since the ring R2 is directly finite due to [22, Example 5.10], the map γ

extends to a unique isomorphism β : V (R2) → C2, due to Corollary 3.9. �

8. Representing the monoids B2n

Let R2 and S be the rings defined in the previous section. Given a
positive integer n, we set

R2n := {⟨a1, a2, . . . , a2n⟩ | a2i−1 ∈ S, a2i ∈ Sop, φ(a1) = · · · = φ(a2n)}.

Observe that R2n is a sub-direct product of copies of the ring R2. Therefore
it is regular and directly finite (cf. [22, Proposition 1.4] and [22, Lemma
5.1], respectively). Further, we set

J2n := {⟨a1, a2, . . . , a2n⟩ ∈ R2n | φ(a1) = · · · = φ(a2n) = 0}.
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Clearly, the set J2n forms a two-sided ideal of the ring R2n. Applying
Lemma 7.5 we get, similarly as in the previous section, that

Lemma 8.1. For a pair of elements a = ⟨a1, . . . , a2n⟩ and b = ⟨b1, . . . , b2n⟩
from J2n, the following properties are equivalent:

(i) dim ai ≤ dim bi for all i = 1, . . . , 2n.
(ii) a ∈ trJ2n(b).
(iii) a ∈ trR2n(b).

Let a = ⟨a1, . . . , a2n⟩ be an element of the ring R2n. For each i, j ∈
{1, 2, . . . , n} we set a{2i−1,2j} := ⟨a2i−1, a2j⟩. Observe that a{2i−1,2j} is an
element of the ring R2.

Lemma 8.2. Let n ∈ N and ai, bi, i ∈ {1, 2, . . . , 2n}, integers such that

(8.1) a2i−1 + a2j ≥ b2i−1 + b2j .

for all i, j ∈ {1, 2, . . . , n}. Then there is an integer λ such that

(8.2) a2i−1 + λ ≥ b2i−1 and a2j − λ ≥ b2j ,

for all i, j = {1, 2, . . . , n}.

Proof. The equations (8.1) are equivalent to

a2j − b2j ≥ b2i−1 − a2i−1,

for all i, j ∈ {1, 2, . . . , n}, hence
min{a2j − b2j | j = 1, . . . , n} ≥ max{b2i−1 − a2i−1 | i = 1, . . . , n}.

We pick any integer λ with

min{a2j − b2j | j = 1, . . . , n} ≥ λ ≥ max{b2i−1 − a2i−1 | i = 1, . . . , n}
and observe that (8.2) holds true. �

Lemma 8.3. Let a = ⟨a1, . . . , a2n⟩ and b = ⟨b1, . . . , b2n⟩ be elements of
R2n\J2n. Then a ∈ trR2n(b) if and only if codima{2i−1,2j} ≥ codim b{2i−1,2j}
for all i, j ∈ {1, 2, . . . , n}.

Proof. (⇒) Suppose that a ∈ trR2n(b). Then a{2i−1,2j} ∈ trR2(b{2i−1,2j}),
which implies that codima{2i−1,2j} ≥ codim b{2i−1,2j}, for all i, j ∈ {1, 2, . . . , n},
due to Lemma 7.10.

(⇐) Since the ringR2n is regular, it contains idempotents e = ⟨e1, e2, . . . , e2n⟩
and f = ⟨f1, f2, . . . , f2n⟩ such that trR2n(a) = trR2n(e) and trR2n(b) =
trR2n(f). As we have just proved, this implies that codima{2i−1,2j} =
codim e{2i−1,2j} and codim b{2i−1,2j} = codimf{2i−1,2j}, for all i, j ∈ {1, 2, . . . , n}.
According to the assumption we have that

codim e2i−1 + codim e2j ≥ codim f2i−1 + codim f2j ,

for all i, j ∈ {1, 2, . . . , n}. By Lemma 7.1 all codim ei and codim fi, i =
1, . . . , 2n, are even. Applying Lemma 8.2, there is an integer 2λ such that

codim e2i−1 + 2λ ≥ codim f2i−1 and codim e2j − 2λ ≥ codim f2j ,
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for all i, j ∈ {1, 2, . . . , n}. Applying Corollary 7.9 we find idempotents
g{2i−1,2i} = (g2i−1, g2i) ∈ R2 \ J2, and elements r∗{2i−1,2i} = ⟨r∗2i−1, r

∗
2i⟩,

s∗{2i−1,2i} = ⟨s∗2i−1, s
∗
2i⟩ ∈ R2 with φ(r{2i−1,2i}) = tλ, φ(s∗{2i−1,2i}) = t−λ, for

all i ∈ {1, 2, . . . , n}, satisfying
codim g2i−1 = codim e2i−1 + 2λ,

codim g2i = codim e2i − 2λ,

and
e{2i−1,2i} = s∗{2i−1,2i}g{2i−1,2i}r

∗
{2i−1,2i},

for all i ∈ {1, 2, . . . , n}. Putting g := ⟨g1, g2, . . . , g2n⟩, r∗ := ⟨r∗1, r∗2, . . . , r∗2n⟩,
and s∗ := ⟨s∗1, s∗2, . . . , s∗2n⟩, we get elements of R2n with φ(g) = 1, φ(r∗) =
tλ, and φ(s∗) = t−λ, satisfying e = s∗gr∗. Since codim gi ≥ codim fi for all
i = 1, . . . , 2n, we have r, s ∈ R2n with φ(r) = φ(s) = 1 satisfying g = sfr
due to Lemma 7.8. It follows that

e = s∗gr∗ = s∗sfrr∗,

hence e ∈ trR2n(f). Therefore a ∈ trR2n(b). �
The next lemma is an analogy of Lemma 7.11. It follows readily as a

combination of Lemmas 8.1 and 8.3.

Lemma 8.4. Let a = ⟨a1, a2, . . . , a2n⟩ and b = ⟨b1, b2, . . . , b2n⟩ be ele-
ments of the ring R2n. Then trR2n(a) = trR2n(b) if and only if either both
a, b ∈ J2n and

dim ai = dim bi

for all i ∈ {1, 2, . . . , 2n}, or both a, b ∈ R2n \ J2n and

codima{2i−1,2j} = codim b{2i−1,2j}

for all i, j ∈ {1, 2, . . . , n}.

Theorem 8.5. Let n be a positive integer. The monoid V (R2n) is iso-
morphic to D2n and, via the isomorphism ψ−1

2n : D2n → B2n, also to B2n.

Proof. We define a map γ : Idem(R2n) → D2n by

e = ⟨e1, e2, . . . , e2n⟩ 7→

{
⟨0, dim e1

2 , dim e2
2 , . . . , dim e2n

2 ⟩ ∈ O2n if φ(e) = 0,

⟨1,− codim e{i,j}
2 ⟩{i,j} ∈ V 2n if φ(e) = 1,

and we verify that the properties (1-3) of Corollary 3.9 are satisfied. Prop-
erty (1) follows from Lemma 8.4.

We are going to prove that (2) holds true. Let x = ⟨x0, . . .⟩, y =
⟨y0, . . .⟩ ∈ D2n and g = ⟨g1, g2, . . . , g2n⟩ ∈ Idem(R2n). The implication (⇐)
is trivial. In order to prove the opposite one, (⇒), assume that γ(g) = x+y.
We are going to discuss two cases.

The first case is when g ∈ J2n. Then 0 = φ(g) = x0 + y0, hence x0 =
y0 = 0 and both x0 and y0 belong to O2n. Applying Lemma 7.12, we find,
for each i ∈ {1, 2, . . . , 2n}, a pair of orthogonal idempotents ei, fi ∈ I such
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that dim ei = xi, dim fi = yi, and gi = ei + fi. Putting e = ⟨e1, e2, . . . , e2n⟩
and f = ⟨f1, f2, . . . , f2n⟩, we get a pair of orthogonal idempotents e,f such
that γ(e) = x, γ(f) = y, and g = e+ f .

The latter case is when g is an idempotent from R2n \ J2n. We can
without loss of generality assume that x0 ≥ y0. Since x0 + y0 = z0 = 1,
we get that x0 = 1, hence x ∈ V 2n, and y0 = 0, hence y ∈ O2n. Ap-
plying Lemma 7.13 we find for each i ∈ {1, 2, . . . , 2n} a pair of orthogonal
idempotents ei ∈ S \ I, and fi ∈ I such that

codim ei
2

=
codim gi

2
+ yi,

dim fi
2

= yi, and gi = ei + fi.

Set e := ⟨e1, e2, . . . , e2n⟩ and f := ⟨f1, f2, . . . , f2n⟩. Then e ∈ R2n \J2n and
f ∈ R2n are orthogonal idempotents such that g = e+ f and γ(f) = y. It
follows that

γ(e) + y = γ(g) = x+ y.

Applying Lemma 5.4, we infer from y ∈ O2n that γ(e) = x. Therefore
property (2) is satisfied.

By the definition
γ(1) = ⟨1, 0, . . . , 0︸ ︷︷ ︸

n2×

⟩,

which is an order-unit in D2n, thus property (3) holds true as well.
Since the ring R2n is directly finite, the map γ extends to a unique

isomorphism β : V (R2n) → D2n, due to Corollary 3.9. �
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1. Introduction

In [84] FriedrichWehrung defined a Banaschewski function on a bounded
complemented lattice L as an antitone (i.e., order-reversing) map sending
each element of L to one of its complements, being motivated by the earlier
result of Bernhard Banaschewski that such a function exists on the lattice
of all subspaces of a vector space [8]. Wehrung extended Banaschewski’s
result by proving that every countable complemented modular lattice has a
Banaschewski function with Boolean range and that all the possible ranges
of Banaschewski functions with Boolean range on L are isomorphic [84,
Corollary 4.8].

Still in [84] Wehrung defined a ring-theoretical analogue of the Ba-
naschewski function that, for a von Neuman regular ring R, is closely con-
nected to the lattice-theoretical Banaschewski function on the lattice L(R)
of all finitely generated right ideals of R. He made use of these ideas to
construct a unit-regular ring S (in fact of bounded index 3) of size ℵ1 with
no Banaschewski function [85].

Furthermore in [84] Wehrung defined notions of a Banaschewski measure
and a Banaschewski trace on sectionally complemented modular lattices and
he proved that a sectionally complemented lattice which is either modular
with a large 4-frame or Arguesian with a large 3-frame is coordinatizable (i.e.
isomorphic to L(R) for a possibly non-unital von Neumann regular ring R)
if and only if it has a Banaschewski trace. Applying those results, he con-
structed a non-coordinatizable sectionally complemented modular lattice, of
size ℵ1, with a large 4-frame [84, Theorem 7.5].

The aim of this chapter is to solve the second problem from [84]:

Problem (Problem 2 from [84]). Is every maximal Boolean sublattice
of an at most countable complemented modular lattice L the range of some
Banaschewski function on L? Are any two such Boolean sublattices isomor-
phic?

We construct a countable complemented modular lattice S with two
non-isomorphic maximal Boolean sublattices G and H. We represent G as
the range of a Banaschewski function on S and we prove that H is not the
range of any Banaschewski function. We represent the lattice S as a bounded
sublattice of the subspace lattice of a vector space over an arbitrary given
field. The lattice S is constructed as a bounded sublattice of M3[F(κ)].
We prove that there is no 3-frame in the lattice M3[D] for any distributive
lattice D. As a consequence we get that there is no 3-frame in the lattice
S. On the other hand we show that lattices M3[B] are cordinatizated by
Boolean powers of the ring of 2× 2 matrices over a two-element field F2 by
a Boolean lattice B. We find a regular F2-algebra S such that S ≃ L(S)
and we show that the maximal Boolean sublattices G and H correspond to
maximal Abelian regular subalgebras of the algebra S.
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2. Preliminaries

We start with recalling same basic notions as well as the precise definition
of a Banaschewski function adopted from [84]. Next we outline Schmidt’s
M3[L] construction, which we then apply to define the bounded modular
lattice S containing a pair of non-isomorphic maximal Boolean sublattices.

2.1. Complemented lattices and the Banaschewski function. A
lattice L is bounded if it has both the least element and the greatest element,
denoted by 0L and 1L, respectively. A bounded sublattice of a bounded
lattice is a sublattice containing the bounds. Given elements a, b, c of a
lattice L with zero, we will use the notation c = a⊕ b when a ∧ b = 0L and
a∨b = c. A complement of an element a of a bounded lattice L is an element
a′ ofL such that a⊕a′ = 1L. A latticeL is said to be complemented provided
that it is bounded and each element of L has a (not necessarily unique)
complement. A lattice L is relatively complemented if each of its closed
intervals is complemented. Note that a relatively complemented lattice is
not necessarily bounded.

We say that a lattice L is uniquely complemented if it is bounded and
each element of L has a unique complement. By a Boolean lattice we mean
a lattice reduct of a Boolean algebra, that is, a complemented distributive
lattice. For the clarity, let us recall the formal definition of a Banaschewski
function [84, Definition 3.1]:

Definition 2.1. Let L be a bounded lattice. A Banaschewski function
on L is a map β : L → L such that both

(i) x ≤ y implies β(x) ≥ β(y), for all x, y ∈ L, and
(ii) β(x)⊕ x = 1L for all x ∈ L,

hold true.

2.2. The M3[L]-construction. Let L be a lattice. We will call a
triple ⟨a, b, c⟩ ∈ L3 balanced, if it satisfies

a ∧ b = a ∧ c = b ∧ c

and we denote by M3[L] the set of all balanced triples. It is readily seen
that M3[L] is a meet-subsemilattice of the cartesian product L3. However,
it is not necessarily a join-subsemilattice, for one easily observes that the
componentwise join of balanced triples may not be balanced. The M3[L]-
construction was introduced by E. T. Schmidt [69, 71] for a bounded dis-
tributive lattice L. He proved [71, Lemma 1] that in this case M3[L] is a
bounded modular lattice and that it is a congruence-preserving extension
of the distributive lattice L. This result was later extended by Grätzer and
Schmidt in various directions [30, 31]. In particular, in [30] they proved that
every lattice with a non-trivial distributive interval has a proper congruence-
preserving extension. This was further improved by Grätzer and Wehrung
in [35], where they introduced a modification of the M3[L]-construction,
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called M3⟨L⟩-construction. Using this new idea they proved that every
non-trivial lattice admits a proper congruence-preserving extension.

The lattice constructions M3[L] and M3⟨L⟩ appeared in the series of
papers by Grätzer and Wehrung [32, 33, 34, 35, 36, 37, 38] dealing
with semilattice tensor product and its related structures, namely the box
product and the lattice tensor product [34, Definition 2.1 and Definition
3.3]. Indeed, M3 �L ≃ M3⟨L⟩ for every lattice L and M3 ⊗L ≃ M3[L]
whenever L has a zero and M3 ⊗L is a lattice (see [38, Theorem 6.5] and
[33, Corollary 6.3]). In particular, the latter is satisfied when the lattice L

is modular with zero. Note also, that if L is a bounded distributive lattice
both the constructions M3[L] and M3⟨L⟩ coincide. In our paper we get by
with this simple case.

Let L be a distributive lattice. Given a triple ⟨a, b, c⟩ ∈ L3, we define

(2.1) µ⟨a, b, c⟩ = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)
and we set

(2.2) ⟨a, b, c⟩ = ⟨a ∨ µ⟨a, b, c⟩, b ∨ µ⟨a, b, c⟩, c ∨ µ⟨a, b, c⟩⟩.

Using the distributivity of L one easily sees that ⟨a, b, c⟩ is the least balanced
triple ≥ ⟨a, b, c⟩ in L3 and that the map ⟨−⟩ : L3 → L3 determines a closure
operator on the lattice L3 (see [33, Lemma 2.3] for a refinement of this
observation). It is also clear that

a ∨ µ⟨a, b, c⟩ = a ∨ (b ∧ c),
b ∨ µ⟨a, b, c⟩ = b ∨ (a ∧ c),
c ∨ µ⟨a, b, c⟩ = c ∨ (a ∧ b).

A triple ⟨a, b, c⟩ ∈ L3 is closed with respect to the closure operator if and
only if it is balanced. Therefore the set of all balanced triples, denoted by
M3[L], forms a lattice [33, Lemma 2.1], where

(2.3) ⟨a, b, c⟩ ∨ ⟨a′, b′, c′⟩ = ⟨a ∨ a′, b ∨ b′, c ∨ c′⟩
and

(2.4) ⟨a, b, c⟩ ∧ ⟨a′, b′, c′⟩ = ⟨a ∧ a′, b ∧ b′, c ∧ c′⟩.
By [33, Lemma 2.9] the lattice M3[L] is modular if and only if the lattice
L is distributive. The “if” part of the equivalence is included in the above
mentioned [71, Lemma 1].

2.3. Coordinatizability. Finitely generated right ideals of a regular
ring R form a sectionally complemented modular lattice [22, Theorem 2.3].
We will denote this lattice by L(R). Note that for a regular ring the corre-
spondence eR 7→ R(1−e) determines an anti-isomorphisms from the lattice
L(R), of all finitely generated right ideals of the ring R, to the lattice of all
finitely generated left ideals of the ring R (cf. [22, Theorem 2.5]).

A lattice, necessarily sectionally complemented modular, is coordinatiz-
able if it is isomorphic to the lattice L(R) for a regular ring R. For a lucid
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introduction into the problem of coordinatizability of sectionally comple-
mented modular lattice we refer to [27, Appendix D] and [85]. Here we will
limit ourselves to Jónsson’s coordinatization theorem [44], to our knowledge
the most complete description of coordinatizable lattices.

We say a set X of non-zero elements of a lattice L with zero is indepen-
dent provided that for every finite F,G ⊆ X, the equality∨

F ∧
∨
G =

∨
(F ∩G)

holds true. If the lattice L is modular then an n-element set {a1, . . . , an} of

distinct non-zero elements of L is independent if and only if aj+1∧
∨j

i=1 ai =
0 for all j = 1, . . . , n − 1 (see [27, Theorem IV.1.11]). If the lattice L is
distributive, a subset X ⊆ L \ {0} is independent if and only if a∧ b = 0 for
all distinct a, b ∈ X.

Elements a, b of a bounded lattice L are perspective provided that there
is c ∈ L such that

(2.5) 1 = a⊕ c = b⊕ c.

The notation a ∼c b means that equalities (2.5) hold true. The notation
a ∼ b means that a ∼c b for some c ∈ L, i.e. that a and b are perspective.

An element a of a lattice L is neutral provided that the sublattice of
L generated by a triple {a, b, c} is distributive for all b, c ∈ L [27, Section
III.2]. An ideal I of a lattice L is neutral if it is a neutral element in the ideal
lattice of L. An n-frame in a lattice L is a pair ⟨⟨ai | i = 0, . . . , n− 1⟩, ⟨ci |
i = 1, . . . , n− 1⟩⟩ of families of elements ofL such that the set {a0, . . . , an−1}
is independent and a0 ∼ci ai for all i = 1, . . . , n− 1. An n-frame is large if
the neutral ideal generated by a0 is the entire L. In particular, an n-frame
such that

∨n−1
i=0 ai = 1 is large.

Theorem 2.2 (Jónsson’s coordinatization theorem [44]). A modular
complemented lattice L that has a large n-frame for some n ≥ 4 or that
is Arguesian and has a large n-frame with n ≥ 3 is coordinatizable.

2.4. Stone duality and Boolean powers. In this subsection we fol-
low [13, Chapter IV,§§4-5]. For topological notions we refer to [18]. A
Boolean space is a compact Hausdorff topological space with a basis con-
sisting of clopen (i.e. closed and open) subsets. Let B be a Boolean lattice.
We denote by B∗ the collection of all ultrafilters on B. For each a ∈ B we
set

(2.6) Na := {u ∈ B∗ | a ∈ u}.
The collection of all Na, a ∈ B, is a basis of a topology on B∗, and B∗

equipped with this topology is a Boolean space called the Stone space of B.
All clopen subsets of a topological space T form a sulattice, denoted

by T∗, of the Boolean lattice of all subsets of T. Every Boolean lattice B

is isomorphic to B∗∗ via the map a 7→ Na and every Boolean space T is
homeomorphic to T∗∗ via x 7→ {N ∈ T∗ | x ∈ N}.
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Let A be an algebra and B a Boolean lattice. We equip the set A
with the discrete topology and we denote by A[B]∗ the set of all continuous
functions from the Boolean space B∗ to A. By [13, Lemma IV.5.2], A[B]∗

is a subuniverse of the Cartesian power AB∗
. We denote by A[B]∗ the

subalgebra of AB∗
with the universe A[B]∗ and we will call the subalgebra

the Boolean power of A by B.

3. The lattice

Fix an infinite cardinal κ. As it is customary, we identify κ with the set
of all ordinals of cardinality less than κ. Let us denote by P(κ) the Boolean
lattice of all subsets of κ and set

F(κ) := {X ⊆ κ | X is finite or κ \X is finite}.

It is well-known that F(κ) is a bounded Boolean sublattice of P(κ).
Given sets X, Y , the notation X ≤fin Y means that X \ Y is finite.

Clearly ≤fin is a quasiorder on the class of all sets. We define

E = {⟨A,B,C⟩ ∈ F(κ)3 | C ≤fin A ∪B}.

Since for all A,A′, B,B′, C, C ′ we have that

(3.1) (C ∪ C ′) \ ((A ∪A′) ∪ (B ∪B′)) ⊆ (C \ (A ∪B)) ∪ (C ′ \ (A′ ∪B′)),

the set E is closed under finite joins. Both 0F(κ)3 = ⟨∅, ∅, ∅⟩ and 1F(κ)3 =
⟨κ, κ, κ⟩ clearly belong to E, thus we can conclude that E forms a bounded
join-subsemilattice of F(κ)3.

Let S := E ∩ M3[F(κ)] denote the set of all balanced triples from E.
Since A ∩ C = B ∩ C for every balanced triple ⟨A,B,C⟩, we have that

(3.2)
S = {⟨A,B,C⟩ ∈ M3[F(κ)] | C ≤fin A}
= {⟨A,B,C⟩ ∈ M3[F(κ)] | C ≤fin B}.

Note that since for a balanced triple ⟨A,B,C⟩ the equalityA∩C = µ⟨A,B,C⟩
holds true, we get from (3.2) that

(3.3) S = {⟨A,B,C⟩ ∈ M3[F(κ)] | C ≤fin µ⟨A,B,C⟩}.

Lemma 3.1. The set S forms a bounded sublattice of the lattice M3[F(κ)].

Proof. Observe that

C \ (A ∪B) = (C ∪ µ⟨A,B,C⟩) \ (A ∪B ∪ µ⟨A,B,C⟩),

for all ⟨A,B,C⟩ ∈ F(κ)3. Therefore the join-semilattice E is closed under
the operation µ. It follows that S forms a bounded join-subsemilattice of
M3[F(κ)]. It remains to prove that S is closed under finite meets. However,
this is a consequence of the inequality

(C ∩ C ′) \ (A ∩A′) ⊆ (C \A) ∪ (C ′ \A′),

that holds for all sets A,A′, C, C ′. �
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As discussed in Section 2, since the lattice F(κ) is distributive, the lattice
M3[F(κ)] is modular. Observe that the mapping A 7→ ⟨A,A,A⟩ embeds
F(κ) into S, from which we deduce that

|F(κ)| ≤ |S| ≤ |F(κ)3|.

Since the size of both F(κ) and F(κ)3 is κ, we get that |S| = κ. Let us sum
up these observations in the following corollary to Lemma 3.1.

Corollary 3.2. For κ = ω0, the lattice S is countable infinite.

Remark 3.3. Note that unlike S, the lattice E is not a meet-subsemilat-
tice of F(κ)3. Indeed, both ⟨κ, ∅, κ⟩, ⟨∅, κ, κ⟩ ∈ E while ⟨κ, ∅, κ⟩ ∧ ⟨∅, κ, κ⟩ =
⟨∅, ∅, κ⟩ /∈ E.

4. A Banaschewski function on S

In this section we define a Banaschewski function β : S → S and describe,
element-wise, its range G.

Lemma 4.1. The map β : S → S defined by
(4.1)
β⟨A,B,C⟩ := ⟨κ \A, κ \ (B ∪ C), κ \ (A ∪B ∪ C)⟩, for all ⟨A,B,C⟩ ∈ S,

is a Banaschewski function on S. Consequently, S is a complemented mod-
ular lattice.

Proof. First we prove that S contains the range of the map β. Observe
that if we put A′ := κ \ A and B′ := κ \ (B ∪ C), then β⟨A,B,C⟩ =
⟨A′, B′, A′ ∩B′⟩. Since F(κ) is a Boolean lattice, the sets A′, B′ and A′∩B′

all belong to F(κ). Furthermore, we have that

A′ ∩B′ = µ⟨A′, B′, A′ ∩B′⟩ = µβ⟨A,B,C⟩.

In particular, A′ ∩B′ \ µβ⟨A,B,C⟩ = ∅, whence β⟨A,B,C⟩ ∈ S.
It is clear from (4.1) that the map β is antitone. Finally, we check that

1S = ⟨κ, κ, κ⟩ = ⟨A,B,C⟩ ⊕ β⟨A,B,C⟩, for all ⟨A,B,C⟩ ∈ S.

It follows immediately from the definition of β that

⟨A,B,C⟩ ∧ β⟨A,B,C⟩ = ⟨∅, ∅, ∅⟩ = 0S.

To prove that ⟨A,B,C⟩ ∨ β⟨A,B,C⟩ = 1S, let us verify that

(4.2) κ = µ⟨A ∪ (κ \A), B ∪ (κ \ (B ∪ C)), C ∪ (κ \ (A ∪B ∪ C))⟩.

Note that each element of κ that is not contained in C belongs to B ∪ (κ \
(B ∪ C)). Together with A ∪ (κ \ A) = κ, we get that (4.2) holds, which
concludes the proof. �

Lemma 4.2. Let G denote the range of the Banaschewski function β : S →
S. Then

G = {⟨A,B,A ∩B⟩ | A,B ∈ F(κ)}
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and the mapping

(4.3) ⟨A,B,A ∩B⟩ 7→ ⟨A,B⟩

determines an isomorphism from G onto the Boolean lattice F(κ)×F(κ).

Proof. While proving Lemma 4.1, we have observed that

(4.4)
G ⊆{⟨A,B,C⟩ ∈ S | C = A ∩B} =

{⟨A′, B′, A′ ∩B′⟩ | A′, B′ ∈ F(κ)}.

A straightforward computation gives that

β(β⟨A′, B′, A′ ∩B′⟩) = ⟨A′, B′, A′ ∩B′⟩,

and so the lattice G is equal to the right-hand side of (4.4). Finally, it
is readily seen that the correspondence (4.3) determines an isomorphism
G → F(κ)×F(κ). �

It was noted in [84] that if the range of a Banaschewski function on a
lattice L is Boolean, then it is a maximal Boolean sublattice of L. Thus we
derive from Theorem 4.2 that G is a maximal Boolean sublattice of S.

5. The counter-example

In the present section, we construct another maximal Boolean sublattice
H of the lattice S. We show that the lattices H and G are not isomorphic
and we prove directly that the latticeH is not the range of any Banaschewski
function on S.

Lemma 5.1. The assignment ⟨A,C⟩ 7→ g⟨A,C⟩ := ⟨A,A ∩ C,C⟩ defines
a bounded lattice embedding g : F(κ) × F(κ) → M3[F(κ)]. In particular,
the range of g is a bounded Boolean sublattice of M3[F(κ)] isomorphic to
F(κ)×F(κ).

Proof. It is clear from the definition of the map g that it is injective
and that its range is included in M3[F(κ)]. Further, for any A,A′, C, C ′ ⊆ κ,
the equality

g⟨A,C⟩ ∧ g⟨A′, C ′⟩ = g⟨A ∩A′, C ∩ C ′⟩
holds by (2.4), while

(5.1) g⟨A,C⟩ ∨ g⟨A′, C ′⟩ = g⟨A ∪A′, C ∪ C ′⟩

can be easily deduced from (2.2) and (2.3). Finally, observe that g⟨κ, κ⟩ =
⟨κ, κ, κ⟩ and g⟨∅, ∅⟩ = ⟨∅, ∅, ∅⟩, which concludes the proof. �

For any A,C ∈ F(κ), we say that ⟨A,C⟩ is finite if both A and C are
finite, and we say that ⟨A,C⟩ is co-finite if both κ \ A and κ \ C are finite.
Let us write A ≈ C if ⟨A,C⟩ is either finite or co-finite. Note that there are
pairs A,C ∈ F(κ) such that ⟨A,C⟩ is neither finite nor co-finite; namely,
A ≈ C if and only if the symmetric difference (A \ C) ∪ (C \A) is finite.
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Lemma 5.2. The set

A = {⟨A,C⟩ ∈ F(κ)×F(κ) | A ≈ C}
forms a bounded Boolean sublattice of F(κ)×F(κ).

Proof. Let ⟨A,C⟩, ⟨A′, C ′⟩ be a pair of elements from A. If at least
one of them is finite, then ⟨A ∩A′, C ∩ C ′⟩ is clearly finite as well. If both
⟨A,C⟩ and ⟨A′, C ′⟩ are co-finite, then so is ⟨A ∩A′, C ∩ C ′⟩. In either case,
⟨A ∩A′, C ∩ C ′⟩ ∈ A.

If at least one of the pairs ⟨A,C⟩, ⟨A′, C ′⟩ is co-finite, then ⟨A ∪A′, C ∪ C ′⟩
is co-finite as well, while if both ⟨A,C⟩ and ⟨A′, C ′⟩ are finite, then so
is ⟨A ∪A′, C ∪ C ′⟩. In particular, ⟨A ∪A′, C ∪ C ′⟩ ∈ A whenever ⟨A,C⟩,
⟨A′, C ′⟩ ∈ A.

We have shown that A is a sublattice of F(κ) × F(κ). To complete
the proof, observe that ⟨∅, ∅⟩ is finite and ⟨κ, κ⟩ is co-finite and that the
unique complement in F(κ)×F(κ) of each ⟨A,C⟩ ∈ A, namely ⟨κ \A, κ \ C⟩
belongs to A. �

Lemma 5.3. The g-image H = g(A) of A is a bounded Boolean sublat-
tice of S.

Proof. Due to Lemma 5.1 and Lemma 5.2, H is a bounded Boolean
sublattice of M3[F(κ)]. Thus in view of Lemma 3.1, it suffices to verify that
H ⊆ S, that is, that C \ (A∩C) is finite for every ⟨A,C⟩ ∈ A. This is clear
when ⟨A,C⟩ is finite. If ⟨A,C⟩ is co-finite, then C \ (A∩C) = C \A ⊆ κ \A
is finite and we are done. �

Observe that if ⟨A,B,C⟩ is a balanced triple then B ⊆ A if and only if
B = A ∩B = A ∩ C. It follows that

(5.2) H = {⟨A,B,C⟩ ∈ S | A ≈ C and B ⊆ A}.

Lemma 5.4. Let ⟨A,B,C⟩ ∈ S \H and let ⟨A′, B′, C ′⟩ be a complement
of ⟨A,B,C⟩ in S. If B ⊆ A, then B′ ̸⊆ A′.

Proof. Since ⟨A,B,C⟩ ̸∈ H and B ⊆ A, it follows from (5.2) that
A ̸≈ C. Hence exactly one of the two sets A,C is finite. From B ⊆ A and
C \B being finite we conclude that C and κ\A are both finite. Furthermore
from B ⊆ A and A ∩ B = B ∩ C, we infer that B = B ∩ C. It follows that
the set B is finite as well.

Suppose now that B′ ⊆ A′. Since ⟨A,B,C⟩ ∧ ⟨A′, B′, C ′⟩ = 0S, we have
that A∩A′ = ∅, whence the set A′ ⊆ κ \A is finite. A fortiori, the set B′ is
also finite due to the assumption that B′ ⊆ A′. As C ′ \B′ = C ′ \ (B′∩A′) =
C ′ \ µ⟨A′, B′, C ′⟩ is also finite, we conclude that so is C ′. But then

µ⟨A ∪A′, B ∪B′, C ∪ C ′⟩ ⊆ B ∪B′ ∪ C ∪ C ′

is a finite set, which contradicts the assumption that ⟨A,B,C⟩∨⟨A′, B′, C ′⟩ =
⟨κ, κ, κ⟩ = 1S. �
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Corollary 5.5. Every complemented bounded sublattice C of S such
that H ( C contains an element ⟨A,B,C⟩ with B ̸⊆ A.

Proof. Let ⟨A,B,C⟩ ∈ C \H and let ⟨A′, B′, C ′⟩ be one of its comple-
ments in C. Applying Lemma 5.4, we get that either B ̸⊆ A or B′ ̸⊆ A′. �

Proposition 5.6. The lattice H is a maximal Boolean sublattice of S.

Proof. Let C be a complemented bounded sublattice of S satisfying
H ( C. There is ⟨A,B,C⟩ ∈ C with B ̸⊆ A by Corollary 5.5. We can pick
a finite nonempty F ⊆ B \A. Since the triple ⟨A,B,C⟩ is balanced,
(5.3) ∅ = F ∩A = F ∩B ∩A = F ∩B ∩ C = F ∩ C.
Now observe that both g⟨F, ∅⟩ and g⟨∅, F ⟩ are in H. Applying (5.1) and
(5.3), we get that

(5.4) ⟨A,B,C⟩ ∧
(
g⟨F, ∅⟩ ∨ g⟨∅, F ⟩

)
= ⟨A,B,C⟩ ∧ g⟨F, F ⟩ = ⟨∅, F, ∅⟩,

while

(5.5)
(
⟨A,B,C⟩ ∧ g⟨F, ∅⟩

)
∨
(
⟨A,B,C⟩ ∧ g⟨∅, F ⟩

)
= ⟨∅, ∅, ∅⟩.

It follows from (5.4) and (5.5) that the lattice C is not distributive, a fortiori
it is not Boolean. �

Proposition 5.7. The sublattice H of S is not the range of any Ba-
naschewski function on S.

Proof. The range of a Banaschewski function on S must contain a
complement of each element of S. We show that no complement of ⟨κ, ∅, ∅⟩
in S belongs to H.

Suppose the contrary, that is, that there is ⟨A,B,C⟩ = g⟨A,C⟩ ∈ H

satisfying ⟨κ, ∅, ∅⟩ ⊕ ⟨A,B,C⟩ = 1S. Then A = A ∩ κ = ∅, and by (5.2) also
B = ∅. Then from B = ∅ and ⟨κ, ∅, ∅⟩ ∨ ⟨A,B,C⟩ = 1S, one infers that
C = κ. It follows that ⟨A,B,C⟩ /∈ S; indeed, C \ µ⟨A,B,C⟩ = C \ ∅ = κ is
not finite. Thus ⟨A,B,C⟩ ̸∈ H, which is a contradiction. �

Remark 5.8. Note that for the particular case of κ = ℵ0, the assertion
of Proposition 5.7 follows from Proposition 5.9 together with [84, Corollary
4.8], which states that the ranges of two Boolean Banaschewski functions on
a countable complemented modular lattice are isomorphic.

Proposition 5.9. The lattices H and G are not isomorphic.

Proof. In H, every finite element g⟨A,C⟩ is a join of a finite set of
atoms, namely

g⟨A,C⟩ =

(∨
α∈A

g⟨{α}, ∅⟩

)
∨

∨
γ∈C

g⟨∅, {γ}⟩

 ,

and, dually, every co-finite element is a meet of a finite set of co-atoms. On
the other hand, there are elements in F(κ) × F(κ) that are neither finite
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joins of atoms nor finite meets of co-atoms. Recall that in Lemma 4.2, we
have observed that the lattice G is isomorphic to F(κ) × F(κ). Therefore
the lattices H and G are not isomorphic. �

6. Representing S in a subspace lattice

Although the construction in the three previous sections was performed
for an infinite cardinal κ, the results of the present section on embedding
the lattice M3[P(κ)] into Sub(V) (namely Theorem 6.4) work just as well
for κ finite. In particular, Proposition 6.5 (an enhancement of [33, Lemma
2.9]) holds for lattices of any cardinality.

Let F be an arbitrary field and let V denote the vector space over the field
F presented by generators xα, yα, zα, α ∈ κ, and relations xα + yα + zα = 0.
For a subset X of the vector space V we denote by Span(X) the subspace
of V generated by X. Given subspaces of V , say X and Y , we will use
the notation X + Y = Span(X ∪ Y ). Let Sub(V ) denote the lattice of all
subspaces of the vector space V .

For all A,B,C ⊆ κ we put XA = Span({xα | α ∈ A}), Y B = Span({yβ |
β ∈ B}), and ZC = Span({zγ | γ ∈ C}).

We define the map F : P(κ)3 → Sub(V ) by the correspondence

(6.1) ⟨A,B,C⟩ 7→ XA + Y B +ZC .

Each of the sets {xα | α ∈ κ}, {yβ | β ∈ κ}, and {zγ | γ ∈ κ} is clearly
linearly independent. It follows that XA∪A′ = XA + XA′ for all A,A′ ⊆
κ and, similarly, Y B∪B′ = Y B + Y B′ and ZC∪C′ = ZC + ZC′ for all
B,B′, C, C ′ ⊆ κ. A straightforward computation gives the following lemma:

Lemma 6.1. The map F : P(κ)3 → Sub(V ) is a bounded join-homomor-
phism.

Proof. Clearly F ⟨∅, ∅, ∅⟩ = 0 and F ⟨κ, κ, κ⟩ = V . Following the defini-
tions, we compute F (⟨A,B,C⟩)+F (⟨A′, B′, C ′⟩) = XA+Y B+ZC+XA′ +
Y B′ +ZC′ = XA∪A′ + Y B∪B′ +ZC∪C′ = F (⟨A ∪A′, B ∪B′, C ∪ C ′⟩). �

Let G : Sub(V ) → P(κ)3 be a map defined by

W 7→ ⟨{α | xα ∈ W }, {β | yβ ∈ W }, {γ | zγ ∈ W }⟩,

for all W ∈ Sub(V ).
It is straightforward that G is a bounded meet-homomorphism and that

it is the right adjoint of F (i.e., replacing the lattice Sub(V ) with its dual,
the maps F and G form a Galois correspondence [54]). Indeed, one readily
sees that

F ⟨A,B,C⟩ ⊆ W iff ⟨A,B,C⟩ ≤ G(W ).

The maps F and G induce a closure operator GF on P(κ)3.

Lemma 6.2. The composition GF : P(κ)3 → P(κ)3 is precisely the clo-

sure operator ⟨−⟩ on P(κ)3 defined by (2.2).
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Proof. We shall prove that GF ⟨A,B,C⟩ = ⟨A,B,C⟩, for all ⟨A,B,C⟩
from P(κ)3. By symmetry, it suffices to prove that

{α ∈ κ | xα ∈ F ⟨A,B,C⟩} = A ∪ (B ∩ C).
Let α ∈ A∪ (B∩C). If α ∈ A, then xα ∈ F ⟨A,B,C⟩ by the definition (6.1),
while if α ∈ B∩C, then xα = −yα−zα ∈ F ⟨A,B,C⟩ by (6.1) and the defining
relations of V . It follows that A ∪ (B ∩ C) ⊆ {α ∈ κ | xα ∈ F ⟨A,B,C⟩}.

In order to prove the opposite inclusion, take any x ∈ κ \ A satisfying
xx ∈ F ⟨A,B,C⟩; if there is none, there is nothing to prove. We need to
show that then x ∈ B ∩ C. Certainly

(6.2) xx =
∑
α∈A

aαxα +
∑
β∈B

bβyβ +
∑
γ∈C

cγzγ

for suitable aα, bβ, and cγ ∈ F such that all but finitely many of them are
zero. We set aα = 0 for α /∈ A, bβ = 0 for β /∈ B, and cγ = 0 for γ /∈ C.
Since zγ + xγ + yγ = 0 for every γ ∈ κ, it follows from (6.2) that

(6.3) xx =

∑
α∈A

aαxα −
∑
γ∈C

cγxγ

+

∑
β∈B

bβyβ −
∑
γ∈C

cγyγ

 .

It easily follows from the defining relations of V that {xα, yα | α ∈ κ} forms
a basis of V . Thus, applying (6.3) we get that

(6.4) ax − cx = 1 and bx − cx = 0.

Since by our assumption x /∈ A, we get from (6.2) that ax = 0. Substituting
to (6.4) we get that bx = cx = −1, hence x ∈ B ∩ C. This concludes the
proof that A ∪ (B ∩ C) ⊇ {α ∈ κ | xα ∈ F ⟨A,B,C⟩}. �

The next lemma shows that F � M3[P(κ)] preserves meets. Note that
with Lemma 6.1, this means that F � M3[P(κ)] is a lattice embedding of
M3[P(κ)] into the lattice Sub(V ).

Lemma 6.3. Let ⟨A,B,C⟩, ⟨A′, B′, C ′⟩ ∈ M3[P(κ)] be balanced triples.
Then

F ⟨A,B,C⟩ ∩ F ⟨A′, B′, C ′⟩ = F ⟨A ∩A′, B ∩B′, C ∩ C ′⟩.

Proof. Since, by Lemma 6.1, F is a join-homomorphism, it is mono-
tone, whence F ⟨A ∩A′, B ∩B′, C ∩ C ′⟩ ⊆ F ⟨A,B,C⟩ ∩ F ⟨A′, B′, C ′⟩. Thus
it remains to prove the opposite inclusion.

Let v ∈ F ⟨A,B,C⟩ ∩ F ⟨A′, B′, C ′⟩ be a non-zero vector. Then v can be
expressed as
(6.5)

v =
∑
α∈A

aαxα +
∑
β∈B

bβyβ +
∑
γ∈C

cγzγ =
∑
α∈A′

a′αxα +
∑
β∈B′

b′βyβ +
∑
γ∈C′

c′γzγ .

Consider such an expression of v with

(6.6) |{α | aα ̸= 0}|+ |{β | bβ ̸= 0}|+ |{γ | cγ ̸= 0}|
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minimal possible. Put aα = 0 for α /∈ A, bβ = 0 for β /∈ B, and cγ = 0 for
γ /∈ C. By symmetry, we can assume that aα ̸= 0 for some α ∈ A. Suppose
for a contradiction that α /∈ A′. Since the triple ⟨A′, B′, C ′⟩ is balanced,
B′∩C ′ ⊆ A′, whence α /∈ B′∩C ′. Without loss of generality we can assume
that α /∈ B′. If all aα, bα, and cα were non-zero, we could replace cαzα
with −cαxα − cαyα and reduce the value of the expression in (6.6) which
is assumed minimal possible. Thus either bα = 0 or cα = 0 (recall that
we assume that aα ̸= 0). We will deal with these two cases separately. If
bα = 0, then the equality

(6.7) aαxα + cαzα = c′αzα

must hold true. Since xα and zα are linearly independent, it follows from
(6.7) that aα = 0 which contradicts our choice of α. The remaining case is
when cα = 0. Under this assumption we have that

aαxα + bαyα = c′αzα.

It follows that

(6.8) aαxα = c′αzα − bαyα = −c′αxα − (c′α + bα)yα.

Since xα and yα are linearly independent, we infer from (6.8) that aα =
−c′α = bα. Then we could reduce the value of (6.6) by replacing aαxα+bαyα
with c′αzα in (6.5). This contradicts the minimality of (6.6). �

Combining Lemma 6.1, Lemma 6.2, and Lemma 6.3, we conclude:

Theorem 6.4. The restrictions F � M3[P(κ)] : M3[P(κ)] → Sub(V )
and, a fortiory, F � S : S → Sub(V ) are bounded lattice embeddings. In
particular, the lattice S is isomorphic to a bounded sublattice of the subspace
lattice of a vector space.

It is well-known that a distributive lattice L embeds (via a bounds-
preserving lattice embedding) into the lattice P(κ), where κ is the cardinality
of the set of all maximal ideals of L. Such embedding induces an embedding
M3[L] ↪→ M3[P(κ)] (cf. Lemma 3.1). By Theorem 6.4, the latticeM3[P(κ)]
embeds into the lattice Sub(V ) for a suitable vector space V (note again
that we now also admit finite κ). Since the lattice Sub(V) is Arguesian, so
are M3[P(κ)] and M3[L].

On the other hand, [33, Lemma 2.9] states that a lattice L is distributive
if and only if M3[L] is modular. Hence, if M3[L] is modular, it follows that
L is distributive, and, by the above argument, M3[L] is even Arguesian.
We have thus proven the following strengthening of [33, Lemma 2.9]:

Proposition 6.5. Let L be a lattice. Then L is distributive iff the lattice
M3[L] is modular iff M3[L] is Arguesian. If this is the case, then M3[L]
can be embedded into the lattice of all subspaces of a suitable vector space
over any given field.
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7. Non existence of 3-frames

In this section we prove that there is no 3-frame in the lattice M3[D] for
any distributive lattice D. As a consequence, we cannot apply the Jónsson’s
coordinatization theorem in order to prove coordinatizability of any of these
lattices, in particular, of the lattices M3[F(κ)] and S.

Lemma 7.1. Let D be a distributive lattice. Then for each ⟨a1, a2, a3⟩ ∈
D3, the equality

µ⟨a1, a2, a3⟩ = µ⟨a1, a2, a3⟩.
holds true.

Proof. First observe that for all 1 ≤ k < l ≤ 3 we have that

(7.1) ak ∧ al ≤
∨

1≤i<j≤3

(ai ∧ aj) = µ⟨a1, a2, a3⟩.

By (2.2) we have the equalities

µ⟨a1, a2, a3⟩ = µ⟨a1 ∨ µ⟨a1, a2, a3⟩, a2 ∨ µ⟨a1, a2, a3⟩, a3 ∨ µ⟨a1, a2, a3⟩⟩

=
∨

1≤i<j≤3

((ai ∨ µ⟨a1, a2, a3⟩) ∧ (aj ∨ µ⟨a1, a2, a3⟩)).

Since the lattice D is distributive,

(ai ∨ µ⟨a1, a2, a3⟩) ∧ (aj ∨ µ⟨a1, a2, a3⟩) = (ai ∧ aj) ∨ µ⟨a1, a2, a3⟩,
for all 1 ≤ i < j ≤ 3. Applying (7.1), we conclude that

µ⟨a1, a2, a3⟩ =
∨

1≤i<j≤3

((ai ∧ aj) ∨ µ⟨a1, a2, a3⟩) = µ⟨a1, a2, a3⟩.

�
With regard to (2.3), we conclude from Lemma 7.1 that

Corollary 7.2. If D is a distributive lattice, then

µ(a ∨ b) = µ⟨a1 ∨ b1, a2 ∨ b2, a3 ∨ b3⟩,
for all a = ⟨a1, a2, a3⟩, b = ⟨b1, b2, b3⟩ ∈ M3[D].

Lemma 7.3. Let D be a distributive lattice and a = ⟨a1, a2, a3⟩ and
b = ⟨b1, b2, b3⟩ elements of M3[D]. If a ∧ b = 0, then

µ(a ∨ b) = µa ∨ µb ∨

( 3∨
i=1

ai

)
∧

 3∨
j=1

bj

 .

Proof. Applying Corollary 7.2 and using the distributivity of D, we
compute that

µ(a ∨ b) = µ⟨a1 ∨ b1, a2 ∨ b2, a3 ∨ b3⟩ =
∨

1≤i<j≤3

((ai ∨ bi) ∧ (aj ∨ bj))

=
∨

1≤i<j≤3

((ai ∧ aj) ∨ (bi ∧ bj) ∨ (ai ∧ bj) ∨ (aj ∧ bi)).
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Since a and b are balanced triples, µa = ai ∧ aj and µb = bi ∧ bj for all
1 ≤ i < j ≤ 3. Thus

(7.2)

µ(a ∨ b) =
∨

1≤i<j≤3

(µa ∨ µb ∨ (ai ∧ bj) ∨ (aj ∧ bi))

= µa ∨ µb ∨
∨

1≤i<j≤3

((ai ∧ bj) ∨ (aj ∧ bi)).

¿From a ∧ b = 0 we get that ai ∧ bi = 0, for all i = 1, 2, 3. Substituting to
(7.2) we get that

µ(a ∨ b) = µa∨µb∨
∨

1≤i≤j≤3

((ai∧ bj)∨ (aj ∧ bi)) = µa∨µb∨
3∨

i=1

3∨
j=1

(ai∧ bj).

Applying the distributivity of D again we conclude that

µ(a ∨ b) = µa ∨ µb ∨

( 3∨
i=1

ai

)
∧

 3∨
j=1

bj

 .

�
Lemma 7.4. Let D be a bounded distributive lattice and a = ⟨a1, a2, a3⟩, b =

⟨b1, b2, b3⟩ ∈ M3[D]. If a⊕ b = ttt1, then

µa⊕
3∨

j=1

bj = 1.

Proof. Since trivially

µb ∨

( 3∨
i=1

ai

)
∧

 3∨
j=1

bj

 ≤
3∨

j=1

bj ,

we infer from Lemma 7.3 that

(7.3) 1 = µ(a⊕ b) = µa∨µb∨

( 3∨
i=1

ai

)
∧

 3∨
j=1

bj

 ≤ µa∨
3∨

j=1

bj ≤ 1.

Since a ∧ b = 0, we have that µa ≤ ai ≤ bi, for all i = 1, 2, 3. Since the
lattice D is distributive, we conclude that

(7.4) 0 =

3∨
j=1

(µa ∧ bj) = µa ∧
3∨

j=1

bj .

Combining (7.3) and (7.4) we get the desired equality µa⊕
∨3

j=1 bj = 1. �
Lemma 7.5. Let D be a bounded distributive lattice and a = ⟨a1, a2, a3⟩,

a′ = ⟨a′1, a′2, a′3⟩ perspective elements of M3[D]. If a ∧ a′ = ttt0, then

µa = µa′ and µ(a ∨ a′) =
3∨

i=1

ai =
3∨

i=1

a′i.
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Proof. Let b = ⟨b1, b2, b3⟩ be a common complement of a and a′. It

follows from Lemma 7.4 that both µa and µa′ are complements of
∨3

j=1 bj .

Since complements in a distributive lattice are unique, we get that µa = µa′.
Similarly we get that both

∨3
i=1 ai and

∨3
i=1 a

′
i are complements of µb, hence

they are equal. From these equalities we infer that

µa = µa′ ≤
3∨

i=1

a′i =

3∨
i=1

ai.

Applying Lemma 7.3 we conclude that

µ(a ∨ a′) =
3∨

i=1

ai =
3∨

i=1

a′i.

�

Proposition 7.6. There is no 3-frame in the lattice M3[D], for any
bounded distributive lattice D.

Proof. Suppose that there are elements a = ⟨a1, a2, a3⟩,a′ = ⟨a′1, a′2, a′3⟩,
and a′′ = ⟨a′′1, a′′2, a′′3⟩ of M3[D] such that a ∼ a′, a ∼ a′′ and the family

⟨a,a′,a′′⟩ is independent. Then µ(a ∨ a′) =
∨3

i=1 ai =
∨3

i=1 a
′′
i due to

Lemma 7.5. It follows that a∨a′ ≥ a′′ which contradicts the independence
of the family ⟨a,a′,a′′⟩. �

Corollary 7.7. There is no 3-frame in the lattice M3[B], for any
Boolean lattice B. In particular, neither the lattices M3[F(κ)] nor the lattice
S has a 3-frame.

Remark 7.8. This remark is due to the anonymous referee. He pointed
out that the main results of Sections 6 and 7 can be obtained by a sim-
pler argument using the representation of a distributive lattice as a subdi-
rect product of the two-element lattice 2. Namely, it is well-known that
a distributive lattice D is a subdirect power of 2. In particular, there is
an index set I and an embedding φ : D ↪→ 2I such that the composition
πi◦φ : D → 2 with the canonical projection πi : 2

I → 2 is a surjective homo-
morphism for all i ∈ I. The map φ induces the embeddingM3[D] → M3[2

I ]
given by ⟨a, b, c⟩ 7→ ⟨φ(a), φ(b), φ(c)⟩. Observing that M3[2] ≃ M3 we

get isomorphisms M3[2
I ] ≃ M3[2]

I ≃ M3
I . Thus we have an embedding

Φ: M3[D] ↪→ M3
I . It is straightforward to see that the composition of Φ

with the ith canonical projection M3
I → M3 is a surjective homomorphism

M3[D] → M3. Therefore M3[D] is a subdirect power of M3. The lattice
M3 embeds into the subspace lattice of the 2-dimensional vectors space V
over an arbitrary field. Let ψ : M3 ↪→ V be such an embedding. Then MI

3

embeds into SubV (I) (here V (I) denotes the direct sum of copies of V ) via
the mapping (ai)i∈I 7→

⊕
i∈I ψ(ai). The restriction of the map to M3[D]

is an embedding of M3[D] into SubV (I). Clearly, if D is bounded, the
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embedding can be chosen bounds-preserving. This gives the main results of
Section 6.

Let D be a bounded lattice. Observe that the embedding Φ: M3[D] ↪→
M3

I preserves the bounds. It follows that the Φ-image of a 3-frame would
be a 3-frame in M3

I . Let i ∈ I and πi : M3
I → M3 be the corresponding

canonical projection. The πi image of the 3-frame in M3
I would be a 3-

frame in M3. However, it is easy to see that there is no 3-frame in M3.
Consequently, there is no 3-frame in M3[D]. Thus we get Proposition 7.6.

8. Coordinatizability

We prove that despite of non-existence of 3-frames, the lattice M3[B] is
coordinatizated for any Boolean lattice B. It is isomorphic to L(M [B]∗),
the lattice of all finitely generated right ideals of the Boolean power of the
ring M , the ring of 2×2 matrices over the two-element field, by the Boolean
lattice B. Modifying this construction we show that the lattice S introduced
in Section 3 is coordinatizable as well.

Let the notation M stand for the ring of all 2 × 2-matrices over the
two-element field F2. It is well known that the matrix ring over a regular
ring is regular, in particular, the ring M is regular (cf. [22, Theorem 1.7]).
We put

e1 :=

(
1 0
0 0

)
, e2 :=

(
0 0
1 1

)
, and e3 :=

(
0 1
0 1

)
.

There are exactly eight idempotents in the ring M , namely 0, 1, e1, e2, e3, 1−
e1, 1 − e2, and 1 − e3, and there are exactly three proper non-zero right
ideals of M , namely e1M = (1 − e3)M , e2M = (1 − e1)M , and e3M =
(1−e2)M . Thus the lattice L(M) is isomorphic to the five-element modular
non-distributive lattice M3 (see Figure 1).

•
{0}

•
e1M=(1−e3)M

•
e2M=(1−e1)M

•
e3M=(1−e2)M

•
M

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

J

tt
tt
tt
tt
tt
tt
tt
tt
t

ttttttttttttt

JJJJJJJJJJJJJ

Figure 1. The lattice L(M)
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We denote by Idem(R) the set of all idempotents of a ring R. We are
going to make use of the next elementary lemma.

Lemma 8.1. Let R be a ring and e, f ∈ Idem(R). Then

ef = f ⇐⇒ fR ⊆ eR.

Proof. (⇐) If fR ⊆ eR, then f ∈ eR and so f = er for some r ∈ R.
It follows that ef = eer = er = f . (⇒) Conversely, ef = f implies that
f ∈ eR. We get readily that fR ⊆ eR. �

We equip the set Idem(R) with a quasi-order ≤e defined as follows:
f ≤e e provided that ef = f , for all e, f ∈ Idem(R). Further, we denote by
≡e the corresponding equivalence relation on Idem(R), i.e., e ≡e f if and
only if both e ≤e f and f ≤e e, for all e, f ∈ Idem(R).

Suppose that R is a regular ring. Let ιR : Idem(R) → L(R) be the
map given by the correspondence e 7→ eR. It follows from Lemma 8.1 that
the kernel of the map ιR coincides with the the equivalence relation ≡e and
the quotient Idem(R)/ ≡e is order-isomorphic to the set L(R) ordered by
inclusion. Since L(R) is a lattice, Idem(R)/ ≡e has finite suprema and
infima, and the lattices L(R) and Idem(R)/ ≡e are isomorphic.

The following lemma is a trivial consequence of the preceding two para-
graphs. We leave the details of the proof to the reader.

Lemma 8.2. Let L be a lattice and R a regular ring. Suppose that there
is a surjective map ε : Idem(R) → L such that

(8.1) e ≤e f ⇐⇒ ε(e) ≤ ε(f), for all e, f ∈ Idem(R).

Then ker ε = ker ιR is equal to ≡e and the lattice L is isomorphic to L(R)
via the composition1 ιR ◦ ε−1 : L → L(R).

Note that in the ring M introduced above, we have e1 ≡e 1− e3, e2 ≡e

1 − e1, and e3 ≡e 1 − e2, and the idempotents e1, e2, and e3 are pairwise
incomparable. Recall from Subsection 2.4 that the Boolean power M [B]∗

of the ring M by a Boolean lattice B is the set of all continuous functions
from the Stone space of B to M equipped with the discrete topology.

Lemma 8.3. Let B be a Boolean lattice. If a ring R is regular, then the
Boolean power R[B]∗ is regular as well.

Proof. For each a ∈ R we pick an element a∗ ∈ R such that a = aa∗a.
Given x ∈ R[B]∗, we define a map x∗ : B∗ → R by the correspondence u 7→
x(u)∗, u ∈ B∗. The x∗-preimage of an element b ∈ R is

∪
{x−1(a) | a∗ = b},

which is a union of open sets. It follows that the map x∗ is continuous and
clearly x = xx∗x. Therefore R[B]∗ is a regular ring. �

1Purists would object that the composition ιR ◦ ε−1 sends an element a ∈ L to a
singleton set {eR}, where e is any idempotent from the ≡e-block ε−1(a). For the sake of
simplicity we identify the singleton set {eR} with its element eR.
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Given elements a, b of a Boolean lattice B, we set a− b := a∧ b′, where
b′ is a unique complement of b. Note that an element x ∈ M [B]∗ is an
idempotent if and only if x(u) ∈ Idem(M) for every u ∈ B∗. For each
e ∈ Idem(M [B]∗) we set ε(e) := ⟨a1, a2, a3⟩, where2

(8.2)

Na1 = {u | e(u) ∈ {1, e1, 1− e3}},
Na2 = {u | e(u) ∈ {1, e2, 1− e1}},
Na3 = {u | e(u) ∈ {1, e3, 1− e2}}.

It is clear that ε(e) is a balanced triple with Nµε(e) = {u | e(u) = 1}. There-
fore (8.2) defines a map ε : Idem(M [B]∗) → M3[B].

Lemma 8.4. Let B be a Boolean lattice. Then the map ε : Idem(M [B]∗) →
M3[B] defined by (8.2) satisfies property (8.1).

Proof. The implications e ≤e f =⇒ ε(e) ≤ ε(f), e,f ∈ Idem(M [B]∗),
are seen readily from (8.2). Let e,f ∈ Idem(M [B]∗) with ε(e) = ⟨a1, a2, a3⟩
and ε(f) = ⟨b1, b2, b3⟩. Suppose that ε(e) ≤ ε(f) and let u ∈ B∗. The in-
equality implies that µε(e) ≤ µε(f), hence e(u) = 1 =⇒ f(u) = 1. From
a1 ≤ b1 we infer that e(u) ∈ {e1, 1−e3} =⇒ f(u) ∈ {1, e1, 1−e3}. Similarly,
from a2 ≤ b2 we get that e(u) ∈ {e2, 1− e1} =⇒ f(u) ∈ {1, e2, 1− e1} and
from a3 ≤ b3 we conclude that e(u) ∈ {e3, 1−e2} =⇒ f(u) ∈ {1, e3, 1−e2}.
Therefore e ≤e f . �

Theorem 8.5. Let B be a Boolean lattice. The ring M [B]∗ is regular
and

L(M [B]∗) ≃ M3[B].

Proof. The ring M [B]∗ is regular due to Lemma 8.3.
Let b = ⟨b1, b2, b3⟩ ∈ M3[B]. Note that since b is a balanced triple, each

ultrafilter on B contains at most one element from {bi − µb | i = 1, 2, 3} ∪
{µb}. Thus we can define e ∈ Idem(M [B]∗) by

e(u) :=


1 : if µb ∈ u,

ei : if bi − µb ∈ u,

0 : otherwise,

for all u ∈ B∗. It follows from (8.2) that ε(e) = b, and so ε is a projection.
By Lemma 8.4, the map ε : L(M [B]∗) → M3[B] satisfies (8.1), and so

it is an isomorphism due to Lemma 8.2. �
Corollary 8.6. Let L be a bounded lattice. The lattice M3[L] is coor-

dinatizable if and anly if the lattice L is Boolean.

Proof. If L is Boolean, then the lattice M3[L] is coordinatizable by
Theorem 8.5. In order to prove the opposite implication, suppose that
the lattice M3[L] is modular and complemented. We will prove that L

is Boolean. By [33, Lemma 2.9] the lattice M3[L] is modular if and only

2Recall definition (2.6).
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if the lattice L is distributive. Thus the lattice L must be distributive. It
follows from Lemma 7.4 that L is complemented. Therefore it is a Boolean
lattice. �

Let us now turn our attention to the lattice S introduced in Section 3.
Let κ be an infinite cardinal. There are exactly κ principal ultrafilters on
F(κ), each corresponding to an ordinal α ∈ κ, namely uα = {X ∈ F(κ) |
α ∈ X}. Besides there is the only non-principal ultrafilter, f, consisting
of all cofinite subsets of κ. The topological space F(κ)∗ is the one-point
compactification of the discrete space {uα | α ∈ κ}. In particular, the sin-
gleton sets {uα}, α ∈ κ, are open, and neighborhoods of f are of the form
F(κ) \ {uα | α ∈ F}, where F runs through all finite subsets of κ.

We put

S := {x ∈ M [F(κ)]∗ | x(f) ∈ {0, 1, e1, 1− e1}}.

Theorem 8.7. The ring S is regular and L(S) ≃ S.

Proof. Observe that the I := {x ∈ S | x(f) = 0} is an ideal of the ring
M [F(κ)]∗. Since the ring M [F(κ)]∗ is regular due to Lemma 8.3, we get
from [22, Lemma 1.3] that I is a regular ideal. Thus I is a regular ideal of
the ring S and it is easy to see that S/I ≃ F2 × F2. Applying [22, Lemma
1.3] again, we conclude that the ring S is regular.

Let ε : M [F(κ)]∗ → M3[F(κ)] be the map defined by (8.2). The map ε
satisfies (8.1) due to Lemma 8.4. To conclude that it is an isomorphism, it
remains to prove that ε(Idem(S)) = S (cf. Lemma 8.2).

Let e ∈ Idem(S). Then e(f) ∈ {0, 1, e1, 1−e1}. Since the map e : F(κ)∗ →
M is by definition continuous, it is constant on some neighborhood of f. It
follows that the set {α | e(uα) ∈ {e3, 1− e2}} is finite. We infer from (8.2)
that this set is in fact C \ µ⟨A,B,C⟩, hence the set C \ µ⟨A,B,C⟩ is finite.
Thus ε(Idem(S)) ⊆ S.

It now remains to prove the opposite inclusion. Given ⟨A,B,C⟩ ∈ S, we
define an idempotent e ∈ M [F(κ)]∗ by

e(u) :=



1 if µ⟨A,B,C⟩ ∈ u,

e1 if A \ µ⟨A,B,C⟩ ∈ u,

1− e1 if B \ µ⟨A,B,C⟩ ∈ u,

e3 if C \ µ⟨A,B,C⟩ ∈ u,

0 otherwise,

for all u ∈ F(κ)∗. Since ⟨A,B,C⟩ ∈ S, the set C \ µ⟨A,B,C⟩ is finite by
(3.3), hence C \ µ⟨A,B,C⟩ /∈ f. It follows that e(f) ∈ {0, 1, e1, 1 − e1}, and
so e ∈ S. We infer that S ⊆ ε(Idem(S)). This concludes the proof. �
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9. Maximal Abelian regular subalgebras

We prove that the maximal Boolean sublattices G and H of the lattice S
from Sections 4 and 5, respectively, correspond to maximal Abelian regular
subalgebras (over the field F2) of S.

Observe that the diagonal matrices, namely 0, 1, e1, and 1− e1, form a
subalgebra of M , which we denote by G. It is easy to compute by hand that
the elements from M commuting with e1 are exactly the diagonal matrices.
It follows that G is a maximal Abelian regular subalgebra of the F2-algebra
M(cf. [52, Section 4.4]).

Proposition 9.1. Let B be a Boolean lattice and ε : Idem(M [B]∗) →
M3[B] the map defined by (8.2). Then G[B]∗ is a maximal Abelian regular
subalgebra of M [B]∗, it is commutative, and

(9.1) ε(Idem(G[B]∗)) = {⟨a, b, a ∧ b⟩ | a, b ∈ B}.

Proof. The ring G[B]∗ is regular due to Lemma 8.3. (Observe that
Idem(G[B]∗) = G[B]∗.)

Since G is commutative, the Boolean power G[B]∗ is commutative as
well. As observed above, G = {a ∈ M | ae1 = e1a}. Thus the range of each
x ∈ M [B]∗ commuting with the constant map B∗ → {e1} must be included
in G. It follows that G[B]∗ is a maximal Abelian regular subalgebra of
M [B]∗.

It follows from (8.2) that ε(e) ∈ {⟨a, b, a ∧ b⟩ | a, b ∈ B} for every e ∈
Idem(G[B]∗). Conversely, given a, b ∈ B and an ultrafilter u on B, we set

e(u) :=


1 if a ∧ b ∈ u,

e1 if a− b ∈ u,

1− e1 if b− a ∈ u,

0 otherwise.

Then e ∈ Idem(G[B]∗) and ε(e) = ⟨a, b, a ∧ b⟩. This proves (9.1). �
In the case that B = F(κ), we have G[F(κ)]∗ ⊆ S. Thus it follows from

Proposition 9.1 that

Corollary 9.2. The ring G[F(κ)]∗ is commutative and it forms a max-
imal Abelian regular subalgebra of S. Moreover ε(Idem(G[F(κ)]∗)) = G,
where G is the Boolean lattice introduced in Section 4.

Put

m :=

(
1 1
1 0

)
∈ M

and observe e3 = me1m
−1. It follows that the subalgebra H = {0, 1, e3, 1−

e3} of M is the image of G under the inner automorphism of M given
by x 7→ mxm−1, x ∈ M . Consequently, H is a maximal Abelian regular
subalgebra of M and also H[B]∗ is a maximal Abelian regular subalgebra
of M [B]∗ for every Boolean lattice B.
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Proposition 9.3. The intersection H ′ := H[F(κ)]∗ ∩ S is a maximal
Abelian regular subalgebra of S, it is commutative, and ε(Idem(H ′)) = H,
where H is the Boolean lattice introduced in Section 5.

Proof. Clearly H, and so also H ′, are commutative. Put

J = {x ∈ H ′ | x(f) = 0}
and observe that J is isomorphic to a direct sum of copies of F2. In particu-
lar, J is a regular ideal of H ′. Since H ′/J ≃ F2, the algebra H ′ is regular
due to [22, Lemma 1.3].

Given a principal ultrafilter u ∈ F(κ)∗, set

eu(v) :=

{
e3 if v = u,

0 whenever v ̸= u,

for all v ∈ F(κ)∗. Observe that since eu(f) = 0, we have eu ∈ H ′. Let
x ∈ S be commuting with every element of H ′. Since x commutes with
all eu and H is a maximal Abelian regular subalgebra of M , we have that
x(u) ∈ H for all principal ultrafilters u. Since the map x is continuous, it is
constant on some neighborhood of f, and so x(f) /∈ {e1, 1−e1}. We conclude
that x ∈ H ′. Therefore H ′ is a maximal Abelian regular subalgebra of S.

Let e ∈ Idem(H ′) (note that Idem(H ′) = H ′) and put ⟨A,B,C⟩ :=
ε(e). We get readily from (8.2) that B ⊆ A. From e(f) ∈ {0, 1} and e being
constant on some neighborhood of f, we conclude that A ≈ C. Therefore
⟨A,B,C⟩ ∈ H due to (5.2). Thus we have proved that ε(Idem(H ′)) ⊆ H.

Given ⟨A,B,C⟩ ∈ H, we define an idempotent e ∈ H[F(κ)]∗ by

e(u) :=


1 if B ∈ u,

1− e3 if A \B ∈ u,

e3 if C \B ∈ u,

0 otherwise,

for every ultrafilter u on F(κ). Since ⟨A,B,C⟩ ∈ H, both A \B and C \B
are finite, and so e(f) ∈ {0, 1}. It follows that e ∈ S, and so e ∈ H ′.
Therefore H ⊆ ε(Idem(H ′)). �



Acknowledgements
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