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Résumé

The thesis is aiming at mathematical studies of problems coming from the new concept in quantum
mechanics where observables are represented by non-self-adjoint operators. We focus on criteria
of similarity of non-self-adjoint unbounded operators to self-adjoint and normal operators and the
structure of the similarity transforms; and on spectral and psudospectral properties of Schrödinger
operators with complex potentials and non-self-adjoint boundary conditions.

The main achievements are represented by new models for which the similarity transforms can be
found in a closed form; by the proof of absence of Riesz basis property for the imaginary cubic
oscillator and other paradigmatic models in physics theories; by the development of theory of
quantum graphs with non-self-adjoint boundary conditions together with a new classification; and
by a first systematic and general non-semi-classical approach for the construction of pseudomodes
of Schrödinger operators with complex potentials.





To my children,

Václav, Antońın Boleslav and Vojtěch Podiven





Studying non-self-adjoint operators is like being a vet rather than a doctor:
one has to acquire a much wider range of knowledge, and to accept that one
cannot expect to have as high a rate of success when confronted with particular
cases.

E. B. Davies, Linear operators and their spectra (Cambridge 2007)
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Preface

At the turn of the millennium, physicists came up with the idea to extend quantum mechanics by considering
observables represented by non-self-adjoint operators. The rapid advance of the subject since that date is
reflected in the exponential growth of articles by distinct research groups throughout the world published in
prestigious physics journals, including Nature and Physical Review Letters. It is striking that this non-self-
adjoint representation was overlooked for almost 100 years since the advent of quantum mechanics and it
unquestionably deserves a serious attention from the scientific community.

Unfortunately, the heuristic approach of the majority of the physics works reveals a vast area of statements
that are unjustified on a rigorous level and often leads to paradoxes and puzzling discussions among the various
research groups involved. The principal objective of this thesis is to contribute to the new area of physics
by providing a mathematically rigorous approach for a correct implementation of the interesting idea and by
resolving some of the puzzlements with help of standard as well as unconventional methods of modern operator
theory. More generally, the thesis is concerned with spectral theory of non-self-adjoint differential operators.

The core of the thesis is formed by my research articles published on the topic since 2006. In view of my
distinct focuses on various aspects of quantum mechanics with non-self-adjoint operators in the recent years,
in this thesis I divide the articles into the following key groups:

I. toy models,

II. waveguides,

III. pseudospectra.

ad I. Motivated by the needs of nuclear physics, Scholtz, Geyer and Hahne suggested in 1992 [59] an inter-
esting representation of observables in quantum mechanics by operators which are not necessarily self-adjoint
but merely quasi-self-adjoint, that is, similar to self-adjoint operators. Then it is enough to change the inner
product in the underlying Hilbert space with help of a metric operator obviously related to the similarity
transform. The interest in this class of operators was renewed in 1998 when Bender et al. [6] suggested that
a large class of non-self-adjoint operators possess real spectra as a consequence of an antilinear parity-time
(PT) symmetry. However, it is not easy to decide whether a non-self-adjoint operator is quasi-self-adjoint. In
fact, only a few examples were available in the physics literature at that time and, moreover, the majority of
the approaches were mathematically unjustifiable constructions based on formal infinite series of unbounded
operators.

The lack of simple rigorous models was the main motivation for me to enter the research field in 2006 with
a paper [39] (Chapter 3), in which we introduce a very simple PT-symmetric Sturm-Liouville-type operator
and establish a closed formula for the metric. This formula is further simplified in [36] (Chapter 4). In [46]
(Chapter 5) we eventually succeed to write down also the self-adjoint counterpart as a simple albeit non-local
operator and study the problem in a more general context. A physical interpretation of the model in terms of
scattering is given in [27] (Chapter 6). Finally, in [42] (Chapter 7) and [33] (Chapter 8) we extend the model
to curved manifolds and operator matrices of Pauli type, respectively.

In [34] (Chapter 9) we employ the notion of quasi-self-adjointness to explain the reality of the spectrum of
the generator of a stochastic process modelling the Brownian motion with random jumps from the boundary.
Here the problem is not originally quantum-mechanical, but the tools are motivated by the new concept in
quantum mechanics.

The title “toy models” of group I essentially means “one-dimensional models”. I include in it also a more
general class of models of [29] (Chapter 10), where we develop a systematic study of the Laplacian on finite
metric graphs, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices.
Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain
graphs with elementary similarity transforms between matrices defining the boundary conditions.

xv
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ad II. The simplicity of the toy model of [39] is due to the fact that the non-self-adjoint operator is just
the one-dimensional Laplacian in a bounded interval, subject to complex Robin boundary conditions. In [11]
(Chapter 11) we make the problem richer by considering this type of PT-symmetric boundary conditions, not
necessarily homogeneous now, on a two-dimensional infinite strip. We show that the essential spectrum is real,
establish sufficient conditions which guarantee the existence of real discrete spectra and compute weak-coupling
asymptotics of the corresponding eigenvalues. Further spectral results are established in [47] (Chapter 12) with
help of numerical simulations. In particular, it turns out that the spectrum is not always real, but there
might be complex-conjugate eigenvalues for large values of a boundary-coupling parameter. In an invited
open-problem note [38] (Chapter 13) we point out the need for a robust method establishing the existence of
isolated eigenvalues for non-self-adjoint operators possessing an essential spectrum.

In [12] (Chapter 14) we extend the model of [11] to higher dimensions and derive an effective (self-adjoint)
operator to which the non-self-adjoint Robin Laplacian converges in a norm-resolvent sense when the width of
the hyper-strip tends to zero. A generalisation of this result to tubular neighbourhoods of curved hypersurfaces
in a much more general context is given in [41] (Chapter 15).

In [35] (Chapter 16) we consider another type of model, where the non-self-adjoint operator is the Laplacian
in the whole Euclidean space of any dimension with a complex delta interaction supported by two parallel
hypersurfaces. We analyse spectral properties of the system in the limit when the distance between the
hypersurfaces tends to zero.

In [20] (Chapter 17) we establish the absence of point spectra for electromagnetic Schrödinger operators
with complex electric potentials under various conditions and by two different methods: the Birman-Schwinger
principle and the method of multipliers. Finally, in [40] (Chapter 18) we introduce a closed Dirichlet realisation
of non-accretive electromagnetic Schrödinger operators with complex electric potentials on arbitrary open sets
and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential
decay.

The title “waveguides” of part II is a bit artificial. In particular, the geometrical setting of [41] is much
more general, while there is no tubular geometry in [20]. The common point of the papers in part II is that the
models are higher dimensional, the operators possess an essential spectrum, there is a non-trivial interaction
due to complex fields or boundary conditions and the emphasis is put on spectral properties.

ad III. The most significant contribution – at least from the point of view of impact and the acceptance by the
community – is probably contained in part III. Here we group together our papers in which the mathematical
concept of pseudospectra as the right tool to capture and rigorously describe non-self-adjoint features of the
PT-symmetric and other non-self-adjoint operators considered in the physics literature in recent years was
suggested.

In [61] (Chapter 19) we show that the eigenfunctions of the imaginary cubic oscillator, which has been
considered as the fons et origo of PT-symmetric quantum mechanics, are complete but do not form a Riesz
basis. This results in the existence of a bounded metric operator having intrinsic singularity reflected in the
inevitable unboundedness of the inverse. Consequently, the model is not relevant quantum-mechanically as a
representative of a physical observable. The proof is based on a semiclassical construction of pseudomodes.
This concise paper written for the physics community is followed by a more detailed survey [45] (Chapter 20), in
which the concept of pseudospectra is suggested in the context of quasi-self-adjointness in quantum mechanics
with many concrete examples.

In [26] (Chapter 21) we develop a spectral and pseudospectral analysis of the Schrödinger operator with
an imaginary sign potential on the real line. It turns out that the pseudospectra of this operator are highly
non-trivial. One of the interests of the paper [26] is due to the fact that it cannot be turned to a semiclassical
operator and, moreover, the semiclassical construction of pseudomodes requires that the potential is at least
continuous. In view of this lack of semiclassical tools, in the most recent paper [44] (Chapter 22) we develop a
first systematic and very general non-semi-classical approach for the construction of pseudomodes of Schrödinger
operators with complex potentials.

This thesis may be considered as a research report mostly based on the aforementioned papers of the
author obtained in the last few years. On the other hand, in the following introductory Chapter 1, we provide
a concise summary of the new concept of quasi-self-adjointness in quantum mechanics and review the basic
material which is needed. Furthermore, in Chapter 2, we give a brief and intentionally informal summary of the
main results obtained in the papers. In this sense we believe that the two chapters represent a self-contained
treatment of the recent research, accessible to non-specialists and, in particular, to students interested in the
topics where functional analysis (especially spectral theory) meets quantum mechanics.

The thesis thus consists of four main parts. Part 0 consists of the two introductory Chapters 1–2, while
Parts I–III (Chapters 3–22) contain the published material as described above. At the end of the document,
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we add Appendix A which is a book chapter [43] summarising some standard material from operator theory in
the context of quasi-self-adjoint quantum mechanics.

For the convenience of the reader, we present here the publications on which the thesis is based:

Chapter 3 D. Krejčǐŕık, H. Bı́la, and M. Znojil,
Closed formula for the metric in the Hilbert space
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10143–10153.
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the spectral theorem, J. Phys. A: Math. Theor.
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and P. Siegl, Perfect transmission scattering as
a PT-symmetric spectral problem, Phys. Lett. A
375 (2011), 2149–2152.
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operator for the imaginary cubic oscillator, Phys.
Rev. D 86 (2012), 121702(R).

Chapter 20 D. Krejčǐŕık, P. Siegl, M. Tater, and
J. Viola, Pseudospectra in non-Hermitian quan-
tum mechanics, J. Math. Phys. 56 (2015),
103513.

Chapter 21 R. Henry and D. Krejčǐŕık, Pseudospec-
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Except for unifying cosmetical amendments, the contents of Chapters 3–22 and Appendix A coincide with
the published versions of the building papers and book chapter. This decision leads to two counter effects.
First, the notation introduced in Part 0 (Chapters 1–2) may occasionally differ from that used in the individual
articles presented in Parts I–III (Chapters 3–22) and Appendix A. This is balanced by the fact that each of the
Chapters 3–22 and Appendix A can be read as an independent research work, in its original version. Second,
more importantly, we decided not to correct misprints and possible mistakes we have encountered after the
publication of some of the papers and the book chapter. Errare humanum est. In fact, we are aware of just
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a few cases, which are treated in this thesis by adding a short errata section after the list of references of the
corresponding chapter.

The present thesis is thematically orthogonal to my Doctor of Science (DSc) thesis [37], defended in 2012,
which was formed by my articles in spectral geometry and thus essentially self-adjoint. None of the papers of
my DSc thesis is presented in this thesis. At the same time, my other recent articles which do not fit into the
present subject are not included in this thesis either.

I conclude by thanking the large number of people who have stimulated my interest in quantum mechanics
with non-self-adjoint operators over the last fifteen years, particularly in relation to the content of this thesis.
The most important of these has been Petr Siegl, my principal co-author and a good friend, who moreover
read a previous version of this thesis and offered invaluable comments. I am also very grateful to my other
co-authors from the above papers and to many other good friends and colleagues. I am particularly indebted
to Miloslav Znojil whose persistence eventually made me become involved in non-self-adjoint spectral theory.
Finally I want to record my thanks to my wife and our children; I would never have been able to write this
thesis without their support.

Prague, Czech Republic
September 2017 David Krejčǐŕık
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Chapter 1

Introduction

1.1 Physical motivations

Many physical systems can be described by partial differential equations and the latter can often be viewed
as generating abstract operators between Banach spaces. A typical example is quantum mechanics, where the
state of the system is described by a vector ψ in a Hilbert space and its time evolution is governed by the
Schrödinger equation

i
∂ψ

∂t
= Hψ (1.1)

with H being a linear self-adjoint operator (so-called Hamiltonian) representing the total energy of the system.
In other areas of physics a more general class of operators is necessary to describe a process in Nature, where
the non-self-adjointness is typically related to non-conservative phenomena like for instance dissipation. In this
thesis, we almost exclusively focus on the role of non-self-adjoint operators in quantum mechanics, which is an
intrinsically conservative theory because the solution of (1.1) is clearly given by the unitary group

e−itH (1.2)

applied to an initial state. Hence the following question may seem to be an odd kind of connection:

Can quantum theory be extended by non-self-adjoint operators playing the role of observables?

This question is both tempting and misleading. First of all, it is important that the non-self-adjointness
is restricted to observables, because in different contexts quantum mechanics is in fact full of non-self-adjoint
operators. Indeed, the resolvent of H for complex energies so as the propagator (1.2) are non-self-adjoint
operators, but here the non-self-adjointness is unimportant because these examples are obtained as functions of
self-adjoint operators. More importantly, non-self-adjoint operators play an important role in topics as diverse
as the solution of the spectral problem for the harmonic oscillator via the creation and annihilation operators,
study of resonances by the method of complex scaling and the effective models for dynamics of open systems.
However, the non-self-adjointness arises there as a result of a technical method or a useful approximation to
attack a concrete physical problem involving observables correctly described by self-adjoint operators.

The question above is tempting because, näıvely, an “extension” of quantum theory might potentially cover
processes in Nature that we are currently unable to explain via “standard” quantum mechanics. Here we use
quotation marks because quantum theory is intrinsically conservative and it is a well known mathematical fact
(Stone’s theorem) that generators of unitary groups are necessarily self-adjoint operators. That is why the
question above is misleading and the subject of the present thesis might be regarded as inappropriate at this
point.

Adopting a less fundamental approach, however, the question above can be given an affirmative answer.
This is the content of the so-called quasi-Hermitian quantum mechanics that we explain now.

1.1.1 Quasi-Hermitian quantum mechanics

Motivated by the needs of nuclear physics, in 1992 F. G. Scholtz, H. B. Geyer and F. J. W. Hahne [59] came
up with the idea that a consistent (conventional) quantum-mechanical interpretation holds for an observable
represented by a non-self-adjoint operator H , provided that it satisfies the quasi-Hermitian relation

H∗ = ΘHΘ−1 (1.3)

3
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with some positive, bounded and boundedly invertible operator Θ called metric and the inner product 〈·, ·〉 in
the underlying Hilbert space is simultaneously modified to 〈·,Θ ·〉. That is, like in Einsteins theory of relativity,
there is an intertwining relationship between the space and its constituents.

Notice that the special choice Θ = I in (1.3) corresponds to H being self-adjoint, i.e. H∗ = H . An
operator H satisfying (1.3) with a general positive, bounded and boundedly invertible operator Θ will be called
quasi-self-adjoint in this thesis. It is easy to see that H is quasi-self-adjoint if, and only if, it is similar to a self-
adjoint operator, i.e. there exists a self-adjoint operator h and a bounded and boundedly invertible operator Ω
such that

h = ΩHΩ−1 . (1.4)

Indeed, if H satisfies (1.3), then h from (1.4) is self-adjoint provided that we set Ω := Θ1/2. Vice versa, an
operator H satisfying (1.4) is quasi-self-adjoint with Θ := Ω∗Ω.

Summing up, a consistent quantum mechanics can be built for an observable represented by a non-self-
adjoint operator provided the latter is similar to a self-adjoint operator. Let us stress that the concept of
quasi-self-adjointness is by no means any extension of quantum mechanics, it is just a non-standard (and
potentially useful) representation.

The concept of operators satisfying the type of relations (1.3) was previously considered by the mathemati-
cian J. Dieudonné in 1961 [18]. It is surprising that the quasi-self-adjoint representation of observables was
overlooked for so many years since the foundations of quantum mechanics and it is even more surprising that
the more recent physically motivated work [59] did not attract enough attention from the scientific community
shortly after its appearance. In fact, the strong impetus to consider quasi-self-adjoint operators in quantum
mechanics came only after the advent of another new concept of physicists: PT-symmetric quantum mechanics.

1.1.2 PT-symmetric quantum mechanics

In 1998 C. M. Bender and P. N. Boetcher [6] noticed that a large class of operators possess real spectra
as a consequence of certain physical-like antilinear symmetries instead of the self-adjointness and suggested
extending quantum mechanics by these operators. For Schrödinger operators −∆+V in L2(Rd) with V : Rd →
C, the considered symmetry means the commutation relation

[H,PT] = 0 , (1.5)

where (Pψ)(x) := ψ(−x) is the linear space-reversal or parity operator and (Tψ)(x) := ψ(x) is the antilinear
time-reversal operator (notice that the time reversal t 7→ −t is equivalent to the complex conjugation i 7→ −i
in the context of scalar Schrödinger equation (1.1)).

The paradigmatic example of [6] was the imaginary cubic oscillator (sometimes also referred to as Bender’s
oscillator)

− d2

dx2
+ ix3 in L2(R) . (1.6)

The arguments of [6] were actually based on a numerical study of eigenvalues of (1.6) and other one-dimensional
Schrödinger operators with polynomial PT-symmetric potentials. The proof that the eigenvalues of (1.6) are
indeed real was provided by P. Dorey, C. Dunning and R. Tateo in 2001 [19] (see also [60] and [22]).

In a series of papers from the period 2002–2003 [50, 51, 52], A. Mostafazadeh suggested that the correct
implementation of PT-symmetric operators in quantum mechanics should be given through the previously in-
troduced concept of quasi-self-adjointness. Although his arguments typically works only in finite-dimensional
Hilbert spaces, the main idea is there: a PT-symmetric operator is quantum mechanically relevant as a repre-
sentative of a physical observable only if it is quasi-self-adjoint.

Once again, let us emphasise that, contrary to what one can occasionally read in physics papers, PT-
symmetric quantum mechanics is by no means any sort of extension of quantum mechanics. Anyway, the simple
symmetry relation (1.5) provides a useful test which sometimes (but not always!) indeed guarantees that the
spectrum of a non-self-adjoint operator H is real (cf Section 1.2.1). More importantly, PT-symmetric quantum
mechanics of Bender et al. has stimulated a new interest of various physical and mathematical communities in
non-self-adjoint operators (including the author of the present thesis).

Apart from the conceptual applicability of quasi-self-adjoint PT-symmetric operators in quantum mechanics,
there has been a sudden availability of experiments with PT-symmetry-like structures in optics [48, 58, 57, 4, 65].
This is due to the analogy of the time-dependent Schrödinger equation for a quantum particle subject to an
external electromagnetic field and the paraxial approximation for a monochromatic light propagation in optical
media. The physical significance of PT-symmetry in this case is a balance between gain and loss [13]. At the
same time, Schrödinger operators with complex potentials have been recently employed in experiments with
Bose-Einstein condensates, where the imaginary part of the complex coupling models the injection and removal
of particles [14].
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1.2 Mathematical challenges

From the mathematical point of view, the theory of self-adjoint operators is well understood, while the non-
self-adjoint theory is still in its infancy. Or maybe more appropriate would be to say that the theory is “under-
developed”. Indeed, according to the account given in [64, p. viii], the first pioneering works of G. D. Birkhoff
from 1908–1913 [8, 9, 10] on non-self-adjoint boundary value problems were written almost at the same time
as D. Hilbert’s famous papers from 1904–1910 (cf [28]) that initiated self-adjoint spectral theory. But it was
not until M. V. Keldyš’ work from 1951 [32] when first abstract results on non-self-adjoint problems appeared
in the literature, while the self-adjoint theory was already enjoying all the pleasures of life due to the needs of
quantum mechanics at that time.

It is frustrating that the powerful techniques of the self-adjoint theory, such as the spectral theorem and
variational principles, are not available for non-self-adjoint operators. Moreover, recent studies have revealed
that this lack of tools is fundamental; the non-self-adjointness may lead to new and unexpected phenomena.
Although there exist many interesting observations coming from physics and numerical studies of non-self-
adjoint problems, the deep theoretical understanding is still missing and there is a need for new ideas and
techniques.

The problem is that the non-self-adjoint theory is much more diverse and it is difficult, if not impossible,
to find a common thread. Indeed it can hardly be called a theory. This is a quotation from the preface
of E. B. Davies 2007 book [16], where a significant amount of work on spectral theory of non-self-adjoint
operators can be found. He continues by the sentences on page ix that the present author has chosen as a
motto of this thesis.

We particularly agree that the way how “to acquire the much wider range of knowledge” is by studying
many distinct cases. This thesis is particularly concerned with various cases coming from the rapidly developing
fields of quasi-Hermitian and PT-symmetric quantum mechanics.

Let us now formulate a couple of specific mathematical problems related to non-self-adjoint operators.

1.2.1 Location of the spectrum

The spectrum of any self-adjoint operator is real and non-empty. On the other hand, there exist examples
of non-self-adjoint operators for which the spectrum is the whole complex plane or empty. For instance, the
spectrum of the imaginary Airy oscillator

− d2

dx2
+ ix in L2(R) (1.7)

considered on its maximal domain is easily seen to be empty (indeed, by the shift x 7→ x + c with c ∈ C, the
whole complex plane would must belong to the point spectrum, which however contradicts the fact that (1.7)
is an operator with compact resolvent). In general, it turns out that even the very existence of a spectrum for
a non-self-adjoint operator might be a highly non-trivial task (like for example for higher-dimensional versions
of (1.7) on a half-space, subject to Dirichlet boundary condition [3]).

Even if ignoring the question of existence of a spectrum, how to locate the complex regions where the
possible spectrum could exist? The minimax principle provides a powerful tool to estimate the location of
discrete eigenvalues of a self-adjoint operator. Unfortunately, no variational replacement of this type is available
in the non-self-adjoint case. It is true that the spectrum of any operator H satisfying some extra assumptions
(such as m-sectoriality) is a subset of the numerical range

Num(H) :=
{
〈ψ,Hψ〉 : ψ ∈ D(H) , ‖ψ‖ = 1

}
, (1.8)

but such estimates are typically very rough and not useful in concrete examples. For instance, the spectrum
of (1.7) is empty, while the numerical range coincides with the right complex half-plane. Summing up, providing
good estimates on the spectrum of a non-self-adjoint operator is typically a hard task.

Why the spectrum of a non-self-adjoint PT-symmetric operator might be expected to be located on the real
line? A simple argument goes as follows. Let H0 in L2(Rd) be a self-adjoint operator with compact resolvent
and assume that all the eigenvalues of H0 are simple (a concrete example is the one-dimensional quantum
harmonic oscillator). Consider a PT-symmetric bounded potential V : Rd → C (i.e. V (−x) = V (x) for all
x ∈ Rd). It is easy to see that the symmetry (1.5) ensures that the eigenvalues of H := H0 + V are either real
or come in complex-conjugate pairs. By standard perturbation theory, the perturbed eigenvalue of H remain
simple, and therefore real, provided that ‖V ‖ is small. Furthermore, assuming some extra hypotheses (like for
instance that the gaps between the eigenvalues of H0 are bounded from below by a positive constant), it is
even possible to ensure that the total spectrum of H is empty. Of course, such an argument is not applicable
for the imaginary cubic oscillator (1.6), because the cubic potential is by no means a small perturbation of the
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Laplacian. In general, it is difficult to prove that the spectrum of a PT-symmetric operator is purely real, and
in many examples it is not even true (in fact, it is generically not true [62]).

Many parts of this thesis are concerned with spectral analysis of non-self-adjoint differential operators, most
of them being PT-symmetric. We shall be particularly interested in the location of the essential spectrum and
in establishing conditions which guarantee the existence or absence of eigenvalues.

1.2.2 Basis properties

The spectral theorem implies that the eigenvectors of a self-adjoint operator with compact resolvent can be
chosen in such a way that they form an orthonormal basis. This useful property does not hold for non-self-
adjoint operators. What is worse, the eigenvectors of a non-self-adjoint operator with compact resolvent might
not be even complete in the sense that their span is not dense in the underlying Hilbert space (an obvious
example is given by the imaginary Airy operator (1.7), for which there are no eigenfunctions). There are also
examples of non-self-adjoint operators (some appear in the body of the thesis below) for which the eigenvectors
form a complete set but not a (Schauder) basis in the sense that not every vector from the Hilbert space can be
uniquely decomposed into the eigenvectors. Conditions guaranteeing that the eigenvectors (possibly together
with the generalised eigenvectors) of non-self-adjoint operators form a kind of basis have been studied since
the beginning of spectral theory (see [23] for an early survey), and it is also one of the interests of the present
thesis.

In the context of quasi-Hermitian quantum mechanics, the natural requirement is that the normalised
eigenvectors {ψj}j of a non-self-adjoint operator form at least a Riesz basis in the sense that they form the
basis and there exists a positive constant C such that for every vector ψ of the Hilbert space the following
inequalities hold

C−1‖ψ‖2 ≤
∑

j

|〈ψj , ψ〉|2 ≤ C‖ψ‖2 . (1.9)

Indeed, for an operator with compact resolvent and purely real eigenvalues, the eigenfunctions form a Riesz
basis, if and only if, the operator is quasi-self-adjoint. Notice that eigenfunctions of a self-adjoint operator
can be chosen in such a way that (1.9) is satisfied with C = 1 (Parseval’s equality). Again, the literature on
Riesz basis properties of non-self-adjoint operators is enormous (see [49] and references therein). Quasi-self-
adjoint quantum mechanics has brought a new source of motivations, particularly for Schrödinger operators
with complex potentials.

Let H be a quasi-self-adjoint operator with compact resolvent. Then its normalised eigenfunctions ψj
form a Riesz basis. Denoting by φj the eigenfunctions of the adjoint H∗ satisfying the biorthonormal relation
〈φj , ψk〉 = δjk for all j, k, it is easy to see that the metric operator Θ from (1.3) can be constructed according
to the formula

Θ =
∑

j

cj φj〈φj , ·〉 , (1.10)

where cj are positive numbers satisfying the inequalities C−1 ≤ cj ≤ C for all j with some positive constant C
(independent of j). Different choices of cj lead to different operators Θ, which reflects the well known non-
uniqueness of the metric operator. In infinite-dimensional Hilbert spaces, one cannot expect to be able to sum
up the series in (1.10), even if the eigenfunctions are known explicitly. One of the main contributions of this
thesis is to provide models and techniques which make possible to turn (1.10) into a closed form.

1.2.3 Pseudospectra

The spectrum of any self-adjoint operator is stable in the sense that it is moved in the complex plane at most
by the norm of the (possibly non-self-adjoint) perturbation. On the other hand, non-self-adjoint operators
can be highly unstable in the sense that the spectrum of a small perturbation of a non-self-adjoint operator
can be very far from the unperturbed spectrum. Given any positive number ε, let us quantify these spectral
instabilities by introducing the notion of ε-pseudospectra

σε(H) :=
⋃

‖V ‖<ε
σ(H + V ) , (1.11)

where H is a closed operator and V is an arbitrary bounded operator.
If H were self-adjoint, then the set σε(H) would be just the ε-tubular neighbourhood of the spectrum σ(H).

This follows from an equivalent characterisation of the pseudospectrum

σε(H) = σ(H) ∪
{
z ∈ C \ σ(H) : ‖(H − z)−1‖ > ε

}
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and the well known identity ‖(H−z)−1‖ = dist(z, σ(H))−1 for self-adjoint (or more generally normal) operators.
For general operators, however, one has only the inequality ‖(H − z)−1‖ ≥ dist(z, σ(H))−1 and therefore just
the inclusion {

z ∈ C : dist
(
z, σ(H)

)
< ε
}
⊂ σε(H) (1.12)

and there exist examples of non-self-adjoint operators for which the set on the right-hand side is much larger.
The existence of large pseudospectra has in particular drastic consequences for numerical analysis of non-
self-adjoint operators. We refer to by now classical monographs by L. N. Trefethen and M. Embree [63] and
E. B. Davies [16] for more information on the notion and properties of pseudospectra and many references.
The reader can also consult Appendix A.

One of the main objectives of this thesis is to advocate the usage of pseudospectra instead of spectra in
quantum mechanics with non-self-adjoint operators. The main idea is that the quasi-self-adjointness of an
operator ensures that its pseudospectrum cannot be too wild. More specifically, it is easy to see that if H is
quasi-self-adjoint, then its pseudospectrum is trivial in the sense that there exists a constant C such that, for
all positive ε,

σε(H) ⊂
{
z ∈ C : dist

(
z, σ(H)

)
< Cε

}
. (1.13)

Notice that for a self-adjoint (or more generally normal) operator the inclusion (1.13) holds with C = 1.
Hence, an operator is quantum-mechanically relevant as a representative of a physical observable only if its
pseudospectrum is trivial. We shall see that the pseudospectra of many paradigmatic PT-symmetric operators
like (1.6) are highly non-trivial, and therefore quantum-mechanically irrelevant in this context.
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Chapter 2

Presentation of results

This chapter is devoted to a brief and intentionally somewhat informal summary of the results presented in
the subsequent chapters. The latter represent research articles of the author and are divided into the following
three parts:

I. toy models,

II. waveguides,

III. pseudospectra.

This division may seem a bit artificial and there are indeed intersections. However, the individual papers were
initially motivated by various objectives and this is reflected in different types of operators or results typically
considered in the respective parts.

Part I is mainly motivated by the lack of rigorous approach to quasi-self-adjointness and unavailability
of closed formulae for the metric operator (1.10) in the literature, at least at the time the presented papers
appeared. The models presented in this part are typically Sturm-Liouville operators on a bounded interval
with purely discrete spectrum.

On the other hand, Part II collects our papers on non-self-adjoint partial differential operators on unbounded
domains (not necessarily tubes). Here the operators possess an essential spectrum and the main task is about
the existence and location of possible eigenvalues.

Finally, Part III is motivated by our original observation that the paradigmatic models of PT-symmetric
quantum mechanics like (1.6) are not quasi-self-adjoint. For these results we advocate the mathematical notion
of pseudospectrum as the right tool to rigorously describe the quasi-self-adjointness and other non-self-adjoint
aspects of spectral theory. Here the considered operators are typically (but not exclusively) one-dimensional
Schrödinger operators with complex potentials on an unbounded interval.

2.1 Ad Part I: Toy models

Shortly after the advent of PT-symmetric quantum mechanics at the turn of the millennium, it was commonly
accepted by the physics community that it is the quasi-self-adjointness which is behind the reality of the
spectrum of non-self-adjoint PT-symmetric operators like (1.6). There have been many sustained attempts to
calculate the metric operator using formula (1.10) for various PT-symmetric models of interest. Because of the
complexity of the problem, however, it is not surprising that most of the available results were just approx-
imative, usually expressed as leading terms of formal perturbation series. Moreover, there was a systematic
lack of rigorous approach, leaving aside the domain issue of unbounded operators appearing in the series and
making thus the results unjustified on a mathematically rigorous level. (In part III we shall see that this lack
of rigorous approach is in fact fundamental and many of the paradigmatic PT-symmetric models actually do
not possess a regular metric.)

The state of the art at that time motivated the present author to enter the community and introduce a
new model for which the metric operator and other related objects can be computed in a closed form (and in
a rigorous way). The obtained results in this direction are presented in the following subsection. The other
subsections contain our results on a model arising in a stochastic process and on non-self-adjoint graphs.

9
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2.1.1 Complex Robin boundary conditions

The model and its quasi-self-adjointness

In the joint work [39] (Chapter 3) with H. Bı́la and M. Znojil, we introduce the operatorHα in the Hilbert space
L2
(
(−a, a)

)
that acts as the Laplacian in the bounded interval (−a, a) with a > 0 and the only non-self-adjoint

interaction comes from complex boundary conditions of Robin type:

Hαψ := −ψ′′ , ψ ∈ D(Hα) :=
{
ψ ∈W 2,2

(
(−a, a)

)
: ψ′ + iαψ = 0 at ± a

}
, (2.1)

where α ∈ R. Since H∗
α = H−α, the operator Hα is not self-adjoint unless α = 0, but it is PT-symmetric in the

sense of (1.5). The Sobolev space W 2,2
(
(−a, a)

)
consisting of functions that belong to L2

(
(−a, a)

)
together

with their first and second weak derivatives makes Hα well defined as an m-sectorial operator with compact
resolvent. Consequently, the spectrum ofHα is composed of isolated eigenvalues of finite algebraic multiplicities
located in a sector in the complex plane.

The eigenvalue problem Hαψ = k2ψ admits explicit solutions giving the spectrum

σ(Hα) =
{
k2n
}∞
n=0

with kj :=




α if n = 0 ,

nπ

2a
if n ≥ 1 .

(2.2)

The corresponding set of (unnormalised) eigenfunctions {ψn}∞n=0 can be chosen as

ψn(x) := cos
(
kn(x+ a)

)
− i

α

kn
sin
(
kn(x+ a)

)
. (2.3)

Surprisingly, the spectrum of Hα is purely real. However, notice that if α ∈ k1 Z \ {0}, then Hα admits an
eigenvalue of geometric multiplicity one and algebraic multiplicity two (a Jordan block); in this case Hα cannot
be similar to a self-adjoint operator. Apart from these exceptional values of α, it is shown in [39] that Hα is
quasi-self-adjoint. Moreover, using (1.10) and the explicit form of the eigenfunctions (2.3), a closed formula for
the metric Θ satisfying the quasi-self-adjointness relation (1.3) is found.

We are honoured that our model (2.1) was included by B. Helffer in his new book, cf [24, Ex. 13.5].

Alternative formulae for the metric and more

In [36] (Chapter 4), an alternative form for the metric is found with help of a backward use of the spectral
theorem. This new idea is inspired by the observation that the eigenfunctions (2.3) for n ≥ 1 are a sum of
eigenfunctions of the (self-adjoint) Dirichlet and Neumann Laplacians in L2

(
(−a, a)

)
. In this way, the metric

operator Θ of [36] is expressed in terms of resolvents of these operators.
In the joint work [46] (Chapter 5) with P. Siegl and J. Železný (author’s student), using a special normali-

sation of (2.3) and explicit formulae for the resolvents of the Dirichlet and Neumann Laplacians, we obtain a
particularly simple formula for the metric operator

Θ = I +K with K(x, y) := α e−iα(y−x)
[
tan(αa)− i sgn(y − x)

]
, (2.4)

where K denotes the integral kernel of K. Furthermore, we eventually manage to find a self-adjoint operator

hαψ := −ψ′′ + α2 χN0 〈χN0 , ·〉 , ψ ∈ D(hα) :=
{
ψ ∈ W 2,2

(
(−a, a)

)
: ψ′ = 0 at ± a

}
, (2.5)

to which Hα is similar in the sense of (1.4) (with a metric Θ = Ω∗Ω different to (2.4)), where χN0 (x) := 1/
√
2a

is the first eigenfunction of the Neumann Laplacian in (−a, a). Since hα is just a rank-one perturbation of the
Neumann Laplacian, the spectral picture (2.2) is clearly explained.

In fact, in [46], we proceed in a much greater generality by allowing α in (2.1) to be complex and achieving
possibly different values at ±a (leading thus to a not necessarily PT-symmetric model). General properties of
the similarity transforms to self-adjoint and normal operators are studied in detail.

Physical interpretations

Notice that the self-adjoint counterpart hα of Hα given in (2.5) has the form of the Friedrichs Hamiltonian,
which has been used in various circumstances in quantum mechanics, cf [30]. In this way, our work [46] provides
a potential interpretation of the model (2.1) as an unconventionally represented quantum Hamiltonian.

In the joint work [27] (Chapter 6) with H. Hernandez-Coronado and P. Siegl, we propose another quantum-
mechanical interpretation of the model (2.1), this time directly in terms of a perfect-transmission scattering.
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The idea is that the one-dimensional scattering problem −ψ′′ +V ψ = k2ψ on the whole real line in the regime
of perfect transmission, where k is a positive (wave) number and the scattering potential V : R → R is bounded
and supported in [−a, a], leads to the non-linear problem

{
−ψ′′ + V ψ = k2ψ in [−a, a] ,
ψ′ − ikψ = 0 at ± a .

This operator-pencil problem (the boundary condition depends on energy) can be solved by considering the
associated one-parametric (linear) spectral problem

{
−ψ′′ + V ψ = µψ in [−a, a] ,
ψ′ − iαψ = 0 at ± a ,

(2.6)

where µ = µ(α) plays the role of eigenvalue and α is a real parameter. Indeed, the energies corresponding to
the perfect-transmission states are found as those points satisfying

µ(α) = α2 .

Clearly, (2.6) is just the eigenvalue problem for H−α + V with Hα being our toy model from (2.1).
Finally, let us mention that the boundary conditions employed in our model (2.1) are known as impedance

boundary conditions in electromagnetism. In a quantum-mechanical context, they have been used previously
by H.-Ch. Kaiser, H. Neidhardt and J. Rehberg in [31] to model open systems in semiconductor physics. In their
setting, the parameter iα is allowed to be complex but its imaginary part has opposite signs on the boundary
points such that the system is dissipative. In our case (2.1), we actually deal with radiation/absorption
boundary conditions in the language of theory of electromagnetic field and the PT-symmetry is reflected in the
gain/loss balance. Related scattering experiments in optics were performed in [4].

Curved spaces

In the joint work [42] (Chapter 7) with P. Siegl, we consider the Laplace-Beltrami operator in tubular neighbor-
hoods of curves on two-dimensional Riemannian manifolds, subject to complex Robin-type boundary conditions.
We focus on manifolds of constant curvature, cf Figure 7.2, when the spectral problem reduces to the study of
Sturm-Liouville operators in L2

(
(−a, a)

)
, subject to boundary conditions of the type of (2.1).

For zero curvature, we recover the pure Laplacian case (2.1). If the curvature is positive, it turns out that the
spectrum is purely real. More precisely, it is proved only for higher eigenvalues, but our numerical simulations
suggest that it is always the case. For negative curvature, we prove that there are also complex-conjugate
eigenvalues. In any case, if the spectrum is simple, it follows that the Sturm-Liouville operator is similar to a
self-adjoint or at least normal operator.

The Pauli equation

In the joint work [33] (Chapter 8) with D. Kochan, R. Novák (author’s student) and P. Siegl, we extend the
model (2.1) to operator matrices


− d2

dx2
+ b 0

0 − d2

dx2
− b


 in L2

(
(−a, a);C2

)
,

subject to general boundary conditions

ψ′(±a) +A±ψ(±a) = 0 ,

where b is a real parameter (magnetic field) and the matrices A± ∈ C2×2 model a possibly non-self-adjoint
interaction. We are again concerned with spectral properties and with the question of quasi-self-adjointness.
A remarkable property of this model is that the time-reversal operator T differs from the complex conjugation
and satisfies T2 = −I (as usual for fermionic systems).

2.1.2 Stochastic physics meets quantum mechanics

In the joint work [34] (Chapter 9) with M. Kolb, we apply the ideas of quasi-self-adjoint quantum mechanics to
give an insight into peculiar properties of a stochastic process. Consider a Brownian particle with a constant
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quadratic variation in the bounded interval (−π
2 ,

π
2 ) and wait until it hits one of the boundary points ±π

2 . At
the hitting time, the Brownian particle gets restarted in an interior point π

2 a with a ∈ (−1, 1) and repeats the
process at the previous step. The generator of this process can be described by the non-self-adjoint operator

Hψ := −ψ′′ , ψ ∈ D(H) :=
{
ψ ∈ W 2,2((−π

2 ,
π
2 )) : ψ(−π

2 ) = ψ(π2 a) = ψ(π2 )
}
, (2.7)

in the Hilbert space L2
(
(−π

2 ,
π
2 )
)
.

It has been known to probabilists (including my co-author) that the eigenvalues of this operator are purely
real and that the spectral gap coincides with the second eigenvalue of the Dirichlet Laplacian in L2

(
(−π

2 ,
π
2 )
)

(this is also true for more general models, cf [5]). In fact, the eigenvalue problem for (2.7) can be solved
explicitly. What is the mechanism behind these properties?

In our paper [34], we prove that H is an m-accretive operator with compact resolvent, so that the total
spectrum of H is indeed purely real (for it is composed of eigenvalues only). The main idea is to compute the
adjoint H∗, which also enables us to determine the geometric and algebraic multiplicities of the eigenvalues. It
turns out that spectral characteristics of H depends on Diophantine properties of a. If a is irrational, then all
eigenvalues are algebraically simple. If a is rational, then there exist eigenvalues of geometric multiplicity two
and algebraic multiplicity three (Jordan blocks).

In either case, the eigenfunction of H do not form a basis (not even Schauder’s, though the eigenfunctions
are always minimally complete if a is irrational). Consequently, the quasi-self-adjointness relation (1.3) cannot
hold with bounded and boundedly invertible Θ. If a is irrational, however, we show that the weaker relation

H∗Θ = ΘH (2.8)

does hold with a bounded positive operator Θ (which is not necessarily boundedly invertible). Consequently,
H is “quasi-self-adjoint” in a generalised sense. Moreover, using the special form of eigenfunctions of the
adjoint H∗, we provide a spectacularly simple formula for the metric operator

Θ = φ0〈φ0, ·〉+ P0 + P− ⊕ P+ .

Here φ0 is an eigenfunction of H∗ corresponding to the zero eigenvalue, P0 is the antisymmetric projection with
respect to the middle point 0 of (−π

2 ,
π
2 ), the direct sum is with respect to the decomposition L2

(
(−π

2 ,
π
2 )
)
=

L2
(
(−π

2 ,
π
2a)
)
⊕ L2

(
(π2 a,

π
2 )
)
, P− is the antisymmetric projection with respect to the middle point −π

4 (1− a)
of (−π

2 ,
π
2 a) and P+ is the antisymmetric projection with respect to the middle point π

4 (1 + a) of (π2 a,
π
2 ).

2.1.3 Non-self-adjoint graphs

In the joint work [29] (Chapter 10) with A. Hussein and P. Siegl, motivated by the growing interest in network
models and in quasi-self-adjoint quantum mechanics, we consider the Laplacian on metric graphs, subject
to general (possibly non-self-adjoint) interface or boundary conditions on the graph vertices. We regard the
graphs as an intermediate step between Sturm-Liouville operators on intervals and partial differential operators,
moving naturally from the one-dimensional toy models of Part I to higher-dimensional structures of Part II.

The Hilbert space of a metric graph Γ is the direct sum

L2(Γ) :=

N⊕

j=1

L2
(
(0, aj)

)
,

where N is a natural number denoting the number of graph edges (0, aj), where each length aj is either a
positive number or infinity. The natural number

d := #(unbounded edges) + 2#(bounded edges)

is called the dimension of the graph. On this Hilbert space, we consider the operator

Hψ := −ψ′′ , ψ ∈ D(H) :=
{
ψ ∈W 2,2(Γ) : Aψ +Bψ′ = 0

}
,

where ψ is a d-dimensional vector composed of boundary values of ψ and A,B ∈ Cd×d are arbitrary matrices.
The operator H is self-adjoint if, and only if, AB∗ = BA∗, and this case is well studied in the literature due
to applications in quantum nanostructures (see references given in Chapter 10). On the other hand, in [29] we
are primarily interested in non-self-adjoint graph realisations, which is essentially an unexplored area.

There are several objectives of our paper [29]. First of all, we propose a new classification of the boundary
conditions, calling the graph regular if A+ ikB is invertible for some k ∈ C, and irregular otherwise. That this
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classification is indeed useful is illustrated on many examples of regular and irregular graphs. The spectrum of
irregular graphs is typically quite singular: either empty or covering the whole complex plane. On the other
hand, we show that the spectrum of regular graphs is neither empty nor the whole complex plane and establish
some general spectral properties about the point, residual and essential spectra. For instance, the closure of
the point spectrum is a discrete set and the residual spectrum exists only for graphs with both bounded and
unbounded edges, and in this case it is a discrete subset of the essential spectrum [0,∞). On compact graphs,
we investigate the existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians.

The most interesting result of [29] is probably the following simple way how to relate the similarity transforms
between Laplacians on certain graphs with elementary similarity transforms between the matrices defining the
boundary conditions. For graphs with bounded edges of the same length, we show that if A′ = G−1AG and
B′ = G−1BG with an invertible matrix G : Cd → Cd, then there exists a bounded and boundedly invertible
transform ΩG : L2(Γ) → L2(Γ) such that (cf (1.4))

H ′ = Ω−1
G HΩG ,

whereH ′ is defined asH but with A′, B′ instead of A,B. In particular, ifH ′ is self-adjoint (i.e., A′B′∗ = B′A′∗),
then H is quasi-self-adjoint.

2.2 Ad Part II: Waveguides

In this part we collect author’s papers on non-self-adjoint partial differential operators. Chapters 11–15 are
concerned with “genuine waveguides” in the sense of a tubular geometry, while Chapters 16, 17 and 18 are
included mainly because of the similarity with waveguides via the presence of an essential spectrum.

2.2.1 Complex Robin boundary conditions

The model and discrete real eigenvalues

In the joint work [11] (Chapter 11) with D. Borisov, we extend the toy model (2.1) to higher dimensions by
considering the two-dimensional operator

Hαψ := −∆ψ , ψ ∈ D(Hα) :=
{
ψ ∈W 2,2

(
R× (−a, a)

)
: ∂2ψ + iαψ = 0 on R× {±a}

}
, (2.9)

where α : R → R is a Lipschitz function. Again, since H∗
α = H−α, the operator is not self-adjoint unless

α = 0, but it is a well-defined m-sectorial operator in L2
(
R× (−a, a)

)
, which is PT-symmetric with respect to

(Pψ)(x1, x2) := ψ(x1,−x2) and (Tψ)(x) := ψ(x). In [11] we additionally remark that Hα is T-self-adjoint in
the sense that H∗

α = THαT, which generally implies that the residual spectrum of Hα is empty.

Assuming that the boundary conditions are homogeneous in the sense that α(x1) = α0 ∈ R for all x1 ∈ R,
we show that the spectrum of Hα0 is purely real and essential,

σ(Hα0 ) = σess(Hα0) = [µ2
0,∞) with µ2

0 := min

{
α2
0,
( π
2a

)2}
.

In [11] we are interested in local perturbations of Hα0 . Assuming that α(x) tends to a constant α0 as |x| → ∞,
we show that the essential spectrum of Hα coincides with the spectrum of Hα0 . Our main interest is in the
existence of discrete eigenvalues. Writing α(x1) = α0+εβ(x1) with β ∈ C2

0 (R) and positive ε, we show that Hα

has no eigenvalues converging to µ2
0 as ε → 0 provided that α0 = 0 or α0

∫
R
β > 0. On the other hand, if

α0

∫
R
β < 0, we show that Hα possesses a simple (and therefore real) eigenvalue λε satisfying the asymptotic

formula

λε = µ2
0 − ε2 α2

0 (
∫
R
β)2 +O(ε3) as ε→ 0 . (2.10)

We also establish existence/absence results in the critical case
∫
R
β = 0 and, if the eigenvalue exists, we improve

the asymptotic formula by finding the term of order ε3 as well.

The approach of [11] to the discrete spectrum of Hα is based on the method of matched asymptotic
expansions. Author’s student R. Novák later established similar results (also for a three-dimensional waveguide)
by the Birman-Schwinger method [55]. The latter enables one to relax the regularity hypothesis about β, but
only the low-order asymptotics (2.10) is found.
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Numerical analysis and non-real eigenvalues

The asymptotic study of [11] leaves open the question whether the model (2.9) may possess non-real eigenvalues
as well. To this purpose, in the joint work [47] (Chapter 12) with M. Tater, we investigate the existence/absence
of eigenvalues of Hα by numerical methods. In addition to obtaining a good agreement with the asymptotic
formula (2.10), we identify regimes of α0 and β for which there exist complex-conjugate pairs of eigenvalues
together with real spectra. We particularly invite the reader to watch the animation on author’s homepage:

http://gemma.ujf.cas.cz/~krejcirik/KT.html

Open problems

Based on the study performed in [11] and [47] as well as on the previous experience of the author with self-adjoint
waveguides, in the short invited note [38] (Chapter 13), we point out the need for a robust method establishing
the existence of eigenvalues for non-self-adjoint operators possessing an essential spectrum. Another open
problem is about the absence of eigenvalues for non-self-adjoint operators (cf Chapter 17).

Thin waveguides and other results

In the joint work [12] (Chapter 14) with D. Borisov, we study the operator (2.9) in the limit when the width
of the waveguides tends to zero. More specifically, we establish the operator convergence

Hα −−−→
a→0

− d2

dx21
+ α(x1)

2 (2.11)

in a norm-resolvent sense. Since the operator on the right-hand side is self-adjoint, we obtain a heuristic
support for the existence of real spectra of Hα. Moreover, the eigenvalue asymptotics of the self-adjoint
operator coincides with (2.10). The results of [12] are more general in the sense that we consider the limit for
an analogue of the model (2.9) in the layer Rd−1 × (−a, a) of arbitrary dimension d ≥ 2.

In the joint work [41] (Chapter 15) with N. Raymond, J. Royer and P. Siegl, we extend the convergence
result (2.11) to the case of the Laplacian −∆Ωa

α in an a-tubular neighbourhood of an arbitrary hypersurface Σ
in Rd, subject to more general Robin boundary conditions. For illustration, restricting the very general result
of [41] to the two-dimensional case of Σ being a curve and keeping the boundary conditions as in (2.9), we can
write

−∆Ωa
α −−−→

a→0
− d2

ds2
+ α(s)2 − i α(s)κ(s) (2.12)

in a norm-resolvent sense, where κ and s is the curvature and arc-length of Σ, respectively. Comparing (2.12)
with (2.11), we clearly see the role of curvature on spectral properties of −∆Ωa

α as a→ 0.
Let us emphasise that the objectives and results of [41] are much more universal than presented here. We

actually provide an abstract approach for obtaining dimensional reductions via the norm-resolvent convergence.
Our applications to the semiclassical Born-Oppenheimer approximation, shrinking tubular neighborhoods of
hypersurfaces, etc, are just illustrative examples of the general scheme.

2.2.2 Singular interactions

In the joint work [35] (Chapter 16) with S. Kondej, we consider the operator formally written as

Hε := −∆+ α+ δΣ+ε + α− δΣ−ε in L2(Rd) , (2.13)

where α± are two complex numbers and Σ±ε := {q ± εn(q) : q ∈ Σ0} are parallel surfaces at the distance ε of
the boundary Σ0 := ∂Ω of a smooth bounded open set Ω ⊂ Rd, d ≥ 1, with n : Σ0 → Rd denoting the outer
unit normal to Ω. It is standard to give a rigorous meaning to the Schrödinger operator with Dirac interactions
of the type (2.13) as an m-sectorial operator associated with a closed quadratic form. In this way, (2.13) can
be considered as an extension of a curved variant of (2.9) to the whole space (in all dimensions). Contrary
to (2.9), the singular interaction of (2.13) may achieve different values on Σ±ε, but it is assumed to be constant
on each of the parallel surfaces. The operator Hε is non-self-adjoint unless the constants α± are real.

It is natural to expect that Hε will converge, in a certain sense, to the operator

H0 := −∆+ (α+ + α−) δΣ0 in L2(Rd) .

The purpose of the paper [35] is to show that the convergence holds in the norm-resolvent sense and to
establish asymptotic expansions for semisimple discrete eigenvalues of Hε as ε→ 0. We stress that, because of
the singular dependence of Hε on ε, the eigenvalue asymptotics is not a consequence of analytic perturbation
theory and a non-trivial rigorous approach is needed to reveal a geometric term in the asymptotic formula.

In the self-adjoint case, the results of [35] quantify the effect of tunnelling in coalescing heterostructures.

http://gemma.ujf.cas.cz/~krejcirik/KT.html
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2.2.3 Absence of eigenvalues

In the joint work [20] (Chapter 17) with L. Fanelli and L. Vega, we consider electromagnetic Schrödinger
operators

HA,V := (−i∇+A)2 + V in L2(Rd) , (2.14)

where A : Rd → Rd is the magnetic (vector) potential and V : Rd → C is the electric (scalar) potential. In
recent years, there have been an enormous increase of interest in Schrödinger operators with complex poten-
tials, particularly motivated by the attempts to extend the Lieb-Thirring inequalities for the eigenvalues to the
non-self-adjoint case (see references in Chapter 17). The main objective of [20] is to provide sufficient condi-
tions which guarantee the absence of eigenvalues of HA,V , including eigenvalues embedded in the continuous
spectrum.

The first result of [20] is based on the Birman-Schwinger principle and it shows that the smallness form-
subordinated condition

∃a < 1 , ∀ψ ∈W 1,2(R3) ,

∫

R3

|V ||ψ|2 ≤ a

∫

R3

|∇ψ|2 (2.15)

implies that the spectrum of the purely electric operator H0,V in three dimensions coincides with the spectrum
of the free Hamiltonian,

σ(H0,V ) = σc(H0,V ) = [0,∞) . (2.16)

In particular, the point and residual spectra of H0,V are empty. Condition (2.15) is an improvement upon
existing results in the literature (cf [21]), in particular potentials with critical singularities satisfying |V (x)| ≤
a/(4|x|2) can be included. It is also an improvement upon an analogous result in the self-adjoint case stated
in terms of Rollnik-class potentials (cf [56, Thm. XIII.21]). We leave as an open problem whether the d-
dimensional version of (2.15) is sufficient to conclude with (2.16) for every d ≥ 3.

The other sufficient conditions of [20] are based on the method of multipliers and they imply the absence
of eigenvalues of the operator HA,V in all dimensions d ≥ 3 and possibly under the presence of magnetic
field. By this method, we have not been able to fully reach condition (2.15). On the other hand, some of the
alternative hypotheses are not “smallness”, but rather sort of “repulsiveness” conditions. Let us also stress
that the conditions on the magnetic field are stated in a gauge-invariant form.

2.2.4 Non-accretive Schrödinger operators and Agmon-type estimates

In the joint work [40] (Chapter 18) with N. Raymond, J. Royer and P. Siegl, we also consider the electromagnetic
operator HA,V from (2.14), but now it can be restricted to a subdomain Ω ⊂ Rd, subject to Dirichlet boundary
conditions.

Our main interest is to provide a closed realisation of HA,V with non-empty resolvent set in non-accretive
situations, i.e. when the numerical range of the operator is not contained in a complex half-plane. It typically
happens if the real part of V is not bounded from below. An illustrative example is given by the operator

− d2

dx2
− x2 + ix3 in L2(R) , (2.17)

for which the numerical range covers the whole complex plane. In [40], we are able to give a meaning to (2.17)
and even to potentials with a much wilder growth at infinity and/or oscillations.

Our approach is based on the generalised Lax-Milgram-type theorem of Y. Almog and B. Helffer [2] involving
a new idea of weighted coercivity. We essentially require that the potentials are smooth and

|∇V (x)| + |∇B(x)| = o
((

|V (x)|+ |B(x)|
)3/2

+ 1
)
,

(ℜV (x))− = o
(
|V (x)|+ |B(x)| + 1

)
,

as |x| → ∞, where (ℜV )− is the negative part of ℜV and B := dA is the magnetic tensor. Notice that (ℜV )−
can be compensated not only by ℑV , but also by the magnetic field. Again, we stress that our conditions on
the electromagnetic potentials are stated in a gauge-invariant form.

The ultimate goal of the paper [40] is to show that any eigenfunction ψ corresponding to a discrete eigen-
value λ satisfies the Agmon-type exponential decay

e
1−ε
3 dAg(x) ψ ∈ L2(Ω) ,

where ε ∈ (0, 1) is arbitrary and dAg is the Agmon distance satisfying

|∇dAg(x)|2 =
(
γ1|V (x)| − ℜλ− |ℑλ| − γ2

)
+

with suitable constants γ1 > 0 and γ2 ∈ R. For (2.17) the result yields eδ|x|
5/2

ψ ∈ L2(R) with some positive δ.
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2.3 Ad Part III: Pseudospectra

Now we probably turn to the most significant results of the author. The next papers to be presented are
interlinked by the appearance of the mathematical notion of pseudospectra.

2.3.1 The semiclassical fall of PT-symmetric quantum mechanics

On the metric of the imaginary cubic oscillator

The imaginary cubic oscillator (1.6) can be considered as the fons et origo of PT-symmetric quantum mechanics
whose origin can be dated to 1998 [6]. The problem of similarity of the operator (1.6) to a self-adjoint operator
was investigated in several works, see, e.g., [7, 53]. However, due to the complexity of the task, the approach
used in these papers was necessarily formal, based on developing the metric into an infinite series composed of
unbounded operators. There existed no proof of quasi-self-adjointness of the imaginary cubic oscillator as late
as 2012, when an important meeting of the PT-symmetry community took part in Paris [66]. The reason was
very simple: (1.6) is not quasi-self-adjoint, at least not in the sense of (1.3). This property was established
in the joint work [61] (Chapter 19) with P. Siegl. More specifically, denoting by H the maximal (m-accretive)
realisation of (1.6),

(Hψ)(x) := −ψ′′(x) + ix3ψ(x) , ψ ∈ D(H) := {ψ ∈ L2(R) : Hψ ∈ L2(R)} , (2.18)

we prove the following important facts about (1.6):

1. There exists a bounded metric. More pre-
cisely, there exists a positive bounded operator Θ
such that the weaker quasi-self-adjointness rela-
tion (2.8) holds.

2. The metric is necessarily singular. That is, no
bounded metric operator Θ with bounded inverse
satisfying (2.8) exists.

Mathematically, the first (positive) property is a consequence of the completeness of eigenfunctions of H
that we prove as a new result in [61]. The second (negative) property means that the eigenfunctions do not
form a Riesz basis. We conclude that the paradigmatic example (1.6) is not relevant as a representative of a
physical observable in quantum mechanics.

The original idea of [61] to establish the absence of bounded and boundedly invertible similarity transfor-
mation of H to a self-adjoint operator is based on the concept of pseudospectra. More specifically, we show
that the pseudospectrum of H is not trivial in the sense that the inclusion (1.13) is violated. By contradiction,
let us assume that the pseudospectrum of H is trivial. Performing the scaling (U~ψ)(x) := ~−1/5ψ(~−2/5x)
with any positive number ~, we cast H into a semiclassical operator

U~HU
−1
~

= ~−6/5H~ , where H~ := −~2
d2

dx2
+ ix3 .

Then, for any fixed z ∈ C with ℜz > 0 and ℑz 6= 0, we have

C

~−6/5|ℑz| ≥
C

dist
(
~−6/5z, σ(H)

) > ‖(H − ~−6/5z)−1‖ = ~6/5 ‖(H~ − z)−1‖ ≥ cn ~
−n ,

where the first inequality follows from the fact that the spectrum of H is real, the second inequality is due to
the assumption that the pseudospectrum of H is trivial, the equality employs the scaling above and the last
inequality (the crucial step) follows from known semiclassical results for non-self-adjoint Schrödinger operators
that ensure that the resolvent ofHh diverges faster than any power of ~−1 as ~ → 0. More specifically, it follows
from E. B. Davies’ result [15] that there exists a positive ~0 and for each positive n a positive constant cn such
that, for all ~ ∈ (0, ~0), the last inequality holds. Comparing the extreme left- and right-hand sides of the chain
of inequalities above, we get a contradiction for all sufficiently small ~. Therefore the spectrum of H cannot
be trivial.

Let us finally mention that our result from [61] about the absence of Riesz basis for (2.18) was later improved
by R. Henry [25] who showed that the eigenfunctions do not even form a (Schauder) basis. The proof that
the pseudospectrum of the modified model with a harmonic potential added to the imaginary cubic term is
non-trivial was given by author’s student R. Novák [54].
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Transition from spectra to pseudospectra

The paper [61] was a brief account for the physics community in which we focus on the paradigmatic exam-
ple (1.6). However, the methods of the paper, namely the disproval of quasi-self-adjointness based on the
semiclassical pseudospectra, does not restrict to the particular model. Moreover, the pseudospectra instead of
spectra universally seems to be the right concept to describe the subtleties of quantum mechanics with non-self-
adjoint operators. This was our motivation to follow [61] with the joint work [45] (Chapter 20) with P. Siegl,
M. Tater and J. Viola, in which we make a sort of overview of the notion of pseudospectra in the context of
quasi-self-adjoint quantum mechanics. The abstract results are illustrated on many concrete examples familiar
from PT-symmetric quantum mechanics and elsewhere. We also perform a numerical analysis of the models.

To briefly summarise the usefulness of the concept of pseudospectra as advocated in [45], let us have a look
at Figure 2.1. On the left picture, there is a numerically computed pseudospectrum of the imaginary cubic
oscillator (2.18). The blue curves correspond to the level lines ‖(H − z)−1‖ = ε−1 in the complex z-plane for
different small values of ε. We clearly see that the pseudospectrum can be located very far from the spectrum
(the red dots corresponding to the real eigenvalues), resulting therefore in spectral instabilities due to (1.11) in
accordance with our semiclassical analysis above. The pseudospectrum is thus obviously non-trivial and already
this simple numerical check suggests that the operator cannot be quasi-self-adjoint. On the other hand, the
right picture depicts numerically computed pseudospectra for a self-adjoint analogue of (2.18) and we clearly
see that the ε-pseudospectrum is just the ε-tubular neighbourhood of the spectrum. For a quasi-self-adjoint
operator, the pseudospectrum should be located at least in a tubular neighbourhood of the spectrum, cf (1.13).
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Figure 2.1: Pseudospectra of cubic oscillators. (Courtesy of Miloš Tater.)

One of the main new results obtained in [45] is the proof of a non-trivial pseudospectrum for the imaginary
shifted harmonic oscillator

− d2

dx2
+ (x+ i)2 in L2(R) (2.19)

considered on its maximal domain. Notice that the scaling as above does not help, because the imaginary
part of the potential is a small perturbation of the real part, so the known results about the semiclassical
pseudospectrum do not apply here. Nevertheless, the desired result can be obtained by a standard construction
of semiclassical pseudomodes even in this case.

2.3.2 The imaginary sign potential

In the joint work [26] (Chapter 21) with R. Henry, we introduce a new non-self-adjoint PT-symmetric model

H := − d2

dx2
+ i sgn(x) in L2(R) (2.20)

with natural domain D(H) :=W 2,2(R). Our main motivation to consider this operator is the fact that it cannot
be cast to a semi-classical operator. Moreover, the known techniques to study the semiclassical pseudospectra
were restricted to Schrödinger operators with smooth (at least continuous) potentials. On the other hand, the
simplicity of the model enables one to study the spectral and pseudospectral properties of H in a great detail.

It is easy to see that the numerical range of H coincides with the closure of the set

S := [0,+∞) + i (−1, 1) .

It is also possible to show that the spectrum of H is given by two complex semi-axes

σ(H) = σess(H) = [0,+∞) + i {−1,+1} .
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By constructing the resolvent kernel ofH , we show a much less evident fact that H possesses a highly non-trivial
pseudospectrum inside S. Indeed, for each z ∈ S, there exists a positive constant C depending only on ℑz such
that

C−1 ℜz ≤ ‖(H − z)−1‖ ≤ C ℜz . (2.21)

Consequently, the resolvent norm tends to infinity as ℜz → ∞ inside S. For a numerical computation of the
pseudospectrum of this model, see Figure 21.1 (courtesy of M. Embree).

In [42] we also study the influence of (2.21) on spectral instabilities of H . More specifically, we show that
the perturbed operator H + εV with V : R → C may possess discrete eigenvalues with the distance to the
spectrum of H bounded from below by a positive constant (independent of ε) for all small ε. Explicit examples
of piece-wise constant and Dirac potentials are presented.

2.3.3 Pseudomodes

An equivalent characterisation of the pseudospectrum (1.11) of a closed operator H is given by

σε(H) = σ(H) ∪
{
z ∈ C : ∃ψ ∈ D(H), ‖(H − z)ψ‖ < ε ‖ψ‖

}
,

where the number z and the vector ψ are respectively called the pseudoeigenvalue (or approximate eigen-
value) and pseudoeigenvector (or pseudomode). Locating the pseudospectrum of H thus consists in finding the
spectrum and the set of pseudoeigenvalues (the latter depends on ε).

Given a complex-valued function V ∈ L2
loc(R), let us consider the Schrödinger operator

H := − d2

dx2
+ V (x) in L2(R) (2.22)

on its maximal domain. There exists by now a quite extensive literature on semiclassical pseudospectrum of
non-self-adjoint Schrödinger operators, see notably the pioneering work [15] and the subsequent improvements
[17, 67]. This approach consists in introducing an artificial small parameter ~2 in front of the kinetic part of
the potential

H~ := −~2
d2

dx2
+ V (x) in L2(R) (2.23)

and in looking for semiclassical pseudomodes ψ~ and pseudoeigenvalues z~ of H~, which means that the limit
‖(H~ − z~)ψ~‖/‖ψ~‖ → 0 holds as ~ → 0. This construction is perturbative, based on the Liouville-Green
approximation, also known as the JWKB method. By scaling for some special potentials (like for instance
for the imaginary cubic oscillator (1.6) as explained above), it is possible to use these semiclassical pseudo-
modes for showing that there are pseudomodes corresponding to large energies of the original operator (2.22).
Unfortunately, this scaling approach is typically limited to polynomial-type potentials. Moreover, the stan-
dard perturbative approach requires that the potential V is at least continuous to construct a semiclassical
pseudomode.

The objective of our joint paper [44] (Chapter 22) with P. Siegl is to develop a systematic non-semiclassical
approach for constructing pseudomodes of (2.22) corresponding to large pseudoeigenvalues. We achieve in
covering a wide class of previously inaccessible potentials, including discontinuous ones. Applications of the
results to higher-dimensional Schrödinger operators are also discussed in [44].

In fact, we were initially motivated by the simple example (2.20) where the potential is discontinuous and,
moreover, the operator does not have a semiclassical counterpart (meaning that the version of (2.23) with
V (x) := i sgn(x) is just equivalent to (2.22)). However, much more general potentials are covered by [44]. It
is also worth mentioning that in this paper we eventually solve an open problem raised during the 2015 AIM
workshop [1, Open Problem 10.1].

The main approach of [44] is again based on the JWKB method, but now we consider the inverse of the
spectral parameter z ∈ C as a small parameter. The idea is as follows. If V were constant, i.e. V (x) = V0 for
all x ∈ R, exact solutions of the differential equation −g′′ + V0g = zg would be given by

e±i
∫ x
0

√
z−V0 dt . (2.24)

For a variable potential V , we still take (2.24) with V0 replaced by V as a basic Ansatz to get approximate
solutions to Hψ = zψ as ℜz → ∞. Nonetheless, usually more terms are needed for unbounded potentials or
when V is sufficiently regular and more information on the decay rates are sought. In general, we therefore
take

g(x) := exp

(
−

n−1∑

k=−1

z−k/2 ψk(x)

)
(2.25)



0.2 Presentation of results 19

with some natural number n ≥ 0. Here functions ψk are determined by n + 1 ordinary differential equations
obtained after requiring that the terms in the expression G(z) := −g′′ + V g − zg corresponding to the lowest
powers of z vanish. Not surprisingly, ψ−1 is determined by and eikonal-type equation an reads ψ−1(x) :=
iz−1/2

∫ x
0

√
z − V (t) dt. The goal is to end up with a negative power of z in G(z) representing the decay of the

pseudomode as ℜz → ∞. For larger n one gets a better decay rate, but the price to pay is a higher regularity
of V .

To obtain admissible pseudomodes, the procedure above is additionally complicated by employing a z-
dependent cut-off of the basic Ansatz (2.24). There are also some other technical complications, typically
related to unbounded potentials. In fact, one of the main contributions of [44] is the determination of a
right class of admissible potentials for which the perturbative scheme works. Instead of presenting the general
hypotheses to be found in Chapter 22, here we just mention the following illustrative examples covered by [44]:
all polynomial potentials of the form V (x) := xβ+ixγ with γ ≥ 0 odd and γ > (β−2)/2 and their perturbations
(in particular (1.6) and (2.19) are covered); exponential potentials of the form V (x) := α cosh(x) + i sinh(x)
with α ≥ 0; smooth version V (x) := i arctan(x) of the imaginary sign potential (2.20); and many others.

To include discontinuous potentials, we develop a robust method of z-dependent mollifications. This new
idea enables us to particularly cover the imaginary sign potential (2.20) and even its unbounded step-like
versions.

Finally, let us mention that the semiclassical pseudomodes follow as a special case of our more general
approach.
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Closed formula for the metric in the Hilbert space of a
PT-symmetric model

D. Krejčǐŕık1, H. Bı́la1,2 and M. Znojil1

1 Department of Theoretical Physics, Nuclear Physics Institute,
Academy of Sciences, 250 68 Řež near Prague, Czech Republic

2 Faculty of Mathematics and Physics, Charles University in Prague,
Ke Karlovu 3, 121 16 Praha 2

Abstract. We introduce a very simple, exactly solvable PT-symmetric non-Hermitian model with
real spectrum, and derive a closed formula for the metric operator which relates the problem to a
Hermitian one.

3.1 Introduction

In a way motivated by the needs of nuclear physics, Scholtz, Geyer and Hahne [1] established a general
mathematical framework for the consistent formulation of quantum mechanics where a set of observables are
represented by bounded non-Hermitian operatorsA1, . . . , AN with real spectra in a Hilbert spaceH. In essence,
they conjectured that in the similar situations one may find a bounded positive Hermitian operator Θ, called
metric, which fulfils

A∗
k Θ = ΘAk for all k ∈ {1, . . . , N} , (3.1)

where A∗
k denotes the adjoint operator of Ak in H.

Several years later, the notion of the metric operator Θ re-emerged as a particularly useful mathematical
tool in the context of the so-called PT-symmetric quantum mechanics [2, 3]. In this framework people usually
paid attention to the systems with a single observable, viz, with a Hamiltonian A1 ≡ H 6= H∗ which possesses
real spectrum and for which the Schrödinger equation is invariant under a simultaneous change of spatial
reflection P and time reversal T.

In the current literature a lot of effort has been devoted to the study of the particular models of H .
For their more detailed reviews and discussion the reader is referred to the proceedings of the International
Workshops on Pseudo-Hermitian Hamiltonians in Quantum Physics [4, 5, 6]. One finds that the construction
of a non-trivial operator Θ 6= I, however difficult, is a key to the correct probabilistic interpretation of all the
PT-symmetric quantum systems [7, 8, 9, 10]. Indeed, it defines “the physical” inner product (·, ·)Θ := (·,Θ ·)
which makes the Hamiltonian H “Hermitian” or, in the language of [1], quasi-Hermitian. For this reason, there
have been many attempts to calculate the metric operator Θ for the various PT-symmetric models of interest
[11, 12, 13, 14, 15, 16, 17, 18, 19]. Because of the complexity of the problem, however, it is not surprising that
most of the available formulae for Θ are just approximative, usually expressed as leading terms of perturbation
series [17].

The authors of [1] discussed why our knowledge of the new inner product was necessary for the evaluation
of the physical predictions. They emphasized that the theory endowed with it is a genuine quantum theory
satisfying all the necessary postulates. In a fairly recent continuation of this discussion [20] it has been un-
derlined that in the infinite-dimensional Hilbert spaces H the requirement of the boundedness of the metric
operator Θ plays a key role and that it deserves an extremely careful analysis in the applications where a näıve
approach may lead to wrong results. In some sense, our present paper may be read as a direct continuation of
the rigorous mathematical discussion in [20].

In particular we are going to illustrate here that our understanding of (3.1) for unbounded operators H as
the identity on functions from the operator domain of H (cf (3.9) below) requires that Θ maps the operator
domain of H into the operator domain of the adjoint H∗. In such a setting we imagined that the best way
of finding a support for such an argument can be sought in some exactly solvable PT-symmetric model. We
decided to develop a new one – such that its metric can be obtained in a closed formula and in a rigorous
manner.

The model we deal with in the present paper is one-dimensional, defined in the Hilbert space

H := L2
(
(0, d)

)

where d is a given positive number. In this Hilbert space we consider the Hamiltonian Hα which acts as the
Laplacian, i.e.,

Hαψ := −ψ′′ ,
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and satisfies the following Robin boundary conditions:

ψ′(0) + iαψ(0) = 0 and ψ′(d) + iαψ(d) = 0 . (3.2)

Here ψ is a function from the Sobolev spaceW 2,2((0, d)) and α is a real constant. That is, the operator domain
D(Hα) consists of functions with integrable (generalized) derivatives up to the second order and satisfying (3.2)
at the boundary points. Because of the nature of the boundary conditions, Hα is not Hermitian unless α = 0,
but it is PT-symmetric with the operators P and T being defined by (Pψ)(x) := ψ(d − x) and Tψ := ψ,
respectively.

It seems that our Hamiltonian Hα represents the simplest PT-symmetric model whatsoever. The fact that
the support of the non-Hermitian perturbation is of measure zero invokes the PT-symmetric models [21, 22, 23]
involving complex point interactions. But our model is even simpler, since it does not require any matching of
solutions known explicitly off the points where the δ-interaction is supported.

Indeed, the non-Hermiticity of Hα enters through the boundary conditions only, while the Hamiltonian
models a free quantum particle in the interval (0, d). Consequently, the spectral problem for Hα can be solved
explicitly in terms of sines and cosines (cf Section 3.3 for more details). Furthermore, an explicit form for the
eigenfunctions enables us to obtain a remarkably simple expression for the metric operator:

Theorem 3.1. Let Θ(α) be the linear operator defined in H by

Θ(α) := I + φα0 (φα0 , ·) + Θ0 + iαΘ1 + α2Θ2 , (3.3)

where I denotes the identity operator in H, (·, ·) is the inner product on H, antilinear in the first factor and
linear in the second one,

φα0 (x) :=

√
1

d
exp (iαx) (3.4)

and the operators Θ0, Θ1 and Θ2 acts in H as

(Θ0ψ)(x) := −1

d
(Jψ)(d) , (3.5)

(Θ1ψ)(x) := 2 (Jψ)(x) − x

d
(Jψ)(d) − 1

d
(J2ψ)(d) , (3.6)

(Θ2ψ)(x) := −(J2ψ)(x) +
x

d
(J2ψ)(d) , (3.7)

with

(Jψ)(x) :=

∫ x

0

ψ . (3.8)

Then Θ(α) is bounded, symmetric, non-negative and satisfies

∀ψ ∈ D(Hα), H∗
αΘ(α)ψ = Θ(α)Hαψ . (3.9)

Furthermore, Θ(α) is positive if the condition

αd/π 6∈ Z\{0} (3.10)

holds true.

Note that the metric Θ(α) tends to the identity operator I as α → 0, which is expected due to the fact
that H0 is nothing else than the (self-adjoint) Neumann Laplacian in H. The condition (3.10) ensures that all
the eigenvalues of Hα are simple. For simplicity, we do not consider the degenerate cases in the present paper.

This paper is organized as follows. In the following Section 3.2 we introduce the Hamiltonian Hα by means
of its associated quadratic form; this provides an elegant way of showing that the operator is closed. The
spectral problem for Hα is considered in Section 3.3; in particular, we show that the spectrum is real and
discrete, and write down the explicit eigenfunctions and eigenvalues. Section 3.4 contains the main idea of
the present paper; namely, we observe that the eigenfunctions of Hα are expressed in terms of Dirichlet and
Neumann complete orthonormal families in the interval (0, d) and use a special normalization to simplify the
eigenfunctions of the adjoint H∗

α. These enable us, in Section 3.5, to evaluate certain infinite series defining the
metric operator and prove Theorem 3.1. We conclude the paper by Section 3.6 where we add several remarks
and discuss a possible extension of our model.
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3.2 The Hamiltonian

Let us first introduce the operator Hα in a proper way. We start with the associated sesquilinear form hα
defined in the Hilbert space H by the domain D(hα) :=W 1,2((0, d)) and by the prescription:

hα(φ, ψ) := (φ′, ψ′) + iαφ(d)ψ(d)− iα φ(0)ψ(0) . (3.11)

Here (·, ·) denotes the standard inner product on H; the corresponding norm will be denoted by ‖ · ‖.
Note that the boundary terms in (3.11) are well defined because the domain of the quadratic form is

embedded in the space of uniformly continuous functions on (0, d) due to the Sobolev embedding theorem [24].
It is also known that the Sobolev space W 1,2((0, d)) is dense in H; hence hα is densely defined. Moreover, the
real part of hα, denoted by ℜhα, is a densely defined, symmetric, positive, closed sesquilinear form (since it
corresponds to the self-adjoint Neumann Laplacian in H). Of course, hα itself is not symmetric unless α = 0,
however, it can be shown that it is sectorial and closed. To see it, we use [25, Thm. VI.1.33] and prove that
the imaginary part of hα, denoted by ℑhα, is a small perturbation of ℜhα in the following sense:

Lemma 3.1. ℑhα is relatively bounded with respect to ℜhα, with
∣∣(ℑhα)[ψ]

∣∣ ≤ ǫ−1 α2 ‖ψ‖2 + ǫ (ℜhα)[ψ]

for all ψ ∈W 1,2((0, d)) and any positive constant ǫ.

Proof. Writing |ψ(d)|2 − |ψ(0)|2 =
∫ d
0

(
|ψ|2

)′
= 2ℜ

(
ψ, ψ′), and applying the Schwarz and Cauchy inequalities

to the last term, we obtain the desired result.

In view of the above properties and the first representation theorem [25, Thm. VI.2.1], there exists a unique
m-sectorial operator Hα in H such that hα(φ, ψ) = (φ,Hαψ) for all φ ∈ D(hα) and ψ ∈ D(Hα) ⊂ D(hα).
The operator domain D(Hα) consists of those functions ψ ∈ D(hα) for which there exists η ∈ H such that
hα(φ, ψ) = (φ, η) holds for every φ ∈ D(hα). Furthermore, using the ideas of [25, Ex. VI.2.16], it is possible to
verify that indeed

Hαψ = −ψ′′ ,

ψ ∈ D(Hα) =
{
ψ ∈W 2,2((0, d)) | ψ satisfies (3.2)

}
.

(3.12)

The above procedure also implies that the adjoint operator H∗
α is simply obtained by the replacement α 7→ −α.

Summing up the results, we obtain:

Proposition 3.1. The operator Hα defined by (3.12) is m-sectorial in H and satisfies

H∗
α = H−α .

3.3 The spectrum

An important property of an operator being m-sectorial is that it is closed. Then, in particular, the spectrum is
well defined by means of the resolvent operator. We claim that our Hα is an operator with compact resolvent.
This can be seen by noticing that the Neumann LaplacianH0 (associated with ℜhα) is an operator with compact
resolvent and by using the perturbation result of [25, Thm. VI.3.4] together with Lemma 3.1. Consequently,
we know that the spectrum of Hα, denoted by σ(Hα), is purely discrete, i.e., it consists entirely of isolated
eigenvalues with finite (algebraic) multiplicities.

The eigenvalue problem Hαψ = k2ψ, with k ∈ C, can be solved explicitly in terms of sines and cosines. In
particular, the boundary conditions lead to the following implicit equation for the eigenvalues:

(k2 − α2) sin(kd) = 0 . (3.13)

That is,
σ(Hα) =

{
α2
}
∪
{
k2j
}∞
j=1

, where kj := jπ/d . (3.14)

Hereafter we shall use the index j ∈ N to count the eigenvalues as in (3.14), with the convention that the
eigenvalue for j = 0 is given by α2.

While the spectrum of Hα is real, it exhibits important differences with respect to the spectra of self-adjoint
one-dimensional differential operators. For instance, the spectrum of Hα may not be simple and even the lowest
eigenvalue may be degenerate for particular choices of α. Notice also that Hα coincides with the spectrum of
the Neumann Laplacian H0 up to the lowest (zero) eigenvalue which is shifted to α2.
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In this paper we restrict to the non-degenerate case, i.e., we make the hypothesis (3.10). Then the eigen-
functions of Hα corresponding to (3.14) with the convention mentioned there are given by

ψαj (x) :=

{
Aα0 exp (−iαx) if j = 0 ,

Aαj

(
cos(kjx)− i αkj sin(kjx)

)
if j ≥ 1 ,

(3.15)

where each Aj is an arbitrary non-zero complex number. In view of Proposition 3.1, the spectrum of the
adjoint H∗

α coincides with (3.14) and the corresponding eigenfunctions are given by

φαj (x) :=

{
Bα0 exp (iαx) if j = 0 ,

Bαj

(
cos(kjx) + i αkj sin(kjx)

)
if j ≥ 1 ,

(3.16)

where each Bj is again an arbitrary non-zero complex number.
We collect the obtained spectral results into the following proposition:

Proposition 3.2. The spectrum of Hα is real and consists of discrete eigenvalues specified in (3.14). If the
condition (3.10) holds, then all the eigenvalues have multiplicity one and the corresponding eigenfunctions are
given by (3.15).

3.4 Special normalization

It follows directly by combining the eigenvalue problems for Hα and its adjoint that φαj and ψαk are orthogonal
to each other provided j 6= k and the non-degeneracy condition (3.10) holds. The stronger result

∀j, k ∈ N, (φαj , ψ
α
k ) = δjk (3.17)

will hold provided we normalize the eigenfunctions in a special way. Namely, (3.17) follows by choosing the
coefficients Aαj and Bαj according to the equations

1 = Aα0 B
α
0

1− exp(−2iαd)

2iα
, (3.18)

1 = Aαj B
α
j

(k2j − α2) d

2k2j
for j ≥ 1 . (3.19)

(If α = 0, the fraction in the first equation should be understood as the expression obtained after taking the
limit α→ 0.) These equations can clearly be satisfied as soon as (3.10) holds.

We still have a freedom in specifying Aαj and Bαj . For further purposes, however, we choose the coeffi-
cients Bαj in a very simple form by the requirements

B0 :=
√
1/d and Bj :=

√
2/d for j ≥ 1 , (3.20)

while we leave more complicated formula, determined by the equations (3.18) and (3.19), for the coefficients Aαj .
Then φα0 coincides with (3.4) and we have the decomposition

φαj (x) = χNj (x) + i
α

kj
χDj (x) for j ≥ 1 , (3.21)

where {χNj }∞j=0, respectively {χDj }∞j=1, denotes the set of normalized eigenfunctions of the Neumann, respec-
tively Dirichlet, Laplacian in H:

χNj (x) :=

{√
1/d if j = 0 ,√
2/d cos(kjx) if j ≥ 1 ,

χDj (x) :=
√
2/d sin(kjx) .

In addition to (3.21), we also have the uniform convergence φα0 → χN0 as α → 0. We point out the result we
shall need later:

Proposition 3.3. If the condition (3.10) holds true, then the eigenfunctions ψαj of Hα and the eigenfunctions
φαj of H∗

α can be chosen in such a way that they satisfy the biorthonormality relations (3.17) and the latter
satisfy (3.21).
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The decomposition (3.21) plays a crucial role in the subsequent section, mainly due to the fact that {χNj }∞j=0

and {χDj }∞j=1 are well known to form complete orthonormal families. In particular, we have the expansions

ψ =
∞∑

j=0

χNj (χNj , ψ) =
∞∑

j=1

χDj (χDj , ψ) (3.22)

and the Parseval equalities

‖ψ‖2 =
∞∑

j=0

|(χNj , ψ)|2 =

∞∑

j=1

|(χDj , ψ)|2 (3.23)

for every ψ ∈ H.

3.5 The metric

With an abuse of notation, we initially define

Θ(α) :=

∞∑

j=0

φαj (φ
α
j , ·) (3.24)

and show that this operator can be cast into the form (3.3) with (3.4)–(3.7). In fact, using (3.21) and (3.22),
it is readily seen that (3.3) holds with

Θ0 := −χN0 (χN0 , ·) (3.25)

and

Θ1 :=
∞∑

j=1

χDj (χNj , ·)− χNj (χDj , ·)
kj

, Θ2 :=
∞∑

j=1

χDj (χDj , ·)
k2j

. (3.26)

Recalling the definition (3.8) of the bounded integral operator J in H, it is evident that the rank-one oper-
ator (3.25) can be expressed in terms of J as in (3.5). It remains to verify that (3.26) can be expressed as
in (3.6) and (3.7).

First of all, we notice that the operator (3.24) is well defined in the sense that Θ1 and Θ2 as defined in (3.26)
are bounded linear operators in H. This can be seen by using (3.23) and the Schwarz inequality. Actually, the
series in (3.26) are uniformly convergent, and Θ2 can be written as an integral Hilbert-Schmidt operator, but
we will not use these facts. Our way to sum up the infinite series is based on the following lemma:

Lemma 3.2.
∞∑

j=1

χDj (x)χ
N
j (d)

kj
= −x

d
uniformly for all x ∈ [0, d] .

Proof. The series is uniformly convergent due to Abel’s uniform convergence test. Let l denote the identity
function on (0, d), i.e. l(x) := x. Using the expansion (3.22) and integrating by parts, we get

l =

∞∑

j=1

χDj (χDj , l) =

∞∑

j=1

χDj
(
(−χNj /kj)′, l

)
= −

∞∑

j=1

χDj χ
N
j (d) d/kj ,

where the last equality follows from the fact that all χNj with j ≥ 1 are orthogonal to the constant function χN0 .
This concludes the proof.

Since Jψ is an indefinite integral of ψ and (Jψ)(0) = 0, an integration by parts yields for every ψ ∈ H:

(χNj , ψ) = kj (χ
D
j , Jψ) + χNj (d) (Jψ)(d) ,

(χDj , ψ) = −kj (χNj , Jψ) = −k2j (χDj , J2ψ)− kj χ
N
j (d) (J2ψ)(d) .

Incorporating these identities into (3.26) and using (3.22) together with Lemma 3.2, we obtain the formulae (3.6)
and (3.7) for (3.26).

Now we are in a position to prove Theorem 3.1.
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Proof of Theorem 3.1. The boundedness of (3.3) is clear; in particular, crude estimates yield

‖Θ(α)ψ‖ ≤ (3 + 4αd+ 2α2d2) ‖ψ‖

for every ψ ∈ H.
Integrating by parts, it is also easy to check that the identity

(
ψ,Θ(α)ψ

)
= |(φα0 , ψ)|2 + ‖ψ + iαJψ‖2 − |(χN0 , ψ + iαJψ)|2 (3.27)

holds for every ψ ∈ H, where the right hand side is real-valued and non-negative due to (3.23). This proves
that Θ(α) is symmetric and non-negative.

Let us show that Θ(α) is positive provided (3.10) holds. If the right hand side of (3.27) were equal to zero
with a non-zero ψ ∈ H, then the first Parseval equality in (3.23) would imply that the function ψ+ iαJψ must
be constant, being orthogonal to all functions orthogonal to 1. Consequently, ψ is proportional to ψα0 and an
explicit calculation yields

|(φα0 , ψ)| =
∣∣∣∣
sin(αd)

αd

∣∣∣∣ ‖ψ‖ ,

which is clearly positive for all α satisfying (3.10).
Finally, let us comment on the identity (3.9). Let ψ ∈ D(Hα). We first note that it straightforward to check

that Θ(α)ψ belongs to D(H∗
α), so that the left hand side of (3.9) makes sense. We also have

−(Θ(α)ψ)′′ = −ψ′′ − 2iαψ′ + α2ψ + α2φα0 (φ
α
0 , ψ) = −Θ(α)ψ′′ .

Here the first equality follows at once, while the second one is not trivial, but it can be verified by using a
number of integrations by parts.

This concludes the proof of Theorem 3.1.

3.6 Concluding remarks

3.6.1 Alternative proofs of the reality of the spectrum

Recall that PT-symmetry itself is not sufficient to guarantee the reality of the spectrum of a non-Hermitian
operator (see, e.g., [26, 27]). Moreover, the existing proofs of the reality [28, 29, 30, 31] are based on rather
advanced techniques. Therefore we find it interesting that the reality of the eigenvalues of our Hamiltonian Hα

can be deduced directly from the structure of the operator, without solving the eigenvalue problem explicitly.
To see it, we rewrite the eigenvalue problem Hαψ = k2ψ using the unitary transform ψ 7→ φα0ψ := φ into

the boundary value problem

{
−φ′′ + 2iαφ′ + α2φ = k2φ in (0, d) ,

φ′ = 0 at 0, d .
(3.28)

Now we multiply the first equation in (3.28) by φ′′ and integrate over (0, d). We also multiply the complex
conjugation of the first equation in (3.28) by φ′′ and integrate over (0, d). Then we subtract the results and
use various integrations by parts together with the Neumann boundary conditions to get the identity

ℑ(k2) ‖φ′‖2 = 0 .

Consequently, either the eigenvalue k2 is real or the corresponding eigenfunction φ is constant. It remains to
realize that also the latter implies the former in view of (3.28).

Finally, let us mention that Hα can be reconsidered as a self-adjoint operator in a Krein space [29]. Then
the reality of the spectrum of Hα for |α| < π/d follows from [29, Corol. 3.3]. An alternative proof of the reality
of the spectrum of Hα for small α also follows from the perturbation result of [30].

3.6.2 Biorthonormal basis

It is easily seen that the operator Θ(α) defined by (3.24) formally satisfies (3.9), with the inverse given by
Θ(α)−1 =

∑∞
j=0 ψ

α
j (ψαj , ·) , provided {ψαj }∞j=0 and {φαj }∞j=0 fulfil in addition to (3.17) the following biorthonormal-

basis-type relation:

∀ψ ∈ H, ψ =

∞∑

j=0

ψαj (φαj , ψ) . (3.29)
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By “formally” we mean that one has to justify an interchange of summation and differentiation. We did not
pursue this direction in the present paper. Instead, we summed up the infinite series (3.24) using the special
normalization (3.20) leading to (3.21), and checked that the resulting operator indeed satisfies (3.1) in the sense
of (3.9).

Nevertheless, let us show that the expansion (3.29) holds:

Proposition 3.4. If the condition (3.10) holds true, then the eigenfunctions ψαj of Hα and the eigenfunctions
φαj of H∗

α can be chosen in such a way that (3.29) is satisfied.

Proof. Assume the special normalization of Section 3.4. Let us first verify that {ψj}αj=0 is a basis of H, i.e.,

∀ψ ∈ H, ψ =

∞∑

j=0

cψj ψ
α
j , (3.30)

where {cψj }∞j=0 is a unique sequence of complex numbers. Note that the equality in (3.30) should be understood
as a limit in the norm topology of H; in particular, (3.30) implies the weak convergence

∀φ, ψ ∈ H, (φ, ψ) = lim
m→∞

(
φ,

m∑

n=1

cψj ψ
α
j

)
. (3.31)

Substituting ψ = 0 and φ = φαk , k ∈ N, into (3.31), the biorthonormality relations (3.17) yield that (3.30) with
ψ = 0 implies that all c0j = 0. At the same time,

‖ψαj − χNj ‖2 = α2
k2j + α2

(k2j − α2)2
for j ≥ 1

and since the right hand side behaves as O(j−2) as j → ∞, we have

∞∑

j=0

‖ψαj − χNj ‖2 <∞ .

Consequently, {ψj}αj=0 is a basis ofH due to [25, Thm. V.2.20]. Finally, substituting φ = φαk , k ∈ N, into (3.31),

the biorthonormality relations (3.17) yield that cψj = (φαj , ψ) for all j ∈ N.

The same argument also implies the following expansion:

∀ψ ∈ H, ψ =
∞∑

j=0

φαj (ψ
α
j , ψ) .

3.6.3 A more general model

For simplicity, we required that α was real in the present paper. A more general model is given by the following
more general PT-symmetric boundary conditions:

ψ′(0) + (β + iα)ψ(0) = 0 and − ψ′(d) + (β − iα)ψ(d) = 0 , (3.32)

where α and β are real constants. A straightforward modification of the approach of Section 3.2 (cf also the
first paragraph of Section 3.3) yields:

Proposition 3.5. The operator Hα,β defined in H by

Hα,β ψ = −ψ′′ ,

ψ ∈ D(Hα,β) =
{
ψ ∈W 2,2((0, d)) | ψ satisfies (3.32)

}
,

is an m-sectorial operator with compact resolvent and satisfies H∗
α,β = H−α,β.

The eigenvalue problem Hα,β ψ = k2ψ, with k ∈ C, can again be solved in terms of sines and cosines, and
one gets the following implicit equation for the eigenvalues:

[
k2 − (α2 + β2)

]
sin(kd)− 2 β k cos(kd) = 0 .

The main difference with respect to the case β = 0 studied in the present paper is that Hα,β can possess
non-real complex conjugate eigenvalues for β 6= 0.
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4.1 Introduction

Although quantum mechanic is conceptually a self-adjoint theory, there are numbers of problems that require
the analysis of non-self-adjoint operators. The study of resonances of self-adjoint Schrödinger operators via
the technique of complex scaling [2] or the derivation of the famous Landau-Zener formula for the adiabatic
transition probability between eigenstates of a time-dependent two-level system [3] are just two examples.
However, in contrast to the well understood theory of self-adjoint operators, the non-self-adjoint theory can
be quite different (cf a nice review [4]) and is certainly less developed. The former is much easier to analyse
because of the existence of the spectral theorem.

Recent years brought new motivations and focused attention to aspects of problems which attracted little
attention earlier. A strong impetus comes from the so-called PT-symmetric quantum mechanics, where the
Hamiltonian H of a system is not Hermitian but the Schrödinger equation is invariant under a simultaneous
change of spatial reflection P and time reversal T (cf [5] for the pioneering work and [6] for a recent review with
many references). Here the interest consists in the fact that many of the PT-symmetric Hamiltonians possess
real spectra and that the problem can be reinterpreted as a Hermitian one in a different Hilbert space. Indeed,
and more generally, the identification is provided by the quasi-Hermiticity relation [7, 8, 9, 10]:

H∗Θ = ΘH (4.1)

valid on the domain of H . Here Θ is a bounded positive Hermitian operator, called metric.
There have been many attempts to calculate the metric operator Θ for the various PT-symmetric models of

interest (cf [1] for related references to which we add the Swanson model [11, 12, 13] and recent works [14, 15]).
Most recent developments have come up with new efficient methods how to calculate the metric [16, 17, 18, 19,
20], involving exact (non-perturbative) solutions in a compact form. Because of the complexity of the problem,
however, it is not surprising that the majority of the available formulae for Θ are still approximative, usually
expressed as leading terms of perturbation series.

Another problematic aspect of the available results is that the calculations are usually formal, partly because
the boundedness of Θ is not always verified. However, the boundedness of the metric is a necessary condition,
as addressed already in the original paper [7] and further emphasized in [21].

For these reasons we decided in [1] to introduce a new one-parametric non-Hermitian PT-symmetric Hamil-
tonian Hα with real spectrum and derived a formula for its metric Θα in a closed form and in a rigorous
manner. The latter were allowed due to the manifest simplicity of our model: Recalling the PT-symmetric
operators with general complex point interactions introduced by Albeverio, Fei and Kurasov in [22], our model
can be roughly viewed as the Hamiltonian of a potential-free particle constrained to a bounded interval with two
point-type interactions ‘sitting’ at the interval endpoints. In other words, we introduce a non-trivial coupling
due to boundary conditions rather than to a local potential term. The calculation of the metric in [1] then
relied on the fact that the eigenfunctions of Hα can be expressed explicitly in terms of trigonometric functions.
Using the completeness of the latter, the metric operator was constructed by summing up certain trigonometric
series.

The ultimate objective of this note is to point out that the series determining Θα can be summed up
alternatively – and probably more elegantly – by using the spectral theorem. Moreover, we believe that the
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resulting formula for the metric has a more transparent structure than that presented in [1]. Indeed, the
individual terms of the present formula are well-known integral operators with explicit and extremely simple
kernels (cf Remark 4.2 below). We also hope that the simplicity of the formula will stimulate further study
of the quasi-Hermiticity of our model, namely a (perturbative) computation of the square root of the metric
operator and the corresponding Hermitian counterpart of Hα.

For the convenience of the reader we state here a simple version of the spectral theorem we shall use later:

Theorem 4.1 (Spectral Theorem). Let H be a self-adjoint operator with compact resolvent in a Hilbert space
with inner product (·, ·), antilinear in the first factor and linear in the second one. Then

f(H) =
∞∑

j=0

f(Ej)ψj(ψj , ·) (4.2)

for any complex-valued, continuous function f . Here {Ej}∞j=0 and {ψj}∞j=0 denote respectively the set of
eigenvalues and corresponding eigenfunctions of H.

We refer to [23, Sec. VI.5] for a proof and a more general version of the spectral theorem when the com-
pactness assumption is relaxed. Similar spectral decompositions hold also for normal operators, but they are
in general false in the non-self-adjoint theory. Therefore it is remarkable that a modified version of (4.2) with
f(E) = En, n ∈ N, still holds for our non-Hermitian operator Hα (cf [1, Prop. 4] for the case n = 0, the other
cases being a consequence).

The spectral theorem is usually used to construct a function of a self-adjoint operator in terms of the sum
of spectral projections. In this note we use it backwards: we identify eigenprojections of a self-adjoint operator
and replace an infinite series by a function of the operator. Unfortunately, the present method does not seem
to be applicable in general. The reason why it works in the present model is that the eigenfunctions of Hα can
be expressed in terms of eigenfunctions of self-adjoint operators.

In the forthcoming Section 4.2 we recall the model introduced in [1] (we refer to that reference for more
details and other results). This is followed by Section 4.3 where the alternative formula for the metric is
established.

4.2 The model

The underlying Hilbert space of the model introduced in [1] is the space of square-integrable functions H :=
L2((0, d)), where d is a positive number. While it is irrelevant that we consider an open interval in the definition
of the Hilbert space, this choice turns out to be convenient when defining differential operators in H via the
quadratic-form approach, since the corresponding Sobolev (energy) spaces are standardly defined over open
sets only [24].

The simplicity of the Hamiltonian Hα defined in H consists in that it acts as the potential-free Hamiltonian

Hαψ := −ψ′′ in (0, d) ,

while the non-Hermiticity enters uniquely through complex Robin boundary conditions:

ψ′(0) + iαψ(0) = 0 and ψ′(d) + iαψ(d) = 0 , (4.3)

where α is a real constant. Using the quadratic-form approach, it was shown in [1] that Hα, with the domain
D(Hα) consisting of all functions ψ in the Sobolev space W 2,2((0, d)) such that (4.3) holds, is an m-sectorial
operator in H. Note that the boundary terms in (4.3) are well defined because every element of W 2,2((0, d))
can be identified with a smooth function over [0, d] in the sense of Sobolev embedding theorem [24]. The
PT-symmetry of our model is reflected by the relation

H∗
α = H−α ,

where H∗
α denotes the adjoint of Hα.

Remark 4.1. A more general class of one-dimensional Schrödinger operators with non-Hermitian boundary
conditions of the type (4.3) was studied previously by Kaiser, Neidhardt and Rehberg in [25]. In their paper –
motivated by the needs of semiconductor physics, or more generally by regarding a quantum system as an open
one – the parameter α is allowed to be complex but its imaginary part has opposite signs on the boundary points
such that the system is dissipative. In our case (4.3), we actually deal with radiation/absorption boundary
conditions in the language of theory of electromagnetic field.
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It was also shown in [1] that the spectrum of Hα is purely discrete and given by

σ(Hα) =
{
α2
}
∪
{
k2j
}∞
j=1

, where kj := jπ/d . (4.4)

Moreover, all the eigenvalues are simple provided

αd/π 6∈ Z\{0} . (4.5)

Assuming this non-degeneracy condition, the eigenfunctions of the adjoint H∗
α corresponding to the eigenvalues

counted as in (4.4) can be chosen as

φαj (x) :=




χN0 + ρα(x) if j = 0 ,

χNj (x) + i
α

kj
χDj (x) if j ≥ 1 .

(4.6)

Here

ρα(x) :=
exp(iαx) − 1√

d

and {χNj }∞j=0, respectively {χDj }∞j=1, denotes the complete orthonormal family of the eigenfunctions of the
Neumann Laplacian −∆N , respectively Dirichlet Laplacian −∆D, in H:

χNj (x) :=

{√
1/d if j = 0 ,√
2/d cos(kjx) if j ≥ 1 ,

χDj (x) :=
√
2/d sin(kjx) .

Here the index for Dirichlet eigenfunctions runs over j ≥ 1. Note that −∆N = H0 and that the spectrum
of −∆D is equal to {k2j}∞j=1.

4.3 Calculation of the metric

Still under the hypothesis (4.5), it was demonstrated in [1] that the operator

Θα :=

∞∑

j=0

φαj (φ
α
j , ·) ≡ s– lim

m→∞

m∑

j=0

φαj (φ
α
j , ·) (4.7)

is bounded, symmetric, positive and satisfying (4.1) with Hα. Here (·, ·) denotes the inner product in H,
antilinear in the first factor and linear in the second one. Furthermore, a closed integral-type formula for the
operator was derived by using known results about the sum of trigonometric functions.

Now we propose an alternative way how to sum up the infinite series in (4.7). First we write Θα as

Θα = Pα0 +Θ(0) + αΘ(1) + α2 Θ(2)

with

Pα0 := φα0 (φ
α
0 , ·) = PN0 + χN0 (ρα, ·) + ρα(χ

N
0 , ·) + ρα(ρα, ·) ,

Θ(0) :=

∞∑

j=1

χNj (χNj , ·) = I − PN0 ,

Θ(1) :=

∞∑

j=1

(
− ik−1

j χNj (χDj , ·) + ik−1
j χDj (χ

N
j , ·)

)
,

Θ(2) :=

∞∑

j=1

k−2
j χDj (χ

D
j , ·) = (−∆D)

−1 ,

where PN0 := χN0 (χN0 , ·) = P 0
0 and I denotes the identity operator in H. The equalities in the second and

fourth lines follow directly by Theorem 4.1 applied to −∆N and −∆D, respectively. In order to use the
spectral theorem in Θ(1) as well, we introduce a “momentum” operator p in H by

pψ := −iψ′ , D(p) :=W 1,2
0 ((0, d)) . (4.8)
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The adjoint operator p∗ acts in the same way but has a larger domain, D(p∗) = W 1,2((0, d)). Since χDj
and χNj belong to D(p) and D(p∗), respectively, we have pχDj = −ikjχNj and p∗χNj = ikjχ

D
j . Consequently,

Theorem 4.1 yields

Θ(1) = p

∞∑

j=1

k−2
j χDn (χ

D
n , ·) + p∗

∞∑

j=1

k−2
j χNn (χNn , ·)

= p (−∆D)
−1 + p∗(−∆⊥

N )−1 ,

where −∆⊥
N := (I − PN )(−∆N )(I − PN ). Notice that the “interchange of summation and differentiation” in

the first equality is justified just by the definition of the sum in (4.7) and the distributional derivative in (4.8).
Summing up, we get

Theorem 4.2. The linear operator Θα in H defined by

Θα = I + Pα0 − PN0 + αp (−∆D)
−1 + αp∗(−∆⊥

N )−1 + α2(−∆D)
−1 (4.9)

is bounded, symmetric, non-negative and satisfies (4.1) with Hα. Furthermore, Θα is positive if the condi-
tion (4.5) holds true.

Note that the metric Θα tends to I as α → 0, which is expected due to the fact that H0 coincides with the
self-adjoint operator −∆N .

Remark 4.2. Formula (4.9) can be written exclusively in terms of the operators p and p∗ by employing the
identities −∆D = p∗p and −∆N = pp∗. Note also that the resolvent (−∆D)

−1 and the reduced resolvent
(−∆⊥

N )−1 are integral operators with explicit and extremely simple kernels (cf [23, Ex. III.6.21]).
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[1] Krejčǐŕık D, B́ıla H, Znojil M. Closed formula for the metric in the Hilbert space of a PT-symmetric model. J Phys
A 2006;39:10143–10153.

[2] Cycon HL, Froese RG, Kirsch W, Simon B. Schrödinger operators, with application to quantum mechanics and
global geometry. Berlin: Springer-Verlag; 1987.

[3] Joye A, Kunz H, Pfister ChEd. Exponential decay and geometric aspect of transition probabilities in the adiabatic
limit. Ann Phys 1991;208(2):299–332.

[4] Davies EB. Non-self-adjoint differential operators. Bull London Math Soc 2002;34:513–532.

[5] Bender CM, Boettcher PN. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys Rev Lett
1998;80(24):5243–5246.

[6] Bender CM. Making sense of non-Hermitian Hamiltonians. Rep Prog Phys 2007;70:947–1018.

[7] Scholtz FG, Geyer HB, Hahne FJW. Quasi-Hermitian operators in quantummechanics and the variational principle.
Ann Phys 1992;213:74–101.

[8] Mostafazadeh A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum
of a non-Hermitian Hamiltonian. J Math Phys 2002;43:205–214.

[9] Mostafazadeh A. Pseudo-Hermiticity versus PT symmetry: II. A complete characterization of non-Hermitian
Hamiltonians with a real spectrum. J Math Phys 2002;43:2814–2816.

[10] Mostafazadeh A. Pseudo-Hermiticity versus PT symmetry: III. Equivalence of pseudo-Hermiticity and the presence
of antilinear symmetries. J Math Phys 2002;43:3944–3951.

[11] Swanson MS. Transition elements for a non-Hermitian quadratic Hamiltonian. J Math Phys 2004;45:585–601.

[12] Geyer HB, Scholtz FG, Snyman I. Quasi-hermiticity and the role of a metric in some boson Hamiltonians. Czech
J Phys 2004;54:1069–1073.

[13] Jones HF. On pseudo-Hermitian Hamiltonians and their Hermitian counterparts. J Phys A 2005;38:1741–1746.

[14] Mostafazadeh A. Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential.
J Phys A 2006;39:10171–10188.

[15] Mostafazadeh A. Delta-function potential with a complex coupling. J Phys A 2006;39:13495–13506.

[16] Mostafazadeh A. Differential realization of pseudo-Hermiticity: A quantum mechanical analog of Einstein’s field
equation. J Math Phys 2006;47:072103.

[17] Scholtz FG, Geyer HB. Operator equations and Moyal products–metrics in quasi-Hermitian quantum mechanics.
Phys Lett B 2006;634:84–92.

[18] Scholtz FG, Geyer HB. Moyal products–a new perspective on quasi-Hermitian quantum mechanics. J Phys A
2006;39:10189–10205.

[19] Figueira de Morisson Faria C, Fring A. Isospectral Hamiltonians from Moyal Products. Czech J Phys 2006;56:899–
908.

[20] Musumbu DP, Scholtz FG, Geyer HB. Choice of a metric for the non-Hermitian oscillator. J Phys A 2007;40:F75–
F80.

[21] Kretschmer R, Szymanowski L. Quasi-Hermiticity in infinite-dimensional Hilbert spaces. Phys Lett A 2004;325:112–
117.

[22] Albeverio S, Fei SM, Kurasov P. Point Interactions: PT-Hermiticity and Reality of the Spectrum. Lett Math Phys
2002;59:227–242.

[23] Kato T. Perturbation Theory for Linear Operators. Berlin: Springer-Verlag; 1966.

[24] Adams RA. Sobolev Spaces. New York: Academic Press; 1975.

[25] Kaiser HCh, Neidhardt H, Rehberg J. On one dimensional dissipative Schrödinger-type operators, their dilations
and eigenfunction expansions. Math Nachr 2003;252:51–69.

45



46 I Toy models



Chapter 5

On the similarity of Sturm-Liouville
operators with non-Hermitian
boundary conditions to self-adjoint and
normal operators

Published in: Complex Analysis and Operator Theory 8 (2014), 255–281

https://doi.org/10.1007/s11785-013-0301-y

Joint work with: Petr Siegl and Jakub Železný
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5.1 Introduction

Let us consider the m-sectorial realization H of the second derivative operator

ψ 7→ −ψ′′ (5.1)

in the Hilbert space H := L2(−a, a), with a > 0, subjected to separated, Robin-type boundary conditions

ψ′(±a) + c± ψ(±a) = 0 (5.2)

where c± are arbitrary complex numbers. The operator H is self-adjoint if, and only if, the constants c± are
real. The present paper is concerned with the existence and properties of similarity transformations of H to a
normal or self-adjoint operator in the non-trivial case of non-real c±.

The similarity to the normal (respectively, self-adjoint) operator is understood as the existence of a bounded
operator Ω with bounded inverse such that

h := ΩHΩ−1 (5.3)

is normal (respectively, self-adjoint). We remark that this concept is equivalent to the existence of a topo-
logically equivalent inner product in H with respect to which H is normal (respectively, self-adjoint). We
investigate the general properties of the similarity transformations, modified inner products, and transformed
operators and we present explicit closed formulae for these objects in special cases of boundary conditions.

Similarity to a normal or self-adjoint operator has been studied both for abstract and particular operators
by many authors. For the former, let us mention [38, 45, 35, 4] where resolvent criteria for the similarity were
obtained. For the analysis of specific classes of differential operators see e.g. [13, Chap.XX.1] for Sturm-Liouville
operator defined on the half-line, and [9, 15, 23, 27, 25, 24] and [2] for respectively indefinite and PT-symmetric
Sturm-Liouville operators on the whole real line.

The operators of the type (5.1)–(5.2) have been studied from many aspects and there exist a large number of
known results; we particularly mention the classical monograph of Dunford and Schwartz [13, Chapter XIX.3].
Recent years brought new motivations and focused attention to some aspects of the problem which attracted
little attention earlier.

As an example, let us mention that one-dimensional Schrödinger operators with non-Hermitian boundary
conditions of the type (5.2) were used as a model in semiconductor physics by Kaiser, Neidhardt and Rehberg
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[22]. In their paper the imaginary parts of the constants c± are required to have opposite signs such that
the system is dissipative. The authors find the characteristic function of the operators, construct its minimal
self-adjoint dilation and develop the generalized eigenfunction expansion for the dilation. See also [20, 21] for
further generalizations. Here the main idea of using non-self-adjointness comes from embedding a quantum-
mechanically described structure into a macroscopic flow and regarding the system as an open one.

However, the principal motivation of the present work is the possibility of giving a direct quantum-
mechanical interpretation of non-Hermitian operators which are similar to self-adjoint ones [40]. The most
recent strong impetus to this point of view comes from the so-called PT-symmetric quantum mechanics. Here
the reality of the spectrum of a class of non-Hermitian operators – caused by certain symmetries rather than
self-adjointness – suggests their potential relevance as quantum-mechanical Hamiltonians; see the review arti-
cles [5, 37]. It has been confirmed during the last years that it is indeed the case provided that the similarity
transformation to a self-adjoint operator can be ensured. However, it is a difficult task.

Motivated by the lack of rigorous results, the authors of [30] introduced a simple non-Hermitian PT-
symmetric operator of the type (5.1)–(5.2) and wrote down a closed formula for the (square of the) similarity
transformation (see also [29, 31]). Let us also mention that the importance of (not only) PT-symmetric version
of (5.1)–(5.2) in quantum mechanical scattering has been recently established in [19].

The present paper can be regarded as a step further. In addition to considering more general situations of
larger classes of boundary conditions and similarity to normal operators, we provide an alternative and more
elegant (integral-kernel) formulae for the similarity transformations in the PT-symmetric situation. Moreover,
we also give a remarkably simple formula for the self-adjoint operator (5.3) in this case. Finally, we succeed in
finding the so-called C-operator in a closed form, which plays the role of fundamental symmetry in a Krein-space
reformulation of the problem.

The distinguished role of PT-symmetry in the present paper can be understood as follows. It makes sense
to look for a self-adjoint operator similar to that generated by (5.1)–(5.2) only if the spectrum of the latter
is real. However, the reality of the spectrum is a highly non-trivial property unless (5.1)–(5.2) is already self-
adjoint. In general, it is known that PT-symmetry is neither sufficient nor necessary to guarantee that the
spectrum of a non-Hermitian operator is real. However, in the present model, it is clear from the eigenvalue
asymptotics (5.30) that the equality of the imaginary parts of c± is necessary to ensure that the spectrum of
(5.1)–(5.2) is real and this necessary condition is in fact guaranteed by the PT-symmetry (cf Proposition 5.2).

The paper is organised as follows. In Section 5.2 we give a precise definition of the operatorH , summarize its
known properties and recall the general concepts of quasi-Hermitian, PT-symmetric, and C-symmetric operators.
The structure and properties of the similarity transformations and the corresponding similar operators are
investigated in Section 5.3. In Section 5.4 we show how these can be applied to particular (PT-symmetric)
classes of boundary conditions and we present some explicit constructions of the studied objects. In Section 5.5
we discuss how the results can be extended to bounded and even second-order perturbations of H . Our final
Section 5.6 presents a series of concluding remarks.

5.2 Preliminaries

We start with recalling general properties of H and concepts of similarity transformations in Hilbert spaces.

5.2.1 Dirichlet and Neumann boundary conditions

In order to collect some notation we shall use later, let us first consider special choices of the boundary
conditions (5.2).

The Neumann Laplacian −∆N on H acts as the second derivative operator (5.1) equipped with the operator
domain D(−∆N ) consisting of functions ψ from W 2,2(−a, a) that satisfy (5.2) with c± = 0. The Dirichlet
Laplacian −∆D on H can be considered as the other extreme case by formally putting c± = +∞; it is properly
defined as the second derivative operator (5.1) with the operator domain D(−∆D) :=W 2,2(−a, a)∩W 1,2

0 (−a, a).
Both −∆N and −∆D are self-adjoint operators with compact resolvent.

The spectrum of the Dirichlet and Neumann Laplacians in our one-dimensional situation is well known:

σ(−∆D) = {k2n}∞n=1 ,

σ(−∆N ) = {k2n}∞n=0 ,
with kn :=

nπ

2a
.

The corresponding eigenfunctions are respectively given by

χDn (x) :=
1√
a
sin kn(x+ a), χNn (x) :=

{
1√
2a

if n = 0 ,
1√
a
cos kn(x+ a) if n ≥ 1 .

(5.4)



I.5 On the similarity of Sturm-Liouville operators to self-adjoint and normal operators 51

To simplify some expressions in the sequel, we extend the notation by χD0 := 0.
Next we introduce a “momentum” operator p and its adjoint p∗:

pψ := −iψ′, p∗ψ = −iψ′,

D(p) :=W 1,2
0 (−a, a), D(p∗) =W 1,2(−a, a).

(5.5)

The following identities hold:
ipχDn = knχ

N
n , ip∗χNn = −knχDn ,

−∆D = p∗p, −∆N = pp∗.
(5.6)

The resolvents (−∆D−k2)−1, (−∆N−k2)−1 act as integral operators with simple kernels (Green’s functions)
GkD and GkN , respectively:

GkD(x, y) =
− sin(k(x + a)) sin(k(y − a))

k sin(2ka)
, x < y ,

G
k
N (x, y) =

− cos(k(x+ a)) cos(k(y − a))

k sin(2ka)
, x < y ,

(5.7)

with x, y exchanged for x > y. Here k2 is supposed to belong to the resolvent set of the respective operator.
For k = 0, the kernel of (−∆D)

−1 simplifies to

G0
D(x, y) =

(x+ a)(a− y)

2a
, x < y , (5.8)

with x, y exchanged for x > y. The resolvent of −∆N does not exist for k = 0, of course, but one can still

introduce the reduced resolvent
(
−∆⊥

N

)−1
of the Neumann Laplacian with respect to the eigenvalue 0 (see [26,

Sec. III.6.5] for the concept of reduced resolvent). From the point of view of the spectral theorem:

(
−∆⊥

N

)−1
=

∞∑

n=1

1

k2n
χNn 〈χNn , ·〉. (5.9)

The corresponding integral kernel G⊥
N (x, y) can be obtained by taking the limit k → 0 of the regularized

expression GkN (x, y) + k−2χN0 (x)χN0 (y). We find

G⊥
N (x, y) =

(x+ a)2

4a
+

(y − a)2

4a
− a

3
, x < y , (5.10)

with x, y exchanged for x > y.
Finally, we introduce operators

J ι :=
∞∑

n=0

C2
n χ

ι
n〈χιn, ·〉 , ι ∈ {D,N} , (5.11)

where Cn are positive numbers satisfying

0 < m1 < Cn < m2 <∞ (5.12)

for all n ≥ 0, with given positive m1,m2. The sum in the definition (5.11), as well as all other analogous
expressions in the following, are understood as limits in the strong sense.

5.2.2 General properties of H

We give a precise meaning to (5.1)–(5.2) via an operator realization H on the Hilbert space H ≡ L2(−a, a)
defined by

Hψ := −ψ′′,

D(H) :=
{
ψ ∈W 2,2(−a, a) : ψ′(±a) + c±ψ(±a) = 0

}
.

(5.13)

It is customarily introduced as the m-sectorial operator associated with the densely defined, closed, sectorial
quadratic form

tH [ψ] := ‖ψ′‖2 + c+|ψ(a)|2 − c−|ψ(−a)|2,
D(tH) :=W 1,2(−a, a),

(5.14)

by the representation theorem [26, Sec. VI.2.1]. Here ‖ · ‖ denotes the standard norm in H; the corresponding
inner product will be denoted by 〈·, ·〉 and it will be assumed to be antilinear in the first component.
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Proposition 5.1 (General known facts).

(i) H is m-sectorial. The adjoint operator H∗ is obtained by taking the complex conjugation of c± in the
boundary conditions (5.2).

(ii) H forms a holomorphic family of operators of type (B) with respect to the boundary parameters c±.

(iii) H has compact resolvent.

(iv) H is a discrete spectral operator.

(v) If all eigenvalues are simple, then H is similar to a normal operator. If the spectrum of H is in addition
real, then H is similar to a self-adjoint operator.

For properties (i)–(iii) we refer to the book of Kato [26] (see, in particular, Ex. VI.2.16 and Thm. VI.2.5,
Ex. VII.4.11, and Thm. VII.4.3, respectively). The proof of (iv) is contained in Chapt. XIX.3 of the monograph
of Dunford and Schwartz [13]. Property (v) is a consequence of (iv). The similarity to a normal operator can
be equivalently stated as the Riesz basicity of the eigenvectors of H ; this property is shared by all second
derivative operators with strongly regular boundary conditions [36].

Although the eigenvalues ofH are generically simple, degeneracies may appear. However, the only possibility
are the eigenvalues of algebraic multiplicity two and geometric multiplicity one. In this case, operatorH cannot
be similar to a normal one, nevertheless, the eigenvectors together with generalized eigenvectors still form a
Riesz basis.

Now we turn to symmetry properties of H .

Definition 5.1 (PT-symmetry). We say that H is PT-symmetric if

[PT, H ] = 0, (5.15)

where P and T are the bounded (respectively linear and antilinear) operators defined on the whole Hilbert
space H by

(Pψ)(x) := ψ(−x), (Tψ)(x) := ψ(x). (5.16)

It should be stressed that PT is an antilinear operator. The commutator relation (5.15) means precisely
that

(PT)H ⊂ H(PT) ,

as usual for the commutativity of an unbounded operator with a bounded one (cf [26, Sec. III.5.6]). In the
quantum-mechanical context, P corresponds to the parity inversion (space reflection), while T is the time
reversal operator.

Definition 5.2 (S-self-adjointness). We say that H is S-self-adjoint if the relation H = S−1H∗S holds with
a boundedly invertible operator S.

We will use this concept in a wide sense, with S being either linear or antilinear operator. If S is a conjugation
operator (i.e. antilinear involution), then our definition coincides with the concept of J-self-adjointness [14,
Sec. III.5].

While Definition 5.2 is quite general, Definition 5.1 makes sense for operators in a complex functional Hilbert
space only. In our case, we have:

Proposition 5.2 (Symmetry properties).

(i) H is T-self-adjoint.

(ii) H is P-self-adjoint if, and only if, c− = −c+.

(iii) H is PT-symmetric if, and only if, c− = −c+.

Property (ii) coincides with the notion of self-adjointness in the Krein space equipped with the indefinite
inner product 〈·,P·〉. It is also referred to as P-pseudo-Hermiticity in physical literature (see, e.g., [37]). In our
case, it follows from Proposition 5.2 that H is P-self-adjoint if, and only if, H is PT-symmetric. In general,
however, these two notions are unrelated (for a class of PT-symmetric operators which are not P-self-adjoint,
see e.g. [31, Rem.4.10]).

It follows from Proposition 5.2.(i) that the residual spectrum ofH is empty (cf [8, Corol. 2.1]). Alternatively,
it is a consequence of Proposition 5.1.(iii), which in addition implies that the spectrum of H is purely discrete.
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We denote the (countable) set of eigenvalues of H by {λn}∞n=0 and the corresponding set of eigenfunctions
by {ψn}∞n=0. Similarly, let {λn}∞n=0 and {φn}∞n=0 be the set of eigenvalues and eigenfunctions of the adjoint
operator H∗. That is

Hψn = λnψn, H∗φn = λnφn. (5.17)

Eigenfunctions ψn and φm corresponding to different eigenvalues, i.e. λn 6= λm, are clearly orthogonal. Solving
the eigenvalue equation for H in terms of sine and cosine functions, it is straightforward to reduce the boundary
value problem to an algebraic one.

Proposition 5.3 (Spectrum). The eigenvalues λn = l2n of H are solutions of the implicit equation

sin(2al)(c−c+ + l2) + (c− − c+)l cos(2al) = 0 . (5.18)

The corresponding eigenfunctions of H and H∗ respectively read

ψn(x) = An
1√
a

(
cos(ln(x+ a))− c−

ln
sin(ln(x+ a))

)
,

φn(x) =
1√
a

(
cos(ln(x + a))− c−

ln
sin(ln(x + a))

)
.

(5.19)

If all eigenvalues are simple, ψn can be normalized through the coefficients An in such a way that 〈ψn, φm〉 =
δnm.

The spectrum of H has been described more explicitly for the PT-symmetric case. First of all, as a
consequence of the symmetry, we know that the spectrum is symmetric with respect to the real axis. In the
following proposition we summarize more precise results obtained in [30, 31].

Proposition 5.4 (PT-symmetric spectrum). Let c± = iα± β, with α, β ∈ R.

1. If β = 0 then all eigenvalues of H are real,

λ0 = α2, λn = k2n, n ∈ N. (5.20)

The corresponding eigenfunctions of H and H∗ respectively read

ψ0(x) = A0e
−iα(x+a), ψn(x) = An

(
χNn (x)− i

α

kn
χDn (x)

)
,

φ0(x) =
1√
2a

eiα(x+a), φn(x) = χNn (x) + i
α

kn
χDn (x).

(5.21)

If α 6= kn for every n ∈ N, then all the eigenvalues are simple and choosing

A0 :=
αe2iαa

√
2a

sin(2αa)
, An :=

k2n
k2n − α2

, (5.22)

we have the biorthonormal relations 〈ψn, φm〉 = δnm.

2. If β > 0, then all the eigenvalues of H are real and simple.

3. If β < 0, then all the eigenvalues are either real or there is one pair of complex conjugated eigenvalues
with real part located in the neighbourhood of α2 + β2.

In any case, the eigenvalue equation (5.18) can be rewritten as

(l2 − α2 − β2) sin(2al)− 2βl cos(2al) = 0. (5.23)

5.2.3 Concept of the metric operator

We recall the concept of metric operator (or quasi-Hermitian operators introduced in [11]), widely used in
PT-symmetric literature.

Definition 5.3 (Metric operator and quasi-Hermiticity). Bounded positive 1 operator Θ with bounded inverse
is called a metric operator for H , if H is Θ-self-adjoint. H is then called quasi-Hermitian.

1A is positive if 〈f, Af〉 > 0 for all f ∈ H, f 6= 0.
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It is obvious that the quasi-Hermitian operator H is self-adjoint with respect to the modified inner product
〈·, ·〉Θ := 〈·,Θ·〉. It is also not difficult to show that the metric operator exists if, and only if, H is similar to a
self-adjoint operator. Moreover, since H has purely discrete spectrum, the metric operator can be obtained as

Θ =

∞∑

n=0

C2
n φn〈φn, ·〉, (5.24)

where φn are eigenfunctions of H∗ and Cn are real constants satisfying (5.12). As mentioned below (5.11), the
sum is understood as a limit in the strong sense.

The expression (5.24) illustrates a non-uniqueness of the metric operator caused by the arbitrariness of Cn.
The latter can be actually viewed as a modification of the normalization of functions φn. Choosing different
sequences {Cn}∞n=0, we obtain all metric operators for H , cf [42, 44].

It is important to stress that if we define an operator Θ by (5.24), we find that such Θ is bounded, positive,
and with bounded inverse whenever {φn}∞n=0 is a Riesz basis. Thus, by virtue of Proposition 5.1.(v), such a Θ
exists if, and only if, all eigenvalues of H are simple. However, the Θ-self-adjointness of H is satisfied if, and
only if, the spectrum of H is real. Otherwise, only ΘHΘ−1H∗ = H∗ΘHΘ−1 holds, cf [44], which is equivalent
to the fact that H is similar to a normal operator.

In the following, the operator Θ is always defined by (5.24) regardless if it is a metric operator for H in
view of Definition 5.3.

It should be also noted that Θ, as a positive operator, can be always decomposed to

Θ = Ω∗Ω. (5.25)

One example of such Ω is obviously
√
Θ. We shall take the advantage of some different decompositions of the

type (5.25) later.

It follows easily from Definition 5.3 that the operator h defined by (5.3) with Ω given by (5.25) is self-adjoint
if Θ is a metric operator for H . If all eigenvalues of H are simple but no longer entirely real, h is (only) a
normal operator. Conversely, if (5.3) holds with a self-adjoint h, then it is easily seen that (5.25) represents a
metric for H . We summarize the considerations into the following proposition.

Proposition 5.5. H is quasi-Hermitian if, and only if, H is similar to a self-adjoint operator.

5.2.4 Concept of the C operator

For PT-symmetric operators, the notion of C operator was introduced in [7] and formalized in [2]. It was
observed in [34] and in many works after that paper that Krein spaces provide suitable framework for studying
PT-symmetric operators. Indeed, PT-symmetric operators which are at the same time P-self-adjoint are in fact
self-adjoint in the Krein space equipped with the indefinite inner product 〈·,P·〉. Recall that our operator H is
P-self-adjoint if, and only if, it is PT-symmetric (cf Proposition 5.2).

Definition 5.4 (C operator). Assume that H is P-self-adjoint (cf Proposition 5.2). We say that H possesses
the property of C-symmetry, if there exists a bounded linear operator C such that [H,C] = 0, C2 = I, and PC

is a metric operator for H .

Thus, from the point of view of metric operators, we can find the C operator as C := PΘ for Θ satisfying
(PΘ)2 = I. Hence C-symmetry allows us to naturally choose a metric operator. Besides a possible physical
interpretation of C discussed in [6, 5], it appears naturally in the Krein spaces framework as pointed out in
[32, 33] as a fundamental symmetry of the Krein space (H, 〈·,P·〉) with an underlying Hilbert space (H, 〈·,PC·〉).

5.3 General results

In this section we provide general properties of the metric operator Θ defined in (5.24) and its decompositions Ω
from (5.25). Further, we investigate the operator h defined in (5.3) and its quadratic form.

5.3.1 The similarity transformation

Let {ψn}∞n=0 and {φn}∞n=0 denote the set of eigenvectors of H and H∗, respectively. We assume that ψn and φn
form Riesz bases and that they are normalized in such a way that 〈ψn, φm〉 = δmn. In view of Propositions 5.1,
5.3, we know that this is satisfied if all the eigenvalues of H are simple, which is a generic situation.
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Let {en}∞n=0 be any orthonormal basis of H. If all eigenvalues of H are simple, we introduce an operator Ω
by

Ω :=

∞∑

n=0

en〈φn, ·〉. (5.26)

Clearly, Ω : ψn 7→ en.
Ω is defined only if all eigenvalues are simple, however, sometimes it is possible to extend it by continuity,

see examples in Section 5.4. Nonetheless, such Ω is typically not invertible and the dimension of the kernel
corresponds to the size of Jordan blocks appearing in the spectrum of H .

Basic properties of Ω are summarized in the following.

Lemma 5.1. Let all eigenvalues of H be simple. Then Ω is a bounded operator with bounded inverse given by

Ω−1 =

∞∑

n=0

ψn〈en, ·〉, (5.27)

i.e. Ω−1 : en 7→ ψn. The adjoint of Ω reads

Ω∗ =

∞∑

n=0

φn〈en, ·〉. (5.28)

i.e. Ω∗ : en 7→ φn and Ω∗Ω = Θ, where Θ is defined in (5.24) with Cn = 1.

Furthermore, we show how the operator Ω can be realized.

Theorem 5.1. Let all eigenvalues of H be simple. Ω can be expressed as

Ω = U + L, (5.29)

where U :=
∑∞

n=0 en〈χNn , ·〉, i.e. U : χNn 7→ en, is a unitary operator, and L is a Hilbert-Schmidt operator.

Proof. At first we remark that it suffices to prove that Ω = I + L̃ for en := χNn , where L̃ is Hilbert-Schmidt.
More precisely, if we compose U from the claim and I+L̃, we obtain Ω in (5.29) since L = UL̃ is Hilbert-Schmidt
too. Thus, we consider this choice of en in the following. Furthermore, we put a := π/2 for simplification of
the formulae. This specific choice is in fact harmless, since we can easily transfer the results for different a
using the isometry V : L2(−π/2, π/2) → L2(−a, a) defined by ψ(x) 7→

√
π
2aψ(

πx
2a ).

The asymptotic analysis of eigenvalues of H in [13, proof of Lem. XIX.3.10] shows that

ln = n+
c+ − c−
πn

+ O(n−2),

λn ≡ l2n = k2n +
2(c+ − c−)

π
+ O(n−1),

(5.30)

and |ℑ(ln)| is uniformly bounded in n. These formulae are valid except for a finite number N0 of eigenvalues.
We set εn := ln − kn = ln − n. Using elementary trigonometric identities, we rewrite the eigenfunctions φn

as follows
φn(x) = χNn (x) cos (εn(x+ a))− χDn (x) sin (εn(x+ a))

− c−

ln

[
χDn (x) cos(εn(x+ a)) + χNn (x) sin (εn(x+ a))

]
.

(5.31)

We further rewrite the cosine and sine functions in this expression as

cos (εn(x+ a)) = 1 + εn
2 cos (εn(x + a))− 1

εn
2 =: 1 + εn

2 cn(x),

sin (εn(x+ a)) = εn
sin (εn(x+ a))

εn
=: εn sn(x).

(5.32)

Note that ‖cn‖ and ‖sn‖ are uniformly bounded in n because of the properties of εn. The building block
χNn 〈φn, ·〉 of Ω then becomes

χNn 〈φn, ·〉 = χNn 〈χNn , ·〉+ ε2nχ
N
n 〈χNn cn, ·〉 − εnχ

N
n 〈χDn sn, ·〉

− c−
ln

(
χNn 〈χDn , ·〉+ ε2nχ

N
n 〈χDn cn, ·〉+ εnχ

N
n 〈χNn sn, ·〉

)
.

(5.33)
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Taking the sum of χNn 〈φn, ·〉 as in (5.26), we obviously get Ω = I + L̃.
It remains to show that the Hilbert-Schmidt norm ‖L̃‖HS of L̃ is finite. We will understand L̃ as a sum

L̃ = L̃N0 + L̃∞, where

L̃N0 :=

N0−1∑

n=0

χNn 〈φ̃n, ·〉, L̃∞ :=

∞∑

n=N0

χNn 〈φ̃n, ·〉, (5.34)

and φ̃n := φn − χNn . L̃N0 is a finite rank operator, hence it is automatically Hilbert-Schmidt and it suffices to
consider L̃∞ in the rest of the proof. We estimate explicitly only one term in the expression for ‖L̃∞‖2HS, the
rest follows in a similar way:

∞∑

p=0

〈 ∞∑

n=N0

εnχ
N
n

〈
χDn sn, χ

N
p

〉
,

∞∑

m=N0

εmχ
N
m

〈
χDmsm, χ

N
p

〉
〉

=

∞∑

p=0

∞∑

n=N0

|εn|2
∣∣〈χDn sn, χNp

〉∣∣2 ≤ 1

a

∞∑

n=N0

|εn|2‖sn‖2 <∞.

(5.35)

Here the first inequality follows by the Bessel inequality (after interchanging the order of summation, which
is justified) and by estimating χDn by its supremum norm. The asymptotic behaviour of εn and the uniform
boundedness of ‖sn‖ are used in the last step.

Remark 5.1. The proof can be little shortened using the notion of Bari basis [17, Ch.VI]. Indeed, combining
Thm. VI.3.3 from [17] (or the results of the original work [28]) with the asymptotics (5.30), it can be verified
in the analogous way as in the proof above that eigenfunctions of H form the Bari basis, so that the results
follow. This also suggests that Theorem 3.2 might be well known in some respect, however, unable to find a
suitable reference and in order to make the present paper self-contained, we present the entire, direct proof
here. This remark applies also to Theorem 5.4.

Corollary 5.1. Let all eigenvalues of H be simple. Then

Θ := Ω∗Ω = I +K (5.36)

coincides with Θ defined in (5.24) with Cn = 1. Here K is a Hilbert-Schmidt operator that can be realized as
an integral operator with a kernel belonging to L2((−a, a)× (−a, a)).

Proof. The claim follows from Theorem 5.1 and the well-known facts that Hilbert-Schmidt operators are *-
both-sided ideal in the space of bounded operators and can be realized as integral ones, see [39, Thm.VI.23].

Remark 5.2. Slight modification of the definition of Ω and the proof of Theorem 5.1 yields the analogous
result for operators Θ defined in (5.24) with arbitrary Cn. It suffices to consider fn := Cnen instead of en. The
resulting form is

Θ = JN + K̃, (5.37)

where JN is defined in (5.11) and K̃ is again a Hilbert-Schmidt operator. JN itself, however, can be a sum of
a bounded and a Hilbert-Schmidt operator, as we shall see in examples.

5.3.2 The operator h similar to H

We further investigate the properties of the operator h from (5.3) and its quadratic form.

Proposition 5.6. Let S be an open connected set in C2 such that for all (c−, c+) ∈ S all eigenvalues of H are
simple. Then Ω and thereby Θ are bounded holomorphic families in S with respect to parameters c±.

Proof. We verify the criterion stated in [26, Sec. VII.1.1]. We have proved already that Ω is bounded. It
remains to show that 〈f,Ωg〉 is holomorphic for every f, g from a fundamental set of H that we choose as
the orthonormal basis {en}∞n=0. 〈em,Ωen〉 = 〈φm, en〉 is holomorphic because φm is an eigenfunction of the
operator H∗, which can be viewed as a holomorphic family of operators of type (B) with respect to the
parameters c±.

Corollary 5.2. Assume the hypothesis of Proposition 5.6. Then h := ΩHΩ−1 is a holomorphic family of
operators in S with respect to parameters c±.
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Since the operator H is a holomorphic family of type (B), i.e. it is naturally defined via quadratic forms
with the domain W 1,2(−a, a) independent of the parameters c±, h is expected to possess a similar property.
To prove it, we have to particularly show that the associated quadratic forms corresponding to different values
of c± have the same domain, which is not guaranteed by Corollary 5.2. To this end we analyse the quadratic
form associated to h, where we set en := χNn in the definition of Ω.

Theorem 5.2. Let all eigenvalues of H be simple and let en := χNn in (5.26). Then Ω = I+L and Ω−1 = I+M ,
where L, M are Hilbert-Schmidt operators. Ω,Ω∗,Ω−1, (Ω−1)∗ are bounded operators on W 1,2(−a, a) and
W 2,2(−a, a). Furthermore, the following estimates hold for all φ ∈W 1,2(−a, a) and arbitrary δ > 0:

‖(L∗φ)′‖2 ≤ C
(
δ‖φ′‖2 + δ−2‖φ‖2

)
,

‖(Mφ)′‖2 ≤ C
(
δ‖φ′‖2 + δ−2‖φ‖2

)
,

(5.38)

with C being constants not dependent on δ and φ.

Proof. We set a := π/2 as in the proof of Theorem 5.1. M is Hilbert-Schmidt since I = ΩΩ−1 = I+L+M+LM
and L is Hilbert-Schmidt.

We consider Ω∗ at first. Following the proof of Theorem 5.1, L∗ can be written as

L∗f =

∞∑

k=0

φ̃k〈χNk , f〉, (5.39)

where φ̃k := φk − χNk and f ∈ H. We show that L∗ is bounded on W 1,2(−a, a). We estimate the Hilbert-
Schmidt norm of L∗ on W 1,2(−a, a) with help of the orthonormal basis fn := χNn /

√
1 + n2. In fact, it suffices

to estimate: ∞∑

n=0

〈(L∗fn)
′, (L∗fn)

′〉 =
∞∑

n=0

1

1 + n2
‖φ̃′n‖2 (5.40)

where (recall (5.31) and (5.32))

φ̃′n = −nεn2 χDn cn − εn
2 χNn sn − nεn χ

N
n sn − εn χ

D
n (1 + εn

2 cn)

+ c−
[
χNn (1 + εn

2 cn)− εn χ
D
n sn

]
.

(5.41)

Using the asymptotic properties of εn and the uniform boundedness of cn, sn (see (5.30) and (5.32), respectively)
together with the normalization of χιn, we conclude that ‖φ̃′n‖ ≤ C uniformly in n. Therefore (5.40) is finite.

Using the same technique, we can show that the Hilbert-Schmidt norm of L∗ in W 2,2(−a, a) is finite. To
this end we select the basis χNn /

√
1 + n2 + n4, the rest is based on ‖φ̃′′n‖ = O(n) as n→ ∞.

Let us now establish the inequalities (5.38). Consider φ ∈ W 1,2(−a, a), its basis decomposition φ =∑∞
n=0 αnχ

N
n , and the identity

∞∑

n=0

|nαn|2 = ‖φ′‖2. (5.42)

Hence,

‖(L∗φ)′‖2 =
∞∑

m,n=0

αmαn〈φ̃′m, φ̃′n〉, (5.43)

and having the explicit form of φ̃′n, see (5.41), we have to estimate several terms. We show the technique only
for one term, the estimate of remaining terms is analogous. First, using the uniform boundedness of ‖cn‖, ‖sn‖,
the asymptotics εn = O(n−1) and the uniform boundedness of ‖χNn ‖∞, it is easy to see that

∞∑

m,n=0

mn |αm||αn||εm||εn||〈χNmsm, χNn sn〉| ≤ C

( ∞∑

n=1

|αn|
)2

holds with some positive constant C. It remains to estimate the l1-norm of αn by the l2-norms of αn and nαn
(which equal ‖φ‖ and ‖φ′‖, respectively). This is rather algebraic:

( ∞∑

n=1

|αn|
)2

=

( ∞∑

n=1

(
|αn|n

)b |αn|1−b n−b
)2

≤
( ∞∑

n=1

|αn|2 n2

)b( ∞∑

n=1

|αn|2
)1−b( ∞∑

n=1

n−2b

)

≤ Cb ‖φ′‖2b ‖φ‖2(1−b)

≤ Cb

(
b δ ‖φ′‖2 + (1− b) δ−

b
1−b ‖φ‖2

)
,
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with any b, δ ∈ (0, 1). Here the first inequality follows by the generalized Hölder inequality and the last one is
a consequence of the Young inequality. The exponent b is chosen in such a way that 2b > 1, so that the sum
of n−2b (denoted by Cb) converges. If we put b = 2/3, we obtain the inequality in the claim.

One can show, using the asymptotics (5.30), that it follows from the normalization requirement 〈φn, ψn〉 = 1
that An, the normalization constants of ψn, see (5.19), satisfy An = 1+O(n−1). Then the claims for Ω−1 and
M can be derived in the same manner.

To justify that Ω and (Ω−1)∗ are bounded on W 1,2(−a, a) and W 2,2(−a, a), it suffices to realize that Ω−1

and Ω∗ are invertible because they are invertible in L2(−a, a) and the inverse is bounded because of the form
identity plus compact operator on considered Sobolev spaces.

Corollary 5.3. Assume the hypotheses of Theorem 5.2. Then h := ΩHΩ−1 is a holomorphic family of
operators of type (B) with respect to c±. The associated quadratic form th, in the sense of the representation
theorem [26, Thm. VI.2.1], reads

th[ψ] = ‖ψ′‖2 + 〈(L∗ψ)′, ψ′〉+ 〈ψ′, (Mψ)′〉+ 〈(L∗ψ)′, (Mψ)′〉
+ c+

[(
ψ(a) + (L∗ψ)(a)

)(
ψ(a) + (Mψ)(a)

)]

− c−
[(
ψ(−a) + (L∗ψ)(−a)

)(
ψ(−a) + (Mψ)(−a)

)]
,

D(th) =W 1,2(−a, a).

(5.44)

Proof. The form th defined in (5.44) is sectorial and closed due to the perturbation result [26, Thm. VI.1.33],
regarding u[ψ] := th[ψ] − ‖ψ′‖2 as a perturbation of t0[ψ] := ‖ψ′‖2. Indeed, the inequalities (5.38) applied
on u[ψ] yield that u is t0-bounded with t0-bound 0. Therefore, due to the first representation theorem [26,
Thm. VI.2.1], there is a unique m-sectorial operator associated with th. Let us denote it by h̃. Our objective
is to show that h̃ = h.

Using the definition of h by the similarity transformation, i.e. h = ΩHΩ−1, and the fact that H is associated
to tH , we know that the domain of h are functions u such that, firstly, Ω−1u ∈ W 1,2(−a, a) and, secondly,
there exists w ∈ L2(−a, a) such that

tH(Ω
∗v,Ω−1u) = (v, w) (5.45)

for all v such that Ω∗v ∈ W 1,2(−a, a). However, by Theorem 5.2, Ω, Ω∗, Ω−1, (Ω∗)−1 are bounded on
W 1,2(−a, a) and it is easy to check that the identity

tH(Ω∗v,Ω−1u) = th(v, u) (5.46)

holds for all u, v ∈W 1,2(−a, a). Consequently, the operators h̃ and h indeed coincide.

Remark 5.3. We remark that the boundedness of Ω, Ω∗, Ω−1 and (Ω−1)∗ in W 2,2(−a, a) was not used in
the proof Corollary 5.3. Nevertheless, this property is useful if we analyse the domain of h directly from
the relation h = ΩHΩ−1. It follows that D(h) consists of functions ψ from W 2,2(−a, a) satisfying boundary
conditions (Ω−1ψ)′(±a) + c±(Ω−1ψ)(±a) = 0.

5.4 Closed formulae in PT-symmetric cases

We present closed formulae of operators Θ, Ω and h corresponding to H with special PT-symmetric choice of
boundary conditions, c± := iα, with α ∈ R. This case has already been studied in a similar context in [30, 29],
where the first formulae of the metric Θ were given. We substantially generalize these results here.

We essentially rely on the original idea of [29] to “use the spectral theorem backward” to sum up the infinite
series appearing in the definition of Θ in (5.24). The attempts to find Ω as the square root of Θ using the
holomorphic and self-adjoint calculus are contained in [47, 46], however, only approximations of the resulting
self-adjoint operator h similar to H were found there. The main novelty of the present approach comes from
the more general factorization (5.25) with (5.26), which enables us to obtain exact results. Formulae contained
in this section are obtained by tedious although straightforward calculations that we do not present entirely.

Finally, we present the metric operator for H with general PT-symmetric boundary conditions, c± := iα±β.
In this case, the eigenvalues are no longer explicitly known, nevertheless, the experience from previous examples
and formulation of partial differential equation together with a set of “boundary conditions” for the kernel of
the integral operator provide the correct result.
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5.4.1 Reduction to finding a Neumann metric

Comparing (5.11) with (5.24), we see that JN and JD are the metrics for the Neumann and Dirichlet Laplacians,
respectively. The former is abbreviated to the “Neumann metric” in the sequel.

We start with the following fundamental result.

Proposition 5.7. Let c± := iα, with α ∈ R. Then the operator Θ defined in (5.24) has the form

Θ = JN + C2
0 θ1 + JNθ2 + JDθ3, (5.47)

where J ι, with ι ∈ {D,N}, are defined in (5.11), C0 > 0, and θi are integral operators with kernels:

θ1(x, y) :=
i

a
e

iα
2 (x−y) sin

(α
2
(x− y)

)
,

θ2(x, y) :=
iα

2a

[
y − a sgn(y − x)

]
,

θ3(x, y) :=
α2

2a

(
a2 − xy

)
− iα

2a
x− iα

2

[
1− iα(y − x)

]
sgn(y − x).

(5.48)

Θ is the metric operator for H, see Definition 5.3, if, and only if, α 6= kn for every n ∈ N.

Proof. Using the explicit form (5.21) of functions φn and the definition (5.24) of Θ, we obtain

Θ =

∞∑

n=0

C2
nχ

N
n 〈χNn , ·〉+ C2

0

(
φ0〈φ0, ·〉 − χN0 〈χN0 , ·〉

)

+ α2
∞∑

n=1

C2
n

k2n
χDn 〈χDn , ·〉+ iα

∞∑

n=1

C2
n

kn
χDn 〈χNn , ·〉 − iα

∞∑

n=1

C2
n

kn
χNn 〈χDn , ·〉.

(5.49)

Employing the operators J ι and p, p∗ introduced in (5.11) and (5.5), respectively, and relations (5.6) we obtain:

Θ = JN
∞∑

n=0

χNn 〈χNn , ·〉+ C2
0

(
φ0〈φ0, ·〉 − χN0 〈χN0 , ·〉

)

+ αJNp

∞∑

n=1

1

k2n
χDn 〈χDn , ·〉

+ JD

(
α2

∞∑

n=1

1

k2n
χDn 〈χDn , ·〉+ αp∗

∞∑

n=1

1

k2n
χNn 〈χNn , ·〉

)
.

(5.50)

It follows from the functional calculus for self-adjoint operators that (5.50) can be written as

Θ = JN + C2
0

(
φ0〈φ0, ·〉 − χN0 〈χN0 , ·〉

)
+ αJNp(−∆D)

−1

+ JD
[
α2(−∆D)

−1 + αp∗(−∆⊥
N )−1

]
.

(5.51)

By inserting the explicit integral kernels of the resolvents, see Section 5.2.1, we obtain the formula (5.47)
with (5.48).

To ensure that such Θ represents as metric operator, we recall that the spectrum of H is always real, see
Proposition 5.4. Moreover, it is simple if, and only if, the condition in the last claim is satisfied.

Remark 5.4. The formula (5.47) can be rewritten in terms of the operator JN only. Indeed, it is possible to
show that

JD = p∗JNp(−∆D)
−1. (5.52)

The final result is then
Θ = JN + C2

0θ1 + JNθ2 + p∗JNθ4, (5.53)

where θ4 := p(−∆D)
−1θ3 is an integral operator with kernel

θ4(x, y) =
α

12a

(
y2(3− iαy) + 3x2(1− iαy) + 2a2

[
1 + iα(3x − y)

])

− 1

4
α

(
2− iα(y − x)

)
(y − x) sgn(y − x).

(5.54)

Note that the expression (5.54) is a result of a rather lengthy computation.
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Any metric operator for H in Proposition 5.7 can be obtained by determining JN for given constants Cn.
Thus we managed to transform the problem of constructing the metric operators for non-self-adjoint operator
H to the problem of constructing the metric operators JN for the Neumann Laplacian −∆N . This significantly
simplifies the problem, since −∆N is self-adjoint and its metric operators are bounded, positive operators
with bounded inverse commuting with −∆N . For instance, any bounded, uniformly positive function of −∆N

represents a metric operator. Moreover, it was shown in [46] that any JN can be approximated in the strong
sense by a polynomial of I + λ(−∆N − λ)−1, with λ ∈ ρ(−∆N ).

We consider two choices of constants Cn in the following and we find final formulae for the corresponding
metric operators.

5.4.2 The constant-coefficients metric

Let C2
n := 1 for every n ≥ 0. Then JN = JD = I and the metric operator Θ reads Θ = I +K, where K is an

integral operator with the kernel

K(x, y) =
i

a
ei
α
2 (x−y) sin

(α
2
(x− y)

)
+

iα

2a

(
|y − x| − 2a

)
sgn(y − x)

+
α2

2a

(
a2 − xy − a|y − x|

)
.

(5.55)

Formula (5.55) represents a remarkably elegant form for the metric operator found firstly in [30, 29].

5.4.3 The C operator

Another choice of Cn is motivated by the concept of C operator, see Definition 5.4. We want to find such Θ that
C2 = I, where C = PΘ. Since H is P-self-adjoint, we have Pφn = Dnψn with some numbers Dn. Assuming the
non-degeneracy condition α 6= kn for every n ≥ 0, an explicit calculation shows that

D0 =
sin(2αa)

2αa
, Dn = (−1)n

k2n − α2

k2n
, n ∈ N. (5.56)

The condition (PΘ)2 = I then restricts Cn from (5.24) to

C2
0 =

2|α|a
| sin(2αa)| , C2

n =
k2n

|k2n − α2| , n ∈ N. (5.57)

In order to simplify the formulae, we consider only α ∈ (0, k1) in the following.

Remark 5.5. As mentioned below (5.24), any choice of Cn can be interpreted as a sort of normalisation of φn.
It is therefore interesting to notice that (5.57) results into the symmetric normalization of φn and ψn when
〈φn, ψn〉 = 1 is required:

ψ0(x) =

√
α

sin(2αa)
eiαae−iαx, ψn(x) =

kn√
k2n − α2

(
χNn (x) − i

α

kn
χDn (x)

)
,

φ0(x) =

√
α

sin(2αa)
eiαaeiαx, φn(x) =

kn√
k2n − α2

(
χNn (x) + i

α

kn
χDn (x)

)
.

These expressions should be compared with the normalization of (5.21)–(5.22), standardly used in the present
paper. The symmetric form of the “present normalization” indicates that the choice (5.57) will lead to a simpler
form of Θ than (5.55).

Using (5.57) in the series (5.11), the operators J ι can be determined by the functional calculus:

JN =

∞∑

n=0

k2n
k2n − α2

χNn 〈χNn , ·〉+ C2
0 χ

N
0 〈χN0 , ·〉

= (−∆N )(−∆N − α2)−1 + C2
0 χ

N
0 〈χN0 , ·〉

= I + α2(−∆N − α2)−1 + C2
0 χ

N
0 〈χN0 , ·〉,

JD =

∞∑

n=1

k2n
k2n − α2

χDn 〈χDn , ·〉

= (−∆D)(−∆D − α2)−1

= I + α2(−∆D − α2)−1.

(5.58)
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A direct (but very tedious) way how to derive the metric Θ for the choice (5.57) is to express the resolvents
of the Dirichlet and Neumann Laplacians from the ultimate expressions in (5.58) by means of the Green’s
functions (5.7) and compose them with the operators θi in (5.47).

However, a more clever way how to proceed is to come back to the operator form (5.51) and perform first
some algebraic manipulations with the intermediate expressions appearing in (5.58). First, we clearly have
JD(−∆D)

−1 = (−∆D − α2)−1. Second, employing (5.5) and the identity (−∆N )(−∆⊥
N )−1 = I − χN0 〈χN0 , ·〉,

we check [
JDp∗(−∆⊥

N )−1
]∗

= p(−∆D − α2)−1,
[
JNp(−∆D)

−1
]∗

= p∗(−∆N − α2)−1.

Finally, again using (5.5), we verify the intertwining relation [p(−∆D−α2)−1]∗ = p∗(−∆N −α2)−1. Summing
up, with our choice (5.57), formula (5.51) simplifies to

Θ = I + C2
0 φ0〈φ0, ·〉+ α2(−∆N − α2)−1 + α2(−∆D − α2)−1

+ αp(−∆D − α2)−1 + αp∗(−∆N − α2)−1.
(5.59)

Now it is easy to substitute (5.7) and after elementary manipulations to conclude with Θ = I +K, where K
is an integral operator with the kernel

K(x, y) = α e−iα(y−x) [ tan(αa) − i sgn(y − x)
]
. (5.60)

The operator C can be found easily by composing P and Θ. We finally arrive at the formula C = P+L, where
L is an integral operator with the kernel

L(x, y) = α e−iα(y+x)
[
tan(αa)− i sgn(y + x)

]
. (5.61)

5.4.4 The self-adjoint operator h similar to H

We present an example of the operator Ω, defined in (5.26) with en := χNn , that will be used to find the self-
adjoint operator h from (5.3). We recall that the similarity transformation Ω is invertible if all the eigenvalues
of H are simple, which is ensured by the condition α 6= kn for every n ∈ N. We will actually search for the
quadratic form associated to h for which we have the result in Corollary 5.3.

We follow the analogous strategy to obtain formula for Ω as in the proof of Proposition 5.7. The definition
of Ω with en := χNn leads to the sum:

Ω = χN0 〈φ0, ·〉+
∞∑

n=1

χNn 〈χNn , ·〉 − iα

∞∑

n=1

1

kn
χNn 〈χDn , ·〉

= I + χN0 〈φ0, ·〉 − χN0 〈χN0 , ·〉+ αp

∞∑

n=1

1

k2n
χDn 〈χDn , ·〉

= I + χN0 〈φ0, ·〉 − χN0 〈χN0 , ·〉+ αp(−∆D)
−1,

(5.62)

where we have used identities (5.6). In the same manner, we obtain the result for the inverse Ω−1:

Ω−1 = ψ0〈χN0 , ·〉+
∞∑

n=1

k2n
k2n − α2

χNn 〈χNn , ·〉 − iα

∞∑

n=1

kn
k2n − α2

χDn 〈χNn , ·〉

= I + ψ0〈χN0 , ·〉+ α2(−∆N − α2)−1 − αp∗(−∆N − α2)−1.

(5.63)

The operators L, M appearing in the expressions for Ω = I + L and Ω−1 = I +M are, as expected, integral
operators with the kernels L, M that can be easily obtained using formulae for the Neumann and Dirichlet
resolvents (5.7)–(5.8):

L(x, y) =
iα

2a

[
y − a sgn(y − x)

]
+

1

2a

(
e−iα(y+a) − 1

)
,

M(x, y) =
αeiα(a−x)

sin(2αa)
− α

2
e−iα(x−y)[ cot(2αa)− i sgn(y − x)

]

− αe−iα(x+y)

2 sin(2αa)
.

(5.64)

To find the self-adjoint operator h from (5.3), we start with the quadratic form (5.44). Inserting (5.64)
into the latter and performing several integrations by parts with noticing that LM = −L −M and (Mψ)′ =
−iαMψ − iαψ results in:

th[ψ] = ‖ψ′‖2 + α2|〈χN0 , ψ〉|2. (5.65)
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The corresponding operator h reads:

hψ = −ψ′′ + α2χN0 〈χN0 , ψ〉,
D(h) =

{
ψ ∈W 2,2(−a, a) : ψ′(±a) = 0

}
.

(5.66)

We remark that h is a rank one perturbation of the Neumann Laplacian. The eigenfunctions of h are χNn with
χN0 corresponding to the eigenvalue α2.

It is interesting to compare the spectra of H and h for α = kn, i.e. in the points where the spectra
are degenerate and similarity transformation breaks down because the operator Ω is not invertible. k2n is an
eigenvalue with the algebraic multiplicity two for both H and h. However, the geometric multiplicity differs:
it is one for H and two for h.

The form of h also explains the origin of the peculiar α-dependence of the eigenvalues of H (which are all
constant except for λ0(α) = α2). In fact, it is the nature of the rank one perturbation to leave all the Neumann
eigenvalues untouched except for the lowest one that is driven to the α2 behaviour.

5.4.5 More general boundary conditions

Finally, we consider the general PT-symmetric boundary conditions c± := iα ± β, with α, β ∈ R. We start
with formal considerations. The Θ-self-adjointness of H can be expressed in the following way. We take the
advantage of the realization of Θ = I+K, which we insert into ΘHψ = H∗Θψ, ψ ∈ D(H). A formal interchange
of differentiation with integration and integration by parts yield following problem that we can understand in
distributional sense:

(∂2x − ∂2y)K(x, y) = 0, (5.67)

∂yK(x,±a) + (iα ± β)K(x,±a) = 0. (5.68)

Moreover, Θψ must belong to D(H∗), from which we have a condition

∂xK(±a, y) + (−iα± β)K(±a, y) = 2iαδ(y ∓ a). (5.69)

Here δ denotes the Dirac delta function.
Already presented examples of Θ for β = 0 satisfy these requirements, particularly K solves the wave

equation (5.67). The kernel (5.60), corresponding to the simpler form of presented metric operators, is a
function of x− y only. Inspired by this, we find the solution of the wave equation

K(x, y) = eiα(x−y)−β|x−y|
[
c+ iα sgn(x− y)

]
, c ∈ R, (5.70)

that satisfies the “boundary conditions” (5.68) and (5.69) as well. The one parametric family of solutions (5.70)
of (5.67)–(5.69) demonstrates the known non-uniqueness of solutions to this problem. We also remark that c
can be taken as α or a dependent as well.

The positivity of Θ is ensured if the norm of K is smaller than 1. This can be estimated by the Hilbert-
Schmidt norm of K which is explicitly computable:

‖K‖2HS = (c2 + α2)
4aβ + e−4aβ − 1

2β2
(5.71)

(with the convention that if β = 0 one should take the limit of the right hand side as β → 0). Consequently,
the positivity of Θ can be achieved by several ways, e.g., if a is small; or if β is positive and large; or |c| and
|α| are small. In any of the regimes, the formal manipulations above are justified.

Let us summarize the results of this subsection into the following theorem.

Theorem 5.3. Let c± := iα±β, with α, β ∈ R, and assume that all the eigenvalues of H are simple. Moreover,
let ‖K‖HS < 1, where K is a Hilbert-Schmidt operator with the explicit kernel (5.70) and ‖K‖HS is explicitly
computed in (5.71). Then Θ := I +K is a metric operator for H.

5.5 Bounded perturbations

In this section we show that results of Section 5.3 remain valid if we consider a bounded perturbation V of H .
Firstly we remark that the perturbation result [13, Thm. XIX 2.7] guarantees that H+V remains a discrete

spectral operator. That is, if all the eigenvalues of H + V are simple, then the metric operator Θ exists. We
show that the claim of Theorem 5.1 is valid for H + V as well. The rest of the results from Section 5.3 then
follows straightforwardly. The approach is to use analytic perturbation theory for the operator h := ΩHΩ−1

that is perturbed by a bounded operator ΩV Ω−1.
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Theorem 5.4. Let V be a bounded operator defined on the whole Hilbert space H. Assume that all the
eigenvalues of both the operators H and H + V are simple. We denote by ξn, ηn the eigenfunctions of H + V
and H∗ + V ∗, respectively. Let en be elements of any orthonormal basis in H. Then ΩV =

∑∞
n=0 en〈ηn, ·〉,

i.e. ΩV : ξn 7→ en, can be expressed as

ΩV = U + L, (5.72)

where U is a unitary operator and L is a Hilbert-Schmidt operator.

Proof. As in the proof of Theorem 5.1, without loss of generality, we restrict ourselves to en := χNn and we show
that ΩV = I+L with L being Hilbert-Schmidt. We consider the normal operator h := ΩHΩ−1 and we perturb
it by v := ΩV Ω−1. More specifically, we construct h(ε) := h+ε v forming a holomorphic family of type (A) with
respect to the parameter ε. We denote by µn(ε), µn(ε) the eigenvalues and by ξ̃n(ε), η̃n(ε) the corresponding
eigenfunctions of h(ε) and of h(ε)∗ respectively. h(0), h(0)∗ are normal, therefore the eigenfunctions ξ̃n(0) and
η̃n(0) form orthonormal bases. In fact, with our choice of en, ξ̃n(0) = η̃n(0) = χNn .

We construct operator Ω̃ : ξ̃n(1) 7→ χNn and we will show that Ω̃ = I+ L̃, where L̃ is Hilbert-Schmidt. ΩV is
the composition of Ω and Ω̃ and the claim then follows easily using of the fact that Hilbert-Schmidt operators
are a *-both-sided ideal.

The distance of µn(0) and µn(1) can be at most ‖v‖. Since we know the asymptotics of µn(0) = λn, see
(5.30), it is clear that there exists N0 such that for all n > N0, |µn+1(1)−µn(1)| > n holds. Moreover, for such
n the radius of convergence of perturbation series for eigenvalues and eigenfunctions is larger than 1. Thus, we
have

η̃n(ε) = χNn +
∞∑

j=1

η̃(j)n εj. (5.73)

We estimate the norms of η̃
(j)
n using the analytic perturbation theory:

‖η̃(j)n ‖ ≤ 1

2π

∮

Γn

∥∥(h(0)∗ − E)−1(v∗(h(0)∗ − E)−1)jχNn
∥∥ dE

≤ 1

2π

∮

Γn

2j+1‖v‖j
nj+1

dE ≤ cj

nj
,

(5.74)

where Γn is a circle around µn(0) of radius n/2 and the constant c does not depend on n. We define N1 as
such that N1 ≥ N0 and c/N1 < 1.

We prove that Ω̃ has the desired form by showing that the adjoint Ω̃∗ =
∑∞
n=0 η̃n(1)〈χNn , ·〉 can be written

as Ω̃∗ = I + L̃∗
N1

+ L̃∗
∞, where

L̃∗
N1

:=

N1−1∑

n=0

(η̃n(1)− χNn )〈χNn , ·〉, L̃∗
∞ :=

∞∑

n=N1

∞∑

j=1

η̃(j)n 〈χNn , ·〉, (5.75)

and L̃∗
N1

and L̃∗
∞ are Hilbert-Schmidt. The decomposition of Ω̃∗ follows immediately if we consider the ex-

pansions (5.73) for n > N1 and rewrite η̃n(1) = χNn + (η̃n(1)− χNn ) for n ≤ N1. L̃
∗
N1

is a finite rank operator

therefore it is obviously Hilbert-Schmidt. L̃∗
∞ is bounded and the defining sum is absolutely convergent since

∞∑

n=N1

∞∑

j=2

‖η̃(j)n ‖|〈χNn , ψ〉| ≤ ‖ψ‖
∞∑

n=N1

∞∑

j=2

( c
n

)j
≤ ‖ψ‖

∞∑

n=N1

c2

n2 − nc
,

∞∑

n=N1

‖η̃(1)n ‖|〈χNn , ψ〉| ≤ c

√√√√
∞∑

n=N1

1

n2

√√√√
∞∑

n=N1

|〈χNn , ψ〉|2 ≤ c‖ψ‖

√√√√
∞∑

n=N1

1

n2
.

(5.76)

Finally we estimate the Hilbert-Schmidt norm of L̃∗
∞:

∞∑

p=0

〈 ∞∑

m=N1

∞∑

i=1

η̃(i)m 〈χNm, χNp 〉,
∞∑

n=N1

∞∑

j=1

η̃(j)n 〈χNn , χNp 〉
〉

≤
∞∑

p=N1

∞∑

i=1

(
c

p

)i ∞∑

j=1

(
c

p

)j
≤

∞∑

p=N1

(
c

p− c

)2

<∞.

(5.77)

This concludes the proof of the theorem.
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Remark 5.6 (General Sturm-Liouville operators). Let us conclude this section by a remark on how to extend
the previous result on bounded perturbations V for the operator H in the general form

Hψ := −(ρψ′)′ + V ψ on L2(−a, a) ,

subject to the boundary conditions
ρ(±a)ψ′(±a) + c±ψ(±a) = 0. (5.78)

Assuming merely that ρ is a bounded and uniformly positive function, i.e., there exists a positive constant C
such that C−1 ≤ ρ(x) ≤ C for all x ∈ (−a, a), the operator can be defined (cf [10, Corol. 4.4.3]) as an m-
sectorial operator associated with a closed sectorial form with domain W 1,2(−a, a). If, in addition, we assume
that ρ ∈ W 1,∞(−a, a), then it is possible to check that the domain of H consists of functions ψ from the
Sobolev space W 2,2(−a, a) satisfying (5.78).

Now, let us strengthen the regularity hypothesis to ρ ∈ W 2,∞(−a, a) and introduce the unitary (Liouville)
transformation U : L2(−a, a) → L2(f(−a), f(a)) by

U−1φ := ρ−1/4 φ ◦ f , where f(x) :=

∫ x

0

dξ√
ρ(ξ)

.

Then it is straightforward to check that the unitarily equivalent operator H̃ := UHU−1 on L2(f(−a), f(a))
satisfies

H̃φ = −φ′′ + Ṽ φ+Wφ,

D(H̃) =
{
φ ∈W 2,2

(
f(−a), f(a)

)
: φ′(±f(a)) + c̃±φ(±f(a)) = 0

}
,

where Ṽ := UV U−1 and

c̃± :=
c±

ρ(±a)1/4 − 1

4

ρ′(±a)
ρ(±a)1/2 , W :=

(
1

4
ρ′′ − 1

16

ρ′2

ρ

)
◦ f−1 .

In this way, we have transformed the second-order perturbation represented by ρ into a bounded potential W
and modified boundary conditions. Theorem 5.4 applies to H̃ and, as a consequence of the unitary transform U,
to H as well.

5.6 Conclusions

In this article, we investigated properties of the similarity transformations Ω and metric operators Θ for
Sturm-Liouville operators with separated, Robin-type boundary conditions, and the structure of the normal or
self-adjoint operators to which they are similar.

We would like to mention that Θ and Ω cannot be always expressed as the sum of the identity and a Hilbert-
Schmidt operator for other types of (differential) operators, see, e.g., [2, 43, 33, 18], where Θ is a sum of the
identity and a bounded non-compact operator. The latter is a composition of the parity and the multiplication
by sign function. Moreover, corresponding similarity transformations map (non-self-adjoint) point interactions
to (self-adjoint) point interactions, which is not typically the case for operators studied here. This is illustrated
in the example of PT-symmetric boundary conditions where the equivalent self-adjoint operator is not a point
interaction but rather a rank one perturbation of the Neumann Laplacian.

In this work we considered the separated boundary conditions only. Nonetheless, the analogous results are
expected to be valid for all strongly regular boundary conditions.

The crucial property is the asymptotics of eigenvalues, i.e. separation distance of eigenvalues tends to
infinity, that is used for the proof of the existence of similarity transformations [13]. Recent results on basis
properties for perturbations of harmonic oscillator type operators [1, 41, 3] give a possibility to investigate the
structure of similarity transformation in these cases as well. Another step is to consider e.g. on Hill operators,
where a criterion on being spectral operator of scalar type has been obtained in [16] and recently extended in
[12]. On the other hand, the structure of similarity transformations for operators with continuous spectrum
as well as for multidimensional Schrödinger operators is almost unexplored and constitutes thus a challenging
open problem.

In case of the PT-symmetric boundary conditions, we found all the studied objects in a closed formula form,
which is hardly the case in more general situations. However, in general, we may search for approximations
of Ω or Θ, typically applying the analytic perturbation theory to find perturbation series for eigenvalues and
eigenfunctions of H to certain order k. For instance, we perturb the parameters c± in boundary conditions
by small ε. As a result we find an approximation happ of the similar operator h with resolvents satisfying
‖(h− z)−1 − (happ − z)−1‖ ≤ Cεk. An extensive discussion and example of such construction can be found in
[46]. The same remark is appropriate for small perturbations by bounded operator discussed in Section 5.5.
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Abstract. We establish that a perfect-transmission scattering problem can be described by a class
of parity and time reversal symmetric operators and hereby we provide a scenario for understand-
ing and implementing the corresponding quasi-Hermitian quantum mechanical framework from the
physical viewpoint. One of the most interesting features of the analysis is that the complex eigen-
values of the underlying non-Hermitian problem, associated with a reflectionless scattering system,
lead to the loss of perfect-transmission energies as the parameters characterizing the scattering po-
tential are varied. On the other hand, the scattering data can serve to describe the spectrum of a
large class of Schrödinger operators with complex Robin boundary conditions.

6.1 Introduction

Recently there has been a considerable amount of work devoted to the study of the so-called PT-symmetric
quantum mechanics – see [1, 13] and the references therein. The theory is based on the idea to give a phys-
ical meaning to a class of non-Hermitian Hamiltonians being symmetric under the composed space reversal
transformation P and complex conjugation T. These Hamiltonians are interesting because some of them have
exclusively real spectrum and – usually only after an appropriate change of the inner product of Hilbert space
– they can generate unitary time-evolution. The relevance of PT-symmetric operators has been suggested
in various domains of physics: nuclear physics [18], optics [6, 11, 19, 20], solid state [2], superconductivity
[14, 15], and electromagnetism [16, 12]. Moreover, the first experimental results in optics using the formalism
of PT-symmetric quantum mechanics in the theoretical explanation of observed effects have appeared recently
[10, 4, 17].

In this letter, we establish a purely quantum-mechanical interpretation of a class of PT-symmetric Hamil-
tonians in a particular scattering problem. Hereby we confirm the common claim that the non-Hermiticity
corresponds to gain/loss mechanisms of probability density and that the presence PT-symmetry ensures the
balance between these opposite effects [20, 2]. We show that the spectral techniques for non-self-adjoint (NSA)
problems can be used for describing a scattering system in the reflectionless regime.

The general idea is that the above kind of scattering problems can be described by an effective Schrödinger
equation in a bounded interval (corresponding to the domain of the scatterer) subject to complex Robin
boundary conditions. This problem can be regarded as a particular class of PT-symmetric quantum problems
if the scattering potential respects such a symmetry. The gain/loss mechanism referred to above is clearly
understood in this case, since we start with a Hermitian physical system and we can keep track of where and
how the probability is lost or gained. Furthermore, the typical complex points appearing in the spectra of the
NSA problems have a very natural explanation: they give rise to the loss of the perfect-transmission energies
(PTEs). Finally, we solve the inverse problem, i.e. how the spectrum of a PT-symmetric problem can be
determined from the knowledge of PTEs.

We will conclude with the statement that the real points in the spectra of certain class of PT-symmetric
Hamiltonians can be measured in the quantum mechanical scattering problem and the points where two eigen-
values coalesce (exceptional points) correspond to the loss of PTEs.

6.2 From scattering to spectral theory

Consider a quantum particle of mass m scattered by a potential of the form V (x, y, z) = v(x), for a general
real-valued function v supported in [−a, a] with a > 0. We shall restrict ourselves to scattering waves in the
x-direction, so that the problem can be described by the one-dimensional Schrödinger equation

− ψ′′(x) + v(v)ψ(x) = k2ψ(x), (6.1)
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where ψ is the particle wavefunction and k a positive (wave)number. Since v is zero outside [−a, a], we
have the asymptotic solutions: ψl(x) = exp (ikx) + R exp (−ikx) for the in-coming wave (for x ≤ −a), and
ψr(x) = T exp (ikx) for the out-coming wave (for x ≥ a), where R and T correspond to the reflection and
transmission amplitudes, respectively. Note that we consider only the special solutions for which the incident
amplitude is equal to one.

Now we explain how the state ψ of the particle can be described by an effective Schrödinger equation
in the interval [−a, a]. We focus on the special case of perfect-transmission, i.e. R = 0. By plugging
R = 0 in the in-coming wave and requiring the continuity of ψ and its derivative at the boundary ±a, it
is easy to show that the scattering problem is then equivalent to the non-linear (energy dependent) problem
(in units where m = 1/2 and ~ = 1)

−ψ′′(x) + v(x)ψ(x) = k2ψ(x), ∀x ∈ [−a, a], (6.2)

ψ′(±a)− ikψ(±a) = 0. (6.3)

The non-linear problem (6.2)–(6.3) can be solved by considering the associated one-parametric (linear)
spectral problem:

−ψ′′(x) + v(x)ψ(x) = µ(α)ψ(x), ∀x ∈ [−a, a], (6.4)

ψ′(±a)− iαψ(±a) = 0. (6.5)

In the above expression, µ(α) plays the role of eigenvalue and α is a real parameter. The energies corresponding
to the perfect-transmission states are found as those points µ(α∗) satisfying

µ(α∗) = α2
∗. (6.6)

The relation (6.5) is the so-called PT-symmetric Robin boundary condition and it has been studied before
in the context of spectral theory for NSA operators [8, 7, 9]. These boundary conditions have been used
previously in the phenomenological description of emission and absorption, however, here they appear naturally
in the scattering and in the framework of spectral theory for PT-symmetric (or more general NSA) operators.
Moreover, since the boundary conditions (6.5) imply that the probability current at x = ±a does not vanish
(for α 6= 0), the non-self-adjointness in this system can be clearly understood as the gain/loss of probability
density at the boundary points. Furthermore, the PT symmetry is a consequence of our restriction to the
reflectionless regime, which corresponds to the exact compensation of the gains and losses.

6.3 Square well potential

We illustrate our approach on the explicitly solvable model of the square well

v(x) = −v0χ[−a,a](x), (6.7)

where χA(x) is the characteristic (or indicator) function of a set A and v0 > 0. The eigenvalues of the
corresponding NSA problem (6.4)–(6.5) with the above potential are given by (see [8]):

µn =

{
α2 − v0, n = 0,
(nπ2a )

2 − v0, n ∈ N.
(6.8)

Therefore, by employing the knowledge of the spectrum of the Hamiltonian and taking into account ex-
pression (6.6), we get indeed the well-known PTEs for the square well potential k2 = (nπ2a )

2 − v0 (see e.g., [3]).

The first three PTEs, corresponding to the intersection of the graphics µn(α) and expression (6.6), are
presented in Figure 6.1. If the potential depth v0 tends to zero, the continuous (red) parabola corresponding
to the eigenvalue µ0 approaches the dashed (blue) parabola representing dispersion relation (6.6). The two
parabolas coincide when v0 = 0, i.e. with no potential all positive energies trivially correspond to perfect
transmission.

6.4 Multiple steps potential

We claim that the presence of complex eigenvalues lead to observable effects. We demonstrate this on models
with even piecewise constant potentials

v(x) =

N+1∑

j=1

βjε
−1
j χ[xj−1,xj](|x|), (6.9)
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Figure 6.1: The spectrum of the square well potential with v0 = −1 and a = 2. The dashed (blue) curve
represents the dispersion relation curve µ = α2 while the continuous (red) lines are the energy levels. The
PTEs correspond to the intersections of the constant µn’s with the dispersion parabola.

where 0 ≤ x0 < · · · < xN ≤ a, εj = xj − xj−1 determine the width and βj the strength of the constant parts.
This type of solvable models – as usual by using the explicitly known wavefunctions in the intervals where
the potential is constant and matching them at the interface points – can serve as approximation to realistic
physical potentials which also fit to our framework.
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Figure 6.2: The shape of considered multiple steps potential.

We focus on N = 2 model with x0 = 0, x3 = a and β1 < 0, β2 = 0, β3 6= 0, i.e. two steps localized at
the endpoints and one at the origin, see Figure 6.2, however, our reasoning is not limited to this particular
solvable potential. Inspired by the delta-interaction models [9] that are limits of the considered potentials for
a special choice of parameters, it is not surprising that complex conjugated pairs of eigenvalues are present in
the spectrum. Intersections of the dispersion parabola (6.6) and energy levels represent PTEs, cf. Figure 6.3.
However, there is no PTE corresponding to the intersection with complex energy since µ = k2 is required to
be real (to have in-coming and out-coming plane waves eikx).

The shape of the energy curves µn(α) depends on the potential and we prepare such scenario (by fixing
the steps at the endpoints and changing the strength of the one in the middle) that the dispersion parabola
intersects at first two energy levels, then precisely the point of complexification (or exceptional point), and
finally the complex level. Figure 6.4 illustrates the resulting behavior of PTEs, two originally separated PTEs
merge when the intersection is the complexification point and then completely disappear, see animation [5].

This process can be also described in terms of the transmission coefficient. The comparison of the two
curves in Figure 6.5 (corresponding to different values of β1) indicate how the process can be observed from
scattering data: two initially separated peaks (PTEs), e.g. around k2 ≈ 160 in the continuous red line, collide
as β1 is varied (complexification point is intersected by the dispersion parabola) and fall down afterwards (a
loss of PTEs) around k2 ≈ 180 in the dashed blue line. Broad peaks close to |T |2 = 1, e.g. around k2 = 460,
correspond to the collision of PTEs (approaching the complexification point).
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Figure 6.3: The real part of the eigenvalue µ as a function of the parameter α for the step-like potential v with
a = π/4, ε1 = 0.2, ε3 = 0.5, β1 = −90, β2 = 0, β3 = −100. The PTEs correspond to the intersections of the
energy levels (continuous, red) and the dispersion relation (dashed, blue).
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Figure 6.4: The PTEs µ∗ as a function of β1 for the step-like potential v with a = π/4, ε1 = 0.2, ε3 = 0.5,
β3 = −100, and β2 = 0. The losses of PTEs are clearly visible e.g. around β1 = −140, for µ∗ ≈ 190 and
µ∗ ≈ 450.
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Figure 6.5: Transmissions |T |2 as a function of energy k2 for the step-like potential v with a = π/4, ε1 = 0.2,
ε3 = 0.5, β3 = −100, β2 = 0, β1 = −120 (continuous red line), and β1 = −200 (dashed blue line). See [5] for
animated plots of |T |2 as a function of potential.
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6.5 Inverse problem

Now let us explore the inverse problem, i.e. how we can determine the spectrum of a given PT-symmetric
(or more general NSA) Hamiltonian subject to complex Robin boundary conditions by measuring the PTEs
in a scattering experiment. Consider the NSA problem defined by expressions (6.4)–(6.5) together with the
dispersion relation (6.6) and let us modify it by adding a constant v0 to the potential, i.e. putting the system
into a square well, as follows:

−ψ′′(x) + (v(x) + v0)ψ(x) = µ0(α)ψ(x), (6.10)

ψ′(±a)− iαψ(±a) = 0, (6.11)

µ0(α) = α2. (6.12)

The above problem can be recast as

−ψ′′(x) + v(x)ψ(x) = µ(α)ψ(x), (6.13)

ψ′(±a)− iαψ(±a) = 0, (6.14)

µ(α) = α2 − v0, (6.15)

where we have introduced µ(α) := µ0(α)− v0. Clearly, (6.13)–(6.14) is the same spectral problem as the initial
one (6.4)–(6.5), however, by comparing expressions (6.6) and (6.15), we see that the dispersion parabola is
shifted by v0.

Now, consider measurements of the PTEs corresponding to the choice of v0, which we assume to be discrete
for every v0. Let us choose a PTE and denote by κ(v0) its v0-dependence. Thus we have a function v0 7→ κ(v0).
It is clear from (6.10)–(6.15) that κ(v0) − v0 is the eigenvalue for the spectral problem (6.13)–(6.14) with α
satisfying α2 = κ(v0). Hence we can obtain the entire α-dependence of the chosen energy level µ(α) if κ is an
invertible function. Indeed, for every α, we find v0 = κ−1(α2) such that µ(α) = α2 − κ−1(α2) is the eigenvalue
of (6.13)–(6.14).

It remains to ensure that κ is invertible, which follows if κ′(v0) 6= 0 for all v0. For all v0, we have κ(v0) =
µ(α)+v0, with α

2 = v0. By differentiating this relation with respect to v0, we obtain κ
′(v0) = 2α/(2α−µ′(α)).

The situation 2α = µ′(α) is very particular: µ(α) is (at least) locally parabola, thus it represents either
reflectionless setting (the dispersion parabola (6.15) locally coincides with the energy level µ(α)) or no perfect
transmission (no intersection of the energy level µ(α) and (6.15)). Besides these exceptional cases we have
obtained the condition on the spectrum of (6.13)–(6.14) |µ′(α)| < ∞ that assures invertibility of κ. This
condition is however satisfied for all real α, except possibly for the points where energy levels cross, because of
the analyticity of µ(α), which is ensured for all relatively form bounded potentials v.

This means that we can determine the spectrum of the problem (6.13)–(6.14) by measuring the PTEs as a
function of v0. Of course, by this procedure we can only determine the real eigenvalues of the corresponding
spectrum. The appearance of a complex conjugate pair of eigenvalues can be traced back as a loss of two (close)
PTEs, analogously for the restoration of two real eigenvalues.

6.6 Discussion and conclusions

We have shown that NSA Hamiltonians naturally arise in the effective description of a class of scattering prob-
lems. Within this context, we have proposed a spectral-type scheme for obtaining the energies corresponding
to a perfect-transmission scattering process. The model confirms the common claim that PT-symmetric oper-
ators describe physical systems where the probability density is not conserved locally, but the gains and losses
compensate globally. The appearance of complex eigenvalues in the associated PT-symmetric spectral problem
– resulting from the collision of a pair of real ones – can lead to the merging and subsequent disappearance
of two PTEs which, moreover, can be observed in a scattering experiment. Furthermore, we have discussed
the inverse problem, that is, how to use the scattering data to determine the spectrum of an operator with
non-Hermitian boundary conditions.

It is important to stress that the general idea of reducing a scattering problem to a non-linear eigenvalue
equation is not limited to even potentials (ensuring the PT-symmetry) and the PT-symmetric Robin-type
boundary conditions (reflecting the perfect-transmission process). However, when PT-symmetry is relaxed,
real energy levels do not need to cross anymore to produce complex eigenvalues and therefore the overall
analysis of the spectrum of the associated NSA operator is more complicated.

The main purpose of this letter was to establish a truly quantum-mechanical interpretation of a PT-
symmetric model. Furthermore, we believe that the associated spectral framework of perfect-transmission
process provides an additional insight to effects that can be observed in scattering data.
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7.1 Introduction

Many systems in Nature can be under first approximation described by linear second order differential equations,
such as the wave, heat or Schrödinger equation. The common denominator of them is the Helmholtz equation
describing the stationary regime and leading to the spectral study of the Laplace operator. Already from the
mathematical point of view, it is important to understand the influence of the geometry to the spectrum of
the Laplacian, subject to various types of boundary conditions, and vice versa, to characterize geometric and
boundary interface properties from given spectral data.

In this paper, we are interested in the interplay between the curvature of the ambient space and the spectrum
of the Laplacian subjected to a special class of non-Hermitian boundary conditions. We choose probably the
simplest non-trivial model, i.e., the spectral problem corresponding to the equation

−∆ψ = λψ in Ω , (7.1)

where λ is a spectral parameter, Ω is an a-tubular neighbourhood of a closed curve Γ (usually a geodesic) in a
two-dimensional Riemannian manifold A (not necessarily embedded in R3), i.e.,

Ω := {x ∈ A | dist(x,Γ) < a} , (7.2)

and −∆ is the associated Laplace-Beltrami operator. The boundary conditions we consider are general ‘parity
and time preserving’ boundary conditions introduced in Section 7.2.3 below; a special example is given by the
non-Hermitian Robin-type boundary conditions

∂ψ

∂n
+ iαψ = 0 on ∂Ω , (7.3)

where n is the curve normal translated by geodesics orthogonal to Γ and α is a real-valued function.
The Schrödinger equation in tubular neighbourhoods of submanifolds of curved Riemannian manifolds has

been extensively studied in the context of quantum waveguides and molecular dynamics (cf [57] for a recent
mathematical paper with many references). Here the confinement to a vicinity of the submanifold is usually
modelled by constraining potentials [41, 57] or Dirichlet boundary conditions [14, 34, 35].

Note that, on the contrary, the non-Hermitian nature of boundary conditions (7.3) enables one to model
a leak/supply of energy from/into the subsystem Ω, since the probability current does not vanishes on the
boundary ∂Ω unless α = 0. In fact, non-Hermitian boundary conditions of the type (7.3) has been considered
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in [31, 30, 29] to model open (dissipative) quantum systems. One also arrives at (7.3) when transforming a
scattering problem to a (non-linear) spectral one [17, Ex. 9.2.4]. Quite recently it has been observed in [51]
that the boundary conditions (7.3) appear in a supersymmetric counterpart of the one-dimensional quantum
well. Finally, let us observe that Robin boundary conditions are known under the term impedance boundary
conditions in classical electromagnetism, where they are conventionally used to approximate very thin layers
[11, 19, 6].

Our primary motivation to consider the spectral problem (7.1), (7.3) comes from the so-called ‘PT-symmetric
quantum mechanics’ originated by the paper [8], where the authors discussed a class of Schrödinger operatorsH
in L2(R) whose spectrum is real in spite of the fact that their potentials are complex. They argued that the
rather surprising reality of the spectrum follows from the PT-symmetry property:

[H,PT] = 0 . (7.4)

Here the ‘parity’ P and ‘time reversal’ T operators are defined by (Pψ)(x) := ψ(−x) and Tψ := ψ. It is
important to emphasize that T is an antilinear operator and that (7.4) is neither sufficient nor necessary
condition to ensure the reality of the spectrum of H .

Nevertheless, later on it was observed in [9, 42, 43, 44] that if the spectrum of a PT-symmetric operatorH in
a Hilbert space H is indeed real (and some further hypotheses are satisfied) the condition (7.4) actually implies
that H is ‘quasi-Hermitian’ [52], i.e., there exists a bounded invertible positive operator Θ with bounded
inverse, called ‘metric’, such that

H∗ = Θ−1HΘ . (7.5)

In other words, H is similar to a self-adjoint operator for which a conventional quantum-mechanical interpre-
tation makes sense. We refer to recent reviews [7, 45] and proceedings [28, 5, 21] for further information and
references about the concept of PT-symmetry.

In addition to the potential quantum-mechanical interpretation, we would like to mention the relevance of
PT-symmetric operators in view of their recent study in the context of superconductivity [48, 49], electromag-
netism [50, 33] and fluid dynamics [13, 16, 58, 12].

A suitable mathematical framework to analyse PT-symmetric Hamiltonians is either the theory of self-
adjoint operators in Krein spaces [39, 27] or the J-self-adjointness [10]. The latter means that there exists an
antilinear involution J such that

H∗ = JHJ . (7.6)

The concept (7.6) is not restricted to functional Hilbert spaces and it turns out that the majority of PT-
symmetric Hamiltonians existing in the literature are indeed J-self-adjoint. In general, however, the proper-
ties (7.4), (7.5) and (7.6) are all unrelated [53, 55].

Summing up, given a non-Hermitian operator H satisfying (7.4), two fundamental questions arises. First,

1. is the spectrum of H real?

Second, if the answer to the previous question is positive,

2. does there exist a metric Θ satisfying (7.5)?

It turns out that the questions constitute a difficult problem in the theory of non-self-adjoint operators.
For this reason, one of the present authors and his coauthors proposed in [37] (see also [36]) an elementary

one-dimensional PT-symmetric Hamiltonian, for which the spectrum and metric are explicitly computable. The
simplicity of the Hamiltonian consists in the fact that it acts as the Hamiltonian of a free particle in a box and
the non-Hermitian interaction is introduced via the Robin-type boundary conditions (7.3) only. The model
was later generalized to a two-dimensional waveguide in [10], where the variable coupling in the boundary
conditions is responsible for existence of real (or complex conjugate pairs of) eigenvalues outside the essential
spectrum (see also [38]).

In this paper we continue the generalization of the models of [37, 10] to curved Riemannian manifolds. This
leads to a new, large class of PT-symmetric Hamiltonians. Our main goal is to study the effect of curvature on
the spectrum, namely the existence/absence of non-real eigenvalues and the metric.

The organization of this paper is as follows.
In the following Section 7.2, we introduce our model in a full generality, in the sense that the ambient

geometry and boundary interaction of the spectral problem (7.1) are described by quite arbitrary (non-constant
and non-symmetric) functions. Our main strategy to deal with the curved geometry is based on the usage of
Fermi coordinates.

In Section 7.3, we use the framework of sesquilinear forms to define the Laplace-Beltrami operator appearing
in (7.1) as a (closed) m-sectorial operator in the Hilbert space L2(Ω). We also explicitly determine the operator
domain if the assumptions about the geometry and boundary-coupling functions are naturally strengthen.
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Moreover, we find conditions about the geometry under which the operator becomes PT-symmetric (and T-
self-adjoint).

In order to study the effects of curvature on the spectrum, in Section 7.4 we focus on solvable models.
Assuming that the curvature and boundary-coupling functions are constant, the eigenvalue problem can be
reduced to the investigation of (infinitely many) one-dimensional differential operators with PT-symmetric
boundary conditions. Here the previous results [37, 36] and the general theory of boundary conditions for
differential operators [46, 47] are appropriate and helpful. In particular, since the PT-symmetric boundary
conditions are (except one case excluded here by assumption) strongly regular ones, it is possible to show that
the studied one-dimensional operators are ‘generically’ similar to self-adjoint or normal operators. However,
it remains to decide whether this is true for their infinite sum, i.e., for the original two-dimensional Laplace-
Beltrami operator. To answer this in affirmatively, it turns out that the J-self-adjoint formulation of PT-
symmetry (cf the text around (7.6)) is fundamental, with J = T playing the role of antilinear involution. The
properties of the solvable models are illustrated by a numerical analysis of their spectra.

The paper is concluded by Section 7.5 where possible directions of the future research are mentioned.

7.2 Definition of the model

We use the quantum-mechanical framework to describe our model.

7.2.1 The configuration space

We assume that the ambient space of a quantum particle is a connected complete two-dimensional Riemannian
manifold A of class C2 (not necessarily embedded in the Euclidean space R3). Furthermore, we suppose that
the Gauss curvature K of A is continuous, which holds under the additional assumption that A is either of
class C3 or it is embedded in R3.

On the manifold, we consider a C2-smooth unit-speed embedded curve Γ : [−l, l] → A, with l > 0. Since Γ
is parameterized by arc length, the derivative T := Γ̇ is the unit tangent vector of Γ. Let N be the unit normal
vector of Γ which is uniquely determined as the C1-smooth mapping from [−l, l] to the tangent bundle of A
by requiring that N(s) is orthogonal to T (s) and that {T (s), N(s)} is positively oriented for all s ∈ [−l, l]
(cf [56, Sec. 7.B]). We denote by κ the corresponding curvature of Γ defined by the Frenet formula ∇TT = κN ,
where ∇ stands for the covariant derivative in A. We note that the sign of κ is uniquely determined up to
the re-parametrization s 7→ −s of the curve Γ and that κ coincides with the geodesic curvature of Γ if A is
embedded in R3.

The feature of our model is that the particle is assumed to be ‘confined’ to an a-tubular neighbourhood Ω
of Γ, with a > 0. Ω can be visualized as the set of points q in A for which there exists a geodesic of length less
than a from q meeting Γ orthogonally. More precisely, we introduce a mapping L from the rectangle

Ω0 := (−l, l)× (−a, a) ≡ J1 × J2 (7.7)

(considered as a subset of the tangent bundle of A) to the manifold A by setting

L(x1, x2) := expΓ(x1)(N(x1)x2) , (7.8)

where expq is the exponential map of A at q ∈ A, and define

Ω := L(Ω0) . (7.9)

Note that x1 7→ L(x1, x2) traces the curves parallel to Γ at a fixed distance |x2|, while the curve x2 7→ L(x1, x2)
is a geodesic orthogonal to Γ for any fixed x1. See Figure 7.1.

7.2.2 The Fermi coordinates

Throughout the paper we make the hypothesis that

L : Ω0 → Ω is a diffeomorphism. (7.10)

Since Γ is compact, (7.10) can always be achieved for sufficiently small a (cf [24, Sec. 3.1]). Consequently,
L induces a Riemannian metric G on Ω0, and we can identify the tubular neighbourhood Ω ⊂ A with the
Riemannian manifold (Ω0, G). In other words, Ω can be conveniently parameterized via the (Fermi or geodesic
parallel) “coordinates” (x1, x2) determined by (7.8). We refer to [24, Sec. 2] and [25] for the notion and
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Figure 7.1: Strip and boundary conditions

properties of Fermi coordinates. In particular, it follows by the generalized Gauss lemma that the metric
acquires the diagonal form:

G =

(
f2 0
0 1

)
, (7.11)

where f is continuous and has continuous partial derivatives ∂2f , ∂
2
2f satisfying the Jacobi equation

∂22f + Kf = 0 with

{
f(·, 0) = 1 ,

∂2f(·, 0) = − κ .
(7.12)

Here K is considered as a function of the Fermi coordinates (x1, x2).

7.2.3 The Hamiltonian

We identify the Hamiltonian H of the quantum particle in Ω with the Laplace-Beltrami operator −∆G in the
Riemannian manifold (Ω0, G), subject to a special class of non-self-adjoint boundary conditions.

The action of the Hamiltonian

Denoting by Gij the coefficients of the inverse metric G−1 and |G| := det(G), we have

−∆G = −|G|−1/2∂i|G|1/2Gij∂j = −f−1∂1f
−1∂1 − f−1∂2f∂2 . (7.13)

Here the first equality (in which the Einstein summation convention is assumed) is a general formula for the
Laplace-Beltrami operator −∆G expressed in local coordinates in a Riemannian manifold equipped with a
metric G. The second equality uses the special form (7.11), for which |G| = f2 and G−1 = diag(f−2, 1).
Henceforth we assume that the Jacobian of (7.10) is uniformly positive and bounded, i.e.,

f, f−1 ∈ L∞(Ω0) , (7.14)

so that −∆G is a uniformly elliptic operator. Again, (7.14) can be achieved for sufficiently small a, cf (7.12).

Remark 7.1. The assumption (7.10) is not really essential. Indeed, abandoning the geometrical interpretation
of Ω as a tubular neighbourhood embedded in A, (Ω0, G) with (7.11) can be considered as an abstract Rieman-
nian manifold for which (7.14) is the only important hypothesis. The results of this paper extend automatically
to this more general situation.

The boundary conditions

We denote ∂iΩ0 = Γ−
i ∪ Γ+

i the boundary in xi direction, i ∈ {1, 2}, see Figure 7.1,

Γ±
1 := {±l} × J2, Γ±

2 := J1 × {±a}. (7.15)

Boundary conditions imposed respectively on ∂1Ω0 and ∂2Ω0 are of different nature. Having in mind the
situation when Γ is a closed curve, standard periodic boundary conditions are imposed on ∂1Ω0, i.e.,

ψ(−l, x2) = ψ(l, x2), ∂1ψ(−l, x2) = ∂1ψ(l, x2), (7.16)
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for a.e. x2 ∈ J2, where ψ denotes any function from the domain of H . We assume also the symmetry condition
on the geometry

∀(x1, x2) ∈ Ω0 : f(−l, x2) = f(l, x2), (7.17)

in order to have indeed periodic system in x1 direction.
On the other hand, non-self-adjoint PT-symmetric boundary conditions are imposed on ∂2Ω0. A general

form of PT-symmetric boundary conditions was presented in [2]; further study and more general approach to
extensions can be found in [4, 3]. Denoting

Ψ :=

(
ψ
∂2ψ

)
, (7.18)

there are two types of the conditions, separated and connected.

I. separated: (
±β(x1) + iα(x1) 0

0 1

)
Ψ(x1,±a) = 0 (7.19 I)

for a.e. x1 ∈ J1, with α, β being real-valued functions.

II. connected:

Ψ(x1, a) = B(x1)Ψ(x1,−a), (7.19 II)

for a.e. x1 ∈ J1, where the matrix B has the form

B(x1) :=

(√
1 + b(x1)c(x1) e

iφ(x1) b(x1)

c(x1)
√
1 + b(x1)c(x1) e

−iφ(x1)

)

with b, c, φ being real-valued functions satisfying b > 0, c ≥ −1/b, φ ∈ [−π, π).
We specify assumptions on smoothness, boundedness and periodicity of the functions entering the boundary
conditions later. The index ι ∈ {I, II} will be used throughout the paper to distinguish between the two types
of boundary conditions.

The boundary conditions (7.19ι) are PT-symmetric in following sense: if a function ψ satisfies (7.19ι), then
the function PTψ satisfies (7.19ι) as well. Here and in the sequel the symmetry operators P and T are defined
as follows:

(Pψ)(x1, x2) := ψ(x1,−x2) , Tψ := ψ . (7.20)

It is important to stress that the PT-symmetric boundary conditions (7.19ι) do not automatically imply
that the operator H is PT-symmetric, unless additional assumption on the geometry of Ω0 is imposed. The
assumption, ensuring the PT-symmetry of H (cf Proposition 7.1 below), reads

∀(x1, x2) ∈ Ω0 : f(x1, x2) = f(x1,−x2). (7.21)

In view of (7.12), a necessary condition to satisfy the second requirement in (7.21) is that the curve Γ is a
geodesic, i.e. κ = 0.

The functional spaces

The space in which we give a precise meaning ofH is the Hilbert space L2(Ω0, G), i.e., the class of all measurable
functions ϕ, ψ on Ω0 for which the norm ‖ · ‖G induced by the inner product

(ϕ, ψ)G :=

∫

Ω0

ϕ(x)ψ(x) |G(x)|1/2 dx (7.22)

is finite. Assuming (7.14), the norm ‖ · ‖G in L2(Ω0, G) is equivalent to the usual one ‖ · ‖ in L2(Ω0). Moreover,
the ‘energy space’

W 1,2(Ω0, G) :=
{
ψ ∈ L2(Ω0, G)

∣∣ |∇Gψ|2G := ∂iψG
ij∂jψ ∈ L2(Ω0, G)

}
(7.23)

can be as a vector space identified with the usual Sobolev space W 1,2(Ω0).
However, this equivalence does not hold forW 2,2-spaces, unless one assumes extra regularity condition on f :

∀x2 ∈ J2 : f(·, x2), f−1(·, x2) ∈ W 1,∞(J1
)
. (7.24)

Under this assumption, which is actually equivalent to the Lipschitz continuity of f, f−1 in the first argument
(cf [20, Chapt. 5.8.2.b., Thm. 4]), one can indeed identify the W 2,2-Sobolev space on the Riemannian manifold
(Ω0, G) (precisely defined, e.g., in [26, Sec. 2.2]) with the usual Sobolev space W 2,2(Ω0).
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The schism: two definitions of the Hamiltonian

Although the above equivalence of the W 2,2-spaces under the condition (7.24) is not explicitly used in this
paper, it is in fact hidden in our proof that the particle Hamiltonian on L2(Ω0, G) naturally identified with

Hιψ := −∆Gψ, (7.25a)

ψ ∈ D(Hι) :=
{
ψ ∈W 2,2(Ω0)

∣∣ ψ satisfies (7.16) and (7.19ι)
}
. (7.25b)

is well defined (cf Theorem 7.1). As mentioned in Section 7.2.3, we use the notation Hι, with ι ∈ {I, II}, to
distinguish between separated (7.19 I) and connected (7.19 II) boundary conditions.

To avoid the additional assumption (7.24), one can always interpret (7.13) in the weak sense of quadratic
forms, which gives rise to an alternative Hamiltonian H̃ι (cf Corollary 7.1). This is the content of the following
section, where we also show that Hι = H̃ι provided that (7.17), (7.24), and some analogous hypotheses about
the boundary-coupling functions hold.

7.3 General properties

The main goal of this section is to show that the Hamiltonian Hι introduced in (7.25) is a well defined
operator, in particular that it is closed. This will be done by proving that Hι = H̃ι, where H̃ι is the alternative
operator defined through a closed quadratic form. Finally, we establish some general spectral properties of the
Hamiltonians.

7.3.1 The Hamiltonian defined via quadratic form

Taking the sesquilinear form (ϕ,Hιψ)G with ϕ, ψ ∈ D(Hι) and integrating by parts, one arrives to a sesquilinear
form, which is well defined for a wider class of functions ϕ, ψ, not necessarily possessing second (weak) deriva-
tives. The function f is assumed to satisfy (7.14) and (7.17), however the extra regularity condition (7.24) is
not required.

More precisely, exclusively under assumption (7.14) for a moment, we define the sesquilinear form

hι(ϕ, ψ) := h1(ϕ, ψ) + h2ι (ϕ, ψ),

ϕ, ψ ∈ D(hι) :=W 1,2
per(Ω0) ≡

{
ψ ∈W 1,2(Ω0)

∣∣ ψ(−l, x2) = ψ(l, x2)
}
,

where, for any ϕ, ψ ∈ D(hι),

h1(ϕ, ψ) :=
(
f−1∂1ϕ, f

−1∂1ψ
)
G
+
(
∂2ϕ, ∂2ψ

)
G
,

h2I (ϕ, ψ) :=
(
ϕ, (β + iα)ψ

)Γ+
2

G
+
(
ϕ, (β − iα)ψ

)Γ−
2

G
,

h2II(ϕ, ψ) :=
(
ϕ,B−1

12 Pψ
)Γ+

2

G
+
(
ϕ,B−1

12 Pψ
)Γ−

2

G

−
(
ϕ,B22B

−1
12 ψ

)Γ+
2

G
−
(
ϕ,B11B

−1
12 ψ

)Γ−
2

G
.

Here Bij denotes the elements of the matrix B defined in (7.19), the operator P is introduced in (7.20) and

(ϕ, ψ)
Γ±
2

G :=

∫ l

−l
ϕ(x1,±a)ψ(x1,±a) f(x1,±a) dx1.

All the boundary terms should be understood in sense of traces [1].

Lemma 7.1. Let f satisfy (7.14). The forms hι, h
1 are densely defined. h1 is a symmetric, positive, closed

form (associated to the self-adjoint Laplace-Beltrami operator in L2(Ω0, G) with periodic boundary conditions
on ∂1Ω0 and Neumann boundary conditions on ∂2Ω0).

Proof. The density of the domains is obvious, properties of h1 are well known, see the detailed discussion on a
similar problem in [15, Sect. 7.2].

Although the forms hι are not symmetric, we show that h2ι can be understood as small perturbations of h1.

Lemma 7.2. Let b, 1/b, c, α, β ∈ L∞(J1) and let f satisfy (7.14). Then h2ι are relatively bounded with respect
to h1 with

|h2ι [ψ]| ≤ ε h1[ψ] + ε−1C‖ψ‖2G, (7.26)

for all ψ ∈ W 1,2
per(Ω0) and any positive number ε. The constant C depends on the function f , dimensions a, l,

and boundary-coupling functions α, β or b, c, φ.
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Proof. The proof is based on the estimate

∫ l

−l
|ψ(x1,±a)|2 dx1 ≤ ǫ ‖∇ψ‖2 + ǫ−1C̃ ‖ψ‖2, (7.27)

where ǫ is an arbitrary positive constant and C̃ is a positive constant depending only on a and l. We give the
proof for h2I only because the other case is analogous. The assumptions on α, β and property (7.14) allow us
to estimate the functions |α|, |β| and f by their L∞-norms. Consequent application of (7.27) therefore yields

∣∣h2I [ψ]
∣∣ ≤ ǫ ‖f‖L∞(Ω0)‖∇ψ‖2 + ǫ−12 C̃

(
‖α‖L∞(J1) + ‖β‖L∞(J1)

)
‖f‖L∞(Ω0) ‖ψ‖2.

In order to replace the term ‖∇ψ‖2 by h1[ψ], the regularity assumption on geometry (7.14) is used. Once
we consider the equivalence of the norms ‖ · ‖ and ‖ · ‖G and the arbitrariness of ǫ, we obtain the estimate
(7.26).

Corollary 7.1. Let b, 1/b, c, α, β ∈ L∞(J1) and let f satisfy (7.14). Then there exist the unique m-sectorial
operators H̃ι in L

2(Ω0, G) such that
hι(ϕ, ψ) =: (ϕ, H̃ιψ)G (7.28)

for all ψ ∈ D(H̃ι) and ϕ ∈ D(hι), where

D(H̃ι) :=
{
ψ ∈ W 1,2

per(Ω0)
∣∣ ∃F ∈ L2(Ω0, G), ∀ϕ ∈W 1,2

per(Ω0),

hι(ϕ, ψ) = (ϕ, F )G
}
. (7.29)

Proof. With regard to Lemmata 7.1, 7.2, and the perturbation result [32, Thm. VI.3.4], the statement follows
by the first representation theorem [32, Thm. VI.2.1].

7.3.2 The equivalence of the two definitions

Under stronger assumptions on smoothness of functions appearing in boundary conditions (7.19ι) and on the
function f entering the metric tensor G, we show that operators H̃ι associated to the forms hι are equal to the
Hamiltonians Hι defined in (7.25). To prove this, we need the following lemma. Let us introduce a space of
Lipschitz continuous functions over [−l, l] satisfying periodic boundary conditions:

W 1,∞
per

(
J1
)
:=
{
ψ ∈ W 1,∞(J1

) ∣∣ ψ(−l) = ψ(l)
}
.

Lemma 7.3. Let α, β, b, 1/b, c, φ ∈ W 1,∞
per

(
J1
)
and let f satisfy (7.14), (7.17), and (7.24). Then for every

F ∈ L2(Ω0, G), a solution ψ to the problem

∀ϕ ∈W 1,2
per(Ω0) , hι(ϕ, ψ) = (ϕ, F )G , (7.30)

belongs to D(Hι) introduced in (7.25b).

Proof. We prove the separated boundary conditions case only, the connected case is analogous. For each
ψ ∈ W 1,2

per(Ω0) We introduce a difference quotient

δψ(x1, x2) :=
ψδ(x1, x2)− ψ(x1, x2)

δ
, (7.31)

where ψδ(x1, x2) := ψ(x1 + δ, x2) and δ is a small real number. The shifted value ψδ(x1, x2) is well defined for
every x1 ∈ J1 and δ ∈ R by extending ψ periodically to R. We use periodic extensions of other functions in x1
direction throughout the whole proof without further specific comments. The estimate

‖δψ‖ ≤ ‖ψ‖W 1,2(Ω0) (7.32)

is valid for δ small enough [20, Sec. 5.8.2., Thm. 3].
We express the difference of identities (7.30) for ψ and ψδ, whence we get for every ϕ ∈ W 1,2

per(Ω0)

(
∂1ϕ, (δf

−1)∂1ψ
)
+
(
∂1ϕ, f

−1
δ ∂1(δψ)

)
+
(
∂2ϕ, (δf)∂2ψ

)

+
(
∂2ϕ, fδ∂2(δψ)

)
+
(
ϕ, δ(f(β + iα))ψδ

)Γ+
2 +

(
ϕ, f(β + iα)(δψ)

)Γ+
2

+
(
ϕ, δ(f(β − iα))ψδ

)Γ−
2 +

(
ϕ, f(β − iα)(δψ)

)Γ−
2

=
(
ϕ, (δf)Fδ

)
+
(
ϕ, f(δF )

)
, (7.33)
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where (·, ·) is the inner product in L2(Ω0) and

(ϕ, ψ)Γ
±
2 :=

∫ l

−l
ϕ(x1,±a)ψ(x1,±a) dx1. (7.34)

We insert ϕ = δψ into equation (7.33) and apply the ‘integration-by-parts’ formula [20, Sec. 5.8.2] for difference
quotients, i.e., (ϕ, δF

)
= −

(
(−δ)ϕ, F

)
, in order to avoid the difference quotient of the arbitrary (e.g. possi-

bly non-continuous) function F ∈ L2(Ω0, G). Using the embedding of W 1,2(Ω0) in L2(∂Ω0), the regularity
assumptions on α, β and f , the Schwarz and Cauchy inequalities, and the estimate (7.32), we obtain

‖δψ‖W 1,2(Ω0) ≤ C, (7.35)

where C is a constant independent of δ. By standard arguments [20, D.4], this estimate yields that ∂1ψ ∈
W 1,2(Ω0).

At the same time, standard elliptic regularity theory [23, Thm. 8.8] implies that the solution ψ to (7.30)
belongs to W 2,2

loc (Ω0). Thus ψ satisfies the equation

−∆Gψ = F (7.36)

a.e. in Ω0. If we express ∂22ψ from (7.36), we obtain that ∂22ψ ∈ L2(Ω0).
It remains to check boundary conditions of D(HI). Once theW 2,2-regularity of the solution ψ is established,

this can be done by using integration by parts in the identity (7.30) and considering the arbitrariness of ϕ, see
[10, Lemma 3.2] for the more detailed discussion in an analogous situation.

Let us write HI(α, β) and HII(b, c, φ) if we want to stress the dependence of the Hamiltonians on functions
α, β and b, c, φ entering the boundary conditions.

Theorem 7.1. Let α, β, b, 1/b, c, φ ∈W 1,∞
per

(
J1
)
and let f satisfy (7.14), (7.17), and (7.24). Then

1. H̃ι = Hι,

2. Hι are m-sectorial operators,

3. the adjoint operators H∗
ι can be found as

H∗
I (α, β) = HI(−α, β), H∗

II(b, c, φ) = HII(b, c,−φ),

4. the resolvents of Hι are compact.

Proof. Ad 1. It is easy to verify, by integration by parts, that if ψ ∈ D(Hι) then ψ ∈ D(H̃ι); in fact, the
function F from (7.29) satisfies F = −∆Gψ in the distributional sense. Thus Hι ⊂ H̃ι. The more non-trivial
inclusion H̃ι ⊂ Hι follows from Lemma 7.3. Once the equality of the operators is established, the other
properties readily follow from the corresponding properties for H̃ι.

Ad 2. H̃ι is m-sectorial by Corollary 7.1.
Ad 3. By [32, Thm. VI.2.5], the adjoint operator H̃∗

ι is associated to the adjoint form h∗ι (ϕ, ψ) := hι(ψ, ϕ),
which establishes the required identities for H̃ι.

Ad 4. The compactness of the resolvents for H̃ι is provided by the perturbation result [32, Thm. VI.3.4]
and Lemmata 7.1, 7.2.

7.3.3 Spectral consequences

Since the Hamiltonians Hι are m-sectorial by Theorem 7.1, the spectrum (as a subset of the numerical range)
is contained in a sector of the complex plane, i.e., there exists a vertex γ ∈ R and a semi-angle θ ∈ [0, π/2)
such that

σ(Hι) ⊂
{
ζ ∈ C

∣∣ | arg(ζ − γ)| ≤ θ
}
.

Furthermore, since the resolvents of Hι are compact, the spectra of Hι are purely discrete, as it is reasonable
to expect for the Laplacian defined on a bounded manifold.

Under the additional assumptions on the geometry of the model (7.21), one can show thatHι are PT-symmetric.

Proposition 7.1. Let α, β, b, 1/b, c, φ ∈ W 1,∞
per

(
J1
)
and let f satisfy (7.14), (7.21), and (7.24). Then Hamil-

tonians Hι are

1. PT-symmetric, i.e., (PT)Hι ⊂ Hι(PT),
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2. P-pseudo-Hermitian, i.e., Hι = PH∗
ι P,

3. T-self-adjoint, i.e., Hι = TH∗
ι T,

where the operators P and T are defined in (7.20).

Proof. Note that the PT-symmetry relation means that whenever ψ ∈ D(Hι), PTψ also belongs to D(Hι)
and PTHιψ = HιPTψ. This can be verified directly using the definition of Hι via (7.25). The proofs of the
remaining statements are based on the explicit knowledge of the adjoint operators, Theorem 7.1.3.

Corollary 7.2. Under the hypotheses of Proposition 7.1, the spectra of Hι are invariant under complex con-
jugation, i.e.,

∀λ ∈ C , λ ∈ σ(Hι) ⇐⇒ λ ∈ σ(Hι) .

Proof. Recall that the spectrum of Hι is purely discrete due to Theorem 7.1.4. With regard to PT-symmetry, it
is easy to check that if ψ is the eigenfunction corresponding to the eigenvalue λ, then PTψ is the eigenfunction
corresponding to the eigenvalue λ.

7.4 Solvable models: constantly curved manifolds

In order to examine basic effects of curvature on the spectrum of the Hamiltonians we investigate solvable
models now. We restrict ourselves to the spectral problem in constantly curved manifolds and subjected to
constant interactions on the boundary, i.e., the functions K,α, β, b, c, φ are assumed to be constant. Moreover,
we assume that Γ is a geodesic, i.e. κ = 0, to have (7.21).

7.4.1 Preliminaries

To emphasize the dependence of the Hamiltonians Hι on the curvature K, we use the notation Hι(K) in this
section. One can easily derive the scaling properties of eigenvalues for constant K 6= 0:

λι(K, a, l) = |K|λι
(
± 1,

√
|K|a,

√
|K| l

)
.

Hence, the decisive factor for qualitative properties of the spectrum is the sign of K, while the specific value
of curvature is not essential. Hereafter we restrict ourselves to

K ∈ {−1, 0, 1} . (7.37)

Possible realizations of the ambient manifolds A corresponding to these three cases are pseudosphere, cylinder,
and sphere, respectively, see Figure 7.2.

(a) K = −1, pseudosphere (b) K = 0, cylinder (c) K = 1, sphere

Figure 7.2: Realizations of the constantly curved manifolds.
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Remark 7.2. The pseudosphere should be considered as a useful realization of A with K = −1 only locally,
since no complete surface of constant negative curvature can be globally embedded in R3 (this is reflected by
the singular equator in Figure 7.2.(a)). However, since Ω is a precompact subset of A, the incompleteness of
the pseudosphere is not a real obstacle here.

Moreover, hereafter we put l = π, so that the length of the strip is 2π. This provides an instructive
visualization of Ω as a tubular neighbourhood of a geodesic circle on the cylinder and the sphere, see Figure
7.2.

For κ = 0 and constant curvatures (7.37), the Jacobi equation (7.12) admits the explicit solutions

f(K)(x1, x2) =





coshx2 if K = −1 ,

1 if K = 0 ,

cosx2 if K = 1 .

(7.38)

It follows that the assumption (7.14) is satisfied for any positive a if K = −1, 0, while one has to restrict to
a < π/2 if K = 1. The latter is also sufficient to satisfy (7.10) for the sphere. There is no restriction on a
to have (7.10) if Γ is the geodesic circle on the cylinder. In any case (including the pseudosphere), (7.10) can
be always satisfied for sufficiently small a. The other hypotheses, i.e. (7.17), (7.21), and (7.24), clearly hold
regardless of the curvature sign.

Remark 7.3. In view of Remark 7.1, a < π/2 for K = 1 is the only essential restriction in the constant-
curvature case (7.38).

Explicit structures of the Hamiltonians Hι(K) introduced in (7.25) readily follow from (7.13) by using (7.38):

Hι(K) =





− 1

cosh2 x2
∂21 − 1

coshx2
∂2 coshx2∂2 if K = −1 ,

−∂21 − ∂22 if K = 0 ,

− 1

cos2 x2
∂21 − 1

cosx2
∂2 cosx2∂2 if K = 1 ,

(7.39)

on D(Hι(K)).

7.4.2 Partial wave decomposition

Since both the coefficients of Hι(K) and the boundary conditions are independent of the first variable x1, we
can decompose the Hamiltonians into a direct sum of transverse one-dimensional operators. The decomposition
is based on the following lemma.

Lemma 7.4.

∀Ψ ∈ L2(Ω0, G), Ψ(x1, x2) =
∑

m∈Z

ψm(x2)φm(x1) in L2(Ω0, G), (7.40)

where

φm(x1) :=
1√
2π
eimx1 , ψm(x2) :=

(
φm,Ψ(·, x2)

)
L2(J1)

. (7.41)

Proof. We may restrict the proof to L2(Ω0) only because the norms ‖ · ‖ and ‖ · ‖G are equivalent due to (7.14).
Let us also stress that G is independent of x1 and

{
φm
}
m∈Z

forms an orthonormal basis of L2(J1). Hence

∥∥∥∥∥
∑

m∈Z

ψm(x2)φm

∥∥∥∥∥
L2(J1)

= ‖Ψ(·, x2)‖L2(J1) ∈ L2(J2). (7.42)

The decomposition in L2(Ω0) can be then justified by using the dominated convergence theorem.

Writing Ψ(x1, x2) =
∑
m∈Z

φm(x1)ψm(x2) in the expression Hι(K)Ψ and formally interchanging the sum-
mation and differentiation, we (formally) arrive at the decomposition:

Hι(K) =
⊕

m∈Z

Hm
ι(K)B

m (7.43)
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with

Hm
ι(K) :=





− 1

coshx2
∂2 coshx2 ∂2 +

m2

cosh2 x2
if K = −1 ,

−∂22 +m2 if K = 0 ,

− 1

cosx2
∂2 cosx2 ∂2 +

m2

cos2 x2
if K = 1 ,

where Bm are bounded rank-one operators defined by

(BmΨ)(x1, x2) :=
(
φm,Ψ(·, x2)

)
L2(J1)

φm(x1) . (7.44)

The operators Hm
ι(K) act in L

2(J2, dν(K)) spaces with the measure

dν(K)(x2) :=





coshx2 dx2 if K = −1 ,

dx2 if K = 0 ,

cosx2 dx2 if K = 1 .

(7.45)

The domains of Hm
ι(K) are given by

D(Hm
ι(K)) :=

{
ψ ∈ W 2,2(J2)

∣∣ ψ satisfies (7.19ι)
}
, (7.46)

with obvious modification of the PT-symmetric boundary conditions (7.19ι) to the one-dimensional situation.
To justify the decomposition (7.43) in a resolvent sense, we need the following technical lemma specifying

the numerical range of Hm
ι(K).

Lemma 7.5. Let Ξmι(K) denote the numerical range of Hm
ι(K). Then there exist real constants c0, c1 independent

of m 6= 0 such that

Ξmι(K) ⊂
{
z ∈ C

∣∣ ℜz ≥ c0 +m2, |ℑz| ≤ c1
√
ℜz + |c0| −m2

}
. (7.47)

Proof. We give the proof forHm
I(+1) only, the other cases are analogous. We abbreviate (·, ·)+ := (·, ·)L2(J2,dν(+1))

and define

vm(x2) :=
m2

cos2 x2
, h[ψ] :=

(
ψ,Hm

I(+1)ψ
)
+
,

for every ψ ∈ D(Hm
I(+1)). Integration by parts yields the following expressions for real and imaginary parts

of h[ψ]:

ℜh[ψ] = ‖ψ′‖2+ + (ψ, vmψ)+ + β cos a
(
|ψ(a)|2 + |ψ(−a)|2

)
,

ℑh[ψ] = α cos a
(
|ψ(a)|2 − |ψ(−a)|2

)
,

for every ψ ∈ D(Hm
I(+1)). The estimates of ℜh[ψ] and ℑh[ψ] can be easily obtained taking into account the

equivalence of the norm ‖ · ‖L2(J2) with ‖ · ‖+ and using the one-dimensional version of the estimate (7.27).

Now we are in a position to establish the main result of this subsection.

Proposition 7.2. D :=
⋂

m∈Z

̺
(
Hm
ι(K)

)
is non-empty and D ⊂ ̺

(
Hι(K)

)
. For every z ∈ D,

(Hι(K) − z)−1 =
⊕

m∈Z

(
Hm
ι(K) − z

)−1
Bm, (7.48)

where (Hm
ι(K) − z)−1 abbreviates 1 ⊗ (Hm

ι(K) − z)−1 acting on L2(J1) ⊗ L2(J2, dν(K)) and Bm are defined in

(7.44).

Proof. We give a proof for Hm
I(+1) only, the remaining cases are analogous. Take z ∈ D, for every Ψ ∈ L2(Ω, G)

and m ∈ Z, we define

Um(x2) :=
(
Hm

I(+1) − z
)−1

ψm(x2), (7.49)

where ψm was introduced in (7.41). It is clear that Um ∈ L2(J2, dν(+1)). With regard to Lemma 7.5, take
m0 ∈ Z such that for every m > m0, z /∈ Ξmι(K). Using [32, Thm. V.2.3] together with Lemma 7.5, we get for
m > m0

‖Um‖L2(J2) ≤ C1

‖ψm‖L2(J2)

m2 + 1
, (7.50)
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where C1 is a constant independent of m, nonetheless depending on z, |α|, |β|, and a. Let us remark that since
z ∈ D, ‖Um‖L2(J2) are bounded for finitely many m smaller than m0. From the identity

‖U ′
m‖2+ + (−iα+ β) cos a|Um(a)|2 + (−iα− β) cos a|Um(−a)|2

+(vmUm, Um)+ − z‖Um‖2+ = (ψm, Um)+ ,

with vm and (·, ·)+ defined in Lemma 7.5, we obtain the estimate for the norm of U ′
m for m > m0,

‖U ′
m‖L2(J2) ≤ C1

‖ψm‖L2(J2)√
m2 + 1

(7.51)

Again, for finitely many m ≤ m0, ‖U ′
m‖L2(J2) are clearly bounded. With regard to (7.42), (7.50), and (7.51),

every function Rm(x1, x2) := φm(x1)Um(x2) belongs to W
1,2
per(Ω0).

Our goal is to show that R :=
∑

m∈Z
Rm is in W 1,2

per(Ω0) as well.
The finite number of bounded terms with m ≤ m0 is included in the following estimates and equalities

without any other specific comments. The identity (7.42) and inequality (7.50) together with Fubini’s theorem
imply ∥∥∥∥∥

∑

m∈Z

Rm

∥∥∥∥∥ ≤ C2‖Ψ‖.

A similar estimate can be obtained for ∂2Rm provided that we use the inequality (7.51). For ∂1Rm, we have

∥∥∥∥∥
N∑

m=−N
∂1Rm

∥∥∥∥∥

2

=

N∑

m=−N
m2‖Um‖2L2(J2)

≤ C2
1

N∑

m=−N

m2

m2 + 1
‖ψm‖2L2(J2)

,

where we used the inequality (7.50). The fraction in the sum on the right hand side is bounded, therefore, using
the Parseval equality, the limit

∑
m∈Z

∂1Rm remains in L2(Ω0). We conclude that R belongs to W 1,2(Ω0) and

‖R‖W 1,2(Ω0) ≤ C3‖Ψ‖L2(Ω0).

It remains to verify that R belongs to W 1,2
per(Ω0). We introduce the partial sum RN :=

∑N
m=−N Rm. The

fact that RN ∈W 1,2
per(Ω0) for every N ∈ N and the (trace) embedding of W 1,2(Ω0) in L

2(∂Ω0) yields

∣∣(ϕ,R(−l, ·)−R(l, ·)
)
+

∣∣ =
∣∣(ϕ,R(−l, ·)−RN (−l, ·) +RN (−l, ·)−R(l, ·)

)
+

∣∣

≤ 2C4 ‖ϕ‖+ ‖R−RN‖W 1,2(Ω0)

for every ϕ ∈ L2(J2, dν(+1)); C4 is a constant depending only on Ω0. Notice that the left hand side does
not depend on N . Hence, the periodicity of R is justified by taking the limit N → +∞ and considering the
arbitrariness of ϕ.

Now, knowing that R belongs to W 1,2
per(Ω0), one can easily check that

∀ϕ ∈W 1,2
per(Ω0) , hI(ϕ,R)− z(ϕ,R)L2(Ω0,G) = (ϕ,Ψ)L2(Ω0,G) .

This implies that R ∈ D(HI(+1)), see Lemma 7.3, and (HI(+1) − z)R = Ψ.

Proposition 7.2 has the important consequence for the spectrum of Hι(K).

Corollary 7.3.

σ
(
Hι(K)

)
=
⋃

m∈Z

σ
(
Hm
ι(K)

)

Proof. Resolvents on both sides of (7.48) are compact. The inclusion σ
(
Hι(K)

)
⊂ ∪m∈Zσ

(
Hm
ι(K)

)
is proved

(formulated for resolvent sets) in Proposition 7.2. The other inclusion is trivial since the existence of an
eigenfunction ξm0 of Hm0

ι(K) corresponding to an eigenvalue λ0 implies that ξm0(x2)φm0 (x1) is an eigenfunction

of Hι(K) corresponding to the same eigenvalue.

Remark 7.4. Notice that the statement of Corollary 7.3 relating the spectra of a direct sum of operators with
their individual spectra does not hold in general (cf [17, Thm. 8.1.12]). In our case, however, we have been
able to prove the result due to the compactness of resolvents and additional information about the behaviour
of the numerical ranges of Hm

ι(K) (cf Lemma 7.5).
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7.4.3 Similarity to self-adjoint or normal operators

We proceed with an analysis of Hm
ι(K). For sake of simplicity, we drop the subscript 2 of the x2 variable in

the sequel. We remark that PT-symmetry and P-pseudo-Hermiticity of Hm
ι(K) is preserved with P and T being

naturally restricted to L2(J2, dν(K)).
The operators Hm

ι(K) are neither self-adjoint nor normal, nevertheless we can show the following general
result:

Theorem 7.2. For every m ∈ Z and K ∈ {−1, 0, 1}:

1. The families of operators Hm
I(K)(α, β), H

m
II(K)(b, c, φ) are holomorphic with respect to parameters α, β, and

b, c, φ entering the boundary conditions.

2. The spectrum of Hm
ι(K) is discrete consisting of simple eigenvalues ( i.e., the algebraic multiplicity being

one), except of finitely many eigenvalues of algebraic multiplicity two and geometric multiplicity one that
can appear for particular values of α, β and b, c, φ.

3. If all the eigenvalues are simple, then

a) the eigenvectors of Hm
ι(K) form a Riesz basis in L2(J2, dν(K)) ,

b) Hm
ι(K) is similar to a normal operator, i.e., for every m there exists a bounded operator ̺ with bounded

inverse such that ̺Hm
ι(K)̺

−1 is normal,

c) if moreover all eigenvalues are real, then Hm
ι(K) is similar to a self-adjoint operator, i.e., ̺Hm

ι(K)̺
−1

is self-adjoint.

4. Let us denote by
{
ψi,m

}
i∈N

the eigenfunctions of Hm
ι(K). The set of eigenfunctions B :=

{
φmψi,m

}
m∈Z,i∈N

,

where φm were introduced in (7.41), forms a Riesz basis of L2(Ω0, G).

Remark 7.5. We remark that while each Hm
ι(K) is similar to a normal (or self-adjoint) operator, the similarity

transformation ρ depends on m and there is a priori no uniform (in m) bound on ρ and ρ−1.

Proof. Ad 1. In view of [32, Sect. VII, Ex. 1.15], the Hamiltonians Hm
I(K)(α, β), considered as a family of

operators depending on parameters α, β entering boundary conditions, are holomorphic. The same is true for
Hm

II(K)(b, c, φ).
Ad 2. The separated boundary conditions belong to the class of strongly regular boundary conditions

[46, 47]. The connected PT-symmetric boundary conditions are strongly regular as well because θ1 = −b,
θ−1 = b (in Naimark’s notation) and b is non-zero by the assumption in (7.19). Moreover, all the eigenvalues
are simple [40] up to finitely many degeneracies that can appear: eigenvalues with algebraic multiplicity two
and geometric multiplicity one.

Ad 3. With regard to the strong regularity of boundary conditions, the eigenfunctions of the Hamiltonian
Hm
ι(K) form a Riesz basis [40], except the situations when the degeneracies appear. The existence of Riesz basis

implies the similarity to a normal operator and as a special case the similarity to a self-adjoint operator if the
spectrum of Hm

ι(K) is real.

In more details, let
{
ψn
}
n∈N

be the Riesz basis of eigenvectors of Hm
ι(K), i.e., Hm

ι(K)ψn = λnψn. By

definition, there exists a bounded operator ρ with bounded inverse such that
{
ρψn

}
n∈N

is an orthonormal

basis that we denote by
{
en
}
n∈N

. Then

ρHm
ι(K)ρ

−1 =
∑

n∈N

λn en(en, ·)L2(Ω0,G)

is a normal (self-adjoint if every λn ∈ R) operator.
Ad 4. At first we show that B is complete, i.e., B⊥ = {0}. Take ω ∈ B⊥, i.e., for every m ∈ Z, i ∈ N,

0 =

∫

Ω0

φm(x1)ψi,m(x2)ω(x1, x2)dx1dν(K)(x2)

=

∫

J2

ψi,mωm(x2)dν(K)(x2),

where ωm(x2) :=

∫

J1

φm(x1)ω(x1, x2)dx1. Since
{
ψi,m

}
i∈N

forms a Riesz basis, ωm = 0 a.e. in L2(J2, dν(K))

for every m ∈ Z. Since
{
φm
}
m∈Z

is the orthonormal basis of L2(J1), ω = 0 in L2(Ω0, G).
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Now we define an involution (P1ψ)(x1, x2) := ψ(−x1, x2). We show that ψi,m can be normalized in such
way that B is P1T-orthonormal, i.e.,

(
φmψi,m,P1Tφnψj,n

)
L2(Ω0,G)

= δijδmn.

Since P1Tφm = φm, P1T-orthogonality follows immediately form 6= n because φm are orthonormal in (·, ·)L2(J1)

and G is independent of x1. For m = n we have

(
φmψi,m,P1Tφmψj,m

)
L2(Ω0,G)

=
(
ψi,m,Tψj,m

)
L2(J2,dν(K))

. (7.52)

If i 6= j, then the right hand side of (7.52) is zero because Tψj,m is an eigenfunction of
(
Hm
ι(K)

)∗
. Indeed, it is a

general fact that eigenfunctions of H and H∗ corresponding to different eigenvalues are orthogonal. It remains
to verify that if i = j, then the right hand side of (7.52) does not vanish, i.e.,

∫

J2

ψ2
j,m(x2) dν(K)(x2) 6= 0.

However, this is precisely the condition on λj,m being a simple eigenvalue of Hm
ι(K). It can be easily seen either

directly or it follows from [22, Thm. 5].

Remark 7.6. Notice that an additional symmetry with respect to P1 was essential in the proof. The set of
eigenfunctions B is not T-orthonormal because the products

(
φmψi,m,Tφmψi,m

)
L2(Ω0,G)

vanish. This situation

is typical for T-self-adjoint operators with eigenvalues that are not simple [22].

7.4.4 Separated boundary conditions

At first, we investigate the Hamiltonians Hm
I(0)(α, β). Then Hm

I(±1)(α, 0) are analysed. These results together
allow us to describe the remaining β 6= 0 case.

Zero curvature

As expected, the zero curvature case is the simplest and it will serve as a reference model. In fact, the
corresponding one-dimensional eigenvalue problem

{
−ψ′′ +m2ψ = k2ψ in (−a, a),

ψ′(±a) + (iα± β)ψ(±a) = 0,
(7.53)

has been already studied previously in [37]. Here we overtake the main results.

Proposition 7.3. The spectrum of Hm
I(0)(α, 0) is real for all m ∈ Z. The eigenvalues λj,m and eigenfunctions

ψj,m can be written in the following form, m ∈ Z,

λj,m =

{
α2 +m2 if j = 0 ,

k2j +m2 if j ≥ 1 ,
(7.54)

ψj,m(x) =




C0 exp (−iαx) if j = 0 ,

Cj

(
cos(kjx) +

kj sin(kja)− iα cos(kja)

kj cos(kja) + iα sin(kja)
sin(kjx)

)
if j ≥ 1,

where kj := jπ
2a . If α2 6= k2j , i.e., there is no level-crossing for the same m, then the operator is similar to a

self-adjoint operator or, equivalently, it is quasi-Hermitian.

Remark 7.7. Closed formulae for the metric operator Θ for Hm
I(0)(α, 0) are presented in [37, 36]. The similarity

transformation ̺ can be found as ̺ =
√
Θ or as any other decomposition of the positive operator Θ = ̺∗̺.

The α-dependence of eigenvalues λ for m = 0, 1, 2 is plotted in Figure 7.3.
The case of β 6= 0 is more complicated and as it was remarked in [37], the spectrum of Hm

I(0)(α, β) can be

complex. More precise results follow from a further analysis, not presented in [37].

Proposition 7.4.

1. If β > 0, then the spectrum of Hm
I(0)(α, β) is purely real for all m ∈ Z and α ∈ R.
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Figure 7.3: α-dependence of eigenvalues, zero curvature, a = π/4. Red (full), green (dashed), and blue (dot-
dashed) curves correspond to m = 0, 1, 2 respectively.

2. If β < 0, then the spectrum of H0
I(0)(α, β) is either purely real or there is one pair of complex conjugated

eigenvalues with real part located in the neighbourhood of α2+β2. For fixed negative β, the points αn where
a pair of complex conjugated eigenvalues appears (by increasing of α) are determined by α2

n + β2 = k2n,
where k2n := ((2n+ 1)π/4a)2 for some n ∈ N.

The eigenvalues λ = k2 of H0
I(0)(α, β) are determined (k = 0 is admissible only if α = β = 0) by the equation

(k2 − α2 − β2) sin(2ka)− 2βk cos(2ka) = 0. (7.55)

The corresponding eigenfunctions read

ψ(x) = C

(
cos(kx) +

k sin(ka)− (iα+ β) cos(ka)

k cos(ka) + (iα+ β) sin(ka)
sin(kx)

)
. (7.56)

The eigenvalues of Hm
I(0)(α, β) are obtained by adding m2 to the eigenvalues of H0

I(0)(α, β).

Proof. We proceed in a similar way as in the alternative proof [37, Sect. 6.1] of the reality of the spectrum of
H0

I(0)(α, 0). The original eigenvalue problem (7.53) with m = 0 can be transformed, using φ(x) := eiαxψ(x),
into {

−φ′′ + 2iαφ′ + α2φ = λφ in (−a, a),
φ′(±a)± βφ(±a) = 0.

(7.57)

We multiply the equation (7.57) by φ′′ and integrate over (−a, a). Next we multiply the complex conjugated
version of the equation (7.57) by φ′′ and again we integrate over (−a, a). By subtracting the results and
integrating by parts with use of the boundary conditions in (7.57), we obtain the identity

− αβ2
(
|φ(a)|2 − |φ(−a)|2

)
= ℑλ

(
‖ψ′‖2L2(J2)

+ β(|φ(a)|2 + |φ(−a)|2)
)
. (7.58)

If we perform the same procedure, however, with multiplication by φ, after some integration by parts we receive
the relation

α
(
|φ(a)|2 − |φ(−a)|2

)
= ℑλ ‖φ‖2L2(J2)

. (7.59)

Combining (7.58) with (7.59) leads to the identity

0 = ℑλ
(
‖φ′‖2L2(J2)

+ β(|φ(a)|2 + |φ(−a)|2) + β2‖φ‖2L2(J2)

)
. (7.60)

If β is positive, then the whole term in the brackets is strictly positive and thus imaginary part of λ must be
zero. This proves the first item of the proposition.

If β is negative, then complex eigenvalues can appear. If we divide the equation (7.55) by k2 and leave only
sin(2ka) term on the left hand side, then it is clear that eigenvalues approach (nπ/2a)2 for k real and large
enough. After simple algebraic manipulation (7.55) becomes

tan(2ka) =
2βk

k2 − α2 − β2
(7.61)
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and the eigenvalues correspond to the intersections of the graphs of functions on left and right hand side
of (7.61). We denote l(k) the function on the left hand side, r(k) the one on the right hand side, and

k0 :=
√
α2 + β2. The behaviour of r(k) for k ∈ R is summarized in Table 7.1. Graphs of functions l(k)

k sign asymptotics

(−∞,−k0) r(k) > 0, r′(k) > 0, r′′(k) > 0 limk→−k0−
r(k) = +∞

limk→−∞ r(k) = 0
(−k0, 0) r(k) < 0, r′(k) > 0, r′′(k) < 0 limk→−k0+

r(k) = −∞
(0, k0) r(k) > 0, r′(k) > 0, r′′(k) > 0 limk→k0−

r(k) = +∞
(k0,∞) r(k) < 0, r′(k) > 0, r′′(k) < 0 limk→k0−

r(k) = −∞
limk→∞ r(k) = 0

Table 7.1: The behaviour of r(k).

and r(k) are plotted in Figure 7.4. It is clear from the holomorphic dependence of eigenvalues on α, β (a
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Figure 7.4: Graphs of l(k) (full line) and r(k) (dashed line), a = π/4, β = −0.5.

consequence of Theorem 7.2) that eigenvalues are close to (nπ/a)2, corresponding to zeros of l(k) = tan(2ka),
except those in the neighbourhood of α2 + β2. Since α = β = 0 case corresponds to Neumann boundary
conditions, for small α and β, all eigenvalues must be close to (nπ/2a)2. Hence, if we fix β and increase α,
then two intersections of graphs of l(k) and r(k) are “lost” precisely at the point where α2

n+ β2 = k2n for some
n ∈ N, i.e., the asymptote of r(k) corresponds to the asymptote of the tangent l(k). This implies the creation
of complex conjugate pair of eigenvalues. If we increase α more, two intersections appear again which means
the annihilation of complex conjugate pair, i.e., the restoration of two real eigenvalues. The two intersections
are lost at the next critical value αn+1. Very rough estimates give the location of restoration of real eigenvalues
in the interval (nπ/2a, (2n+ 1)π/4a).

In view of the presented arguments, only one complex conjugated pair can appear in the spectrum for fixed
α and β in the neighbourhood of α2 + β2, and the other eigenvalues approach (nπ/2a)2 as the distance from
α2 + β2 increases. Moreover, for fixed β, the enlarging of α results into the shift of eigenvalues from almost
Neumann ones (nπ/2a)2, n ∈ N, to Dirichlet ones ((n+ 1)π/2a)2, n ∈ N, for α large.

Finally, the equation for eigenvalues and eigenfunctions are found in a standard way. The general solution
A cos(kx)+B sin(kx) of −ψ′′ = k2ψ is inserted into boundary conditions (7.53) and the condition for existence
of non-trivial solutions A,B is the eigenvalue equation (7.55).

Figures 7.5, 7.6 represent the α-dependence of the first four eigenvalues as obtained by a numerical analysis
of (7.55). The numerical results confirm the above described behaviour. Let us remark that if β is positive,
then the graph of r(k) is reflected by the x-axis and the effect of loosing intersections is not possible, hence the
spectrum remains real.
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Figure 7.5: α-dependence of eigenvalues, zero curvature, a = π/4, β = 0.5. Red (full), green (dashed), and
blue (dot-dashed) curves correspond to m = 0, 1, 2 respectively.
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Figure 7.6: α-dependence of eigenvalues, zero curvature, a = π/4, β = −0.5. Red (full), green (dashed), and
blue (dot-dashed) curves correspond to m = 0, 1, 2 respectively.

Positive curvature

The eigenvalue problem for the Hamiltonian Hm
I(+1) reads





−ψ′′(x) + tanxψ′(x) +
m2

cos2 x
ψ(x) = k2ψ(x) in (−a, a),

ψ′(±a) + iαψ(±a) = 0.

(7.62)

Solutions of (7.62) can be written down in terms of associated Legendre functions P
(µ)
ν , Q

(µ)
ν :

ψ(x) = C1ψ1(x) + C2ψ(x) ≡ C1P
(m)
ν (sinx) + C2Q

(m)
ν (sinx), (7.63)

where

ν :=
1

2

(√
1 + 4λ− 1

)
, (7.64)

C2(αψ2(−a)− iψ′
2(−a)) = C1(−αψ1(−a) + iψ′

1(−a)). (7.65)

Inserting the general solution (7.63) into boundary conditions in (7.62) and consequent search for non-trivial
constants C1, C2 yields the eigenvalue equation

∣∣∣∣
ψ′
1(a) + iαψ1(a) ψ′

2(a) + iαψ2(a)
ψ′
1(−a) + iαψ1(−a) ψ′

2(a) + iαψ2(a)

∣∣∣∣ = 0. (7.66)
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In order to analyse the spectrum in more details, we transform the Hamiltonian Hm
I(+1) into a unitarily

equivalent operator of a more convenient form. The proof of the lemma is a straightforward calculation.

Lemma 7.6. The unitary mapping U(+1) : L
2(J2, dx) → L2(J2, dν(+1))

(
U(+1)ψ

)
(x) := (cosx)−

1
2 ψ(x) (7.67)

transforms Hm
I(+1)(α, 0) to

U−1
(+1)H

m
I(+1)(α, 0)U(+1) = H0

I(0)(α,
1
2 tan a) + V m(+1), (7.68)

where

Vm(+1)(x) :=
8m2 − 3− cos 2x

8 cos2 x
. (7.69)

Equipped with the equivalent form of the Hamiltonian, we prove the following result.

Proposition 7.5. For every m ∈ Z there exists a real number Λm(+1) such that all eigenvalues λ with ℜλ ≥ Λm(+1)

are real and simple ( i.e. the algebraic multiplicity being one). The eigenvalues with ℜλ < Λm(+1) can be complex,
ordered in complex conjugated pairs.

Eigenvalues are determined by equation (7.66) and eigenfunctions can be written in the form (7.63) with (7.65).

Proof. We follow standard arguments of perturbation theory (see e.g. [18] for spectral operators). Let us
consider the transformed Hamiltonian (7.68) and forget about the potential for a moment, i.e., we understand
the potential V m(+1) as a perturbation of H0

I(0)(α,
1
2 tan a). Since tan a is positive under the assumption a < π/2,

the reality of the spectrum is guaranteed by Proposition 7.4.1. The potential represents a bounded perturbation
and it can shift eigenvalues only by C‖V m(+1)‖. Here the constant C comes from the estimate of the norm of
the resolvent

‖R0
I(0)(λ)‖ ≤ C

ℑλ ,

which is valid for H0
I(0)(α,

1
2 tan a) due to the similarity to a normal operator (cf Theorem 7.2). The separa-

tion distance |λn+1 − λn| of eigenvalues (ordered with respect to the real part) of the unperturbed operator
H0

I(0)(α,
1
2 tan a) grows to infinity and two eigenvalues must collide at first to create a complex conjugate pair.

Hence, the perturbed operator cannot have more than finitely many complex eigenvalues. Recall that due to
PT-symmetry (Corollary 7.2) the complex eigenvalues come in complex conjugated pairs.

Remark 7.8. In other words, we detected the effects of positive curvature. It acts as the adding of real
bounded potential Vm(+1) and real “β like” term in the boundary conditions to the zero curvature Hamiltonian

H0
I(0). The positive 1

2 tan a term is decisive for the behaviour of the spectrum, the bounded potential V m(+1) can
affect substantially only the lowest eigenvalues. Nonetheless, we conjecture that the spectrum remain real for
every m ∈ Z.

A numerical analysis of the equation (7.66) for λ = k2 is presented in Figure 7.7. Obvious similarity with
Figure 7.5 supports the perturbative results.

Negative curvature

The eigenvalue problem for the Hamiltonian Hm
I(−1) reads





−ψ′′(x)− tanhxψ′(x) +
m2

cosh2 x
ψ(x) = k2ψ(x) in (−a, a),

ψ′(±a) + iαψ(±a) = 0.

(7.70)

The solutions of (7.70) can be again expressed via associated Legendre functions P
(µ)
ν , Q

(µ)
ν , but they have a

little bit more complicated form then (7.63):

ψ(x) = C1ψ1(x) + C2ψ(x) ≡ C1
P

(µ)
ν (tanh x)√

coshx
+ C2

Q
(µ)
ν (tanh x)√

coshx
, (7.71)

where

µ := im− 1

2
, ν :=

1

2

√
1− 4λ. (7.72)
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Figure 7.7: α-dependence of eigenvalues, positive curvature, a = π/4. Red (full), green (dashed), and blue
(dot-dashed) curves correspond to m = 0, 1, 2 respectively.

Relations between C1, C2 can be obtained from equation (7.65), however, with ψ1, ψ2 corresponding to the
negative curvature solutions (7.71); the same is true for the eigenvalue equation (7.66).

To explain the behaviour of the spectrum in a deeper way, we use the same strategy as in the positive
curvature case. The eigenvalue problem (7.70) can be transformed by an analogous unitary transformation
leading to a modified zero curvature eigenvalue problem.

Lemma 7.7. The unitary mapping U(−1) : L
2(J2, dx) → L2(J2, dν(−1))

(
U(−1)ψ

)
(x) := (coshx)−

1
2 ψ(x) (7.73)

transforms Hm
I(−1)(α, 0) to

U−1
(−1)H

m
I(−1)(α, 0)U(−1) = H0

I(0)(α,−
1

2
tanh a) + V m(−1), (7.74)

where

V m(−1)(x) :=
8m2 + 3 + cosh 2x

8 cosh2 x
. (7.75)

Proposition 7.6. For every m ∈ Z there exists a real number Λm(−1) such that all eigenvalues λ with ℜλ ≥ Λm(−1)

are either real and simple ( i.e. the algebraic multiplicity being one), or there is one complex conjugated pair of
eigenvalues with real part located in the neighbourhood of α2 + β2. The eigenvalues with ℜλ < Λm(−1) can be
complex, ordered in complex conjugated pairs.

Eigenvalues are determined by equation (7.66) with ψ1, ψ2 from (7.71). Eigenfunctions can be written in
the form (7.71) with constants C1, C2 satisfying (7.65) with ψ1, ψ2 from (7.71).

Proof. The proof is the same as in the positive curvature case, cf the proof of Proposition 7.5. The unperturbed
Hamiltonian H0

I(0)(α,− 1
2 tanh a) corresponds to the case analysed in Proposition 7.4.2.

Remark 7.9. The curvature effect is now represented by the bounded real potential V m(−1) and the extra

negative term − 1
2 tanh a in the boundary conditions. The lowest eigenvalues (in absolute values) can be

complex, nonetheless, we showed that the creation of a complex pair of eigenvalues is always followed by its
annihilation, i.e. the restoration of real eigenvalues, when parameter α is increased.

A result of the numerical analysis of the eigenvalue problem is presented in Figure 7.8. The resemblance to
zero curvature case with negative β in boundary conditions is obvious.

7.4.5 Connected boundary conditions

The connected boundary conditions are, by their nature, more complicated than the separated ones and more-
over, they are given by three real parameters b, c, φ. Like for the separated boundary conditions, we can use
the unitary transformations U(±1) introduced in (7.67), (7.73) to transform the problems to the zero curvature
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Figure 7.8: α-dependence of eigenvalues, negative curvature, a = π/4. Red (full), green (dashed), and blue
(dot-dashed) curves correspond to m = 0, 1, 2 respectively. See animation, for an animated visualization of the
α-dependence of the eigenvalues.

case, however, with modified boundary conditions and with additional bounded real potentials V m(±1) defined

in (7.69), (7.75). The modification of boundary conditions is presented in appropriate subsections below.
The spectrum is not analytically described so far even for the zero curvature model and it is beyond the

scope of this article to proceed with this analysis. The main aim of this section is to show the effect of curvature,
i.e., the transformation of curved models to the zero curvature case. Furthermore, we present some results of
a numerical analysis for the ‘lowest’ eigenvalues: φ-dependence for selected values of b, c. It is important to
note that, unlike in the separated case, we do not start with our parameters b, c, φ from a self-adjoint operator
for φ = 0, as it was the case for α = 0 in the case of separated boundary conditions. We remark that the
case b = c = 0, φ = ±π/2 corresponds to irregular boundary conditions and the spectrum of such operators is
completely different from the cases presented here (cf [54]).

Zero curvature

We impose connected boundary conditions (7.19II) on the solutions of eigenvalue problem for H0
II(0)(b, c, φ) and

we obtain the following equation for eigenvalues λ = k2

− 2k + 2k cos(2ak)
√
1 + bc cosφ+

(
bk2 − c

)
sin(2ak) = 0 (7.76)

and eigenfunctions
ψ(x) = C1 cos(kx) + C2 sin(kx), (7.77)

where the constants are further restricted by

C2

((
−1 +

√
1 + bceiφ

)
cos(ak) + bk sin(ak)

)

= C1

((
1 +

√
1 + bceiφ

)
sin(ak)− bk cos(ak)

)
. (7.78)

Proposition 7.7. Eigenvalues λ = k2 of H0
II(0)(b, c, φ) are determined by equation (7.76), eigenfunctions read

(7.77) with (7.78).
Eigenvalues for m 6= 0 can be obtained by the shift λ 7→ λ + m2 while the corresponding eigenfunctions

remain the same.

Figure 7.9 illustrates the behaviour of eigenvalues for a certain choice of parameters.

Positive curvature

The solutions of the eigenvalue problem for Hm
II(+1)(b, c, φ) with connected boundary conditions (7.19II) are the

same as (7.63) except the constants C1, C2 now satisfy

C2

(√
1 + bceiφψ2(−a)− ψ2(a) + bψ′

2(−a)
)

= C1

(√
1 + bceiφψ1(−a)− ψ1(a) + bψ′

1(−a)
)
. (7.79)

KS-http://gemma.ujf.cas.cz/~siegl/PTCurvedMan.html
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Figure 7.9: φ-dependence of eigenvalues, zero curvature, a = π/4, b = c = 0.01. Red (full), green (dashed),
and blue (dot-dashed) curves correspond to m = 0, 1, 2 respectively.

The equation for eigenvalues reads

∣∣∣∣
−
√
1 + bc eiφψ1(−a) + ψ1(a)− bψ′

1(−a) −
√
1 + bc eiφψ2(−a) + ψ2(a)− bψ′

2(−a)
−cψ1(−a)−

√
1 + bc e−iφψ′

1(−a) + ψ′
1(a) −cψ2(−a)−

√
1 + bc e−iφψ′

2(−a) + ψ′
2(a)

∣∣∣∣ = 0. (7.80)

Figure 7.10 illustrates the behaviour of eigenvalues for a certain choice of the parameters.

0.00 0.05 0.10 0.15 0.20

Φ

16

18

20

22

Re Λ

(a) Real part of λ

0.05 0.10 0.15 0.20

Φ

-1.0

-0.5

0.5

1.0

Im Λ

(b) Imaginary part of λ

Figure 7.10: φ-dependence of eigenvalues, positive curvature, a = π/4, b = c = 0.01. Red (full), green (dashed),
and blue (dot-dashed) curves correspond to m = 0, 1, 2 respectively.

We employ the unitary transformation U(+1) introduced in Lemma 7.6 to map Hm
II(+1)(b, c, φ) to a zero

curvature Hamiltonian.

Proposition 7.8. The unitary mapping U(+1) defined in (7.67) transforms the Hamiltonian Hm
II(+1)(b, c, φ) to

U−1
(+1)H

m
II(+1)(b, c, φ)U(+1) = Ĥ0

II(0) + Vm(+1), (7.81)

where V m(+1) is defined in (7.69) and Ĥ0
II(0) := − d2

dx2
with the domain consisting of ψ ∈ W 2,2(J2) satisfying

Ψ(a) = B(+1)Ψ(−a), with Ψ(x) :=

(
ψ(x)
ψ′(x)

)
and (7.82)

B(+1) :=

( √
1 + bc) eiφ − 1

2b tana b

c−
√
1 + bc tana cosφ+ 1

4b tan
2 a

√
1 + bc e−iφ − 1

2b tana

)
.

Eigenvalues λ = k2 of Hm
II(+1)(b, c, φ) are determined by equation (7.80), eigenfunctions read (7.63) with

constants C1, C2 given by (7.79).
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Remark 7.10. The boundary conditions (7.82) are PT-symmetric, but they are no more P-pseudo-Hermitian.
This result shows that although we reduced the problem to the zero curvature case (in the sense of previous sec-
tions), the investigation of spectrum must be done with more general boundary conditions than PT-symmetric
and P-pseudo-Hermitian at the same time.

Negative curvature

The solutions of the eigenvalue problem for Hm
II(−1)(b, c, φ) with connected boundary conditions (7.19II) are the

same as in the separated conditions case (7.71), but the relation between constants C1, C2 is given by (7.79)
with ψ1, ψ2 corresponding to the negative curvature solutions (7.71); the same is also valid for the eigenvalue
equation (7.80).

Figure 7.11 illustrates the behaviour of eigenvalues for a certain choice of parameters.
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Figure 7.11: φ-dependence of eigenvalues, negative curvature, a = π/4, b = c = 0.01. Red (full), green (dashed),
and blue (dot-dashed) curves correspond to m = 0, 1, 2 respectively.

Proposition 7.9. The unitary mapping U(−1) defined in (7.73) transforms the Hamiltonian Hm
II(−1)(b, c, φ) to

U−1
(−1)H

m
II(−1)(b, c, φ)U(−1) = H̃0

II(0) + V m(−1), (7.83)

where V m(−1)(x) is defined in (7.75) and H̃0
II(0) := − d2

dx2
with the domain consisting of ψ ∈W 2,2(J2) satisfying

Ψ(a) = B(−1)Ψ(−a), with Ψ(x) :=

(
ψ(x)
ψ′(x)

)
and (7.84)

B(−1) :=

( √
1 + bc) eiφ + 1

2b tanha b

c+
√
1 + bc tanh a cosφ+ 1

4b tanh
2 a

√
1 + bc e−iφ + 1

2b tanh a

)
.

Eigenvalues λ = k2 of Hm
II(−1)(b, c, φ) are determined by equation (7.80) with ψ1, ψ2 from (7.71). The

eigenfunctions read (7.71), where constants C1, C2 are given by (7.79) with ψ1, ψ2 from (7.71).

Remark 7.11. The boundary conditions (7.84) are PT-symmetric, however not P-pseudo-Hermitian, as for
the positive curvature case. Thus again, it is necessary to investigate more general boundary conditions in zero
curvature eigenvalue problem.

7.5 Concluding remarks

The goal of this paper was to introduce a new class of PT-symmetric Hamiltonians defined in curved manifolds
and describe the effects of curvature on the spectrum. Although we were able to find these effects for both
separated and connected boundary conditions, the absence of results on reality of the spectrum for the latter
(even in the case of zero curvature) did not allow us to present the conclusions in an entirely descriptive and
explicit way. Let us therefore summarize the main features of the model for the separated Robin type boundary
conditions (7.3) only.
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curvature spectrum eigenvalues

zero R only some α-dependent, crossings
positive R all α-dependent, no crossings
negative C all α-dependent, crossings,

creation and annihilation of complex pairs

Table 7.2: A heuristic summary of our analytical and numerical analysis.

In Table 7.2 we schematically (and very roughly) describe qualitative properties of the spectrum we observed
in the constant-curvature cases. The entry describing the positive curvature case includes our conjecture
(supported by numerical analysis) that all eigenvalues are real.

One of the most instructive results in the paper are probably Lemmata 7.6 and 7.7, which enable one
to understand the effect of curvature in terms of an additional effective potential and boundary-coupling
interaction. For the s-wave modes (i.e. m = 0 in the decomposition (7.43)) and infinitesimally thin strips
(i.e. a ≪ l), it follows from the lemmata that the positive and negative curvature acts as an attractive and
repulsive interaction, respectively. This is in agreement with a spectral analysis of similar models in the
self-adjoint case of Dirichlet boundary conditions [34, 35]. However, the additional boundary interaction is not
negligible for positive widths a, and its effect is actually completely opposite (cf Remarks 7.8, 7.9): the positive
and negative curvature gives rise to an attractive and repulsive Robin-type boundary condition, respectively.
The interplay between these two effects is further complicated by the presence of the repulsive centrifugal term
for |m| ≥ 1, and the numerical analysis confirms that the overall picture of the spectrum can be quite complex.

It follows from previous comments and remarks that there remain several open problems, e.g. the proof
of the reality of all eigenvalues in the positive curvature model. Nonetheless, we would like to mention also
some other interesting directions of potential future research: the spectral effect of curvature in non-constant
curvature and non-constant boundary-coupling functions setting, the existence of Riesz basis for such setting
or models defined on unbounded domains (waveguides) in curved spaces. The last case can be viewed as a
natural continuation of [10] where a planar PT-symmetric waveguide was studied.
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Abstract. We consider one-dimensional Pauli Hamiltonians in a bounded interval with possibly
non-self-adjoint Robin-type boundary conditions. We study the influence of the spin-magnetic
interaction on the interplay between the type of boundary conditions and the spectrum. A special
attention is paid to PT-symmetric boundary conditions with the physical choice of the time-reversal
operator T.
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8.1 Introduction

In recent years there has been a growing interest in non-Hermitian “extensions” of quantum mechanics, usually
associated with the names of PT-symmetry, pseudo-Hermiticity, quasi-Hermiticity or crypto-Hermiticity (we
respectively refer to [4, 29, 31, 39] where the first two works are recent surveys with many references). The
quotation marks are used here because the extended theories are physically relevant only if the operators in
question are similar to self-adjoint operators, which in turn puts the concept back to the conventional quantum
mechanics.

However, the freedom related to the existence of the similarity transformation can be highly useful in
applications, since a complicated non-local self-adjoint operator can be represented by a (possibly non-self-
adjoint) differential operator (see [23] for one-dimensional examples), and the spectral theory for the latter is
much more developed. Moreover, it is necessary that the non-Hermitian operators possess real spectra, which
can be often ensured (at least in some perturbative regimes [9, 27]) by the simple criterion of PT-symmetry.

The goal of the present paper is to examine the role of spin in the above theories. We consider the simplest
non-trivial situation of an electron (spin 1

2 , mass m, charge −e < 0) interacting exclusively with an external

homogeneous magnetic field ~B ∈ R3. Choosing the Poincaré gauge in which the magnetic vector potential
coincides with 1

2
~B × ~x, this system is governed by the Pauli equation

i~
∂Ψ

∂t
= − ~2

2m
∆Ψ+

µ

~
~B · ~LΨ+

e2

8m
( ~B × ~x)2Ψ+ µ ~B · ~σΨ =: HΨ (8.1)

in the space-time variables (~x, t), where ~ is the reduced Planck constant, µ := ~e/(2m) is the Bohr magneton

(for simplicity), ~L is the angular-momentum operator and ~σ is a three-component vector formed by the Pauli
matrices. The spinorial wavefunction Ψ can be represented as an element of L2(R3) ⊗ C2 and the operators
appearing in (8.1) are assumed to appropriately act in this Hilbert space.

The Hamiltonian H (equipped with a suitable domain) is Hermitian when considered in the full Hilbert
space L2(R3)⊗ C2. Moreover, the Pauli equation (8.1) is invariant under a simultaneous reversal of the space
and time variables (cf the discussion in Section 8.5). Relying on general definitions for the Dirac field (see,
e.g., [5, §26]) and the fact that the Pauli equation can be obtained from the Dirac equation in a non-relativistic
limit, the discrete symmetries can be represented by means of the parity P and the time-reversal operator T

(uniquely determined up to a phase factor).
Our way how to “complexify” (8.1) is to restrict the space variables to a subset Ω ⊂ R3 and impose complex

boundary conditions of the Robin type

∂Ψ

∂n
+AΨ = 0 on ∂Ω , (8.2)
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where n is the outward pointing normal unit to ∂Ω and A is a two-by-two complex-valued matrix. If Ω is
invariant with respect to the spatial inversion P, it is possible to choose A in such a way that the PT-symmetry
of (8.1) remains valid for the (possibly non-Hermitian) operator H on L2(Ω) ⊗ C2, subject to the boundary
conditions (8.2).

In this paper we study the interplay between the form of the matrix A and the spectrum of H . In particular,
we are interested in the existence of real eigenvalues in the PT-symmetric situation.

We are not aware of previous works on Pauli equation in the non-Hermitian extensions of quantum mechan-
ics. However, there exist results on spinorial systems in the context of PT-symmetric coupled-channels models
[36, 37, 38] and the Dirac equation in the framework of Krein spaces [1, 24].

One of the reasons for considering the spinorial model in this paper is the fact that the time-reversal
operator T differs from the complex conjugation, the latter being the time-reversal operator for the scalar
(i.e. spinless) Schrödinger equation, widely studied in the PT-symmetric quantum theory. In fact, for fermionic
systems (i.e. half-integer non-zero spin), one has

T2 = −1 . (8.3)

This has been remarked previously in the context of pseudo-Hermitian operators in [32, 6]. A generalized
concept of PT-symmetry as regards the operator P is suggested in [35].

The present model can be regarded as an extension of the one-dimensional scalar Hamiltonians with complex
Robin boundary conditions studied in [21, 20, 23] to the spinorial case. We refer to [22, 15] for the discussion of
relevance of (possibly non-Hermitian) Robin boundary conditions in physics and, in particular, to Section 8.3
for a simple scattering-type interpretation in the present setting.

This paper is organized as follows. In the following section we specify our model in terms of a one-
dimensional Hamiltonian coming from (8.1). A physical relevance of the boundary conditions (8.2) is suggested
in Section 8.3. Section 8.4 is devoted to a rigorous definition of our Hamiltonian as a closed operator associated
with a sectorial sesquilinear form. In Section 8.5 we discuss the physical choice of the operator PT and estab-
lish conditions on the boundary matrix A which guarantee various symmetry properties of the Hamiltonian.
Section 8.6 is devoted to a spectral analysis supported by numerics; on several PT-symmetric examples we
discuss the dependence of the spectrum on parameters characterizing the matrix A. The paper is concluded
by Section 8.7 in which we mention some open problems.

8.2 Our model

We begin specifying our model represented by the Pauli equation (8.1).
We choose the coordinate system in R3 in such a way that the third coordinate axis is parallel with the

homogeneous magnetic field ~B, i.e. ~B = (0, 0, B) where B ∈ R. Then the orbital interaction ~B · ~L and

the diamagnetic term ( ~B × ~x)2 represent differential operators in the first two space variables only. On the

other hand, the spinorial interaction ~B · ~σ acts in the third space variable only (through the Pauli matrix
σ3 = diag(1,−1)).

We set

Ω := R2 × (−a, a) , (8.4)

with some positive number a. Assuming that the matrix A in (8.2) is constant on each of the connected
components of ∂Ω, the spectral problem for the Hamiltonian H therefore splits into two separate problems: a
two-dimensional Landau-level problem in the first two variables and a one-dimensional problem in the third
variable which we will study in sequel. Up to a constant factor representing the energy of the given Landau
level, the corresponding one-dimensional operators have the form

Hb =


− d2

dx2
+ b 0

0 − d2

dx2
− b


 on H := L2

(
(−a, a);C2

)
, (8.5)

subject to the boundary conditions

Ψ′(±a) +A±Ψ(±a) = 0 . (8.6)

Here we have put ~2/(2m) = 1 and b := µB, A± ∈ C2×2, and the third space variable is (with an abuse of
notation) denoted by x.

In view of the choice of physical constants made above, the only distinguished length in our problem is the
half-width a, and therefore the results must be scaled appropriately with respect to this length. In particular,
the parameter b (characterizing the strength of the magnetic field) and eigenvalues of Hb (corresponding to



I.8 The Pauli equation with complex boundary conditions 113

quantum energies) become dimensionless when multiplied by a2. The same can be done for the entries of A±

when multiplied by a. Consequently, all parameters can be thought as dimensionless in the sequel.
As usual, the Hilbert space H is identified with L2((−a, a)) ⊗ C2 and its elements are represented by the

two-component spinors

Ψ =

(
ψ+

ψ−

)
,

where ψ± ∈ L2((−a, a)) (the ± notation should not be confused with the superscripts of the matrices A±

referring to the endpoints of (−a, a)). The inner product in H is defined by

(Φ,Ψ) :=

∫ a

−a
Φ
T
(x)Ψ(x) dx ,

where the upper index T denotes transposition. The corresponding norm is denoted by ‖ · ‖. The Euclidean
norm of the spinor Ψ as a vector in C2 is denoted by |Ψ| :=

√
|ψ+|2 + |ψ−|2 and we use the same notation for

the corresponding operator (matrix) norm |A| := max
{
|AΨ|

∣∣Ψ ∈ C2, |Ψ| = 1
}
for A ∈ C2×2.

8.3 Scattering motivation

Before giving a rigorous definition of our Hamiltonian formally introduced (8.5)–(8.6), let us first justify the
physical relevance of the boundary conditions (8.6). Our method is based on a generalization of an idea
originally suggested in [15].

Consider a generalized eigenvalue problem for the Hamiltonian of the form (8.5) on the whole space R

locally perturbed by an electric field:


− d2

dx2
+ b+ V (x) 0

0 − d2

dx2
− b + V (x)



(
ψ+

ψ−

)
= λ

(
ψ+

ψ−

)
. (8.7)

Here x ∈ R, λ ∈ R and V is the electric potential that is assumed to be compactly supported in (−a, a).
Solutions Ψ with λ < −|b| are bound states (associated with discrete eigenvalues), while those with λ ≥ −|b|
correspond to scattering states (associated with the essential spectrum).

Outside the support of V the problem (8.7) admits explicit solutions in terms of exponential functions. Let
us look for special scattering solutions satisfying

Ψ(x) =

(
ei
√
λ−b x

ei
√
λ+b x

)
for |x| ≥ a . (8.8)

Then the (physical) problem (8.7) on the whole real axis can be solved by considering an (effective) boundary
value problem in (−a, a). The latter is simply obtained by considering (8.7) in (−a, a) and requiring that the
solutions match at ±a smoothly with the asymptotic solutions (8.8). This leads to the boundary conditions (8.6)
with an energy-dependent matrix

A±
λ =

(
−i

√
λ− b 0

0 −i
√
λ+ b

)
. (8.9)

Note that (8.7) for x ∈ (−a, a), subject to (8.6) with (8.9) at ±a, does not represent a standard spectral
problem, it is rather an operator-pencil problem (because of the dependence of A±

λ on the spectral parameter λ).
It is non-linear in its nature. However, it can be solved by first considering a genuine (linear) spectral problem,
namely (8.7) for x ∈ (−a, a), subject to (8.6) with A±

α at ±a, with α being treated as a real parameter. This
leads to a discrete set of eigencurves α 7→ λn(α), n ∈ N. Then the “eigenvalues” of the true, energy-dependent
problem are determined as those points λn(α∗) satisfying the (non-linear) algebraic equations

λn(α∗) = α∗ . (8.10)

The elements of the set {λn(α∗)}n∈N are called perfect-transmission energies (PTEs) in [15], since their
physical meaning is that they determine energies for which there is no reflection for the initial scattering
problem (8.7) in R. It is interesting that (8.10) admits the real PTEs solutions, since these are obtained via
solving a highly non-self-adjoint spectral problem. This feature is related to the fact that the choice A±

α ensures
that the boundary conditions are PT-symmetric (although not PT-symmetric in the context of the present paper
where we do not allow the presence of λ and b in the boundary conditions, see below). A physical interpretation
of the possible complexification of the spectra of the auxiliar PT-symmetric spectral problem is also proposed
in [15].
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It is also interesting to note that switching on the static magnetic field (i.e. making b 6= 0) will typically
lead to a splitting of the doubly degenerate eigencurves corresponding to the auxiliar non-self-adjoint spectral
problem for b = 0 (cf Figure 8.2). Consequently, to each of the PTE in the scalar case without the magnetic
field there correspond two PTEs in our spinorial model. The analogy with the Zeeman effect should not be
surprising.

The matrix (8.9) is complex and non-Hermitian, which is typical for effective models of scattering solutions
of (8.7). On the other hand, real-valued Hermitian matrices are obtained when looking for bound states. In
this paper, we proceed in a full generality by allowing arbitrary matrices A± in (8.6). However, it is important
to stress that we regard the matrices as parameters entering the spectral system; the dependence of A± on
the spectral parameter λ is not allowed and the dependence on the field b is allowed only if b is treated as a
parameter (no change under the action of T, cf Section 8.5).

To end up this motivation section, let us note that alternative proposals for the connection between non-
Hermitian PT-symmetric operators and physics have been suggested recently in the context of scattering in
[16, 28, 34, 17].

8.4 The Pauli Hamiltonian

We now turn to a rigorous definition of the Hamiltonian formally introduced by (8.5)–(8.6). In other words,
since we are interested in spectral properties, we need a closed realization of the operator Hb.

The easiest way is to define the Hamiltonian as the Friedrichs extension of the operator (8.5) initially
considered on uniformly smooth spinors satisfying (8.6). On such a restricted domain, an integration by parts
easily leads to the associated sesquilinear form hb as a sum of three terms

hb(Φ,Ψ) = q1(Φ,Ψ) + b q2(Φ,Ψ) + q3(Φ,Ψ) , (8.11)

where
q1(Φ,Ψ) := (Φ′,Ψ′) ,

q2(Φ,Ψ) := (Φ, σ3Ψ) ,

q3(Φ,Ψ) := Φ
T
(a)A+ Ψ(a)− Φ

T
(−a)A− Ψ(−a) .

(8.12)

The form hb is well defined on a larger, Sobolev-type space

D(hb) := H1
(
(−a, a);C2

)
. (8.13)

It is obvious for q1 and q2, while the boundary term q3 can be shown bounded on D(hb) by means of the Sobolev
embedding H1((−a, a)) →֒ C0([−a, a]).

Our aim is to show that hb is a closed sectorial form. It is clear for q1 defined on (8.13), since q1 is
associated with the Neumann Laplacian (cf [10, Sec. 7]), and as such it is a densely defined, closed, symmetric,
non-negative form. The term q2 represents just a bounded perturbation; indeed, |q2[Ψ]| ≤ ‖Ψ‖2 for every
Ψ ∈ H. While this is no longer true for q3, a suitable quantification of the Sobolev embedding can be used to
ensure that q3 still represents a small perturbation in the following sense.

Lemma 8.1. For every Ψ ∈ D(hb) and ε ∈ (0, 1),

∣∣q3[Ψ]
∣∣ ≤ ε

(
|A+|+ |A−|

)
‖Ψ′‖2 +

( |A+|+ |A−|
2a

+
|A+|+ |A−|

ε

)
‖Ψ‖2 .

Consequently, the form q2 + q3 is relatively bounded with respect to q1 and the relative bound can be made
arbitrarily small.

Proof. The claim is based on the estimates

|Ψ(±a)|2 ≤ 2‖Ψ′‖‖Ψ‖+ 1

2a
‖Ψ‖2 ≤ ε ‖Ψ′‖2 +

(
1

2a
+

1

ε

)
‖Ψ‖2 (8.14)

valid for any Ψ ∈ D(hb). Here the first inequality can be established quite easily by the fundamental theorem
of calculus and the Schwarz inequality.

Consequently, the perturbation result [18, Thm.VI.1.33] can be used to show that hb is indeed sectorial
and closed. According to the first representation theorem [18, Thm.VI.2.1], there exists a unique m-sectorial
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operator Hb in H such that hb(Φ,Ψ) = (Φ, HbΨ) for all Φ ∈ D(hb) and Ψ ∈ D(Hb) ⊂ D(hb). Following the
arguments [18, Ex. VI.2.16], it is easy to check that Hb indeed acts as (8.5)–(8.6); more precisely,

HbΨ =

(
−ψ′′

+ + bψ+

−ψ′′
− − bψ−

)
,

D(Hb) =
{
Ψ ∈ H2

(
(−a, a);C2

) ∣∣ Ψ′(±a) +A±Ψ(±a) = 0
}
.

(8.15)

Proposition 8.1. Hb defined by (8.15) is an m-sectorial operator on H. The adjoint of Hb is given by

H∗
bΨ =

(
−ψ′′

+ + bψ+

−ψ′′
− − bψ−

)
,

D(H∗
b ) =

{
Ψ ∈ H2

(
(−a, a);C2

) ∣∣ Ψ′(±a) + (A±)∗Ψ(±a) = 0
}
,

(8.16)

where A∗ = AT .

Proof. It remains to notice (cf [18, Thm. VI.2.5]) that the adjoint operator is determined as the m-sectorial
operator associated with the adjoint form h∗b defined by h∗b(Φ,Ψ) := hb(Ψ,Φ), D(h

∗
b) := D(hb).

Note that the choiceA± = 0 gives rise to the (self-adjoint) Pauli Hamiltonian, subject to Neumann boundary
conditions, that we denote by HN

b . (At the same time, the choice A± = ∞ formally corresponds to Dirichlet
boundary conditions.)

8.5 Symmetry properties

It is well known that the Pauli equation (8.1) (in the whole space R3) is invariant under the simultaneous
space inversion and time reversal (i.e. ~x 7→ −~x and t 7→ −t, respectively). This can be easily established if one

realizes that the time reversal leads to a change of orientation of the magnetic field (i.e. ~B 7→ − ~B), while the
orientation is unchanged by the space inversion. These properties can be deduced from Maxwell’s equations to
which the equation (8.1) is implicitly coupled (cf [26, §17]).

One is tempted to mathematically formalize the space-time reversal invariance in terms of a symmetry
property of the Hamiltonian H . Given a unitary or antiunitary operator C, we say that a linear operator H in
a Hilbert space is C-symmetric if

[H,C] = 0 . (8.17)

Here the commutator relation should be interpreted as an operator identity on the domain of H , i.e. CH ⊂ HC.
However, in this framework the Hamiltonian H appearing (8.1) is not PT-symmetric, just because there is no

way how ensure the change of sign ~B under the action of T in the Hilbert-space setting (in which ~B is considered
as an operator of multiplication). Nevertheless, H of course satisfies (8.17) with C = PT provided that the
magnetic field is absent.

One of the goals of this section is to determine the class of boundary matrices A± which preserves the
PT-symmetry in the sense above. In other words, since we do not like to think of b as a component of a field
governed by the additional equations and to mathematically formalize the action of T on the field (b is rather
a fixed parameter in our Hilbert-space setting), we restrict ourselves to rigorously looking for the property

[H0,PT] = 0 ; (8.18)

boundary conditions (8.6) satisfying this relation will be called PT-symmetric. In other words, boundary
conditions are PT-symmetric if, and only if, PTΨ satisfies the same equations as Ψ in (8.6). Similarly, we shall
define PK-symmetric boundary conditions.

In our one-dimensional situation (8.5), the parity P and the time reversal operator T act on spinors as
follows (cf [25, §30] and [25, §60], respectively)

(PΨ)(x) := Ψ(−x) , (TΨ)(x) := iσ2Ψ(x) =

(
ψ−(x)

−ψ+(x)

)
. (8.19)

It is important to stress that T differs from the complex conjugation operator

(KΨ)(x) := Ψ(x) , (8.20)

the latter being the time reversal operator in the scalar case.
It is easily seen that P, T and K are norm-preserving, mutually commuting bijections on H. P is linear,

while T and K are antilinear (i.e. conjugate-linear) operators. P and K are involutive (i.e. P2 = 1 = K2),
while T satisfies (8.3).
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Proposition 8.2. H0 is

• PT-symmetric if, and only if, A− = TA+T, i.e.,

A− =

(
−a22 a21
a12 −a11

)
for A+ =

(
a11 a12
a21 a22

)
;

• PK-symmetric if, and only if, A− = −KA+K ≡ −A+ , i.e.,

A− =

(
−a11 −a12
−a21 −a22

)
for A+ =

(
a11 a12
a21 a22

)
.

Proof. Since the space H2((−a, a);C2) is left invariant under the actions of P, T and K, it is enough to impose
algebraic conditions on A± so that the symmetry properties are ensured. More specifically, we need to ensure
that Ψ ∈ D(H0) implies PTΨ ∈ D(H0). Employing the identity

(PTΨ)′(±a) +A±(PTΨ)(±a) = (−TΨ)′(∓a) +A±(TΨ)(∓a)
= −T

[
Ψ′(∓a) + TA±TΨ(∓a)

]

and the bijectivity of T, the PT-symmetry condition follows. The PK-symmetry condition can be established
in the same manner.

Another property we would like to examine in this section is related to the notion of S-self-adjointness. We
say that a densely defined operator H on a Hilbert space is S-self-adjoint if

H∗ = S−1HS (8.21)

for some bounded and boundedly invertible (possibly antilinear) operator S, where H∗ denotes the adjoint
of H . It clearly generalizes the notion of self-adjointness and pseudo-Hermiticity.

Proposition 8.3. H0 is

• self-adjoint if, and only if, (A±)∗ = A± ;

• P-self-adjoint if, and only if, A− = −(A+)∗, i.e.,

A− =

(
−a11 −a21
−a12 −a22

)
for A+ =

(
a11 a12
a21 a22

)
;

• T-self-adjoint if, and only if, (A±)∗ = −TA±T, i.e.,

A± =

(
a± 0
0 a±

)
with a± ∈ C ;

• K-self-adjoint if, and only if, (A±)∗ = KA±K ≡ A± ;

Proof. The claims follows by using similar arguments as in the proof of Proposition 8.2.

The spectral analysis of non-self-adjoint operators is more difficult than in the self-adjoint case, partly
because the residual spectrum is in general not empty for the former. One of the goals of the present paper is
to point out that the existence of this part of spectrum is always ruled out for S-self-adjoint operators with
antilinear S.

Proposition 8.4 (General fact). Let H be a densely defined closed linear operator on a Hilbert space satisfy-
ing (8.21) with a bounded and boundedly invertible antilinear operator S. Then the residual spectrum of H is
empty.

Proof. Since H is S-self-adjoint, it is easy to see that λ is an eigenvalue of H (with eigenfunction Ψ) if, and
only if, λ̄ is an eigenvalue of H∗ (with eigenfunction S−1Ψ). It is then clear from the general identity

σr(H) =
{
λ ∈ C | λ̄ ∈ σp(H

∗) & λ 6∈ σp(H)
}

that the residual spectrum of H must be empty.

The proposition generalizes the fact pointed out in [7] for S-self-adjoint operators with S being a conjugation
operator (e.g. K) and applies to our (different) choice of T.
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8.6 Spectral analysis

8.6.1 Location of the spectrum and pseudospectrum

As a consequence of Proposition 8.1, we know that the numerical range of Hb is contained in a sector of
the complex plane. Since the spectrum is a subset of the closure of the numerical range, it provides a basic
information on the location of the spectrum of Hb. However, coming back to the inequality (8.14) on which
the proof of Lemma 8.1 is based, we are able to establish a better result in our case.

Proposition 8.5. The spectrum of Hb is enclosed in a parabola,

σ(Hb) ⊂ Ξb :=

{
z ∈ C

∣∣∣ ℜz ≥ −
(
|b|+ 4 |A|2 + |A|

2a

)
=: C ,

|ℑz| ≤
√
8 |A|

√
ℜz + C +

|A|
2a

}
,

where |A| := |A+|+ |A−|.
Proof. By [18, Corol. VI.2.3], the numerical range of Hb is a dense subset of the numerical range of its form hb,
the latter being defined as the set of all complex numbers hb[Ψ] where Ψ changes over all Ψ ∈ D(hb) such that
‖Ψ‖ = 1. Using the first inequality of (8.14), we get

ℜhb[Ψ] ≥ q1[Ψ] + b q2[Ψ]− |q3[Ψ]|

≥ ‖Ψ′‖2 − |b| ‖Ψ‖2 − 2 |A| ‖Ψ′‖ ‖Ψ‖ − |A|
2a

‖Ψ‖2

≥ 1

2
‖Ψ′‖2 −

(
|b|+ 4 |A|2 + |A|

2a

)
‖Ψ‖2 ,

|ℑhb[Ψ]| ≤ |q3[Ψ]| ≤ 2 |A| ‖Ψ′‖ ‖Ψ‖+ |A|
2a

‖Ψ‖2 ,

for every Ψ ∈ D(hb). The claim follows by combining these two estimates.

Thus the resolvent set of Hb contains the complement of Ξb in C. As a further consequence, we can establish
an upper bound on the norm of the resolvent:

‖(Hb − z)−1‖ ≤ 1/dist (z, ∂Ξb) for all z ∈ C \ Ξb.
This result can be also interpreted as a location of the pseudospectrum of Hb, cf [11, Sec. 9.3].

Remark 8.1. Note that the set Ξb in Proposition 8.5 is not symmetric with respect to the real axis. On the
other hand, if Hb is C-symmetric with antiunitary C (e.g., if Hb is PK-symmetric), then we a priori know that
the numerical range must be symmetric with respect to the real axis and an improved version of Proposition 8.5
holds.

8.6.2 The nature of the spectrum

Since the Neumann Laplacian HN
0 has compact resolvent and the relative bound in Lemma 8.1 can be chosen

less than 1/2 (in fact, arbitrarily small), it follows from [18, Thm. VI.3.4] that Hb has compact resolvent as
well (for any choice of A±).

Proposition 8.6. Hb has a purely discrete spectrum ( i.e. any point in the spectrum is an isolated eigenvalue
of finite algebraic multiplicity).

Solving the eigenvalue problem HbΨ = λΨ consists in constructing the fundamental system of −ψ′′
± = k2±ψ±

(say, in terms of sines and cosines), with k± :=
√
λ∓ b, and subject it to the boundary conditions (8.6). This

leads to the following algebraic equation for the eigenvalues λ:
[
det(A+) + det(A−)− a+11a

−
22 − a+22a

−
11

]
k−k+ cos(ak−) cos(ak+)

+
[
det(A+) det(A−) + a+11a

−
11k

2
− + a+22a

−
22k

2
+ + k2−k

2
+

]
sin(ak−) sin(ak+)

+
[
− det(A+)a−22 + a+22 det(A

−) + (−a+11 + a−11)k
2
−
]
k+ sin(ak−) cos(ak+)

+
[
− det(A+)a−11 + a+11 det(A

−) + (−a+22 + a−22)k
2
+

]
k− cos(ak−) sin(ak+)

+
(
a+21a

−
12 + a+12a

−
21

)
k−k+ = 0, (8.22)

where a+ij and a−ij denote the elements of the matrices A+ and A−, respectively.

There are only a few choices of A± for which (8.22) admits explicit solutions. In the sequel we consider
some particular situations that we analyse with help of numerical solutions.
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8.6.3 Examples

A self-adjoint example with avoided crossings. Let us choose

A± :=

(
0 iα

−iα 0

)
, (8.23)

where α is a real parameter. It follows from Proposition 8.3 that all the eigenvalues are real since Hb is
self-adjoint. The implicit equation for the eigenvalues takes form

2α2k+k−[1− cos(2ak+) cos(2ak−)] = −(k2+k
2
− + α4) sin(2ak+) sin(2ak−).

The dependence of eigenvalues on the parameter α can be seen in Figure 8.1.
An interesting phenomenon in this figure is the approaching of a pair of eigenvalues and its subsequent

moving back and slowly approaching to constant values. It should be noted that in the point of closest
approach the two curves do not intersect. This avoided crossing holds for each pair of the eigenvalues. In this
context, let us recall that the existence of gaps between eigenvalues of self-adjoint operators (which is the case
of the present example) is important for the usage of quantum adiabatic theorem (see, e.g., [33]).
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Figure 8.1: α-dependence of eigenvalues for b = 1 and a = π
4 in example (8.23), with a zoom of the avoided

crossing of the first pair of eigenvalues on the right.

A PT-symmetric example with real and complex spectra. As an example of non-Hermitian but PT-
symmetric boundary conditions, let us consider

A± =

(
iα± β 0

0 iα± β

)
, (8.24)

where α and β are real parameters. The feature of this example is that the spinorial components do not mix.
The implicit equation for the eigenvalues acquires the form

(
−2βk− cos(2ak−) + (k2− − α2 − β2) sin(2ak−)

)

×
(
−2βk+ cos(2ak+) + (k2+ − α2 − β2) sin(2ak+)

)
= 0. (8.25)

Because of the decoupling, this eigenvalue problem can be analysed by using known results for this type of
boundary conditions in the scalar case previously studied in [21] and in more detail in [22]. It turns out that
the spectrum significantly depends on the sign of β.

β = 0. It follows from [21] that one pair of eigenvalues depend on the parameter α quadratically and the others
are constant, see the left part of Figure 8.2. More specifically, the eigenvalues explicitly read

λj,± =




α2 ∓ b if j = 0 ,(
jπ
2a

)2
∓ b if j ≥ 1 .

(8.26)

The crossings of full (respectively dashed) lines in the left part of Figure 8.2 correspond to eigenvalues of
geometric multiplicity one and algebraic multiplicity two, while the crossings of full lines with dashed lines
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Figure 8.2: α-dependence of eigenvalues for b = 0.4 and a = π
4 in example (8.24).

correspond to eigenvalues of both multiplicities equal to two. The entire spectrum is doubly degenerate for b = 0
and there exist eigenvalues of geometric multiplicity two and algebraic multiplicity four.

β > 0. In this case, the reality of the spectrum was proved in [22]. The right part of Figure 8.2 shows the
dependence of the eigenvalues on the parameter α. We again observe pairs of eigenvalues split because of the
presence of the magnetic field.

β < 0. On the other hand, the reality of the spectrum in the case when β is negative is not guaranteed and,
indeed, it is easily seen from Figure 8.3 that complex conjugate pairs of eigenvalues do appear when a couple
of real eigenvalues collides as enlarging α. The pair of complex eigenvalues becomes real again for larger
values of α. It follows from the analysis in [22] that only one pair of complex conjugate eigenvalues occurs
simultaneously in the spectrum.
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Figure 8.3: α-dependence of the real (left) and imaginary (right) parts of eigenvalues for b = 0.4, a = π
4 and

β = −0.5 in example (8.24).

Note that the choice (8.24) with β = 0 fits exactly into the scattering setting treated in Section 8.3. An
alternative physical interpretation of the model (8.24) can be given in terms of the metric approach discussed
in Section 8.7 below.

A PT-symmetric example with coupled spinorial components As another example of non-Hermitian
PT-symmetric boundary conditions, let us select

A± =

(
0 ±iα

±iα 0

)
, (8.27)

where α is a real parameter. The characteristic feature of this model is a non-trivial mixing of spinorial
components. The implicit equation for the eigenvalues now takes the form

4α2k+k− cos(ak+)
2 cos(ak−)

2 + 4α2k+k− sin(ak+)
2 sin(ak−)

2

= −(k+k− + α4) sin(2ak+) sin(2ak−).
(8.28)
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The dependence of low-lying eigenvalues on the parameter α can be seen in Figure 8.4. Here the lowest
pair of real eigenvalues exhibits a crossing. However, the eigenvalues remain real after the crossing point as the
parameter α increases. This behaviour is not featured uniquely by the lowest pair of eigenvalues, it also appears
for higher-lying eigenvalues in the spectrum (not visible in the figure). On the other hand, as α increases, the
other pairs of eigenvalues in the figure complexify after the first collision, then the corresponding eigenvalues
propagate as complex conjugate pairs in the complex plane, meet again and become real.
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Figure 8.4: α-dependence of eigenvalues for b = 0.5, a =
√
43 in example (8.27). An animation can be found

on the website [19].

8.7 Conclusions

The goal of this paper was to investigate the role of spin in complex extensions of quantum mechanics on a
simple model of Pauli equation with complex Robin-type boundary conditions. A special attention was paid
to PT-symmetric situations with a physical choice of the time-reversal operator T.

A simple physical interpretation of our model in terms of scattering was suggested in Section 8.3. It would
be desirable to examine this motivation in more details and include “spin-dependent electric potential” (e.g.
Bychkov-Rashba or Dreselhauss spin-orbit terms typical for semiconductor physics [14]).

Robin boundary conditions represent a class of separated boundary conditions. Our model can be naturally
extended to connected boundary conditions, whose spectral analysis represents a direction of potential future
research (cf [22, 12, 13] in the scalar case).

In this paper we did not discuss the important question of the existence of similarity transformations (or the
“metric” in the PT-symmetric context) connecting our non-Hermitian operators with self-adjoint Hamiltonians.
The problem generally constitutes a difficult task and very few closed formulae are known (cf [20, 3, 2, 23] and
references therein). However, we can easily extend the results established in the scalar case without magnetic
field [23] to our spinorial example (8.24) and compute the metric in this special case. Let us define

Θ :=

(
I +K 0

0 I +K

)
,

where I denotes the identity operator on L2((−a, a)) and K is an integral operator with kernel

K(x, y) := eiα(x−y)−β|x−y|
[
c+ iα sgn(x− y)

]
,

with c being any real number. It follows from [23, Sec. 4.5] and the nature of the decoupled boundary condi-
tions (8.24) that Θ represents a one-parametric family of metrics for Hb under the PT-symmetric choice (8.24).
More precisely, Hb is Θ−1-self-adjoint (cf (8.21)) and Θ is positive provided that either: a is small; or β is
positive and large; or |c| and |α| are small. To find the self-adjoint counterpart of Hb determined by this
similarity transformation constitutes an open problem (in the scalar case [23] there exists results for β = 0).

Our model was effectively one-dimensional. Higher dimensional generalizations in the spirit of [7, 8, 30]
would be especially interesting for variable boundary conditions (i.e. non-constant matrix A).
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[19] D. Kochan, D. Krejčǐŕık, R. Novák, and P. Siegl, http://gemma.ujf.cas.cz/~david/KKNS.html (2012).
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Spectral analysis of the diffusion operator with random jumps
from the boundary

Martin Kolba and David Krejčǐŕıkb

a) Department of Mathematics, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany; kolb@math.uni-
paderborn.de.

b) Department of Theoretical Physics, Nuclear Physics Institute ASCR, 25068 Řež, Czech Republic; krejcirik@ujf.cas.cz.

Abstract. Using an operator-theoretic framework in a Hilbert-space setting, we perform a de-
tailed spectral analysis of the one-dimensional Laplacian in a bounded interval, subject to specific
non-self-adjoint connected boundary conditions modelling a random jump from the boundary to
a point inside the interval. In accordance with previous works, we find that all the eigenvalues
are real. As the new results, we derive and analyse the adjoint operator, determine the geometric
and algebraic multiplicities of the eigenvalues, write down formulae for the eigenfunctions together
with the generalised eigenfunctions and study their basis properties. It turns out that the latter
heavily depend on whether the distance of the interior point to the centre of the interval divided by
the length of the interval is rational or irrational. Finally, we find a closed formula for the metric
operator that provides a similarity transform of the problem to a self-adjoint operator.

9.1 Introduction

In this paper we are interested in the non-self-adjoint eigenvalue problem
{

− ψ′′ = λψ in (−π
2 ,

π
2 ) ,

ψ(±π
2 ) = ψ(π2 a) ,

(9.1)

with a real parameter a ∈ (−1, 1). The operator H associated with (9.1) is the generator of the following
stochastic process:

1. Start a Brownian motion with quadratic variation equal to 2 in the interval (−π
2 ,

π
2 ) and wait until it hits

one of the boundary points ±π
2 .

2. At the hitting time of ±π
2 the Brownian particle gets restarted in an interior point π

2 a and repeats the
process at the previous step.

This process is sometimes described as the Brownian motion on the figure eight [8]. The existence of such a
process is in fact elementary and it can be constructed by piecing together Brownian motions in a rather direct
way. The problem (9.1) can be also understood as a spectral problem for a non-self-adjoint graph with regular
boundary conditions [9].

There are several obvious generalisations of the stochastic process. Firstly, instead of restarting the process
at the fixed point π

2 a, one could restart it according to a given probability distribution µ on (−π
2 ,

π
2 ). Secondly,

one can even take two different probability distributions µ− and µ+ on (−π
2 ,

π
2 ) and restart the process according

to µ± depending on whether the boundary point±π
2 has been hit. This generalised process leads to the following

analogue of (9.1): 



− ψ′′ = λψ in (−π
2 ,

π
2 ) ,

ψ(±π
2 ) =

∫ π
2

−π2
ψ(x)µ±(dx) .

(9.2)

Despite its apparent simplicity, the process leads to several interesting results. First of all, it has been
shown by Leung et al. in [16] that, even in the most general setting described above, the spectrum of the
operator Hµ−,µ+ associated with (9.2) is purely real, a property which cannot be typically expected for non-
selfadjoint operators. It has also been shown in [16], that the spectral gap of Hµ−,µ+ is always greater than the
first Dirichlet eigenvalue of the Laplacian in the interval (−π

2 ,
π
2 ). Furthermore, it has been shown analytically

in [16] and probabilistically in [11] that in the case of µ+ = µ− the spectral gap of the spectrum of the
generatorHµ−,µ+ always coincides with the second Dirichlet eigenvalue of the Laplacian in the interval (−π

2 ,
π
2 ),

independently of the specific choice of µ+ = µ−.
Thus it is fair to say that this family of non-selfadjoint differential operators exhibits rich spectral features.

This is our starting point and we aim to further develop some of the spectral-theoretic properties of members
of this family of non-self-adjoint differential operators.
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In this paper we are concerned with the most simple case (9.1) and investigate the associated operator H
from a purely spectral-theoretic perspective and complement existing results which mainly focused on the
determination of eigenvalues or even only on the spectral gap. We investigate the spectrum of the operator H
and its adjoint H∗, determine algebraic multiplicities of the eigenvalues and analyse the basis properties of
the set of eigenfunctions. Due to the non-self-adjointness of the operator, it is not at all clear in which sense
the eigenfunctions can be expected to be a basis of the associated Hilbert space. In these respects we further
develop certain strands of research first developed in [8], whose authors calculated among other things the
spectrum of the above operator in the case a = 0; see also [3] and [4], where the authors derive results on the
spectrum of the above operator including geometric multiplicities of the eigenvalues.

The organisation of this paper is as follows. In Section 9.2 we properly define H as a closed operator in
the Hilbert space L2((−π

2 ,
π
2 )) and state its basic properties. We also provide an a priori proof of the reality

of the eigenvalues of H , without the need to compute the eigenvalues and eigenfunctions explicitly. The latter
is done only in Section 9.3, where we analyse geometric degeneracies of the eigenvalues (Proposition 9.1). In
Section 9.4 we find the adjoint operator H∗ and compute its spectrum (Proposition 9.2). These results enable
us in Section 9.5 to eventually determine algebraic degeneracies of the eigenvalues of H (Proposition 9.4). It
turns out that the eigenvalue degeneracies heavily depend on Diophantine properties of the parameter a.

Theorem 9.1. All the eigenvalues of H are algebraically simple if, and only if, a 6∈ Q.

In the second part of the paper, namely in Section 9.7, we study basis properties of H . Using the explicit
knowledge of the resolvent kernel of H constructed in Section 9.6, we first show in Section 9.7.1 that the
eigenfunctions together with the generalised eigenfunctions form a complete set in L2((−π

2 ,
π
2 )). Then we

study the minimal completeness and conditional-basis properties in Sections 9.7.2 and 9.7.3, respectively. These
results can be summarised as follows.

Theorem 9.2.

1. If a 6∈ Q, then the eigenfunctions of H form a minimal complete set but not a conditional basis in
L2((−π

2 ,
π
2 )).

2. If a ∈ Q, then the eigenfunctions of H do not form a minimal complete set in L2((−π
2 ,

π
2 )).

Finally, in Section 9.7.4, we are interested in the possibility of the quasi-self-adjointness relation

H∗Θ = ΘH , (9.3)

where Θ is a positive operator called a metric. The concept of quasi-self-adjoint operators goes back to a
seminal paper of Dieudonné [6] and has been renewed recently in the context of quantum mechanics with
non-self-adjoint operators; we refer to [14] and [13, Chap. 5] for more details and references.

Theorem 9.3. Let a 6∈ Q. The operator H satisfies the relation (9.3) with the operator Θ explicitly given
by (9.63). The latter is a positive, bounded and invertible operator (the inverse is unbounded).

In view of this theorem, the reality of the spectrum ofH can be understood as a consequence of a generalised
similarity to a self-adjoint operator. We would like to emphasise that we have an explicit and particularly simple
formula (9.63) for the metric operator Θ. There are not many non-self-adjoint models in the literature for which
the metric operator can be constructed in a closed form, cf [15] and references therein.

We conclude the paper by Section 9.8 where we suggest some open problems.

9.2 An operator-theoretic setting and basic properties

We understand (9.1) as a spectral problem for the operator H in L2((−π
2 ,

π
2 )) defined by

Hψ := −ψ′′ , ψ ∈ D(H) :=
{
ψ ∈ H2((−π

2 ,
π
2 ))

∣∣ ψ(−π
2 ) = ψ(π2 a) = ψ(π2 )

}
. (9.4)

Note that the boundary values are well defined due to the embedding H2((−π
2 ,

π
2 )) →֒ C1([−π

2 ,
π
2 ]).

Let us first state some basic properties of H . In the sequel, ‖ · ‖ and (·, ·) denote respectively the norm and
inner product (antilinear in the first argument) of the Hilbert space L2((−π

2 ,
π
2 )).

• H is densely defined because C∞
0

(
(−π

2 ,
π
2 ) \ {π2 a}

)
⊂ D(H) and C∞

0

(
(−π

2 ,
π
2 ) \ {π2 a}

)
is dense in

L2
(
(−π

2 ,
π
2 ) \ {π2 a}

)
≃ L2((−π

2 ,
π
2 )).
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• H is closed, which can be directly shown as follows. First of all, let us notice that there exists a positive
constant C such that

∀ψ ∈ D(H) , ‖ψ′‖2 ≤ C (‖ψ‖2 + ‖ψ′′‖2) . (9.5)

Indeed, integrating by parts and using the boundary conditions, we find

‖ψ′‖2 = (ψ,−ψ′′) + ψ̄(π2 a)
[
ψ′(π2 )− ψ′(−π

2 )
]

= (ψ,−ψ′′) + ψ̄(π2 a) (1, ψ
′′)

≤ ‖ψ‖‖ψ′′‖+ |ψ(π2 a)|
√
π ‖ψ′′‖ ,

where the last line is due to the Schwarz inequality. At the same time, by quantifying the embedding
H1((−π

2 ,
π
2 )) →֒ C0([−π

2 ,
π
2 ]), we have

|ψ(x)|2 ≤ 1

π
‖ψ‖2 + 2 ‖ψ‖‖ψ′‖ ≤

(
1

π
+

1

ǫ

)
‖ψ‖2 + ǫ ‖ψ′‖2 (9.6)

for every ψ ∈ H1((−π
2 ,

π
2 )), x ∈ [−π

2 ,
π
2 ] and any ǫ > 0. Putting these two inequalities together, we

verify (9.5).

Now, let {ψn}∞n=1 ⊂ D(H) be such that ψn → ψ and −ψ′′
n → φ as n → ∞. Applying (9.5) to ψn,

we see that {ψn}∞n=1 is a bounded sequence in H2((−π
2 ,

π
2 )) and thus weakly converging in this space.

Hence, ψ ∈ H2((−π
2 ,

π
2 )) and φ = −ψ′′. Applying (9.5) to ψn − ψ, we see that ψn → ψ strongly in

H2((−π
2 ,

π
2 )) as n → ∞. The preservation of the boundary conditions in the limit is ensured by the

embedding inequality (9.6).

• H is quasi-accretive (cf [10, Sec. V.3.10]). Indeed, for every ψ ∈ D(H),

ℜ (ψ,Hψ) = ‖ψ′‖2 −ℜ
[
(ψ̄ψ′)(π2 )− (ψ̄ψ′)(−π

2 )
]

= ‖ψ′‖2 − 1

2

∫ π
2

−π2
|ψ|2′(x) dx

≥ ‖ψ′‖2 − ‖ψ′‖‖ψ‖

≥
(
1− ǫ

4

)
‖ψ′‖2 − 1

4ǫ
‖ψ‖2

with any ǫ > 0. Choosing ǫ = 4, we see that H + 1
16 is accretive.

• H has purely real eigenvalues. This striking property can be shown a priori, without solving the
eigenvalue problem explicitly, as follows. Multiplying the first equation in (9.1) by ψ′, we arrive at the
first integral

− ψ′2 − λψ2 = const in (−π
2 ,

π
2 ) . (9.7)

Using the boundary conditions of (9.1), we thus deduce that the derivative of any eigenfunction ψ of H
satisfies

ψ′(−π
2 )

2 = ψ′(π2 a)
2 = ψ′(π2 )

2 . (9.8)

We divide the analysis into two cases now.

1. Let ψ′(π2 a) = ψ′(π2 ). Then ψ is a solution of the problem −ψ′′ = λψ in (π2 a,
π
2 ), subject to periodic

boundary conditions ψ(π2 a) = ψ(π2 ) and ψ′(π2 a) = ψ′(π2 ). This is a self-adjoint problem and thus
λ ∈ R. Actually,

λ =

(
4m

1− a

)2

, m ∈ N .

The same argument applies to the situation ψ′(π2 a) = ψ′(−π
2 ), where we find

λ =

(
4m

1 + a

)2

, m ∈ N .

In this paper we use the convention 0 ∈ N and set N∗ := N \ {0}.
2. Let ψ′(π2 a) = −ψ′(π2 ). If ψ′(π2a) = ψ′(−π

2 ), we are in the previous case for which we already know
that the eigenvalues are real. We may thus assume ψ′(π2 a) = −ψ′(−π

2 ) as well. But then ψ is
a solution of the problem −ψ′′ = λψ in the whole interval (−π

2 ,
π
2 ), subject to periodic boundary

conditions ψ(−π
2 ) = ψ(π2 ) and ψ

′(−π
2 ) = ψ′(π2 ). This is again a self-adjoint problem and thus λ ∈ R.

Actually,
λ = (2m)2 , m ∈ N .
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The above analysis implies:

σp(H) ⊂
{(

4m

1− a

)2

,

(
4m

1 + a

)2

, (2m)
2

}

m∈N

.

The opposite inclusion ⊃ will follow from an explicit solution of the spectral problem (9.1) (alternatively,
we could construct admissible eigenfunctions for (9.1) from the periodic solutions discussed above, but
this would be almost like solving (9.1) explicitly).

The fact that the total spectrum of H is real will follow from the reality of the eigenvalues established
here, but only after we show that H has a purely discrete spectrum. To see the latter, we remark that D(H)
is a subset of H2((−π

2 ,
π
2 )), which is compactly embedded in L2((−π

2 ,
π
2 )). But we still need to show that the

resolvent set of H is not empty, in order to show that H is an operator with compact resolvent. To this aim,
we shall determine the adjoint of H . First, however, let us study the point spectrum of H in detail.

9.3 The point spectrum

In this section we compute the point spectrum of H by solving the eigenvalue problem (9.1) explicitly. Set
λ =: k2. The general solution of the differential equation in (9.1) reads (including λ = 0)

ψ(x) = A sin(kx) +B cos(kx) , A,B ∈ C .

Subjecting this solution to the boundary conditions of (9.1), we arrive at the homogeneous system
(
sin(k π2 ) + sin(k π2 a) − cos(k π2 ) + cos(k π2a)
sin(k π2 )− sin(k π2 a) cos(k π2 )− cos(k π2 a)

)(
A
B

)
=

(
0
0

)
. (9.9)

Eigenfunctions of (9.1) correspond to non-trivial solutions of this system, which in turn are determined by the
singularity condition

∣∣∣∣
sin(k π2 ) + sin(k π2 a) − cos(k π2 ) + cos(k π2 a)
sin(k π2 )− sin(k π2 a) cos(k π2 )− cos(k π2 a)

∣∣∣∣ = −4 sin
(
k π4 (1 + a)

)
sin
(
k π4 (1− a)

)
sin
(
k π2
)
= 0 .

Consequently,

σp(H) =

{(
4m

1− a

)2

,

(
4m

1 + a

)2

, (2m)
2

}

m∈N

. (9.10)

It will be convenient to introduce the notation

σ±1 :=

{(
4m

1± a

)2
}

m∈N∗

, σ0 :=
{
(2m)

2
}
m∈N

, (9.11)

and refer to eigenvalues from σ+1, σ−1 and σ0 as eigenvalues from the “+1 class”, “−1 class” and “0 class”,
respectively. Note that zero is excluded from σ±1 and that the sets σ+1, σ−1 and σ0 are not disjoint in general.
Dependence of the eigenvalues on the parameter a is depicted in Figure 9.1.

Now we specify the eigenfunctions associated with the individual classes. To study the eigenfunctions
corresponding to the classes ±1, it is useful to rewrite (9.9) into the form

(
sin(k π4 (1 + a)) cos(k π4 (1− a)) sin(k π4 (1 + a)) sin(k π4 (1 − a))
sin(k π4 (1 − a)) cos(k π4 (1 + a)) − sin(k π4 (1 + a)) sin(k π4 (1− a))

)(
A
B

)
=

(
0
0

)
. (9.12)

• −1 class eigenvalues That is, k = 4m
1−a with m ∈ N∗. In this case, the second equation of (9.12) is

automatically satisfied, while the first yields the condition

A sin
(
mπ 1+a

1−a

)
= 0 .

There are two possibilities:

1. If m 1+a
1−a 6∈ N (generic situation), then A = 0 and the eigenfunction associated with k2 reads

ψ(x) = B cos

(
4m

1− a
x

)
, (9.13)

with a normalisation constant B ∈ C \ {0}.
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2. If m 1+a
1−a ∈ N (exceptional situation), then there are two (independent) eigenfunctions

ψ1(x) = A sin

(
4m

1− a
x

)
, ψ2(x) = B cos

(
4m

1− a
x

)
, (9.14)

with normalisation constants A,B ∈ C \ {0}.

• +1 class eigenvalues That is, k = 4m
1+a with m ∈ N∗. Here the situation is reversed with respect to

the previous one. Now the first equation of (9.12) is automatically satisfied, while the second yields the
condition

A sin
(
mπ 1−a

1+a

)
= 0 .

There are again two possibilities:

1. If m 1−a
1+a 6∈ N (generic situation), then A = 0 and the eigenfunction associated with k2 reads

ψ(x) = B cos

(
4m

1 + a
x

)
, (9.15)

with a normalisation factor B ∈ C \ {0}.
2. If m 1−a

1+a ∈ N (exceptional situation), then there are two (independent) eigenfunctions

ψ1(x) = A sin

(
4m

1 + a
x

)
, ψ2(x) = B cos

(
4m

1 + a
x

)
, (9.16)

with normalisation constants A,B ∈ C \ {0}.

• 0 class eigenvalues That is, k = 2m with m ∈ N. In this case, the two equations of (9.9) reduce to one

A sin(mπa) = B [cos(mπ)− cos(mπa)] . (9.17)

There are several possibilities:

1. If m = 0 (zero eigenvalue), there is just one (constant) eigenfunction

ψ(x) = B ∈ C \ {0} . (9.18)

2. If and m 6= 0 and ma 6∈ N (generic situation), then we express A as a function of B and the
eigenfunction associated with k2 reads

ψ(x) = B

[
cos (2mx) +

cos(mπ) − cos(mπa)

sin(mπa)
sin (2mx)

]
, (9.19)

with a normalisation constant B ∈ C \ {0}.
3. If and m 6= 0 and ma ∈ N (exceptional situation), then (9.17) reads

0 = B [cos(mπ) − cos(mπa)] = −2B sin

(
mπ(1 + a)

2

)
sin

(
mπ(1 − a)

2

)

and we still distinguish two cases:

(a) If m(1+a) is odd (which necessarily implies that m(1−a) is odd as well), then B = 0 and there
is just one eigenfunction

ψ(x) = A sin (2mx) , (9.20)

with a normalisation constant A ∈ C \ {0}.
(b) If m(1 + a) is even (which necessarily implies that m(1 − a) is even as well), there are two

(independent) eigenfunctions

ψ1(x) = A sin (2mx) , ψ2(x) = B cos (2mx) , (9.21)

with normalisation constants A,B ∈ C \ {0}.
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The exceptional situations in the classes −1, +1 and 0 are related. First of all, note that m 1+a
1−a ∈ N,

m 1−a
1+a ∈ N or ma ∈ N with some m ∈ N∗ imply that a is rational. Conversely, let a be rational. Then

the sets σ−1, σ+1 and σ0 are not disjoint. Clearly, λ = (4m−1

1−a )2 ∈ σ−1 with some m−1 ∈ N∗ such that

m−1
1+a
1−a ∈ N if, and only if, λ = (4m+1

1+a )2 ∈ σ+1 with some m+1 ∈ N∗ such that m+1
1−a
1+a ∈ N. At the same

time, if λ = (4m±1

1±a )2 ∈ σ±1 with some m±1 ∈ N∗ such that m±1
1∓a
1±a ∈ N, then there exists m0 ∈ N∗ such

that λ = (2m0)
2 ∈ σ0. On the other hand, if λ = (2m0)

2 ∈ σ0 with some m0 ∈ N∗ such that m0a ∈ N

and m0(1 + a) is even (which necessarily implies that m0(1 − a) is even as well), then there exist m±1 ∈ N∗

such that m±1
1∓a
1±a ∈ N and λ = (4m±1

1±a )2 ∈ σ±1. Hence, all the exceptional situations with two independent
eigenfunctions coincide with the intersection σ−1 ∩ σ+1 = σ−1 ∩ σ+1 ∩ σ0, which is infinite, and the elements
of the intersection correspond to eigenvalues of geometric multiplicity two. However, σ−1 ∩ σ+1 6= σ0; in
fact, σ0 \ (σ−1 ∪ σ+1) also contains an infinite number of elements, which correspond to geometrically simple
eigenvalues.

On the other hand, if a is irrational, then the sets σ−1 σ+1 and σ0 are mutually disjoint and each point in
the spectrum is an eigenvalue of geometric multiplicity one.

Let us summarise the spectral properties into the following proposition.

Proposition 9.1. σp(H) = σ−1 ∪ σ+1 ∪ σ0, where the sets σ−1, σ+1 and σ0 are introduced in (9.11).

1. If a 6∈ Q, then the sets σ−1 σ+1 and σ0 are mutually disjoint and each point of the point spectrum
corresponds to an eigenvalue of H of geometric multiplicity one, with the associated eigenfunction (9.13),
(9.15), (9.19) or (9.18).

2. If a ∈ Q, then σ−1 ∩ σ+1 = σ−1 ∩ σ+1 ∩ σ0 6= ∅. Each point of σ−1 ∩ σ+1 corresponds to an eigenvalue
of H of geometric multiplicity two, with the associated eigenfunctions (9.14) and (9.16). Each point of
σp(H)\ (σ−1∩σ+1) corresponds to an eigenvalue of geometric multiplicity one, with the associated eigen-
function (9.13), (9.15), (9.19), (9.20) or (9.21) or (9.18) (zero eigenvalue, associated with the constant
function (9.18), is always geometrically simple).

It is expected that the geometrically doubly degenerate eigenvalues in σ−1 ∩ σ+1 ∩ σ0 will have algebraic
multiplicity three. Indeed, fix a ∈ Q and consider a point λ ∈ σ−1 ∩ σ+1 ∩ σ0. That is, there exists l,m, n ∈ N

such that

λ =

(
4l

1− a

)2

=

(
4m

1 + a

)2

= (2n)2 .

Introducing a small perturbation a 7→ a+ ε, the eigenvalue λ splits into three distinct eigenvalues of geometric
multiplicity one,

λ−1(ε) :=

(
4l

1− a− ε

)2

∈ σ−1 , λ+1(ε) :=

(
4m

1 + a+ ε

)2

∈ σ+1 , λ0(ε) := (2n)2 ∈ σ0 ,

corresponding to mutually linearly independent eigenfunctions.

To discuss the algebraic degeneracies, we first need to determine the adjoint of H .

9.4 The adjoint operator

Obviously, H is a closed extension of the symmetric operator

(Ḣψ)(x) := −ψ′′(x) , x ∈ (−π
2 ,

π
2 a) ∪ (π2 a,

π
2 ) ,

ψ ∈ D(Ḣ) := H2
0

(
(−π

2 ,
π
2 a)
)
⊕H2

0

(
(π2 a,

π
2 )
)
.

That is, Ḣ ⊂ H . The adjoint Ḣ∗ of Ḣ is well known:

(Ḣ∗ψ)(x) = −ψ′′(x) , x ∈ (−π
2 ,

π
2 a) ∪ (π2 a,

π
2 ) ,

ψ ∈ D(Ḣ∗) = H2
(
(−π

2 ,
π
2 a)
)
⊕H2

(
(π2 a,

π
2 )
)
.

Since Ḣ ⊂ H ⊂ Ḣ∗, we also have

Ḣ ⊂ H∗ ⊂ Ḣ∗ . (9.22)
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Figure 9.1: Dependence of eigenvalues of H on a. The blue, yellow and green curves correspond to −1, +1 and
0 class eigenvalues, respectively, cf (9.11). The multiplicities are clearly visible.

It follows that D(H∗) ⊂ H2
(
(−π

2 ,
π
2 a)
)
⊕H2

(
(π2 a,

π
2 )
)
and that H∗ acts as Ḣ∗. Hence, we may integrate

by parts to get the identity

(φ,Hψ) = (H∗φ, ψ) + ψ(π2 a)
[
φ̄′(π2 a−)− φ̄′(π2 a+) + φ̄′(π2 )− φ̄′(−π

2 )
]

+ ψ′(π2 a)
[
φ̄(π2 a+)− φ̄(π2 a−)

]

+ ψ′(−π
2 )φ̄(−π

2 )− ψ′(π2 )φ̄(
π
2 )

for every ψ ∈ D(H) and φ ∈ D(Ḣ∗) ⊃ D(H∗). Using the arbitrariness of ψ, we thus get

(H∗ψ)(x) = −ψ′′(x) , x ∈ (−π
2 ,

π
2a) ∪ (π2 a,

π
2 ) ,

ψ ∈ D(H∗) =




ψ ∈ H2

(
(−π

2 ,
π
2 a)
)
⊕H2

(
(π2 a,

π
2 )
)
∣∣∣∣∣∣∣

φ(−π
2 ) = φ(π2 ) = 0

φ(π2 a−) = φ(π2 a+)

φ′(π2 )− φ′(−π
2 ) = φ′(π2 a+)− φ′(π2 a−)




.

Notice that D(H∗) ⊃ H1
0 ((−π

2 ,
π
2 )).

The point spectrum of H∗ can be found by writing down the general solutions of −φ′′ = k2φ in (−π
2 ,

π
2 a)

and (π2 a,
π
2 ) and subjecting them to the boundary conditions of D(H∗). Since the procedure is similar to our

analysis for H , we just present the results. We find that the eigenvalues of H and H∗ coincide, i.e.,

σp(H
∗) = σp(H) . (9.23)

We again use the decomposition σp(H
∗) = σ−1 ∪ σ+1 ∪ σ0 and specify the eigenfunctions associated with the

individual classes.

• −1 class eigenvalues That is, k = 4m
1−a with m ∈ N∗.

1. If m 1+a
1−a 6∈ N (generic situation), then the eigenfunction associated with k2 reads

φ(x) =

(
0

A+ sin
(

4m
1−a (x− π

2 )
)
)

(9.24)
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with a normalisation constant A+ ∈ C \ {0}. Here and in the sequel, for any φ = φ− ⊕ φ+ ∈
L2((−π

2 ,
π
2 a))⊕ L2((π2 a,

π
2 )), we write φ =

(
φ−

φ+

)
.

2. If m 1+a
1−a ∈ N (exceptional situation), then there are two (independent) eigenfunctions

φ1(x) =

(
0

A+ sin
(

4m
1−a (x− π

2 )
)
)
, φ2(x) =

(
A− sin

(
4m
1−a (x+ π

2 )
)

0

)
, (9.25)

with normalisation constants A± ∈ C \ {0}.

• +1 class eigenvalues That is, k = 4m
1+a with m ∈ N∗.

1. If m 1−a
1+a 6∈ N (generic situation), then the eigenfunction associated with k2 reads

φ(x) =

(
A− sin

(
4m
1+a (x+ π

2 )
)

0

)
, (9.26)

with a normalisation constant A− ∈ C \ {0}.
2. If m 1−a

1+a ∈ N (exceptional situation), then there are two (independent) eigenfunctions

φ1(x) =

(
0

A+ sin
(

4m
1+a (x− π

2 )
)
)
, φ2(x) =

(
A− sin

(
4m
1+a (x + π

2 )
)

0

)
, (9.27)

with normalisation constants A± ∈ C \ {0}.

• 0 class eigenvalues That is, k = 2m with m ∈ N.

1. If m = 0 (zero eigenvalue), there is just one eigenfunction

φ(x) =

(
C (a− 1)(x+ π

2 )
C (a+ 1)(x− π

2 )

)
, (9.28)

with a normalisation constant C ∈ C \ {0}.
2. If m 6= 0 and ma 6∈ N (generic situation), the eigenfunction associated with k2 reads

φ(x) =

(
C sin

(
2m(x+ π

2 )
)

C sin
(
2m(x− π

2 )
)
)
, (9.29)

with a normalisation constant C ∈ C \ {0}.
3. If m 6= 0 and ma ∈ N (exceptional situation), we still distinguish two cases:

(a) If m(1 + a) is odd (which necessarily implies that m(1 − a) is odd as well), there is just one
eigenfunction, which coincides with (9.29).

(b) If m(1 + a) is even (which necessarily implies that m(1 − a) is even as well), there are two
(independent) eigenfunctions

φ1(x) =

(
0

A+ sin
(
2m(x− π

2 )
)
)
, φ2(x) =

(
A− sin

(
2m(x+ π

2 )
)

0

)
, (9.30)

with normalisation constants A± ∈ C \ {0}.

Let us summarise the spectral analysis of H∗ into the following proposition.

Proposition 9.2. σp(H
∗) = σ−1 ∪ σ+1 ∪ σ0, where the sets σ−1, σ+1 and σ0 are introduced in (9.11).

1. If a 6∈ Q, then the sets σ−1, σ+1 and σ0 are mutually disjoint and each point of the point spectrum
corresponds to an eigenvalue of H∗ of geometric multiplicity one, with the associated eigenfunction (9.24),
(9.26), (9.29) or (9.28).

2. If a ∈ Q, then σ−1 ∩ σ+1 = σ−1 ∩ σ+1 ∩ σ0 6= ∅. Each point of σ−1 ∩ σ+1 corresponds to an eigenvalue
of H∗ of geometric multiplicity two, with the associated eigenfunctions (9.25) and (9.27). Each point
of σp(H

∗) \ (σ−1 ∩ σ+1) corresponds to an eigenvalue of geometric multiplicity one, with the associated
eigenfunction (9.24), (9.26), (9.29), (9.30) or (9.28) (zero eigenvalue, associated with the function (9.28),
is always geometrically simple).
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As the last result of this section, we show that H is an operator with compact resolvent.

Proposition 9.3. H is a quasi-m-accretive operator with compact resolvent.

Proof. In Section 9.2, we already showed that H + 1
16 is accretive. Consequently,

‖ψ‖‖(H − z)ψ‖ ≥ ℜ
(
ψ, (H − z)ψ

)
≥
(
−ℜz − 1

16

)
‖ψ‖2 (9.31)

for every ψ ∈ D(H) and all z ∈ C. If ℜz < − 1
16 , this estimate implies that H − z has a bounded inverse with

bound not exceeding 1/|ℜz + 1
16 |. Hence the range R(H − z) is closed for all z ∈ ∆ := {z ∈ C | ℜz < − 1

16}, so
each z ∈ ∆ does not belong to the continuous nor the point spectrum of H . Using the general characterisation
of the residual spectrum (see, e.g., [13, Prop. 5.2.2])

σr(H) =
{
λ ∈ C | λ /∈ σp(H) & λ ∈ σp(H

∗)
}

and (9.23), we conclude that z ∈ ∆ is not in the residual spectrum either. Summing up, no point z ∈ ∆ belongs
to the spectrum of H , so the resolvent exists at every z ∈ ∆. This together with (9.31) implies that H + 1

16 is
m-accretive. Since H2((−π

2 ,
π
2 )) ⊃ D(H) is compactly embedded in L2((−π

2 ,
π
2 )) and the resolvent of H exists

at a point (in fact, at every point z ∈ ∆), we deduce that H is an operator with compact resolvent.

As a consequence of Proposition 9.3, the spectrum of H (as well as H∗) is purely discrete, in particular, it
is exhausted by the eigenvalues (9.10). Summing up,

σ(H) = σ−1 ∪ σ+1 ∪ σ0 = σ(H∗) .

9.5 Algebraic multiplicities

It is a general fact that (φ, ψ) = 0 is a necessary condition for the existence of a generalised (root) vector for
an eigenvalue λ of an operator H , where ψ is a corresponding eigenfunction and φ is an eigenfunction of H∗

corresponding to λ̄. The study of algebraic multiplicities of eigenvalues of our operator H is thus reduced to a
computation of elementary trigonometric integrals.

• −1 class eigenvalues Let λ =
(

4m
1−a
)2

with m ∈ N∗.

1. If m 1+a
1−a 6∈ N (generic situation), we already know that the eigenvalue λ is geometrically simple. The

functions ψ and φ are given by (9.13) and (9.24), respectively. Since

(φ, ψ) = −Ā+B
π

4
(1− a) sin

(
mπ

1 + a

1− a

)
cos(mπ) 6= 0 , (9.32)

the eigenvalue λ is algebraically simple too.

2. If m 1+a
1−a ∈ N (exceptional situation), we already know that the eigenvalue λ has geometric multi-

plicity two. The two eigenfunctions ψ1, ψ2 of H and the two eigenfunctions φ1, φ2 of H∗ are given
by (9.14) and (9.25), respectively. Since

(φ1, ψ1) = Ā+A
π

4
(1− a) cos

(
mπ

1 + a

1− a

)
cos(mπ) 6= 0 ,

(φ2, ψ1) = Ā−A
π

4
(1 + a) cos

(
mπ

1 + a

1− a

)
cos(mπ) 6= 0 ,

(φ1, ψ2) = 0 = (φ2, ψ2) ,

(9.33)

there might be a generalised eigenvector ξ of H associated with ψ2. In fact, the linearly independent
solution of (H − λ)ξ = ψ2 reads

ξ(x) := −B 1− a

64m2

[
(1− a) cos

(
4mx

1− a

)
+ 8mx sin

(
4mx

1− a

)]
. (9.34)

Note that the function indeed belongs to D(H) because necessarily 2m
1−a ∈ N, i.e. λ ∈ σ0. Hence, the

algebraic multiplicity of λ is at least three. To see that the algebraic multiplicity is not higher than
three, it is enough to verify that

(φ1, ξ) = −Ā+B
π2

128m
(1− a)2(1 + a) cos

(
mπ

1 + a

1− a

)
cos(mπ) 6= 0 ,

(φ2, ξ) = Ā−B
π2

128m
(1− a)2(1 + a) cos

(
mπ

1 + a

1− a

)
cos(mπ) 6= 0 .

(9.35)
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• +1 class eigenvalues Let λ =
(

4m
1+a

)2
with m ∈ N∗.

1. If m 1−a
1+a 6∈ N (generic situation), we already know that the eigenvalue λ is geometrically simple. The

functions ψ and φ are given by (9.15) and (9.26), respectively. Since

(φ, ψ) = Ā−B
π

4
(1 + a) sin

(
mπ

1− a

1 + a

)
cos(mπ) 6= 0 , (9.36)

the eigenvalue λ is algebraically simple too.

2. If m 1−a
1+a ∈ N (exceptional situation), we already know that the eigenvalue λ has geometric multi-

plicity two. The two eigenfunctions ψ1, ψ2 of H and the two eigenfunctions φ1, φ2 of H∗ are given
by (9.16) and (9.27), respectively. Since

(φ1, ψ1) = Ā+A
π

4
(1− a) cos

(
mπ

1− a

1 + a

)
cos(mπ) 6= 0 ,

(φ2, ψ1) = Ā−A
π

4
(1 + a) cos

(
mπ

1− a

1 + a

)
cos(mπ) 6= 0 ,

(φ1, ψ2) = 0 = (φ2, ψ2) ,

(9.37)

there might be a generalised eigenvector ξ of H associated with ψ2. In fact, the linearly independent
solution of (H − λ)ξ = ψ2 reads

ξ(x) := −B 1 + a

64m2

[
(1 + a) cos

(
4mx

1 + a

)
+ 8mx sin

(
4mx

1 + a

)]
. (9.38)

Note that the function indeed belongs to D(H) because necessarily 2m
1+a ∈ N, i.e. λ ∈ σ0. Hence, the

algebraic multiplicity of λ is at least three. To see that the algebraic multiplicity is not higher than
three, it is enough to verify that

(φ1, ξ) = −Ā+B
π2

128m
(1 + a)2(1− a) cos

(
mπ

1− a

1 + a

)
cos(mπ) 6= 0 ,

(φ2, ξ) = Ā−B
π2

128m
(1 + a)2(1− a) cos

(
mπ

1− a

1 + a

)
cos(mπ) 6= 0 .

(9.39)

We remark that (9.38) can be deduced from (9.34) by the replacement m 7→ m 1−a
1+a , which reflects the

relationship between the exceptional situations in the +1 and −1 classes.

• 0 class eigenvalues Let λ = (2m)2 with m ∈ N.

1. If m = 0, we already know that λ is geometrically simple. The functions ψ and φ are given by (9.18)
and (9.28), respectively. Since

(φ, ψ) = −C̄B π2

4
(1− a2) 6= 0 , (9.40)

the zero eigenvalue is always algebraically simple.

2. If m 6= 0 and ma 6∈ N (generic situation), we already know that the eigenvalue λ is geometrically
simple. The functions ψ and φ are given by (9.19) and (9.29), respectively. Since

(φ, ψ) = C̄B
π

2

1− cos(mπ) cos(mπa)

sin(mπa)
6= 0 , (9.41)

the eigenvalue λ is algebraically simple too.

3. If m 6= 0 and ma ∈ N (exceptional situation), we distinguish two cases:

(a) If m(1 + a) is odd (which necessarily implies that m(1 − a) is odd as well), we already know
that the eigenvalue λ is geometrically simple. The eigenfunction ψ of H is given by (9.20) and
the corresponding eigenfunction φ of H∗ is given by (9.29). Since

(φ, ψ) = C̄A
π

2
cos(mπ) 6= 0 , (9.42)

the eigenvalue λ is algebraically simple too.
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(b) If m(1 + a) is even (which necessarily implies that m(1 − a) is even as well), we already know
that the eigenvalue λ has geometric multiplicity two. The two eigenfunctions ψ1, ψ2 of H and
the two eigenfunctions φ1, φ2 of H∗ are given by (9.21) and (9.30), respectively. Since

(φ1, ψ1) = Ā+A
π

4
(1− a) cos(mπ) 6= 0 ,

(φ2, ψ1) = Ā−A
π

4
(1 + a) cos(mπ) 6= 0 ,

(φ1, ψ2) = 0 = (φ2, ψ2) ,

(9.43)

there might be a generalised eigenvector ξ of H associated with ψ2. In fact, the linearly inde-
pendent solution of (H − λ)ξ = ψ2 reads

ξ(x) := −B 1

16m2
[cos(2mx) + 4mx sin(2mx)] . (9.44)

Hence, the algebraic multiplicity of λ is at least three. To see that the algebraic multiplicity is
not higher than three, it is enough to verify that

(φ1, ξ) = −Ā+B
π

64m
(1− a2) cos(mπ) 6= 0 ,

(φ2, ξ) = Ā−B
π

64m
(1− a2) cos(mπ) 6= 0 .

(9.45)

We remark that (9.44) can be deduced from (9.34) by the replacement m 7→ m 1−a
2 , which

reflects the relationship between the exceptional situations in the 0 and −1 classes.

We summarise the established geometric and algebraic properties of the eigenvalues of H in the following
proposition.

Proposition 9.4.

1. If a 6∈ Q, then all the eigenvalues of H are algebraically simple.

2. Let a ∈ Q. Each point of σ(H) \ (σ−1 ∩ σ+1) corresponds to an eigenvalue of H of algebraic multiplicity
one. Each point of σ−1∩σ+1 = σ−1∩σ+1∩σ0 corresponds to an eigenvalue of H of geometric multiplicity
two and algebraic multiplicity three.

Theorem 9.1 follows as a consequence of this proposition.

9.6 The resolvent

Now we turn to a study of the resolvent of H in some further detail. We have already seen in Section 9.4 that
the resolvent is a compact operator (cf Proposition 9.3). However, the compactness by itself is not sufficient
to analyse completeness of eigenfunctions and related properties. In this section we therefore give an explicit
formula for the integral kernel of the resolvent and show that it is a trace-class operator.

Let us denote by H0 the Laplacian in
(
−π

2 ,
π
2

)
with Dirichlet boundary conditions, i.e.,

H0ψ := −ψ′′ , ψ ∈ D(H0) :=
{
ψ ∈ H2((−π

2 ,
π
2 ))

∣∣ ψ(−π
2 ) = 0 = ψ(π2 )

}
,

and by R0(λ) its resolvent. It is well known that σ(H0) = {n2}n∈N∗ and that R0(λ) acts as an integral operator
with explicit kernel (see, e.g., [10, Sec. III.2.3])

G0
λ(x, y) :=

−1

k sin(2k π2 )

{
sin(k(x + π

2 )) sin(k(y − π
2 )) , x < y ,

sin(k(y + π
2 )) sin(k(x− π

2 )) , x > y ,
(9.46)

where k ∈ C is such that k2 = λ ∈ C \ σ(H0).
We have the following Krein-type formula for the resolvent R(λ) of H .

Proposition 9.5. For every λ ∈ C \ [σ(H) ∪ σ(H0)], the resolvent R(λ) of H admits the decomposition

(R(λ)f)(x) = (R0(λ)f)(x) +
hx(λ)

1− h
π
2 a(λ)

(R0(λ)f)(π2 a) , (9.47)

with any f ∈ L2((−π
2 ,

π
2 )) and x ∈ [−π

2 ,
π
2 ], where

hx(λ) :=
cosh(

√
−λx)

cosh(
√
−λ π

2 )
.
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Proof. First of all, notice that R(λ) introduced by (9.47) is a bounded operator on L2((−π
2 ,

π
2 )). Indeed, it is

the case of R0(λ) for λ ∈ C \ σ(H0) and the second term on the right hand side of (9.47) represents a rank-one
perturbation of R0(λ). More specifically,

hx(λ)

1− h
π
2 a(λ)

(R0(λ)f)(π2 a) = g1(x) (g2, f) ,

where

g1(x) :=
hx(λ)

1− h
π
2 a(λ)

and g2(y) := G0
λ(
π
2a, y)

are continuous functions on [−π
2 ,

π
2 ] for all λ ∈ C \ [σ(H) ∪ σ(H0)]. Next, we observe that the function

x 7→ (R(λ)f)(x) solves the boundary conditions

(R(λ)f)(−π
2 ) = (R(λ)f)(π2 a) = (R(λ)f)(π2 ) .

Indeed,

(R(λ)f)(−π
2 ) =

1

1− h
π
2 a(λ)

(R0(λ)f)(π2 a) = (R(λ)f)(π2 )

and

(R(λ)f)(π2 a) = (R0(λ)f)(π2 a)

(
1 +

h
π
2 a(λ)

1− h
π
2 a(λ)

)
=

1

1− h
π
2 a(λ)

(R0(λ)f)(π2 a) .

Furthermore, it is straightforward to check that, for every f ∈ L2((−π
2 ,

π
2 )), R(λ)f ∈ H2((−π

2 ,
π
2 )) and

−(R(λ)f)′′ − λ (R(λ)f) = f .

Hence, R(λ) : L2((−π
2 ,

π
2 )) → D(H) and R(λ) is the right inverse of H − λ. To show that R(λ) is also the left

inverse of H − λ, one can employ (9.46), which in particular yields the useful identity

[R0(λ)(H − λ)ψ](x) = ψ(x)− cos(kx)

cos(k π2 )
ψ(π2 a)

for every ψ ∈ D(H) and k ∈ C such that k2 = λ ∈ C \ σ(H0).

Remark 9.1. Formula (9.47) can be deduced from [8, Thm. 1] (see also [8, Eq. (3.5)]). However, since the
transition semigroup of [8] is defined on a different functional space, the present proof of Proposition 9.5 is still
needed.

From Proposition 9.5 we get the following corollary.

Proposition 9.6. For every λ ∈ C \ σ(H), the resolvent R(λ) is a trace-class operator.

Proof. From Proposition 9.5 we see that the resolvent R(λ) is a rank-one perturbation of R0(λ). Since R0(λ)
is well known to be trace-class, rank-one operators are obviously trace-class and trace-class operators form a
two-sided ideal in the space of bounded operators (see, e.g., [18, Thm. 7.8]), we immediately obtain the claim
from Proposition 9.5 for every λ ∈ C \ [σ(H) ∪ σ(H0)]. By the first resolvent identity [18, Thm. 5.13] and the
two-sided ideal properties of trace-class operators, the trace-class property then easily extends to all λ in the
resolvent set of H .

9.7 Basis properties

Since the spectrum of H is real, it is natural to ask whether H is similar to a self-adjoint operator. This
question is related to basis properties of the eigenfunctions of H .

9.7.1 Completeness

Recall that the completeness of a family of vectors {ψj}j∈N in a Hilbert space H means that its span is dense
in H, or equivalently, ({ψj}j∈N)

⊥ = {0}.

Theorem 9.4. The eigenfunctions of H together with the generalised eigenfunctions form a complete set in
L2((−π

2 ,
π
2 )).
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Proof. The m-accretivity of H̃ := H + 1
16 implies ℜ(ψ, H̃ψ) ≥ 0 for all ψ ∈ D(H). Consequently, −iH̃ is

dissipative, i.e. ℑ〈ψ,−iH̃ψ〉 ≤ 0 for all ψ ∈ D(H). It is then easy to check that the imaginary part of the
resolvent of −iH̃ at z < 0 is non-negative, i.e.,

1

2i

(
(−iH̃ − z)−1 − (iH̃∗ − z)−1

)
≥ 0 (9.48)

in the sense of forms. Note that the resolvent of −iH̃ is well defined for all non-imaginary points, because
the spectrum of H is real. By virtue of Proposition 9.6, (H + 1)−1 and thus also (−iH̃ − z)−1 are trace-class
operators. Combining this fact with (9.48), it is enough to apply the completeness theorem [7, Thm. VII.8.1]
to the resolvent operator (−iH̃ − z)−1.

As a consequence of this theorem and Proposition 9.4, we get

Corollary 9.1. If a 6∈ Q, the eigenfunctions of H form a complete set in L2((−π
2 ,

π
2 )).

Since the quasi-m-accretivity of H implies the same property for H∗ and the spectrum is real, the proofs
of the results of Theorem 9.4 and Corollary 9.1 apply to the eigensystem of H∗ as well.

9.7.2 Minimal completeness

We say that a complete set of vectors {ψj}j∈N in a Hilbert space H is minimal complete if the removal of
any term makes it incomplete. By [5, Prob. 3.3.2], {ψj}j∈N is minimal complete if, and only if, there exists a
sequence {φj}j∈N ⊂ H such that the pair is biorthogonal, i.e.,

(φj , ψk) = δjk (9.49)

for all j, k ∈ N.
In our case, we form {ψj}j∈N from the eigenfunctions ψ of H together with the generalised eigenfunctions ξ.

The dual sequence {φj}j∈N will be then given by the eigenfunctions φ of H∗ together with its generalised
eigenfunctions η that we determine only now.

• −1 class eigenvalues Let λ =
(

4m
1−a
)2

with m ∈ N∗.

1. If m 1+a
1−a 6∈ N (generic situation), the eigenvalue λ is algebraically simple. In view of (9.32), the

functions ψ and φ given by (9.13) and (9.24), respectively, can be normalised in such a way that (9.49)
holds.

2. If m 1+a
1−a ∈ N (exceptional situation), the eigenvalue λ has geometric multiplicity two and algebraic

multiplicity three. In view of (9.33) and (9.35), the functions ψ1, ξ given by (9.14) and (9.34) and the
functions φ1, φ2 given by (9.25) are mutually biorthogonal when normalised properly. We still need
to find the function dual to ψ2 from (9.14). To this aim, we consider the equation (H∗−λ)η = φ1+φ2
and find the linearly independent solution

η(x) :=



A−

1−a
64m2

[
8m(x+ π

2 ) cos
(

4m
1−a (x + π

2 )
)
− (1− a) sin

(
4m
1−a (x + π

2 )
)]

A+
1−a
64m2

[
8m(x− π

2 ) cos
(

4m
1−a (x− π

2 )
)
− (1 − a) sin

(
4m
1−a (x− π

2 )
)]


 , (9.50)

which indeed belongs to D(H∗) provided that

A−(1 + a) = −A+(1− a) , (9.51)

where A± are the normalisation constants from (9.25). Since

(η, ψ2) = Ā−B
π2

64m
(1− a) (1 + a) cos

(
mπ

1 + a

1− a

)
cos(mπ) 6= 0 , (9.52)

we can eventually choose the normalisation constants in such a way that ψ2 and η is the remaining
biorthogonal pair.

• +1 class eigenvalues Let λ =
(

4m
1+a

)2
with m ∈ N∗.

1. If m 1−a
1+a 6∈ N (generic situation), the eigenvalue λ is algebraically simple. In view of (9.36), the

functions ψ and φ given by (9.15) and (9.26), respectively, can be normalised in such a way that (9.49)
holds.
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2. If m 1−a
1+a ∈ N (exceptional situation), then λ belongs to the exceptional situation in the −1 class too.

Hence, the analysis is reduced to the preceding case. In particular, the formula (9.50) holds here
after the replacement m 7→ m 1−a

1+a .

• 0 class eigenvalues Let λ = (2m)2 with m ∈ N.

1. If m = 0, the eigenvalue λ is algebraically simple. In view of (9.40), the functions ψ and φ given
by (9.18) and (9.28), respectively, can be normalised in such a way that (9.49) holds.

2. If m 6= 0 and ma 6∈ N (generic situation), the eigenvalue λ is algebraically simple. The functions ψ
and φ given by (9.19) and (9.29), respectively, can be normalised in such a way that (9.49) holds.

3. If m 6= 0 and ma ∈ N (exceptional situation), we distinguish two cases:

(a) If m(1 + a) is odd (which necessarily implies that m(1 − a) is odd as well), the eigenvalue λ
is algebraically simple. In view of (9.42), the functions ψ and φ given by (9.20) and (9.29),
respectively, can be normalised in such a way that (9.49) holds.

(b) If m(1 + a) is even (which necessarily implies that m(1− a) is even as well), then λ belongs to
the exceptional situation in the −1 class too. In particular, the formula (9.50) holds here after
the replacement m 7→ m 1−a

2 .

We summarise the results of this subsection in the following theorem.

Theorem 9.5. The eigenfunctions of H together with the generalised eigenfunctions form a mutually biorthog-
onal pair in L2((−π

2 ,
π
2 )). Consequently, the eigenfunctions of H together with the generalised eigenfunctions

form a minimal complete set in L2((−π
2 ,

π
2 )). In particular, the eigenfunctions of H form a minimal complete

set in L2((−π
2 ,

π
2 )) if, and only if, a 6∈ Q.

An analogue of this theorem holds for the adjoint operator H∗ as well.

9.7.3 Conditional basis

Recall that {ψj}j∈N ⊂ H is a conditional (or Schauder) basis in a Hilbert space H if every f ∈ H has a unique
expansion in the vectors {ψj}j∈N, i.e.,

∀f ∈ H, ∃!{αj}j∈N ⊂ C, f =

∞∑

j=0

αjψj . (9.53)

The minimal completeness of {ψj}j∈N is a necessary condition for {ψj}j∈N to be a conditional basis. By [5,
Lem. 3.3.3] (see also [14, Prop. 5]), another necessary condition for {ψj}j∈N being a conditional basis is that
the norms of the one-dimensional projections

Pj := ψj(φj , ·) (9.54)

are uniformly bounded in j. Since ‖Pj‖ = ‖ψj‖‖φj‖, this check reduces to a computation of elementary
trigonometric integrals in our case.

• −1 class eigenvalues Let λ =
(

4m
1−a
)2

with m ∈ N∗.

1. If m 1+a
1−a 6∈ N (generic situation), recalling (9.13), (9.24) and (9.32), we define P := ψ(φ, ·) and find

‖P‖ =

√
1
8

[
4π + 1−a

m sin
(

4mπ
1−a

)]

√
π
4 (1 − a)

∣∣∣sin
(
mπ 1+a

1−a

)∣∣∣
. (9.55)

2. If m 1+a
1−a ∈ N (exceptional situation), recalling (9.14), (9.25), (9.34), (9.50), (9.33), (9.35) and (9.52),

we define P1 := ψ1(φ1, ·), P2 := ψ2(η, ·), P3 := ξ(φ2, ·), and find

‖P1‖ =

√
2√

1− a
,

‖P2‖ =

√
15(1− a) + 16m2π2(1 + a)

2
√
3π

√
1 + am

,

‖P3‖ =

√
64m2π2 − 36(1− a)2

2
√
6 π

√
1 + a (1− a)m

.

(9.56)
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• +1 class eigenvalues Let λ =
(

4m
1+a

)2
with m ∈ N∗.

1. If m 1−a
1+a 6∈ N (generic situation), recalling (9.15), (9.26) and (9.36), we define P := ψ(φ, ·) and find

‖P‖ =

√
1
8

[
4π + 1+a

m sin
(

4mπ
1+a

)]

√
π
4 (1 + a)

∣∣∣sin
(
mπ 1−a

1+a

)∣∣∣
. (9.57)

2. If m 1−a
1+a ∈ N (exceptional situation), then λ belongs to the exceptional situation in the −1 class too.

Hence, the analysis is reduced to the preceding case.

• 0 class eigenvalues Let λ = (2m)2 with m ∈ N.

1. If m = 0, recalling (9.18), (9.28) and (9.40), we define P := ψ(φ, ·) and find

‖P‖ =

√
4

3
. (9.58)

2. If m 6= 0 and ma 6∈ N (generic situation), recalling (9.19), (9.29) and (9.41), we define P := ψ(φ, ·)
and find

‖P‖ =

√
2√

1− cos
(
mπ(1 + a)

) . (9.59)

3. If m 6= 0 and ma ∈ N (exceptional situation), we distinguish two cases:

(a) If m(1 + a) is odd (which necessarily implies that m(1 − a) is odd as well), recalling (9.20),
(9.29) and (9.42), we define P := ψ(φ, ·) and find

‖P‖ = 1 . (9.60)

(b) If m(1 + a) is even (which necessarily implies that m(1− a) is even as well), then λ belongs to
the exceptional situation in the −1 class too. Hence, the analysis is reduced to the case studied
above.

Now we are in a position to establish Theorem 9.2 announced in the introduction.

Proof of Theorem 9.2. If a ∈ Q, the eigenfunctions of H cannot form a conditional basis in L2((−π
2 ,

π
2 )),

because they are not even minimal complete by Theorem 9.5. To disprove the basis property in the case
a 6∈ Q, we show that the spectral projections (9.54) are not uniformly bounded. To this aim, we consider for
instance (9.59). By Dirichlet’s theorem on Diophantine approximation of irrational numbers (see, e.g., [17,
Thm. 1A]), there exist sequences of integers (pk, qk) ∈ Z×N∗ such that |pk| → ∞ and qk → ∞ as k → ∞ and

∣∣∣∣a−
pk
qk

∣∣∣∣ <
1

q2k

for every k ∈ N. Consequently, choosing m := 2qk, we get

cos
(
mπ(1 + a)

)
= cos

(
2qkπ

(
a− pk

qk

))
−−−−→
k→∞

1 .

Restricting to spectral projections (9.59) from the 0 class, we thus obtain

sup
j∈N

‖Pj‖ ≥ sup
m∈N∗

√
2√

1− cos
(
mπ(1 + a)

) ≥ sup
k∈N∗

√
2√

1− cos
(
2qkπ(1 + a)

) = ∞ .

This concludes the proof of the theorem.

Remark 9.2. If a ∈ Q, it is still possible that the generalised eigensystem (i.e. the collection of eigenfunctions
and generalised eigenfunctions) is a conditional basis. We leave this question open here. Anyway, let us
demonstrate that the projections (9.54), where {ψj}j∈N and {φj}j∈N denote the biorthogonal pair formed by
the eigenfunctions and generalised eigenfunctions of H and H∗, respectively, are uniformly bounded. The
formulae (9.56), (9.58) and (9.60) are obviously uniformly bounded in m ∈ N∗. To show that it is the case for
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the remaining norms of one-dimensional projections (9.55), (9.57) and (9.59), too, it is enough to write a = p
q

with some integers (p, q) ∈ Z× Z∗ (since |a| < 1, we have |q| > |p|) and use the elementary estimates
∣∣∣∣sin

(
m−1π

1 + a

1− a

)∣∣∣∣ ≥
2

π
dist

(
m−1π

1 + a

1− a
, πZ

)
≥ 2

|q − p| ,∣∣∣∣sin
(
m+1π

1− a

1 + a

)∣∣∣∣ ≥
2

π
dist

(
m+1π

1 − a

1 + a
, πn

)
≥ 2

|q + p| ,

1− cos
(
m0π(1 + a)

)
≥ 4

π2
dist

(
m0π(1 + a), 2πZ

)2
≥ 4

q2
,

valid for all m−1,m+1,m0 ∈ N∗ such that m±1
1∓a
1±a 6∈ N and m0a 6∈ N.

9.7.4 Metric operator

We finally recall that {ψj}j∈N, normalised to 1 in a Hilbert space H, is an unconditional (or Riesz) basis if it
is a conditional basis and the inequality

∀f ∈ H, C−1‖f‖2 ≤
∞∑

j=0

|(ψj , f)|2 ≤ C‖f‖2 (9.61)

holds with a positive constant C independent of f . If {ψj}j∈N is a normalised set of eigenfunctions of an
operator H with compact resolvent in H, then H is similar to a normal operator via bounded and boundedly
invertible transformation if, and only if, {ψj}j∈N is an unconditional basis in H, cf [5, Thm. 3.4.5]. The latter
is equivalent to the similarity to a self-adjoint operator if the spectrum of H is in addition real.

The similarity to a self-adjoint operator is also equivalent to the existence of a metric operator, i.e. a
positive, bounded and boundedly invertible operator Θ such that (9.3) holds (cf [13, Prop. 5.5.2]). The metric
operator can be constructed by the formula

Θ =

∞∑

j=0

φj(φj , ·) , (9.62)

where φj are eigenfunctions of H∗.
In our case, H cannot be similar to a self-adjoint operator via bounded and boundedly invertible transfor-

mation because the eigenfunctions of H do not form already a conditional basis (they are not even complete if
a ∈ Q), cf Theorem 9.2. Nonetheless, if a 6∈ Q, we shall show that the relation (9.3) still holds with a positive
and bounded Θ whose inverse exists but it is unbounded. Furthermore, we shall derive a closed formula for
the metric operator (9.62).

Our approach is based on the following peculiar properties of the eigenbasis of H∗. Hereafter we assume
a 6∈ Q.

• Eigenfunctions in the −1 class are all those eigenfunctions of the Dirichlet Laplacian in (π2 a,
π
2 ) which are

antisymmetric with respect to the middle point π4 (1+a). Putting A+ :=
√
2/[π(1− a)], the eigenfunctions

become normalised to 1 in L2((π2 a,
π
2 )). Consequently,

∑

λj∈σ−

φj(φj , ·) = 0⊕ P+ ,

where P+ is the antisymmetric projection

(P+f)(x) :=
f(x)− f(−x+ π

2 (1 + a))

2
, x ∈ [π2 a,

π
2 ] .

The direct sum is again with respect to the decomposition L2((−π
2 ,

π
2 a))⊕ L2((π2 a,

π
2 )).

• Eigenfunctions in the +1 class are all those eigenfunctions of the Dirichlet Laplacian in (−π
2 ,

π
2 a) which

are antisymmetric with respect to the middle point −π
4 (1 − a). Putting A− :=

√
2/[π(1 + a)], the

eigenfunctions become normalised to 1 in L2((−π
2 ,

π
2 a)). Consequently,

∑

λj∈σ+

φj(φj , ·) = P− ⊕ 0 ,

where P− is the antisymmetric projection

(P−f)(x) :=
f(x)− f(−x− π

2 (1− a))

2
, x ∈ [−π

2 ,
π
2 a] .



I.9 Spectral analysis of the diffusion operator with random jumps from the boundary 143

• Eigenfunctions in the 0 class except for (9.28) are all those eigenfunctions of the Dirichlet Laplacian
in (−π

2 ,
π
2 ) which are antisymmetric with respect to the middle point 0. Putting C :=

√
2/π, the

eigenfunctions become normalised to 1 in L2((−π
2 ,

π
2 )). Consequently,

∑

λj∈σ0\{0}
φj(φj , ·) = P0 ,

where P0 is the antisymmetric projection

(P0f)(x) :=
f(x)− f(−x)

2
, x ∈ [−π

2 ,
π
2 ] .

• Finally, let us denote the eigenfunction (9.28) corresponding to the zero eigenvalue by φ0 and let us put
the normalisation constant C equal to one for instance. Then we get a rank-one operator

∑

λj=0

φj(φj , ·) = φ0(φ0, ·) .

Summing up, we arrive at the following particularly simple form for the metric operator defined by (9.62)

Θ = φ0(φ0, ·) + P0 + P− ⊕ P+ . (9.63)

Let us carefully verify all the required properties of the metric operator, giving thus a proof Theorem 9.3
announced in the introduction.

Proof of Theorem 9.3.

• Obviously, Θ defined by (9.63) is bounded.

• It is positive just because

(f,Θf) = |(φ0, f)|2 + ‖P0f‖2 + ‖P−f ⊕ P+f‖2 ≥ 0 (9.64)

for every f ∈ L2((−π
2 ,

π
2 )).

• To prove that Θ is invertible (i.e. 0 is not an eigenvalue of Θ), we need the following fact.

Lemma 9.1. Let a 6∈ Q. If P0f = 0 and P−f ⊕ P+f = 0 for some f ∈ L2((−π
2 ,

π
2 )), then f(x) is a

constant for almost every x ∈ (−π
2 ,

π
2 ).

Proof. We decompose f into the eigenbasis of the Neumann Laplacian in (−π
2 ,

π
2 ), i.e., we write

f =

∞∑

n=0

αnχn , χn(x) :=





√
2
π cos(nx) if n ≥ 1 is even ,√
2
π sin(nx) if n ≥ 1 is odd ,√
1
π if n = 0 ,

where αn := (χn, f). Requiring P0f = 0 immediately yields that the coefficients αn vanish for all odd n.
At the same time, an explicit computation gives

(χm, P−χn ⊕ P+χn) =
1

2

[
1− cos(

nπ

2
) cos(

nπa

2
)
]
δmn

for all even m,n. Summing up,

‖P0f‖2 + ‖P−f ⊕ P+f‖2 =
∑

n odd

|αn|2 +
∑

n even

|αn|2
1

2

[
1− cos(

nπ

2
) cos(

nπa

2
)
]
.

If a 6∈ Q, the square bracket is positive for all n 6= 0 and we may conclude that αn = 0 for all n ≥ 1.
Consequently, f(x) = α0χ0(x) for almost every x ∈ (−π

2 ,
π
2 ).

Using this lemma, assuming that f 6= 0 is an eigenfunction of Θ corresponding to its zero eigenvalue, we
conclude from (9.64) that f(x) = const ∈ C for almost every x ∈ (−π

2 ,
π
2 ) and

0 = (φ0, ψ) = const
(π
2

)2
(a2 − 1) ,

which can be satisfied only if const = 0, a contradiction. Hence Θ is invertible.
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• Recall that Θ is not boundedly invertible (i.e. 0 is in the continuous spectrum of Θ), otherwise the
eigenfunctions of H would form an unconditional basis, which contradicts Theorem 9.2.

• Finally, let us show that the quasi-self-adjointness relation (9.3) holds.

First of all, we have to check that Θ properly maps D(H) to D(H∗). It is obvious for the first term
φ0(φ0, ·) in (9.63). Let ψ ∈ D(H). We clearly have

P0H
2((−π

2 ,
π
2 )) = H2((−π

2 ,
π
2 )) , (P− ⊕ P+)H

2((−π
2 ,

π
2 )) = H2((−π

2 ,
π
2 a))⊕H2((π2 a,

π
2 )) .

Using the antisymmetric nature of the projections P0, P± and the boundary conditions f ∈ D(H) satisfies,
we easily find

(P−f)(−π
2 ) = 0 , (P+f)(

π
2 ) = 0 , (P0f)(±π

2 ) = 0 ,

(P−f)(
π
2 a−) = 0 , (P+f)(

π
2 a+) = 0 , (P0f)(

π
2 a±) =

f(π2 a−)− f(−π
2 a)

2
,

and

(P0f)
′(π2 )− (P0f)

′(−π
2 ) = 0 ,

(P0f)
′(π2 a+)− (P0f)

′(π2 a−) = 0 ,

(P−f ⊕ P+f)
′(π2 )− (P−f ⊕ P+f)

′(−π
2 ) =

f ′(π2 )− f ′(−π
2 )

2
,

(P−f ⊕ P+f)
′(π2a+)− (P−f ⊕ P+f)

′(π2 a−) =
f ′(π2 )− f ′(−π

2 )

2
.

Hence Θf ∈ D(H∗).

Verifying the identity (fψ)′′(x) = (Θf ′′)(x) for x ∈ (−π
2 ,

π
2a) ∪ (π2 a,

π
2 ) is straightforward.

This concludes the proof of Theorem 9.3.

9.8 Some open problems

Let us conclude this paper by suggesting some further research questions related to problems of the type (9.2).
The list is certainly not complete and we just added those questions which are most directly connected with
our present contribution.

• If a ∈ Q, do the eigenfunctions together with the generalised eigenfunctions form a conditional basis
(cf Remark 9.2)?

• Is there a direct operator-theoretic argument for the fact that the spectrum of the operator associated
with (9.2) is always real? This has been shown in [16] using results about the zero set of trigonometric
series.

• Is it possible to derive related results about the spectrum and the multiplicity for more general jump
distributions than those considered in the present work?

• If one replaces the operator − d2

dx2 by −σ2

2
d2

dx2 − b ddx in (−π
2 ,

π
2 ), then it is shown probabilistically partially

in [12] and fully in [1] that the spectral gap, denoted by γ1(σ, b), of the corresponding diffusion with jump
distribution δ0 is given by

γ1(σ, b) = min
{
λ
(0,π2 )
0 (σ, b), λ

(0, π4 )
0 (σ, 0)

}
.

Here we denote by λ
(0,l)
0 (σ, b) the smallest Dirichlet eigenvalue of −σ2

2
d2

dx2 −b ddx in the interval (0, l). Thus

γ1(σ, µ) =

{
2σ2 + b2

2σ2 if |b| ≤ 2
√
3σ2 ,

8σ2 otherwise .

In particular, the spectral gap stays constant once |b| is greater than 2
√
3σ2. An investigation of the

full spectrum including multiplicities and its dependence on the drift b might reveal further interesting
properties.

Finally, let us mention that the stochastic process described in (9.2) is still not fully understood probabilis-
tically; for recent developments we refer to [2].
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Abstract. On finite metric graphs we consider Laplace operators, subject to various classes of
non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties,
existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among
other things, we describe a simple way how to relate the similarity transforms between Laplacians
on certain graphs with elementary similarity transforms between matrices defining the boundary
conditions.

10.1 Introduction

The subject of differential operators on metric graphs has attracted a lot of attention in the last decades. This
topic has become popular under the name “quantum graphs”, referring to its background and applications in
quantum mechanics. Since a quantum system is described by a unitary time evolution, most of the literature
has been concerned with self-adjoint Schrödinger operators. For more details and many references, we refer to
the surveys [9, Chap. 17] and [6] together with the articles [33, 34, 35].

In other areas of physics, where a system is described by non-conservative equations of motion, it is necessary
to deal with non-self-adjoint operators. As an example, let us mention stochastic processes on metric graphs
[26, 27, 28]. Furthermore, there have been recent attempts to develop “quasi-Hermitian quantum mechanics”,
where physical observables are represented by non-self-adjoint operators T satisfying the quasi-self-adjointness
relation

T ∗ = ΘTΘ−1 (10.1)

with a bounded, boundedly invertible and positive operator Θ = G∗G. The idea goes back to the paper [43]
by nuclear physicists, where Θ is called metric, since it defines a new inner product in the underlying Hilbert
space with respect to which T becomes self-adjoint. In other words, T is similar to a self-adjoint operator via
the similarity transformation G, namely GTG−1 is self-adjoint. A consistent quantum theory can be built for
quasi-self-adjoint operators.

It is not easy to decide whether a given non-self-adjoint operator is quantum-mechanically admissible,
i.e. quasi-self-adjoint. A necessary condition for the quasi-self-adjointness of T is that its spectrum σ(T ) is
real. It was noticed that many operators commuting with an anti-unitary operator called symmetry have
the real spectrum. This observation is behind the boom of the so-called “PT-symmetric quantum mechanics”
[5, 40], which we use here as a source of interesting quasi-self-adjoint models. In this context, non-self-adjoint
operators on metric graphs were previously considered in [4, 45].

The present work is motivated by the growing interest in spectral theory on network structures and by the
fresh relevance of non-self-adjoint operators in quantum mechanics. We regard metric graphs as an intermediate
step between Sturm-Liouville operators on intervals and partial differential operators. Indeed, we shall be able
to rigorously investigate some non-trivial properties related to the spectrum and quasi-self-adjointness that one
can hardly expect to obtain in such a generality in higher dimensions.

We restrict ourselves to a simple differential operator on the graph – namely the Laplacian – but consider
arbitrary non-self-adjoint interface or boundary conditions on the graph vertices. The standard material about
Laplacians on metric graphs is collected in the forthcoming Section 10.2. In a long Section 10.3 divided into
many subsections we introduce various classes of boundary conditions for the Laplacian. The emphasis is not
put on a systematic classification of non-self-adjoint boundary conditions, but rather on a diversity motivated
by different applications and on intriguing examples with wild spectra.

Spectral theory for the Laplacians is developed in Section 10.4. There we also present an explicit integral-
type formula for the resolvent, with a proof postponed to Appendix 10.7. In Section 10.5, we apply an abstract
result of Agranovich [1] to show that the eigensystem of a non-self-adjoint Laplacian on a compact metric graph
contains a Riesz basis of subspaces.

Finally, in Section 10.6 we discover a simple way how to relate the similarity transforms between Laplacians
on graphs with elementary similarity transforms between matrices defining the boundary conditions. This main
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result enables us not only to effectively analyse the problem of quasi-self-adjointness for such graphs but it
turns out to be technically useful for self-adjoint Laplacians, too.

10.2 The Laplacian on finite metric graphs

Metric graphs are locally linear one dimensional spaces with singularities at the vertices, and one can think
roughly of a metric graph as a union of finitely many finite intervals [0, ai], with ai ∈ (0,∞), or semi-infinite
intervals [0,∞) glued together at their end points. This intuitive picture is formalised here by recalling from
[24, 25, 27] some notation and basic definitions.

10.2.1 Graph as a topological space

A graph is a 4-tuple G = (V, I,E, ∂), where V denotes the set of vertices, I the set of internal edges and E the
set of external edges, where the set E ∪ I is summed up in the notion edges. The boundary map ∂ assigns to
each internal edge i ∈ I an ordered pair of vertices ∂(i) = (∂−(i), ∂+(i)) ∈ V×V, where ∂−(i) is called its initial
vertex and ∂+(i) its terminal vertex. Each external edge e ∈ E is mapped by ∂ onto a single, its initial, vertex.
The degree deg(v) of a vertex v ∈ V is the number of edges with initial vertex v plus the number of edges with
terminal vertex v. A graph is called finite if |V|+ |I|+ |E| <∞ and a finite graph is called compact if E = ∅.

10.2.2 Graph as a metric space

A graph G is endowed with the following metric structure. Each internal edge i ∈ I is associated with an
interval [0, ai], with ai > 0, such that its initial vertex corresponds to 0 and its terminal vertex to ai. Each
external edge e ∈ E is associated to the half line [0,∞) such that ∂(e) corresponds to 0. The numbers ai are
called lengths of the internal edges i ∈ I and they are summed up into the vector a = {ai}i∈I ∈ (0,∞)|I|. The
2-tuple consisting of a finite graph endowed with a metric structure is called a metric graph (G, a). The metric
on (G, a) is defined via minimal path lengths.

10.2.3 Graph as a measure space

Equipping each edge of the metric graph with the one-dimensional Lebesgue measure, we obtain a measure
space. Any function ψ : (G, a) → C can be written as

ψ(xj) = ψj(x), where ψj : Ij → C,

with

Ij =

{
[0, aj ], if j ∈ I,

[0,∞), if j ∈ E.

Occasionally we write also ψj(x) = ψj(xj). One defines

∫

G

ψ :=
∑

i∈I

∫ ai

0

ψ(xi) dxi +
∑

e∈E

∫ ∞

0

ψ(xe) dxe,

where dxi and dxe refers to integration with respect to the Lebesgue measure on the intervals [0, ai] and [0,∞),
respectively.

10.2.4 Graph as a Hilbert space

Given a finite metric graph (G, a) one considers the Hilbert space

H ≡ H(E, I, a) = HE ⊕HI, HE =
⊕

e∈E

He, HI =
⊕

i∈I

Hi,

where Hj = L2(Ij ;C). Hence, the scalar product in H is given by

〈ψ, ϕ〉 =
∫

G

ψϕ.
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10.2.5 Graph as an energy space

Denote by Wj , j ∈ E∪I the set of all functions ψj ∈ Hj which are absolutely continuous with square integrable
derivative ψ′

j , and set

W =
⊕

j∈E∪I

Wj . (10.2)

With the scalar product defined by
〈ψ, ϕ〉W := 〈ψ′, ϕ′〉+ 〈ψ, ϕ〉

the space W becomes a Hilbert space.
By Dj with j ∈ E ∪ I denote the set of all ψj ∈ Hj such that ψj and its derivative ψ′

j are absolutely

continuous and its second derivative ψ′′
j is square integrable. Let D0

j denote the set of all elements ψj ∈ Dj

with

ψj(0) = 0, ψ′(0) = 0, for j ∈ E,

ψj(0) = 0, ψ′(0) = 0, ψj(aj) = 0, ψ′(aj) = 0, for j ∈ I.

The sets

D =
⊕

j∈E∪I

Dj and D0 =
⊕

j∈E∪I

D0
j

together with the scalar product defined by

〈ψ, ϕ〉D := 〈ψ′′, ϕ′′〉+ 〈ψ, ϕ〉W
become Hilbert spaces, such that D0 ⊂ D is closed.

10.2.6 Graph as a Laplacian

Let ∆ be the differential operator

(∆ψ)j (x) =
d2

dx2
ψj(x), j ∈ E ∪ I, x ∈ Ij ,

with domainD, and ∆0 its restriction on the domainD0. It is known that the operator ∆0 is a closed symmetric
operator with deficiency indices (d, d), where

d := |E|+ 2|I|, (10.3)

and its Hilbert space adjoint is (∆0)∗ = ∆; see, e.g., [9, Sec. 4.8].

Any closed extension −∆̃ of −∆0 satisfying

∆0 ⊂ ∆̃ ⊂ ∆ (10.4)

will be called the Laplacian on (G, a). Self-adjoint Laplacians on graphs are well studied. The aim of this paper
is to discuss extensions of −∆0 which are not necessarily self-adjoint.

The extensions ∆̃ of ∆0 with (10.4) can be discussed in terms of boundary or matching conditions imposed
at the endpoints of the edges. For this purpose one defines for ψ ∈ D the vectors of boundary values

ψ =



{ψe(0)}e∈E

{ψi(0)}i∈I

{ψi(ai)}i∈I


 and ψ′ =




{ψ′
e(0)}e∈E

{ψ′
i(0)}i∈I

{−ψ′
i(ai)}i∈I


 .

One introduces the auxiliary Hilbert space

K ≡ K(E, I) = KE ⊕K
−
I
⊕K

+
I

with KE = C|E| and K
(±)
I

= C|I|. One sets

[ψ] := ψ ⊕ ψ′ ∈ K⊕K.

Any extension ∆̃ with (10.4) can be associated with a subspace M ⊂ K2 := K⊕K such that ∆̃ = ∆(M) is
the restriction of ∆ to the domain

D(∆(M)) = {ψ ∈ D | [ψ] ∈ M}.
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10.3 Classification of boundary conditions

There are various ways to parametrise the subspaces M ⊂ K2. In the following some parametrisations are
discussed starting with self-adjoint boundary conditions and then transferring the methods to non-self-adjoint
ones.

Given linear maps A,B in K, one defines

(A, B) : K2 → K, (A, B)(χ1 ⊕ χ2) = Aχ1 +Bχ2 for χ1, χ2 ∈ K,

and sets
M(A,B) := N(A, B).

If dimM ≥ d there are appropriate operators A,B acting in K such that M = M(A,B), and then an equivalent
description of D(∆(M)) is that it contains all functions ψ ∈ D satisfying the linear boundary conditions

Aψ +Bψ′ = 0. (10.5)

In this case one also writes equivalently ∆(M) = ∆(A,B). Note that the parametrisation by the matrices A
and B is not unique. Indeed, operators ∆(A,B) and ∆(A′, B′) agree if and only if the corresponding spaces
M(A,B) and M(A′, B′) agree. Therefore we introduce

Definition 10.1. Boundary conditions defined byA,B and A′, B′ are called equivalent ifM(A,B) = M(A′, B′).

Notice that the boundary conditions are equivalent if and only if there exists an invertible operator C in K

such that simultaneously

A′ = CA and B′ = CB.

10.3.1 Self-adjoint boundary conditions

Recall that any self-adjoint realisation of ∆ can be parametrised as ∆(A,B), where the matrices A and B
satisfy AB∗ = BA∗ and dimM(A,B) = d, where d is defined in (10.3); see, e.g., [23, Lem. 2.2 and below it].

It is a classical result that there is a one-to-one correspondence between unitary operators U in K and
self-adjoint realisations of ∆. More precisely, any self-adjoint extension of ∆0 can be defined by the boundary
conditions

− 1

2
(U − 1)ψ +

1

2ik
(U + 1)ψ′ = 0, (10.6)

for k > 0; see, e.g., [17, Sec. 3].
The link between the parametrisation by unitary operators U and the one by matrices A and B in (10.5)

is given by a Cayley transform. For A,B defining a self-adjoint Laplacian, consider, for k ∈ C \ {0} such that
A+ ikB is invertible, the transform

S(k,A,B) := − (A+ ikB)
−1

(A− ikB) . (10.7)

For k > 0 the operatorS(k,A,B) is unitary [23, Thm. 2.1] and one can choose U = S(k,A,B) in (10.6), cf [24,
p. 209]. For self-adjoint Laplacians on graphs with I = ∅ the matrix S(A,B, k) admits also the interpretation
as the scattering matrix for a certain scattering pair [25].

10.3.2 Regular boundary conditions

The transform S(k,A,B) can be defined for non-self-adjoint boundary conditions as well whenever A+ ikB is
invertible, and then S(k,A,B) is independent of the concrete choice of A,B representing M = M(A,B). So,
whenever A+ ikB is invertible for k ∈ C \ {0} one re-obtains from S(k,A,B) equivalent boundary conditions
of the form (10.5) by

AS := −1

2
(S(k,A,B)− 1) and BS :=

1

2ik
(S(k,A,B) + 1) . (10.8)

This follows from the equalities

(A+ ikB)AS = A and (A+ ikB)BS = B

used in [27, proof of Lem. 3.4]. A necessary condition for the definition of S(k,A,B) is that dimM(A,B) = d,
but this is not sufficient. Actually, since det(A+ ikB) is a polynomial in k of degree at the most d, A+ ikB is
not invertible either for every k ∈ C or only for finitely many values k ∈ C.

Definition 10.2. Boundary conditions (10.5) defined by A,B with dimM(A,B) = d such that A + ikB is
invertible for some k ∈ C are called regular boundary conditions.
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10.3.3 Other notions of regular boundary conditions

The reader is warned that there exist further parametrisations and classifications of boundary conditions for the
second derivative operator acting on intervals. For instance, the classification given in [13, Sec. XIX.4] is based
on the structure of certain determinants related to the secular equation, and this gives rise to an alternative
regularity assumption [13, Hypothesis XIX.4.1] on boundary conditions. The aim in [13] is to define spectral
operators and the regularity hypothesis goes back to [7, 8].

That the regularity hypothesis formulated in [13, Hypothesis XIX.4.1] does not agree with the notion
of regular boundary conditions introduced in our Definition 10.2 follows already from [13, Ex. XIX.6(d)],
which is discussed here as Example 10.6 below. The boundary conditions given in [13, Ex. XIX.6(d)] are
called intermediate boundary conditions and are an example of a class of boundary conditions not satisfying
the regularity hypothesis [13, Hypothesis XIX.4.1], see also [8, p.383], whereas they are regular in the sense
introduced here.

In general it seems difficult to make precise statement on the secular equation for – in our sense – regular
boundary conditions. More generally, when considering non-compact graphs, i.e. E 6= ∅, there is no straight-
forward generalisation of the regularity hypothesis of [13, Sec. XIX.4] since it is dealing with operators with
discrete spectrum.

10.3.4 Irregular boundary conditions

Boundary conditions defined by A,B with dimM(A,B) = d which are not regular will be called irregular. We
do not include the situations dimM(A,B) 6= d into our notion of irregular boundary conditions, since they
are not spectrally interesting. Indeed, it follows from Proposition 10.5 below that σ(−∆(A,B)) = C whenever
dimM(A,B) 6= d.

The class of regular boundary conditions covers many relevant and interesting cases, whereas the irregular
boundary conditions seem to be rather pathological. Indeed, the latter are typically associated with operators
that have empty resolvent set or empty spectrum, even if dimM(A,B) = d holds.

Example 10.1 (Indefinite Laplacian, no resolvent set). Consider the boundary conditions (10.5) given by

A =

(
1 −1
0 0

)
and B =

(
0 0
1 −1

)

for the graph G = (V, ∂,E) consisting of two external edges E = {e1, e2} and one vertex ∂(e1) = ∂(e2).
Identifying this graph with the real line, the operator −∆(A,B) corresponds to the indefinite operator

− sign(x)
d

dx
sign(x)

d

dx
on L2(R)

with its natural domain {ψ ∈ W 1,2(R) | (ψ′ sign)′ ∈ L2(R)}. This operator is studied within the framework of
Krein space theory in [36, Sec. 5].

This example demonstrates in particular that dimM(A,B) = d is a necessary but not a sufficient condition
for A,B to define regular boundary conditions. Indeed, dimM(A,B) = 2 = d in this example, while A+ ikB is
invertible for no complex k. (As a consequence, the statement in [27, observation below Ass. 2.1] is not correct
in general, but it holds for the boundary conditions defining m-accretive operators studied there.)

Note that the equation det(A + ikB) = 0 with ℑk > 0 is the secular equation for the spectral problem
associated with −∆(A,B), cf Subsection 10.4.1 below. Therefore the spectrum of the operator described in
the present example is entire C. This fact will be explained also in Subsection 10.6.4 by means of a similarity
transform.

Example 10.2 (Totally degenerate boundary conditions, no spectrum). This example is overtaken from [13,
Sec. XIX.6(b)]. Consider the interval [0, 1] and the irregular boundary conditions defined by

A =

[
1 0
0 0

]
and B =

[
0 0
1 0

]
.

Then dimM(A,B) = 2 = d and the boundary conditions correspond to

ψ(0) = 0 and ψ′(0) = 0,

whereas on the other endpoint no boundary conditions are imposed. By integration one can show that this
operator is boundedly invertible, and for the compact embedding D →֒ H the inverse is compact, and hence
the operator −∆(A,B) has only point spectrum. However, a direct computation shows that for these boundary
conditions there are no eigenvalues, and therefore the spectrum of −∆(A,B) is empty.
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By inspection of the previous examples, it is straightforward to identify the mechanism which is behind the
irregularity of the boundary conditions.

Proposition 10.1. Let A,B be maps in K such that dimM(A,B) = d. Then A,B define irregular boundary
conditions if and only if

NA ∩ NB 6= {0}.

Proof. If NA ∩ NB 6= {0}, then for a non-zero ψ ∈ NA ∩ NB one has (A + ikB)ψ = 0 for any k ∈ C. The
other way round, if A+ ikB is not invertible for any k ∈ C, then NA 6= {0}, since otherwise one could consider
1 + ikA−1B which is invertible for k sufficiently small. So, for non-zero ψ ∈ NA one has ikBψ = 0 for any
k ∈ C and hence ψ ∈ NB, which proves that NA ∩ NB 6= {0}.

A possible generalisation of Example 10.1 to more complex graphs is given by the following example.

Example 10.3 (A generalisation of Example 10.1). Consider a star graph with I = ∅ and subdivision of the
external edges E = E+∪̇E− together with the boundary conditions defined by

A =




1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 0



, B =




0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 · · · 1 · · · −1 −1



,

where in the last row of B for each edge in E+ stands a +1 and for each edge in E− a −1. To paraphrase, these
boundary conditions guarantee that functions are continuous at the central vertex and that the sum of the
outward directed derivatives evaluated at the positive incident edges equals the sum of the outward directed
derivatives evaluated at the negative incident edges. These boundary conditions define an operator which is
self-adjoint in a certain Krein space [19, Sec. 4]. The kernel of A is spanned by the vector w with (w)i = 1, for
all i ∈ {1, . . . , |E|}. Hence, by Proposition 10.1, for |E+| = |E−| the boundary conditions defined by A,B are
irregular and for |E+| 6= |E−| they are regular. For example, in the case |E+| = 2 and |E−| = 1 one obtains the
k-independent “scattering matrix”

S(k,A,B) =



1 2 −2
2 1 −2
2 2 −3


 .

Remark 10.1. Let the boundary conditions be local, i.e.

M =
⊕

v∈V

Mv,

where Mv are subspaces of K2
v, the space of boundary values associated with the endpoints of the edges

incident in the vertex v, cf [27, Def. 2.6]. Then it is a direct consequence of Proposition 10.1 that the
boundary conditions are regular if and only if the boundary conditions at each vertex are regular, and irregular
if at least at one vertex the boundary conditions are irregular.

10.3.5 m-sectorial boundary conditions

In [34, Corol. 5] a further way how to parametrise self-adjoint Laplacians on graphs is proposed. It is given
in terms of an orthogonal projection P acting in K and a self-adjoint operator L acting in the subspace NP .
For any self-adjoint Laplacian one has −∆(A,B) = −∆(A′, B′) with A′ = L + P and B′ = P⊥, where using
RB∗ = (NB)⊥ one sets

L = (B |RB∗)
−1
AP⊥

and P denotes the orthogonal projector onto NB ⊂ K and P⊥ = 1 − P is the complementary projector.
This parametrisation is unique in contrast to that using matrices A,B, and additionally it is convenient when
considering forms associated with operators, cf [34, Thms. 6 and 9].
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Inspired by the self-adjoint situation, for a given projector P and a not necessarily self-adjoint operator L
acting in NP , i.e. L = P⊥LP⊥, let us consider −∆(M) with M = M(L+P, P⊥). According to [18, Thm. 3.1],
this operator is m-sectorial and associated with the closed sectorial form δP,L defined by

δP,L[ψ] =

∫

G

|ψ′|2 − 〈LP⊥ψ, P⊥ψ〉K,

ψ ∈ D(δP,L) = {ϕ ∈ W | Pϕ = 0},
(10.9)

where W denotes the Sobolev space (10.2).
The question when M(A,B) with dimM(A,B) = d admits an equivalent parametrisation in terms of a

projector P and an operator L acting in NP such that M(A,B) = M(L+ P, P⊥) is discussed in [18]. It turns
out that this is possible if and only if −∆(A,B) is m-sectorial. Furthermore, if M(A,B) does not admit such
a parametrisation, then the numerical range of −∆(A,B) is entire C, see [18, Lem. 4.3]. Therefore, here we
call boundary conditions defined by P and L as described above m-sectorial. Descriptive examples of such
boundary conditions are δ-interactions with generally complex coupling parameters. Note that in order to
apply any kind of form methods one needs at least m-sectorial boundary conditions.

Example 10.4 (Complex δ-interaction). Consider a graph with I = ∅ and |E| ≥ 2. Assume that the boundary
conditions are defined up to equivalence by

A =




1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
−γ 0 0 · · · 0 0



, B =




0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 1 1 · · · 1 1



,

where γ ∈ C. For real γ one can represent the boundary conditions equivalently by the m-sectorial boundary
conditions defined by P = 1− P⊥, where P⊥ is the rank one projector onto (NB)⊥, and L = − γ

|E|P
⊥, cf [34,

Sec. 3.2.1]. A direct calculation shows that this carries over to the case of complex coupling parameters γ. The
operator −∆(A,B) is associated with the quadratic form defined by

δP,L[ψ] =

∫

G

|ψ′|2 + γ

|E| |ψ|
2, ψ ∈ D(δP,L) = {ψ ∈ W | Pψ = 0}.

It is proved in [18] that the boundary conditions of the form (10.5) defined by matrices A,B can be
substituted by an equivalent parametrisation using m-sectorial boundary conditions if and only if

dimM(A,B) = d and QAP⊥ = 0, (10.10)

where Q is the orthogonal projector onto (RB)⊥ and P⊥ the orthogonal projector onto (NB)⊥. This is due to
the fact that the evaluation at the vertices of the derivatives cancel out in the corresponding quadratic form if
and only if QAP⊥ = 0.

Note that L + P + ikP⊥ has a block diagonal form with respect to the decomposition of K into RP and
RP⊥. Thus L + P + ikP⊥ is invertible for |k| > ‖L‖. Consequently, the parametrisation by the transform
S(k, L+P, P⊥) is admissible, whereas the converse is not true: from A+ ikB invertible, in general, it does not
follow that there are equivalent m-sectorial boundary conditions. This is illustrated by the following examples.

Example 10.5 (From Kirchhoff to wild aperiodic boundary conditions). Let G = (V, ∂,E) be a graph consisting
of two external edges E = {e1, e2} and one vertex ∂(e1) = ∂(e2). Consider the boundary conditions defined by

Aτ =

(
1 −eiτ
0 0

)
and Bτ =

(
0 0
1 e−iτ

)
,

for τ ∈ [0, π/2]. Identifying the graph with the real line and the vertex with zero, the boundary conditions
correspond to

ψ(0+) = eiτψ(0−) and ψ′(0+) = e−iτψ′(0−).

This example is included in the study of PT-symmetric point interactions in [2] and was further investigated
in [3] and [44, Chap. 2.5].

The matrix Aτ + ikBτ is invertible for τ ∈ [0, π/2) and k 6= 0, hence Aτ , Bτ define regular boundary
conditions for τ ∈ [0, π/2). For the Cayley transform

S(Aτ , Bτ , k) = −(Aτ + ikBτ )
−1(Aτ − ikBτ ), τ ∈ [0, π/2),
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an explicit computation yields the k-independent matrix

S(Aτ , Bτ , k) =
1

cos(τ)

[
i sin(τ) 1

1 −i sin(τ)

]
.

The operatorS(Aτ , Bτ , k) is unitary (with eigenvalues +1 and −1) only for τ = 0, where it defines the so-called
standard or Kirchhoff boundary conditions.

On the other hand, for τ = π/2 one has det(Aπ/2 + ikBπ/2) = 0 for any k ∈ C, and therefore Aπ/2, Bπ/2
define irregular boundary conditions. Furthermore one has σp(−∆(Aπ/2, Bπ/2)) = C\[0,∞), because of (10.15)
below. This reproduces the results obtained in [3, Thm. 2] and [44, Chap. 2.5].

Explicit computation yields

RBτ = span

{(
0
1

)}
, (RBτ )

⊥ = span

{(
1
0

)}
,

NBτ = span

{(
1

−eiτ
)}

, (NBτ )
⊥ = span

{(
1
eiτ

)}
,

and therefore, with Qτ being the orthogonal projector onto (RBτ )
⊥ and P⊥

τ being the orthogonal projector
onto (NBτ )

⊥, one has

QτAτP
⊥
τ =

1

2

(
1− e2iτ e−iτ − eiτ

0 0

)
6= 0, for τ ∈ (0, π/2].

The criterion in (10.10) implies that for τ ∈ (0, π/2] there is no equivalent representation of Aτ , Bτ by m-
sectorial boundary conditions. This can be illustrated also by considering the quadratic form defined by the
operator −∆(Aτ , Bτ ) which by integrating by parts and inserting the boundary conditions simplifies to become

〈−∆(Aτ , Bτ )ψ, ψ〉 =
∫

G

|ψ′|2 + (1− e2iτ )ψ2(0)ψ′
2(0)

for every ψ ∈ D(−∆(Aτ , Bτ )). In particular, the derivative term cannot be avoided, and the numerical range
is entire C for all τ ∈ (0, π/2].

Despite of the wild numerical range properties, in Section 10.6.4 we shall show that for τ ∈ [0, π/2) the
operator −∆(Aτ , Bτ ) is similar to the self-adjoint Laplacian −∆(A0, B0) , and hence its spectrum is [0,∞).
Such a similarity relation is of course impossible for τ = π/2 because the spectrum is entire C.

The analogous operator on the graph with two internal edges of the same length defined by boundary
conditions Aτ , Bτ at the central vertex and Dirichlet boundary conditions at the endpoints exhibit similar
pathological behaviours, see [44, Chap. 2.5].

Example 10.6 (Intermediate boundary conditions). Consider the interval [0, 1] and the regular boundary
conditions defined by

A =

[
1 0
0 1

]
and B =

[
0 0
−1 0

]
,

i.e. ψ(0) = 0 and ψ(1)− ψ′(0) = 0. Then dimM(A,B) = 2 and

QAP⊥ =

[
1 0
0 0

]
6= 0.

Hence the boundary conditions are not m-sectorial. One has

〈−∆(A,B)ψ, ψ〉 =
∫ 1

0

|ψ′|2 − ψ′(0)ψ′(1)

for every ψ ∈ D(−∆(A,B)). This example can be found in [8, p.383] as well as in [13, Ex. XIX.6(d)], where
the boundary conditions are called intermediate.

Using the methods developed in the forthcoming Section 10.4 one can show that the spectrum of −∆(A,B)
consists only of eigenvalues of geometric multiplicity one, where each eigenvalue is a solution of sin(k) = k,
k ∈ C.
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10.3.6 Adjoint boundary conditions

Consider for M ⊂ K2 the possibly non-self-adjoint operator ∆(M). Since ∆0 ⊂ ∆(M) ⊂ ∆ it follows for the
adjoint operator that ∆(M)∗ = ∆(M∗) for an appropriate subspace M∗ ⊂ K2, and hence also the adjoint
operator can be described by means of boundary conditions.

Proposition 10.2. Let M ⊂ K2, then ∆(M)∗ = ∆(M∗) with

M∗ = (JM)
⊥
, where J =

[
0 1K

−1K 0

]

defines a map in K2.

Proof. By definition, the adjoint of ∆(M) in the Hilbert space H is the operator defined on

D(∆(M)∗) = {ψ ∈ H | ∃ϕ ∈ H, ∀η ∈ D(∆(M)), 〈ψ,∆(M)η〉 = 〈ϕ, η〉} ,

by ∆(M)∗ψ = ϕ. It follows from (10.4) that ∆0 ⊂ ∆(M)∗ ⊂ ∆, and hence ∆(M)∗ is also a realisation of ∆
defined by means of boundary conditions. Consequently, ∆(M)∗ψ = ∆ψ and D0 ⊂ D(∆(M)∗) ⊂ D. It remains
to determine the domain of ∆(M)∗ by specifying the boundary conditions. An integration by parts yields

〈ψ,∆(M)η〉 − 〈∆ψ, η〉 = 〈J [ψ], [η]〉K2 (10.11)

for every η ∈ D(∆(M)) and ψ ∈ D. Define

[·]M : D(∆(M)) → K2, [η]M = [η],

and observe that the range of [·]M is M, and that the boundary term (10.11) vanishes identically for all ψ ∈
D(∆(M∗)). Hence ∆(M∗) ⊂ ∆(M)∗. Noticing that the boundary term in (10.11) vanishes for all η ∈ D(∆(M))
if and only if J [ψ] ⊥ M and using that J is unitary, we have [ψ] ⊥ JM for ψ ∈ D(∆(M)∗). Consequently,
∆(M)∗ ⊂ ∆(M∗), which proves the claim.

Corollary 10.1. Let M ∈ K2, then dimM+ dimM∗ = 2d.

Proof. As J is unitary one has dimM = dim JM, from which the claim follows.

10.3.7 Adjoints for regular boundary conditions

Searching for boundary conditions that define Laplacians with non-empty resolvent set, one needs by the
forthcoming Proposition 10.5 the condition dimM = d, and therefore this case is of particular interest. For
regular boundary conditions the parametrisation in terms of S(k,A,B) is convenient for this purpose.

Proposition 10.3. Let A,B be such that dimM(A,B) = d and A + ikB is invertible for the number k 6= 0.
Then an equivalent parametrisation of ∆(A,B) is given by

AS := −1

2
(S(k,A,B)− 1) and BS :=

1

2ik
(S(k,A,B) + 1)

using S(k,A,B) = −(A + ikB)−1(A − ikB), and the adjoint operator ∆(M)∗ = ∆(M∗) is defined by M∗ =
M(A′, B′), where

A′ := −1

2
(S(k,A,B)∗ − 1) and B′ :=

1

−2ik
(S(k,A,B)∗ + 1) .

Proof. The fact that AS, BS define equivalent boundary conditions has been discussed already in Subsec-
tion 10.3.2.

Let us first prove that dimM(A′, B′) = d for the operators A′, B′ given in the proposition. Assume that
dimM(A′, B′) > d. Then

M(A′, B′)⊥ = R

[
(A′)∗

(B′)∗

]
and dimM(A′, B′)⊥ < d.

Therefore,

N

[
(A′)∗

(B′)∗

]
= N(A′)∗ ∩ N(B′)∗ 6= {0},



158 I Toy models

cf [27, Ass. 2.1 and below]. Note that

A′ = A∗
S

and B′ = B∗
S
,

and hence NAS ∩NBS 6= {0}, which implies det(AS + ikBS) = 0 for all k ∈ C. This is a contradiction to the
assumption that A,B define regular boundary conditions. Hence dimM(A′, B′) = d.

Now one shows that M∗ = M(A′, B′), where M∗ is given in Proposition 10.2. By the equivalence of
boundary conditions, one has M(A,B) = M(AS, BS). Note that JM(AS, BS) = M(BS,−AS). Hence

(JM(AS, BS))
⊥ = R

[
B∗

S

−A∗
S

]
and M(A′, B′)⊥ = R

[
(A′)∗

(B′)∗

]
.

Observe that
〈[

B∗
S
ψ

−A∗
S
ψ

]
,

[
(A′)∗ϕ
(B′)∗ϕ

]〉

K2

= − 1

4ik

〈
ψ,
(
S2 − 1

)
ϕ
〉
K
+

1

4ik

〈
ψ,
(
S2 − 1

)
ϕ
〉
K

= 0

for all ψ, ϕ ∈ K, where S = S(k,A,B). Hence (JM(AS, BS))
⊥ ⊥ M(A′, B′)⊥, and since both spaces have

dimension equal to d one obtains (JM(AS, BS))
⊥ = M(A′, B′). Applying Proposition 10.2 yields the claim.

As a consequence, one obtains for m-sectorial operators the following

Corollary 10.2. Let P be an orthogonal projector in K, P⊥ = 1− P and L and operator with L = P⊥LP⊥,
then

∆(P + L, P⊥)∗ = ∆(P + L∗, P⊥).

10.3.8 Approximation of boundary conditions

One can ask which boundary conditions are “close to each other”, and for answering this question properly one
has to decide in which topology it is raised. Here, boundary conditions with the same dimension are compared
to each other. Let us thus consider the set of subspaces M ⊂ K2 with dimM = n; this is the Grassmann
manifold Gr(2d, n). For a subspace M ⊂ K2 denote by PM the orthogonal projector in K2 to M. A metric on
Gr(2d, n) is defined by

dn(M1,M2) := ‖PM1 − PM2‖.

Lemma 10.1. Let M ⊂ K2 with dimM = n, and let Ml ⊂ K2, l ∈ N, be a sequence of n-dimensional subspaces
with

lim
l→∞

dn(Ml,M) = 0.

Then the sequence of operators −∆(Ml) converges in the strong graph limit to −∆(M).

Proof. Denote by ΓM ⊂ H2 the graph of the operator −∆(M) for arbitrary M ⊂ K2. In order to prove
convergence of −∆(Ml) to −∆(M) in the strong graph limit (see [42, Sec. VIII.7, p. 293] for the definition),
one has to prove two items:

1. For all (ψl,−∆(Ml)ψl) ∈ H2, with ψl ∈ ∆(Ml) such that ψl → ξ and −∆(Ml)ψl → η, it follows that
(ξ, η) ∈ ΓM. This means ξ ∈ D(−∆(M)) and η = −∆(M)ξ.

2. For all (ψ,−∆(M)ψ) ∈ ΓM there exists a sequence {ψl}l∈N such that (ψl,−∆(Ml)ψl) ∈ ΓMl
and ψl → ψ,

−∆(Ml)ψl → −∆(M)ψ.

Note that −∆(M) is an extension of finite rank of −∆0 for any M ⊂ K2. In particular, D0 ⊂ D is a closed
subspace and the quotient space D/D0 can be identified with the space of boundary values K2. Hence one has

D = D0+̇K2, (10.12)

where +̇ denotes the direct sum. Let ψl → ξ and −∆(Ml)ψl → η. Since −∆ is closed and −∆(Ml)ψl = −∆ψl
it follows that η = −ξ′′. By (10.12) one has a decomposition

ξ = ξ0+̇[ξ] and ψl = ψ0
l +̇[ψl] with ξ0, ψ0

l ∈ D0.

By assumption one has ψl → ξ in the graph norm which is equivalent to the Sobolev norm in the Hilbert space
D. Hence, [ψl] → [ξ] and therefore ξ ∈ D(−∆(M)) which proves (1).
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Let ψ ∈ D(−∆(M)). Then by (10.12) one has the decomposition ψ = ψ0+̇[ψ]. By assumption there is a
sequence [ψl] → [ψ], and

ψl = ψ0+̇[ψl] ∈ D(−∆(Ml)) such that ψl → ψ and ψ′′
l → ψ′′.

This proves (2) and finishes the proof.

Theorem 10.1. Let A,B define irregular boundary conditions. Then there is a sequence of regular boundary
conditions Al, Bl, l ∈ N, such that −∆(Al, Bl) converges in the strong graph limit to −∆(A,B).

Proof. For M(A,B) ⊂ K2 with dimM(A,B) = d one has by [27, Lem. 3.2]

PM(A,B)⊥ =

(
A∗

B∗

)
(AA∗ +BB∗)−1(A, B). (10.13)

Denote by P the orthogonal projector in K onto NB. Then A and Bǫ with

Bǫ := B + ǫP

define regular boundary conditions for ǫ > 0 because Bǫ is invertible. Note that by [27, Lem. 3.2] AA∗+BǫB∗
ǫ ,

ǫ ≥ 0, is invertible since dimM(A,Bǫ) = d, and therefore

lim
ǫ→0

(AA∗ +BǫB
∗
ǫ )

−1 = (AA∗ +BB∗)−1.

Using that PM(A,Bǫ) = 1− PM(A,B)⊥ , ǫ ≥ 0, and (10.13) one can prove then that

lim
ǫ→0

‖PM(A,B) − PM(A,Bǫ)‖ = 0,

where the norm is the operator norm, but since in the finite dimensional Hilbert space K2 all norms are
equivalent it is also sufficient to prove component wise convergence. Applying Lemma 10.1 to −∆(A,B) and
to −∆(A,B1/l), l ∈ N, proves the claim.

One has to emphasise that convergence in the strong graph limit does not imply convergence of spectra.
Consider for example the operators−∆(Aτ , Bτ ) defined in Example 10.5. These operators converge for τ → π/2
in the strong graph limit to the operator −∆(Aπ/2, Bπ/2), which has empty resolvent set, whereas −∆(Aτ , Bτ )
for τ 6= π/2 are similar to the self-adjoint Laplacian on the real line with spectrum [0,∞). The strong graph
convergence for this special example was studied previously in [44, Prop. 2.7].

The approximation of regular boundary conditions in the norm resolvent sense will be established in Sub-
section 10.4.6.

10.3.9 J-self-adjointness

Let J : H → H be an anti-linear bounded operator with bounded inverse. The operator ∆(M) is called J-self-
adjoint if

∆(M)∗ = J−1∆(M)J.

If J is in addition involutive and isometric, then our definition agrees with the standard notion from [14,
Sec. III.5]. The usage of the J-self-adjointness was suggested in [11] as a generalised concept of PT-symmetry.
It was also pointed out there that the residual spectrum of J-self-adjoint operators is empty. The latter can be
easily seen as follows, also for our broader definition. The equality ∆(M)∗ −λ = J−1

(
∆(M)− λ

)
J implies the

symmetry relation σp(∆(M)) = σp(∆(M)∗). Using the general characterisation of the residual spectrum

σr(−∆(M)) = {λ /∈ σp(−∆(M)) | λ ∈ σp(−∆(M)∗)}, (10.14)

it thus follows that the residual spectrum of ∆(M) is empty.
Let us further assume that J commutes with the maximal operator ∆, then J induces by

J : K → K, ψ 7→ Jψ

an anti-linear operator in K, because the map ψ 7→ ψ is surjective as a map from W to K.

Proposition 10.4. Let dimM = d and M = M(A,B) be such that A − κB is invertible for a κ > 0. Then
∆(M)∗ is J-self-adjoint if and only if S(iκ, A,B) is J-self-adjoint, i.e.,

S(iκ, A,B)∗ = J
−1

S(iκ, A,B)J.



160 I Toy models

Proof. It is sufficient to prove that J : D(∆(M)∗) → D(∆(M)) is bijective. This is equivalent to [J]M∗ = M,
where ∆(M)∗ = ∆(M∗) and

[J] : K2 → K
2, ψ ⊕ ψ′ 7→ Jψ ⊕ (Jψ)

′
.

Let [ψ] = ψ ⊕ ψ′ ∈ M∗, then by Proposition 10.3

−1

2
(S(iκ, A,B)∗ − 1)ψ − 1

2κ
(S(iκ, A,B)∗ + 1)ψ′ = 0,

and [J][ψ] ∈ M if and only if

−1

2
(S(iκ, A,B)− 1) Jψ − 1

2κ
(S(iκ, A,B) + 1) (Jψ)

′
= 0.

After applying J
−1, this is equivalent to

−1

2

(
J
−1

S(iκ, A,B)J− 1
)
ψ − 1

2κ

(
J
−1

S(iκ, A,B)J+ 1
)
ψ′ = 0.

Therefore [J]M∗ = M if and only if S(iκ, A,B)∗ = J
−1

S(iκ, A,B)J.

An example for J being in addition involutive and isometric is the operator of complex conjugation

T : H → H, ψ 7→ ψ.

In quantum mechanics, T has the physical meaning of the time-reversion operator. We remark that the time-
reversion in quantum mechanics can be more complicated in spinorial models and it can be non-involutive,
cf for instance [22], where Pauli equation is discussed. The origin of non-involutivity is the non-trivial action
of J on the spinor components. The similar structure of J can be considered in the graph case as well, e.g. the
composition of T and permutation of edges.

Corollary 10.3. Let dimM = d and M = M(A,B) such that A− κB is invertible for a κ > 0. Then ∆(M)∗

is T-self-adjoint if and only if

S(iκ, A,B)∗ = S(iκ, A,B).

Example 10.7 (Complex δ-interactions are T-self-adjoint). Consider a finite metric graph and at each vertex
v ∈ V impose complex δ-interactions with coupling constant γv ∈ C. These are m-sectorial boundary conditions
which can be parametrised at each vertex v ∈ V by a projector Pv and a rank one operator Lv = − γv

deg(v)P
⊥
v ,

cf Example 10.4. Hence, at each vertex

S(k,Av, Bv) =−
(
Lv + Pv + ikP⊥

v

)−1 (
Lv + Pv − ikP⊥

v

)

=

(
− γv
deg(v)

+ ik

)−1(
γv

deg(v)
+ ik

)
P⊥
v + Pv.

Consequently,

S(iκ, Av, Bv)
∗ = S(iκ, Av, Bv),

for all κ > 0 such that γv
deg(v) + κ 6= 0. Since

S(iκ, A,B) =
⊕

v∈V
S(iκ, Av, Bv),

where

A =
⊕

v∈V
Av and B =

⊕

v∈V
Bv,

the operator −∆(A,B) defined by δ-interactions at each vertex is T-self-adjoint for any complex coupling
parameters, whereas it is self-adjoint only for real coupling parameters, cf [34, Sec. 3.2.1].

10.4 General spectral properties

In this section we collect some basic facts about the spectrum of the Laplacians on metric graphs.
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10.4.1 Non-zero eigenvalues

A fundamental system of the equation −ψ′′
k − k2ψk = 0 with k 6= 0 is given by the functions eikx and e−ikx.

For ℑk > 0 only the first of the mentioned functions is square integrable on the half line [0,∞) and hence on
the external edges. Consequently, an Ansatz for an eigenfunction corresponding to an eigenvalue k2 satisfying
ℑk > 0 is to consider

ψk(xj) =

{
sj(k)e

ikxj , j ∈ E,

αj(k)e
ikxj + βj(k)e

−ikxj , j ∈ I.

The function ψk has the traces

ψk = X (k; a)



{sj(k)}j∈E

{αj(k)}j∈I

{βj(k)}j∈I


 , ψ′

k = ik · Y (k; a)



{sj(k)}j∈E

{αj(k)}j∈I

{βj(k)}j∈I


 ,

where

X (k; a) =



1 0 0
0 1 1

0 eika e−ika


 and Y (k; a) =



1 0 0
0 1 −1

0 −eika e−ika




are given with respect to the decomposition K = KE⊕K
−
I
⊕K

+
I
. Here e±ika denote (|I|×|I|)-diagonal matrices

with entries {e±ika}i,j = δi,je
±ikai .

The function ψk is an eigenfunction to the eigenvalue k2 if and only if ψk ∈ D(−∆(A,B)). This is the case
if and only if the Ansatz function ψk satisfies the boundary conditions, which are encoded in the equation

Z (k;A,B, a)



{sj(k)}j∈E

{αj(k)}j∈I

{βj(k)}j∈I


 = 0,

where

Z (k;A,B, a) = AX(k; a) + ik BY (k; a).

Hence k2 with ℑk > 0 is an eigenvalue of ∆(A,B) if and only if

detZ (k;A,B, a) = 0, (10.15)

and k2 has geometric multiplicity dimNZ (k;A,B, a).
For E = ∅ the solutions of detZ (k;A,B, a) = 0 for k > 0 are also eigenvalues, whereas for I = ∅ the

solutions of detZ (k;A,B, a) = 0 for k > 0 are not eigenvalues. In particular, for I = ∅ there are no positive
real eigenvalues since neither eikx nor e−ikx is square integrable on the half-line and therefore on the external
edges. This is illustrated by the following example.

Example 10.8 (Graph with a spectral singularity). Consider the graph consisting of only one half-line, that is
|E| = 1 and I = ∅, and impose the non-self-adjoint regular boundary conditions defined by A = −i and B = 1,
i.e. −iψ(0) + ψ′(0) = 0. Then k = 1 is a solution of det(A + ikB) = 0, but k2 = 1 is not an eigenvalue of
−∆(A,B). In [16, Ex. 3] it is shown that 1 is in the continuous spectrum, but it is a spectral singularity, which
means that the limits

lim
ǫ→0+

∫

I

[
(−∆(A,B)− λ+ ǫ)−1 − (−∆(A,B)− λ− ǫ)−1

]
dλ,

where I are some bounded real intervals, are singular in a certain sense; see [16, Def. 1] for the precise definition
and for further references on the topic. An alternative definition of spectral singularities is related to the limit
of the resolvent kernel when approaching non-isolated points in the spectrum [16, Def. 4]. This phenomenon
will be discussed further in Remark 10.6 below, after giving an explicit expression for the resolvent kernel in
Proposition 10.7.

For self-adjoint boundary conditions it is known that all solutions of (10.15) for k > 0 are eigenvalues [23,
Thm. 3.1], including the cases E 6= ∅ and I 6= ∅. However, for non-self-adjoint boundary conditions this is not
true anymore and it is difficult to study the positive real eigenvalues when E 6= ∅ and I 6= ∅. These eigenvalues
are embedded in the essential spectrum as shown below in Subsection 10.4.7.

Remark 10.2. The function k 7→ detZ (k;A,B, a) is holomorphic on the whole complex plain, hence it
either vanishes identically or its zeros form a discrete set. Consequently one has for dimM(A,B) ≥ d that
clo σp(−∆(A,B)) is either entire C or at most discrete, where clo denotes the closure in C.
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10.4.2 Eigenvalue zero

Eigenfunctions to the eigenvalue zero are piecewise affine, because a fundamental system of the equation ψ′′ = 0
is given by the constant solution and the linear solution. This gives the Ansatz

ψ0(xj) =

{
0, j ∈ E,

α0
j + β0

jxj , j ∈ I,

with traces

ψ0 = X0 (a)




0
{α0

j}j∈I

{β0
j }j∈I


 , ψ′

0 = Y0 (a)




0
{α0

j}j∈I

{β0
j }j∈I


 ,

where

X0 (a) =



0 0 0
0 1 0
0 1 a


 and Y0 (a) =



0 0 0
0 0 1

0 0 −1


 .

Consequently zero is an eigenvalue of the operator −∆(A,B) if and only if there are α0
j , β

0
j , with j ∈ I, such

that

[AX0 (a) +BY0 (a)]




0
{α0

j}j∈I

{β0
j }j∈I


 = 0

has a non-trivial solution. For E = ∅ zero is an eigenvalue if and only if

det (AX0(a) +BY0(a)) = 0,

and for I = ∅ zero cannot be an eigenvalue.

10.4.3 Operators with empty resolvent set

For non-self-adjoint Laplacians the resolvent set is not always non-empty, and one needs a certain number of
boundary conditions to define operators of which the spectrum forms a proper subset of C.

Proposition 10.5. Let dimM 6= d, then σ(∆(M)) = C. In particular, if dimM > d then clo σp(∆(M)) = C,
where clo denotes the closure in C.

Proof. For M with dimM > d there are maps A,B in K such that M = M(A,B). By assumption the map
(A, B) is not surjective, and therefore also

Z (k; a,A,B) = (A, B) ◦
(
X(k; a)
ik Y (k; a)

)

is not surjective for any k. Consequently detZ (k; a,A,B) = 0 for all k ∈ C which proves that C \ [0,∞) ⊂
σp(−∆(A,B)). Since the spectrum is a closed set, we conclude with σ(∆(A,B)) = C.

Let dimM < d. Then, by Corollary 10.1, dimM∗ > d, and hence σ(∆(M)∗) = C. Since σ(∆(M)) =
σ(∆(M)∗), cf [20, Thm. III.6.22], the claim follows.

As already discussed for irregular boundary conditions defined by A,B, the resolvent set can be empty even
if dimM(A,B) = d, cf Example 10.1.

10.4.4 Residual spectrum for regular boundary conditions

Following [24, Eq. (3.7)], for regular boundary conditions with A+ ikB invertible the secular equation (10.15)
can be rewritten using the identity

Z (k;A,B, a) = (A+ ikB) [1−S(k,A,B)T (k; a)]R+(k; a), (10.16)

where

T (k; a) =



0 0 0
0 0 eika

0 eika 0


 and R+(k, a) =



1 0 0
0 1 0
0 0 e−ika


 .

In particular one obtains
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Lemma 10.2. Let A,B define regular boundary conditions. Then

cloσp(−∆(A,B)) 6= C,

and λ ∈ σp(−∆(A,B)) \ [0,∞) if and only if λ ∈ σp(−∆(A,B)∗) \ [0,∞).

Proof. For A,B defining regular boundary conditions S(iκ, A,B) is defined for every κ > 0 except a finite set
and 1−S(iκ, A,B)T (iκ; a) is invertible for κ large enough and the first claim follows from (10.16).

To prove the second claim, we first notice that for A± ikB invertible one has with (10.16)

Z (k;A,B, a)

= (A+ ikB) [1−S(k,A,B)T (k; a)]S(k,A,B)S(k,A,B)−1R+(k; a).

Since Z (k;A,B, a) is holomorphic in entire C the above representation admits continuous continuation to C.
So, taking the adjoint one obtains

detZ (k;A,B, a) = det(A∗ − ikB∗) det
[
1−S(k,A,B)∗T (−k; a)

]
detR+(−k; a)

for all k ∈ C except a finite set, where one has used

det
(
[S(k,A,B)∗]−1

S(k,A,B)∗ [1− T (k; a)∗S(k,A,B)∗]
)

= det
[
1−S(k,A,B)∗T (−k; a)

]
.

Applying Proposition 10.3 and choosing the representation AS, BS given there, we arrive at

S(k,A,B)∗ = S(−k,A′, B′)

and hence

detZ (k;A,B, a) = detZ
(
−k;A′, B′, a

)

for all k ∈ C except a finite set. By continuous continuation the claim follows for all k ∈ C, and hence k2,

ℑk > 0, is an eigenvalue of −∆(A,B) if and only if k
2
is an eigenvalue of −∆(A,B)∗.

Remark 10.3. Note that for E = ∅ one can even show that λ ∈ σp(−∆(A,B)) if and only if λ ∈ σp(−∆(A,B)∗).

Remark 10.4 (Stability of eigenvalues under similarity of scattering matrices). Let (G, a) be a compact finite
metric graphs. Let A,B and A′, B′ define regular boundary conditions, and assume that there is an invertible
map G(k), k ∈ C, such that

S(k,A,B) = G(k)−1
S(k,A′, B′)G(k) and G(k)T (k; a) = T (k; a)G(k),

for all k ∈ C. Then using (10.16) and one obtains immediately

σp(−∆(A,B)) = σp(−∆(A′, B′))

and the geometric multiplicity of the eigenvalues agrees.

Combining Lemma 10.2 with the general characterisation of the residual spectrum (10.14), we obtain the
following useful property.

Proposition 10.6. Let A,B define regular boundary conditions then the residual spectrum σr(−∆(A,B)) is
contained in [0,∞). If E = ∅ or I = ∅ then σr(−∆(A,B)) = ∅.

In particular, using (10.14) and Remark 10.2 it follows that the residual spectrum forms a discrete subset
of [0,∞). That the residual spectrum is in general not empty is shown by the following example.

Example 10.9 (Graph with a residual spectrum). Consider the metric graph consisting of one internal edge
of length a and one external edge. Impose the following boundary conditions

ψ′
E(0) = 0, −iψI(0) + ψ′

I(0) = 0, ψE(0) + iψI(a)− ψ′
I(a) = 0.

These are m-sectorial boundary conditions with

P = 0 and L =



0 0 0
0 −i 0
1 0 i


 .
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A direct computation shows that

ψ(x) =

{
0, x ∈ E,

eix, x ∈ I,

is an eigenfunction of −∆(L,1) corresponding to the eigenvalue 1. By Corollary 10.2 the adjoint operator is
given by −∆(L∗,1), which is defined by the boundary conditions

ψI(a) + ψ′
E(0) = 0, iψI(0) + ψ′

I(0) = 0, iψI(a) + ψ′
I(a) = 0.

For the second condition an eigenfunction corresponding to the eigenvalue 1 would be e−ix on the internal edge
and for the square integrability 0 on the external edge, but this function does not satisfy the third boundary
condition nor the first. Therefore 1 is an eigenvalue of −∆(L,1), but not an eigenvalue of −∆(L∗,1). Using
the characterisation of the residual spectrum in (10.14), one obtains that 1 ∈ σr(−∆(L∗,1)).

10.4.5 Resolvents for regular boundary conditions

In [27, Lem. 3.10] an explicit formula for the resolvent associated with k2 ∈ ρ(−∆(A,B)) is given. In this
subsection we reproduce the result for regular boundary conditions and add a criterion for k2 being in the
resolvent set. Since the result of [27, Lem. 3.10] is given without proof (arguing that it can be proved “in the
exactly the same way” as for self-adjoint boundary conditions), we provide a short proof in the appendix (where
we also recall the notion of integral operators, cf Definition 10.3). This will make our paper self-consistent
and, moreover, clarify the need for regularity of boundary conditions in the proof.

Proposition 10.7. Let A,B define regular boundary conditions such that

A± ikB and 1−S(k,A,B)T (k; a)

are invertible for k ∈ C with ℑk > 0. Then k2 ∈ ρ(−∆(A,B)) and the resolvent
(
−∆(A,B)− k2

)−1
is

the integral operator with the (|E| + |I|) × (|E| + |I|) matrix valued integral kernel rM(x, y; k), M = M(A,B),
admitting the representation

rM(x, y; k) = r0(x, y; k) + r1M(x, y; k)

with {r0(x, y; k)}j,j′ = δj,j′
i
2k e

ik|xj−yj | and

r1M(x, y; k) =

i

2k
Φ(x, k)R+(k; a)

−1 [1−S(k,A,B)T (k; a)]
−1

S(k,A,B)R+(k; a)
−1Φ(y, k)T ,

where the matrix Φ(x, k) is given by

Φ(x, k) :=

[
φ(x, k) 0 0

0 φ+(x, k) φ−(x, k)

]

with diagonal matrices φ(x, k) = diag{eikxj}j∈E and φ±(x, k) = diag{e±ikxj}j∈I, and Φ(x, k)T denotes the
transposed of Φ(x, k).

Remark 10.5. The statement of the proposition holds also for k > 0 if E = ∅.

Remark 10.6. Note that the resolvent kernel rM(x, y, k) is still well-defined for k > 0 such that

A± ikB and 1−S(k,A,B)T (k; a)

are invertible. For these k > 0 the kernel rM(x, y, k) still defines an operator from L2(G, exδdx) to L2(G, dx)
for δ > 0. In the sense of [16, Def. 4] the points k2 > 0 such that limǫ→0+ rM(x, y, k+ iǫ), k > 0, is unbounded
are called spectral singularities. Example 10.8 shows that the spectral singularities can form a larger set than
the set of embedded eigenvalues.

10.4.6 Approximation of regular boundary conditions

Using the explicit formula for the resolvent, one can establish a norm resolvent convergence for certain regular
boundary conditions.
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Proposition 10.8. Let Aǫ, Bǫ, ǫ ≥ 0, define regular boundary conditions such that

Aǫ ± ikBǫ and 1−S(k,Aǫ, Bǫ)T (k; a)

are invertible for a certain k ∈ C with ℑk > 0 and all ǫ ≥ 0. Assume furthermore that

lim
ǫ→0

S(k,Aǫ, Bǫ) = S(k,A0, B0).

Then k2 ∈ ρ(−∆(Aǫ, Bǫ)) for all ǫ ≥ 0, and

lim
ǫ→0

∥∥∥
(
−∆(Aǫ, Bǫ)− k2

)−1 −
(
−∆(A0, B0)− k2

)−1
∥∥∥ = 0.

Proof. Set Mǫ := M(Aǫ, Bǫ) for ǫ ≥ 0. Then

rMǫ(x, y; k)− rM0(x, y; k) = r1Mǫ
(x, y; k)− r1M0

(x, y; k).

Note that r1Mǫ
(·, ·; k) define for every ǫ ≥ 0 Hilbert-Schmidt operators. One obtains

‖r1Mǫ
(·, ·; k)− r1M0

(·, ·; k)‖HS

≤ C(k)

2k

∥∥∥ [1−S(k,Aǫ, Bǫ)T (k; a)]
−1

S(k,Aǫ, Bǫ)

− [1−S(k,A0, B0)T (k; a)]
−1

S(k,A0, B0)
∥∥∥,

because r(x, y; k) = Φ(x, k)R+(k; a)
−2Φ(y, k)T defines a Hilbert-Schmidt operator R(k), with a finite Hilbert-

Schmidt norm ‖r(·, ·; k)‖HS =: C(k). From the convergence of S(k,Aǫ, Bǫ) to S(k,A0, B0) it follows under the
assumptions imposed that

lim
ǫ→0

[1−S(k,Aǫ, Bǫ)T (k; a)]
−1 = [1−S(k,A0, B0)T (k; a)]

−1 .

Hence,

0 ≤ lim
ǫ→0

∥∥∥
(
−∆(Aǫ, Bǫ)− k2

)−1 −
(
−∆(A0, B0)− k2

)−1
∥∥∥

≤ lim
ǫ→0

∥∥∥
(
−∆(Aǫ, Bǫ)− k2

)−1 −
(
−∆(A0, B0)− k2

)−1
∥∥∥
HS

= 0,

which proves the claim.

In contrast to the convergence in the strong graph sense established in Subsection 10.3.8, the norm resolvent
convergence implies the convergence of spectra.

10.4.7 Essential spectra for regular boundary conditions

For non-self-adjoint operators there are various notions of the essential spectrum. Five types, defined in terms
of Fredholm properties and denoted by σej for j = 1, 2, 3, 4, 5, are in detail discussed in [14, Chap. IX]. All
these essential spectra coincide for T self-adjoint, but for closed non-self-adjoint T one has in general only
the inclusions σej(T ) ⊂ σei(T ) with j < i. The largest set σe5(T ) is known as the essential spectrum due
to Browder and it coincides with the complement in the spectrum of isolated eigenvalues λ of finite algebraic
multiplicity such that R(T − λ) is closed.

Proposition 10.9. Let A,B define through (10.5) regular boundary conditions. Then ρ(−∆(A,B)) 6= ∅. For
E 6= ∅ one has σe5(−∆(A,B)) = [0,∞). For E = ∅ the spectrum is purely discrete and the resolvent is compact,
hence σe5(−∆(A,B)) = ∅.
Proof. From Lemma 10.2 together with Proposition 10.7 it follows that the resolvent set is not empty and that
the resolvents for any regular boundary conditions differ only by a perturbation of finite rank. In particular,
the difference of respective resolvents is compact.

Assume E 6= ∅. Self-adjoint realisations are also defined by regular boundary conditions and it is well
known that the essential spectrum is [0,∞) in this case. Applying the Weyl-type perturbation result from [14,
Thm. IX.2.4], it follows that σei(−∆(A,B)) = [0,∞) with i = 1, 2, 3, 4. Since C \ σe1(−∆(A,B)) has only one
connected component, which intersects the resolvent set of −∆(A,B), σe5(−∆(A,B)) = σe1(−∆(A,B)) by the
very definition of [14, Chap. IX].

Now let E = ∅. Then all self-adjoint realisations have compact resolvent, Proposition 10.7 applies and the
resolvents for any regular boundary conditions differ only by a perturbation of finite rank. Hence the resolvent
is compact for all regular boundary conditions which proves the assertion.
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In particular, one obtains that on finite compact metric graphs for regular boundary conditions the spectrum
is purely discrete, there is no continuous nor residual spectrum. For graphs with I = ∅ there are at most finitely
many eigenvalues in C \ [0,∞), they have finite algebraic multiplicity, and the continuous spectrum is [0,∞),
whereas the residual spectrum is empty. For the case E 6= ∅ and I 6= ∅ it is difficult to give general statements
on eigenvalues and residual spectrum contained in [0,∞).

10.5 Riesz basis on compact graphs

In this section we apply a general result due to Agranovich [1] about a Riesz basis property to m-sectorial
Laplacians on finite compact metric graphs. Throughout this section let us therefore assume that (G, a) is an
arbitrary finite compact metric graph, i.e. E = ∅.

Let us first recall the definition of the Riesz basis of subspaces; see, e.g., [38] for more details. The set of
subspaces {Nk}∞k=1 ⊂ H is called a basis of subspaces if any vector f from the Hilbert space H can be uniquely
represented as a series

f =
∞∑

k=1

fk, fk ∈ Nk.

Such a basis is called unconditional or Riesz if it remains a basis after any permutation of the subspaces
appearing in it, i.e., if the above series converges unconditionally for any f . If the subspaces are one dimensional,
we obtain the standard notion of Riesz basis.

Let P be an orthogonal projector in K, P⊥ = 1− P its complementary projector and L a not necessarily
self-adjoint operator in K with L = P⊥LP⊥. Then one considers −∆(P + L, P⊥). Recall that this operator
is associated with the closed sectorial form δP,L defined by (10.9). The main result of this section reads as
follows.

Theorem 10.2. The spectrum of the operator −∆(P + L, P⊥) is purely discrete, and there is a Riesz basis
consisting of finite dimensional invariant subspaces of −∆(P + L, P⊥).

The proof of Theorem 10.2 is based on the following abstract result due to Agranovich [1].

Theorem 10.3 ([1, Thm. in Sec. 1]). Let H and W ⊂ H be separable Hilbert spaces, where the imbedding
W →֒ H is compact. Consider a closed sectorial form a with domain Da = W, and denote by A the m-sectorial
operator defined by a. Assume that there are constants c, C > 0 such that

c ‖ψ‖2W ≤ ℜa[ψ] for all ψ ∈ W (10.17)

and

|a[ψ, ϕ]|+ |(ℜa)[ψ, ϕ]| ≤ C‖ψ‖W‖ϕ‖W for all ψ, ϕ ∈ W, (10.18)

where ℜa denotes the real part of the form a. Let B be the operator defined by ℜa and assume furthermore that
for some 0 ≤ q < 1 and γ > 0

|ℑa[ψ]| ≤ γ‖B1/2ψ‖2q‖ψ‖2−2q for all ψ ∈ W, (10.19)

where ℑa denotes the imaginary part of a. Denote by λ1 ≤ λ2 ≤ . . . ≤ λj ≤ . . . the eigenvalues of B (counting
multiplicities) and assume that for some p > 0

lim sup
j→∞

λjj
−p > 0. (10.20)

Then there exists a Bari basis if p(1 − q) > 1, a Riesz basis if p(1 − q) = 1, and an Abel basis of order
β = β0 + β1 if p(1− q) < 1, consisting of finite dimensional subspaces invariant with respect to A respectively.
Here, β0 = p−1 − (1 − q) and β1 is an arbitrarily small positive number.

To apply Theorem 10.3, we need the following elementary inequality, which we state here without proof.

Lemma 10.3. There exists a constant C > 0 such that for all ψ ∈W 1,2((0, a))

‖ψ‖2L∞ ≤ C‖ψ‖W‖ψ‖.

Now we are in a position to prove Theorem 10.2.
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Proof of Theorem 10.2. Consider the form a′ := δP,L defined by (10.9). We apply Theorem 10.3 to the form
a := a′ + ǫ with an appropriate ǫ > 0.

There is an ǫ > 0 such that the form b := ℜa+ ǫ > 0 defines a norm that is equivalent to the Sobolev norm
of W. Indeed, using Lemma 10.3 together with Young’s inequality, we have

−〈ℜLψ, ψ〉K ≥ −‖ℜL‖ ‖ψ‖2 ≥ −C‖ψ‖W‖ψ‖

≥ −δ‖ψ‖2W − C2

4δ
‖ψ‖2, for any δ > 0.

Hence, for δ < 1 and ǫ > 0 such that C2

4δ < ǫ, one has

∫

G

|ψ′|2 − 〈ℜLψ, ψ〉+ ǫ‖ψ‖2 ≥ γ‖ψ‖2W,

where

γ = min

{
ǫ − C2

4δ
, 1− δ

}
.

The other inequality can be shown analogously.
Using the notation of Theorem 10.3, we have

ℜa[ψ] =
∫

G

|ψ′|2 − 〈ℜLP⊥ψ, P⊥ψ〉K + ǫ‖ψ‖2,

ℑa[ψ] = −〈ℑLP⊥ψ, P⊥ψ〉K,

where

Da = Dℜa = WP := {ψ ∈ W | Pψ = 0} ⊂ H.

The space W with the inner product 〈·, ·〉W is a Hilbert space and WP is a closed subspace. Since (G, a) is
compact, WP is compactly embedded in H. Condition (10.17) is fulfilled for ℜa and Condition (10.18) follows
as well by applying the Cauchy-Schwarz inequality. Recall that the norm defined by b is equivalent to the
Sobolev norm in the Hilbert space WP . Therefore, there is a constant C > 0 such that ‖ψ′‖ ≤ ‖ψ‖W ≤
C‖B1/2ψ‖ = Cb[ψ]. Applying Lemma 10.3 to the form ℑa yields

|ℑa[ψ]| ≤ ‖ℑL‖ ‖ψ‖2K ≤ C‖ψ‖‖ψ‖W ≤ C‖ψ‖‖B1/2ψ‖,

where C > 0 is used as universal constant. Thus Condition (10.19) is fulfilled with q = 1/2.
From [18, Thm. 3.1] it follows that the operator associated with b is the self-adjoint operator B = −∆(P +

ℜL, P⊥)+ ǫ. Since its spectrum is discrete, there is a variational characterisation of the eigenvalues in terms of
the minimax principle. Applying a Dirichlet-Neumann-bracketing one arrives at the conclusion that λj = O(j2),
see, e.g., [10, Prop. 4.2], and hence Condition (10.20) holds for p = 2.

Putting the pieces together, we obtain that Theorem 10.3 applies to a, which defines the operator A = A′+ǫ,
where A′ = −∆(P + L, P⊥). Since the invariant subspaces of A and A′ agree, and furthermore p(1 − q) = 1
holds, these form a Riesz basis.

Theorem 10.2 can be applied to the following example and its below mentioned generalisations.

Example 10.10 (Complex Robin boundary conditions). Consider the interval [0, a] and impose the boundary
condition

ψ′(0) + (iα− β)ψ(0) and ψ′(a) + (iα+ β)ψ(a) = 0, for α, β ∈ R,

cf [29, Sec. 6.3]. In matrix notation this becomes

A =

[
iα− β 0

0 −(iα+ β)

]
and B =

[
1 0
0 1

]
,

hence one has also a parametrisation in terms of m-sectorial boundary conditions with L = A and P = 0.
Therefore, the operator −∆(A,B) is defined by the form δL,0 and Theorem 10.2 applies.

For β = 0 an explicit computation shows that the spectrum is real. Moreover, if α 6= nπ/a, n ∈ N, all the
eigenvalues have algebraic multiplicity one. We refer to [29] for more details.
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In fact, it is well-known that the eigensystem −∆(A,B) contains a Riesz basis (without brackets), [39],
[13, Sec.XIX.3]. These boundary conditions were introduced in [29] as a toy quasi-self-adjoint model in PT-
symmetry and the closed formula for the metric operator has been found. An alternative method how to derive
other closed formulae for the metric operators Θ was developed in [30] and further employed in [32], where
one can additionally find an explicit formula for the self-adjoint operator to which −∆(A,B) is similar. Notice
that this self-adjoint operator is not a graph. The more general model with β 6= 0 is also studied in [31].

A generalisation of this example to metric graphs was proposed in [45]. Consider a compact star graph and
the boundary conditions

A =

[
A+(α) 0

0 A−

]
and B =

[
1 0
0 B−

]
,

where {A+(α)}lk = iαδlke
2πi l

deg v , A− = Aν and B− = Bν are the matrices given in (10.25) below defining the
standard boundary conditions at the central vertex v with deg(v) = ν. Since the standard boundary conditions
can be expressed equivalently by projectors Pν and P⊥

ν , cf Subsection 10.6.5, one has that

L(α) =

[
A+(α) 0

0 0

]
, and P =

[
0 0
0 Pν

]
.

Hence, Theorem 10.2 applies and there is a Riesz basis of projectors corresponding to invariant subspaces of
−∆(A,B).

Theorem 10.2 can be also applied to a compact graph with the combination of self-adjoint boundary con-
ditions and complex δ-interactions, i.e. a modification of Example 10.4.

10.6 Quasi-self-adjointness for symmetric graphs

There are many works dealing with the question of similarity between non-self-adjoint and self-adjoint operators.
In particular, there exists an abstract resolvent criterion for similarity to self-adjoint operators developed
independently in [12], [37] and [41]. Based on this criteria, the question when operators with purely absolutely
continuous spectrum are similar to self-adjoint ones was discussed in [15]. Another approach is through the
framework of extension theory for symmetric operators [3, 21].

In this section we follow a completely different approach and succeed in reducing the question of quasi-self-
adjointness for the unbounded operator −∆(A,B) to a simple check of the similarity of S(k,A,B) to a unitary
matrix. The prize we pay is that the method applies to graphs with equal internal edge lengths only. More
specifically, throughout this section, we always assume

ai = a for all i ∈ I. (10.21)

10.6.1 From matrices to operators

For any (|I| × |I|)-matrix G(I) = (G(I)ji) defining an operator in K
−
I

we introduce the map

ΦG(I) : HI → HI,
(
ΦG(I)ψ

)
(xj) =

n∑

i=1

G(I)jiψi(xj), j ∈ I,

where n = |I|. Accordingly, for a (|E| × |E|)-matrix G(E) = (G(E)ji) defining an operator in KE we introduce

ΦG(E) : HE → HE,
(
ΦG(E)ψ

)
(xj) =

m∑

i=1

G(E)jiψi(xj), j ∈ E,

where m = |E|. These maps are well defined since the functions ψi are defined on the i-th edge, which is
identified with a half-line or an interval [0, a], respectively, and hence they can be interpreted as functions on
another half-line or interval [0, a] as well.

For any ψ ∈ D let us also define

ψ
E
= {ψe(0)}e∈E, ψ

I,− = {ψi(0)}i∈I, ψ
I,+

= {ψi(ai)}i∈I,

ψ′
E
= {ψ′

e(0)}e∈E, ψ′
I,− = {ψ′

i(0)}i∈I, ψ′
I,+

= {−ψ′
i(ai)}i∈I,

and

ψ
I
= ψ

I,− ⊕ ψ
I,+
, ψ′

I
= ψ′

I,− ⊕ ψ′
I,+
.
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Finally, we set

DE := D ∩HE and DI := D ∩HI.

Here we collect basic properties of the maps ΦG(I) and ΦG(E).

Proposition 10.10. The maps ΦG(E) and ΦG(I) are linear. For matrices G,H one has ΦG ◦ΦH = ΦG◦H . In
particular, if G(I) or G(E) is invertible, then ΦG(E) respectively ΦG(I) is invertible with

(
ΦG(E)

)−1
= ΦG(E)−1 and

(
ΦG(I)

)−1
= ΦG(I)−1 ,

respectively. Furthermore ΦG(E) maps DE to DE and ΦG(I) maps DI to DI. For ψ ∈ DE one has

ΦG(E)ψ
E
= G(E)ψ

E
and

(
ΦG(E)ψ

)′
E
= G(E)ψ′

E
.

For ψ ∈ DI one has

ΦG(I)ψ
I
=

[
G(I)ψ

I,−
G(I)ψ

I,+

]
and ΦG(I)ψ

′
I
=

[
G(I)ψ′

I,−
G(I)ψ′

I,+

]
.

10.6.2 The main result

Taking advantage of the transformation of the boundary values one obtains

Theorem 10.4. Let (G, a) be a finite metric graph with equal internal edge lengths, i.e. (10.21) holds. Let A,B
and A′, B′ be linear maps in K such that

A′ = G−1AG and B′ = G−1BG,

for an invertible operator G in K of the block diagonal form

G =



G(E) 0 0
0 G(I) 0
0 0 G(I)


 (10.22)

with G(E) an invertible operator in KE and G(I) an invertible operator in K
−
I
. Then the Laplacians −∆(A,B)

and −∆(A′, B′) are similar to each other, i.e.

ΦG−1∆(A,B)ΦG = ∆(A′, B′)

with similarity transform
ΦG−1 := ΦG(E)−1 ⊕ ΦG(I)−1 . (10.23)

Proof. Let (G, a) be a metric graph with equal internal edge lengths and

A′ = G−1AG and B′ = G−1BG,

where G is of the block-diagonal form given in the theorem. In order to prove that ∆(A′, B′) = ΦG−1∆(A,B)ΦG
one has to show

(a) ΦG−1 maps D∆(A,B) to D∆(A′, B′);

(b) ΦG−1∆(A,B)ΦGψ = ∆(A′, B′)ψ, for ψ ∈ D(A′, B′).

Note that ΦG and ΦG−1 commute with ∆, and therefore (b) holds.
It remains to show that ΦG−1(D∆(A,B)) = D(∆(A′, B′)). Since ΦG−1 commutes with ∆, it follows also

that ΦG−1R∆(A,B) = R∆(A′, B′). Consequently, by Lemma 10.10, ΦG−1 maps D to D. If ψ ∈ D(∆(A,B)),
then ψ ∈ D and (10.5) holds. Applying it to the function ΦG−1ψ, we get

G−1
{
AGG−1ψ + BGG−1ψ′} = 0,

therefore ΦG−1(D(∆(A,B))) ⊂ D(∆(A′, B′)). The other way round, one proves analogously ΦG(D(∆(A′, B′))) ⊂
D(∆(A,B)). Since ΦG−1 is a bijection this proves the claim.

The main result of this section is now the following direct consequence of Theorem 10.4.
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Corollary 10.4. Let (G, a) be a finite metric graph with equal internal edge lengths, i.e. (10.21) holds.

1. Let A,B be linear maps in K such that

S(k,A,B) = G−1UG,

for an invertible operator G in K of the block diagonal form (10.22) with G(E) an invertible operator in
KE and G(I) an invertible operator in K

−
I
. Then the Laplacians −∆(A,B) and −∆(AU , BU ) with

AU := −1

2
(U − 1) and BU :=

1

2ik
(U + 1) .

are similar to each other with the similarity transform given in (10.23). In particular, if U is unitary
then −∆(A,B) is similar to a self-adjoint Laplacian.

2. Let L, P and L′, P ′ define m-sectorial boundary conditions. Assume furthermore that there is an invertible
operator G in K of the block diagonal form (10.22) with G(E) an invertible operator in KE and G(I) an
invertible operator in K

−
I

such that

P = G−1P ′G and L = G−1L′G.

Then −∆(P+L, P⊥) and −∆(P ′+L′, (P ′)⊥) are similar to each other with the similarity transform given
in (10.23). In particular, if L′ is Hermitian then −∆(P + L, P⊥) is similar to a self-adjoint Laplacian.

Proof. Consider the boundary conditions

AS := −1

2
(S− 1) and BS :=

1

2ik
(S+ 1) ,

and k > 0 such that AS + ikBS is invertible, where S := S(k,A,B). These are equivalent to the boundary
conditions defined by A,B. By assumption there is an invertible operator G in K such that

AS = G−1AUG and BS = G−1BUG.

Applying Theorem 10.4 proves the claim. For m-sectorial boundary conditions the proof is analogous.

Remark 10.7. Corollary 10.4 can be alternatively proven by using the resolvent formula given in Proposi-
tion 10.7 by proving the similarity of the resolvents where the similarity transforms are given by means of
ΦG.

10.6.3 Application to star graphs

Theorem 10.4 simplifies in the case of star graphs. Here a non-compact star graph is a graph with I = ∅,
and a compact star graph with equal edge lengths is a graph with E = ∅ and ai = a for all i ∈ I such that
∂−(i) = ∂−(i′) for any i, i′ ∈ I and ∂+(i) 6= ∂+(i

′) whenever i 6= i′.
For a non-compact star graph consider the operator −∆(A,B) where A,B are linear maps in K. Two

operators −∆(A,B) and −∆(A′, B′) are similar whenever there exists an invertible operator G in KE such
that

A′ = G−1AG and B′ = G−1BG.

For the case of regular boundary conditions one has to check only if the matrices S(k,A,B) and S(k,A′, B′)
are similar to each other.

In order to have an equally simple criterion for a compact star graph, one can consider −∆(A,B) with
boundary conditions of the form

A =

[
A− 0
0 A+

]
and B =

[
B− 0
0 B+

]
, (10.24)

where A−, B− are arbitrary linear maps in K
−
I
, and A+ = a+1

K
+
I

and B+ = b+1
K

+
I

with a+, b+ ∈ C.

Let A−, B− and A′−, B′− be linear maps in K− such that

A′− = G−1A−G and B′− = G−1B−G,

for an invertible linear operator G in K−. Consider boundary conditions A′, B′ of the form (10.24) defined
by A′−, B′− and a+, b+ ∈ C, and A,B also of the form (10.24) defined by A−, B− and the same numbers
a+, b+ ∈ C. Then −∆(A,B) and −∆(A′, B′) are similar to each other with similarity transform ΦG−1 . Again,
for the case of regular boundary conditions one has to check only if the matrices S(k,A,B) and S(k,A′, B′)
are similar to each other. For taking into account only the boundary conditions at the central vertex it is
crucial to impose identical boundary conditions at all endpoints.
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Example 10.11 (Special case of Example 10.3). Consider Example 10.3 for |E| = 3, with |E−| = 1, |E+| = 2.
Note that

S(k,A,B) = G



1 0 0
0 −1 0
0 0 −1


G−1 with G =



1 −1 1
1 1 0
1 0 1


 .

Hence, by Corollary 10.4, the operator −∆(A,B) is unitarily equivalent to a self-adjoint Laplacian, namely to
the direct sum of two Neumann Laplacians and one Dirichlet Laplacian on the half-line.

Example 10.12 (Star graph with both essential and discrete spectra). Consider a star graph with only two
external edges and the m-sectorial boundary conditions defined by

P = 0 and L =

[
0 2

1/2 0

]
,

that is 2ψ2(0) + ψ′
1(0) = 0 and 1/2ψ1(0) + ψ′

2(0) = 0. Since

L =

[
1/2 0
0 1/4

]
L′
[
2 0
0 4

]
, where L′ =

[
0 1
1 0

]
,

one has by Corollary 10.4 that −∆(L,1) is similar to the self-adjoint operator −∆(L′,1). Hence, the continuous
spectrum of −∆(L,1) is [0,∞) and the point spectrum contains only the isolated simple eigenvalue −1.

10.6.4 Application to Example 10.5

During our work we had in mind, as a guiding example, the class of point interactions defined at point zero on
the intervals (−L,L), L ∈ (0,+∞] by

[
ψ(0+)
ψ′(0+)

]
=

[
eiτ 0
0 e−iτ

] [
ψ(0−)
ψ′(0−)

]
for τ ∈ [0, π/2],

which is also discussed in Example 10.5 above. Actually, this has been the starting point of our study, and now
we are in the position to apply our results to reproduce some of the results known for it.

Regular case

Let τ ∈ [0, π/2). For the Cayley transform

S(Aτ , Bτ , k) = −(Aτ + ikBτ )
−1(Aτ − ikBτ ),

an explicit computation yields the diagonalisation

1

cos(τ)

[
i sin(τ) 1

1 −i sin(τ)

]
=

−1

2 cos(τ)

[
1 1

e−iτ −eiτ
] [

1 0
0 −1

] [
−eiτ −1
−e−iτ 1

]
.

Hence, one has using diag{1,−1} = QS(A0, B0, k)Q the similarity

S(Aτ , Bτ , k) = G−1
τ QS(A0, B0, k)QGτ ,

where

Q =
1√
2

[
1 1
1 −1

]
and Gτ =

i√
2 cos(τ)

[
−eiτ −1
−e−iτ 1

]
.

From Corollary 10.4 it follows that the operator−∆(Aτ , Bτ ) is similar to the self-adjoint Laplacian−∆(A0, B0),
and the similarity transform is given by ΦQGτ :

∆(A0, B0) = Φ(QGτ )−1∆(Aτ , Bτ )ΦQGτ .

In fact, −∆(A0, B0) is the standard Laplacian on the real line.
One can now compute a metric operator, i.e. the operator Θτ such that

∆(Aτ , Bτ )
∗ = Θτ∆(Aτ , Bτ )Θ

−1
τ .
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Since Q is unitary, a metric is given by the formula

Θτ = Φ(G∗
τGτ )

−1 , where (G∗
τGτ )

−1 =
1

cos(τ)

[
1 i sin(τ)

−i sin(τ) 1

]
.

We also have Θ−1
τ = ΦG∗

τGτ , where

G∗
τGτ =

1

cos(τ)

[
1 −i sin(τ)

i sin(τ) 1

]
.

One can rewrite this as

Θτ =
1

cos(τ)
[1− i sin(τ)MsgnP] and Θ−1

τ =
1

cos(τ)
[1+ i sin(τ)MsgnP] .

Here the operator P interchanges the edges (therefore it corresponds in fact to the parity operator in a quantum-
mechanical interpretation of the model) andMsgn denotes the multiplication by +1 on the first edge and by −1
on the second edge (therefore, identifying the graph with the real line, Msgn corresponds to the multiplication
by sgn). This is, up to a constant factor, the metric operator given in [44, Chap. 2.5].

Considering the same boundary conditions at the central vertex on the compact star graph with two edges
one obtains that the operators is similar to a self-adjoint Laplacian for any self-adjoint boundary condition
imposed at both endpoints simultaneously, in particular for Dirichlet boundary conditions as considered in [44,
Chap. 2.5]. In all cases a similarity transform is given by ΦQGτ and a metric operator is given by Φ(G∗

τGτ )
−1 .

Irregular case

Let τ = π/2. One has

[
0 1
0 0

]
=

1

2
Aπ/2

[
1 1
−i i

]
and

[
0 0
0 1

]
=

1

2
Bπ/2

[
1 1
−i i

]
.

Hence, by Theorem 10.4, the operator −∆(Aπ/2, Bπ/2) on the star graph with only two external edges is
unitarily equivalent to −∆(A′, B′) with

A′ =

[
0 1
0 0

]
and B′ =

[
0 0
0 1

]
.

These boundary conditions are ψ2(0) = ψ′
2(0) = 0, that is −∆(A′, B′) is the direct sum of the minimal operator

−∆0 on one edge and the maximal operator −∆ on the other edge. Recall that σ(−∆(Aπ/2, Bπ/2)) = C.

Irregular compact case

Consider a compact star graph and let more generally A−, B− define arbitrary irregular boundary conditions
at the central vertex, and let a+, b+ with Rank(a+, b+) = 1 define boundary conditions at the end points,
such that one obtains boundary conditions of the form (10.24). Hence there is a ψ ∈ NA− ∩ NB− 6= {0} with
‖ψ‖ = 1 and there is a unitary map in K mapping ψ to a unit vector ei, i ∈ I. The boundary conditions

A′− = A−U and B′− = B−U

define a unitarily equivalent operator, but the edge i is decoupled from the rest of the graph and the operator
on this edge has domain

{ψ ∈ Dj | a+ψ(a)− b+ψ′(a) = 0}

which defines by Proposition 10.5 operator with entire C in the spectrum. This shows that also the operator
defined on a compact star graph with only two internal edges of equal length where the boundary conditions
at the central vertex are given by Aπ/2, Bπ/2 and at the endpoint arbitrary regular boundary conditions are
imposed has empty resolvent set. This reproduces some of the result from [44, Chap. 2.5].
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Relation to Example 10.1

Consider the boundary conditions defined by

A =

[
1 −1
0 0

]
and B =

[
0 0
1 −1

]
.

Then one obtains

1√
2
AU =

[
1 0
0 0

]
, 1√

2
BU =

[
0 0
1 0

]
, where U =

1√
2

[
1 1
1 −1

]
,

and U maps NA ∩NB to span{e2}. These boundary conditions define on one edge the minimal operator −∆0

and on the other edge the maximal operator −∆. For a compact star graph with these boundary conditions
at the central vertex the same holds.

Note that for Aπ/2, Bπ/2 one has

[
1 −1
0 0

]
= Aπ/2

[
1 0
0 −i

]
and

[
0 0
1 −1

]
= Bπ/2

[
1 0
0 −i

]
,

hence the operator defined by Aπ/2, Bπ/2 at the central vertex of a star graph with two edges of equal, possibly

infinite, length is unitarily equivalent to the operator − sgn(x) ddx sgn(x)
d
dx , if in addition at the endpoint the

same boundary conditions are imposed.

10.6.5 Applications to self-adjoint Laplacians

Theorem 10.4 and its Corollary 10.4 can also be interestingly applied to self-adjoint Laplacians, in order to
simplify the computation of the spectrum. Consider a compact star graph (see Figure 10.1(a) for an example
with three edges) with standard (or Kirchhoff) boundary condition at the central vertex v, where deg(v) = ν,
i.e.

Aν =




1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 0



, Bν =




0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 1 1 · · · 1 1



. (10.25)

It is known that

[S(k,Aν , Bν)]ij =
2

deg(v)
− δij ,

see, e.g., [24, Ex. 2.4], and furthermore, it admits the representation

S(k,Aν , Bν) = P⊥
ν − Pν ,

where Pν is the orthogonal projector onto NBν and its complementary projector P⊥
ν = 1−Pν is the orthogonal

projector onto the space spanned by the vector {wν}j = 1, j = 1, . . . , deg(v). Hence S(k,Aν , Bν) has the
eigenvalues −1 of multiplicity deg(v) − 1 and +1 of simple multiplicity. At the ends of the leads one imposes
for example Dirichlet boundary conditions. Then by applying Theorem 10.4 one obtains that this operator is
iso-spectral to a direct sum of operators on intervals. Namely, deg(v)−1 Dirichlet Laplacians on intervals [0, a]
and one Laplacian on [0, a] with Dirichlet boundary condition at a and Neumann boundary condition at 0.
This provides a complete picture of the spectrum. The spectrum is purely discrete and the solutions kn, n ∈ N,
of sin(ka) = 0 yield eigenvalues k2n of multiplicity deg(v)− 1 and the solutions km, m ∈ N, of cos(ka) = 0 yield
eigenvalues k2m of multiplicity one.

Consider as a further example a compact graph consisting of two vertices V = {v1, v2} connected by n edges
I = {i1, . . . , in} of the same length a > 0 (see Figure 10.1(b) for an example with two edges which is in fact a
loop). Each of the two vertices is a vertex of degree ν = n, and now one imposes at each vertex the standard
boundary conditions (10.25).

For this graph the boundary conditions have the following block structure

A =

[
A++ 0
0 A−−

]
and B =

[
B++ 0
0 B−−

]
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(a) A compact star graph (b) Loop as a graph with two
vertices

Figure 10.1: Graphs considered in Subsection 10.6.5

with respect to the decomposition KI = K
+
I
⊕K

−
I
. Furthermore A++ = A−− and B++ = B−−, where

A++ = Aν and B++ = Bν ,

where Aν and Bν are the matrices from (10.25). Applying as in the previous example the diagonalisation of
S(k,Aν , Bν) one arrives at the conclusion that the Laplacian −∆(A,B) with standard boundary conditions
on the this graph with two vertices is unitarily equivalent to the direct sum of (n − 1) copies of the Dirichlet
Laplacian on the interval of length a and one copy of the Neumann Laplacian on such an interval. This gives
immediately the spectrum of the operator which is is purely discrete, and given by the eigenvalue zero of
multiplicity one and by the eigenvalues k2m of multiplicity n, where km, m ∈ N, solves the equation sin(ka) = 0.

More generally, one can consider such a compact graph where at both vertices one imposes the same
boundary conditions. For instance, consider such a compact graph with two edges I = {i1, i2} of equal length
a > 0 and two vertices V = {v1, v2} with ∂+(i1) = ∂+(i2) and ∂−(i1) = ∂−(i2), that is a loop with two
vertices. One imposes at each vertex boundary conditions Aτ , Bτ given in Example 10.5, both with the same
τ ∈ [0, π/2). Applying Corollary 10.4 delivers that the corresponding operator is similar to the Laplacian on
the circle with arc length 2a.

10.7 Appendix

This appendix is devoted to the proof of Proposition 10.7.

Definition 10.3 ([27, Def. 3.9]). The operator K on the Hilbert space H is called integral operator if for all
j, j′ ∈ E ∪ I there are measurable functions Kj,j′ (·, ·) : Ij × Ij′ → C with the following properties

1. Kj,j′ (xj , ·)ϕj′ ∈ L1(Ij′ ) for almost all xj ∈ Ij ,

2. ψ = Kϕ with

ψj(xj) =
∑

j′∈E∪I

∫

Ij′

Kj,j′ (xj , yj′)ϕj′ (yj′ )dyj′ .

The (I ∪ E)× (I ∪ E) matrix-valued function (x, y) 7→ K(x, y) with

[K(x, y)]j,j′ = Kj,j′ (xj , yj′)

is called the integral kernel of the operator K.

In order to prove Proposition 10.7, we adapt the proof of [24, Lem. 4.2], where the resolvents of self–adjoint
Laplace operators are considered, to the situation of more general regular boundary conditions.

By assumption the operator S(k,A,B) is defined and 1−S(k,A,B)T (k; a) is invertible for k with ℑk > 0.
Hence the kernel rM(x, y; k) defined in Proposition 10.7 is well-defined, and with ℑk > 0 it defines a bounded
operator RM(k) in H by

RM(k)ϕ =

∫

G

rM(·, y; k)ϕ for ϕ ∈ H.

In order to prove that RM(k) defines the resolvent operator, it suffices to check
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(i) RM(k)ϕ ∈ D(∆(A,B)), for all ϕ ∈ H,

(ii) (−∆(A,B)− k2)RM(k)ϕ = ϕ for all ϕ ∈ H and

(iii) the symmetry relation rM(y, x; k)∗ = rM∗(x, y,−k).
The first two assertions prove that (−∆(A,B)−k2)RM(k) = 1H that is, RM(k) is the right inverse. By (iii) one

proves that also (−∆(A,B)∗ − k
2
)R(k)∗M = 1H, and taking the adjoints one obtains RM(k)(−∆(A,B)− k2) ⊂

1H. This proves that RM(k) is also the left inverse.
Using [24, Lem. 4.2] and (10.16), one can also rewrite rM(x, y; k) as

rM(x, y; k) = r0(x, y; k) + r1M(x, y; k),

r1M(x, y; k) = − i

2k
Φ(x, k)Z(k;A,B, a)−1(A− ikB)R+(k; a)

−1Φ(y, k)T .

One can still prove (i) and (ii) whenever Z(k;A,B, a) is invertible proving that R(k) defines the right inverse,
but one cannot use the same proof for showing that the symmetry relation (iii) holds.

Proof of (i). With ψ = RM(k)ϕ, for ϕ ∈ H one has clearly ψ ∈ D. Furthermore, set for brevity

G(k) := −Z(k;A,B, a)−1(A− ikB)R+(k, a)
−1.

Assume that ϕj ∈ Hj vanishes in a small neighbourhood of xj = 0 and, in addition, in a small neighbourhood
of xj = aj if j ∈ I. Then ∫

Ij

eik|xj−yj |ϕj(yj)dyj =

∫

Ij

e−ik(xj−yj)ϕj(yj)dyj

holds for sufficiently small xj ∈ Ij , and for xj ∈ Ij sufficiently close to aj one has

∫

Ij

eik|xj−yj |ϕj(yj)dyj =

∫

Ij

eik(xj−yj)ϕj(yj)dyj .

Therefore one obtains for the traces

ψ =
i

2k
R+(k; a)

−1

∫

G

Φ(y, k)Tϕ(y)dy +
i

2k
X(k; a)G(k)

∫

G

Φ(y, k)Tϕ(y)dy,

ψ′ =
1

2
R+(k; a)

−1

∫

G

Φ(y, k)Tϕ(y)dy − 1

2
Y (k; a)G(k)

∫

G

Φ(y, k)Tϕ(y)dy.

Hence,

Aψ +Bψ′ =
i

2k

{
(A− ikB)R+(k; a)

−1 + Z(k;A,B, a)G(k)
} ∫

G

Φ(y, k)Tϕ(y)dy

= 0.

Thus RM(k) maps a dense subset of H to D(∆(A,B)). By continuous continuation the claim follows for all
ϕ ∈ H which proves (i).

Proof of (ii). Assume that ϕj ∈ C∞
0 (Ij) for every j ∈ I ∪ E. Since i

2k e
ik|x−y| defines the Green’s function on

the real line it follows that

− i

2k

(
d2

dx2j
+ k2

)∫

Ij

eik|xj−yj |ϕj(yj)dyj = ϕj(xj), j ∈ I ∪ E.

Note that the remainder vanishes, and therefore one has proven the identity

(
−∆(A,B)− k2

)
RM(k)ϕ = ϕ

for a dense subset of H and by continuous continuation the claim follows.

Proof of (iii). The relation r0(y, x; k)∗ = r0(x, y,−k) can be verified directly. For the remainder one obtains

r1M(y, x, k)∗ =
i

2(−k)
Φ(x,−k)R+(−k; a)−1S(k,A,B)∗

×
[
1− T (−k; a)S(k,A,B)∗

]−1
R+(−k; a)−1Φ(y,−k)T ,
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Note that

S(k,A,B)∗
[
1− T (−k; a)S(k,A,B)∗

]−1

=
[
1−S(k,A,B)∗T (−k; a)

]−1
S(k,A,B)∗

and S(k,A,B)∗ = S(−k,A′, B′), where

A′ := −1

2
(S(k,A,B)∗ − 1) and B′ :=

1

−2ik
(S(k,A,B)∗ + 1) .

From Proposition 10.3 it follows that r1M(y, x; k)∗ = r1M∗(x, y;−k), and therefore RM(k)∗ = RM∗(−k).
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PhD thesis, Université Paris Diderot and Czech Technical University in Prague, 2011.

[45] M. Znojil Quantum star-graph analogues of PT-symmetric square wells. Can. J. Phys., 90:1287–1293, 2012.



Part II

Waveguides

179





Chapter 11

PT-symmetric waveguides

Published in: Integral Equations and Operator Theory 62 (2008), 489–515

https://doi.org/10.1007/s00020-008-1634-1

Joint work with: Denis Borisov

181

https://doi.org/10.1007/s00020-008-1634-1


182 II Waveguides



II.11 PT-symmetric waveguides 183

PT-symmetric waveguides

Denis Borisova,b and David Krejčǐŕıkb
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Abstract. We introduce a planar waveguide of constant width with non-Hermitian PT-symmetric
Robin boundary conditions. We study the spectrum of this system in the regime when the boundary
coupling function is a compactly supported perturbation of a homogeneous coupling. We prove
that the essential spectrum is positive and independent of such perturbation, and that the residual
spectrum is empty. Assuming that the perturbation is small in the supremum norm, we show
that it gives rise to real weakly-coupled eigenvalues converging to the threshold of the essential
spectrum. We derive sufficient conditions for these eigenvalues to exist or to be absent. Moreover,
we construct the leading terms of the asymptotic expansions of these eigenvalues and the associated
eigenfunctions.

MSC2000: 35P15, 35J05, 47B44, 47B99.

Keywords: non-self-adjointness, J-self-adjointness, PT-symmetry, waveguides, Robin boundary condi-
tions, Robin Laplacian, eigenvalue and eigenfunction asymptotics, essential spectrum, reality
of the spectrum.

11.1 Introduction

There are two kinds of motivations for the present work. The first one is due to the growing interest in spectral
theory of non-self-adjoint operators. It is traditionally relevant to the study of dissipative processes, resonances
if one uses the mathematical tool of complex scaling, and many others. The most recent and conceptually new
application is based on the potential quantum-mechanical interpretation of non-Hermitian Hamiltonians which
have real spectra and are invariant under a simultaneous P-parity and T-time reversal. For more information
on the subject, we refer to the pioneering work [3] and especially to the recent review [2] with many references.

The other motivation is due to the interesting phenomena of the existence of bound states in quantum-
waveguide systems intensively studied for almost two decades. Here we refer to the pioneering work [12] and
to the reviews [10, 21]. In these models the Hamiltonian is self-adjoint and the bound states – often without
classical interpretations – correspond to an electron trapped inside the waveguide.

In this paper we unify these two fields of mathematical physics by considering a quantum waveguide modelled
by a non-Hermitian PT-symmetric Hamiltonian. Our main interest is to develop a spectral theory for the
Hamiltonian and demonstrate the existence of eigenvalues outside the essential spectrum. For non-self-adjoint
operators the location of the various essential spectra is often as much as one can realistically hope for in the
absence of the powerful tools available when the operators are self-adjoint, notably the spectral theorem and
minimax principle. In the present paper we overcome this difficulty by using perturbation methods to study
the point spectrum in the weak-coupling regime. In certain situations we are also able to prove that the total
spectrum is real.

Let us now briefly recall the notion of PT-symmetry. If the underlying Hilbert space of a Hamiltonian H
is the usual realization of square integrable functions L2(Rn), the PT-symmetry invariance can be stated in
terms of the commutator relation

(PT)H = H(PT) , (11.1)

where the parity and time reversal operators are defined by (Pψ)(x) := ψ(−x) and Tψ := ψ, respectively. In
most of the PT-symmetric examples H is the Schrödinger operator −∆+V with a potential V satisfying (11.1),
so that H∗ = THT where H∗ denotes the adjoint of H . This property is known as the T-self-adjointness of H in
the mathematical literature [11], and it is not limited to PT-symmetric Schrödinger operators. More generally,
given any linear operator H in an abstract Hilbert space H, we understand the PT-symmetry property as a
special case of the J-self-adjointness of H :

H∗ = JHJ , (11.2)

where J is a conjugation operator, i.e.,

∀φ, ψ ∈ H , (Jφ, Jψ)H = (ψ, φ)H , J2ψ = ψ .
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This setting seems to be adequate for a rigorous formulation of PT-symmetric problems, and alternative to
that based on Krein spaces [22, 24].

The nice feature of the property (11.2) is that H “is not too far” from the class of self-adjoint operators. In
particular, the eigenvalues are found to be real for many PT-symmetric Hamiltonians [28, 9, 22, 8, 26, 7, 20].
However, the situation is much less studied in the case when the resolvent of H is not compact.

The spectral analysis of non-self-adjoint operators is more difficult than in the self-adjoint case, partly
because the residual spectrum is in general not empty for the former. One of the goals of the present paper is
to point out that the existence of this part of spectrum is always ruled out by (11.2):

Fact. Let H be a densely defined closed linear operator in a Hilbert space satisfying (11.2). Then the residual
spectrum of H is empty.

The proof follows easily by noticing that the kernels of H − λ and H∗ − λ have the same dimension [11,
Lem. III.5.4] and by the the general fact that the orthogonal complement of the range of a densely defined
closed operator in a Hilbert space is equal to the kernel of its adjoint. The above result is probably not well
known in the PT-symmetry community.

We continue with an informal presentation of our model and main spectral results obtained in this paper.
The rigorous and more detailed statements are postponed until the next section because they require a number
of technical definitions.

The Hamiltonian we consider in this paper acts as the Laplacian in the Hilbert space of square integrable
functions over a straight planar strip and the non-Hermiticity enters through PT-symmetric boundary conditions
only. The boundary conditions are of Robin type but with imaginary coupling. The PT-symmetric invariance
then implies that we actually deal with an electromagnetic waveguide with radiation/dissipative boundary
conditions. In fact, the one-dimensional spectral problem in the waveguide cross-section has been studied
recently in [20] (see also [19]) and our model can be viewed as a two-dimensional extension of the former.

Schrödinger-type operators with similar non-Hermitian boundary conditions were studied previously by
Kaiser, Neidhardt and Rehberg [17, 16, 15]. In their papers, motivated by the needs of semiconductor physics,
the configuration space is a bounded domain and the boundary coupling function is such that the Hamiltonian
is a dissipative operator. The latter excludes the PT-symmetric models of [20] and the present paper.

The T-self-adjointness property (11.2) of our Hamiltonian is proved in Section 11.3. If the boundary coupling
function is constant, the spectral problem can be solved by separation of variables and we find that the spectrum
is purely essential, given by a positive semibounded interval (cf Section 11.4). In Section 11.5 we prove that the
essential spectrum is stable under compactly supported perturbations of the coupling function. Consequently,
the essential spectrum is always real in our setting, however, it exhibits important differences as regards similar
self-adjoint problems. Namely, it becomes as a set independent of the value of the coupling function at infinity
when the latter overpasses certain critical value.

In Section 11.6 we study the point spectrum. We focus on the existence of eigenvalues emerging from the
threshold of the essential spectrum in the limit when the compactly supported perturbation of the coupling
function tends to zero in the supremum norm. It turns out that the weakly-coupled eigenvalues may or may
not exist, depending on mean values of the local perturbation. In the case when the point spectrum exists, we
derive asymptotic expansions of the eigenvalues and the associated eigenfunctions.

Because of the singular nature of the PT-symmetric interaction, our example is probably the simplest non-
trivial, multidimensional PT-symmetric model whatsoever for which both the point and essential spectra exist.
We hope that the present work will stimulate more research effort in the direction of spectral and scattering
properties of the present and other non-Hermitian PT-symmetric operators.

11.2 Main results

Given a positive number d, we write I := (0, d) and consider an infinite straight strip Ω := R × I. We split
the variables consistently by writing x = (x1, x2) with x1 ∈ R and x2 ∈ I. Let α be a bounded real-valued
function on R; occasionally we shall denote by the same symbol the function x 7→ α(x1) on Ω. The object of
our interest is the operator in the Hilbert space L2(Ω) which acts as the Laplacian and satisfies the following
PT-symmetric boundary conditions:

∂2Ψ+ iαΨ = 0 on ∂Ω . (11.3)

More precisely, we introduce

HαΨ := −∆Ψ , Ψ ∈ D(Hα) :=
{
Ψ ∈ W 2

2 (Ω) | Ψ satisfies (11.3)
}
, (11.4)
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where the action of Hα should be understood in the distributional sense and (11.3) should be understood in
the sense of traces [1]. In Section 11.3 we show that Hα is well defined in the sense that it is an m-sectorial
operator and that its adjoint is easy to identify:

Theorem 11.1. Let α ∈ W 1
∞(R). Then Hα is an m-sectorial operator in L2(Ω) satisfying

H∗
α = H−α . (11.5)

Of course, Hα is not self-adjoint unless α vanishes identically (in this case H0 is the Neumann Laplacian in
L2(Ω)). However, Hα is T-self-adjoint, i.e., it satisfies (11.2) with J being the complex conjugation T : Ψ 7→ Ψ.
Indeed, Hα satisfies the relation (11.5) and it is easy to see that

H−α = THαT . (11.6)

This reflects the PT-symmetry (11.1) of our problem, with P being defined by (PΨ)(x) := Ψ(x1, d− x2).
An important property of an operator H in a Hilbert space H being m-sectorial is that it is closed. Then,

in particular, the spectrum σ(H) is well defined as the set of complex points z such that H − z is not bijective
as the operator from D(H) to H. Furthermore, its spectrum is contained in a sector of complex numbers z
such that | arg(z − γ)| 6 θ with some γ ∈ R and θ ∈ [0, π/2). In our case, however, we are able to establish a
stronger result

σ(Hα) ⊆ Ξα :=
{
z ∈ C : Re z > 0 , | Im z| 6 2 ‖α‖L∞(R)

√
Re z

}
. (11.7)

This follows directly from Lemma 11.1 on which the proof of Theorem 11.1 is based (cf the end of Section 11.3
for more details). Consequently, the resolvent set ρ(Hα) := C \ σ(Hα) contains the complement of Ξα and we
have the bound

‖(Hα − z)−1‖ ≤ 1/ dist(z, ∂Ξα) for all z ∈ C \ Ξα , (11.8)

where ‖ · ‖ denotes the operator norm in L2(Ω).
Given a closed operator H in a Hilbert space H, we use the following decomposition of the spectrum σ(H):

Definition 11.1. The point spectrum σp(H) equals the set of points λ such that H − λ is not injective. The
essential spectrum σe(H) equals the set of points λ such that H − λ is not Fredholm. Finally, the residual
spectrum σr(H) equals the set of points λ such that H−λ is injective but the range of H−λ is not dense in H.

Remark 11.1. 1. The reader is warned that various other types of essential spectra of non-self-adjoint operators
are used in the literature; cf [11, Chapt. IX] for five distinct definitions and a detailed description of their
properties. Among them we choose that of Wolf [27], which is in general larger than that of Kato [18, Sec. IV.5.6]
based on violating the semi-Fredholm property. (Recall that a closed operator in a Hilbert space is called
Fredholm if its range is closed and both its kernel and its cokernel are finite-dimensional, while it is called
semi-Fredholm if its range is closed and its kernel or its cokernel is finite-dimensional.) However, since our
operator Hα is T-self-adjoint, the majority of the different definitions coincide [11, Thm IX.1.6], in particular
the two above, and that is why we use the common notation σe(·) in this paper. Then our choice also coincides
with the definition of “continuous spectrum” as used for instance in the Glazman’s book [14].

2. We indeed have the decomposition (cf [14, Sec. I.1.1])

σ(H) = σp(H) ∪ σe(H) ∪ σr(H) ,

but note that there might be intersections on the right hand side. In particular, σe(H) contains eigenvalues of
infinite geometric multiplicity.

3. On the other hand, the definitions of point and residual spectra are standard and they form disjoint sub-
sets of σ(H). Recalling the general fact [18, Sec. V.3.1] that the orthogonal complement of the range of a
densely defined closed operator in a Hilbert space is equal to the kernel of its adjoint, we obtain the following
characterization of the residual spectrum in terms of the point spectrum of the operator and its adjoint:

σr(H) =
{
λ ∈ C | λ̄ ∈ σp(H

∗) & λ 6∈ σp(H)
}
. (11.9)

The T-self-adjointness of Hα immediately implies:

Corollary 11.1. Suppose the hypothesis of Theorem 11.1. Then

σr(Hα) = ∅ .

Proof. We repeat the proof sketched in Introduction. Since Hα is T-self-adjoint, it is easy to see that λ is an
eigenvalue of Hα (with eigenfunction Ψ) if, and only if, λ̄ is an eigenvalue of H∗

α (with eigenfunction Ψ). It is
then clear from the general identity (11.9) that the residual spectrum of Hα must be empty.
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The case of uniform boundary conditions, i.e. when α equals identically a constant α0, can be solved by
separation of variables (cf Section 11.4). We find

σ(Hα0 ) = σe(Hα0) = [µ2
0,+∞) , (11.10)

where the threshold µ2
0, with the notation

µ0 =

{
α0 if |α0| 6 π/d ,

π/d if |α0| > π/d ,
(11.11)

denotes the bottom of the spectrum of the “transverse” operator

−∆I
α0
ψ := −ψ′′,

ψ ∈ D(−∆I
α0
) :=

{
ψ ∈W 2

2 (I) | ψ′ + iα0ψ = 0 at ∂I
}
.

(11.12)

The operator −∆I
α0

was studied in [20]. Its spectrum is purely discrete and real:

σ(−∆I
α0
) = {µ2

j}∞j=0 , (11.13)

where µ0 has been introduced in (11.11),

µ1 =

{
α0 if |α0| > π/d ,

π/d if |α0| 6 π/d ,
and µj := πj/d for j > 2 .

Making the hypothesis
α0d/π 6∈ Z\{0} , (11.14)

the eigenvalues of −∆I
α0

are simple and the corresponding set of eigenfunctions {ψj}∞j=0 can be chosen as

ψj(x2) := cos(µjx2)− i
α0

µj
sin(µjx2) . (11.15)

We refer to Section 11.4.1 for more results about the operator −∆I
α0
.

Let us now turn to the non-trivial case of variable coupling function α. Among a variety of possible
situations, in this paper we restrict the considerations to local perturbations of the uniform case. Namely, we
always assume that the difference α− α0 is compactly supported.

First of all, in Section 11.5 we show that the essential component of the spectrum of Hα is stable under the
local perturbation of the uniform case:

Theorem 11.2. Let α− α0 ∈ C0(R) ∩W 1
∞(R) with α0 ∈ R. Then

σe(Hα) = [µ2
0,+∞) .

Notice that the essential spectrum as a set is independent of α0 as long as |α0| > π/d. This is a consequence
of the fact that our Hamiltonian is not Hermitian. On the other hand, it follows that the essential spectrum
is real. Recall that the residual spectrum is always empty due to Corollary 11.1. We do not have the proof of
the reality for the point spectrum, except for the particular case treated in the next statement:

Theorem 11.3. Let α ∈ C0(R) ∩W 1
∞(R) be an odd function. Then

σp(Hα) ⊂ R .

Summing up, under the hypotheses of this theorem the total spectrum is real (and in fact non-negative due
to (11.7)).

The next part of our results concerns the behavior of the point spectrum of Hα under a small perturbation
of α0. Namely, we consider the local perturbation of the form

α(x1) = α0 + ε β(x1) , (11.16)

where β ∈ C2
0 (R) and ε is a small positive parameter. In accordance with Theorem 11.2, in this case the

essential spectrum of Hα coincides with [µ2
0,+∞), and this is also the spectrum of Hα0 . Our main interest is

focused on the existence and asymptotic behavior of the eigenvalues emerging from the threshold µ2
0 due to the

perturbation of Hα0 by εβ.
First we show that the asymtotically Neumann case is in some sense exceptional:
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Theorem 11.4. Suppose α0 = 0. Let α be given by (11.16), where β ∈ C2
0 (R). Then the operator Hα has no

eigenvalues converging to µ2
0 as ε→ +0.

The problem of existence of the weakly-coupled eigenvalues is more subtle as long as α0 6= 0. To present
our results in this case, we introduce an auxiliary sequence of functions vj : R → R by

vj(x1) :=





− 1

2

∫

R

|x1 − t1|β(t1) dt1 if j = 0 ,

1

2
√
µ2
j − µ2

0

∫

R

e−
√
µ2
j−µ2

0|x1−t1|β(t1) dt1 if j > 1 .
(11.17)

Denoting 〈f〉 =
∫
R
f(x1) dx1 for any f ∈ L1(R), we introduce a constant τ , depending on β, d and α0, by

τ :=





2α2
0〈βv0〉+

2α0

d

∞∑

j=1

µ2
j〈βvj〉
µ2
j − µ2

0

tan
α0d+ jπ

2
if |α0| <

π

d
,

2α0π
2 cot α0d

2

(µ2
1 − µ2

0)d
3
〈βv1〉+

8π2

(µ2
1 − µ2

0)d
4

∞∑

j=1

µ2
2j〈βv2j〉
µ2
2j − µ2

1

if |α0| >
π

d
.

It will be shown in Section 11.6.3 that the series converge. Finally, we denote Ωa := Ω ∩ {x : |x1| < a} for any
positive a. Now we are in a position to state our main results about the point spectrum.

Theorem 11.5. Suppose |α0| < π/d. Let α be given by (11.16), where β ∈ C2
0 (R).

1. If α0〈β〉 < 0, there exists the unique eigenvalue λε of Hα converging to µ2
0 as ε → +0. This eigenvalue

is simple and real, and satisfies the asymptotic formula

λε = µ2
0 − ε2α2

0〈β〉2 + 2ε3α0τ〈β〉 + O(ε4) .

The associated eigenfunction Ψε can be chosen so that it satisfies the asymptotics

Ψε(x) = ψ0(x2) + O(ε) (11.18)

in W 2
2 (Ωa) for each a > 0, and behaves at infinity as

Ψε(x) = e−
√
µ2
0−λε|x1|ψ0(x2) + O(e−

√
µ2
0−λε|x1|) , |x1| → +∞ . (11.19)

2. If α0〈β〉 > 0, the operator Hα has no eigenvalues converging to µ2
0 as ε→ +0.

3. If 〈β〉 = 0, and τ > 0, there exists the unique eigenvalue λε of Hα converging to µ2
0 as ε → +0. This

eigenvalue is simple and real, and satisfies the asymptotics

λε = µ2
0 − ε4τ2 + O(ε5) . (11.20)

The associated eigenfunction can be chosen so that the relations (11.18) and (11.19) hold true.

4. If 〈β〉 = 0, and τ < 0, the operator Hα has no eigenvalues converging to µ2
0 as ε→ +0.

Theorem 11.6. Suppose |α0| > π/d and (11.14). Let α be given by (11.16) where β ∈ C2
0 (R).

1. If τ > 0, there exists the unique eigenvalue λε of Hα converging to µ0 as ε → +0, it is simple and real,
and satisfies the asymptotics (11.20). The associated eigenfunction can be chosen so that it obeys (11.18)
and (11.19).

2. If τ < 0, the operator Hα has no eigenvalues converging to µ2
0 as ε→ +0.

In accordance with Theorem 11.5, in the case |α0| < π/d the existence of a weakly-coupled eigenvalue is
determined by the sign of the constant α0 and that of the mean value of β. In the language of Schrödinger
operators (treating α as a singular potential), it means that a given non-trivial β plays the role of an effective
interaction, attractive or repulsive depending upon the sign of α0. It is instructive to compare this situation
with a self-adjoint waveguide [6], where a similar effective interaction is induced by a local deformation of the
boundary. If the boundary is deformed “outward in the mean”, a weakly-coupled bound state exists, while it
is absent if the deformation is “inward-pointing in the mean”.

As usual, the critical situation 〈β〉 = 0 is much harder to treat. In our case, one has to check the sign of τ
to decide whether a weakly-coupled bound state exists. However, it can be difficult to sum up the series in the
definition of τ . This is why in our next statement we provide a sufficient condition guaranteeing that τ > 0.
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Proposition 11.1. Suppose 0 < |α0| < π/d. Let α be given by (11.16) where β(x1) = β̃ (x1/l), β̃ ∈ C2
0 (R),

〈β̃〉 = 0, l > 0. If

∥∥∥∥
∫

R

sgn(· − t1)β̃(t1) dt1

∥∥∥∥
2

L2(R)

>
4 cot α0d

2

l2 α0d

[
µ2
1

(µ2
1 − µ2

0)
2
+

d2

16π2
+
d2

48

]
‖β̃‖2L2(R)

,

then τ > 0.

The meaning of this proposition is that for each positive |α0| < π/d the perturbation εβ in the critical
regime 〈β〉 = 0 produces a weakly-coupled eigenvalue near the threshold of the essential spectrum provided
that the support of β is wide enough. This is in perfect agreement with the critical situation of [6]; according to
higher-order asymptotics derived in [5], here the weakly-coupled bound state exists if, and only if, the critical
boundary deformation is smeared enough.

In the case |α0| > π/d a sufficient condition guaranteeing τ > 0 is given in

Proposition 11.2. Suppose |α0| > π/d and (11.14). Let α be given by (11.16) where β ∈ C2
0 (R). Let m be

the maximal positive integer such that µ2m < |α0|. If

α0〈βv1〉 cot
α0d

2
>

4

d

m∑

j=1

µ2
2j〈βv2j〉
µ2
1 − µ2

2j

, (11.21)

then τ > 0.

In Section 11.6.6 we will show that the inequality (11.21) makes sense. Namely, it will be proved that there
exists β such that this inequality holds true, provided that α0 is close enough to µ2 but greater than this value.

Remark 11.2. It is useful to make the hypothesis (11.14), since it implies that the “transverse” eigenfunc-
tions (11.15) form a basis (cf (11.24)) and makes it therefore possible to obtain a relatively simple decomposition
of the resolvent of Hα0 (cf Lemma 11.5). However, it is rather a technical hypothesis for many of the spectral
results (e.g., Theorem 11.2). On the other hand, it seems that the hypothesis is rather crucial for the statement
of Theorem 11.6 and Proposition 11.2.

If the hypothesis (11.14) is omitted and α0 = πℓ/d, with ℓ ∈ Z\{0}, the threshold of the essential spectrum
is π2/d2. This point corresponds to a simple eigenvalue of the “transverse” operator −∆I

α0
only if |ℓ| > 1, while

it is a double eigenvalue if |ℓ| = 1. Under the hypothesis of Theorems 11.5 and 11.6, the threshold is always
a simple eigenvalue of −∆I

α0
, and the proof of the theorems actually employs some sort of “non-degenerate”

perturbation theory. In view of this, we conjecture that in the degenerate case |ℓ| = 1 two simple eigenvalues
(possibly forming a complex conjugate pair) or one double (real) eigenvalue can emerge from the threshold of
the essential spectrum for a suitable choice of β, while in the case |ℓ| > 1 there can be at most one simple
emerging eigenvalue. The question on the asymptotic behaviour of these eigenvalues constitutes an interesting
open problem.

11.3 Definition of the operator

In this section we prove Theorem 11.1. Our method is based on the theory of sectorial sesquilinear forms [18,
Sec. VI].

In the beginning we assume only that α is bounded. Let hα be the sesquilinear form defined in L2(Ω) by
the domain D(hα) :=W 1

2 (Ω) and the prescription hα := h1α + ih2α with

h1α(Ψ,Φ) :=

∫

Ω

∇Ψ(x) · ∇Φ(x) dx ,

h2α(Ψ,Φ) :=

∫

R

α(x1)Ψ(x1, d)Φ(x1, d) dx1 −
∫

R

α(x1)Ψ(x1, 0)Φ(x1, 0) dx1 ,

for any Ψ,Φ ∈ D(hα). Here the dot denotes the scalar product in R2 and the boundary terms should be
understood in the sense of traces [1]. We write hα[Ψ] := hα(Ψ,Ψ) for the associated quadratic form, and
similarly for h1α and h2α.

Clearly, hα is densely defined. It is also clear that the real part h1α is a densely defined, symmetric, positive,
closed sesquilinear form (it is associated to the self-adjoint Neumann Laplacian in L2(Ω)). Of course, hα itself
is not symmetric unless α vanishes identically; however, it can be shown that it is sectorial and closed. To see
it, one can use the perturbation result [18, Thm. VI.1.33] stating that the sum of a sectorial closed form with
a relatively bounded form is sectorial and closed provided the relative bound is less than one. In our case, the
imaginary part h2α plays the role of the small perturbation of h1α by virtue of the following result.
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Lemma 11.1. Let α ∈ L∞(R). Then h2α is relatively bounded with respect to h1α, with

∣∣h2α[Ψ]
∣∣ 6 2 ‖α‖L∞(R) ‖Ψ‖L2(Ω)

√
h1α[Ψ] 6 δ h1α[Ψ] + δ−1 ‖α‖2L∞(R) ‖Ψ‖2L2(Ω)

for all Ψ ∈ W 1
2 (Ω) and any positive number δ.

Proof. By density [1, Thm. 3.18], it is sufficient to prove the inequality for restrictions to Ω of functions Ψ in
C∞

0 (R2). Then we have

∣∣h2α[Ψ]
∣∣ =

∣∣∣∣
∫

Ω

α(x1)
∂|Ψ(x)|2
∂x2

dx

∣∣∣∣ 6 2 ‖α‖L∞(R) ‖Ψ‖L2(Ω) ‖∂2Ψ‖L2(Ω) ,

which gives the first inequality after applying ‖∂2Ψ‖L2(Ω) 6 ‖∇Ψ‖L2(Ω). The second inequality then follows at
once by means of the Cauchy inequality with δ.

In view of the above properties, Theorem VI.1.33 in [18], and the first representation theorem [18, Thm. VI.2.1],
there exists the unique m-sectorial operator H̃α in L2(Ω) such that hα(Ψ,Φ) = (H̃αΨ,Φ) for all Ψ ∈ D(H̃α) ⊂
D(hα) and Φ ∈ D(hα), where

D(H̃α) =
{
Ψ ∈ W 1

2 (Ω)| ∃F ∈ L2(Ω), ∀Φ ∈W 1
2 (Ω), hα(Ψ,Φ) = (F,Φ)L2(Ω)

}
.

By integration by parts, it is easy to check that if Ψ ∈ D(Hα), it follows that Ψ ∈ D(H̃α) with F = −∆Ψ.
That is, H̃α is an extension of Hα as defined in (11.4). It remains to show that actually Hα = H̃α in order to
prove Theorem 11.1. However, the other inclusion holds as a direct consequence of the representation theorem
and the following result.

Lemma 11.2. Let α ∈ W 1
∞(R). For each F ∈ L2(Ω), a generalized solution Ψ to the problem

{
−∆Ψ = F in Ω ,

∂2Ψ+ iαΨ = 0 on ∂Ω ,
(11.22)

belongs to D(Hα).

Proof. For any function Ψ ∈W 1
2 (Ω), we introduce the difference quotient

Ψδ(x) :=
Ψ(x1 + δ, x2)−Ψ(x)

δ
,

where δ is a small real number. By standard arguments [23, Ch. III, Sec. 3.4, Thm. 3], the estimate

‖Ψδ‖L2(Ω) 6 ‖Ψ‖W 1
2 (Ω) (11.23)

holds true for all δ small enough. If Ψ is a generalized solution to (11.22), then Ψδ is a generalized solution to
the problem {

−∆Ψδ = Fδ in Ω ,

∂2Ψδ + iαΨδ = g on ∂Ω ,

where g denotes the trace of the function x 7→ −iαδ(x1)Ψ(x1+δ, x2) to the boundary ∂Ω. Using the “integration-
by-parts” formula for the difference quotients, (Fδ,Φ)L2(Ω) = −(F,Φ−δ)L2(Ω), the integral identity correspond-
ing to the weak formulation of the boundary value problem for Ψδ can be written as follows

hα(Ψδ,Φ) = −(F,Φ−δ)L2(Ω) − i

∫

R

αδ(x1)Ψ(x1 + δ, d)Φ(x1, d) dx1

+ i

∫

R

αδ(x1)Ψ(x1 + δ, 0)Φ(x1, 0) dx1 ,

where Φ ∈ W 1
2 (Ω) is arbitrary. Letting Φ = Ψδ, and using the embedding ofW 1

2 (Ω) in L2(∂Ω), the boundedness
of αδ, Lemma 11.1 and (11.23), the above identity yields

‖Ψδ‖W 1
2 (Ω) 6 C ,

where the constant C is independent of δ. Employing this estimate and proceeding as in the proof of Item b)
of Theorem 3 in [23, Ch. III, Sec. 3.4], one can show easily that ∂1Ψ ∈ W 1

2 (Ω). Hence, ∂11Ψ ∈ L2(Ω) and
∂12Ψ ∈ L2(Ω).
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If follows from standard elliptic regularity theorems (see, e.g., [23, Ch. IV, Sec. 2.2]) that Ψ ∈ W 2
2,loc(Ω).

Hence, the first of the equations in (11.22) holds true a.e. in Ω. Thus, ∂22Ψ = −F − ∂11Ψ ∈ L2(Ω), and
therefore Ψ ∈W 2

2 (Ω).
It remains to check the boundary condition for Ψ. Integrating by parts, one has

(F,Φ)L2(Ω) =hα(Ψ,Φ) = (−∆Ψ,Φ)L2(Ω)

+

∫

R

[
∂2Ψ(x1, d) + iα(x1)Ψ(x1, d)

]
Φ(x1, d) dx1

−
∫

R

[
∂2Ψ(x1, 0) + iα(x1)Ψ(x1, 0)

]
Φ(x1, 0)dx1

for any Φ ∈ W 1
2 (Ω). This implies the boundary conditions because −∆Ψ = F a.e. in Ω and Φ is arbitrary.

Summing up the results of this section, we get

Proposition 11.3. Let α ∈W 1
∞(R). Then H̃α = Hα.

Theorem 11.1 follows as a corollary of this proposition. In particular, the latter implies that Hα is m-
sectorial. Moreover, by the first representation theorem, we know that the adjoint H̃∗

α is simply obtained as
the operator associated with h∗α = h−α. This together with Proposition 11.3 proves (11.5).

Let us finally comment on the results (11.7) and (11.8). As a direct consequence of the first inequality
of Lemma 11.2, we get that the numerical range of Hα(= H̃α), defined as the set of all complex numbers
(HαΨ,Ψ)L2(Ω) where Ψ changes over all Ψ ∈ D(Hα) with ‖Ψ‖L2(Ω) = 1, is contained in the set Ξα. Hence, in
view of general results about numerical range (cf [18, Sec. V.3.2]), the exterior of the numerical range of Hα

is a connected set, and one indeed has (11.7) and (11.8).

11.4 The unperturbed waveguide

In this section we consider the case of uniform boundary conditions in the sense that α is supposed to be
identically equal to a constant α0 ∈ R. We prove the spectral result (11.10) by using the fact that Hα0 can be
decomposed into a sum of the “longitudinal” operator −∆R, i.e. the self-adjoint Laplacian in L2(R), and the
“transversal” operator −∆I

α0
defined in (11.12).

11.4.1 The transversal operator

We summarize here some of the results established in [20] and refer to that reference for more details.
The adjoint of −∆I

α0
is simply obtained by the replacement α0 7→ −α0, i.e., (−∆I

α0
)∗ = −∆I

−α0
. Conse-

quently, (−∆I
α0
)∗ has the same spectrum (11.13) and the corresponding set of eigenfunctions {φj}∞j=0 can be

chosen as
φj(x2) := Aj ψj(x2) ,

where {ψj}∞j=0 have been introduced in (11.15) and Aj are normalization constants. Choosing

Aj0 :=
2iα0

1− exp (−2iα0d)
, Aj1 :=

2µ2
1

(µ2
1 − α2

0)d
, Aj :=

2µ2
j

(µ2
j − α2

0)d
,

where j > 2, (j0, j1) = (0, 1) if |α0| < π/d and (j0, j1) = (1, 0) if |α0| > π/d (if α0 = 0, the fraction in the
definition of Aj0 should be understood as the expression obtained after taking the limit α0 → 0), we have the
biorthonormality relations

∀j, k ∈ N, (ψj , φk)L2(I) = δjk

together with the biorthonormal-basis-type expansion (cf [20, Prop. 4])

∀ψ ∈ L2(I) , ψ =

∞∑

j=0

(ψ, φj)L2(I) ψj . (11.24)

Let us show that (11.24) can be extended to L2(Ω).

Lemma 11.3. For any Ψ ∈ L2(Ω), the identity

Ψ(x) =

∞∑

j=0

Ψj(x1)ψj(x2) with Ψj(x1) :=
(
Ψ(x1, ·), φj

)
L2(I)

holds true in the sense of L2(Ω)-norm.
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Proof. In view of (11.24), the series converges to Ψ in L2(I) for almost every x1 ∈ R. We use the dominated
convergence theorem to prove that the convergence actually holds in the norm of L2(Ω). To do so, it is sufficient
to check that the L2(I)-norm of the partial sums can be uniformly estimated by a function from L2(R).

Let us introduce χDj (x2) := sin(πjx2/d) and χ
N
j (x2) := cos(πjx2/d) for j > 1, and χN0 (x2) := 1/

√
2. We

recall that {
√
2/dχDj }∞j=1 and {

√
2/dχNj }∞j=0 form complete orthonormal families in L2(I). Expressing ψj in

terms of χNj and χDj for j > 2, and using the orthonormality, we have (n > 2)

∥∥∥
n∑

j=2

Ψj(x1)ψj

∥∥∥
2

L2(I)
6 d
∥∥∥

n∑

j=2

Ψj(x1)χ
N
j

∥∥∥
2

L2(I)
+ dα2

0

∥∥∥
n∑

j=2

Ψj(x1)χ
D
j /µj

∥∥∥
2

L2(I)

= d

n∑

j=2

|Ψj(x1)|2 + dα2
0

n∑

j=2

|Ψj(x1)|2/µ2
j

6 d

(
1 +

α2
0

µ2
2

) ∞∑

j=2

|Ψj(x1)|2 . (11.25)

Next, writing (j > 2)

Ψj =

√
d

2
Aj

(
ΨNj − i

α0

µj
ΨDj

)
with Ψ♯j(x1) :=

(
Ψ(x1, ·), χ♯j

)
L2(I)

,

noticing that |Aj | 6 c (valid for all j > 0) where c is a constant depending uniquely on |α0| and d, and using
the Parseval identities for χNj and χDj , we obtain

∞∑

j=2

|Ψj(x1)|2 6 c2d

∞∑

j=2

(
|ΨNj |2 +

α2
0

µ2
j

|ΨDj |2
)

6 c2d

(
1 +

α2
0

µ2
2

)
‖Ψ(x1, ·)‖2L2(I)

. (11.26)

At the same time, using just the estimates |ψj |2 6 (1 + α2
0/µ

2
j) valid for all j > 0, we readily get

∥∥∥
1∑

j=0

Ψj(x1)ψj

∥∥∥
L2(I)

6 2 c d

(
1 +

α2
0

µ2
0

)
‖Ψ(x1, ·)‖L2(I) . (11.27)

Summing up,
∥∥∥

n∑

j=0

Ψj(x1)ψj

∥∥∥
L2(I)

6 C ‖Ψ(x1, ·)‖L2(I) ∈ L2(R) ,

where C is a constant independent of n, and the usage of the dominated convergence theorem is justified.

11.4.2 Spectrum of the unperturbed waveguide

First we show that the spectrum of Hα0 is purely essential. Since the residual spectrum is always empty due
to Corollary 11.1, it is enough to show that there are no eigenvalues.

Proposition 11.4. Let α0 ∈ R satisfy (11.14). Then

σp(Hα0) = ∅ .

Proof. Suppose that Hα0 possesses an eigenvalue λ with eigenfunction Ψ. Multiplying the eigenvalue equation
with φj and integrating over I, we arrive at the equations

−Ψ′′
j = (λ− µ2

j)Ψj in R , j > 0 ,

where Ψj are the coefficients of Lemma 11.3. Since Ψj ∈ L2(R) due to Fubini’s theorem, each of the equations
has just a trivial solution. This together with Lemma 11.3 yields Ψ = 0, a contradiction. That is, the point
spectrum of Hα0 is empty.

Remark 11.3. Regardless of the technical hypothesis (11.14), the set of isolated eigenvalues of Hα0 is always
empty. This follows from Proposition 11.4 and the fact that α0 7→ Hα0 forms a holomorphic family of operators
[18, Sec. VII.4].



192 II Waveguides

It is well known that the spectrum of the “longitudinal” operator −∆R is also purely essential and equal
to the semi-axis [0,+∞). In view of the separation of variables, it is reasonable to expect that the (essential)
spectrum of Hα0 will be given by that semi-axis shifted by the first eigenvalue of −∆I

α0
. First we show that

the resulting interval indeed belongs to the spectrum of Hα0 .

Lemma 11.4. Let α0 ∈ R. Then [µ2
0,+∞) ⊆ σe(Hα0).

Proof. Since the spectrum of Hα0 is purely essential, it can be characterized by means of singular sequences
[11, Thm. IX.1.3] (it is in fact an equivalent definition of another type of essential spectrum, which is in general
intermediate between the essential spectra due to Wolf and Kato, and therefore coinciding with them in our
case, cf Remark 11.1). That is, λ ∈ σe(Hα0) if, and only if, there exists a sequence {un}∞n=1 ⊂ D(Hα0)
such that ‖un‖L2(Ω) = 1, un ⇀ 0 and ‖Hα0un − λun‖L2(Ω) → 0 as n → ∞. Let {ϕn}∞n=1 be a singular

sequence of −∆R corresponding to a given z ∈ [0,+∞). Then it is easy to verify that un defined by un(x) :=
ϕn(x1)ψ0(x2)/‖ψ0‖L2(I) forms a singular sequence of Hα0 corresponding to z + µ2

0.

To get the opposite inclusion, we employ the fact that the biorthonormal-basis-type relations (11.24) are
available. This enables us to decompose the resolvent of Hα0 into the transverse biorthonormal-basis.

Lemma 11.5. Let α0 ∈ R satisfy (11.14). Then C \ [µ2
0,+∞) ⊆ ρ(Hα0) and for any z ∈ C \ [µ2

0,+∞) we have

(Hα0 − z)−1 =

∞∑

j=0

(−∆R + µ2
j − z)−1Bj .

Here Bj is a bounded operator on L2(Ω) defined by

(BjΨ)(x) :=
(
Ψ(x1, ·), φj

)
L2(I)

ψj(x2) , Ψ ∈ L2(Ω) ,

and (−∆R + µ2
j − z)−1 abbreviates (−∆R + µ2

j − z)−1 ⊗ 1 on L2(R)⊗ L2(I) ≃ L2(Ω).

Proof. Put z ∈ C\ [µ2
0,+∞). For every Ψ ∈ L2(Ω) and all j > 0 we denote Uj := (−∆R+µ2

j −z)−1Ψj ∈ L2(R),
where Ψj are defined in Lemma 11.3. It is clear that

‖Uj‖L2(R) 6
‖Ψj‖L2(R)

dist
(
z, [µ2

j ,+∞)
) 6 C

‖Ψj‖L2(R)

j2 + 1
, ‖U ′

j‖L2(R) 6 C
‖Ψj‖L2(R)√

j2 + 1
, (11.28)

where C is a constant depending uniquely on |α0|, d and z; the second inequality follows from the identity
‖U ′

j‖2L2(R)
+(µ2

j−z)‖Uj‖2L2(R)
= (Ψj , Uj)L2(R). Using (11.28) and estimates of the type (11.27), it is readily seen

that each function Rj : x 7→ Uj(x1)ψj(x2) belongs to W
1
2 (Ω). We will show that it is the case for their infinite

sum too. Firstly, a consecutive use of (11.25), the first inequality of (11.28) and (11.26) together with Fubini’s
theorem implies ‖∑n

j=2 Rj‖L2(Ω) 6 K ‖Ψ‖L2(Ω), where K is a constant independent of n > 2. Secondly, a
similar estimate for the partial sum of ∂1Rj can be obtained in the same way, provided that one uses the second
inequality of (11.28) now. Finally, since the derivative of ψj as well can be expressed in terms of χNj and χDj
introduced in the proof of Lemma 11.3, a consecutive use of the estimates of the type (11.25) and the first
inequality of (11.28) together with Fubini’s theorem implies

∥∥∥
n∑

j=2

∂2Rj

∥∥∥
2

L2(Ω)
6 d

n∑

j=2

(α2
0 + µ2

j )‖Uj‖2L2(R)
6 dC2

n∑

j=2

α2
0 + µ2

j

(j2 + 1)2
‖Ψj‖2L2(R)

;

here the fraction in the upper bound forms a bounded sequence in j, so that we may continue to estimate
as above using (11.26) together with Fubini’s theorem again. Summing up, the series

∑∞
j=0 Rj converges in

W 1
2 (Ω) to a function R and

‖R‖W 1
2 (Ω) 6 K̃ ‖Ψ‖L2(Ω) ,

where K̃ depends uniquely on |α0|, d and z. Employing this fact and the definition of Uj , one can check
easily that R satisfies the identity hα0(R,Φ) − z(R,Φ)L2(Ω) = (Ψ,Φ)L2(Ω) for all Φ ∈ W 1

2 (Ω). It implies that
R ∈ D(Hα0) and (Hα0 − z)R = Ψ, i.e., R = (Hα0 − z)−1Ψ.

Lemmata 11.4 and 11.5 yield

Proposition 11.5. Let α0 ∈ R. Then
σe(Hα0) = [µ2

0,+∞) .
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Proof. In view of the lemmata, the result holds for every α0 ∈ R except for a discrete set of points comple-
mentary to the hypothesis (11.14). However, these points can be included by noticing that α0 7→ Hα0 forms a
holomorphic family of operators (cf Remark 11.3).

Proposition 11.5 and Proposition 11.4 together with Remark 11.3 imply that the spectrum of Hα0 is real
and (11.10) holds true for every α0 ∈ R.

Remark 11.4. It follows from (11.10) that the spectrum of Hα0 is equal to the sum of the spectra of −∆R and
−∆I

α0
. This result could alternatively be obtained by using a general theorem about the spectrum of tensor

products [25, Thm. XIII.35] and the fact that the one-dimensional operators generate bounded holomorphic
semigroups. However, we do not use this way of proof since Lemma 11.5 is employed not only in the proof
of (11.10) but also in the proofs of Theorems 11.5 and 11.6.

11.5 Stability of the essential spectrum

In this section we show that the essential spectrum is stable under a compactly supported perturbation of the
boundary conditions. In fact, we will establish a stronger result, namely that the difference of the resolvents
of Hα and Hα0 is a compact operator. As an auxiliary result, we shall need the following lemma.

Lemma 11.6. Let α0 ∈ R and ϕ ∈ L2(∂Ω). There exist positive constants c and C, depending on d and |α0|,
such that any solution Ψ ∈W 1

2 (Ω) of the boundary value problem
{

(−∆− z)Ψ = 0 in Ω ,

(∂2 + iα0)Ψ = ϕ on ∂Ω ,
(11.29)

with any z 6 −c, satisfies the estimate

‖Ψ‖W 1
2 (Ω) 6 C ‖ϕ‖L2(∂Ω) . (11.30)

Proof. Multiplying the first equation of (11.29) by Ψ and integrating over Ω, we arrive at the identity

‖∇Ψ‖2 − z ‖Ψ‖2 + iα0

∫

∂Ω

ν2 |Ψ|2 −
∫

∂Ω

ν2 ϕΨ = 0 , (11.31)

where ν2 denotes the second component of the outward unit normal vector to ∂Ω. Using the Schwarz and
Cauchy inequalities together with |ν2| = 1, we have

∣∣∣∣
∫

∂Ω

ν2 |Ψ|2
∣∣∣∣ =

∣∣∣∣
∫

Ω

∂2|Ψ|2
∣∣∣∣ = 2 |Re (Ψ, ∂2Ψ)| 6 δ−1 ‖Ψ‖2 + δ ‖∇Ψ‖2 ,

2

∣∣∣∣
∫

∂Ω

ν2 ϕΨ

∣∣∣∣ 6 δ−1 ‖ϕ‖L2(∂Ω) + δ ‖Ψ‖L2(∂Ω) ,

with any δ ∈ (0, 1). Here ‖Ψ‖L2(∂Ω) 6 C ‖Ψ‖W 1
2 (Ω), where C is the constant coming from the embedding of

W 1
2 (Ω) in L2(∂Ω) (depending only on d in our case). Choosing now sufficiently small δ and sufficiently large

negative z, it is clear that (11.31) can be cast into the inequality (11.30).

Now we are in a position to prove

Proposition 11.6. Let α− α0 ∈ C0(R) ∩W 1
∞(R) with α0 ∈ R. Then

(Hα − z)−1 − (Hα0 − z)−1 is compact in L2(Ω)

for any z ∈ ρ(Hα) ∩ ρ(Hα0).

Proof. It is enough to prove the result for one z in the intersection of the resolvent sets of Hα and Hα0 ,
and we can assume that the one is negative (since the operators are m-accretive). Given Φ ∈ L2(Ω), let
Ψ := (Hα − z)−1Φ − (Hα0 − z)−1Φ. It is easy to check that Ψ is the unique solution to (11.29) with ϕ :=
−i(α − α0)T (Hα − z)−1Φ, where T denotes the trace operator from W 2

2 (Ω) ⊃ D(Hα) to W 1
2 (∂Ω). By virtue

of Lemma 11.6, it is therefore enough to show that (α−α0)T (Hα − z)−1 is a compact operator from L2(Ω) to
L2(∂Ω). However, this property follows from the fact that W 1

2 (∂Ω) is compactly embedded in L2(ω) for every
bounded subset ω of ∂Ω, due to the Rellich-Kondrachov theorem [1, Sec. VI].

Corollary 11.2. Suppose the hypothesis of Proposition 11.6. Then

σe(Hα) = [µ2
0,+∞) .

Proof. Our definition of essential spectrum is indeed stable under relatively compact perturbations [11, Thm. IX.2.4].
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11.6 Point spectrum

In this section we prove Theorems 11.3–11.6 and Propositions 11.1–11.2. In the proofs of Theorems 11.4–
11.6 we follow the main ideas of [13]. Throughout this section we assume that the identity (11.16) and the
assumption (11.14) hold true.

11.6.1 Proof of Theorem 11.3

Any eigenvalue of infinite geometric multiplicity belongs to the essential spectrum which is real by Theorem 11.2.
Let λ be an eigenvalue of Hα of finite geometric multiplicity, and Ψ be an associated eigenfunction. Using
that α is of compact support, it is easy to check that x 7→ Ψ(−x1, d−x2) is an eigenfunction associated with λ,
too. The geometric multiplicity of λ being finite, we conclude that at least one of the eigenfunction associated
with λ satisfies |Ψ(x)| = |Ψ(−x1, d−x2)|. Taking this identity into account, integrating by parts and using the
hypothesis that α is odd, we obtain

λ ‖Ψ‖2L2(Ω) = h1α[Ψ] + ih2α[Ψ] = ‖∇Ψ‖2L2(Ω) ,

which implies that λ is real.

11.6.2 Auxiliary results

Let a function F ∈ L2(Ω) be such that suppF ⊆ Ωb for fixed b > 0. We consider the boundary value problem

{
−∆U = (µ2

0 − k2)U + F in Ω ,

(∂2 + iα0)U = 0 on ∂Ω ,
(11.32)

where the parameter k ∈ C ranges in a small neighbourhood of zero. The problem can be solved by separation
of variables justified in Lemma 11.5 whenever k2 6∈ (−∞, 0]. Moreover, it is possible to extend the solution
of (11.32) analytically with respect to k. Namely, the following statement is valid.

Lemma 11.7. For all small k ∈ C there exists the unique solution to (11.32) satisfying

U(x; k) = c±(k)e
−k|x1|ψ0(x2) + O

(
e−Re

√
µ2
1−µ2

0+k
2|x1|) , (11.33)

in the limit x1 → ±∞, where c±(k) are constants. The mapping T1(k) defined as T1(k)F := U is a bounded
linear operator from L2(Ωb) into W

2
2 (Ωa) for each a > 0. This operator is meromorphic with respect to k and

has the simple pole at zero,

T1(k)F =
ψ0

2k

∫

Ω

F (x)φ0(x2) dx + T2(k)F,

where for each a > 0 the operator T2(k) : L2(Ωb) → W 2
2 (Ωa) is linear, bounded and holomorphic with respect

to k small enough. The function Û := T2(0)F is the unique solution to the problem





−∆Û = µ2
0 Û + F in Ω, (∂2 + iα0) Û = 0 on ∂Ω,

Û(x) = −ψ0(x2)

2

∫

Ω

|x1 − t1|F (t)φ0(t2) dt+ O
(
e−

√
µ2
1−µ2

0|x1|), |x1| → +∞,
(11.34)

given by the formula

Û(x) =
∞∑

j=0

Ûj(x1)ψj(x2) (11.35)

with

Ûj(x1) :=





−1

2

∫

Ω

|x1 − t1|F (t)φ0(t2) dt if j = 0 ,

1

2
√
µ2
j − µ2

0

∫

Ω

e−
√
µ2
j−µ2

0|x1−t1|F (t)φj(t2) dt if j > 1 .
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The lemma is proved in the same way as Lemma 3.1 in [4].
Let Mε be the operator of multiplication by the function x 7→ e−iεβ(x1)x2 . It is straightforward to check

that Hα is unitarily equivalent to the operator

M−1
ε HαMε = Hα0 − εLε ,

where

Lε = −2iβ′(x1)x2
∂

∂x1
− 2iβ(x1)

∂

∂x2
−
(
εβ2(x1) + iβ′′(x1)x2 + εβ′2(x1)x

2
2

)
.

We observe that the coefficients of Lε are compactly supported and that their supports are bounded uniformly
in ε.

It follows that the eigenvalue equation for Hα is equivalent to

Hα0U = λU + εLεU,

where an eigenfunction Ψ of Hα satisfies Ψ =MεU . It can be rewritten as

{
−∆U = (µ2

0 − k2)U + εLεU in Ω ,

(∂2 + iα0)U = 0 on ∂Ω ,
(11.36)

where we have replaced λ by µ2
0 − k2.

Now, let λ be an eigenvalue for Hα close to µ2
0. As x1 → ±∞, the solution U to (11.36) satisfies the

asymptotic formula (11.33), where k =
√
µ2
0 − λ and the branch of the root is specified by the requirement

Re k > 0. Such restriction guarantees that the function U together with their derivatives decays exponentially
at infinity and thus belongs to W 2

2 (Ω). Hence, the set of all k for which the problem (11.36), (11.33) has a
nontrivial solution includes the set of all values of k related to the eigenvalues of Hα by the relation λ = µ2

0−k2.
Thus, it is sufficient to find all small k for which a nontrivial solution to (11.36), (11.33) exists and to check
whether the solution belongs to W 2

2 (Ω). If it does, the corresponding number λ = µ2
0 − k2 is an eigenvalue

of Hα.
We introduce the numbers

k1(ε) :=
1

2

∫

Ω

φ0(x2)(Lεψ0)(x) dx , k2(ε) :=
1

2

∫

Ω

φ0(x2)
(
LεT2(0)Lεψ0

)
(x) dx .

Basing on Lemma 11.7 and arguing in the same way as in [13, Sec. 2] one can prove easily the following
statement (see also [4, Sec. 4]).

Lemma 11.8. There exists the unique function ε 7→ k(ε) converging to zero as ε→ +0 for which the problem
(11.36), (11.33) has a nontrivial solution. It satisfies the asymptotics

k(ε) = εk1(ε) + ε2k2(ε) + O(ε3).

The associated nontrivial solution to (11.36), (11.33) is unique up to a multiplicative constant and can be chosen
so that it obeys (11.33) with

c±(k(ε)) = 1 + O(ε), ε→ +0, (11.37)

as well as
U(x; ε) = ψ0(x2) + O(ε)

in W 2
2 (Ωa) for each fixed a > 0.

11.6.3 Proof of Theorems 11.5 and 11.6

It follows from Lemma 11.8 that there is at most one simple eigenvalue of Hα converging to µ2
0 as ε → +0. A

sufficient condition guaranteeing the existence of such eigenvalue is the inequality

Re
(
k1(ε) + εk2(ε)

)
> C(ε) ε2, C(ε) → +∞, ε→ +0, (11.38)

that is implied by (11.33), (11.37), the definition of the operator Mε and the assumption on β. The sufficient
condition of the absence of the eigenvalue is the opposite inequality

Re
(
k1(ε) + εk2(ε)

)
6 −C(ε) ε2, C(ε) → +∞, ε→ +0. (11.39)

Thus, we just need to calculate the numbers k1 and k2 to prove the theorems.
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It is easy to compute the coefficient k1,

k1(ε) =

{
−α0〈β〉 + k′1(0) ε if |α0| < π/d ,

k′1(0) ε if |α0| > π/d ,
(11.40)

where

k′1(0) := −1

2

∫

Ω

ψ0(x2)φ0(x2)
(
β2(x1) + β′2(x1)x

2
2

)
dx .

It is more complicated technically to calculate k2. This coefficient depends on ε as well; to prove the theorem
we need the leading term of its asymptotics as ε → +0. We begin the calculations by observing an obvious
identity,

LεU = L0U + O(ε) ,

where

(L0U)(x) :=− 2iβ′(x1)x2
∂U(x)

∂x1
− 2iβ(x1)

∂U(x)

∂x2
− iβ′′(x1)x2U(x)

= i
(
β(x1)x2∆U(x) −∆

[
β(x1)x2U(x)

])
,

which is valid for each U ∈W 2
2,loc(Ω) in L2(Ωa), if a is large enough and independent of ε. Thus,

k2(ε) = k2(0) + O(ε), where k2(0) =
1

2

∫

Ω

φ0(x2)
(
L0T2(0)L0ψ0

)
(x) dx.

We denote Û := T2(0)F̂ and F̂ := L0ψ0. Taking into account the problem (11.34) for Û and integrating by
parts, we obtain

k2(0) =
i

2

∫

Ω

φ0(x2)
(
β(x1)x2∆Û(x) −∆

[
β(x1)x2Û(x)

])
dx

= − i

2

∫

Ω

φ0(x2)(∆ + µ2
0)β(x1)x2Û(x) dx− i

2

∫

Ω

φ0(x2)β(x1)x2F̂ (x) dx

= − i

2

〈
β
[
φ0(d)Û (·, d)− φ0(0)Û(·, 0)

]〉
− i

2

∫

Ω

φ0(x2)β(x1)x2F̂ (x) dx . (11.41)

The last term on the right hand side of this identity is calculated by integration by parts,

− i

2

∫

Ω

φ0(x2)β(x1)x2F̂ (x) dx

= −1

2

∫

Ω

φ0(x2)β(x1)x2
[
2β(x1)ψ

′
0(x2) + β′′(x1)x2ψ0(x2)

]
dx

= −1

2

∫

Ω

β2(x1)x2
(
φ0ψ0

)′
(x2) dx+

1

2

∫

Ω

x22β
′2(x1)φ0(x2)ψ0(x2) dx

= −φ0(d)ψ0(d)d

2
〈β2〉+ 1

2

∫

Ω

φ0(x2)ψ0(x2)
[
β2(x1) + β′2(x1)x

2
2

]
dx .

This formula, (11.40) and (11.41) yield

k1(ε) + εk2(ε) =

{
−εα0〈β〉+ ε2K + O(ε3) if |α0| < π/d ,

ε2K + O(ε3) if |α0| > π/d ,
(11.42)

where

K := − i

2

〈
β
[
φ0(d)Û (·, d)− φ0(0)Û(·, 0)

]〉
− φ0(d)ψ0(d)d

2
〈β2〉.

Thus, it remains to calculate K. In order to do it, we construct the function Û as the series (11.35).
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Case |α0| < π/d : Using the identity

F̂ (x) = −2iβ(x1)ψ
′
0(x2)− iβ′′(x1)x2ψ0(x2) ,

one can check that

F̂ (x) = −2α0β(x1)ψ0(x2)− iβ′′(x1)
∞∑

j=0

cjψj(x2) ,

Ûj(x1) =

{
ic0β(x1)− 2α0v0(x1) if j = 0 ,

icj
[
β(x1)− (µ2

j − µ2
0)vj(x1)

]
if j > 1 ,

where cj :=
∫
I
x2ψ0(x2)φj(x2)dx2 and the functions vj were introduced in (11.17). Substituting now the

formulae for Ûj and (11.35) into (11.42), we arrive at the following chain of identities

K =
1

2

[ ∞∑

j=0

cjψj(x2)φ0(x2)
]x2=d

x2=0
〈β2〉+ 2α2

0〈βv0〉

− 2α0

d

∞∑

j=1

i
[
eiα0d − (−1)j

]
µ2
j[

eiα0d + (−1)j
]
(µ2
j − µ2

0)
〈βvj〉 −

φ0(d)ψ0(d)d

2
〈β2〉

=
1

2

[
x2ψ0(x2)φ0(x2)

]x2=d

x2=0
〈β2〉+ 2α2

0〈βv0〉

+
2α0

d

∞∑

j=1

µ2
j 〈βvj〉
µ2
j − µ2

0

tan
α0d+ πj

2
− φ0(d)ψ0(d)d

2
〈β2〉 ,

where the last expression coincides with τ for |α0| < π/d.

Case |α0| > π/d : Following the same scheme as above, we arrive at

F̂ (x) =− iβ′′(x1)
∞∑

j=0

cjψj(x2)−
4α0ψ1(x2)β(x1)

1− e−iα0d

− 2i

d
(µ2

0 − µ2
1)

∞∑

j=1

µ2
2jψ2j(x2)

(µ2
2j − µ2

1)(µ
2
2j − µ2

0)
β(x1) ,

Ûj(x1) =





ic0β(x1) if j = 0 ,

ic1β(x1)−
2α0

1− e−iα0d
v1(x1) if j = 1 ,

icjβ(x1) +
2iµ2

j

[
1 + (−1)j

]

(µ2
j − µ2

1)d
vj(xj) if j > 2 ,

and check that K = τ for |α0| > π/d.
The series in the formulae for τ converge since the functions vj satisfy

− v′′j + (µ2
j − µ2

0)vj = β in R , (11.43)

and by [18, Ch. V, §3.5, Formula (3.16)] (j > 1)

|〈βvj〉| 6 ‖β‖L2(R)‖v‖L2(R) 6
‖β‖2L2(R)

µ2
j − µ2

0

. (11.44)

Summing up,

k1(ε) + εk2(ε) =

{
− εα0〈β〉+ ε2τ + O(ε3) if |α0| < π/d ,

ε2τ + O(ε3) if |α0| > π/d .

All the statements of the theorems – except for the reality of the eigenvalue – follow from these formulae, the
identity λ = µ2

0 − k2, the inequalities (11.38) and (11.39), Lemma 11.8, the asymptotics (11.33) for U , and the
definition of the operator Mε.

Let us show that λε is necessarily real as ε→ 0+. Let Ψε be the eigenfunction associated with the eigenvalue
λε. It is easy to check that the function x 7→ Ψε(x1, d − x2) is an eigenfunction of Hα associated with the
eigenvalue λε. This eigenvalue converges to µ2

0 as ε → +0. By the uniqueness of such eigenvalue we obtain
λε = λε that completes the proof.
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11.6.4 Proof of Theorem 11.4

We employ here the same argument as in the previous proof. The formula for k(ε) in the case α0 = 0 can be
obtained from that for |α0| < π/d by passing to the limit α0 → 0. It leads us to the relation

k(ε) = ε2τ + O(ε3) with τ = −
∞∑

j=0

4〈βv2j+1〉
µ2j+1d2

.

To prove the theorem it is sufficient to show that τ < 0. Indeed, the equation (11.43) implies that for j > 1

〈βvj〉 = ‖v′j‖2L2(R)
+ (µ2

j − µ2
0)‖vj‖2L2(R)

> 0 . (11.45)

Thus, τ < 0.

11.6.5 Proof of Proposition 11.1

Since 〈β〉 = 0, the function v0 is constant at infinity. Hence, by the equation (11.43) for v0,

〈βv0〉 = ‖v′0‖2L2(R)
.

At the same time, it follows from (11.44) and (11.45) that for j > 1,

0 < 〈βvj〉 <
‖β‖2L2(R)

µ2
j − µ2

0

.

The relations obtained allow us to estimate

τ > 2α2
0‖v′0‖2L2(R)

− 2α0 cot
α0d
2

d
‖β‖2L2(R)


 µ2

1

(µ2
1 − µ2

0)
2
+

∞∑

j=1

µ2
2j+1

(µ2
2j+1 − µ2

1)
2




=
α2
0l

3

2

∥∥∥∥
∫

R

sgn(· − t1)β̃(t1) dt1

∥∥∥∥
2

L2(R)

− 2α0l cot
α0d
2

d

(
µ2
1

(µ2
1 − µ2

0)
2
+

d2

16π2
+
d2

48

)
‖β̃‖2L2(R)

,

where the resulting expression is positive under the hypothesis.

11.6.6 Proof of Proposition 11.2

Using (11.45), we obtain

τ >
2α0π

2 cot α0d
2

(µ2
1 − µ2

0)d
3
〈βv1〉+

8π2

(µ2
1 − µ2

0)d
4

m∑

j=1

µ2
2j〈βv2j〉
µ2
2j − µ2

1

,

where the right hand side is non-negative under the hypothesis (11.21).

Let us show that the inequality (11.21) can be achieved if α0 → µ2 + 0. In this case m = 1, and it is
sufficient to check that

α0〈βv1〉 cot
α0d

2
>

16π2〈βv2〉
(µ2

1 − µ2
2)d

3
=

16π2〈βv2〉
(α2

0 − µ2
2)d

3
. (11.46)

It follows from the definition of v1 that it satisfies the asymptotic formula

v1(x1) = v2(x1) + (µ2 − α0) v̂(x1) + O
(
(µ2 − α0)

2
)

in L2(R)-norm, where the function v̂ is given by

v̂(x1) :=

∫

R

(
√
3µ0|x1 − t1|+ 1)e−

√
3µ0|x1−t1|

3
√
3µ2

0

β(t1) dt1,

and satisfies the equation
−v̂′′ + 3µ2

0 v̂ = 4µ0v2 in R.
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We multiply this equation by v2 and integrate by parts over R taking into account the equation (11.43) for v2,

4µ0‖v2‖2L2(R)
= 〈βv̂〉.

Hence,
〈βv1〉 = 〈βv2〉+ 4(µ2 − α0)µ0‖v2‖2L2(R)

+ O
(
(µ2 − α0)

2
)
.

Employing this identity, we write the asymptotic expansions for the both sides of (11.46) as α0 → µ2 + 0, and
obtain

α0〈βv1〉 cot
α0d

2
=

4π〈βv2〉
(α0 − µ2)d2

+
2

d

(
〈βv2〉 −

8π2

d2
‖v2‖2L2(R)

)
+ O(µ2 − α0) ,

16π2〈βv2〉
(α2

0 − µ2
2)d

3
=

4π〈βv2〉
(α0 − µ2)d2

− 〈βv2〉
d

+ O(µ2 − α0) .

Thus, to satisfy (11.46), it is sufficient to check that

3〈βv2〉 −
16π2

d2
‖v2‖2L2(R)

> 0 ,

which is in view of (11.45) equivalent to

3‖v′2‖2L2(R)
>

7π2

d2
‖v2‖2L2(R)

.

It is clear that there exists a function v ∈ C∞
0 (R) for which this inequality is valid. Letting v2 := v and

β := −v′′+3µ2
0v, we conclude that there exists β such that the inequality (11.21) holds true, if α0 is sufficiently

close to µ2 and greater than this number.
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Erratum

1. There is a mistake in the proof of Theorem 11.3 given in Section 11.6.1. At this moment, we do not know
whether Theorem 11.3 holds.
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Non-Hermitian spectral effects in a PT-symmetric waveguide
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Abstract. We present a numerical study of the spectrum of the Laplacian in an unbounded
strip with PT-symmetric boundary conditions. We focus on non-Hermitian features of the model
reflected in an unusual dependence of the eigenvalues below the continuous spectrum on various
boundary-coupling parameters.

12.1 Introduction

In the last years the theory of quasi-Hermitian, pseudo-Hermitian and PT-symmetric operators has developed
rapidly, and has been shown to provide a huge class of non-Hermitian Hamiltonians with real spectra (cf the
pioneering works [24, 4, 23] and the review [3] with many references). Because of these recent observations,
the condition of self-adjointness of operators representing observables in quantum mechanics may seem to be
rather an annoying technicality. However, unless it is met one cannot apply the very powerful machinery of
spectral theory based on the spectral theorem.

In particular, one has to restrict to exactly solvable models [22, 27, 25, 18, 21] or to rely on perturbation
and numerical methods to analyse the spectrum of the PT-symmetric Hamiltonians. Except for some simple
one-dimensional examples [2], the majority of the PT-symmetric models studied in the literature have purely
discrete spectrum. Perturbation methods are then notably effective in determining the dependence of the
eigenvalues on various parameters of the given model. Although the perturbation approach can even prove
that the total spectrum is real in some cases [20, 8, 7, 9], it is limited in its nature and one usually has to
employ numerical techniques in order to obtain a more complete picture of the spectral properties.

In a way motivated by the lack of a well-developed spectral theory for non-self-adjoint operators with
non-compact resolvent, in a recent paper [6] Borisov and one of the present authors introduced a new two-
dimensional PT-symmetric Hamiltonian with a real continuous spectrum. One of the main questions arising
within this model is whether the Hamiltonian possesses point spectrum, too. Using some singular perturbation
techniques adopted from the theory of quantum waveguides [13, 5], the question was given both positive and
negative answer in [6], depending on the nature of the effective PT-symmetric interaction in a weakly-coupled
regime. Moreover, in the case when the point spectrum exists, the weakly-coupled eigenvalues emerging from
the continuous spectrum were shown to be real. We refer to the next Section 12.2 for a precise statement of
the spectral results established in [6].

In the present paper, we further analyse the question of the existence of point spectrum for the Hamiltonian
introduced in [6] by numerical methods. This enables us to explore quantitative properties of the eigenvalues
without the restriction to the weakly-coupled regime. The main emphasis is put on peculiar characteristics of
the model which are related to the non-self-adjointness of the underlying Hamiltonian, namely:

1. highly non-monotone dependence of the eigenvalues on a coupling parameter; as the parameter increases,
the eigenvalues emerge from the continuous spectrum, reach a minimum, sometimes disappear in the
continuous spectrum, emerge later on again, etc;

2. broken PT-symmetry; as the coupling parameter increases, the eigenvalues may emerge from the contin-
uous spectrum as complex-conjugate pairs, collide and become real, move on the real axis, collide again
and become complex, etc.

This paper is organized as follows. We begin by recalling the Hamiltonian from [6] and summarize the
main spectral properties established there. In particular, we point out some questions the study of [6] has left
open. In Section 12.3 we describe the numerical methods we use. The numerical data are then presented and
discussed in Section 12.4. In the final Section 12.5 we make some conjectures based on the present study.

12.2 The model, known results and open questions

Given a positive number d, we introduce an infinite strip Ω := R × (0, d). We split the variables consistently
by writing x = (x1, x2) with x1 ∈ R and x2 ∈ (0, d). Let α : R → R be a bounded function; occasionally we



208 II Waveguides

shall denote by the same symbol the function x 7→ α(x1) on Ω. The Hamiltonian Hα we consider in this paper
acts simply as the Laplacian in the Hilbert space L2(Ω), i.e.

HαΨ := −∆Ψ in Ω , (12.1)

and a non-trivial interaction is introduced by choosing as its domain the set of functions Ψ from W 2,2(Ω)
satisfying the following Robin-type boundary conditions:

∂2Ψ+ iαΨ = 0 on ∂Ω . (12.2)

Here W 2,2(Ω) denotes the Sobolev space consisting of functions on Ω which, together with all their first and
second distributional derivatives, are square integrable. As usual, the action of Hα should be understood in
the distributional sense and (12.2) should be understood in the sense of traces [1].

d

x

x2

1

Figure 12.1: A schematic view of an infinite planar waveguide of width d. The Robin conditions (12.2) are
imposed at the boundary.

Under the additional hypothesis that α possesses a bounded distributional derivative, i.e. α ∈ W 1,∞(R), it
was shown in [6] that Hα is an m-sectorial operator satisfying

H∗
α = H−α , (12.3)

where H∗
α denotes the adjoint of Hα. (If α is merely bounded, it is still possible to give a meaning to Hα by

using the quadratic-form approach.) Of course, Hα is not self-adjoint unless α vanishes identically. However,
the relation (12.3) reflects the PT-symmetry – or, more generally and more precisely, the T-self-adjointness –
of Hα, with P and T being defined by (PΨ)(x) := Ψ(d− x) and TΨ := Ψ, respectively.

An important property of the operator Hα being m-sectorial is that it is closed. Then, in particular, the
spectrum σ(Hα) is well defined as the set of complex points z such that Hα − z is not bijective. The point
spectrum σp(Hα) equals the set of points z such that Hα− z is not injective. The continuous spectrum σc(Hα)
equals the set of points z such that Hα− z is not surjective but the range of Hα− z is dense in L2(Ω). Finally,
the residual spectrum σr(Hα) equals the set of points z such that Hα − z is injective but the range of Hα − z
is not dense in L2(Ω).

In the following theorem we collect general results about the spectrum of Hα established in [6]:

Theorem 12.1. Let α ∈ W 1,∞(R) and α0 ∈ R. Then

(i) σ(Hα) ⊆ {z ∈ C : | arg(z)| ≤ θ} with some θ ∈ [0, π/2);

(ii) σr(Hα) = ∅;

(iii) σ(Hα0) = σc(Hα0) = [µ2
0,∞) where µ0 := min{|α0|, π/d};

(iv) if α− α0 ∈ C0(R), then σc(Hα) = [µ2
0,∞);

(v) if α ∈ C0(R) is an odd function, then σp(Hα) ⊂ R;

Here C0(R) denotes the space of continuous functions on R with compact support. Note that α ∈ C0(R) ∩
W 1,∞(R) implies that α is Lipschitz continuous; conversely, the space of Lipschitz continuous functions on R

is embedded in W 1,∞(R).
The first two properties of Theorem 12.1 are quite general: (i) holds since Hα is sectorial and (ii) is a

consequence of the T-self-adjointness (we refer to [6] for more details). Since the spectral problem for the
constant case of (iii) can be solved by some sort of “separation of variables” (cf [6, Sec. 4]), we shall refer to it
as the unperturbed case; it follows from Theorem 12.1 that the corresponding spectrum is purely continuous
and positive. As a consequence of (ii), (iv) and (v), we get a result about the reality of the total spectrum in
the perturbed case:
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Corollary 12.1. Let α ∈ C0(R) ∩W 1,∞(R) be an odd function. Then

σ(Hα) ⊂ R .

The result stated in part (iv) of Theorem 12.1 makes rigorous the heuristic statement that “the continuous
spectrum depends on the properties of a Hamiltonian interaction at infinity only”. On the other hand, it is
well known – and this already for one-dimensional self-adjoint models [17] – that the point spectrum may be
highly unstable under a perturbation of an operator with non-compact resolvent. In [6], the point spectrum
of Hα was analysed perturbatively in the weakly-coupled regime:

α = α0 + ε β , with α0 ∈ R , ε > 0 , β ∈ C2
0 (R) , (12.4)

where β is assumed to be real-valued and ε plays the role of the small parameter. Here C2
0 (R) denotes the

space of functions on R which, together with all their first and second derivatives, are continuous and have
compact support. The main interest was focused on the existence and asymptotic behavior of the eigenvalues
emerging from the threshold µ2

0 of the continuous spectrum due to the perturbation of Hα0 by εβ.
Before stating the main results of [6] about the weakly-coupled eigenvalues, we need to introduce some

notation. Recalling the definition of µ0 from Theorem 12.1.(iii), we next define

µ1 := max{|α0|, π/d} and µj := πj/d for j ≥ 2 .

To these numbers we associate a family of functions {ψj}∞j=0 by

ψj(x2) := cos(µjx2)− i
α0

µj
sin(µjx2) . (12.5)

Let {vj}∞j=0 be a sequence of auxiliary functions given by

vj(x1) :=





− 1

2

∫

R

|x1 − t1|β(t1) dt1 if j = 0 ,

1

2
√
µ2
j − µ2

0

∫

R

e−
√
µ2
j−µ2

0|x1−t1|β(t1) dt1 if j ≥ 1 .

Finally, denoting 〈f〉 =
∫
R
f(x1) dx1 for any f ∈ L1(R), we introduce a constant τ , depending on β, d and α0,

by

τ :=





2α2
0〈βv0〉+

2α0

d

∞∑

j=1

µ2
j 〈βvj〉
µ2
j − µ2

0

tan
α0d+ jπ

2
if |α0| <

π

d
,

2α0π
2 cot α0d

2

(µ2
1 − µ2

0)d
3
〈βv1〉+

8π2

(µ2
1 − µ2

0)d
4

∞∑

j=1

µ2
2j〈βv2j〉
µ2
2j − µ2

1

if |α0| >
π

d
.

(12.6)

Now we are in a position to take over from [6]:

Theorem 12.2. Let α be given by (12.4).

(A) If α0 = 0, then Hα has no eigenvalues converging to µ2
0 as ε→ 0.

(B) Let 0 < |α0| < π/d.

1. If α0〈β〉 < 0, then there exists the unique eigenvalue λε of Hα converging to µ2
0 as ε → 0. This

eigenvalue is simple and real, and satisfies the asymptotic formula

λε = µ2
0 − ε2α2

0〈β〉2 + 2ε3α0τ〈β〉 + O(ε4) . (12.7)

2. If α0〈β〉 > 0, then Hα has no eigenvalues converging to µ2
0 as ε→ 0.

3. If 〈β〉 = 0 and τ > 0, then there exists the unique eigenvalue λε of Hα converging to µ2
0 as ε → 0.

This eigenvalue is simple and real, and satisfies the asymptotics

λε = µ2
0 − ε4τ2 + O(ε5) . (12.8)

4. If 〈β〉 = 0 and τ < 0, then Hα has no eigenvalues converging to µ2
0 as ε→ 0.

(C) Let |α0| > π/d and α0d/π 6∈ Z.



210 II Waveguides

1. If τ > 0, then there exists the unique eigenvalue λε of Hα converging to µ2
0 as ε → 0, it is simple

and real, and satisfies the asymptotics (12.8).

2. If τ < 0, then Hα has no eigenvalues converging to µ2
0 as ε→ 0.

The method of [6] gives also the asymptotic expansion of the eigenfunctions corresponding to the weakly-
coupled eigenvalues:

Theorem 12.3. The eigenfunction Ψε corresponding to any eigenvalue λε from Theorem 12.2 can be chosen
so that it satisfies the asymptotics

Ψε(x) = ψ0(x2) + O(ε) (12.9)

in W 2,2(Ω ∩ {x : |x1| < a}) for each a > 0, and behaves at infinity as

Ψε(x) = exp−
√
µ2
0−λε|x1| ψ0(x2) + O(exp−

√
µ2
0−λε|x1|) , x1 → +∞ . (12.10)

Theorems 12.1–12.3 summarizing the spectral analysis performed in [6] leave open the following particular
questions:

(Q1) Can the cases (B4) and (C2) of Theorem 12.2 occur? That is, can the constant τ be negative for a certain
combination of d, α0 and β? (Sufficient conditions for the positivity of τ exist [6, Props. 2.1–2.2].)

(Q2) What happens in the case (C) of Theorem 12.2 if the condition α0d/π 6∈ Z is not satisfied? Is it just a
technical hypothesis?

(Q3) Is there any point spectrum in the case of Corollary 12.1?

(Q4) What is the dependence of the weakly-coupled eigenvalues of Theorem 12.2 as the parameter ε increases?

(Q5) Do the eigenvalues remain real for large ε?

(Q6) Can one have more eigenvalues? Can they be degenerate? What is the dependence of the number of
eigenvalues on ε?

(Q7) Are there any eigenvalues emerging from other thresholds µ2
j , j ≥ 1? Can they emerge from other points

of the continuous spectrum, different from the thresholds µ2
j , j ≥ 0?

The main goal of the present paper is to provide answers to some of these questions by a numerical study of
the spectral problem.

12.3 Numerical methods

In order to get the dependence of the bound states on parameters like ε, d, α0, etc, numerically we used two
independent methods. When α is a simple step-like function (e.g. symmetric or asymmetric square well), we
treat the problem by mode matching method. It takes into account the asymptotic behaviour of solution
explicitly and can serve thus as a useful check when we apply the other method, viz., the spectral method.
This method is more robust and we use it for more general α. We arrived at an excellent agreement in cases
when both methods are applicable.

12.3.1 Mode matching method

Let us begin with mode matching. The most general situation we want to describe is shown in Figure 12.2. Fix
negative and positive numbers L− and L+, respectively. In the asymptotic regions, i.e. x1 < L− and L+ < x1,
we assume α(x1) = α0, while in the central parts we have α(x1) = α− if L− < x1 < 0 and α(x1) = α+ if
0 < x1 < L+.

Let {µ±
j }∞j=0 denote the sequence of numbers {µj}∞j=0 with α0 being replaced by α±. In the same way we

define the sequence of functions {ψ±
j }∞j=0 by replacing α0 by α± in (12.5). In order to make the notation more

consistent, hereafter we write µ0
j and ψ0

j instead of µj and ψj , respectively, and introduce a common index
ι ∈ {0,+,−}.

In each of the regions where α is constant, the spectral problem −∆Ψ = λΨ, with Ψ satisfying the required
boundary conditions, can be solved explicitly [6, Sec. 4] by expanding Ψ into the “transverse basis” {ψιj}∞j=0,
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L 0 L

Ψ Ψ Ψ Ψ0 0

x
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− +

l rc c

− +

Figure 12.2: The mode matching approach. A particular Ansatz (12.11) for an eigenfunction Ψ of Hα cor-
responding to λ is chosen in each subregion and the smooth matching (12.12) is required at the boundaries
separating the subregions.

where ι depends on the region. More specifically, we use the following Ansatz for an eigenfunction Ψ of Hα

corresponding to λ:

Ψ(x) =





Ψ0
l (x) :=

∞∑

j=0

dj e
√

(µ0
j )

2−λ x1 ψ0
j (x2) if x1 ∈ (−∞, L−) ,

Ψ−
c (x) :=

∞∑

j=0

cj ϕ
−
j (x1)ψ

−
j (x2) if x1 ∈ (L−, 0) ,

Ψ+
c (x) :=

∞∑

j=0

bj ϕ
+
j (x1)ψ

+
j (x2) if x1 ∈ (0, L+) ,

Ψ0
r(x) :=

∞∑

j=0

aj e
−
√

(µ0
j )

2−λ x1 ψ0
j (x2) if x1 ∈ (L+,+∞) ,

(12.11)

where

ϕ±
j (x1) := cos

(√
λ− (µ±

j )
2 x1

)
+B± sin

(√
λ− (µ±

j )
2 x1

)
.

Standard elliptic regularity theory implies that any weak solution Ψ to −∆Ψ = λΨ is necessarily infinitely
smooth in the interior of Ω. In particular, we must match the functions from the Ansatz smoothly at x1 =
L−, 0, L+, i.e. we require

Ψ0
l (L−, x2) = Ψ−

c (L−, x2) , ∂1Ψ
0
l (L−, x2) = ∂1Ψ

−
c (L−, x2) ,

Ψ−
c (0, x2) = Ψ+

c (0, x2) , ∂1Ψ
−
c (0, x2) = ∂1Ψ

+
c (0, x2) , (12.12)

Ψ+
c (L+, x2) = Ψ0

r(L+, x2) , ∂1Ψ
+
c (L+, x2) = ∂1Ψ

0
+(L+, x2) ,

for every x2 ∈ (0, d).

If {ψιj}∞j=0 formed an orthonormal family, the next step would consist in employing the orthonormality
and reducing (12.12) into a system of algebraic equations for the coefficients aj , bj, cj , dj . However, since the
family {ψιj}∞j=0 is actually formed by eigenfunctions of a transverse eigenvalue problem which is not Hermitian
(unless αι = 0), it is clear that the functions ψιj are not mutually orthogonal in general. Instead, we use the
property that {ψιj}∞j=0 and {φιj}∞j=0 form a complete biorthonormal pair [18], where φιj are properly normalized
eigenfunctions of the adjoint transverse problem:

φιj(x2) := Aιj ψ
ι
j(x2) .

The normalization constants can be chosen as follows

Aιj0 :=
2iαι

1− exp (−2iαιd)
, Aιj1 :=

2(µι1)
2

[(µι1)
2 − α2

ι ]d
, Aιj :=

2(µιj)
2

[(µιj)
2 − α2

ι ]d
,

where j > 2, (j0, j1) = (0, 1) if |αι| < π/d and (j0, j1) = (1, 0) if |αι| > π/d (if αι = 0, the fraction in the
definition of Aιj0 should be understood as the expression obtained after taking the limit αι → 0). Then, in
particular, we have

∀i, j ∈ N, (φιi, ψ
ι
j) = δij , (12.13)

where (·, ·) denotes the inner product in L2((0, d)), antilinear in the first factor and linear in the second one.
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Now, multiplying (12.12) by φ0i , integrating over x2 ∈ (0, d) and employing (12.13) in the asymptotic
regions, we can eliminate the coefficients aj and dj by means of the relations

ai e
−
√

(µ0
i )

2−λL+ =
∞∑

j=0

bj ϕ
+
j (L+) (φ

0
i , ψ

+
j ) ,

di e
√

(µ0
i )

2−λL− =
∞∑

j=0

cj ϕ
−
j (L−) (φ

0
i , ψ

−
j ) ,

(12.14)

for every i ∈ N, and reduce thus the number of conditions to be fulfilled. We finally arrive at an infinite-
dimensional homogeneous system




m11 m12 0 0
m21 0 m23 0
0 0 m33 m34

0 m42 0 m44







b
c

bB+

cB−


 =




0
0
0
0


 . (12.15)

Here b, c denote the infinite vectors formed by bj , cj, respectively, and the submatrices mµν are given by

m11 := (φ0i , ψ
+
j ) , m33 :=

√
λ− (µ+

j )
2 (φ0i , ψ

+
j ) ,

m12 := −(φ0i , ψ
−
j ) , m34 := −

√
λ− (µ−

j )
2 (φ0i , ψ

−
j ) ,

m21 :=

(√
(µ0
i )

2 − λ cos
(
L+

√
λ− (µ+

j )
2
)

−
√
λ− (µ+

j )
2 sin

(
L+

√
λ− (µ+

j )
2
))

(φ0i , ψ
+
j ) ,

m23 :=

(√
(µ0
i )

2 − λ sin
(
L+

√
λ− (µ+

j )
2
)

+
√
λ− (µ+

j )
2 cos

(
L+

√
λ− (µ+

j )
2
))

(φ0i , ψ
+
j ) ,

m42 :=

(√
(µ0
i )

2 − λ cos
(
L−

√
λ− (µ−

j )
2
)

+
√
λ− (µ−

j )
2 sin

(
L−

√
λ− (µ−

j )
2
))

(φ0i , ψ
−
j ) ,

m44 :=

(√
(µ0
i )

2 − λ sin
(
L−

√
λ− (µ−

j )
2
)

−
√
λ− (µ−

j )
2 cos

(
L−

√
λ− (µ−

j )
2
))

(φ0i , ψ
−
j ) ,

where the right hand sides should be understood as the infinite matrices formed by the respective coefficients
for i, j ∈ N. Our numerical approximation then consists in approximating the infinite system by using finite
submatrices for i, j ∈ {0, . . . , N} with N large enough.

In order to have a nontrivial solution we require

det




m11 m12 0 0
m21 0 m23 0
0 0 m33 m34

0 m42 0 m44


 = 0 , (12.16)

which gives an implicit equation for λ as the unknown. Having found λ, we can then calculate the coefficients
aj , bj , cj, dj , B±,j from (12.15) and (12.14).

If α+ = α− and L+ = −L−, i.e. α is a symmetric square well, then (12.16) can be reduced to

det

(
m21 +m42 0

0 m23 −m44

)
= 0 .

The solutions have different symmetry with respect to x1 7→ −x1, the even solutions are formed only of cosines,
the odd of sines.

Remark 12.1. In principle, it is possible to extend the present method to an arbitrary piece-wise constant
function α, provided that the number of matching interfaces is finite. On the other hand, the more matching
conditions the bigger size of the matrix of (12.15) and thus the higher (numerical) price one must pay.
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12.3.2 Spectral method

In order to treat the waveguide with a general α in the boundary conditions, we decided to use spectral
collocation methods. They provide a reliable and rapidly converging tool easily applicable to our model. A
very useful software suite has already been published [26]. It could be adapted to this problem. We approximate
the operator by a series of operators defined on a finite domain [xmin1 , xmax1 ] × [0, d] with Dirichlet boundary
conditions on {xmin1 } × [0, d] and {xmax1 } × [0, d].

First, we can form the differentiation matrices in each variable separately and then combine them to the
two-dimensional problem. The infinite domain in x1-variable suggests that we could approximate it by grid
points chosen as the roots of Hermite polynomials and as an interpolant we take Lagrange polynomial. There
is an additional parameter (the real line can be mapped to itself by a change of variable x1 = bx̃1, b > 0), which
can be used to optimize the choice of the grid points together with variation of the number of roots N1. The
roots span the interval [ξ1, ξN1 ], −ξ1 = ξN1 , cluster around the origin, and grow as ξN1 = O(

√
N1) for N1 → ∞.

Another possibility is to use Fourier differencing. We form a uniform grid in [−xmax1 , xmax1 ] and since the
solutions decay exponentially, we can theoretically extend it periodically across this interval to the whole R.
The interpolant is a trigonometric function.

In both approaches the interpolant is an infinitely differentiable function. Deriving it and taking the
derivatives in the grid points we get the differentiation matrices. Imposing the homogeneous Dirichlet boundary
conditions consists in deleting the first and the last rows and columns of the differentiation matrices.

The transversal variable is confined to a finite interval [0, d] and it is possible to scale it to [−1, 1]. To
implement the boundary conditions we prefer to incorporate them into the interpolant. It requires to use
Hermite interpolation, which takes into account derivative values in addition to function values. The use of
the roots of Chebyshev polynomials ηk = cos((k − 1)π/(N2 − 1)), k = 1, . . . , N2 as the grid points is common
here. For details we refer the reader to [26].

Now, it remains to form differentiation matrices that correspond to partial derivatives entering the Laplacian.
Having set up a grid in each direction we combine them into the tensor product grid. Then a closer inspection
shows that ∂21 → D(2)(x1)⊗ I, where I is an N2 ×N2 identity matrix and ∂22 is constructed in a similar way (it
is necessary to take into account that the boundary conditions change with x1).

Applying the spectral discretization we converted the search for eigenvalues of Hα to a matrix eigenvalue
problem.

12.4 Discussion of numerical results

Existence of eigenvalues below the threshold of the continuous spectrum and their behaviour for weak perturba-
tions was already proved in [6]. Our calculations confirm it and demonstrate that the spectrum of eigenvalues
is considerably richer.
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Figure 12.3: Comparison of dependence of eigenvalues on ε for PT-symmetric and self-adjoint waveguides. The
left figure shows the PT-symmetric case with α(x1) = 1/3− ε exp(−x21). Here the blue (respectively magenta)
curve represents the eigenvalue (respectively the asymptotic formula (12.7) up to the ε3-term). The right figure
shows the eigencurves in the corresponding self-adjoint situation, obtained by replacing iα 7→ α in (12.2). d = 2
in both cases.

A typical dependence of an eigenvalue on the perturbation parameter ε is shown in Figure 12.3. Here we
perturbed a waveguide of width d = 2 and α0 = 1/3 by a Gaussian shape, i.e. we took β(x1) = − exp(−x21)
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in (12.4). Since 0 < α0 < π/d and 〈β〉 < 0, we deal with the case (B1) of Theorem 12.2. We observe that
the asymptotic expansion (12.7) is fairly good. It is striking, however, that the dependence of the eigenvalue
on ε is highly non-monotonic: The eigenvalue appears at some value of ε (in this case it is ε = 0), reaches a
minimum, and then returns to the continuous spectrum. We found such a behaviour in all cases we studied,
viz., various shapes of symmetric and asymmetric wells, and Gaussians times polynomials. This provides an
interesting answer to (Q4) from the end of Section 12.2.

It is worth noting that this behaviour differs from that in the self-adjoint waveguide obtained simply by
omitting the imaginary unit in (12.2). As shows the second graph in Figure 12.3, in the self-adjoint case all
the energy levels are increasingly more bound when ε increases.

On the other hand, we checked that the eigenvalues are decreasing as functions of L := ±L± for the
symmetric square-well profile α+ = α− of Section 12.3.1 in the regime 0 < α± < α0 < π/d. This is reasonable
to expect since as L→ ∞ the eigenvalues should approach (α±)2, i.e. the threshold of the continuous spectrum
of the unperturbed waveguide Hα± .
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Figure 12.4: Dependence of eigenvalues on ε in the critical case 〈β〉 = 0, τ > 0. Here α(x1) =
√
2 − ε(x21 +

bx1 − 5) exp(−x21/10) and d = 2. The upper figure corresponds to b = 1.5, the lower one to b = 3.25. All the
crossings are avoided.

An answer to questions from (Q6) is provided by Figure 12.4. It corresponds to the critical case (B3) of
Theorem 12.2 with β(x1) = −(x21 + bx1 − 5) exp(−x21/10), α0 =

√
2, and d = 2; the parameter b changes

the asymmetry of β. In addition to the weakly-coupled eigenvalue of Theorem 12.2, there are also other
eigenvalues emerging from the continuous spectrum as ε increases. The lower figure (case b = 3.25) shows that
there might be eigenvalues existing in disjunct intervals of ε (the red curve). By diminishing α0 we can achieve
the situation when there is only one eigenvalue with a similar behaviour: it emerges from the threshold of
continuous spectrum (at ε = 0), reaches a minimum, returns to the continuum, reappears later on, and returns
finally to the continuum.

Another typical feature is that the energy levels do not cross. We saw always avoided crossings (at least in
the unbroken PT-regime), i.e. the order of levels remains unchanged and the non-monotonicity of the excited
eigenvalues is preserved.

The spectrum in Figure 12.5 is remarkable from two points of view. First, it corresponds to the case of (Q2)
from the end of Section 12.2, since the constant α0 is chosen so that its square coincides with the threshold
of the continuous spectrum, which is (π/2)2 ≈ 2.47 for d = 2. Second, we see that this situation provides a
negative answer to (Q5), i.e. the PT-symmetry can be broken, and a partial answer to (Q7). Let us comment on
the behaviour depicted by the cyan curve. There is a critical value of the parameter ε for which there emerges
a pair of complex conjugate eigenvalues from the continuous spectrum (we suspect that they emerge due to a
collision of two embedded eigenvalues). As ε increases, the eigenvalues propagate in the complex plane (this is
indicated by the curves joining the blue and red dots in the right figure; the dotted curve in the left picture
traces the common real parts of the eigencurves) till they collide on the real axis and become real. Then they
move on the real axis (as the green dots) in opposite directions till they reach turning points (each of them for
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Figure 12.5: Broken PT-symmetry. The left figure shows the dependence of eigenvalues on ε in the case
α(x1) = π/2 − ε exp(−x21/10) and d = 2. Here the dotted line is used to plot the real part of the eigenvalues
if they form complex conjugate pairs instead of being real. The right figure shows the trajectory of a pair of
(complex) eigenvalues in the complex plane. Here the thick black line marks the continuous spectrum. The
pairs of dots show positions of eigenvalues for different values of ε: 0.1 (blue), 1.3 (red), 2.1 (green), 2.5 (black),
and 8 (magenta). An animation can be found at the website [19].

different value of ε), starts to approach each other, coalesce again and continue as a pair of complex conjugate
eigenvalues (indicated by the black and magenta dots) until they disappear in the continuous spectrum. The
behaviour of the eigenvalues depicted by the red curve in the left picture is more difficult in that one of them
seems to have the turning point inside the continuous spectrum. Because of the collisions we see that the
eigenvalues can actually be degenerate if the PT-symmetry is broken, providing a positive answer to one of the
questions from (Q6).

Let us mention that the behaviour of the eigenvalues in the regime of broken PT-symmetry exhibits certain
similarities with the over-damped phenomena as regards the spectrum of the infinitesimal generator of the
semigroup associated with the damped wave equation [10, 11, 12]. This indicates the unifying framework of
Krein spaces behind these two problems [20, 14].

−10 0 10 −1

0

1

0

0.02

0.04

x
2

ℜ (ψ)

x
1

−10 0 10 −1

0

1

0

0.02

0.04

x
2

ℑ (ψ)

x
1

Figure 12.6: Real and imaginary parts of an eigenfunctions corresponding to the smallest (positive) eigenvalue
of Hα for α(x1) = 1/3− 0.65 exp(−0.025x21).

In Figure 12.6, we present an example of eigenfunction corresponding to the case (B1) of Theorem 12.2.
We check that the behaviour of the eigenfunction is in perfect agreement with the asymptotic results of Theo-
rem 12.3.

Even if the corresponding eigenenergies are real, the non-Hermiticity prevents from choosing the eigenfunc-
tions real. Since the latter is in particular true for the lowest eigenvalue, it does not make sense to speak about
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the super- and sub-harmonic properties of the corresponding eigenfunction (which hold in the self-adjoint case).
However, although there is no variational characterization of eigenvalues in the present model, numerically we
observe that the real and imaginary parts of the eigenfunction corresponding to the lowest eigenvalue are super-
harmonic separately in the regime of unbroken PT-symmetry. This follows, of course, from the observations
that they do not change sign and that the spectrum is positive.
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Figure 12.7: Dependence of τ on parameters defining α in the step-like situation of Section 12.3.1, with d = 2.
The first two figures deal with an antisymmetric square well in the regime |α0| < π/d, while the last one
deals with a symmetric square well in the regime α0 > π/d. The first (respectively second) figure shows the
dependence of τ on the width ±L± =: L (respectively on the coupling α̃) for fixed α0 = 1/3 and α± = α0 ∓ 1
(respectively fixed α0 = 1, ±L± = 2 and variable α± = α0 ∓ α̃). In the last figure we show the dependence
of τ on α0 for L = 10 and variable α± = (α0 − 1); here the dotted line corresponds to π/d.

Finally, in Figure 12.7 we visualize the dependence of the complicated quantity τ defined in (12.6) on various
parameters. In particular, we see that it changes sign, giving a positive answer to (Q1). Consequently, all the
cases of Theorem 12.2 for the critical case 〈β〉 = 0 and for the regime |α0| > π/d can be achieved. We also see
that the first figure is in qualitative agreement with an analytic result of [6, Prop. 2.1].

12.5 Conclusion

In this paper we tried to enlarge our knowledge of the point spectrum of a non-Hermitian PT-symmetric
operator introduced in [6] by analyzing it numerically. We confirmed theoretical results obtained in [6] by
perturbation methods, and showed that they actually hold under much milder conditions about α.

Besides this, it turned out that the operator can model a fairly wide range of situations. Indeed, its
spectrum is very rich, and certain properties we found are unusual when we compare them with the standard
self-adjoint cases. Among them we would like to point out the non-monotonic dependence on the strength of
perturbation and the existence of the regime of broken PT-symmetry. We hope that this study will stimulate
further theoretical endeavour to extract and prove the salient features.

In particular, based on the present numerical analysis, we conjecture that there will be no other spectrum
except for the continuous one if the parameter ε is sufficiently large. At the same time, we were not able to
find any discrete eigenvalues in the case of Corollary 12.1, i.e. (Q3) from the end of Section 12.2 seems to have
a negative answer; the statement (v) of Theorem 12.1 would be trivial, then. Our numerical experiments also
indicate that the condition mentioning in (Q2) is indeed just a technical hypothesis in Theorem 12.2.C, in the
sense that it does not influence the existence/non-existence of weakly-coupled eigenvalues.

More generally, the existence of eigenvalues in the present model seems to have a nice heuristic explanation.
We observe that the discrete spectrum behaves in many respects as that of a one-dimensional Schrödinger
operator governed by the first-transverse-eigenvalue potential, i.e., −∆+min{α2, π2/d2} in L2(R). Of course,
this self-adjoint idealization is just approximative and cannot explain, in particular, the existence of non-real
eigenvalues. However, it provides an insight into the non-monotonicity behaviour, the absence of point spectrum
for large ε, the positivity of (the real part of) the spectrum, etc. It also formally explains the condition from
the statement 1 (respectively 2) of Theorem 12.2.B, since this actually implies that the potential is attractive
(respectively repulsive).
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In this paper we were mainly interested in the eigenvalues emerging from the threshold µ2
0 of the continuous

spectrum. A complete answer to the first question of (Q7) can be provided by a perturbation method similar to
that of [6]. However, a more detailed analysis of the continuous spectrum would be still desirable. In particular,
Figure 12.4 suggests that there can be embedded eigenvalues for larger values of the coupling parameter.

Finally, let us point out that the question of a direct physical motivation for the Hamiltonian Hα remains
open. In this paper we were rather interested in consequences of the non-self-adjointness on spectral properties
of this specific model in the context of PT-symmetric quantum mechanics. On the other hand, motivated by
problems in semiconductor physics, similar self-adjoint, respectively non-self-adjoint but dissipative, Robin-
type boundary conditions has been considered recently in [15], respectively in [16]. In a different context,
the present (PT-symmetric) Robin-type boundary conditions imply that we actually deal with the Helmholtz
equation in an electromagnetic waveguide with radiation/dissipative boundary conditions.
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Abstract. On a model of waveguide with non-Hermitian Robin-type boundary conditions, we
demonstrate the need for a robust method establishing the existence of isolated eigenvalues for
non-self-adjoint operators possessing both essential and discrete spectrum.
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On the Hilbert space L2(R× (−1, 1)) let us consider the m-sectorial operator Hα defined as the Laplacian on
H2(R× (−1, 1)), subject to the following complex Robin-type boundary conditions:

∂ψ

∂y
+ iα(x)ψ = 0 for (x, y) ∈ R× {±1} ,

where ψ ∈ D(Hα) and α : R → R is Lipschitz continuous. Hα is not self-adjoint unless α = 0, however,
it is T-self-adjoint and it commutes with the antilinear product operator PT where (Pψ)(x) := ψ(−x) and
(Tψ)(x) := ψ(x).

In a joint paper with D. Borisov [1], we performed a detailed spectral analysis of Hα. It was established that
the residual spectrum is always empty and that the essential spectrum is real provided that α is a compactly
supported perturbation of a constant function α0:

σess(Hα) = [µ2
0,∞) where µ0 := min{|α0|, π/2} .

Moreover, assuming that the perturbation α−α0 is small in the supremum norm and using a perturbative
method, we derived sufficient conditions for the existence of discrete real weakly-coupled eigenvalues, converging
to the threshold µ2

0 of the essential spectrum when the perturbation vanishes. For instance, one of the sufficient
conditions reads

|α0| < π/2 and α0

∫

R

(α(x) − α0) dx < 0 ,

while an opposite sign in the latter inequality ensures that there are no such weakly-coupled eigenvalues.
An open problem is to show the existence of discrete spectra by some qualitative methods, regardless of the

strength of the perturbation. It is particularly frustrating that the variational techniques powerfully used in
self-adjoint waveguides [2] are not available here.

Let us also mention a joint paper with M. Tater [3], where we analysed the spectrum of Hα by numerical
methods. It turns out that there might be complex conjugate pairs of discrete eigenvalues if α − α0 is big
in the supremum norm [see a related animation (http://gemma.ujf.cas.cz/~david/KT.html)]. Prove this
analytically.

http://gemma.ujf.cas.cz/~david/KT.html
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Abstract. The Laplacian in an unbounded tubular neighbourhood of a hyperplane with non-
Hermitian complex-symmetric Robin-type boundary conditions is investigated in the limit when the
width of the neighbourhood diminishes. We show that the Laplacian converges in a norm resolvent
sense to a self-adjoint Schrödinger operator in the hyperplane whose potential is expressed solely in
terms of the boundary coupling function. As a consequence, we are able to explain some peculiar
spectral properties of the non-Hermitian Laplacian by known results for Schrödinger operators.

14.1 Introduction

There has been a growing interest in spectral properties of differential operators in shrinking tubular neigh-
bourhoods of submanifolds of Riemannian manifolds, subject to various boundary conditions. This is partly
motivated by the enormous progress in semiconductor physics, where it is reasonable to try to model a compli-
cated quantum Hamiltonian in a thin nanostructure by an effective operator in a lower dimensional substrate.
But the problem is interesting from the purely mathematical point of view as well, because one deals with a
singular limit and it is not always obvious how the information about the geometry and boundary conditions
are transformed into coefficients of the effective Hamiltonian.

The interest has mainly focused on self-adjoint problems, namely on the Laplacian in the tubular neigh-
bourhoods with uniform boundary conditions of Dirichlet [7, 5, 9, 19] or Neumann [23, 22] or a combination of
those [16]. For more references see the review article [12] to which we add the recent works [6, 21] concerned
with Robin boundary conditions. The purpose of the present paper is to show that one may obtain an inter-
esting self-adjoint effective operator in the singular limit even if the initial operator is not Hermitian and the
geometry is rather trivial.

We consider an operator Hε which acts as the Laplacian in a d-dimensional layer:

Hεu = −∆u in Ωε := Rd−1 × (0, ε) , (14.1)

where d > 2 and ε is a small positive parameter, subjected to non-Hermitian boundary conditions on ∂Ωε.
Instead of considering the general problem, we rather restrict to a special case of separated Robin-type boundary
conditions

∂u

∂xd
+ iα(x′)u = 0 on ∂Ωε , (14.2)

where x = (x1, . . . , xd−1, xd) ≡ (x′, xd) denotes a generic point in Ωε and α is a real-valued bounded function.
More precisely, we consider Hε as the m-sectorial operator Hε on L2(Ωε) which acts as (14.1) in the distribu-
tional sense on the domain consisting of functions u from the Sobolev space W 2

2 (Ωε) satisfying the boundary
conditions (14.2). We postpone the formal definition to the following section.

The model Hε in d = 2 was introduced in [4] by the present authors. In that paper, we developed a
perturbation theory to study spectral properties of Hε with ε fixed in the regime when α represents a small
and local perturbation of constant α0 (see below for the discussion of some of the results). Additional spectral
properties of Hε were further studied in [18] by numerical methods. The present paper can be viewed as an
addendum by keeping α (and d) arbitrary but sending rather the layer width ε to zero. We believe that the
present convergence results provide a valuable insight into the spectral phenomena observed in the two previous
papers.

The particular feature of the choice (14.2) is that the boundary conditions are PT-symmetric in the sense
thatHε commutes with the product operator PT. Here P denotes the parity (space) reversal operator (Pu)(x) :=
u(x′, ε − xd) and T stands for the complex conjugation (Tu)(x) := u(x); the latter can be understood as the
time reversal operator in the framework of quantum mechanics. The relevance of non-Hermitian PT-symmetric
models in physics has been discussed in many papers recently, see the review articles [1, 20]. Non-Hermitian
boundary conditions of the type (14.2) were considered in [14] to model open (dissipative) quantum systems.
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The role of (14.2) with constant α in the context of perfect-transmission scattering in quantum mechanics is
discussed in [13].

Another feature of (14.2) is that the spectrum of Hε “does not explode” as the layer shrinks, meaning
precisely that the resolvent operator (Hε + 1)−1 admits a non-trivial limit in L2(Ωε) as ε → 0. As a matter
of fact, it is the objective of the present paper to show that Hε converges in a norm resolvent sense to the
(d− 1)-dimensional operator

H0 := −∆+ α2 on L2(Rd−1) , (14.3)

which is a self-adjoint operator on the domain W 2
2 (R

d−1). Again, we postpone the precise statement of the
convergence, which has to take into account that the operators Hε and H0 act on different Hilbert spaces,
till the following section (cf Theorem 14.1). However, let us comment on spectral consequences of the result
already now.

First of all, we observe that a significantly non-self-adjoint operator Hε converges, in the norm resolvent
sense, to a self-adjoint Schrödinger operator H0. The latter contains the information about the non-self-adjoint
boundary conditions of the former in a simple potential term. It follows from general facts [15, Sec. IV.3.5]
that discrete eigenvalues of Hε either converge to discrete eigenvalues of H0 or go to complex infinity or to the
essential spectrum of H0 as ε→ ∞.

In particular, assuming that Hε and H0 have the same essential spectrum (independent as a set of ε),
the spectrum of Hε must approach the real axis (or go to complex infinity) in the limit as ε → 0. Although
numerical computations performed in [18] suggest that Hε might have complex spectra in general, perturbation
analysis developed in [4] for the 2-dimensional case shows that both the essential spectrum and weakly coupled
eigenvalues are real. The present paper demonstrates that the spectrum is real also as the layer becomes
infinitesimally thin, for every d > 2. We would like to stress that the PT-symmetry itself is not sufficient to
ensure the reality of the spectrum and that the proof that a non-self-adjoint operator has a real spectrum is a
difficult task.

It is also worth noticing that the limiting operatorH0 provides quite precise information about the spectrum
of Hε in the weak coupling regime for d = 2 and |α| < π/ε (ε fixed). Indeed, let us consider the following
special profile of the boundary function:

αc(x
′) := α0 + cβ(x′) ,

where α0 is a real constant, β is a real-valued function of compact support and c is a real parameter (the regime
of weak coupling corresponds to small c). Note that the essential spectrum of both Hε and H0 coincides with
the interval [α2

0,∞), for β is compactly supported (cf [4, Thm. 2.2]). It is proved in [4] that if α0

∫
R
β(x′) dx′

is negative, then Hε possesses exactly one discrete real eigenvalue µ(c) converging to α2
0 as c → 0+ and the

asymptotic expansion

µ(c) = α2
0 − c2α2

0

(∫

R

β(x′) dx′
)2

+ O(c3) as c→ 0+

holds true. As a converse result, it is proved in [4] that there is no such a weakly coupled eigenvalue if the
quantity α0

∫
R
β(x′) dx′ is positive. These weak coupling properties, including the asymptotics above, are well

known for the Schrödinger operator H0 with the potential given by α2
c , see [10].

At the same time, the form of the potential in H0 explains some of the peculiar characteristics of Hε even
for large c. As an example, let us recall that a highly non-monotone dependence of the eigenvalues of Hε

on the coupling parameter c was observed in the numerical analysis of [18]. As the parameter increases, a
real eigenvalue typically emerges from the essential spectrum, reaches a minimum and then comes back to the
essential spectrum again. This behaviour is now easy to understand from the non-linear dependence of the
potential α2

c on c.

On the other hand, we cannot expect that H0 represents a good approximation of Hε for the values of
parameters for which Hε is known to possess complex eigenvalues [18]. It would be then desirable to compute
the next to leading term in the asymptotic expansion of Hε as ε→ 0.

This paper is organized as follows. In Section 14.2 we give a precise definition of the operators Hε and H0

and state the norm resolvent convergence of the former to the latter as ε→ 0 (Theorem 14.1). The rest of the
paper consists of Section 14.3 in which a proof of the convergence result is given.

14.2 The main result

We start with giving a precise definition of the operators Hε and H0.
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The limiting operator (14.3) can be immediately introduced as a bounded perturbation of the free Hamil-
tonian on L2(Rd−1), which is well known to be self-adjoint on the domain W 2

2 (R
d−1). For later purposes,

however, we equivalently understand H0 as the operator associated on L2(Rd−1) with the quadratic form

h0[v] :=

∫

Rd−1

|∇′v(x′)|2 dx′ +
∫

Rd−1

α(x′)2 |v(x′)|2 dx′,

v ∈ D(h0) :=W 1
2 (R

d−1) .

Here and in the sequel we denote by ∇′ the gradient operator in Rd−1, while ∇ stands for the “full” gradient
in Rd. Similarly, ∆′ denotes the Laplace operator in Rd−1.

In the same manner, we introduce Hε as the m-sectorial operator associated on L2(Ωε) with the quadratic
form

hε[u] :=

∫

Ωε

|∇u(x)|2 dx+ i

∫

Rd−1

α(x′) |u(x′, ε)|2 dx′ − i

∫

Rd−1

α(x′) |u(x′, 0)|2 dx′,

u ∈ D(h0) :=W 1
2 (Ωε) .

Here the boundary terms are understood in the sense of traces. Note that Hε is not self-adjoint unless α = 0
(in this case Hε coincides with the Neumann Laplacian in the layer Ωε). The adjoint of Hε is determined by
simply changing α to −α (or i to −i) in the definition of hε. Moreover, Hε is T-self-adjoint [8, Sec. III.5] (or
complex-symmetric [11]), i.e. H∗

ε = THεT.
The form hε is well defined under the mere condition that α is bounded. However, if we strengthen the

regularity to α ∈ W 1
∞(Rd−1), it can be shown by standard procedures (cf [4, Sec. 3]) that Hε coincides with

the operator described in the introduction, i.e., it acts as the (distributional) Laplacian (14.1) on the domain
formed by the functions u from W 2

2 (Ωε) satisfying the boundary conditions (14.2) in the sense of traces.
The operator H0 is clearly non-negative. An analogous property for Hε is contained in the following result

σ(Hε) ⊂
{
z ∈ C

∣∣ Re z > 0, | Im z| 6 2 ‖α‖∞
√
Re z

}
. (14.4)

Here and in the sequel we denote by ‖ · ‖∞ the supremum norm. (14.4) can be proved exactly in the same way
as in [4, Lem. 3.1] for d = 2 by estimating the numerical range of Hε. In particular, the open left half-plane
of C belongs to the resolvent set of both Hε and H0.

Another general spectral property of Hε, common with H0, is that its residual spectrum is empty. This is
a consequence of the T-self-adjointness property of Hε as pointed out in [4, Corol. 2.1].

SinceHε andH0 act on different Hilbert spaces, we need to explain how the convergence of the corresponding
resolvent operators is understood. We are inspired by [9]. We decompose our Hilbert space into an orthogonal
sum

L2(Ωε) = Hε ⊕ H⊥
ε , (14.5)

where the subspace Hε consists of functions from L2(Ωε) of the form x 7→ ψ(x′), i.e. independent of the
“transverse” variable xd. The corresponding projection is given by

(Pεu)(x) :=
1

ε

ε∫

0

u(x) dxd (14.6)

and it can be viewed as a projection onto a constant function in the transverse variable. We also write
P⊥
ε := I −Pε. Since the functions from Hε depend on the “longitudinal” variables x′ only, Hε can be naturally

identified with L2(Rd−1). More precisely, the identity mapping u 7→ u represents the isometric isomorphism
between Hε and L2(Rd−1). Hence, with an abuse of notations, we may identify any operator on L2(Rd−1) as
the operator acting on the subspace Hε ⊂ L2(Ωε), and vice versa.

The norm and the inner product in L2(Ωε) will be denoted by ‖ · ‖ε and (·, ·)ε, respectively. We keep the
same notation ‖ · ‖ε for the operator norm on L2(Ωε). The norm and the inner product in L2(Rd−1) will be
denoted by ‖ · ‖ and (·, ·), respectively, i.e. without the subscript ε. All the inner products are assumed to be
linear in the first component. Finally, we denote the norm in W 1

2 (Ωε) by ‖ · ‖ε,1 and we keep the same notation
for the norm of bounded operators from L2(Ωε) to W

1
2 (Ωε).

Now we are in a position to formulate the main result of this paper.

Theorem 14.1. Assume α ∈W 1
∞(Rd−1). Then the inequalities

∥∥(Hε + 1)−1 − (H0 + 1)−1Pε
∥∥
ε
6 C ε, (14.7)

∥∥(Hε + 1)−1 − (1 +Q)(H0 + 1)−1Pε
∥∥
ε,1

6 C(ε) ε (14.8)
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hold true, where Q(x) := −iα(x′)xd and

C :=

√
1

π2
+

(‖∇′α‖∞ + 2‖α‖∞)2

3
,

C(ε) :=

√
1

π2
+

(‖∇′α‖∞ + ‖α‖∞√
3

+ C1(ε)

)2

,

C1(ε) :=

√√√√
(
ε‖α‖2∞
2
√
5

)2

+

(
ε‖α‖2∞
2
√
5

+
‖α‖∞

√
‖α‖2∞ + ‖∇′α‖2∞ ε2√

3

)2

.

Let us discuss the result of this theorem. It says that the operator Hε converges to H0 in the norm resolvent
sense. Note that, contrary to what happens for instance in the case of uniform Dirichlet boundary conditions,
here we can choose the spectral parameter fixed (e.g. −1 ∈ ρ(Hε) ∩ ρ(H0) as in the theorem) and still get a
non-trivial result.

If we treat the convergence of the resolvents in the topology of bounded operators in L2(Ωε), the esti-
mate (14.7) says that the rate of the convergence is of order O(ε). At the same time, if we consider the
convergence as for the operators acting from L2(Ωε) into W 1

2 (Ωε), to keep the same rate of the convergence,
one has to use the function Q. This functions is to be understood as a corrector needed to have the conver-
gence in a stronger norm. Such situation is well-known and it often happens for singularly perturbed problems,
especially in the homogenization theory, see, e.g., [3, 2, 24].

Remark 14.1. For twice differentiable α, the unitary transform on L2(Ωε) generated by the multiplication
operator x 7→ eiα(x

′)xd enables one to transfer the boundary conditions (14.2) into coefficients of the operator
unitarily equivalent to the Robin Laplacian (cf [17, Sec. 6.1]). More specifically, the unitarily equivalent
operator acts as a Schrödinger-type operator with complex coefficients

−∆− 2i

(
xd∇′α
α

)
· ∇+ x2d |∇′α|2 − ixd∆

′α+ α2 (14.9)

and satisfies the usual Neumann boundary conditions on L2(Ωε). This idea has been employed previously in [4,
Sec. 6] to study the discrete spectrum of Hε. Here we do not follow this approach in order to avoid imposing
additional regularity assumptions about α. However, (14.9) is instructive in order to guess the form of the
limiting operator (14.3). Indeed, projecting (14.9) onto the constant transverse mode and sending ε to zero
(recall xd ∈ (0, ε)), (14.9) formally converges to (14.3).

Remark 14.2. Theorem 14.1 is formulated in terms of ε-dependent norms. It is also possible to reformulate the
main result in fixed norms, if one employs the unitary transformation u(x) 7→ ε−1/2 u(x′, ε−1xd) =: v(x′, xd).
Under such transformation, the domain Ωε rescales to Ω1 and the operator Hε is unitarily equivalent to

H̃ε := −∆′ − ε−2∂2d on L2(Ω1) ,

subject to the boundary conditions ∂dv + ε iα(x′)v = 0. The estimate (14.7) casts into the equivalent form

∥∥(H̃ε + 1)−1 − (H0 + 1)−1P1

∥∥
1
6 C ε ,

while the next one becomes more complicated and this is why we do not give it here.

14.3 Proof of Theorem 14.1

Throughout this section we assume α ∈ W 1
∞(Rd−1). With an abuse of notation, we denote by the same

symbol α both the function on Rd−1 and its natural extension x 7→ α(x′) to Rd.
We start with two auxiliary lemmata. The first tells us that the subspace H⊥

ε is negligible for Hε in the
limit as ε→ 0.

Lemma 14.1. For any f ∈ L2(Ωε), we have

∥∥(Hε + 1)−1P⊥
ε f
∥∥
ε,1

6
ε

π
‖P⊥

ε f‖ε . (14.10)

Proof. For any fixed f ∈ L2(Ωε), let us set u := (Hε+1)−1P⊥
ε f ∈ D(Hε) ⊂W 1

2 (Ωε). In other words, u satisfies
the resolvent equation

∀v ∈W 1
2 (Ωε) , hε(u, v) + (u, v)ε = (P⊥

ε f, v)ε ,
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where hε(·, ·) denotes the sesquilinear form associated with the quadratic form hε[·]. Choosing u for the test
function v and taking the real part of the obtained identity, we get

‖u‖2ε,1 = Re
(
P⊥
ε f, u

)
ε
= Re

(
P⊥
ε f, P

⊥
ε u
)
ε
6
∥∥P⊥

ε f‖ε‖P⊥
ε u‖ε . (14.11)

Employing the decomposition u = Pεu+ P⊥
ε u, the left hand side of (14.11) can be estimated as follows

‖u‖2ε,1 > ‖∇u‖2ε > ‖∂du‖2ε = ‖∂dP⊥
ε u‖2ε > (π/ε)2 ‖P⊥

ε u‖2ε . (14.12)

Here the last inequality follows from the variational characterization of the second eigenvalue of the Neumann
Laplacian on L2((0, ε)) and Fubini’s theorem. Combining (14.12) with (14.11), we obtain

‖P⊥
ε u‖ε 6 (ε/π)2 ‖P⊥

ε f‖ε .

Finally, applying the obtained inequality to the right hand side of (14.11), we conclude with

‖u‖2ε,1 6 (ε/π)2 ‖P⊥
ε f‖2ε .

This is equivalent to the estimate (14.10).

In the second lemma we collect some elementary estimates we shall need later on.

Lemma 14.2. We have

|e−iαxd − 1| 6 ‖α‖∞ xd , (14.13)

|e−iαxd − 1 + iαxd| 6
1

2
‖α‖2∞ x2d , (14.14)

|∇(e−iαxd − 1 + iαxd)| 6 ‖α‖∞ xd

√
‖α‖2∞ + ‖∇′α‖2∞ x2d . (14.15)

Proof. The estimates (14.13) and (14.14) are elementary and we leave the proofs to the reader. The last
estimate (14.15) follows from (14.13) and the identity

∇(e−iαxd − 1 + iαxd) = i(1− e−iαxd)

(
xd∇′α
α

)

taken into account.

We continue with the proof of Theorem 14.1. Let f ∈ L2(Ωε). Accordingly to (14.5), f admits the
decomposition f = Pεf + P⊥

ε f and we have

‖f‖2ε = ‖Pεf‖2ε + ‖P⊥
ε f‖2ε = ε‖Pεf‖2 + ‖P⊥

ε f‖2ε . (14.16)

We define u := (Hε + 1)−1f and make the decomposition

u = u0 + u1 with u0 := (Hε + 1)−1Pεf , u1 := (Hε + 1)−1P⊥
ε f . (14.17)

In view of Lemma 14.1, u1 is negligible in the limit as ε→ 0,

‖u1‖ε,1 6
ε

π
‖P⊥

ε f‖ε . (14.18)

It remains to study the dependence of u0 on ε. We construct u0 as follows

u0(x) = e−iα(x′)xdw0(x
′) + w1(x) , where w0 := (H0 + 1)−1Pεf (14.19)

and w1 is a function defined by this decomposition.

First, we establish a rather elementary bound for w0.

Lemma 14.3. We have

‖w0‖ε,1 6 ‖Pεf‖ε .
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Proof. By definition, w0 satisfies the resolvent equation

∀v ∈ W 1
2 (R

d−1) , h0(w0, v) + (w0, v) = (Pεf, v) , (14.20)

where h0(·, ·) denotes the sesquilinear form associated with the quadratic form h0[·]. Choosing w0 for the test
function v, we get

‖∇′w0‖2 + ‖αw0‖2 + ‖w0‖2 = (Pεf, w0) 6 ‖Pεf‖‖w0‖ . (14.21)

In particular,

‖w0‖ 6 ‖Pεf‖ .
Using this estimate in the right hand side of (14.21), we get

‖∇′w0‖2 + ‖w0‖2 6 ‖Pεf‖2 .

Reintegrating this inequality over (0, ε), we conclude with the desired bound in Ωε.

It is more difficult to get a bound for w1.

Lemma 14.4. We have

‖w1‖ε,1 6 C0 ε ‖Pεf‖ε with C0 :=
‖∇′α‖∞ + ‖α‖∞√

3
.

Proof. By definition, u0 satisfies the resolvent equation

∀v ∈W 1
2 (Ωε) , hε(u0, v) + (u0, v)ε = (Pεf, v)ε .

Choosing w1 for the test function v and using the decomposition (14.19), we get

hε[w1] + ‖w1‖2ε = (Pεf, w1)ε − hε(u0 − w1, w1)− (u0 − w1, w1)ε =: Fε . (14.22)

It is straightforward to check that

hε(u0 − w1, w1) =
(
∇w0,∇eiαxdw1

)
ε
+
(
α2w0, e

iαxdw1

)
ε
− F ′

ε

= −
(
w0, e

iαxdw1

)
ε
+
(
Pεf, e

iαxdw1

)
ε
− F ′

ε

with

F ′
ε := i

(
xdw0∇′α, eiαxd∇′w1

)
ε
− i
(
∇′w0, xd e

iαxdw1∇′α
)
ε
.

Here the first equality follows by algebraic manipulations using an integration by parts, while the second is a
consequence of (14.20), with x′ 7→ eiα(x

′)xdw1(x
′, xd) being the test function, and Fubini’s theorem. At the

same time, (u0 − w1, w1)ε = (w0, e
iαxdw1)ε. Hence,

Fε = F ′
ε +

(
Pεf, w1 − eiαxdw1

)
ε
.

We proceed with estimating Fε:

|Fε| 6
ε3/2√

3

(
‖∇′α‖∞‖w0‖‖∇′w1‖ε + ‖∇′α‖∞‖∇′w0‖‖w1‖ε + ‖α‖∞‖Pεf‖‖w1‖ε

)

6
ε3/2√

3

(
‖∇′α‖∞

√
‖w0‖2 + ‖∇′w0‖2

√
‖∇′w1‖2ε + ‖w1‖2ε + ‖α‖∞‖Pεf‖‖w1‖ε

)

6
ε√
3

(
‖∇′α‖∞‖w0‖ε,1 + ‖α‖∞‖Pεf‖ε

)
‖w1‖ε,1 .

Here the first inequality follows by the Schwarz inequality, an explicit value of the integral of x2d and obvious
bounds such as (14.13).

Finally, taking the real part of (14.22) and using the above estimate of |Fε|, we get

‖w1‖ε,1 6
ε√
3

(
‖∇′α‖∞‖w0‖ε,1 + ‖α‖∞‖Pεf‖ε

)
.

The desired bound then follows by estimating ‖w0‖ε,1 by means of Lemma 14.3.
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Now we are in a position to conclude the proof of Theorem 14.1 by simply comparing u with w0. As for
the convergence in the topology of L2(Ωε), we write

‖u− w0‖ε = ‖u1 + w1 + (e−iαxd − 1)w0‖ε
6 ‖u1‖ε + ‖w1‖ε + ‖(e−iαxd − 1)w0‖ε .

Here the last term can be estimated using Lemma 14.2 as follows

‖(e−iαxd − 1)w0‖ε 6
ε3/2√

3
‖α‖∞‖w0‖ =

ε√
3
‖α‖∞‖w0‖ε .

Hence, using (14.18), Lemma 14.4 and Lemma 14.3, we get the bound

‖u− w0‖ε 6 ‖u1‖ε,1 + ‖w1‖ε,1 +
ε√
3
‖α‖∞‖w0‖ε

6 ε

(
1

π
‖P⊥

ε f‖ε +
1√
3

(
‖∇′α‖∞ + 2‖α‖∞

)
‖Pεf‖ε

)

6 C ε ‖f‖ε

Here the last estimate follows by the Schwarz inequality recalling (14.16) and holds with the constant C as
defined in Theorem 14.1. This proves (14.7).

As for the bound (14.8), we have

‖u− (1 +Q)w0‖ε,1 = ‖u1 + w1 + (e−iαxd − 1 + iαxd)w0‖ε,1
6 ‖u1‖ε,1 + ‖w1‖ε,1 + ‖(e−iαxd − 1 + iαxd)w0‖ε,1 .

Here the last term can be estimated using Lemma 14.2 as follows. Employing the individual estimates

‖(e−iαxd − 1 + iαxd)w0‖ε 6
ε5/2

2
√
5
‖α‖2∞‖w0‖ =

ε2

2
√
5
‖α‖2∞‖w0‖ε ,

‖(e−iαxd − 1 + iαxd)∇w0‖ε 6
ε5/2

2
√
5
‖α‖2∞‖∇′w0‖ =

ε2

2
√
5
‖α‖2∞‖∇′w0‖ε ,

‖w0∇(e−iαxd − 1 + iαxd)‖ε 6
ε3/2√

3
‖α‖∞

√
‖α‖2∞ + ‖∇′α‖2∞ ε2 ‖w0‖

=
ε√
3
‖α‖∞

√
‖α‖2∞ + ‖∇′α‖2∞ ε2 ‖w0‖ε ,

and the Schwarz inequality, we may write

‖(e−iαxd − 1 + iαxd)w0‖ε,1 6 C1(ε) ε ‖w0‖ε,1

with the same constantC1(ε) as defined in Theorem 14.1. Consequently, using (14.18), Lemma 14.4, Lemma 14.3
and the Schwarz inequality employing (14.16), we get the bound

‖u− (1 +Q)w0‖ε,1 6 C(ε) ε ‖f‖ε

with

C(ε) :=

√
1

π2
+
(
C0 + C1(ε)

)2
. (14.23)

Note that C(ε) coincides with the corresponding constant of Theorem 14.1. This concludes the proof of
Theorem 14.1.
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[13] H. Hernandez-Coronado, D. Krejčǐŕık, and P. Siegl, Perfect transmission scattering as a PT-symmetric spectral
problem, Phys. Lett. A 375 (2011), 2149–2152.

[14] H.-Ch. Kaiser, H. Neidhardt, and J. Rehberg, Macroscopic current induced boundary conditions for Schrödinger-type
operators, Integral Equations and Operator Theory 45 (2003), 39–63.

[15] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966.
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D. Krejčǐŕık, N. Raymond, J. Royer and P. Siegl

1 Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University
in Prague, Trojanova 13, 12000 Prague 2, Czech Republic; david.krejcirik@fjfi.cvut.cz
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of our abstract tool is demonstrated by its application on seemingly different PDE problems from
various areas of mathematical physics; all are analysed in a unified manner now, known results are
recovered and new ones established.
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15.1 Introduction

15.1.1 Motivation and context

In this paper we develop an abstract tool for dimensional reductions via the norm resolvent convergence obtained
from variational estimates. The results are relevant in particular for PDE problems, typically Schrödinger-type
operators depending on an asymptotic parameter having various interpretations (semiclassical limit, shrinking
limits, large coupling limit, etc.). In applications, our resolvent estimates lead to accurate spectral asymptotic
results for eigenvalues lying in a suitable region of the complex plane. Moreover, avoiding the traditional
min-max approach, with its fundamental limitations to self-adjoint cases, we obtain an effective operator,
the spectrum of which determines the spectral asymptotics. The flexibility of the latter is illustrated on a
non-self-adjoint example in the second part of the paper.

The power of our approach is demonstrated by a unified treatment of diverse classical as well as recent
problems occurring in mathematical physics such as:

- semiclassical Born-Oppenheimer approximation,

- shrinking tubular neighborhoods of hypersurfaces subject to various boundary conditions,

- domains with very attractive Robin boundary conditions.

In spite of the variety of operators, asymptotic regimes, and techniques considered in the previous literature,
all these results are covered in our general abstract and not only asymptotic setting. Our first result (Theorem
15.1) gives a norm resolvent convergence towards a tensorial operator in a general self-adjoint setting. We
emphasize that only two quantities need to be controlled: the size of a commutator of a “longitudinal operator”
with spectral projection on low lying “transverse modes” and the size of the “spectral gap” of a “transverse
operator”, see (15.5) and (15.2), respectively. Although the latter is also very natural it was hardly visible in
existing literature due to many seemingly different technical steps as well as various ways how these quantities
enter. As particular cases of the application of Theorem 15.1, we recover, in a short manner, known results for
quantum waveguides (see for instance [3], [12], [10] or [11]) and cast a new light on Born-Oppenheimer type
results (see [13], [19], [8] or [18, Sec. 6.2]). To keep the presentation short we deliberately do not strive for the
weakest possible assumptions in examples, although the abstract setting allows for many further generalizations
and it clearly indicates how to proceed. We also remark that for more specific geometric situations sharper
spectral results can be obtained, for example leading to perturbation series to higher order (see the book [15]
and the survey article [5]).

In the second part of the paper, we prove, in the same spirit as previous results, the norm convergence
result for a non-self-adjoint Robin Laplacian, see Theorem 15.2. It will partially generalize previous works in
the self-adjoint (see [17], [9] and [16]) and in the non-self-adjoint (see [2]) cases.
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As a matter of fact, the crucial step in all the proofs of the paper is an abstract lemma (see Lemma 15.1) of
an independent interest. It provides a norm resolvent estimate from variational estimates, which is particularly
suitable for the analysis of operators defined via sesquilinear forms.

15.1.2 Reduction of dimension in an abstract setting and self-adjoint applications

We first describe the reduction of dimension for an operator of the form

L = S∗S + T, T =
⊕

s∈Σ

Ts, (15.1)

acting on the Hilbert space H =
⊕

s∈Σ Hs. The norm and inner product in H will be denoted by ‖ ·‖ and 〈·, ·〉,
respectively; the latter is assumed to be linear in the second argument.

Here Σ is a measure space and Ts is a self-adjoint non-negative operator on a Hilbert space Hs for all s ∈ Σ.
Precise definitions will be given in Section 15.2. A typical example is the Schrödinger operator

H = (−i~∂s)2 + (−i∂t)2 + V (s, t) ,

acting on L2(Rs × Rt). Here Σ = R, Hs = L2(R), S = −i~∂s and Ts = (−i∂t)2 + V (s, t).
We consider a function s 7→ γs such that

γ = inf
s∈Σ

γs > 0 . (15.2)

Then we denote by Πs ∈ L(Hs) the spectral projection of Ts on [0, γs), and we set Π⊥
s = IdHs−Πs. We denote

by Π the bounded operator on H such that for Φ ∈ H and s ∈ Σ we have (ΠΦ)s = ΠsΦs. We similarly define
Π⊥ ∈ L(H). Our purpose is to compare some spectral properties of the operator L with those of the simpler
operator

Leff = ΠLΠ. (15.3)

This is an operator on ΠH with domain ΠH ∩ D(L ).
In fact, we will first compare L with

L̂ = ΠLΠ+Π⊥
LΠ⊥. (15.4)

Then Leff and L ⊥ will be defined as the restrictions of L̂ to ΠH and Π⊥H, respectively, so that

L̂ = Leff ⊕ L
⊥.

We will give a sufficient condition for z ∈ ρ(L̂ ) to be in ρ(L ) and, in this case, an estimate for the difference

of the resolvents. Then, since ΠH and Π⊥H reduce L̂ , it is not difficult to check that far from the spectrum

of L ⊥ the spectral properties of L̂ are the same as those of Leff , so we can state a similar statement with

L̂ replaced by Leff . In applications, we can for instance prove that the first eigenvalues of L are close to the
eigenvalues of the simpler operator Leff .

We assume that D(S) is invariant under Π, that [S,Π] extends to a bounded operator on H, and we set

a =
‖[S,Π]‖L(H)√

γ
. (15.5)

For z ∈ C, we also define

η1(z) =
3√
2
a2γ +

6a√
2
(1 + a)|z|+ 3a

γ
√
2

(
2 +

a√
2

)
|z|2 ,

η2(z) =
3a√
2
(1 + a) +

3a

γ
√
2

(
2 +

a√
2

)
|z| ,

η3(z) =
3a√
2

(
1 +

a√
2

)
+

3a

γ
√
2

(
2 +

a√
2

)
|z| ,

η4(z) =
3a

γ
√
2

(
2 +

a√
2

)
.

(15.6)

Here a and γ are respectively related to the aforementioned “size of commutator” and the “spectral gap”, and z
will play the role of a spectral parameter. Various applications of our main theorems will illustrate what the
orders of magnitude of a and γ can be.
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Theorem 15.1. Let z ∈ ρ(L̂ ). If

1− η1(z)‖(L̂ − z)−1‖ − η2(z) > 0,

then z ∈ ρ(L ) and

‖(L − z)−1 − (L̂ − z)−1‖
≤ η1(z)‖(L − z)−1‖‖(L̂ − z)−1‖+ η2(z)‖(L − z)−1‖+ η3(z)‖(L̂ − z)−1‖+ η4(z).

In particular,

‖(L − z)−1‖ ≤ (η3(z) + 1)‖(L̂ − z)−1‖+ η4(z)

1− η1(z)‖(L̂ − z)−1‖ − η2(z)
.

In order to compare the resolvent of L to the resolvent of Leff , this theorem is completed by the following
easy estimate:

Proposition 15.1. We have Sp(L̂ ) = Sp(Leff) ∪ Sp(L ⊥) and, for z ∈ ρ(L̂ ) such that z /∈ [γ,+∞),
∥∥∥(L̂ − z)−1 − (Leff − z)−1Π

∥∥∥ ≤ 1

dist(z, [γ,+∞))
.

In this estimate, it is implicit that (Leff − z)−1 is composed on the left by the inclusion ΠH → H.

Remark 15.1. These results cover a wide range of situations. In Section 15.3, we will discuss three paradig-
matic applications. The space Σ will be R or a submanifold of Rd, d ≥ 2. The set Hs is fixed, but the Hilbert
structure thereon may depend on s. In our examples (Ts)s∈Σ is related to an analytic family of self-adjoint
operators which are not necessarily non-negative. Nevertheless, under suitable assumptions, we can reduce
ourselves to the non-negative case. Indeed, in our applications, we will consider a family (T̃s)s∈Σ of operators
bounded from below, independently of s ∈ Σ. Moreover, the bottom of the spectrum of T̃s will be an isolated
simple eigenvalue µ̃1(s). Then, we notice that infs∈Σ µ̃1(s) is well-defined and that Ts = T̃s − infs∈Σ µ̃1(s) is
non-negative. We denote by u1(s) a corresponding eigenfunction. We can assume that ‖u1(s)‖H = 1 for all
s ∈ Σ and that u1 is a smooth function of s. Πs is the projection on u1(s) and ΠH can be identified with
L2(Σ) via the map ϕ 7→ (s 7→ ϕ(s)u1(s)). In particular Leff can be seen as an operator on L2(Σ), which is
what is meant by the “reduction of dimension”. Finally, γs is defined as the bottom µ̃2(s)− infs∈Σ µ̃1(s) of the
remaining part of the spectrum and

γ = inf
s
µ̃2(s)− inf

s
µ̃1(s) ≤ inf Sp((L − inf

s∈Σ
µ̃1(s))

⊥) . (15.7)

We recall that we assume the spectral gap condition γ > 0, see (15.2).

15.1.3 The Robin Laplacian in a shrinking layer as a non-self-adjoint application

We now consider a reduction of dimension result in a non-self-adjoint setting, namely the Robin Laplacian in
a shrinking layer. Let d ≥ 2. Here, Σ is an orientable smooth (compact or non-compact) hypersurface in Rd

without boundary. The orientation can be specified by a globally defined unit normal vector field n : Σ → Sd−1.
Moreover Σ is endowed with the Riemannian structure inherited from the Euclidean structure defined on Rd.
We assume that Σ admits a tubular neighborhood, i.e. for ε > 0 small enough the map

Θε : (s, t) 7→ s+ εtn(s) (15.8)

is injective on Σ× [−1, 1] and defines a diffeomorphism from Σ× (−1, 1) to its image. We set

Ω = Σ× (−1, 1) and Ωε = Θε(Ω) . (15.9)

Then Ωε has the geometrical meaning of a non-self-intersecting layer delimited by the hypersurfaces

Σ±,ε = Θε(Σ× {±1}) .
Moreover Σ±,ε can be identified with Σ via the diffeomorphisms

Θ±,ε :

{
Σ → Σ±,ε
s 7→ s± εn(s) .

Let α : Σ → C be a smooth bounded function. We set α±,ε = α ◦ Θ−1
±,ε : Σ±,ε → C and we consider on

L2(Ωε) the closed operator Pε,α (or simply Pε if no risk of confusion) defined as the usual Laplace operator
on Ωε subject to the Robin boundary condition

∂u

∂n
+ α±,εu = 0, on Σ±,ε . (15.10)
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Remark 15.2. Note that a very special choice of Robin boundary conditions is considered in this section.
Indeed, the boundary-coupling functions considered on Σ+,ε and Σ−,ε are the same except for a switch of
sign, see (15.25). More specifically, α±,ε(s) = α(s) for every s ∈ Σ and n is an outward normal to Ωε on one
of the connected parts Σ±,ε of the boundary ∂Ωε, while it is inward pointing on the other boundary. This
special choice is motivated by Parity-Time-symmetric waveguides [1, 2] as well as by a self-adjoint analogue
considered in [16]. It is straightforward to extend the present procedure to the general situation of two different
boundary-coupling functions on Σ+,ε and Σ−,ε, but then the effective operator will be ε-dependent (in analogy
with the Dirichlet boundary conditions, see Proposition 15.6) or a renormalization would be needed (cf. [12]).

Our purpose is to prove that, at the limit when ε goes to 0, the operator Pε converges in a norm-resolvent
sense to a Schrödinger operator

Leff = −∆Σ + Veff ,

on Σ. Here −∆Σ is the Laplace-Beltrami operator on Σ, and the potential Veff depends both on the geometry
of Σ and on the boundary condition. More precisely we have

Veff = |α|2 − 2αℜ(α)− α(κ1 + · · ·+ κd−1). (15.11)

Note that the sum of the principal curvatures is proportional to the mean curvature of Σ.
It will appear later that the shrinking limit ε → 0 strongly penalizes the normal derivative (independently

of the boundary condition). Thus we consider Π ∈ L(L2(Ω)) the projection on functions which do not depend
on t: for u ∈ L2(Ω) and (s, t) ∈ Ω we set

(Πu)(s, t) =
1

2

∫ 1

−1

u(s, θ)dθ .

Then we define Π⊥ = Id−Π.

Theorem 15.2. Let K be a compact subset of ρ(Heff). Then there exists ε0 > 0 and C ≥ 0 such that for
z ∈ K and ε ∈ (0, ε0) we have z ∈ ρ(Hε) and

‖(Pε − z)−1 − U−1
ε (Leff − z)−1ΠUε‖L(L2(Ωε)) ≤ Cε .

Here Uε is a unitary transformation from L2(Ωε, dx) to L
2(Ω, wε(x)dσdt), where for some C > 1 we have

∀ε ∈ (0, ε0), ∀x ∈ Ω,
1

C
≤ |wε(x)| ≤ C .

As for Theorem 15.1 it is implicit that the resolvent (Leff − z)−1 is composed on the left by the inclusion
ΠL2(Ωε) → L2(Ωε). Moreover the operator Leff on L2(Σ) has been identified with an operator on ΠL2(Ωε).

Remark 15.3. In the geometrically trivial situation Σ = Rd−1 and special choice ℜ(α) = 0, a version of
Theorem 15.2 was previously established in [2]. At the same time, in the self-adjoint case ℑ(α) = 0 and very
special geometric setting d = 1 (Σ being a curve), a version of Theorem 15.2 is due to [16]. In our general
setting, it is interesting to see how the geometry enters the effective dynamics, through the mean curvature
of Σ, see (15.11).

15.1.4 From variational estimates to norm resolvent convergence

All the results of this paper are about estimates of the difference of resolvents of two operators. These estimates
will be deduced from the corresponding estimates of the associated quadratic forms by the following general
lemma:

Lemma 15.1. Let K be a Hilbert space. Let A and Â be two closed densely defined operators on K. Assume
that Â is bijective and that there exist η1, η2, η3, η4 ≥ 0 such that 1− η1‖Â−1‖ − η2 > 0 and

∀φ ∈ D(A), ∀ψ ∈ D(Â∗) ,

|〈Aφ, ψ〉 − 〈φ, Â∗ψ〉| ≤ η1‖φ‖‖ψ‖+ η2‖φ‖‖Â∗ψ‖+ η3‖Aφ‖‖ψ‖+ η4‖Aφ‖‖Â∗ψ‖ .

Then A is injective with closed range. If moreover A∗ is injective, then A is bijective and we have the estimates

‖A−1‖ ≤ (η3 + 1)‖Â−1‖+ η4

1− η1‖Â−1‖ − η2
(15.12)

and ∥∥∥A−1 − Â−1
∥∥∥ ≤ η1‖A−1‖‖Â−1‖+ η2‖A−1‖+ η3‖Â−1‖+ η4.
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Since the proof is rather elementary, let us provide it already now.

Proof. Let φ ∈ D(A) and consider ψ = (Â−1)∗φ ∈ D(Â∗). We have

|‖φ‖2 − 〈Aφ, (Â−1)∗φ〉| = |〈φ, Â∗ψ〉 − 〈Aφ, ψ〉|
≤ (η1‖Â−1‖+ η2)‖φ‖2 +

(
η3‖Â−1‖+ η4

)
‖Aφ‖‖φ‖ ,

so
‖φ‖2 ≤

(
η1‖Â−1‖+ η2

)
‖φ‖2 +

(
(η3 + 1)‖Â−1‖+ η4

)
‖φ‖‖Aφ‖.

Then if η1‖Â−1‖+ η2 < 1 , we get

‖φ‖ ≤ (η3 + 1)‖Â−1‖+ η4

1− η1‖Â−1‖ − η2
‖Aφ‖ . (15.13)

In particular, A is injective with closed range. If A∗ is injective, the range of A is dense and thus A is bijective.
In particular, with (15.13), we obtain (15.12).

Finally for f, g ∈ K, φ = A−1f and ψ = (Â−1)∗g we have

〈
(
A−1 − Â−1

)
f, g〉 = 〈φ, Â∗ψ〉 − 〈Aφ, ψ〉,

and the conclusion follows by easy manipulations.

15.1.5 Organization of the paper

In Section 15.2, we prove Theorem 15.1. We first define the operators L , L̂ and Leff , and then we show
how Lemma 15.1 can be applied. In Section 15.3, we discuss some applications of Theorem 15.1 to the
semiclassical Born-Oppenheimer approximation, the Dirichlet Laplacian on a shrinking tubular neighborhood
of an hypersurface and the Robin Laplacian in the large coupling limit. Section 15.4 is devoted to the proof of
Theorem 15.2 about the non-self-adjoint Robin Laplacian on a shrinking layer.

15.2 Abstract reduction of dimension

In this section we describe more precisely the setting introduced in Section 15.1.2 and we prove Theorem 15.1.
The applications will be given in the following section.

15.2.1 Definition of the effective operator

Let (Σ, σ) be a measure space. For each s ∈ Σ we consider a separable complex Hilbert space Hs. Then, on Hs

we consider a closed symmetric non-negative sesquilinear form qs with dense domain D(qs). We denote by Ts
the corresponding self-adjoint and non-negative operator, as given by the Representation Theorem. As already
said in Section 15.1.2, we consider a function s ∈ Σ 7→ γs ∈ R whose infimum is positive, see (15.2). Then we
denote by Πs ∈ L(Hs) the spectral projection of Ts on [0, γs), and we set Π⊥

s = IdHs −Πs.
We denote by H the subset of

⊕
s∈ΣHs which consists of all Φ = (Φs)s∈Σ such that the functions s 7→

‖Φs‖Hs
and s 7→ ‖ΠsΦs‖Hs

are measurable on Σ and

‖Φ‖2 =

∫

Σ

‖Φs‖2Hs
dσ(s) < +∞ .

It is endowed with the Hilbert structure given by this norm. We denote by Π the bounded operator on H such
that for Φ ∈ H and s ∈ Σ we have (ΠΦ)s = ΠsΦs. We similarly define Π⊥ ∈ L(H).

The forms qs on Hs define a quadratic form QT on H as follows. We say that Φ = (Φs)s∈Σ ∈ H belongs to
D(QT ) if Φs belongs to D(qs) for all s ∈ Σ, the functions s 7→ qs(Φs) and s 7→ qs(ΠsΦs) are measurable on Σ
and

QT (Φ) =

∫

Σ

qs(Φs)dσ(s) < +∞ .

We consider on H an operator S with dense domain D(S). We assume that D(S) is invariant under Π, that
[S,Π] extends to a bounded operator on H, and we define a as in (15.5). We assume that

D(Q) = D(S) ∩ D(QT )
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is dense in H, and for Φ ∈ D(Q) we set

Q(Φ) = ‖SΦ‖2 +QT (Φ) . (15.14)

We assume that Q defines a closed form on H. The form Q is symmetric and non-negative and the associated
operator is the operator L introduced in (15.1).

Then we define the operator L̂ (see (15.4)) by its form. For this we need to verify that the form domain
is left invariant both by Π and Π⊥.

Lemma 15.2. For all Φ ∈ D(Q) we have ΠΦ ∈ D(Q) and Π⊥Φ ∈ D(Q).

Proof. Let Φ = (Φs)s∈Σ ∈ D(Q). We have Φ ∈ D(S), so by assumption we have ΠΦ ∈ D(S). By assumption
again, the function s 7→ qs(ΠsΦs) = qs(ΠsΠsΦs) is measurable and we have

∫

Σ

qs(ΠsΦs) dσ(s) ≤ sup
s∈Σ

γs

∫

Σ

‖Φs‖2Hs
dσ(s) < +∞.

This proves that ΠΦ belongs to D(QT ), and hence to D(Q). Then the same holds for Π⊥Φ = Φ−ΠΦ.

With this lemma we can set, for Φ,Ψ ∈ D(Q),

Q̂(Φ,Ψ) = Q(ΠΦ,ΠΨ) +Q(Π⊥Φ,Π⊥Ψ) .

Lemma 15.3. For all Φ ∈ D(Q̂) we have

Q(Φ) ≤ 2Q̂(Φ) .

In particular the form Q̂ is non-negative, closed, and it determines uniquely a self-adjoint operator L̂ on H.

Moreover we have [Π, L̂ ] = 0 on D(L̂ ).

Proof. We have
Q(Φ)− Q̂(Φ) = Q(ΠΦ,Π⊥Φ) +Q(Π⊥Φ,ΠΦ) .

Since the form Q is non-negative we can apply the Cauchy-Schwarz inequality to write

Q(ΠΦ,Π⊥Φ) ≤
√
Q(ΠΦ)

√
Q(Π⊥Φ) ≤ 1

2

(
Q(ΠΦ) +Q(Π⊥Φ)

)
=

1

2
Q̂(Φ) .

We have the same estimate for Q(Π⊥Φ,ΠΦ), and the first conclusions follow. We just check the last property

about the commutator. Let ψ ∈ D(L̂ ). For all φ ∈ D(L̂ ) we have

Q̂(φ,Πψ) = Q(Πφ,Πψ) = Q̂(Πφ, ψ) = 〈Πφ, L̂ ψ〉H = 〈φ,ΠL̂ ψ〉H.
This proves that Πψ ∈ D(L̂ ) with L̂Πψ = ΠL̂ ψ and the proof is complete.

Then, from Q̂ it is easy to define the forms corresponding to the operators Leff and L ⊥:

Lemma 15.4. Let Qeff be the restriction of Q to ΠD(Q) = Ran(Π) ∩ D(Q). Then Qeff is non-negative and
closed. The associated operator Leff is self-adjoint, its domain is invariant under Π, and [Π,Leff ] = 0 on

D(Leff). Moreover, we have (D(L̂ ) ∩ Ran(Π), L̂ ) = (D(Leff),Leff).
We have similar statements for the restriction Q⊥ of Q to Π⊥D(Q) = Ran(Π⊥)∩D(Q) and the corresponding

operator L ⊥.

Proof. The closedness of Qeff comes from the closedness of Q and the continuity of Π. The other properties
are proved as for Lemma 15.3. We prove the last assertion. Let ψ ∈ D(Leff). By definition of this domain we

have Πψ = ψ. For φ ∈ D(Q̂), we have

Q̂(φ, ψ) = Q(Πφ,Πψ) = Qeff(Πφ,Πψ) = Qeff(Πφ, ψ) = 〈Πφ,Leffψ〉 = 〈φ,Leffψ〉 .
This proves that ψ ∈ D(L̂ ) and Leffψ = L̂ψ. Thus D(Leff) ⊂ D(L̂ )∩Ran(Π) and L̂ = Leff on D(Leff). The

reverse inclusion D(L̂ ) ∩Ran(Π) ⊂ D(Leff) is easy, so the proof is complete.

Finally we have proved that

D(L̂ ) =
(
D(L̂ ) ∩ Ran(Π)

)
⊕
(
D(L̂ ) ∩ Ran(Π⊥)

)
= D(Leff)⊕ D(L ⊥)

and for ϕ ∈ D(L̂ ) we have

L̂ ϕ = LeffΠϕ+ L
⊥Π⊥ϕ.

From the spectral theorem and Sp(L ⊥) ⊂ [γ,+∞), we deduce the following lemma.

Lemma 15.5. We have Sp(L̂ ) = Sp(Leff) ∪ Sp(L ⊥) and, for z ∈ ρ(L̂ ) such that z /∈ [γ,+∞),
∥∥∥(L̂ − z)−1 − (Leff − z)−1Π

∥∥∥ ≤ 1

dist(z, [γ,+∞))
.
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15.2.2 Comparison of the resolvents

This section is devoted to the proof of the following theorem that implies Theorem 15.1 via Lemma 15.1.

Theorem 15.3. Let L and L̂ be as above. Let z ∈ C and η1(z), η2(z), η3(z), η4(z) as in (15.6). Then for

Φ ∈ D(L ) and Ψ ∈ D(L̂ ∗) we have

|Q(Φ,Ψ)− Q̂(Φ,Ψ)| ≤ η1(z) ‖Φ‖ ‖Ψ‖+ η2(z)‖Φ‖‖(L̂ − z̄)Ψ‖
+ η3(z)‖(L − z)Φ‖‖Ψ‖+ η4(z)‖(L − z)Φ‖‖(L̂ − z̄)Ψ‖ .

Theorem 15.3 is a consequence of the following proposition after inserting z and using the triangular
inequality.

Proposition 15.2. For all Φ ∈ D(L ) and Ψ ∈ D(L̂ ) we have

1

γ
|Q(Φ,Ψ)− Q̂(Φ,Ψ)|

≤ 3a√
2

(
‖Φ‖+ ‖LΦ‖

γ

) ‖L̂Ψ‖
γ

+
3a√
2

(
a‖Φ‖+

(
1 +

a√
2

) ‖LΦ‖
γ

)(
‖Ψ‖+ ‖L̂Ψ‖

γ

)
.

Proof. Let ν = ‖[S,Π]‖. We have

Q(Φ,Ψ)− Q̂(Φ,Ψ) = Q(Π⊥Φ,ΠΨ) +Q(ΠΦ,Π⊥Ψ) .

For the first term we write

Q(Π⊥Φ,ΠΨ) = 〈SΠ⊥Φ, SΠΨ〉 = 〈SΠ⊥Φ, [S,Π]ΠΨ〉+ 〈SΠ⊥Φ,ΠSΠΨ〉 ,

so that
Q(Π⊥Φ,ΠΨ) = 〈SΠ⊥Φ, [S,Π]ΠΨ〉+ 〈[S,Π⊥]Π⊥Φ,ΠSΠΨ〉 .

We deduce that
|Q(Π⊥Φ,ΠΨ)| ≤ ν‖SΠ⊥Φ‖‖Ψ‖+ ν‖Π⊥Φ‖‖SΠΨ‖ . (15.15)

Similarly, we get, by slightly breaking the symmetry,

|Q(ΠΦ,Π⊥Ψ)| ≤ ν‖SΠ⊥Ψ‖‖Φ‖+ ν‖Π⊥Ψ‖‖SΦ‖ . (15.16)

We infer that

|Q(Φ,Ψ)− Q̂(Φ,Ψ)| ≤ ν‖SΠ⊥Φ‖‖Ψ‖+ ν‖Π⊥Φ‖‖SΠΨ‖+ ν‖SΠ⊥Ψ‖‖Φ‖+ ν‖Π⊥Ψ‖‖SΦ‖ . (15.17)

Since QT is non-negative we have
‖SΦ‖2 ≤ Q(Φ) ≤ ‖LΦ‖‖Φ‖. (15.18)

Similarly,

‖SΠΨ‖2 ≤ Q̂(Ψ) ≤ ‖L̂Ψ‖‖Ψ‖ . (15.19)

Then we estimate ‖Π⊥Φ‖ and ‖SΠ⊥Φ‖. We have

〈Π⊥Φ,LΦ〉 = Q(Π⊥Φ,Φ) = Q(Π⊥Φ) +Q(Π⊥Φ,ΠΦ) ,

and deduce
Q(Π⊥Φ) ≤ ‖LΦ‖‖Π⊥Φ‖+ |Q(Π⊥Φ,ΠΦ)| .

From (15.16), we get

Q(Π⊥Φ) ≤ ‖LΦ‖‖Π⊥Φ‖+ ν‖SΠ⊥Φ‖‖Φ‖+ ν‖Π⊥Φ‖‖SΦ‖ .

Moreover, we have
Q(Π⊥Φ) ≥ ‖SΠ⊥Φ‖2 + γ‖Π⊥Φ‖2 .

We infer that

‖SΠ⊥Φ‖2 + γ‖Π⊥Φ‖2

≤ γ

4
‖Π⊥Φ‖2 + 1

γ
‖LΦ‖2 + 1

2
‖SΠ⊥Φ‖2 + ν2

2
‖Φ‖2 + γ

4
‖Π⊥Φ‖2 + ν2

γ
‖SΦ‖2 .
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Using (15.18) we deduce that

1

2

(
‖SΠ⊥Φ‖2 + γ‖Π⊥Φ‖2

)
≤ 1

γ
‖LΦ‖2 + ν2

2
‖Φ‖2 + ν2

2

(‖LΦ‖2
γ2

+ ‖Φ‖2
)
,

and thus
‖SΠ⊥Φ‖2

γ
+ ‖Π⊥Φ‖2 ≤ (2 + a2)

‖LΦ‖2
γ2

+ 2a2‖Φ‖2 . (15.20)

Let us now consider ‖Π⊥Ψ‖ and ‖SΠ⊥Ψ‖. We have easily that

‖SΠ⊥Ψ‖2 + γ‖Π⊥Ψ‖2 ≤ Q(Π⊥Ψ) = Q̂(Ψ,Π⊥Ψ) ≤ ‖L̂Ψ‖‖Π⊥Ψ‖ ,
and thus

‖SΠ⊥Ψ‖2
γ

+ ‖Π⊥Ψ‖2 ≤ ‖L̂Ψ‖2
γ2

. (15.21)

It remains to combine (15.17), (15.18), (15.19), (15.20), (15.21), and use elementary manipulations.

15.3 Examples of applications

In this section we discuss three applications of Theorem 15.1 and we recall that we are in the context of Remark
15.1.

15.3.1 Semiclassical Born-Oppenheimer approximation

In this first example we set (Σ, σ) = (R, ds). We consider a Hilbert space HT and set H = L2(R,HT ). Then,
for h > 0, we consider on H the operator Sh = hDs, where Ds = −i∂s. We also consider an operator T on H

such that for Φ = (Φs)s∈R ∈ H we have (TΦ)s = TsΦs, where (Ts) is a family of operators on the family of
Hilbert spaces (Hs) which depends analytically on s. Thus the operator L = Lh takes the form

Lh = h2D2
s + T .

This kind of operators appears in [13, 14] where their spectral and dynamical behaviors are analyzed. As an
example of operator T , the reader can have the Schrödinger operator −∆t+V (s, t) in mind, where the electric
potential V is assumed to be real-valued. Here the operator norm of the commutator [hDs,Π] is controlled
by h times the supremum of ‖∂su1(s)‖H. Assuming that ‖∂su1(s)‖H is bounded, we have a = a(h) = O(h)
(see (15.5)). Let us also assume, for our convenience, that µ1 has a unique minimum, non-degenerate and not
attained at infinity. Without loss of generality we can assume that this minimum is 0 and is attained at 0.
Thus, here γ just satisfies γ = infs∈R µ2(s) > 0.

For k ∈ N∗ we set
λk(h) = sup

F⊂D(Lh)
codim(F )=k−1

inf
ϕ∈F
‖ϕ‖=1

〈Lhϕ, ϕ〉 . (15.22)

By the min-max principle, the first values of λk(h) are given by the non-decreasing sequence of isolated eigen-
values of Lh (counted with multiplicities) below the essential spectrum. If there is a finite number of such
eigenvalues, the rest of the sequence is given by the minimum of the essential spectrum. We similarly define the
sequence (λeff ,k(h)) corresponding to the operator Lh,eff . Note that Lh,eff can be identified with the operator

h2D2
s + µ1(s) + h2‖∂su1(s)‖2HT

.

As a consequence of the harmonic approximation (see for instance [4, Chapter 7] or [18, Section 4.3.1]), we get
the following asymptotics.

Proposition 15.3. Let k ∈ N∗. We have

λeff,k(h) = (2k − 1)

√
µ′′
1(0)

2
h+ o(h) , h→ 0 .

From our abstract analysis, we deduce the following result.

Proposition 15.4. Let c0, C0 > 0. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and

z ∈ Zh = {z ∈ [−C0h,C0h] : dist(z, Sp(Lh,eff)) ≥ c0h}
we have z ∈ ρ(Lh) and

‖(Lh − z)−1 − (Lh,eff − z)−1‖ ≤ C .
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Proof. Let h > 0 and z ∈ Zh. If h is small enough we have C0h < γ so z ∈ ρ(Lh,eff) ∩ ρ(L ⊥
h ) = ρ(L̂h).

Moreover, by the Spectral Theorem,

∥∥∥(L̂h − z)−1
∥∥∥ ≤

∥∥(Lh,eff − z)−1
∥∥+

∥∥(L ⊥
h − z)−1

∥∥ ≤ 1

c0h
+

1

γ − C0h
.

With the notation (15.6) we have

lim inf
h→0

sup
z∈Zh

(
1− η1,h(z)‖(L̂h − z)−1‖ − η2,h(z)

)
> 0.

From Theorems 15.1 and Proposition 15.1, we deduce that z ∈ ρ(Lh),

‖(Lh − z)−1‖ . h−1 ,

and the estimate on the difference of the resolvents. Here and occasionally in the sequel, we adopt the notation
x . y if there is a positive constant C (independent of x and y) such that x ≤ Cy.

From this norm resolvent convergence result, we recover a result of [14, Section 4.2].

Proposition 15.5. Let k ∈ N∗. Then

λk(h) = λeff ,k(h) + O(h2), h→ 0.

Proof. Let ε > 0 be such that λeff,k+1(h)− λeff,k(h) > 2εh for all h. We set zh = λeff,k(h) + εh. The resolvent
(Lh,eff − zh)

−1 has k negative eigenvalues

1

λeff,k(h)− zh
≤ · · · ≤ 1

λeff,1(h)− zh
,

all smaller than −α/h for some α > 0, and the rest of the spectrum is positive. By Proposition 15.4 the
resolvent (Lh − zh)

−1 is well defined for h small enough and there exists C > 0 such that

∥∥(Lh − zh)
−1 − (Lh,eff − zh)

−1
∥∥ ≤ C.

By the min-max principle applied to these two resolvents, we obtain that for all j ∈ {1, . . . , k} the j-th eigenvalue
of (Lh−zh)−1 is at distance not greater than C from 1/(λeff,k+1−j−zh), and the rest of the spectrum is greater
than −C. In particular, for j = 1,

| 1

λk(h)− zh
− 1

λeff ,k(h)− zh
| ≤ C

so that
|λk(h)− λeff,k(h)| ≤ C|λeff ,k(h)− zh||λk(h)− zh|.

This gives
|λk(h)− λeff,k(h)| ≤ Cεh|λk(h)− λeff,k(h)−εh|,

and the conclusion follows for h small enough.

15.3.2 Shrinking neighborhoods of hypersurfaces

In this paragraph we consider a submanifold Σ of Rd, d ≥ 2, as in Section 15.1.3. We choose ε > 0 and define
Θε, Ω and Ωε as in (15.8) and (15.9). For ϕ ∈ H1

0 (Ωε), we set

QDir
Ωε (ϕ) =

∫

Ωε

|∇ϕ|2dx,

and we denote by −∆Dir
Ωε

the associated operator. Then we use the diffeomorphism Θε to see −∆Dir
Ωε

as an
operator on L2(Ω). We set, for ψ ∈ H1

0 (Ω, dσdt),

QDir
ε (ψ) = QDir

Ωε (ψ ◦Θ−1
ε ) .

We need a more explicit expression of QDir
ε in terms of the variables (s, t) on Ω. For (s, t) ∈ Ω we have on

T(s,t)Ω ≃ TsΣ× n(s)R
d(s,t)Θε = (IdTsΣ + εtdsn)⊗ εIdn(s)R .
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Hence

dΘε(s,t)Θ
−1
ε = (IdTsΣ + εtdsn)

−1 ⊗ ε−1Idn(s)R .

We recall that the Weingarten map −dsn is a self-adjoint operator on TsΣ (endowed with the metric inherited
from the Euclidean structure on Rd). For ψ ∈ H1(Ω, dσdt), x ∈ Ωε and (s, t) = Θ−1

ε (x) we get

‖∇(ψ ◦Θ−1
ε )(x)‖2TxΩε = ‖(dxΘ−1

ε )∗∇ψ(s, t)‖2TxΩε
= ‖(IdTsΣ + εtdsn)

−1∇sψ(s, t)‖2TsΣ +
1

ε2
|∂tψ(s, t)|2 .

The eigenvalues of the Weingarten map are the principal curvatures κ1, . . . , κd−1. In particular for (s, t) ∈ Ω
we have

det(d(s,t)Θε) = εwε, where wε(s, t) =

d−1∏

j=1

(1− εtκj(s)) . (15.23)

The Riemannian structure on Ω is given by the pullback by Θε of the Euclidean structure defined on Ωε. More
explicitly, for (s, t) ∈ Ω the inner product on T(s,t)Ω is given by

∀X,Y ∈ T(s,t)(Ω), gε(X,Y ) = 〈d(s,t)Θε(X), d(s,t)Θε(Y )〉Rd .

Then the measure corresponding to the metric gε is given by εwεdσdt. Thus, if we set

Gε(s, t) = (IdTsΣ + εtdsn)
−2, (15.24)

we finally obtain

QDir
ε (ψ) =

∫

Ωε

|(IdTsΣ + εtdsn)
−1∇sψ(Θ

−1
ε (x))|2dx+

1

ε2

∫

Ωε

|∂tψ(Θ−1
ε (x))|2dx

= ε

∫

Ω

〈Gε(s, t)∇sψ,∇sψ〉TΣwεdσdt+
1

ε2

∫

Ω

|∂tψ|2εwεdσdt .

The transverse operator Ts(ε) is the Dirichlet realization on L2((−1, 1), εwεdt) of the differential operator
−ε−2w−1

ε ∂twε∂t. We denote by µ1(s, ε) its first eigenvalue and we set µ(ε) = infs∈Σ µ1(s, ε). We have, by
perturbation theory, as ε→ 0,

µ1(s, ε) =
π2

4ε2
+ V (s) + O(ε) , µ(ε) =

π2

4ε2
+ O(1),

where the potential

V (s) = −1

2

d−1∑

j=1

κj(s)
2 +

1

4



d−1∑

j=1

κj(s)




2

is assumed to be bounded from below.
We denote by L Dir

ε the operator associated to the form QDir
ε and by L Dir

ε,eff the corresponding effective
operator as defined in the general context of Section 15.1.2. It is nothing but the operator associated with the
form H1(Σ) ∋ ϕ 7→ QDir

ε (ϕus,ε) where us,ε is the positive L2-normalized groundstate of the transverse operator
(and actually depending on the principal curvatures analytically). From perturbation theory, we can easily

check that the commutator between the projection on us,ε and S = −iG1/2
ε ∇s is bounded (and of order ε).

Proposition 15.6. Let c0, C0 > 0. There exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) and

z ∈ Zc0,C0,ε = {z ∈ R : |z − µ(ε)| ≤ C0 , dist(z, Sp(L Dir
ε,eff)) ≥ c0}

we have ∥∥∥
(
L

Dir
ε − z

)−1 −
(
L

Dir
ε,eff − z

)−1
∥∥∥ ≤ Cε .

We recover a result of [11] (when there is no magnetic field).

Proof. We are in the context of Remark 15.1. The form Qε − µ(ε) is non-negative. We denote by Lε the

corresponding non-negative self-adjoint operator and define L̂ε as in Lemma 15.3. Given ε > 0 and z ∈ Zc0,C0,ε

we write ζ for z−µ(ε). Thus, with the notation of the abstract setting we have γε ∼ ε−2, aε = O(ε2), ζ = O(1)
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and hence η1,ε(ζ) = O(ε), η2,ε(ζ) = O(ε2), η3,ε(ζ) = O(ε) and η4,ε(ζ) = O(ε2). Moreover, by the spectral
theorem, we have ∥∥∥

(
L̂ε − ζ

)−1
∥∥∥ = O(1).

Thus, there exists ε0 > 0 such that for ε ∈ (0, ε0), z ∈ Zc0,C0,ε and ζ = z−µ(ε) the operator Lε− ζ is bijective
and ∥∥∥(Lε − ζ)

−1
∥∥∥ = O(1) ,

∥∥∥(Lε − ζ)
−1 −

(
L̂ε − ζ

)−1
∥∥∥ = O(ε) .

The conclusion easily follows.

Given ε > 0 we define the sequence (λDir
k (ε))k∈N∗ and (λDir

k,eff (ε))k∈N∗ corresponding to the operators L Dir
ε

and L Dir
ε,eff as in (15.22). By using analytic perturbation theory with respect to the parameters (εκj)1≤j≤d−1

to treat the commutator, we have, for all k ∈ N∗,

λDir
k,eff(ε) =

π2

4ε2
+ λΣk + O(ε) , ε→ 0,

where λΣk is the k-th eigenvalue of −∆s + V (s).
We recover a result in the spirit of [3, 11].

Proposition 15.7. For all k ≥ 1 we have

λDir
k (ε) =

π2

4ε2
+ λΣk + O(ε), ε→ 0

Proof. Let k ≥ 1. There exist c0, c̃0, C0, ε0 > 0 such that for ε ∈ (0, ε0) we have

λDir
k,eff (ε) + c̃0 ∈ Zc0,C0,ε.

As in the proof of Proposition 15.5 we obtain from Proposition 15.6 and the min-max principle
∣∣∣
(
λDir
k (ε)− (λDir

k,eff (ε) + c̃0)
)−1 −

(
λDir
k,eff (ε)− (λDir

k,eff (ε) + c̃0)
)−1
∣∣∣ = O(ε).

We deduce ∣∣λDir
k (ε)− λDir

k,eff (ε)
∣∣ = O(ε)

∣∣(λDir
k (ε)− (λDir

k,eff (ε) + c̃0)
)∣∣ ,

and the conclusion follows.

15.3.3 Dirichlet-Robin shell with large coupling constant

In this section, we keep considering the hypersurface Σ of the last paragraph (here ε = 1). Let us now consider
the Dirichlet-Robin Laplacian in an annulus. In other words, with w1 and G1 as defined by (15.23) and (15.24),
we consider on the weighted space L2(w1dsdt) the quadratic form

QDR
α (ψ) =

∫

Σ×(0,1)

(
〈G1(s, t)∇sψ,∇sψ〉TΣ + |∂tψ|2

)
w1(s, t)dsdt− α

∫

Σ

|ψ(s, 0)|2ds.

It is defined for ψ ∈ Dom(QDR
α ) where

Dom(QDR
α ) = {ψ ∈ H1(Σ× (0, 1)) : ψ(s, 1) = 0 , ∂tψ(s, 0) = −αψ(s, 0)} .

In these definitions α is real, and we are interested in the strong coupling limit α → +∞.

This quadratic form is of the form (15.14) with S = G
1
2
1 ∇s and Ts = −w−1

1 ∂tw1∂t acting on H2((0, 1)) and
Dirichlet-Robin condition. The spectrum of Ts is well-understood in the limit α → +∞. Actually, the family
(Ts) depends analytically on the principal curvatures (κj(s))1≤j≤d−1. We can deduce from the previous works
[6, 7, 9] that, as α→ +∞,

µ1(s, α) = −α2 − ακ(s) + O(1) , µ2(s, α) ≥ c > 0 ,

and
µ(α) = inf

s∈Σ
µ1(s, α) = −α2 − ακmax + O(1) ,

with κ =
∑d−1
j=1 κj . Here, for simplicity, we assume that κ has a unique maximum at s = 0 that is not degenerate

and not attained at infinity. Moreover, we assume that the eigenvalues of D2
s +

1
2Hess0(−κ)(s, s) are simple.

We let
ZC0,c0,α = {z ∈ R : |z − µ(α)| ≤ c0α , dist(z, Sp(L̂ DR

α )) ≥ C0} .
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Proposition 15.8. There exist C,α0 > 0 such that, for all z ∈ ZC0,c0,α

∥∥∥
(
L

DR
α − z

)−1 −
(
L

DR
α,eff − z

)−1
∥∥∥ ≤ Cα−1 .

Proof. Here we have γ = O(α2), ν = O(α−1) and a = O(α−2). We use again Remark 15.1 and we apply
Theorem 15.1 with L = L DR

α − µ(α) and z replaced by z − µ(α). For z ∈ Zc0,C0,α, we get

η1 = O(α−1) , η2 = O(α−2) , η3 = O(α−2) , η4 = O(α−3) .

Moreover, for α large enough, we have, for all z ∈ Zc0,C0,α, z ∈ ρ
(
L DR
α,eff

)
and

‖(L DR
α,eff − z)−1‖ ≤ C .

Then Theorem 15.1 implies the wished estimate.

We recover, under our simplifying assumptions, a result appearing in [6, 17, 9].

Proposition 15.9. For all j ≥ 1, we have, as α→ +∞,

λDR
j,eff (α) = −α2 + νj(α) + O(1) ,

and

λDR
j (α) = −α2 + νj(α) + O(1) ,

where νj(α) is the j-th eigenvalue of D2
s − ακ(s).

Proof. Let us first discuss the asymptotic behavior of the eigenvalues of the effective operator. Let us recall
that it is defined as explained in Section 15.1.2, and that it can be identified with the operator associated with
the form H1(Σ) ∋ ϕ 7→ QDR

α (ϕus,α) where us,α is the positive L2-normalized groundstate of the transverse
operator T (s). The asymptotic expansion of the effective eigenvalues again follows from perturbation theory
and a commutator estimate (see [9, Section 3] where it is explained how we can estimate such a commutator).

Then, we proceed as in the previous section. Note that, by the harmonic approximation, for all j ≥ 1,

νj(α) = −ακmax + α
1
2 ν̃j + O(α

1
4 ) ,

where (ν̃j)j∈N∗ is the non-decreasing sequence of the eigenvalues of D2
s +

1
2Hess0(−κ)(s, s). In particular, the

asymptotic gap between consecutive eigenvalues is of order α
1
2 . Then, there exist c0 > 0, C0 > 0 and C > 0

such that, for α large, z = λDR
j,eff(α) + C ∈ Zc0,C0,α. We use Proposition 15.8 and we get, as in the other

examples,

|λDR
j,eff(α)− λDR

j (α)| ≤ Cα−1 .

15.4 The non-self-adjoint Robin Laplacian between hypersurfaces

In this section we prove Theorem 15.2. The proof is split in two main steps. We first transform the problem
into an equivalent statement, where Pε is replaced by a unitarily equivalent operator on Ω.

15.4.1 A change of variables

The operator Pε is associated to the (coercive) quadratic form defined for φ ∈ H1(Ωε) by

Q1
ε(φ) = Q1

ε,α(φ) =

∫

Ωε

|∇φ|2 +
∫

Σ+,ε

α+,ε|φ|2 −
∫

Σ−,ε

α−,ε|φ|2 . (15.25)

As in Section 15.3.2, we use the diffeomorphism Θε to see Pε as an operator on L2(Ω): for ψ ∈ H1(Ω) we set

Q2
ε(ψ) = Q1

ε(ψ ◦Θ−1
ε ) .
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We obtain

Q2
ε(ψ) =

∫

Ωε

|(IdTsΣ + εtdsn)
−1∇sψ(Θ

−1
ε (x))|2 dx +

1

ε2

∫

Ωε

|∂tψ(Θ−1
ε (x))|2dx

+

∫

Σ+

α+,ε|ψ ◦ (Θ+
ε )

−1|2 −
∫

Σ−

α−,ε|ψ ◦ (Θ+
ε )

−1|2

=

∫

Ω

〈Gε(s, t)∇sψ,∇sψ〉TΣεw̃εdσdt +
1

ε

∫

Ω

|∂tψ|2w̃εdσdt

+

∫

Σ

α (|ψ|2w̃ε)|t=1dσ −
∫

Σ

α (|ψ|2w̃ε)|t=−1dσ,

where, as in (15.23), w̃(s, t) =
∏d−1
j=1 (1− εtκj(s)). Notice that L

2(Ω, dσdt) and L2(Ω, εw̃εdσdt) (or their corre-

sponding Sobolev spaces) are equal as sets, but Θε induces only a unitary transformation from L2(Ω, εw̃εdσdt)
to L2(Ωε, dx).

15.4.2 A change of function

In the next step we make a change of function to turn our problem with Robin boundary conditions into an
equivalent problem with Neumann boundary conditions. For this we consider the unitary transform

Ũε :

{
L2(Ω, εw̃εdσdt) → L2(Ω, e−2εtℜ(α)w̃εdσdt),

u 7→ √
εeαεtu.

We set
wε = e−2εtℜ(α)w̃ε .

Then on H1(Ω, wεdσdt) we consider the transformed quadratic form given by

Qε(φ) = Q2
ε(Ũ

−1φ)

=

∫

Ω

〈Gε(∇s − εt∇sα)φ, (∇s − εt∇sα)φ〉wεdσdt+
1

ε2

∫

Ω

|∂tφ|2wεdσdt

− 1

ε

∫

Ω

(
αφ∂tφ̄+ ᾱφ̄∂tφ

)
wεdσdt+

∫

Ω

|α|2|φ|2wεdσdt

+
1

ε

∫

Σ

α|φ|wεdσ − 1

ε

∫

Σ

α|φ|2wεdσ .

By integration by parts we have

− 1

ε

∫

Ω

αφ∂tφ̄wεdσdt

= −1

ε

∫

Σ

α|φ|wεdσ +
1

ε

∫

Σ

α|φ|2wεdσ +

∫

Ω

(
−2αℜ(α) + α∂tw̃ε

εw̃ε

)
|φ|2wεdσdt .

Finally,

Qε(φ) =

∫

Ω

〈Gε(∇s − εt∇sα)φ, (∇s − εt∇sα)φ〉wεdσdt+
1

ε2

∫

Ω

|∂tφ|2wεdσdt

+
2i

ε

∫

Ω

ℑ(α)∂tφφ̄wεdσdt+
∫

Ω

Vε|φ|2wεdσdt ,

where

Vε = |α|2 − 2αℜ(α) + α
∂tw̃ε
εw̃ε

.

On H1(Ω, wεdσdt) we can also consider the forms defined by

Q̂ε(φ) =

∫

Ω

|∇sφ|2dσdt+
1

ε2

∫

Ω

|∂tφ|2dσdt+
∫

Ω

Veff |φ|2dσdt

and

Qeff(φ) =

∫

Ω

|∇sφ|2dσdt+
∫

Ω

Veff |φ|2dσdt.

We denote by Lε, L̂ε and Leff the operators corresponding to the forms Qε, Q̂ε and Qeff , respectively.
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15.4.3 About the new operator Lε

If Uε denotes the composition of the unitary transform associated with Θε and Ũε, we write Lε = UεPεU
−1
ε

and the estimate of Theorem 15.2 can be rewritten as

‖(Lε − z)−1 − (Leff − z)−1Π‖L(L2(Ω)) . ε . (15.26)

As Pε, the operator Lε is m-accretive. We have the following accretivity estimate when ε goes to 0.

Lemma 15.6. If ε0 > 0 is small enough there exist M0 ≥ 0 and c0 > 0 such that for ε ∈ (0, ε0), M ≥M0 and
φ ∈ H1(Ω) we have

ℜ
(
Qε(φ)

)
+M‖φ‖2L2(Ω) ≥ c0

(
‖∇sφ‖2L2(Ω) +

1

ε2
‖∂tφ‖2L2(Ω) + ‖φ‖2L2(Ω)

)
.

Proof. There exists C1 ≥ 0 such that for ε ∈ (0, ε0) and φ ∈ H1(Ω) we have

ℜ
(
Qε(φ)

)
≥ (1− C1ε)‖(∇s − εt∇sα)φ‖2 +

1− C1ε

ε2
‖∂tφ‖2

− 2‖ℑ(α)‖∞(1 + C1ε)

ε
‖∂tφ‖‖φ‖ − C1‖φ‖2.

For some C2 ≥ 0 we also have

‖(∇s − εt∇α)φ‖2 ≥ (1− ε)‖∇sφ‖2 − C2‖φ‖2 .

and

1− C1ε

ε2
‖∂tϕ‖2 −

2 ‖ℑ(α)‖∞ (1 + C1ε)

ε
‖∂tϕ‖ ‖ϕ‖

= (1− C1ε)

(
‖∂tϕ‖2
ε2

− ‖∂tϕ‖
ε

2 ‖ℑ(α)‖∞ (1 + C1ε) ‖ϕ‖
1− C1ε

)

≥ (1− C1ε)
‖∂tϕ‖2
2ε2

− C2 ‖ϕ‖2 .

The conclusion follows if ε0 > 0 was chosen small enough.

A remarkable property of Lε is the following complex symmetry (cf. [1]).

Lemma 15.7. Let ε > 0 and z ∈ C. If z ∈ C is an eigenvalue for Lε then z is an eigenvalue for L ∗
ε . In

particular the operator Lε has no residual spectrum.

Proof. Since Lε is unitarily equivalent to Pε = Pε,α, it is sufficient to prove the result for Pε,α. Notice that

D(Q1
ε,α) = D(Q1

ε,α). Moreover for φ, ψ ∈ D(Q1
ε,α) we have Q1

ε,α(φ, ψ) = Q1
ε,α(ψ, φ), so P∗

ε,α = Pε,α. Now let

ψ ∈ D(Pε,α). For all φ ∈ D(Q1
ε,α) we have

Q1
ε,α(φ, ψ) = Q1

ε,α(φ, ψ) =
〈
φ,Pε,αψ

〉
=
〈
φ,Pε,αψ

〉
.

This proves that ψ ∈ D(Pε,α) and Pε,αψ = Pε,αψ. Thus, if we denote by J the complex conjugation, we get
that Pε,α is J-self-adjoint

Pε,α = JPε,αJ.

The conclusion follows.

15.4.4 Proof of Theorem 15.2

Theorem 15.2 will be a consequence of the following proposition.

Proposition 15.10. There exist ε0, C > 0 such that for all ε ∈ (0, ε0), ϕ ∈ Dom(L̂ ∗
ε ) and ψ ∈ Dom(Lε),

|Qε(ϕ, ψ)− Q̂ε(ϕ, ψ)| ≤ Cε‖ϕ‖
L̂ ∗
ε
‖ψ‖Lε .
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Proof. We set
Dε(ϕ, ψ) = Qε(ϕ, ψ)− Q̂ε(ϕ, ψ) .

Using the Taylor formula, we get

|Dε(ϕ, ψ)| . ε‖ϕ‖H1
s
‖ψ‖H1

s
+

1

ε
‖∂tϕ‖‖∂tψ‖+

∣∣∣∣
2

ε

∫

Ω

ℑ(α)∂tψϕ̄wεdσdt
∣∣∣∣ ,

where ‖ψ‖2H1
s
= ‖ψ‖2L2(Ω) + ‖∇sψ‖2L2(Ω). The most delicate term is the last one. We have

|Qε(tℑ(α)ϕ, ψ) −
1

ε2

∫
ℑ(α)∂t(tϕ)∂tψwεdσdt| . ‖ϕ‖H1

s
‖ψ‖H1

s
+

1

ε
‖ϕ‖‖∂tψ‖,

so

|Qε(tℑ(α)ϕ, ψ) −
1

ε2

∫
ℑ(α)ϕ∂tψwεdσdt| . ‖ϕ‖H1

s
‖ψ‖H1

s
+

1

ε2
‖∂tϕ‖‖∂tψ‖+

1

ε
‖ϕ‖‖∂tψ‖ .

Since Qε(tℑ(α)ϕ, ψ) = 〈tℑ(α)ϕ,Lεψ〉, we obtain

∣∣∣∣
1

ε

∫
ℑ(α)∂tψϕwεdσdt

∣∣∣∣ . ε‖ϕ‖H1
s
‖ψ‖H1

s
+

1

ε
‖∂tϕ‖‖∂tψ‖+ ‖ϕ‖‖∂tψ‖+ ε‖Lεψ‖‖ϕ‖ .

We conclude with Lemma 15.6.

By Proposition 15.10, there exists C ≥ 0 such that for z ∈ K, ϕ ∈ Dom((Heff
ε )∗) and ψ ∈ Dom(Hε) we have

|Qeff
ε (ϕ, ψ) − z〈ϕ, ψ〉 − (Qε(ϕ, ψ)− z〈ϕ, ψ〉) | ≤ Cε‖ϕ‖(Heff

ε −z)∗‖ψ‖Hε−z .

Finally, we apply Lemma 15.5 and Lemma 15.1, and Theorem 15.2 follows.
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Abstract. We consider the Schrödinger operator with a complex delta interaction supported by
two parallel hypersurfaces in the Euclidean space of any dimension. We analyse spectral properties
of the system in the limit when the distance between the hypersurfaces tends to zero. We establish
the norm-resolvent convergence to a limiting operator and derive first-order corrections for the
corresponding eigenvalues.

16.1 Introduction

Semiconductor heterostructures have had tremendous impact on science and technology as building blocks for
a bottom-up approach to the fabrication of nanoscale devices. A key property of these material systems is the
unique versatility in terms of geometrical dimensions and composition and their ability to exhibit quantum
effects. Theoretical studies have lead to interesting mathematical problems which involve an interaction of
differential geometry, spectral analysis and theory of partial differential equations. In this paper, we rely
on the mathematical concept of leaky quantum graphs or waveguides introduced by Exner and Ichinose in
2001 [15] (see [14] for a survey), where the quantum Hamiltonian is modelled by the Schrödinger operator with
a Dirac-measure potential supported on a hypersurface in Rd.

The situations d = 1, 2, 3 are of particular interest in the context of mesoscopic physics of nanostructures,
where they are sometimes referred to as quantum dots, wires or layers, respectively. We adopt the last terminol-
ogy to emphasise the geometric complexity of the problem, but any value d ≥ 1 is allowed in this paper. Using
the Dirac-measure interaction instead of a regular potential to describe a quantum particle in a nanostructure
is a simplification in the sense that the former vanishes outside the hypersurface. At the same time, it is a more
realistic model than considering the particle confined to a tubular neighbourhood of the hypersurface by means
of Dirichlet boundary conditions (see [12], [7], [31], [33] and [26] for this type of models in the case d = 3),
because it takes into account tunnelling, property which is observed and measured in realistic heterostructures
(see, e.g., [6] and [9]).

The objective of this paper is to quantify the effect of tunnelling by considering coalescing heterostructures
modelled by Dirac-measure potentials imposed on two parallel hypersurfaces separated by a distance ε and
studying spectral properties in the limit as ε tends to zero. Spectral asymptotics of systems with leaky
quantum waveguides have been analysed in various contexts and dimensions recently (see, e.g., [3], [4], [5],
[11], [17], [23], [32]). The geometric setting introduced in this paper is new and interesting both physically and
mathematically. In fact, to establish the eigenvalue asymptotics as ε→ 0, we need to combine diverse methods
of Riemannian geometry, spectral analysis and theory of partial differential equations.

Motivated by a growing interest in non-self-adjoint operators in recent years (cf the review article [29] and
the book chapter [28] and references therein), in this paper we proceed in a great generality by allowing complex
couplings on the colliding hypersurfaces. In quantum mechanics, non-self-adjoint operators are traditionally
relevant as effective models of open systems and, more recently, as an unconventional representation of phys-
ical observables. Schrödinger operators with complex delta interactions are specifically used in Bose-Einstein
condensates, where the imaginary part of the complex coupling models the injection and removal of particles
(see [8] and [10]).

Let us now specify the mathematical model of this paper and present our main results. Let Ω be a bounded
smooth open set in Rd with d ≥ 1 and let us denote by Σ0 := ∂Ω the boundary of Ω. For all sufficiently small
positive ε, we consider parallel hypersurfaces

Σ±ε := {q ± εn(q) : q ∈ Σ0} , (16.1)

where n : Σ0 → Rd denotes the outer unit normal to Ω. Finally, given two constants α± ∈ C, we consider the
operator in L2(Rd) represented by the formal expression

Hε := −∆+ α+ δΣ+ε + α− δΣ−ε , (16.2)

where δΣ denotes the Dirac delta function supported by a hypersurface Σ ⊂ Rd. The purpose of this paper is
to study spectral properties of Hε in the limit when ε→ 0.
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First of all, it is natural to expect that the limiting operator is given by

H0 := −∆+ (α+ + α−) δΣ0 . (16.3)

In this paper, we show that the convergence holds in the norm-resolvent sense.

Theorem 16.1. For any z ∈ ρ(H0), there exists a positive constant ε0 such that, for all ε < ε0, we have
z ∈ ρ(Hε) and ∥∥(Hε − z)−1 − (H0 − z)−1

∥∥
L2(Rd)→L2(Rd)

= O(ε) as ε→ 0 . (16.4)

As a consequence of Theorem 16.1, we obtain a convergence of the spectrum of Hε to the spectrum of H0

as ε → 0. In particular, discrete eigenvalues change continuously with ε (cf [21, Sec. IV.3.5]). By a discrete
eigenvalue λε of Hε we mean an isolated eigenvalue of finite algebraic multiplicity such that the range of
Hε − λε is closed. We remark that H0 may or may not possess discrete eigenvalues, depending on the values
of the coupling constants α± and geometry of Σ0; in particular, they always exist in the self-adjoint case if the
constants are negative and sufficiently large. Since the interaction in (16.2) is compactly supported in Rd, it is
also possible to show that the essential spectrum of Hε (i.e. the complement of the discrete eigenvalues in the
spectrum) equals the essential spectrum of the self-adjoint Laplacian without the delta interactions, i.e.

σess(Hε) = [0,+∞) ,

for all ε ≥ 0, regardless of the geometry of Σ0 and values of α±.
The main interest of Theorem 16.1 lies in the sharpness of the power of ε in (16.4). Indeed, as the next

result of this paper, we derive the following asymptotics for simple eigenvalues.

Theorem 16.2. Let λ0 be a simple discrete eigenvalue of H0 and let ψ0 be the corresponding eigenfunction.
There exist positive constants ε0 and r such that, for all ε < ε0, Hε possesses precisely one discrete eigenvalue
of algebraic multiplicity one in the open ball Br(λ0) disk of radius r centred at λ0. Moreover, the following
asymptotics holds:

λε = λ0 + λ′0 ε+O(ε2) as ε→ 0 (16.5)

with

λ′0 :=

α+

∫

Σ0

∂+n ψ
2
0 + α−

∫

Σ0

∂−n ψ
2
0 −

∫

Σ0

[
α2
+ + α2

− + (α+ − α−) (d− 1)K1

]
ψ2
0

∫

Rd

ψ2
0

, (16.6)

where K1 denotes the first mean curvature of Σ0 and

∂±n f(x) := lim
ǫ→0+

f(x± nǫ)− f(x)

ǫ
.

The functions appearing in the numerator of (16.6) should be understood in the sense of traces and their
rigorous definition will be provided in the following section.

We also give an analogous theorem for degenerate semisimple eigenvalues, i.e. for the case when the algebraic
and geometric multiplicity coincide, (cf [21, Sec. I.5.3]). This result is formulated as Theorem 16.4 below.

We remark that a presence of the first mean curvature in eigenvalue asymptotics has been recently observed
in related problems, see [24], [25] and [34].

If α+ = α−, formula (16.6) simplifies to λ′0 = 2α2
+ (cf (16.15)), so the first correction term in the eigenvalue

asymptotics is insensitive to the geometric setting if the coupling constants coincide.
We stress that the asymptotics (16.5) is not a consequence of analytic perturbation theory. As a matter of

fact, taking a formal derivative of λε with respect to ε in the spirit of the Hellmann-Feynman theorem would
lead only to the first integral in the numerator of (16.6). Of course, this formal manipulation is not justified
because of the singular dependence of Hε on ε. It is interesting that a non-trivial rigorous approach is needed
to reveal the geometric term in (16.6).

This paper is organised as follows. In Section 16.2 we present some necessary analytic and geometric
prerequisites. The norm-resolvent convergence of Theorem 16.1 is established in Section 16.3. Our strategy
is to derive first estimates for the norm of the resolvent as an operator between Sobolev spaces, which we
believe are of interest on its own. In Section 16.4, we establish a uniform convergence of eigenfunctions by
a refined application of the maximum principle. Section 16.5 is devoted to a proof of Theorem 16.2 as well
as to its extension to degenerate eigenvalues. We conclude the paper by an appendix (Section 16.6), where
Theorem 16.2 is re-established in the simplest case d = 1. Here the eigenvalue problem can be reduced to a
transcendental equation, for which the implicit function theorem yields the the first correction term.



II.16 Asymptotic spectral analysis in colliding leaky quantum layers 263

16.2 Preliminaries

Let us start by properly defining the operators Hε and H0 (the latter can be considered as Hε for ε = 0 if we
set Σ±0 := Σ0). The sum in (16.2) has a good meaning as a sum of bounded operators from the Sobolev space
H1(Rd) to its dual H−1(Rd). It is more customary to consider Hε as an unbounded operator in the Hilbert
space L2(Rd). To this purpose, we introduce the quadratic form

hε[ψ] :=

∫

Rd

|∇ψ|2 + α+

∫

Σ+ε

|ψ|2 + α−

∫

Σ−ε

|ψ|2 , D(hε) := H1(Rd) , (16.7)

which is formally associated with the expression on the right hand side of (16.2), and define Hε as the unique
m-sectorial operator associated with hε via the first representation theorem (cf [21, Thm. VI.2.1]).

The boundary terms in (16.7) should be understood in the sense of traces (cf [1]). More specifically, in
analogy with (16.1), we introduce a mapping

L : Σ0 × R → Rd : {(q, t) 7→ q + t n(q)} (16.8)

and define sets Σt := L(Σ0 × {t}). Because of the boundedness and smoothness of Ω, there exists a positive
number a such that

L : Σ0 × [−a, a] → L(Σ0 × [−a, a]) is a diffeomorphism. (16.9)

Consequently, Σt is a smooth hypersurface (parallel to Σ0 at distance |t|) for all |t| ≤ a. (Neither Σ0 nor Σt
are necessarily connected.) By the trace embedding theorem (cf [1, Thm. 5.36]), the trace operator

τt : H
1(Rd) → L2(Σt) (16.10)

is bounded for all |t| ≤ a. In fact, if |t| ≤ a, then for any δ > 0 there exists a positive constant Cδ (depending
in addition to δ also on the geometry of Σ0) such that, for all ψ ∈ H1(Rd),

‖τtψ‖2L2(Σt)
≤ δ ‖∇ψ‖2L2(Rd) + Cδ ‖ψ‖2L2(Rd) . (16.11)

This estimate can be proved in a standard way by using the diffeomorphism L and the one-dimensional bound

sup
(−l,l)

|ϕ|2 ≤ 2 ‖ϕ‖L2(−l,l) ‖ϕ′‖L2(−l,l) + (2l)−1 ‖ϕ‖2L2(−l,l) (16.12)

valid for all ϕ ∈ H1((−l, l)), where l is any positive number. It follows that the boundary terms in (16.7) (in
which we ambiguously write ψ instead of τ±εψ) represent a relatively bounded perturbation of the gradient
integral with the relative bound equal to zero (since δ can be taken arbitrarily small). Consequently, the
form (16.7) is closed by classical perturbation results (cf [21, Thm. VI.1.33]), so that the first representation
theorem applies.

Next we set
Ω0
ε := {L(q, t) : q ∈ Σ0, −ε < t < +ε} ,

Ω±
ε := {L(q, t) : q ∈ Σ0, ε < ±t < a/2} ,

(16.13)

where 0 ≤ ε < a/2 (Ω0
0 is an empty set). In words, Ω0

ε (respectively, Ω±
ε ) is the open set squeezed between the

parallel hypersurfaces Σ+ε and Σ−ε (respectively, Σ±ε and Σ±a/2). For positive ε, the trace operators

τ−−ε : H
2(Ω−

ε ) → H1(Σ−ε) , τ++ε : H
2(Ω+

ε ) → H1(Σ+ε) ,

τ+−ε : H
2(Ω0

ε) → H1(Σ−ε) , τ−+ε : H
2(Ω0

ε) → H1(Σ+ε) ,
(16.14)

are again bounded by the trace embedding theorem. The claim applies to the first line even if ε = 0. By
using the first representation theorem and elliptic regularity theory, it is standard to show that Hε acts as the
Laplacian, subject to the interface conditions

{
τ+±ε∂nψ − τ−±ε∂nψ = α±τ±εψ on Σ±ε if ε > 0 ,

τ++0∂nψ − τ−−0∂nψ = (α+ + α−)τ0ψ on Σ0 if ε = 0 .
(16.15)

More precisely, we have

Hεψ = −∆ψ a.e. in Rd ,

D(Hε) =
{
ψ ∈ H1(Rd) ∩H2

(
Rd \ (Σ+ε ∪Σ−ε)

)
: ψ satisfies (16.15)

}
.

(16.16)
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The meaning of the trace maps ∂±n ψ ∈ L2(Σ0) used in formula (16.6) is precisely ∂±n ψ := ±τ±±0∂nψ.
Next, we overtake from [27] some facts about the geometry of parallel hypersurfaces. In view of (16.9),

Ωa := L(Σ0×(−a, a)) can be identified with the Riemannian manifold Σ0×(−a, a) equipped with the metric G
induced by (16.8); it has a block form

G(q, t) = g(q) ◦
(
I − t L(q)

)2
+ dt2 , (16.17)

where g is the Riemannian metric of Σ0, L := −dn is the Weingarten map of Σ0 and I denotes the identity
map on TqΣ0.

It follows from (16.17) that |G| := det(G) = |g| f2 with |g| := det(g) and

f(q, t) :=

d−1∏

µ=1

(
1− t κµ(q)

)
= 1 +

d−1∑

µ=1

(−t)µ
(
d− 1
µ

)
Kµ(q) , (16.18)

where κ1, . . . , κd−1 are the principal curvatures and Kµ is the µth mean curvature of Σ0 (cf [30]). Since the
first mean curvature appears in Theorem 16.2, we remark that, locally,

K1 =
κ1 + · · ·+ κd−1

d− 1
.

The sign of K1 depends on the orientation of Σ0; in our case where Σ0 is assumed to be oriented via the outer
normal n to Ω, we have K1 ≤ 0 if Ω is convex (cf [25]). It follows from (16.18) that the surface elements of Σ0

and Σt are related by

dΣt = f(q, t) dΣ0 , (16.19)

where dΣ0 = |g(q)|1/2dq.
From (16.9) and (16.18), we deduce

∀|t| ≤ a , t max{‖κ1‖∞, . . . , ‖κd−1‖∞} < 1 , (16.20)

so that infq∈Σ0 f(q, t) > 0 for every t such that |t| ≤ a. In particular, there exists a positive constant C
(depending on a and the supremum norms of the principal curvatures) such that, for all (q, t) ∈ Σ0 × [−a, a],

C−1 ≤ f(q, t) ≤ C (16.21)

and

C−1 g(q) + dt2 ≤ G(q, t) ≤ C g(q) + dt2 . (16.22)

(Hereafter we adopt the convention that C denotes a generic constant whose value can change from line to
line.)

Given a coordinate system (q, t) ∈ Σ0 × (−a, a), we denote by Gij and Gij the corresponding coefficients
of G and G−1. We also adopt the Einstein summation convention, the range of Latin and Greek indices being
1, . . . , d and 1 . . . d− 1, respectively, and abbreviate ∂i := ∂/∂qi with qd := t (we shall also write ∂t := ∂d). It
will be convenient to choose for q = (q1, . . . , qd−1) the Riemannian normal coordinates in Σ0, which exist in a
neighbourhood of any point of Σ0. In these coordinates, since Ω is smooth and bounded, there exists a positive
number r0 such that, for any p ∈ Σ0, the useful estimates

C−1 (δµν) ≤ (gµν) ≤ C (δµν) , |∂ρ gµν | ≤ C , (16.23)

hold in the geodesic ball of radius r0 centred at p.
Finally, we remark that the mapping (16.8) induces a natural unitary transform between Hilbert spaces

U : L2(Ωa) → L2
(
Σ0 × (−a, a), |G(q, t)|1/2 dq ∧ dt

)
: {ψ 7→ ψ ◦ L} . (16.24)

In particular, it will enable us to relate L2(Σt) and L
2(Σ0). Since Hε acts as the Laplacian in Rd \ (Σ+ε∪Σ−ε),

its action in the curvilinear “coordinates” (q, t) induced by L is given by Laplace-Beltrami operator

−∆G := −|G|−1/2∂i|G|1/2Gij∂j (16.25)

in Σ0 × [(−a,−ε) ∪ (−ε, ε) ∪ (ε, a)]. Given ψ ∈ L2(Rd), we shall occasionally write Uψ, meaning that U acts
on the restriction of ψ to L2(Ωa). We point out the following topological equivalence of Sobolev spaces.
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Lemma 16.1. There exists a positive constant C such that, for every a ≤ t1 < t2 ≤ a,

C−1 ‖Uψ‖H2(Σ0×(t1,t2)) ≤ ‖ψ‖H2(L(Σ0×(t1,t2))) ≤ C ‖Uψ‖H2(Σ0×(t1,t2))

for every ψ ∈ H2(L(Σ0 × (t1, t2))).

Proof. The proof is a straightforward application of (16.8), namely (16.17) with estimates (16.23). We leave
the details to the reader.

Remark 16.1. Our assumptions about the regularity of Ω are far from being optimal. To introduce Hε as an
m-sectorial operator satisfying the natural characterisation (16.16), we essentially use the boundedness of the
trace embeddings (16.14) together with standard elliptic regularity theory. It obviously works if Ω is bounded
and smooth (i.e. infinitely smooth) as we assume in this paper. However, it is clear that a C2-smoothness is
sufficient and certain unbounded geometries can be included as well. In fact, a fundamental assumption is the
validity of the diffeomorphism property (16.9). In the proofs, we essentially use that the eigenfunctions of Hε

are classical solutions of the associated partial differential equation. From another perspective, it should be
also possible to modify the techniques of the present paper to handle the more general situation of α± being
C1-smooth functions instead of constants.

16.3 The norm-resolvent convergence

The objective of this section is to prove Theorem 16.1. For all ε ≥ 0 small enough and z ∈ ρ(Hε), we set

Rε(z) := (Hε − z)−1 .

Given Ψ ∈ L2(Rd), the function ψε := Rε(z)Ψ is the unique solution of the resolvent equation (Hε− z)ψε = Ψ.
The weak formulation of the problem reads

∀ϕ ∈ H1(Rd) , hε(ϕ, ψε)− z (ϕ, ψε)L2(Rd) = (ϕ,Ψ)L2(Rd) , (16.26)

where hε(·, ·) is the sesquilinear form associated with (16.7).
First of all, we show that the resolvent Rε(z) is uniformly bounded as ε→ 0.

Lemma 16.2. There exist constants z0 ∈ R and C > 0 such that, for all 0 ≤ ε < a and every z ∈ C such that
ℜz < z0, z ∈ ρ(Hε) and

‖Rε(z)‖L2(Rd)→H1(Rd) ≤ C . (16.27)

Proof. Since Hε is m-sectorial, we know that the claim holds with an a priori ε-dependent constant z0. The
content of the lemma is that z0 can be made actually independent of ε. Choosing the test function ϕ :=
ψε in (16.26), taking the real part of the obtained identity and applying (16.11) together with the Schwarz
inequality, we get

[1− δ (|ℜα+|+ |ℜα−|)] ‖∇ψε‖2L2(Rd) − [Cδ (|ℜα+|+ |ℜα−|) + ℜz] ‖ψε‖2L2(Rd)

≤ ‖ψε‖L2(Rd) ‖Ψ‖L2(Rd) .

We choose δ so small that 1−δ (|ℜα+|+|ℜα−|) ≥ 1/2. It follows that every z ∈ C such that ℜz < −Cδ (|ℜα+|+
|ℜα−|) lies outside the closure of the numerical range of Hε, that is, inside the resolvent set ρ(Hε) because Hε

is m-sectorial. Choosing

z0 := −1

2
− Cδ (|ℜα+|+ |ℜα−|) , (16.28)

we arrive at (16.27) with C :=
√
8.

Remark 16.2. It is also possible to look for solutions of (16.26) for Ψ ∈ H−1(Rd) in which case the right hand
side must be understood as the duality pairing between H1(Rd) and H−1(Rd). Proceeding as in the previous
proof, with a slight modification that the Schwarz inequality is replaced by the estimate

∣∣
H1(Rd)(ψε,Ψ)H−1(Rd)

∣∣ ≤ ‖ψε‖H1(Rd) ‖Ψ‖H−1(Rd) ,

we obtain
‖Rε(z)‖H−1(Rd)→H1(Rd) ≤ C

with C := 2.
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We shall need a resolvent estimate of the type (16.27) in a better topology. In the case of the free Hamiltonian
(i.e. α± = 0), we know that the resolvent is bounded in the topology of bounded operators on L2(Rd) toH2(Rd).
It does not hold if α+ or α− is non-zero, because then the functions from the domain of Hε are not in H

2(Rd),
cf (16.16). However, the functions belong to H2(Rd \ (Σ+ε ∪ Σ−ε)) and the following uniform estimate holds.

Lemma 16.3. There exists a positive constant C such that, for every z ∈ C satisfying ℜz < z0 with z0 given
by (16.28) and for all 0 ≤ ε < a/4, we have

‖Rε(z)‖L2(Rd)→H2(Rd\(Σ+ε∪Σ−ε))
≤ C . (16.29)

Proof. The message of the lemma is that the constant C in (16.29) can be made independent of ε, which is
not a priori clear. Setting ψε := Rε(z)Ψ for every Ψ ∈ L2(Rd) as above (recall that ψε satisfies (16.26)),
estimate (16.29) is equivalent to the simultaneous validity of the bounds

‖ψε‖H2(Ω0
ε)

≤ C ‖Ψ‖L2(Rd) , (16.30)

‖ψε‖H2(Ω±
ε ) ≤ C ‖Ψ‖L2(Rd) , (16.31)

‖ψε‖H2(Rd\Ω0
a/4

)
≤ C ‖Ψ‖L2(Rd) , (16.32)

with a constant C independent of Ψ and ε. Here the sets Ω±
ε and Ω0

ε are defined in (16.13). Note that
ψε ∈ H2(Rd \ (Σ+ε ∪ Σ−ε)) is known due to (16.16); our aim is to establish the uniform estimates (16.30)–
(16.32).

Estimate (16.32) follows at once by the interior regularity of weak solutions of the elliptic problem (Hε −
z)ψε = Ψ in Ω′ := Rd \ Ω0

a/4; see, e.g., [13, Thm. 6.3.1] together with Lemma 16.2, recall that Hε acts as

the Laplacian in Ω′ due to (16.16) and notice that Ω′ is independent of ε. The validity of (16.30) and (16.31)
is less obvious because of the ε-dependent interface conditions (16.15) and, consequently, a refined boundary
regularity is needed. Let us sketch the proof of (16.30) with ε > 0. The proof of (16.31) with ε ≥ 0 is analogous.
Our approach is based on elliptic regularity; see, e.g., [13, Sec. 6.3] to where we refer for more details.

Recalling (16.24), we set vε := Uψε and V := UΨ. Let η : R → [0, 1] be a smooth cut-off function, which is
equal to 1 on (−a/2, a/2) and to 0 outside (−3a/4, 3a/4) (we keep to denote by the same symbol η the function
1⊗ η on Σ0 × (−a, a)). In (16.26), let us choose the test function ϕ in the following way

(Uϕ)(q, t) := η(t)2 u(q, t) ,

where u ∈ H1(Σ0 × (−a, a)). Using (16.8), the identity (16.26) is transferred to

(
∂i(η

2u), Gij∂jvε
)
H

+ α+

∫

Σ0

(ūvεf)(q, ε) dΣ0 + α−

∫

Σ0

(ūvεf)(q,−ε) dΣ0

− z
(
η2u, vε

)
H

=
(
η2u, V

)
H
, (16.33)

where H denotes the target Hilbert space in (16.24).
In (16.33), we choose

u(q, t) := −∂−hρ ∂hρ vε(q, t) , (16.34)

where ρ ∈ {1, . . . , d− 1} and ∂hρ vε(q, t) is the ρ
th difference quotient of size h > 0 (cf [13, Sec. 5.8.2])

∂hρ vε(q, t) :=
vε(q

1, . . . , qα + h, . . . qd−1, t)− vε(q, t)

h
.

Using the “integration-by-parts” rule for the difference quotients (cf [13, proof of Thm. 5.8.3]) and sending h
to zero, we get

(
∂i∂ρvε, η

2Gij∂j∂ρvε
)
H

+ α+

∫

Σ0

|∂ρvε|2(q, ε) dΣ0 + α−

∫

Σ0

|∂ρvε|2(q,−ε) dΣ0

+ b[vε] + z
(
η2∂2ρvε, vε

)
H

= −
(
η2∂2ρvε, V

)
H
. (16.35)

Here b[vε] is a quadratic form gathering subdominant terms that can be treated as a perturbation of the first
line in (16.35) or integrals involving only first-order derivatives of vε. Recall that, by Lemma 16.2 and (16.22),
we already know that

‖vε‖H1(Σ0×(−a,a)) ≤ C ‖Ψ‖L2(Rd) . (16.36)
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Writing ∣∣(η2∂2ρvε, vε
)
H

∣∣ ≤ δ ‖η ∂2ρvε‖2H + δ−1 ‖vε‖2H∣∣(η2∂2ρvε, V
)
H

∣∣ ≤ δ ‖η ∂2ρvε‖2H + δ−1 ‖V ‖2H ,

the first terms on the right hand side with sufficiently small positive δ can be treated as a perturbation of
the first dominant term of (16.35), while we have ‖V ‖H = ‖Ψ‖L2(Ωa) ≤ ‖Ψ‖L2(Rd) and (16.36). In fact, the
boundary terms in (16.35) are also perturbations because of the following estimate based on (16.12):

∣∣∣∣
∫

Σ0

|∂ρvε|2(q,±ε) dΣ0

∣∣∣∣
≤ δ ‖∂t∂ρvε‖2L2(Σ0×(−a/2,a/2)) + (δ−1 + a−1) ‖∂ρvε‖2L2(Σ0×(−a/2,a/2)) .

Summing up, from (16.35) with help of (16.36) together with (16.22) and (16.23), we conclude with key
estimates

‖∂i∂ρvε‖L2(Σ0×(−a/2,a/2)) ≤ C ‖Ψ‖L2(Rd) (16.37)

for every i ∈ {1, . . . , d} and ρ ∈ {1, . . . , d− 1}.
To get an analogous estimate for ∂2t vε, we employ the fact that, by (16.16) and (16.8), vε satisfies the

differential equation (recall (16.25))

− |G|−1/2∂i(|G|1/2Gij∂jvε)− z vε = V a.e. in Σ0 × (−ε, ε). (16.38)

Using the block-diagonal structure of G, see (16.17), we can cast (16.38) into the form

− ∂2t vε = V + z vε + |G|−1/2∂µ(|G|1/2Gµν∂νvε) + |G|−1/2(∂t|G|1/2)∂tvε , (16.39)

where the right hand side contains no second-order derivative of vε with respect to t. Using (16.37) and (16.36),
we can thus conclude with the missing inequality

‖∂2t vε‖L2(Σ0×(−ε,ε)) ≤ C ‖Ψ‖L2(Rd) . (16.40)

From (16.37) and (16.40) together with the first-order derivative inequality (16.36), we have thus obtained
the estimate ‖vε‖H2(Σ0×(−ε,ε)) ≤ C ‖Ψ‖L2(Rd). By Lemma 16.1, we then get an analogous estimate for ψε =
U−1vε in the Euclidean set Ω0

ε = L(Σ0 × (−ε, ε)). This concludes the sketch of the proof of (16.30) with
ε > 0.

Now we are in a position to prove Theorem 16.1.

Proof of Theorem 16.1. Let z ∈ C be such that ℜz < z0, where z0 is given by (16.28), and 0 < ε < a/4.
By Lemma 16.2, z ∈ ρ(Hε) for all ε ≥ 0. Given any Φ,Ψ ∈ L2(Rd), we set ψε := Rε(z)Ψ as before and
φ0 := R0(z)

∗Φ. We have

(Φ, [Rε(z)−R0(z)]Ψ)L2(Rd) = ((H∗
0 − z̄)φ0, ψε)L2(Rd) − (φ0, (Hε − z)ψε)L2(Rd)

= h0(φ0, ψε)− hε(φ0, ψε)

= α+

[
(φ0, ψε)L2(Σ0) − (φ0, ψε)L2(Σ+ε)

]

+ α−
[
(φ0, ψε)L2(Σ0) − (φ0, ψε)L2(Σ−ε)

]
, (16.41)

where the second equality employs the fact that the form domains of Hε and H0 coincide. The boundary terms
after the last equality should be interpreted in the sense of traces (16.10).

The unitary transform (16.24) enables us to identify L2(Σ±ε) with L2(Σ0). Writing u0 := Uφ0 and vε := Uψε
and recalling (16.19), we have

(φ0, ψε)L2(Σ0) − (φ0, ψε)L2(Σ+ε)

=

∫

Σ0

(ū0vε)(q, 0) dΣ0 −
∫

Σ0

(ū0vε)(q, ε) f(q, ε) dΣ0

= −
∫

Σ0×(0,ε)

∂t(ū0vε)(q, t) dΣ0 ∧ dt

︸ ︷︷ ︸
I1

+

∫

Σ0

(ū0vε)(q, ε) [1− f(q, ε)] dΣ0

︸ ︷︷ ︸
I2

.
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Here the last integral can be estimated as follows

|I2| ≤ ‖φ0‖L2(Σ+ε) ‖ψε‖L2(Σ+ε) sup
q∈Σ0

|1− f(q, ε)|
f(q, ε)

≤ C ‖φ0‖H1(Rd) ‖ψε‖H1(Rd) sup
q∈Σ0

|1 − f(q, ε)|
f(q, ε)

,

where the second inequality is due to (16.11). Taking into account the explicit formula for f in (16.18)
and (16.21), we see that there is a constant C (depending on the geometric number a and the supremum norms
of the curvature functions Kµ) such that

sup
q∈Σ0

|1− f(q, ε)|
f(q, ε)

≤ C ε . (16.42)

By Lemma 16.2, we have

‖ψε‖H1(Rd) ≤ C ‖Ψ‖L2(Rd) and ‖φ0‖H1(Rd) ≤ C ‖Φ‖L2(Rd) . (16.43)

Since φ0 is defined via the adjoint of the resolvent of H0, it might be useful to mention for the latter inequality
that H0 satisfies the T-self-adjointness relation H∗

0 = TH0T, where T is the complex-conjugation operator.
Summing up,

|I2| ≤ C ε ‖Φ‖L2(Rd) ‖Ψ‖L2(Rd) . (16.44)

We now turn to estimating I1. First of all, we use the Schwarz inequality to get

|I1| ≤ ‖u0‖L2(Σ0×(0,ε))‖∂tvε‖L2(Σ0×(0,ε)) + ‖∂tu0‖L2(Σ0×(0,ε))‖vε‖L2(Σ0×(0,ε)) .

Here the first term on the right hand side can be estimated as follows

‖u0‖2L2(Σ0×(0,ε)) ≤ ε sup
t∈(0,ε)

∫

Σ0

|u0(q, t)|2 dΣ0 ≤ C ε sup
t∈(0,ε)

∫

Σt

|φ0|2 ,

where C := 1/ infΣ0×(0,a) f . Using in addition (16.11) and (16.43), we eventually obtain

‖u0‖L2(Σ0×(0,ε)) ≤ C
√
ε ‖Φ‖L2(Rd) .

In the same manner, we get

‖vε‖L2(Σ0×(0,ε)) ≤ C
√
ε ‖Ψ‖L2(Rd) .

The terms ‖∂tvε‖L2(Σ0×(0,ε)) and ‖∂tu0‖L2(Σ0×(0,ε)) require a bit more careful analysis. As above, we write

‖∂tu0‖2L2(Σ0×(0,ε)) ≤ ε sup
t∈(0,ε)

∫

Σ0

|∂tu0(q, t)|2 dΣ0 ≤ C ε sup
t∈(0,ε)

∫

Σt

|∂nφ0|2 ,

where we have also used ∂tu0 = ∂nφ0 ◦ L. Now, however, we cannot use (16.11) because φ0 is not in H2(Rd).
Nevertheless, it belongs to H2(Ω+

0 ), where the set Ω+
0 is defined in (16.13). Hence,

sup
t∈(0,ε)

∫

Σt

|∂nφ0|2 ≤ sup
t∈(0,a/2)

∫

Σt

|∂nφ0|2 ≤ C ‖φ0‖2H2(Ω+
0 )
,

where the last inequality is a trace embedding based on (16.12). Applying Lemma 16.3, we eventually get the
desired bound

‖∂tu0‖L2(Σ0×(0,ε)) ≤ C
√
ε ‖Φ‖L2(Rd) .

It remains to estimate ‖∂tvε‖L2(Σ0×(0,ε)). Still, as above, we could also write

‖∂tvε‖2L2(Σ0×(0,ε)) ≤ ε sup
t∈(0,ε)

∫

Σ0

|∂tvε(q, t)|2 dΣ0 ≤ C ε sup
t∈(0,ε)

∫

Σt

|∂nψε|2 .

Now, however, the situation is worse than for φ0, because ψε belongs only to H2(Ω0+
ε ), where

Ω0+
ε := {L(q, t) : q ∈ Σ0, 0 < t < ε} ,
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is diminishing as ε→ 0. Consequently, (16.12) would give not useful ε-dependent estimate on the norm of the
trace operator associated with the embedding H2(Ω0+

ε ) → H1(Σt) with t ∈ (0, ε). Instead, we integrate by
parts

‖∂tvε‖2L2(Σ0×(0,ε)) =

∫

Σ0×(0,ε)

(∂tt) |∂tvε(q, t)|2 dΣ0 ∧ dt

= −
∫

Σ0×(0,ε)

2 tℜ
[
∂tv̄ε(q, t) ∂

2
t vε(q, t)

]
dΣ0 ∧ dt

+ ε lim
t→ε−

∫

Σ0

|∂tvε(q, t)|2 dΣ0

≤ C ε
(
‖ψε‖2H2(Ω0+

ε )
+ ‖τ−+ε∂nψε‖2L2(Σ+ε)

)
,

where the inequality employs t ≤ ε and the geometric estimates (16.21) together with ∂2t vε = ∂2nψε ◦L. Recall
that the trace operator τ−+ε is defined in (16.14). The trick is to replace τ−+ε∂nψε by τ

+
+ε∂nψε using the interface

condition (16.15) and employ (16.12) in the other set that does not diminish as ε→ 0:

‖τ−+ε∂nψε‖L2(Σ+ε) ≤ ‖τ++ε∂nψε‖L2(Σ+ε) + |α+| ‖τ+εψε‖L2(Σ+ε)

≤ C
(
‖ψε‖H2(Ω+

ε ) + |α+| ‖ψε‖H1(Rd)

)
.

Using Lemma 16.3 and (16.43), we eventually get the desired bound

‖∂tvε‖L2(Σ0×(0,ε)) ≤ C
√
ε ‖Ψ‖L2(Rd) .

Summing up, we have proved
|I1| ≤ C ε ‖Φ‖L2(Rd) ‖Ψ‖L2(Rd) . (16.45)

This bound together with (16.44) implies
∣∣(φ0, ψε)L2(Σ0) − (φ0, ψε)L2(Σ+ε)

∣∣ ≤ C ε ‖Φ‖L2(Rd) ‖Ψ‖L2(Rd)

and a similar estimate holds for the other difference of boundary terms in (16.41). Consequently,
∣∣∣(Φ, [Rε(z)−R0(z)]Ψ)L2(Rd)

∣∣∣ ≤ C ε ‖Φ‖L2(Rd) ‖Ψ‖L2(Rd) ,

which proves (16.4) for z ∈ C with ℜz < z0. The extension to other values of z is standard (cf [21, Sec. IV.3.3]).

Remark 16.3. Taking into account Remark 16.2, (16.41) implies the operator identity

Rε(z)−R0(z) = R0(z)
[
(α+ + α−)τ

∗
0 τ0 − α+τ

∗
+ετ+ε − α−τ

∗
−ετ−ε

]
Rε(z) , (16.46)

where
τ∗t : L2(Σt) → H−1(R) : {ψ 7→ ψ δΣt} .

It is a generalisation of the first resolvent identity known for regular potentials.

16.4 Convergence of eigenvalues and eigenfunctions

In this section, we deduce from Theorem 16.1 a convergence of eigenvalues and eigenfunctions of Hε to eigen-
values and eigenfunctions of H0 as ε→ 0. In fact, it is immediately seen that the eigenfunctions converge in the
topology of L2(Rd). By using the maximum principle in a refined way, we show the non-trivial property that
the convergence actually holds uniformly in a neighbourhood of Σ0. This result will be needed in Section 16.5
to prove Theorem 16.2.

Let λ0 stand for a simple eigenvalue of H0 with the corresponding eigenfunction ψ0 which is assumed to be
normalised according to the usual requirement for non-self-adjoint spectral problems, i.e.,

(
ψ0, ψ0

)
L2(Rd)

=

∫

Rd

ψ2
0 = 1 .

By a simple eigenvalue we always mean that of algebraic multiplicity one. Note that ψ0 represents an eigen-
function of the adjoint operator H∗

0 corresponding to the eigenvalue λ0. Define

Cr := {z ∈ C : |z − λ0| = r} , (16.47)
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where the radius r is chosen is such a way that the circle Cr surrounds only one point of σdisc(H0), the discrete
spectrum of H0. The resolvent convergence proved in the previous section allows us to claim that there exists
ε0 > 0 such that for any non-negative ε < ε0 the circle Cr surrounds only one point λε of σdisc(Hε). Let Pε
stand for the eigenprojector

Pε :=
i

2π

∮

Cr

Rε(z) dz , (16.48)

where the integration path traces out the circle around in a counterclockwise manner. Let ψε stand for the
eigenfunction ofHε corresponding to λε and impose the same normalisation condition

(
ψε, ψε

)
L2(Rd)

= 1. Then

the corresponding eigenprojector takes the form

Pε =
(
ψε, ·

)
L2(Rd)

ψε .

The following statement is a simple consequence of the norm-resolvent convergence (Theorem 16.1) proved in
the previous section.

Corollary 16.1. The asymptotics

‖Pε − P0‖L2(Rd)→L2(Rd) = O(ε) (16.49)

holds. Consequently, we have

|λε − λ0| = O(ε) and ‖ψε − ψ0‖L2(Rd) = O(ε) . (16.50)

The rest of this section is devoted to showing that the convergence of eigenfunctions holds in a better
topology, at least in a neighbourhood of Σ0. First of all, we establish a regularity of eigenfunctions.

Proposition 16.1. Given ε ≥ 0, let ψε denote an eigenfunction of Hε. Then

ψε ∈ Hm
(
Rd \ (Σ+ε ∪ Σ−ε)

)
for all m ∈ N . (16.51)

Proof. We have Hεψε = λεψε, where λε ∈ C is the eigenvalue and ψε ∈ D(Hε). For m = 2 the claim of the
lemma follows from the characterisation of the operator domain (16.16). Starting from the definition of the
operator Hε through its quadratic form (16.7) defined on the Sobolev space H1(Rd), the H2-regularity outside
Σ+ε ∪ Σ−ε is actually established by our Lemma 16.3. For the present eigenvalue problem, we can write

(Hε − z)ψε = (λε − z)ψε =: Ψε , (16.52)

where z is any number from the resolvent set of Hε. Recalling that Hε acts as the Laplacian outside Σ+ε∪Σ−ε,

from elliptic regularity theory (see, e.g., [13, Thm. 6.3.2]), we immediately get ψε ∈ Hm(Rd \ Ω0
a/4) for all

m ∈ N. It remains to show the Hm-regularity close to the parallel hypersurfaces Σ+ε ∪ Σ−ε.
Let us comment on the proof for ε = 0. The case of positive ε is proved analogously. We refer to [13, Sec. 6.3]

for more details on this type of elliptic-regularity-type arguments. Setting v := Uψ0 and V := UΨ0 = (λε−z)v,
where U is the unitary transform (16.24) implementing the natural curvilinear coordinates in a vicinity of Σ0,
(16.52) yields a weak formulation of the problem





(−∆G − z)v = V in Σ0 × (−a, a) ,
v(q, 0+)− v(q, 0−) = 0 on Σ0 ,

∂tv(q, 0
+)− ∂tv(q, 0

−) = (α+ + α−)v(q, 0) on Σ0 ,

(16.53)

where the Laplace-Beltrami operator −∆G acts as in (16.25). Once we know that the right hand side V belongs
to H2

(
Σ0 × [(−a, 0) ∪ (0, a)]

)
, we can differentiate (16.53) (in the sense of weak derivatives) and obtain that

the derivative ∂ρv with ρ ∈ {1, . . . , d−1} again satisfies the same problem (16.53), including the same interface
conditions, but with a changed right hand side V ′ ∈ L2(Σ0×(−a/2, a/2)). By applying Lemma 16.3, we deduce
∂ρv ∈ H2

(
Σ0×[(−a/2, 0)∪(0, a/2)]

)
. The fact that also respective restrictions of ∂3t v belong to L

2(Σ0×(0, a/2))
and L2(Σ0 × (−a/2, 0)) can be then shown from the differential equation that ∂ρv satisfies almost everywhere,
by writing as in (16.39). Hence, we have established v ∈ H3

(
Σ0 × [(−a/2, 0) ∪ (0, a/2)]

)
. In particular,

V ′ ∈ H2(Σ0×(−a/2, a/2)). Repeating this argument, we eventually obtain v ∈ Hm
(
Σ0× [(−a/2, 0)∪(0, a/2)]

)

for all m ∈ N.

The proposition has the usual corollary that the eigenfunctions are smooth outside the interface hypersur-
faces.
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Corollary 16.2. Let ψε denote an eigenfunction of Hε. Then ψε is continuous in Rd and

ψε ∈
{
C∞(Ω

)
∩C∞(Rd \ Ω

)
if ε = 0 ,

C∞(Ω0
ε

)
∩ C∞(Rd \ Ω0

ε

)
if ε > 0 .

(16.54)

Proof. By Proposition 16.1, we have ψ0 ∈ Hm(Rd \ Σ0) for every positive integer m. Hence, by the Sobolev

embedding theorem (see, e.g., [1, Thm. 5.4]), ψ0 ∈ Ck(Ω) ∩ Ck(Rd \ Ω) for each positive integer k. This
proves (16.54) for ε = 0. The continuity follows from the fact that ψ0 as an element of the form domain D(h0)
belongs to H1(Rd). The claims for positive ε are proved analogously.

As a consequence of this corollary, the eigenvalue problem Hεψε = λεψε can be considered in a classical
sense. Setting

φε := ψε − ψ0 (16.55)

and combining the eigenvalue equations for ε > 0 and ε = 0, we see that φε with positive ε is a continuous and
piecewise smooth solution of the classical boundary value problem





−∆φε − λεφε = (λε − λ0)ψ0 in Rd \ (Σ+ε ∪ Σ−ε ∪ Σ0) ,

τ+±ε∂nφε − τ−±ε∂nφε − α±τ±εφε = α±τ±εψ0 on Σ±ε ,

τ++0∂nφε − τ−−0∂nφε = −(α+ + α−)τ0ψ0 on Σ0 .

(16.56)

To establish the uniform convergence of eigenfunctions, we use the maximum principle following the ideas
of [19]. The first ingredient is a version of the mean value theorem in the present setting.

Lemma 16.4. For every x ∈ Rd and r > 0, we have the identity

φε(x) =
1

|∂Br|

∫

∂Br

φε (16.57)

+

∫ r

0

dρ

|∂Bρ|

[
λε

∫

Bρ

φε − α+

∫

Σρ+ε

φε − α−

∫

Σρ−ε

φε

+(λε − λ0)

∫

Bρ

ψ0 − α+

∫

Σρ+ε

ψ0 − α−

∫

Σρ−ε

ψ0 + (α+ + α−)

∫

Σρ0

ψ0

]
,

where φε denotes the difference of eigenfunctions (16.55), Br ≡ Br(x) is the open ball of radius r centred at x,
|∂Br| stands for the (d− 1)-dimensional Hausdorff measure of its boundary and Σr±ε := Σ±ε ∩Br.

Proof. The formula follows by integrating the differential equation of (16.56) in the ball Bρ of radius ρ ∈ (0, r],
using the interface conditions of (16.56) after an application of the divergence theorem and handling the
boundary term

∫
∂Bρ

∂φε/∂ν, with ν denoting the outward unit normal to ∂Bρ , as in the classical mean value

theorem, see [20, Thm. 2.1].

To handle the first term on the right hand side of (16.57), we use the following elementary result ([19,
Lem. 3.14]).

Lemma 16.5. Let φ ∈ L2(Rd) and δ > 0. For every x ∈ Rd, there exists r = r(x, φ, δ) ∈ (0, δ] such that

1

|∂Br|

∫

∂Br

|φ| ≤ 1

|Bδ|1/2
‖φ‖L2(Bδ) .

Here |Br| denotes the d-dimensional Lebesgue measure of the ball Br.

Proof. Assume by contradiction that there exists a point x ∈ Rd such that for all r ∈ (0, δ] the reverse
inequality holds. Then one easily arrives at a contradiction by using in addition the coarea formula and the
Schwarz inequality.

Now we are in a position to establish the uniform convergence of eigenfunctions. While Proposition 16.1
and its Corollary 16.2 deal with any eigenfunctions of Hε, from now on we assume again that ψε and ψ0 are
eigenfunctions of Hε and H0, respectively, corresponding to simple eigenvalues λε and λ0 as described in the
beginning of this section.

Theorem 16.3. We have
‖ψε − ψ0‖L∞(Σ±ε) = O(ε) . (16.58)



272 II Waveguides

Proof. Assume that 0 < ε ≤ δ/2, where δ < a is a positive number independent of ε that will be additionally
restricted later on. From (16.56) and the methods of the theory of interior regularity of solutions of elliptic
problems (see, e.g., [13, Sec. 6.3.1]), we deduce the bound

‖φε‖Hm+2(Rd\Ω0
δ)

≤ C
(
‖φε‖L2(Rd) + |λε − λ0|‖ψ0‖Hm(Rd\Σ0)

)

for every m ∈ N. Here the constant C depends on d, δ and m, but it is independent of ε (the dependence
of the coefficient λε on ε on the left hand side of the differential equation in (16.56) is unimportant due to
Corollary 16.1). Within this proof, the symbol C denotes a generic constant whose value may change from
line to line, but it is always independent of ε. By the convergence results of Corollary 16.1, the regularity of
Proposition 16.1 and the Sobolev embedding theorem, we obtain

‖φε‖Ck(Rd\Ω0
δ))

≤ C ε (16.59)

for every k ∈ N. In particular, this proves the uniform convergence of eigenfunctions in Rd \ Ω0
δ . To prove the

uniform convergence in a neighbourhood of Σ0 containing the colliding hypersurfaces Σ+ε and Σ−ε, we give
slightly different proofs in high and low dimensions.

d ≥ 3 First of all, we employ Lemma 16.4 with x ∈ Ω0
δ and r ≤ δ. We estimate the terms on the right hand

side of (16.57) as follows. For every continuous function φ ∈ L∞(Rd), we have
∣∣∣∣∣

∫ r

0

dρ

|∂Bρ|

∫

Bρ

φ

∣∣∣∣∣ ≤ ‖φ‖L∞(Ω0
2δ)

∫ r

0

|Bρ|
|∂Bρ|

dρ = ‖φ‖L∞(Ω0
2δ)

r2

2d
,

∣∣∣∣∣

∫ r

0

dρ

|∂Bρ|

∫

Σρ±ε

φ

∣∣∣∣∣ ≤ ‖φ‖L∞(Σ±ε)

∫ r

0

|Σρ±ε|
|∂Bρ|

dρ ≤ C ‖φ‖L∞(Σ±ε) r .

Here the last estimate employs the geometric bound |Σρ±ε| ≤ Cρd−1. Consequently, using Corollary 16.1,
∣∣∣∣∣λε
∫ r

0

dρ

|∂Bρ|

∫

Bρ

φε

∣∣∣∣∣ ≤ C ‖φε‖L∞(Ω0
2δ)
δ2 ,

∣∣∣∣∣(λε − λ0)

∫ r

0

dρ

|∂Bρ|

∫

Bρ

ψ0

∣∣∣∣∣ ≤ C ε ,

∣∣∣∣∣α±

∫ r

0

dρ

|∂Bρ|

∫

Σρ±ε

φε

∣∣∣∣∣ ≤ C ‖φε‖L∞(Σ±ε) δ .

(16.60)

To handle the last terms on the right hand side of (16.57), we recall the unitary transform (16.24). Setting
v0 := Uψ0, we have

∫

Σρε

ψ0 −
∫

Σρ0

ψ0 =

∫

p−1
ε (Σρε)

v0(q, ε) f(q, ε) dq −
∫

Σρ0

v0(q, 0) dq

=

∫

p−1
ε (Σρε)∩Σρ0

∫ ε

0

∂t(v0f)(q, t) dt dq

+

∫

p−1
ε (Σρε)\Σρ0

v0(q, ε) f(q, ε) dq −
∫

Σρ0\p
−1
ε (Σρε)

v0(q, 0) dq ,

where pε(q) := L(q, ε). Consequently,
∣∣∣∣∣

∫

Σρε

ψ0 −
∫

Σρ0

ψ0

∣∣∣∣∣ ≤ |Σ0| ε ‖v0‖C1(Σ0×(0,δ)) ‖f‖C1(Σ0×(0,δ))

+
∣∣p−1
ε (Σρε)△Σρ0

∣∣ ‖v0‖C0(Σ0×(0,δ)) ‖f‖C0(Σ0×(0,δ)) .

It is a matter of purely geometric considerations to check that the estimate
∣∣p−1
ε (Σρε)△Σρ0

∣∣ ≤ C ε(d−1)/2 (16.61)

holds true. Hence, in view of (16.18) and Corollary 16.2, we get the estimate
∣∣∣∣∣

∫

Σρε

ψ0 −
∫

Σρ0

ψ0

∣∣∣∣∣ ≤ C ε . (16.62)
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The same bound holds for Σρ−ε instead of Σρε . Summing up, using the estimates (16.60) and (16.62) in (16.57)
and assuming that δ ≤ 1, we arrive at

|φε(x)| ≤
1

|∂Br|

∫

∂Br

|φε|+ C ε+ C ‖φε‖L∞(Ω0
2δ)
δ . (16.63)

Let xε ∈ Ω0
δ be a point in which |φε| achieves its maximum in Ω0

δ, i.e. supx∈Ω0
δ
|φε(x)| = |φε(xε)|. We write

‖φε‖L∞(Ω0
2δ)

≤ ‖φε‖L∞(Ω0
δ)
+ ‖φε‖L∞(Ω0

2δ\Ω0
δ)

≤ |φε(xε)|+ C ε ,

where the second inequality follows from (16.59). Using this estimate in (16.63), we obtain

(1− Cδ) |φε(xε)| ≤
1

|∂Br|

∫

∂Br

|φε|+ C ε . (16.64)

Consequently, choosing δ sufficiently small in comparison to the constant C on the left hand side (coming
from (16.59)), we arrive at

‖φε‖L∞(Ω0
δ)

= |φε(xε)| ≤
C

|∂Br|

∫

∂Br

|φε|+ C ε . (16.65)

Finally, applying Lemma 16.5 to the right hand side of (16.65), we get

‖φε‖L∞(Ω0
δ)

≤ C

|Bδ|1/2
‖φε‖L2(Bδ) + C ε .

By Corollary 16.1 and (16.59), we obtain the uniform convergence

‖φε‖L∞(Rd) ≤ C ε , (16.66)

which in particular implies (16.58).

d = 2 The above proof fails in low dimensions, because (16.61) does not give the desired decay rate of order ε.
In dimension d = 2, however, just a slight modification is needed to repair it by noticing that the better estimate

∣∣p−1
ε (Σρε)△Σρ0

∣∣ ≤ C εd−1 (16.67)

holds (in all dimensions) provided that the centre x of the ball Br is chosen within a distance of order ε from Σ0.
More specifically, we choose x ∈ Ω0

2ε. Then (16.62) does hold even if d = 2. At the same time, the first term
in (16.60) must be handled differently; we use the Schwarz inequality to get

∣∣∣∣∣λε
∫ r

0

dρ

|∂Bρ|

∫

Bρ

φε

∣∣∣∣∣ ≤ C ‖φε‖L∞(Ω0
2ε)

∫ r

0

|Bρ|1/2
|∂Bρ|

dρ , (16.68)

where the integral on the right hand side equals r/(2
√
π). Consequently, estimate (16.63) can be replaced by

|φε(x)| ≤
1

|∂Br|

∫

∂Br

|φε|+ C ε+ C ‖φε‖L∞(Ω0
2ε)
δ . (16.69)

Choosing now xε ∈ Ω0
2ε to be a point in which |φε| achieves its maximum in Ω0

2ε, we again get the esti-
mate (16.64) and applying Lemma 16.5 together with Corollary 16.1, we obtain

‖φε‖L∞(Ω0
2ε)

≤ C ε . (16.70)

In particular, it implies (16.58).

d = 1 We do not see a way how to make the present proof work in dimension d = 1, where even (16.67)
gives just a uniform bound, so we get no decay in ε for the left hand side of (16.62). In the one-dimensional
situation, however, the eigenvalue problem is explicitly solvable (see Appendix) and it can be checked by hand
that the uniform convergence (16.66) holds.

Remark 16.4. We point out that the previous proof gives the uniform convergence of eigenfunctions (16.66)
in the whole Rd with d ≥ 3. It holds also if d = 1 by an explicit verification. If d = 2, we only get (16.70)
and (16.59) (these results holds in all dimensions, of course) and the global bound (16.66) with ε being replaced
by

√
ε on the right hand side.
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As a consequence of Theorem 16.3, we get the following lemma that will be needed in the next section.

Lemma 16.6. We have ∫

Σ±ε

ψ0 ∂
±
n (ψε − ψ0) = O(ε) .

Proof. Let ξ ∈ C∞
0 (Ω0

a) be a real-valued function such that ξ = 1 on Ω+
ε ≡ {L(q, t) : q ∈ Σ0, ε < t < a/2},

cf (16.13). Multiplying (16.56) by ξψ0 and integrating by parts over the larger set Ω̃+
ε := {L(q, t) : q ∈ Σ0, ε <

t < a}, we arrive at the identity

−
∫

Ω̃+
ε

∆(ξψ0)φε −
∫

Σ+ε

∂+n ψ0 φε +

∫

Σ+ε

ψ0 ∂
+
n φε − λε

∫

Ω̃+
ε

ξψ0 φε

= (λε − λ0)

∫

Ω̃+
ε

ξψ2
0 .

From Corollary 16.1 and Theorem 16.3 together with Corollary 16.2, we thus deduce
∫

Σ+ε

ψ0 ∂
+
n φε = O(ε) .

This proves the claim for Σ+ε. The other asymptotics is proved analogously.

16.5 Eigenvalue asymptotics

This section is devoted to a proof of Theorem 16.2 and its extension to degenerate eigenvalues.

16.5.1 Simple eigenvalues

The analysis of the eigenvalue asymptotics will be based on the formula

λε =
hε
(
Pεψ0, Pεψ0

)
(
Pεψ0, Pεψ0

)
L2(Rd)

, (16.71)

where
hε
(
Pεψ0, Pεψ0

)
= h0

(
ψ0, ψ0

)
+ (hε − h0)

(
ψ0, ψ0

)
− hε

(
P⊥
ε ψ0, P

⊥
ε ψ0

)
(16.72)

and
P⊥
ε := I − Pε .

Note that the analogous decomposition was also a starting point for the eigenvalues analysis derived in [18]
and [16]. However, our further strategy is based on essentially different arguments. In particular, it requires
certain modifications to the non-self-adjoint class of operators considered in this paper.

The first term on the right hand side of (16.72) yields h0(ψ0, ψ0) = λ0. The following statement will allow
to estimate the second term.

Proposition 16.2. Suppose ψ ∈ H1(Rd) ∩C∞(Ω+
0 ) ∩ C∞(Ω−

0 ). Then we have

hε(ψ, ψ)− h0(ψ, ψ)

= ε

(
α+

∫

Σ0

∂+n ψ
2 + α−

∫

Σ0

∂−n ψ
2 − (α+ − α−)(d − 1)

∫

Σ0

K1 ψ
2

)
+O(ε2) , (16.73)

where the error term depends on ψ.

Proof. Similarly as above, we define v := Uψ, which reflects the continuity properties of ψ. A straightforward
calculation yields

hε(ψ, ψ)− h0(ψ, ψ) = α+

∫

Σ0

v(q, ε)2 f(q, ε) dΣ0

+ α−

∫

Σ0

v(q,−ε)2 f(q,−ε) dΣ0

− (α+ + α−)

∫

Σ0

v(q, 0)2 dΣ0 . (16.74)
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Employing the continuity properties of v, we can expand

v(q,±ε) = v(q, 0)± ε ∂tv(q, 0
±) + v̆ε ,

where ‖v̆ε‖L2(Σ0) = O(ε2). Applying these asymptotics to (16.74) and combining it with (16.18), we get the
sought statement.

The third term of (16.72) is estimated by means of the following lemma.

Lemma 16.7. The asymptotics

hε
(
P⊥
ε ψ0, P

⊥
ε ψ0

)
= ε

(
(α2

+ + α2
−)

∫

Σ0

ψ2
0

)
+O(ε2) (16.75)

holds, where the error term depends on ψ0.

Proof. Let us denote

ηε(z) :=
i

2π

(
Rε(z)−R0(z)

)
ψ0 .

Then

P⊥
ε ψ0 =

∫

Cr

ηε(z) dz .

A straightforward calculation yields

hε
(
P⊥
ε ψ0, P

⊥
ε ψ0

)
=

∫

Cr

dz(hε − z)
(
P⊥
ε ψ0, ηε(z)

)
+

∫

Cr

dz z(P⊥
ε ψ0, ηε(z))L2(Rd)

=
i

2π
(h0 − hε)

(
P⊥
ε ψ0,

∫

Cr

dz R0(z)ψ0

)

+

∫

Cr

dz z
(
P⊥
ε ψ0, ηε(z)

)
L2(Rd)

= (h0 − hε)
(
P⊥
ε ψ0, ψ0

)
+

∫

Cr

dz z
(
P⊥
ε ψ0, ηε(z)

)
L2(Rd)

, (16.76)

where we have used the fact i
2π

∫
Cr

dz R0(z)ψ0 = ψ0 and the equivalence

(hε − z)
(
u,
(
Rε(z)−R0(z)

)
ψ0

)
= (h0 − hε)(u,R0(z)ψ0) (16.77)

valid for all u ∈ H1(Rd) (cf [21, Sec. VIII.3.2]). It follows from (16.49) that

Pεψ0 = (ψε, ψ0)L2(Rd)ψε = (1 +O(ε))ψε .

Moreover,
P⊥
ε ψ0 = (1 +O(ε))ψε − ψ0 , ‖P⊥

ε ψ0‖L2(Rd) = O(ε) , (16.78)

which implies (
Pεψ0, Pεψ0

)
L2(Rd)

= 1 +O(ε2) . (16.79)

Using the above asymptotics, we conclude that the second term on the last line of (16.76) behaves as O(ε2).
It remains to estimate the first term on the last line of (16.76). Applying the notations v0 := Uψ0 and

wε := UP⊥
ε ψ0, we get

(hε − h0)
(
P⊥
ε ψ0, ψ0

)
= α+

∫

Σ0

(
(wεv0)(q, ε)− (wεv0)(q, 0)

)
dΣ0

︸ ︷︷ ︸
L+

1

+ α−

∫

Σ0

(
(wεv0)(q,−ε)− (wεv0)(q, 0)

)
dΣ0

︸ ︷︷ ︸
L−

1

+ α+

∫

Σ0

(wεv0)(q, ε)
(
f(q, ε)− 1

)
dΣ0

︸ ︷︷ ︸
L+

2

+ α−

∫

Σ0

(wεv0)(q,−ε)
(
f(q,−ε)− 1

)
dΣ0

︸ ︷︷ ︸
L−

2

.
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Using again the bound (16.42) together with the Schwarz inequality, we estimate

|L±
2 | ≤ Cε ‖wε‖L2(Σ±ε)‖v0‖L2(Σ±ε) . (16.80)

Employing now the statement of Theorem 16.3 we conclude

‖wε‖L2(Σ±ε) = O(ε) , (16.81)

which leads to L±
2 = O(ε2) in view of (16.80) and the fact that ‖v0‖L2(Σ±ε) can be uniformly bounded. This

means that L±
2 contributes to the error term.

To estimate L±
1 we rely on the regularity of eigenfunctions established in Lemma 16.1. For g ∈ {wε, v0},

we have the expansion
g(q, 0) = g(q,±ε)∓ ε ∂tg(q,±ε∓) + ğε ,

where ğε ∈ L2(Σ0) admits the norm asymptotics of type O(ε2). This implies

L±
1 = ±εL±

3 ± εL±
4

with

L±
3 :=

∫

Σ0

(∂twε(q,±ε∓)) v0(q,±ε) dΣ0 .

L±
4 :=

∫

Σ0

wε(q,±ε) ∂tv0(q,±ε) dΣ0 .

Note that since v0 is smooth for t 6= 0, we do not need to distinguish “left” and “right” limits for ∂tv0(q,±ε).
Employing again (16.81) and ‖∂tv0‖L2(Σ±ε ) ≤ C, we claim that L±

4 = O(ε), i.e. εL±
4 contributes to the error

term. It remains to estimate L±
3 . To this aim we use the boundary conditions which for vε read

∂tvε(q,±ε+)− ∂tvε(q,±ε−) = α±vε(q,±ε) .
Using these equivalences and decomposition (16.78), we obtain

L±
3 = −α±

∫

Σ0

(vεv0)(q,±ǫ) dΣ0

±
∫

Σ0

∂t
(
vε(q,±ε±)− v0(q,±ε∓)

)
v0(q,±ε) dΣ0 +O(ε) .

Employing again v0(q,±ε∓) = v0(q,±ε±) and combining it with the statements of Theorem 16.3 and Lemma 16.6,
we obtain

L±
3 = −α±

∫

Σ0

v20 dΣ0 +O(ε) .

Summing up, the above estimates we come to (16.75), which completes the proof.

Now we are in a position to establish Theorem 16.2.

Proof of Theorem 16.2. Combining (16.49), (16.75), (16.79) and (16.71) we get

λε =
hε
(
Pεψ0, Pεψ0

)
(
Pεψ0, Pεψ0

)
L2(Rd)

= λ0 + ελ′0 +O(ε2) ,

where λ′0 is defined by (16.6).

16.5.2 Degenerate eigenvalues

In this subsection, we extend Theorem 16.2 to the case of degenerate eigenvalues. More specifically, now we
assume that λ0 is a discrete semisimple eigenvalue of H0. The semisimple property means that the algebraic
multiplicity can be greater than one, but it is still equal to the geometric multiplicity of the eigenvalue (cf [21,
Sec. I.5.3]). It is the most general situation in the self-adjoint setting (i.e. α± ∈ R in our case).

Let k ∈ N stand for the multiplicity of λ0 and let {ψi0}ki=1 denote a system of linearly independent eigen-
vectors of H0, normalised in such a way that the biorthonormal relations

(
ψi0, ψ

j
0

)
L2(Rd)

= δij (16.82)

hold true for all i, j ∈ {1, . . . , k}. We note that
{
ψi0
}k
i=1

constitutes a system of linearly independent eigenvectors

of the adjoint H∗
0 corresponding to the semisimple eigenvalue λ0 of the same multiplicity k.

Our main result reads as follows.
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Theorem 16.4. Let λ0 be a semisimple discrete eigenvalue of H0 of multiplicity k ≥ 1 and let {ψi0}ki=1 stand for
a system of the corresponding eigenfunctions normalised via (16.82). There exist positive constants ε0 and r
such that, for all ε < ε0, Hε possesses precisely k (counting the algebraic multiplicity) discrete eigenvalues
{λiε}ki=1 in the open disk of radius r centred at λ0. Moreover, {λiε}ki=1 admit the following asymptotics

λiε = λ0 + λ′i ε+ o(ε) , (16.83)

where {λ′i}ki=1 are eigenvalues (counting the algebraic multiplicity) of the matrix S ≡ {sij}ki,j=1 with entries

sij := α+

∫

Σ0

∂+n (ψ
i
0ψ

j
0) + α−

∫

Σ0

∂−n (ψ
i
0ψ

j
0)

−
∫

Σ0

[
α2
+ + α2

− + (α+ − α−) (d− 1)K1

]
ψi0ψ

j
0 . (16.84)

Proof. Relying again on the norm-resolvent convergence of Theorem 16.1, we can choose r > 0 in such a way
that the circle Cr introduced in (16.47) surrounds k eigenvalues of Hε for all ε small enough. These eigenvalues
admit the following asymptotics

λiε = λ0 +O(ε) , i = 1, . . . , k . (16.85)

Let us denote by ψiε, i = 1, ..., k, the corresponding linearly independent eigenfunctions of Hε with the normal-
isation (ψiε, ψ

i
ε)L2(Rd) = 1. Then we can find a system {ψ′i

0 }ki=1 of eigenfunctions of H0 corresponding to λ0
such that

ψiε = Pεψ
′i
0 , (16.86)

where Pε stands for the eigenprojector onto the space spanned by {ψiε}ki=1. To show (16.86) it suffices to
check that {Pεψ′i

0 }ki=1 forms a basis in R(Pε). Using the convergence (16.49) of spectral projections defined
by (16.48), we get the asymptotics

‖Pεψ′i
0 − ψ′i

0 ‖L2(Rd) = ‖Pεψ′i
0 − P0ψ

′i
0 ‖L2(Rd) = O(ε) (16.87)

for i = 1, . . . , k. Consequently,
(
Pεψ′i

0 , Pεψ
′j
0

)
L2(Rd)

=
(
ψ′i
0 , ψ

′j
0

)
L2(Rd)

−
(
P⊥
ε ψ

′i
0 , P

⊥
ε ψ

′j
0

)
L2(Rd)

=
(
ψ′i
0 , ψ

′j
0

)
L2(Rd)

+O(ε2) . (16.88)

It follows from the above asymptotics that {Pεψ′i
0 }ki=1 forms a linearly independent system. Actually, {Pεψ′i

0 }ki=1

constitutes a basis of the range of Pε, since dimR(Pε) = k.
The eigenvalues λiε of Hε are determined by the eigenvalues of the diagonal matrix

D := {diδij}ki,j=1 with di :=
(
Hεψiε, ψ

i
ε

)
L2(Rd)

= hε
(
Pεψ′i

0 , Pεψ
′i
0

)
.

Now we repeat the steps from the proof of Theorem 16.3 and show

‖ψiε − ψ′i
0 ‖L∞(Σ±ε) = O(ε)

for i = 1, . . . , k. Furthermore, we employ the decomposition

hε
(
Pεψ′i

0 , Pεψ
′i
0

)
= h0

(
ψ′i
0 , ψ

′i
0

)
+ (hε − h0)

(
ψ′i
0 , ψ

′i
0

)
− hε

(
P⊥
ε ψ

′i
0 , P

⊥
ε ψ

′i
0

)
.

Repeating the arguments from the proofs of Proposition 16.2 and Lemma 16.7, we establish

lim
ε→0

hε
(
ψ′i
0 , ψ

′i
0

)
− h0

(
ψ′i
0 , ψ

′i
0

)

ε

= α+

∫

Σ0

∂+n (ψ
′i
0 ψ

′i
0 ) + α−

∫

Σ0

∂−n (ψ
′i
0 ψ

′i
0 )− (α+ − α−)(d− 1)

∫

Σ0

K1 ψ
′i
0 ψ

′i
0 (16.89)

and

hε
(
P⊥
ε ψ

′i
0 , P

⊥
ε ψ

′i
0

)
= ε (α+ + α−)

∫

Σ0

ψ′i
0 ψ

′i
0 + O(ε2) . (16.90)

Since {ψ′j
0 }kj=1 is a basis, we can express any vector ψj0, j = 1, . . . , k satisfying biorthonormal relation (16.82),

as a linear combination ψj0 =
∑k

i=1 ajiψ
′i
0 , where aji ∈ C. Furthermore, let us define matrix S′ as D expressed

in the new basis, precisely
S′ := {s′ij}ki,j=1 , with s′ij = (ai, Daj)l2k ,

where ai := (ai1, . . . , aik) ∈ l2k. The eigenvalues of S′ and D coincide. Furthermore, applying (16.89) and
(16.90), we conclude that s′ij = λ0δij + sijε+O(ε2) which implies the claim.
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16.6 Appendix: Colliding quantum dots

In this appendix, we focus on the special situation of two approaching point interactions on the real line. The
simplicity of the problem enables one to derive more precise asymptotic formulae by a different method. At
the same time, the explicit solutions provide a valuable insight into the origin of the individual components in
the first-order correction term.

16.6.1 Eigenvalue asymptotics

As a special case of (16.7), we consider the m-sectorial operator Hε associated with the form

hε[ψ] :=

∫

R

|ψ′(x)|2 dx+ α+|ψ(ε)|2 + α−|ψ(−ε)|2 , D(hε) := H1(R) .

Note that the functions from H1(R) are continuous and, in this case, the images of the trace maps are just
determined by function values ψ(±ε).

For ε = 0, the operator H0 defines a well known model: one-point interaction in one dimension with the
coupling constant α+ + α−. The spectrum of H0 consists of the essential (in fact continuous) spectrum [0,∞)
and, under the condition ℜ(α+ + α−) < 0, one simple discrete eigenvalue

λ0 := − (α+ + α−)2

4
(16.91)

associated with the eigenfunction

ψ0(x) := C0 f0(x) , f0(x) := e(α++α−)|x|/2 .

Here the complex constant C0 is chosen in such a way that the standard normalisation condition for non-self-
adjoint spectral problems

∫
R
ψ2
0 = 1 holds.

The case of two point interactions in one dimension corresponding to ε > 0 is also studied in the literature,
at least in the self-adjoint case (see [2, Chap. II.2] and [22]). The semi-axis [0,∞) still constitutes the essential
spectrum of Hε and possible eigenvalues λε equal −κ2ε, where κε are determined as positive solutions of the
implicit equation

(α+ + 2κ)(α− + 2κ)− α+α−e
−4κε = 0 . (16.92)

For ε small enough equation (16.92) admits a unique solution κε which behaves as

κε =
α+ + α−

2
+ α+α−ε+O(ε2) (16.93)

as ε→ 0. The following theorem summarises the above discussion.

Theorem 16.5 (d = 1). Let ℜ(α+ + α−) < 0. For ε small enough operator Hε has a unique simple discrete
eigenvalue which admits the following asymptotics

λε = λ0 − (α+ + α−)α+α− ε+O(ε2) (16.94)

or, equivalently,

λε = λ0 +
[
α+ ψ

2
0
′
(0+)− α− ψ

2
0
′
(0−)− (α2

+ + α2
−)ψ

2
0(0)

]
ε+O(ε2) . (16.95)

Proof. The first formula is due to (16.93), while its equivalent form follows by identities ψ2
0
′
(0±) = ∓(α+ +

α−)2/2 and ψ2
0(0) = −(α+ + α−)/2.

Note that (16.95) is a special case of the general formula (16.6).

16.6.2 More insight into the first-order correction term

The aim of this section is to discuss in more detail the first-order correction for the two-point interaction model.
In particular, we would like to analyse the source of the term −(α2

+ + α2
−)ψ0(0)

2.
The general solution of the eigenvalue problem Hεfε = λεfε takes the form

fε(x) =





eκεx for x < −ε ,
c1e

−κεx + c2e
κεx for − ε < x < ε ,

c3e
−κεx for x > ε .

(16.96)
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Using the boundary conditions (16.15) at x = ±ε, we determine the constants

c1 = − α−
2κε

, c2 =
α− + 2κε

2κε
, c3 = e2κεε +

α−
2κε

(e2κεε − e−2κεε) . (16.97)

Moreover, employing (16.94), we get
c3 = 1 +O(ε) (16.98)

as ε→ 0. Let ψε stand for the normalised eigenfunction of Hε, i.e.ψε := Cεfε, where the complex constant Cε
is chosen in such a way that

∫
R
ψ2
ε = 1. Let Pε denote the corresponding eigenprojector, i.e.

Pεg :=
(
ψε, g

)
L2(R)

ψε .

The eigenvalue λε of Hε satisfies

λε =
hε
(
Pεψ0, Pεψ0

)
(
Pεψ0, Pεψ0

)
L2(R)

, (16.99)

where
hε
(
Pεψ0, Pεψ0

)
= h0

(
ψ0, ψ0

)
+ (hε − h0)

(
ψ0, ψ0

)
− hε

(
P⊥
ε ψ0, P

⊥
ε ψ0

)
(16.100)

with P⊥ := I − Pε. The first term on the right hand side of (16.100) yields h0
(
ψ0, ψ0

)
= λ0 since

∫
R
ψ2
0 = 1.

The second term admits the asymptotics

(hε − h0)
(
ψ0, ψ0

)
=
(
α+ψ

2
0
′
(0+)− α−ψ

2
0
′
(0−)

)
ε+O(ε2) , (16.101)

which reproduces the first two components of the correction term in (16.95).
The remaining discussion is devoted to the analysis of the third term on the right hand side of (16.100). A

straightforward calculation using (16.97) and (16.98) yields
∣∣∣∣
∫

R

f2
ε −

∫

R

f2
0

∣∣∣∣ = O(ε) , ‖fε − f0‖L2(R) = O(ε) . (16.102)

Define
ωε := P⊥

ε ψ0 = ψ0 −
(
ψε, ψ0

)
L2(R)

ψε . (16.103)

Note that the derivative of ωε is well defined everywhere apart x = 0 and x = ±ε. Let ω′
ε denote this derivative.

Consequently, the third term on the right hand side of (16.100) takes the form

hε(ωε, ωε) =

∫

R

ω′2
ε + α+ ω

2
ε(ε) + α− ω

2
ε(−ε) . (16.104)

Using again (16.97) and (16.98), we state that

ωε(±ε) = O(ε) .

This means that the last two terms on the right hand side (16.104) behave as O(ε2).
Finally, let us analyse the first component (16.104). In view of (16.96), we decompose

∫

R

ω′2
ε =

∫ ε

−ε
ω′2
ε +

∫ −ε

−∞
ω′2
ε +

∫ ∞

ε

ω′2
ε .

A straightforward calculation shows that the last two terms on the right hand side behave as O(ε2). The first
term requires a more detailed analysis. Namely, for x ∈ (0 , ε) we have

ω′
ε(x) = −α+ + α−

2

(
−κ0e−κ0x + c1κεe

−κεx − c2κεe
κεx
)2

+O(ε) = −α+ +O(ε) ,

where we have used (16.97) together with the fact
∫
R
f2
0 = − 2

α++α−
. Analogously we show ω′

ε(x) = −α−+O(ε)

for x ∈ (−ε , 0). This implies
∫ ε
−ε ω

′2
ε = (α2

+ + α2
−)ε+O(ε2), and consequently,

∫

R

ω′2
ε = (α2

+ + α2
−)ε+O(ε2) ,

which, finally, leads to
hε(ωε, ωε) = (α2

+ + α2
−)ε+O(ε2) .

On the other hand,

(Pεψ0, Pεψ0)L2(R) = (ψ0, ψ0)L2(R) − (ωε, ωε)L2(R) = 1 +O(ε2) .

Summing up the above discussion, we have obtained the total first-order correction term in (16.95) and
identified the origin of its individual terms.
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Abstract. We prove that the spectrum of Schrödinger operators in three dimensions is purely con-
tinuous and coincides with the non-negative semiaxis for all potentials satisfying a form-subordinate
smallness condition. By developing the method of multipliers, we also establish the absence of point
spectrum for Schrödinger operators in all dimensions under various alternative hypotheses, still al-
lowing complex-valued potentials with critical singularities.

17.1 Introduction

Let H0 be the free Hamiltonian, i.e. the self-adjoint operator in L2(Rd) associated with the quadratic form

h0[ψ] :=

∫

Rd

|∇ψ|2 , D(h0) := H1(Rd) .

Let V : Rd → C be a measurable function which is form-subordinated to H0 with the subordination bound less
than one, i.e.,

∃a < 1 , ∀ψ ∈ H1(Rd) ,

∫

Rd

|V ||ψ|2 ≤ a

∫

Rd

|∇ψ|2 (17.1)

In view of the criticality of H0 in low dimensions, (17.1) is admissible for d ≥ 3 only, to which we restrict in
the sequel.

Assumption (17.1) in particular means that the quadratic form

v[ψ] :=

∫

Rd

V |ψ|2 , D(v) :=

{
ψ ∈ L2(Rd) :

∫

Rd

|V ||ψ|2 <∞
}
. (17.2)

is relatively bounded with respect to h0 with the relative bound less than one. Consequently, the sum hV :=
h0 + v is a closed form with D(hV ) = H1(Rd) which gives rise to an m-sectorial operator HV in L2(Rd) via the
representation theorem (cf [16, Thm. VI.2.1]). It is customary to write

HV = H0+̇V , (17.3)

but we stress that this generalised sum in the sense of forms differs from the ordinary operator sum.
The purpose of this paper is to show that condition (17.1) is sufficient to guarantee that the spectra of H0

and HV coincide, at least under some extra hypotheses.
Recall that the spectrum, σ(H), of a closed operator H in a complex Hilbert space H is determined by

the set of points λ ∈ C for which H − λ : D(H) → H is not bijective. Three disjoint subsets of σ(H) that
exhaust the spectrum are distinguished: the point spectrum σp(H) := {λ ∈ C : H − λ is not injective}, the
continuous spectrum σc(H) := {λ ∈ σ(H) \ σp(H) : R(H − λ) = H} and the residual spectrum σr(H) := {λ ∈
σ(H) \ σp(H) : R(H − λ) 6= H}.

The spectrum of H0 is well known to be purely continuous, in fact σ(H0) = σc(H0) = [0,+∞). In this
paper we show that this spectral property is preserved by condition (17.1) provided that d = 3.

Theorem 17.1. Let d = 3 and assume (17.1). Then σ(HV ) = σc(HV ) = [0,+∞).

The theorem is proved in four steps:

(i) Absence of the residual spectrum; Section 17.1.

(ii) Absence of the point spectrum; Section 17.2.

(iii) Absence of the continuous spectrum in C \ [0,+∞); Section 17.3.
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(iv) Inclusion of [0,+∞) in the spectrum; Section 17.4.

Property (i) follows at once (in any dimension): Since the adjoint operator satisfiesH∗
V = HV = THV T, where T

is the complex-conjugation operator defined by Tψ := ψ, HV is T-self-adjoint (cf [8, Sec. III.5]) and as such
it has no residual spectrum (cf [3]). The absence of eigenvalues (ii) is established in Section 17.2 by means
of an argument reminiscent of the Birman-Schwinger principle, but we emphasise that positive eigenvalues
are excluded as well. Property (iii) is proved by a modified version of the previous argument in Section 17.3.
Finally, in Section 17.4, we establish (iv) with help of an abstract quadratic-form criterion for the inclusion of
points in the spectrum.

The present paper is primarily motivated by a recent interest in spectral theory of Schrödinger operators
with complex potential, see [1, 12, 4, 19, 6, 21, 11, 7, 9, 13]. However, the role of hypothesis (17.1) to have the
conclusion of Theorem 17.1 seems to be new in the self-adjoint case, too.

As a matter of fact, Simon established the absence of eigenvalues in the self-adjoint case for d = 3 already
in [22, Thm. III.12] (see also [20, Thm. XIII.21]) by assuming

‖V ‖2R :=

∫∫

R3×R3

|V (x)||V (y)|
|x− y|2 dx dy < (4π)2 . (17.4)

The extension of his method to complex potentials is straightforward. However, notice that our assump-
tion (17.1) is weaker. Indeed, (17.1) is equivalent to (17.25), while

∥∥|V |1/2H−1/2
0

∥∥2 =
∥∥|V |1/2H−1

0 |V |1/2
∥∥ ≤

∥∥|V |1/2H−1
0 |V |1/2

∥∥
HS

=
‖V ‖R
4π

, (17.5)

where ‖·‖ and ‖·‖HS denote the operator and Hilbert-Schmidt norms in L2(R3), respectively. The last equality
in (17.5) follows with help of the explicit formula for the Green function (17.23) in R3.

To be more specific, notice that, by virtue of the classical Hardy inequality

∀ψ ∈ H1(Rd) ,

∫

Rd

|∇ψ|2 ≥
(
d− 2

2

)2 ∫

Rd

|ψ(x)|2
|x|2 dx , (17.6)

our hypothesis (17.1) is in particular satisfied for potentials V verifying

|V (x)| ≤ a

(
d− 2

2

)2
1

|x|2 (17.7)

for almost every x ∈ Rd. However, the Hardy potential on the right hand side of this inequality does not even
belong to the Rollnik class characterised for d = 3 by the norm ‖·‖R in (17.4). Furthermore, the location of the
continuous spectrum without the hypothesis that V belongs to the Rollnik class (which ensures the finiteness
of the Hilbert-Schmidt norm above) is less evident in our more general setting.

Our Theorem 17.1 is also an improvement upon the non-self-adjoint situation considered by Frank in [11,
Thm. 2]. First, he establishes the absence of eigenvalues outside [0,+∞) only. Second, his assumption to get
the conclusion of Theorem 17.1 for d = 3 is

∫

R3

|V (x)|3/2 dx < 33/2

4π2
, (17.8)

which is again stronger than ours (17.1). Indeed, by the Hölder and Sobolev inequalities,

∫

R3

|V ||ψ|2 ≤
(∫

R3

|V |3/2
)2/3(∫

R3

|ψ|6
)1/3

≤
(∫

R3

|V |3/2
)2/3

24/3

3π4/3

∫

R3

|∇ψ|2 , (17.9)

for all ψ ∈ H1(R3). As an example, the Hardy potential on the right hand side of (17.7) makes the left hand
side of (17.8) infinite, while it is an admissible potential for our Theorem 17.1. Finally, let us mention that
Frank and Simon have noticed recently in [13] that even positive eigenvalues can be excluded.

Our hypothesis (17.1) is of course intrinsically a smallness condition about V . But it is interesting to notice
that it involves potentials with quite rough local singularities, e.g. (17.7). It seems that such potentials are not
typically covered by previous works on the exclusion of embedded eigenvalues, even in the self-adjoint case; see
[15, 17] to quote just the most recent results based on Carleman’s estimates.

The extension of Theorem 17.1 to higher dimensions is not obvious, since our method relies on the pointwise
inequality for Green’s functions (17.27), which does not hold for d > 3. As an alternative approach, in
Section 17.5, we develop the technique of multipliers for Schrödinger operators with complex-valued potentials
and prove the absence of eigenvalues in any dimension under a stronger hypothesis.
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Theorem 17.2. Let d ≥ 3 and assume

∃b < d− 2

5d− 8
, ∀ψ ∈ H1(Rd) ,

∫

Rd

r2 |V |2 |ψ|2 ≤ b2
∫

Rd

|∇ψ|2 , (17.10)

where r(x) := |x|. Then σp(HV ) = ∅.

Notice that (17.1) follows as a consequence of (17.10) by means of the Schwarz inequality and the classical
Hardy inequality (17.6). Indeed, (17.10) and (17.6) yield

∫

Rd

|V ||ψ|2 ≤ ‖rV ψ‖
∥∥∥∥
ψ

r

∥∥∥∥ ≤ 2b

d− 2

∫

Rd

|∇ψ|2 . (17.11)

for all ψ ∈ H1(Rd), and b < (d− 2)/2 due to the restriction in (17.10).
Both (17.1) and (17.10) are smallness assumptions about V . Our next step is to look for some alternative

conditions which guarantee the absence of eigenvalues for HV , in all dimensions d ≥ 3. The idea is to modify
the proof of Theorem 17.2 by splitting the real and imaginary parts of the potential V and treating them
separately. In order to include potentials which are not necessarily subordinated in the spirit of (17.1), we
consider the space

D(Rd) := C∞
0 (Rd)

|||·|||
, |||ψ|||2 :=

∫

Rd

|∇ψ|2 +
∫

Rd

(ℜV )+ |ψ|2 +
∫

Rd

|ψ|2 , (17.12)

where we have introduced the notation f± := max{±f, 0} for any measurable function f : Rd → R. Clearly,
D(Rd) is continuously embedded in H1(Rd) and it coincides with the latter as a set if (17.1) holds. The

form h
(1)
V [ψ] :=

∫
Rd

|∇ψ|2 +
∫
Rd
(ℜV )+ |ψ|2, D(h(1)V ) := D(Rd), is closed by definition. Assuming now only

that (ℜV )− and ℑV are form-subordinated to H0 with the subordination bound less than one (cf (17.14)

and (17.16) below), the sum hV := h
(1)
V + h

(2)
V with h

(2)
V [ψ] := −

∫
Rd
(ℜV )− |ψ|2 +

∫
Rd

ℑV |ψ|2 is a closed form

with D(hV ) = D(Rd). Of course, hV coincides with the previously defined form under the hypothesis (17.1).
In this more general setting, we also denote by HV the m-sectorial operator associated with hV .

Now we are in a position to state the main result about the absence of eigenvalues for HV under natural
conditions on V .

Theorem 17.3. Let d ≥ 3 and assume that there exist non-negative numbers b1, b2, b3 satisfying

b21 < 1− 2b3
d− 2

, b22 + 2 b3 +
1

4

√
b3

(
2

d− 2

) 3
2

< 1 , (17.13)

such that, for all ψ ∈ D(Rd),
∫

Rd

(ℜV )− |ψ|2 ≤ b21

∫

Rd

|∇ψ|2 , (17.14)

∫

Rd

[∂r(rℜV )]+ |ψ|2 ≤ b22

∫

Rd

|∇ψ|2 , (17.15)

∫

Rd

r2 |ℑV |2 |ψ|2 ≤ b23

∫

Rd

|∇ψ|2 , (17.16)

where ∂rf(x) :=
x
|x| · ∇f(x). Then σp(HV ) = ∅.

We recall that (17.14) and (17.16) ensure that h
(2)
V is subordinated to h

(1)
V with the subordination bound

less than one, so HV is indeed well defined. A brief comparison between Theorems 17.1, 17.2 and 17.3 is in
order:

• If ℑV = 0, namely V is real-valued, then b3 can be chosen to be equal to zero and condition (17.13) then
reads b1 < 1, b2 < 1. In this case, the subordination assumption (17.1) implies (17.14). However, we
stress that conditions (17.14) and (17.15) are not unsigned, contrary to the case of (17.1). In particular,
a large class of repulsive potentials such as the Coulomb-type interaction V (x) = c |x|−1 with any c > 0
satisfy (17.14) and (17.15), although the subordination (17.1) fails.

• On the other hand, if ℜV = 0, namely V is purely imaginary-valued, then (17.14), (17.15) are fulfilled
and one just needs to assume (17.16) with

√
b3 < 8



(

2

d− 2

) 3
2

+

√(
2

d− 2

)3

+ 128



−1

.
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This hypothesis is better than condition (17.10) of Theorem 17.2 and represents a completely new result,
to our knowledge. However, for general complex-valued potentials V , the interest of Theorem 17.2 consists
in that it requires no conditions on the derivatives of V .

The techniques used to prove Theorems 17.2 and 17.3 permit to handle more general lower-order perturba-
tions of H0. It is of particular interest for the electromagnetic Hamiltonian HA,V that we introduce as follows.
Given a magnetic potential A ∈ L2

loc(R
d;Rd) and denoting by ∇A := ∇ + iA the magnetic gradient, we now

consider the space

DA(R
d) := C∞

0 (Rd)
|||·|||A

, |||ψ|||2A :=

∫

Rd

|∇Aψ|2 +
∫

Rd

(ℜV )+ |ψ|2 +
∫

Rd

|ψ|2 , (17.17)

and introduce the form hA,V [ψ] :=
∫
Rd

|∇Aψ|2 +
∫
Rd
V |ψ|2, D(hA,V ) := DA(R

d). If V is such that (17.19)
and (17.21) below hold, then hA,V is closed. We denote by HA,V the m-sectorial operator associated with hA,V .
We next denote by B := ∇A − (∇A)t ∈ Md×d(R) the magnetic field generated by A. (For d = 3, B may be
identified with curlA, in the sense that Bv = v × curlA for all v ∈ R3, where the cross denotes the vectorial
product.) Following a notation introduced in [10], we also define

Bτ (x) :=
x

|x| ·B(x) . (17.18)

(A non-trivial example of magnetic field with Bτ = 0 is given in dimension d = 3 by the magnetic potential
A(x) = |x|−2(−x2, x1, 0).)

The last result of this manuscript is an analogue of Theorem 17.3 in the presence of an external magnetic
field.

Theorem 17.4. Let d ≥ 3, A ∈ L2
loc(R

d;Rd) and assume that there exist non-negative numbers b1, b2, b3
satisfying (17.13) such that, for all ψ ∈ DA(R

d),

∫

Rd

(ℜV )− |ψ|2 ≤ b21

∫

Rd

|∇Aψ|2 , (17.19)

∫

Rd

[∂r(rℜV )]+ |ψ|2 ≤ b22

∫

Rd

|∇Aψ|2 , (17.20)

2

∫

Rd

r2
(
|ℑV |2 + |Bτ |2

)
|ψ|2 ≤ b23

∫

Rd

|∇Aψ|2 . (17.21)

Then σp(HA,V ) = ∅.

17.2 Absence of eigenvalues: the Birman-Schwinger principle

The main role in our proof of Theorem 17.1 is played by the Birman-Schwinger operator

Kz := |V |1/2 (H0 − z)−1 V1/2 with V1/2 := |V |1/2 sgn(V ) ,

where sgn(z) is the complex signum function defined by sgn(z) := z/|z| for z ∈ C \ {0} and sgn(0) := 0. We
abuse the notation by using the same symbols for maximal operators of multiplication and their generating
functions. The operator Kz is well defined (on its natural domain of the composition of three operators) for
all z ∈ C and d ≥ 3.

If z 6∈ [0,+∞), however, we have a useful formula for the integral kernel of Kz:

Kz(x, y) = |V |1/2(x)Gz(x, y)V1/2(y) , (17.22)

where Gz is the Green’s function of H0 − z, i.e. the integral kernel of the resolvent (H0 − z)−1. We observe
that Kz is a bounded operator for all z 6∈ [0,+∞) and d ≥ 3 under our hypothesis (17.1). Indeed, V1/2 maps

L2(Rd) to H−1(Rd) by duality, (H0 − z)−1 is an isomorphism between H−1(Rd) and H1(Rd) and the latter
space is mapped by |V |1/2 back to L2(Rd).

Moreover, if d = 3, we have an explicit formula

Gz(x, y) :=
1

4π

e−
√
−z |x−y|

|x− y| . (17.23)

Here and in the sequel we choose the principal branch of the square root. Using this explicit formula, we are
able to show that Kz is bounded by a under the hypothesis (17.1).
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Lemma 17.1. Let d = 3 and assume (17.1). Then

∀z 6∈ (0,+∞) , ‖Kz‖ ≤ a . (17.24)

Proof. We start with an equivalent formulation of (17.1), in any dimension d ≥ 3. Writing g := H
1/2
0 ψ in (17.1),

we have ∥∥|V |1/2H−1/2
0 g

∥∥2 ≤ a
∥∥∇H−1/2

0 g
∥∥2 = a ‖g‖2 ,

where ‖ · ‖ denotes the norm in L2(Rd). Since the range of H
1/2
0 is dense in L2(Rd), we see that (17.1) is

equivalent to ∥∥|V |1/2H−1/2
0

∥∥2 ≤ a . (17.25)

It follows (by taking the adjoint) that also

∥∥H−1/2
0 |V |1/2

∥∥2 ≤ a . (17.26)

Now we assume d = 3, where the explicit formula (17.23) for the Green function is available. By virtue of
the pointwise bound

∀z 6∈ (0,+∞) , ∀x, y ∈ R3 , |Gz(x, y)| ≤ G0(x, y) , (17.27)

we have

|(f,Kzg)| ≤ (|f |, K̃0|g|) ≤ ‖K̃0‖‖f‖‖g‖ (17.28)

for every z 6∈ (0,+∞) and all f, g ∈ L2(R3), where

K̃0 := |V |1/2H−1
0 |V |1/2

and (·, ·) denotes the inner product in L2(R3) (conjugate linear in the first argument). Using (17.25) and (17.26),
we have

‖K̃0‖ =
∥∥|V |1/2H−1

0 |V |1/2
∥∥ ≤

∥∥|V |1/2H−1/2
0

∥∥∥∥H−1/2
0 |V |1/2

∥∥ ≤ a . (17.29)

Consequently, (17.28) and (17.29) imply (17.24).

The following lemma provides an (integral) criterion for the existence of solutions to the (differential)
eigenvalue equation of HV . It can be considered as a one-sided version of the Birman-Schwinger principle
extended to possible eigenvalues in [0,+∞) as well.

Lemma 17.2. Let d = 3 and assume (17.1). If HV ψ = λψ with some λ ∈ C and ψ ∈ D(HV ), then φ := |V |1/2ψ
obeys

∀ϕ ∈ L2(R3) , lim
ε→0±

(ϕ,Kλ+iεφ) = −(ϕ, φ) . (17.30)

Proof. Given any λ ∈ C, there is ε0 > 0 such that λ + iε 6∈ [0,+∞) for all real ε satisfying 0 < |ε| < ε0. By
density of C∞

0 (R3) in L2(R3) and Lemma 17.1, it is enough to prove (17.30) for ϕ ∈ C∞
0 (R3). We have

(ϕ,Kλ+iεφ) =

∫∫

R3×R3

ϕ(x) |V |1/2(x)Gλ+iε(x, y)V (y)ψ(y) dx dy =

∫

R3

ηε(y)V (y)ψ(y) dy , (17.31)

where

ηε :=

∫

R3

ϕ(x) |V |1/2(x)Gλ+iε(x, ·) dx = (H0 − λ− iε)−1 |V |1/2 ϕ ,

where the second equality holds due to the symmetry Gz(x, y) = Gz(y, x). In view of (17.1), |V |1/2ϕ ∈ L2(R3).
Since ε 6= 0 is so small that λ + iε 6∈ σ(H0), we have ηε ∈ D(H0) = H2(R3). In particular, ηε ∈ H1(R3) and
the weak formulation of the eigenvalue equation HV ψ = λψ yields

∫

R3

ηε(y)V (y)ψ(y) dy = −(∇ηε,∇ψ) + λ (ηε, ψ)

= −(∇ψ,∇ηε) + λ (ψ, ηε)

= −(∇ψ,∇ηε) + (λ+ iε) (ψ, ηε)− iε (ψ, ηε)

= −(ψ, |V |1/2ϕ)− iε (ψ, ηε)

= −(ϕ, |V |1/2ψ)− iε (ηε, ψ) .

(17.32)
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Here the last but one equality follows from the weak formulation of the resolvent equation (H0 − λ − iε)ηε =
|V |1/2ϕ. Consequently, (17.31) and (17.32) imply (17.30) after taking the limit ε → 0±, provided that
ε (η̄ε, ψ) → 0 as ε→ 0. To see the latter, we write

|(ηε, ψ)| = |(ϕ,Mεψ)| ≤ ‖ϕ‖‖Mε‖‖ψ‖ ,

where Mε := χΩ |V |1/2(H0 − λ− iε)−1 with Ω := suppϕ, and it remains to show that ε ‖Mε‖ tends to zero as
ε→ 0. Following [22, Thm. III.6], we use the resolvent kernel (17.23) and estimate ‖Mε‖ ≤ ‖Mε‖HS. We have

‖Mε‖2HS =
1

(4π)2

∫∫

Ω×R3

|V (x)| e
−2κ(ε) |x−y|

|x− y|2 dx dy =
1

4πκ(ε)

∫

Ω

|V (x)| dx ,

where the last integral is bounded because V ∈ L1
loc(R

3) as a consequence of (17.1) and

κ(ε) := ℜ
√
−(λ+ iε) ∼





|ε|1/2 if λ = 0 ,

|ε| if ℜλ > 0 & ℑλ = 0 ,

1 otherwise .

Hence, ε ‖Mε‖ behaves at least as O(ε1/2) as ε→ 0, which concludes the proof of the lemma.

Remark 17.1. Lemma 17.2 resembles [22, Thm. III.6] in the self-adjoint case. It is also related to the recent
abstract result [13, Prop. 3.1].

Now we are in a position to establish the absence of eigenvalues in three dimensions.

Theorem 17.5. Let d = 3 and assume (17.1). Then σp(HV ) = ∅.

Proof. Assume there exists λ ∈ C and a non-trivial ψ ∈ D(HV ) such that HV ψ = λψ. Since the spectrum
of H0 is purely continuous, the theorem clearly holds for V = 0 and we may thus suppose that V is non-trivial.
But then φ := |V |1/2ψ is also non-trivial, otherwise ψ would be a non-trivial solution of H0ψ = λψ, which is
again impossible by the absence of eigenvalues for H0. Now, Lemma 17.2 with ϕ := φ and Lemma 17.1 yield

a ‖φ‖2 ≥ lim
ε→0±

|(φ,Kλ+iεφ)| = ‖φ‖2 . (17.33)

This is a contradiction because a < 1.

17.3 Absence of the continuous spectrum outside [0,+∞)

The following lemma is a modification of the idea behind Lemma 17.2 to deal with the continuous spectrum.
We prove it in all dimensions d ≥ 3.

Lemma 17.3. Let d ≥ 3 and assume (17.1). If ‖HV ψn − λψn‖ → 0 as n → ∞ with some λ ∈ C \ R and
{ψn}n∈N ⊂ D(HV ) such that ‖ψn‖ = 1 for all n ∈ N, then φn := |V |1/2ψn obeys

lim
n→∞

(φn,Kλφn)

‖φn‖2
= −1 . (17.34)

Proof. The proof is similar to that of Lemma 17.2. We have

(φn,Kλφn) =

∫

Rd

ηn(y)V (y)ψn(y) dy = v(ηn, ψn) , (17.35)

where (·, ·) denotes the inner product in L2(Rd) and the function

ηn :=

∫

Rd

φn(x) |V |1/2(x)Gλ(x, ·) dx = (H0 − λ)−1 |V |1/2 φn

belongs to H1(Rd). Indeed,

ηn = (H0 − λ)−1H
1/2
0 H

−1/2
0 |V |1/2 φn , (17.36)

where φn ∈ L2(Rd) by (17.1), H
−1/2
0 |V |1/2 is bounded due to (17.26) and (H0 − λ)−1H

1/2
0 maps L2(Rd) to

H1(Rd). More specifically,

‖ηn‖ ≤ Cλ
√
a ‖φn‖ , where Cλ := sup

ξ∈[0,∞)

∣∣∣∣
ξ

ξ2 − λ

∣∣∣∣ . (17.37)



II.17 Spectral stability of Schrödinger operators with subordinated complex potentials 291

In analogy with (17.32), we are thus allowed to write

v(ηn, ψn) = hV (ηn, ψn)− λ (ηn, ψn)− (∇ηn,∇ψn) + λ (ηn, ψn)

=
(
ηn, (HV − λ)ψn

)
− h0(ψn, ηn) + λ (ψn, ηn) .

(17.38)

By the second representation theorem (cf [16, Thm. VI.2.23]) and (17.36),

h0(ψn, ηn)− λ (ψn, ηn) =
(
H

1/2
0 ψn, H

1/2
0 ηn

)
− λ (ψn, ηn)

=
(
H

1/2
0 ψn, (H0 − λ+ λ)(H0 − λ)−1H

−1/2
0 |V |1/2φn

)
− λ (ψn, ηn)

=
(
H

1/2
0 ψn, H

−1/2
0 |V |1/2φn

)

=
(
(H

−1/2
0 |V |1/2)∗H1/2

0 ψn, φn
)

=
(
|V |1/2ψn, φn

)

= ‖φn‖2 .

(17.39)

Since

‖HV ψn − λψn‖ = sup
ϕ∈L2(Rd)

ϕ6=0

|(ϕ,HV ψn − λψn)|
‖ϕ‖ ≥

∣∣‖∇ψn‖2 + v[ψn]− λ
∣∣ ,

where the inequality is obtained by choosing ϕ := ψn, and the left hand side vanishes as n → ∞, we see that
ℑv[ψn] tends to ℑλ 6= 0 as n→ ∞. In particular,

lim inf
n→∞

‖φn‖ > 0 . (17.40)

Using (17.39) in (17.38), recalling (17.35), dividing the obtained identity by ‖φn‖2 (which is non-zero for
all sufficiently large n due to (17.40)) and taking the limit as n→ ∞, we arrive at

lim
n→∞

(φn,Kλφn)

‖φn‖2
+ 1 = lim

n→∞

(
ηn, (HV − λ)ψn

)

‖φn‖2
.

In view of (17.37) and (17.40), the right hand side equals zero by the hypothesis.

Now we are in a position to establish the absence of the continuous spectrum outside [0,+∞).

Theorem 17.6. Let d = 3 and assume (17.1). Then σc(HV ) ⊂ [0,+∞).

Proof. By (17.1), ℜhV [ψ] ≥ (1− a)‖∇ψ‖2 ≥ 0 for all ψ ∈ H1(R3). Since HV is m-sectorial, it follows that the
spectrum of HV is contained in the right complex half-plane (cf [16, Thm. V.3.2]). Assume that there exists
λ ∈ C with ℜλ ≥ 0 and ℑλ 6= 0 such that λ ∈ σc(HV ). Then λ belongs to the kind of essential spectrum
which is characterised by the existence of a singular sequence of HV corresponding to λ (cf [8, Thm. IX.1.3]):
∃{ψn}n∈N ⊂ D(HV ), ‖ψn‖ = 1 for all n ∈ N, ‖(HV − λ)ψn‖ → 0 as n→ ∞ and {ψn}n∈N is weakly converging
to zero. By Lemma 17.3 and Lemma 17.1,

a ≥ ‖Kλ‖ ≥
∣∣∣∣ limn→∞

(φn,Kλφn)

‖φn‖2
∣∣∣∣ = 1 ,

This is a contradiction because a < 1.

We remark that the last step of the proof of Theorem 17.6 requires Lemma 17.1 for which d = 3 is crucial.

17.4 Inclusion of the spectrum in [0,+∞)

The opposite inclusion follows by an explicit construction of a singular sequence of HV corresponding to non-
negative energies. Since the operator HV is defined through its sesquilinear form, it is convenient to have a
criterion which requires that the singular sequence is in the form domain only. Unable to find a reference in
the general case, we state the abstract version first (for the self-adjoint situation, see [18, Thm. 5]).

Lemma 17.4. Let H be an m-sectorial accretive operator in a complex Hilbert space H which is associated
with a (densely defined, closed, sectorial) sesquilinear form h. Given λ ∈ C, assume that there exists a sequence
{φn}n∈N ⊂ D(h) such that ‖φn‖ = 1 for all n ∈ N and

sup
ψ∈D(h)
ψ 6=0

|h(φn, ψ)− λ (φn, ψ)|
‖ψ‖D(h)

−−−−→
n→∞

0 , (17.41)

where ‖ψ‖D(h) :=
√
ℜh[ψ] + ‖ψ‖2. Then λ ∈ σ(H).
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Remark 17.2. Notice that the left hand side of (17.41) is the norm of the vector H∗φn − λ φn in the dual
space D(h)∗, when D(h) is thought as the subspace of H equipped with the norm ‖ · ‖D(h).

Proof. We proceed by contradiction: Assume the hypotheses of the theorem and λ 6∈ σ(H). The latter means
that for every g ∈ H there exists ψ ∈ D(H) such that Hψ − λψ = g. That is, ψ = (H − λ)−1g and (H − λ)−1

is bounded as an operator on H onto H. The weak formulation of the resolvent equation reads

∀φ ∈ D(h) , h(φ, ψ)− λ (φ, ψ) = (φ, g) . (17.42)

Consequently, for every φ ∈ D(h),

Cλ sup
ψ∈D(h)
ψ 6=0

|h(φ, ψ)− λ (φ, ψ)|
‖ψ‖D(h)

≥ sup
g∈H
g 6=0

|h(φ, ψ)− λ (φ, ψ)|
‖g‖ = sup

g∈H
g 6=0

|(φ, g)|
‖g‖ = ‖φ‖ , (17.43)

where ψ and g are related through (17.42) and the constant

Cλ := sup
g∈H
g 6=0

‖ψ‖D(h)

‖g‖

is finite because the resolvent (H − λ)−1 maps H onto D(H) ⊂ D(h). More specifically,

‖ψ‖2D(h) = ℜh[(H − λ)−1g] + ‖(H − λ)−1g‖2

= ℜ
(
(H − λ)−1g,H(H − λ)−1g

)
+ ‖(H − λ)−1g‖2

≤
(
‖(H − λ)−1‖‖H(H − λ)−1‖+ ‖(H − λ)−1‖2

)
‖g‖2 .

Choosing φ := φn in (17.43), we get that the left hand side tends to zero as n→ ∞ by (17.41), while the right
hand side equals one due to the normalisation of {φn}n∈N, a contradiction.

Now we are in a position to prove the inclusion of the interval [0,+∞) in the spectrum of HV . The following
result holds in all dimensions d ≥ 3.

Theorem 17.7. Let d ≥ 3 and assume (17.1). Then σ(HV ) ⊃ [0,+∞).

Proof. We construct the sequence {φn}n∈N from Lemma 17.4 applied to HV by setting

φn(x) := ϕn(x) e
ik·x ,

where k ∈ Rd is such that |k|2 = λ ∈ [0,+∞), ϕn(x) := n−d/2ϕ1(x/n) for all n ∈ N (with the convention
0 6∈ N) and ϕ1 ∈ C∞

0 (Rd) is a function such that ‖ϕ1‖ = 1. The normalisation factor in the definition of ϕn is
chosen in such a way that

‖ϕn‖ = ‖ϕ1‖ = 1 , ‖∇ϕn‖ = n−1 ‖∇ϕ1‖ , ‖∆ϕn‖ = n−2 ‖∆ϕ1‖

for all n ∈ N. Then ‖φn‖ = 1 and φn ∈ D(hV ) = D(h0) = H1(Rd) for all n ∈ N. Furthermore,

‖−∆φn − λφn‖ = ‖−∆ϕn + 2ik · ∇ϕn‖ ≤ ‖∆ϕn‖+ 2 |k|‖∇ϕn‖ −−−−→
n→∞

0 . (17.44)

In fact, {φn}n∈N is the usual singular sequence of H0 corresponding to λ. At the same time,

∣∣v[φn]
∣∣ ≤

∥∥|V |1/2ϕn
∥∥2 ≤ a ‖∇ϕn‖2 −−−−→

n→∞
0 , (17.45)

where the second inequality follows by (17.1).
The numerator in (17.41) can be estimated as follows

|hV (φn, ψ)− λ (φn, ψ)| = |(−∆φn − λφn, ψ) + v(φn, ψ)|
≤ ‖−∆φn − λφn‖ ‖ψ‖+

√
|v[φn]|

√
|v[ψ]|

≤ ‖−∆φn − λφn‖ ‖ψ‖+
√
|v[φn]|

√
a ‖∇ψ‖ ,

where the last inequality is due to (17.1). As for the denominator in (17.41), employing (17.1) again, we have

‖ψ‖2D(h) = ‖∇ψ‖2 + ℜv[ψ] + ‖ψ‖2 ≥ (1− a) ‖∇ψ‖2 + ‖ψ‖2 ≥ (1− a) ‖ψ‖2D(h0)
,
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where ‖ · ‖D(h0) is just the usual norm of H1(Rd). Putting these estimates together, we have the bound

sup
ψ∈D(hV )

ψ 6=0

|hV (φn, ψ)− λ (φn, ψ)|
‖ψ‖D(hV )

≤ ‖−∆φn − λφn‖+
√
|v[φn]|

√
a√

1− a
,

where the right hand side tends to zero due to (17.44) and (17.45).
Summing up, given λ ∈ [0,+∞), we have shown that the sequence {φn}n∈N satisfies all the hypotheses of

Lemma 17.4. Consequently, [0,+∞) ⊂ σ(HV ).

Proof of Theorem 17.1. To conclude, Theorem 17.1 follows as a consequence of Theorems 17.5, 17.6, 17.7 and
the absence of the residual spectrum justified already in Section 17.1.

17.5 Absence of eigenvalues: the method of multipliers

In this last section, we prove Theorems 17.2, 17.3 and 17.4 by a completely different approach in comparison
with the previous sections. Namely, we extend the method of multipliers developed in the self-adjoint context
in [2] to complex-valued potentials. Here we proceed in all dimensions d ≥ 3.

Let us consider the equation
∆u+ λu = f, (17.46)

where λ is any complex constant; we write λ1 := ℜλ and λ2 := ℑλ. Given a measurable function f : Rd → C

that we assume to merely belong to H−1(Rd), we say that u is a solution of (17.46) if u ∈ H1(Rd) and

∀v ∈ H1(Rd) , −(∇v,∇u) + λ (v, u) = (v, f) . (17.47)

Here, with an abuse of notation, the same symbol (·, ·) is used for the inner product in L2(Rd) and for the duality
pairing between H1(Rd) and H−1(Rd) on the left and right hand side of (17.47), respectively. Equation (17.46)
is related to the eigenvalue problem of HV by setting f := V u. Notice that any eigenvalue λ of HV necessarily
satisfies λ1 > 0 due to (17.1). If u is a solution of (17.46), we set

u±(x) := e±i sgn(λ2)λ
1
2
1 |x| u(x) , sgn(λ2) :=

{
λ2

|λ2| if λ2 6= 0 ,

1 if λ2 = 0 .
(17.48)

In order to prove Theorem 17.2, we establish the following result, which shows that (17.46) has no non-trivial
solutions provided that f is small in a suitable sense.

Theorem 17.8. Let d ≥ 3. Let u be a solution of (17.46) with ℜλ > 0, and assume that f satisfies

‖xf‖ ≤ Λ ‖∇u−‖ , ‖xf‖ ≤ Λ ‖∇u‖ , (17.49)

where Λ is determined by
2(2d− 3)

d− 2
Λ +

√
2√

d− 2
Λ

3
2 < 1 . (17.50)

Then u = 0.

Proof. The proof relies on direct techniques, based on multiplication and integration by parts, inspired by [2],
in which the methods by [5, 14] are developed and refined. Here we propose some slight modifications in the
arguments, essentially due to the fact that we need to handle complex-valued potentials. To save space, we
abbreviate

∫
:=
∫
Rd

and omit arguments of integrated functions.
Following [2], we divide the proof into two cases: |λ2| ≤ λ1 and |λ2| > λ1.

Case |λ2| ≤ λ1. Our first step consists in approximating solutions of (17.47) by a standard cutoff and

mollification argument, which is fundamental to make rigorous the proof in the sequel. To this aim, let
ξR : Rd → [0, 1] be a smooth function such that

ξ = 1 in BR , ξ = 0 in Rd \B2R , |∇ξR| ≤ 2R−1 , |∆ξR| ≤ 2R−1|x|−1 , (17.51)

for any R > 0 sufficiently large, where BR := {|x| < R}. For a function g : Rd → C, we then denote gR := g ξR.
If u ∈ H1(Rd) is a solution to (17.47), we see that uR ∈ H1(Rd) solves

∆uR + λuR = fR − 2∇ξR · ∇u− u∆ξR =: f̃R (17.52)
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in the weak sense of (17.47). Notice that, since f satisfies conditions (17.49) and (17.50), we have

‖xf̃R‖ ≤ Λ
∥∥∇u−R

∥∥+ ǫ2(R) , ‖xf̃R‖ ≤ Λ ‖∇uR‖+ ǫ2(R) , lim
R→∞

ǫ2(R) = 0 . (17.53)

Indeed, by (17.51),

‖xf̃R‖ ≤ ‖xfR‖+ 8

(∫

R<|x|<2R

|∇u|2
) 1

2

+ 4R−2

(∫

R<|x|<2R

|u|2
) 1

2

,

where the last two terms tends to 0 as R → ∞, since u ∈ H1(Rd).

Let now φ ∈ C∞
0 (Rd) be a function such that

∫
φ = 1, and define, for any δ > 0, φδ(x) := δ−dφ

(
x
δ

)
. If

u ∈ H1(Rd) is a solution to (17.47), we see that uR,δ := uR ∗ φδ solves

∆uR,δ + λuR,δ = f̃R,δ

in the weak sense of (17.47), where f̃R,δ := f̃R ∗ φδ. More specifically,

∀v ∈ H1(Rd) , (−∇v,∇uR,δ) + λ (v, uR,δ) =
(
v, f̃R,δ

)
. (17.54)

By (17.53), it turns out that

‖xf̃R,δ‖ ≤ Λ
∥∥∥∇u−R,δ

∥∥∥+ ǫ2(R) , ‖xf̃R,δ‖ ≤ Λ ‖∇uR,δ‖+ ǫ2(R) , lim
R→∞

ǫ2(R) = 0 , (17.55)

where u−R,δ := u−R ∗ φδ and Λ as in (17.50).

We can now start with suitable algebraic manipulations of equation (17.54), which suitably approxi-
mates (17.47). Let G1, G2, G3 : Rd → R be three smooth functions. Choosing v := G1uR,δ in (17.54),
taking the real part of the resulting identity and integrating by parts, we arrive at the identity

λ1

∫
G1|uR,δ|2 −

∫
G1|∇uR,δ|2 +

1

2

∫
∆G1 |uR,δ|2 = ℜ

∫
f̃R,δ G1 uR,δ . (17.56)

Analogously, choosing v := G2u in (17.47) and taking the imaginary part of the resulting identity, we obtain

λ2

∫
G2|uR,δ|2 −ℑ

∫
∇G2 · uR,δ∇uR,δ = ℑ

∫
f̃R,δ G2 uR,δ , (17.57)

where the dot denotes the scalar product in Rd. Finally, choosing v := 2∇G3 · ∇uR,δ + ∆G3 uR,δ in (17.47),
taking the real part of the resulting identity and integrating by parts, we get

∫
∇uR,δ · ∇2G3 · ∇uR,δ −

1

4

∫
∆2G3 |uR,δ|2 + λ2 ℑ

∫
∇G3 · uR,δ∇uR,δ (17.58)

= −1

2
ℜ
∫
f̃R,δ∆G3 uR,δ −ℜ

∫
f̃R,δ∇G3 · ∇uR,δ ,

where ∇2G3 denotes the Hessian matrix of G3 and ∆2 := ∆∆ is the bi-Laplacian. Notice that identities (17.56),
(17.57), (17.58) are justified, since uR,δ ∈ C∞

0 (Rd) and G1, G2, G3 are smooth, therefore bounded, together
with their derivatives of any order, inside the support of uR,δ.

In the following, we assume that G1, G2, G3 are radial, i.e. there exist smooth functions g1, g2, g3 : [0,∞) →
R such that Gi(x) = gi(|x|) for all x ∈ Rd and i ∈ {1, 2, 3}. Then

∇Gi(x) = g′i(|x|)
x

|x| , ∆Gi(x) = g′′i (|x|) + g′i(|x|)
d − 1

|x| , ∇2Gi(x) = g′′i (|x|)
xx

|x|2 +
g′i(|x|)
|x|

(
I − xx

|x|2
)
,

where I denotes the identity on Rd and xx is the dyadic product of x and x. For any g : Rd → C, denote by

∂rg(x) :=
x

|x| · ∇g(x) and ∇τg(x) :=
(
I − xx

|x|2
)
· ∇g(x)

the radial derivative and the angular gradient of g, respectively, so that |∇g|2 = |∂rg|2 + |∇τg|2.
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Taking the sum (17.56) + λ
1
2
1 (17.57) + (17.58), we obtain

∫
|∂ruR,δ|2(g′′3 − g1) +

∫
|∇τuR,δ|2

(
g′3
|x| − g1

)
+

∫
|uR,δ|2

(
λ1g1 + λ2λ

1
2
1 g2

)

+

∫
|uR,δ|2

(
1

2
∆G1 −

1

4
∆2G3

)
− λ

1
2
1 ℑ
∫
uR,δ∇uR,δ · ∇G2 + λ2 ℑ

∫
uR,δ∇uR,δ · ∇G3

= ℜ
∫
f̃R,δ G1 uR,δ + λ

1
2ℑ
∫
f̃R,δ G2 uR,δ −

1

2
ℜ
∫
f̃R,δ uR,δ∆G3 −ℜ

∫
f̃R,δ∇uR,δ · ∇G3 . (17.59)

Choosing g1 := 1
2g

′′
3 and g2 := sgn(λ2) g

′
3, the last identity becomes

1

2

∫
g′′3
(
|∂ruR,δ|2 + λ1 |uR,δ|2

)
− sgn(λ2)λ

1
2
1 ℑ

∫
g′′3 uR,δ ∂ruR,δ +

∫
|∇τuR,δ|2

(
g′3
r

− g′′3
2

)

+
1

4

∫
|uR,δ|2

(
∆G′′

3 −∆2G3

)
+ |λ2|λ

1
2
1

∫
g′3 |uR,δ|2 + λ2 ℑ

∫
g′3 uR,δ ∂ruR,δ

=
1

2
ℜ
∫
f̃R,δ g

′′
3 uR,δ + λ

1
2
1 sgn(λ2)ℑ

∫
f̃R,δ g

′
3 uR,δ −

1

2
ℜ
∫
f̃R,δ uR,δ∆G3 −ℜ

∫
f̃R,δ∇uR,δ · ∇G3 ,

where G′′
3 (x) := g′′3 (|x|). Choosing now G3(x) := |x|2, the tangential and radial derivatives of u sum up and we

obtain
∫ (

|∇uR,δ|2 + λ1 |uR,δ|2
)
− 2 sgn(λ2)λ

1
2
1 ℑ

∫
uR,δ ∂ruR,δ + 2 |λ2|λ

1
2
1

∫
|x||uR,δ|2 + 2λ2 ℑ

∫
|x|uR,δ ∂ruR,δ

= (1− d)ℜ
∫
f̃R,δ uR,δ + 2λ

1
2
1 sgn(λ2)ℑ

∫
f̃R,δ |x|uR,δ − 2ℜ

∫
f̃R,δ x · ∇uR,δ . (17.60)

Using

|∇u−R,δ|2 =

∣∣∣∣∇uR,δ − i sgn(λ2)λ
1
2
1

x

|x|uR,δ
∣∣∣∣
2

= |∇uR,δ|2 + λ1|uR,δ|2 − 2 sgn(λ2)λ
1
2
1 ℑ (uR,δ ∂ruR,δ) , (17.61)

we can rewrite (17.60) as follows:

∫
|∇u−R,δ|2 + 2 |λ2|λ

1
2
1

∫
|x||uR,δ|2 + 2λ2 ℑ

∫
|x|uR,δ ∂ruR,δ

= (1− d)ℜ
∫
f̃R,δ uR,δ + 2λ

1
2
1 sgn(λ2)ℑ

∫
f̃R,δ |x|uR,δ − 2ℜ

∫
f̃R,δ x · ∇uR,δ .

Subtracting from the last identity equation (17.56) with the choice G1(x) := |λ2|λ−
1
2

1 |x|, we arrive at

∫
|∇u−R,δ|2 −

(d− 1)

2
|λ2|λ−

1
2

1

∫ |uR,δ|2
|x| + |λ2|λ

1
2
1

∫
|x||uR,δ|2

+ |λ2|λ−
1
2

1

∫
|x||∇uR,δ|2 + 2λ2 ℑ

∫
|x|uR,δ ∂ruR,δ

= (1− d)ℜ
∫
f̃R,δ uR,δ + 2λ

1
2
1 sgn(λ2)ℑ

∫
f̃R,δ |x|uR,δ − 2ℜ

∫
f̃R,δ x · ∇uR,δ − |λ2|λ−

1
2

1 ℜ
∫
f̃R,δ |x|uR,δ .

Using (17.61) again, we obtain the key identity

I :=

∫ ∣∣∣∇u−R,δ
∣∣∣
2

+
|λ2|
λ

1
2
1

∫
|x|
∣∣∣∇u−R,δ

∣∣∣
2

− (d− 1)

2

|λ2|
λ

1
2
1

∫ |uR,δ|2
|x|

= (1− d)ℜ
∫
f̃R,δ uR,δ

︸ ︷︷ ︸
I1

−2ℜ
∫

|x| f̃R,δ
(
∂ruR,δ + i sgn(λ2)λ

1
2
1 uR,δ

)

︸ ︷︷ ︸
I2

−|λ2|
λ

1
2
1

ℜ
∫

|x| f̃R,δ uR,δ
︸ ︷︷ ︸

I3

. (17.62)

By the weighted Hardy inequality

∀ψ ∈ C∞
0 (Rd) ,

∫ |ψ|2
|x| ≤ 4

(d− 1)2

∫
|x||∇ψ|2 , (17.63)
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and the facts that uR,δ ∈ C∞
0 (Rd) and |uR,δ| = |u−R,δ|, we easily bound the left hand side of (17.62) from below

by a positive quantity as follows

I ≥
∫ ∣∣∇u−R,δ

∣∣2 + |λ2|
λ

1
2
1

d− 3

d− 1

∫
|x||∇u−R,δ|2 . (17.64)

We proceed by estimating the individual terms on the right hand side of (17.62) by means of ‖∇u−R,δ‖2. By
the Schwarz inequality, the Hardy inequality (17.6) and thanks to (17.55), we have

|I1| ≤ (d− 1) ‖xf̃R,δ‖
∥∥∥∥
uR,δ
|x|

∥∥∥∥ = (d− 1) ‖xf̃R,δ‖
∥∥∥∥∥
u−R,δ
|x|

∥∥∥∥∥ ≤ 2(d− 1)

d− 2

(
Λ ‖∇u−R,δ‖2 + ǫ2(R) ‖∇u−R,δ‖

)
. (17.65)

Since
∣∣∂ruR,δ + iλ

1
2
1 sgn(λ2)uR,δ

∣∣ =
∣∣∂ru−R,δ

∣∣, we may write

|I2| ≤ 2 ‖xf̃R,δ‖‖∂ru−R,δ‖ ≤ 2 ‖xf̃R,δ‖‖∇u−R,δ‖ ≤ 2
(
Λ ‖∇u−R,δ‖2 + ǫ2(R) ‖∇u−R,δ‖

)
. (17.66)

If λ2 6= 0, we also need to estimate the term I3. First notice that identity (17.57) with the constant choice
G2(x) :=

λ2

|λ2| , immediately gives the L2-bound

‖uR,δ‖2 ≤ |λ2|−1

∫
|f̃R,δ||uR,δ| .

As a consequence, since |λ2| ≤ λ1, we have

|I3| ≤
|λ2|
λ

1
2
1

‖xf̃R,δ‖‖uR,δ‖ ≤
(
Λ ‖∇u−R,δ‖+ ǫ2(R)

)√∫
|f̃R,δ||uR,δ|

≤
(
Λ ‖∇u−R,δ‖+ ǫ2(R)

)
‖xf̃R,δ‖

1
2

∥∥∥∥
uR,δ
|x|

∥∥∥∥
1
2

≤ Λ
3
2

√
2√

d− 2
‖∇u−R,δ‖2 + ǫ2(R)

√
2√

d− 2
‖∇u−R,δ‖

(
Λ

1
2 ‖∇u−R,δ‖+ ǫ(R)

)
. (17.67)

Applying the estimates (17.64), (17.65), (17.66) and (17.67) in (17.62), we obtain

(
1− 2(2d− 3)

d− 2
Λ−

√
2√

d− 2
Λ

3
2

)∫
|∇u−R,δ|2 +

|λ2|
λ

1
2
1

d− 3

d− 1

∫
|x||∇u−R,δ|2

≤ ǫ2(R)
∥∥∇u−R,δ

∥∥
(
4d− 6

d− 2
+

√
2√

d− 2
Λ

1
2 ‖∇u−R,δ‖ −

√
2√

d− 2
ǫ(R)

)
.

For fixed R, let δ → 0 in the last inequality; since uR,δ is compactly supported, by the dominated convergence
theorem, one gets

(
1− 2(2d− 3)

d− 2
Λ−

√
2√

d− 2
Λ

3
2

)∫
|∇u−R|2 +

|λ2|
λ

1
2
1

d− 3

d− 1

∫
|x||∇u−R|2

≤ ǫ2(R)
∥∥∇u−R

∥∥
(
4d− 6

d− 2
+

√
2√

d− 2
Λ

1
2 ‖∇u−R‖ −

√
2√

d− 2
ǫ(R)

)
.

Let finally R → ∞; by the monotone convergence theorem and the fact that u− ∈ H1(Rd), we conclude that

(
1− 2(2d− 3)

d− 2
Λ−

√
2√

d− 2
Λ

3
2

)∫
|∇u−|2 + |λ2|

λ
1
2
1

d− 3

d− 1

∫
|x||∇u−|2 ≤ 0 . (17.68)

By virtue of (17.50), it follows that u− and thus u are identically equal to zero.
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Case |λ2| > λ1. Let u ∈ H1(Rd) be a solution to (17.47). Choosing as a test function v = ±u in (17.47),

and taking real and imaginary parts of the resulting identities, one easily gets

(λ1 ± λ2)

∫
|u|2 =

∫
|∇u|2 + ℜ

∫
fu±ℑ

∫
fu. (17.69)

By the Schwarz inequality, the Hardy inequality (17.6) and assumption (17.49), we estimate

ℜ
∫
fu±ℑ

∫
fu ≤ 2

∫
|f ||u| ≤ 2 ‖xf‖

∥∥∥∥
u

|x|

∥∥∥∥ ≤ 4

d− 2
Λ

∫
|∇u|2 .

Consequently, (17.69) yields

(λ1 ± λ2)

∫
|u|2 ≥

(
1− 4

d− 2
Λ

)∫
|∇u|2 .

Notice that (17.50) implies that Λ < d−2
4 , therefore the last inequality forces λ1 ± λ2 ≥ 0 unless u = 0. Since

we assume |λ2| > λ1, we conclude that u = 0.

By taking f := V u in Theorem 17.8 (notice that V u belongs to H−1(Rd) under the hypothesis (17.70)) and
using that |u| = |u−|, we immediately obtain

Corollary 17.1. Let d ≥ 3 and suppose

∀ψ ∈ H1(Rd) ,

∫

Rd

|x|2 |V (x)|2 |ψ(x)|2 dx ≤ Λ2

∫

Rd

|∇ψ|2 , (17.70)

where Λ satisfies (17.50). Then σp(HV ) = ∅.

Proof. In fact, Theorem 17.8 only gives the weaker conclusion that no complex point λ satisfying ℜλ > 0 can
be an eigenvalue of HV . However, (17.70) with (17.50) implies (17.1), which in turn yields that all possible
eigenvalues of HV are included in the right complex plane, i.e. ℜλ > 0. Indeed, this fact follows from the
identity ∫

|∇u|2 + ℜ
∫
V |u|2 = ℜλ

∫
|u|2 , (17.71)

which can be obtained from (17.56) with the constant choice G1 := 1 and f := V u.

Now we are in a position to prove Theorem 17.2.

Proof of Theorem 17.2. Theorem 17.2 follows as a weaker version of Corollary 17.1. Indeed, it is easy to see
that any Λ verifying (17.50) necessarily satisfies Λ ≤ (d−2)/2. Using the latter in the former, we obtain (17.10)
as a sufficient condition which guarantees (17.70).

We now turn our attention to Theorem 17.3. In analogy with the above strategy, we first study the (more
difficult) part ℜλ > 0. In the following, we set V1 := ℜV and V2 := ℑV .

Theorem 17.9. Let d ≥ 3. Let u ∈ D(Rd) be a solution of (17.46) with ℜλ > 0, and let f := V u where V
satisfies (17.14), (17.15), (17.16) and (17.13). Then u = 0.

Proof. The proof is completely analogous to that of Theorem 17.8. The only difference consists in the way we
handle the right-hand side of (17.62), as we see in the sequel.

Case |λ2| ≤ λ1. With the same notations as above, if u ∈ D(Rd) ⊂ H1(Rd) solves (17.46), then identity

(17.62) holds. We now need to rewrite the right-hand side of (17.62) in a suitable way. To this aim, recall that

f̃R is defined via (17.52), where f := V u. It is convenient to introduce the notation

KR(u,∇u) := −2∇ξR · ∇u− u∆ξR. (17.72)
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so that f̃R = fR + KR(u,∇u). Putting (17.72) into (17.62), integrating by parts in the first two terms
involving V1 and taking the limit as δ → 0, one gets the following key identity:

I :=

∫ ∣∣∇u−R
∣∣2 + |λ2|

λ
1
2
1

∫
|x||∇u−R|2 −

(d− 1)

2

|λ2|
λ

1
2
1

∫ |uR|2
|x| − |λ2|

λ
1
2
1

∫
|x|V1|uR|2

=

∫
|u−R|2 (V1 + |x|∂rV1)

︸ ︷︷ ︸
I1

+2ℑ
∫

|x|V2uR
(
∂ruR + i sgn(λ2)λ

1
2
1 uR

)

︸ ︷︷ ︸
I2

+ (1 − d)ℜ
∫
KR(u,∇u)uR − 2ℜ

∫
|x|KR(u,∇u)

(
∂ruR + i sgn(λ2)λ

1
2
1 uR

)
− λ2

λ
1
2
1

ℜ
∫

|x|KR(u,∇u)uR
︸ ︷︷ ︸

I3

.

(17.73)

We start by estimating the individual terms on the right hand side of (17.73). Thanks to assumption
(17.15), we have

I1 =

∫
|u−R|2∂r(|x|V1) ≤

∫
|u−R|2 [∂r(|x|V1)]+ ≤ b22

∫
|∇u−R|2. (17.74)

We now use
∣∣∂ruR + iλ

1
2
1 sgn(λ2)uR

∣∣ =
∣∣∂ru−R

∣∣ to write

|I2| ≤ 2‖xV2uR‖‖∂ru−R‖ ≤ 2‖xV2uR‖‖∇u−R‖ ≤ 2b3

∫
|∇u−R|2. (17.75)

Finally, by (17.51) and the fact that uR ∈ H1(Rd), one easily gets that

|I3| ≤ ǫ2(R), lim
R→∞

ǫ2(R) = 0. (17.76)

We now proceed by estimating the left-hand side of (17.73) from below. By (17.14) we obtain

|λ2|
λ

1
2
1

∫
|x|V1|uR|2 ≥ −|λ2|

λ
1
2
1

∫
(V1)−

∣∣∣|x| 12 u−R
∣∣∣
2

≥ −b21
|λ2|
λ

1
2
1

∫ ∣∣∣∇
(
|x| 12 u−R

)∣∣∣
2

. (17.77)

Now write

|λ2|
λ

1
2
1

∫
|x||∇u−R|2 −

(d− 1)

2

|λ2|
λ

1
2
1

∫ |uR|2
|x| =

|λ2|
λ

1
2
1

∫ ∣∣∣∇
(
|x| 12u−R

)∣∣∣
2

− 1

4

|λ2|
λ

1
2
1

∫ ∣∣u−R
∣∣2

|x| . (17.78)

Notice that identity (17.57) with the constant choice G2(x) :=
λ2

|λ2| , in the limit as δ → 0, reads as follows

|λ2|
∫

|uR|2 =
λ2
|λ2|

∫
V2|uR|2 +

λ2
|λ2|

ℑ
∫
KR(u,∇u)uR.

Since uR ∈ H1(Rd), arguing as in (17.11), by (17.16), (17.51) and the fact that |uR| = |u−R|, we obtain the
L2-bound

‖uR‖2 ≤ |λ2|−1

(
2b3
d− 2

∫
|∇u−R|2 + ǫ2(R)

)
, lim

R→∞
ǫ2(R) = 0. (17.79)

As a consequence of (17.79), since |λ2| ≤ λ1, we can estimate the last term in (17.78), by the Schwarz and
Hardy inequalities as follows:

|λ2|
λ

1
2
1

∫ ∣∣u−R
∣∣2

|x| ≤ |λ2|
λ

1
2
1

∥∥∥∥
u−R
|x|

∥∥∥∥
∥∥u−R

∥∥ ≤
√
b3

(
2

d− 2

) 3
2
∫ ∣∣∇u−R

∣∣2 + 2

d− 2
‖∇u−R‖ |ǫ(R)| , (17.80)

where ǫ(R) is the error term from (17.79). By (17.77), (17.78), and (17.80), we conclude that

I ≥
[
1− 1

4

√
b3

(
2

d− 2

) 3
2

]∫ ∣∣∇u−R
∣∣2 − 1

4

2

d− 2
‖∇u−R‖ |ǫ(R)| . (17.81)

Applying (17.74), (17.75), (17.76) and (17.81) in (17.73), we obtain
[
1− b22 − 2 b3 −

1

4

√
b3

(
2

d− 2

) 3
2

]∫ ∣∣∇u−R
∣∣2 ≤ ǫ2(R) +

1

4

2

d− 2
‖∇u−R‖ |ǫ(R)| ,
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for any R > 0, with limR→∞ ǫ2(R) = 0. In the limit as R → ∞, by the monotone convergence theorem, we
finally get [

1− b22 − 2 b3 −
1

4

√
b3

(
2

d− 2

) 3
2

]∫ ∣∣∇u−
∣∣2 ≤ 0 . (17.82)

By virtue of (17.13), it follows that u− and thus u are identically equal to zero.

Case |λ2| > λ1. The proofs in this case is based on identity (17.69). When f := V u, it reads as follows:

(λ1 ± λ2)

∫
|u|2 =

∫
|∇u|2 +

∫
V1|u|2 ±

∫
V2|u|2 ≥

∫
|∇u|2 −

∫
(V1)−|u|2 −

∣∣∣∣
∫
V2|u|2

∣∣∣∣ . (17.83)

By means of (17.11), (17.14) and (17.16), we have

(λ1 ± λ2)

∫
|u|2 ≥

[
1− b21 −

2b3
d− 2

] ∫
|∇u|2.

Therefore, condition (17.13) implies that λ1 ± λ2 ≥ 0, and since |λ2| > λ1 we conclude that u is identically
zero.

Now we are in a position to prove Theorem 17.3.

Proof of Theorem 17.3. Theorem 17.9 implies that σp(HV ) ∩ {λ1 > 0} = ∅. In addition, if λ1 ≤ 0, then
choosing v := u in (17.47) and taking the resulting real part, one obtains

λ1

∫
|u|2 =

∫
|∇u|2 +

∫
V1 |u|2 ≥

∫
|∇u|2 −

∫
(V1)− |u|2 ≥ (1− b21)

∫
|∇u|2 ,

where the last inequality follows by (17.14). This implies that σp(HV ) ∩ {λ1 ≤ 0} = ∅, so the proof is
completed.

We conclude the manuscript with the proof of Theorem 17.4. Since the strategy is identical to the proof of
Theorem 17.3, we just sketch it.

Proof of Theorem 17.4. Equation (17.46) is now replaced by

∆Au+ λu = V u , (17.84)

where ∆A := ∇A · ∇A. Let u ∈ DA(R
d) be a weak solution to (17.84). By similar algebraic manipulations as in

the proof of Theorem 17.3, we get an analogue to (17.73):

∫ ∣∣∇Au−R
∣∣2 + |λ2|

λ
1
2
1

d− 3

d− 1

∫
|x||∇Au−R|2 ≤

∫
|uR|2 (V1 + |x|∂rV1)−

|λ2|
λ

1
2
1

∫
|x|V1|uR|2

+ 2ℑ
∫

|x|uRV2
(
∂Ar uR + i sgn(λ2)λ

1
2
1 uR

)
+ 2ℑ

∫
|x|uRBτ · ∇AuR

+ (1− d)ℜ
∫
KR(u,∇Au)uR − 2ℜ

∫
|x|KR(u,∇Au)

(
∂Ar uR + i sgn(λ2)λ

1
2
1 uR

)

− λ2

λ
1
2
1

ℜ
∫

|x|KR(u,∇Au)uR ,

where ∂Ar := x
|x| · ∇A. In fact, in order to obtain the last identity, one proceeds exactly as above, with the only

difference arising once obtaining identity (17.58), in which we use the test function v := ∇G3·∇AuR,δ+∆G3uR,δ.
The key remark is that Bτ is a tangential vector, so that

|Bτ · ∇AuR| =
∣∣∣∣Bτ ·

(
∇AuR + i sgn(λ2)λ

1
2
1

x

|x|uR
)∣∣∣∣ =

∣∣Bτ · ∇Au−R
∣∣ ,
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and we can rewrite the last inequality as

∫ ∣∣∇Au
−
R

∣∣2 + |λ2|
λ

1
2
1

d− 3

d− 1

∫
|x||∇Au

−
R|2

≤
∫

|uR|2 (V1 + |x|∂rV1)−
|λ2|
λ

1
2
1

∫
|x|V1|uR|2 + 2ℑ

∫
|x|uR∇AuR ·

(
V2

x

|x| +Bτ

)

+ (1 − d)ℜ
∫
KR(u,∇Au)uR − 2ℜ

∫
|x|KR(u,∇Au)

(
∂Ar uR + i sgn(λ2)λ

1
2
1 uR

)

− λ2

λ
1
2
1

ℜ
∫

|x|KR(u,∇Au)uR .

One now proceeds in the same way as in the magnetic-free case, to conclude that u = 0 if ℜλ > 0. To complete
the proof, we then argue exactly as above; we omit further details.
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Abstract. We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open
sets with complex scalar potentials whose real part is not necessarily bounded from below. Under
a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation
as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions
corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.

Keywords: Schrödinger operators, complex potentials, Agmon estimates, domain separation

18.1 Introduction

18.1.1 Context and motivation

We consider the electromagnetic Schrödinger operator

(−i∇+A)2 + V in L2(Ω) , (18.1)

subject to Dirichlet boundary conditions on ∂Ω, where Ω is an arbitrary open subset of Rd. The functions
V : Ω → C and A : Ω → Rd are the scalar (electric) and vector (magnetic) potentials, respectively.

If d = 3 and V is real-valued, the self-adjoint Dirichlet realisation of (18.1) is the Hamiltonian of a quantum
particle constrained to a nanostructure Ω and subjected to an external electromagnetic field (− gradV,− rotA).
The literature on the subject is enormous and we restrict ourselves to referring to the recent book [24] with an
extensive bibliography.

Although complex-valued potentials V have appeared in quantum theory from its early years, too, notably
in the context of effective Hamiltonians for open systems (see, e.g., [16]) and resonances (see [1] for a more recent
study), the corresponding spectral theory is much less developed. The interest in non-self-adjoint Schrödinger
operators have been renewed at the turn of the millenium with the advent of the so-called quasi-Hermitian
quantum mechanics (see [22] for a mathematically oriented review). There are also motivations in other areas
of physics, for instance, superconductivity (see [3] for a mathematical treatement) and optics with a number of
recent experiments (see, e.g., [25]). Finally, Schrödinger operators with potentials having a complex coupling
constant (in fact spectral parameter) appear naturally in the study of the damped wave equation (see, e.g.,
[28, 7]).

18.1.2 About the main results

Our main result is the Agmon-type exponential decay of eigenfunctions corresponding to discrete eigenvalues
of (18.1), cf. Theorem 18.4, which can be viewed as a non self-adjoint version of the Agmon-Persson estimates,
see [23, 2]. We emphasise that the decay is not an effect of the positive part of ℜV since it may be absent, or
even worse, ℜV is allowed to be negative and unbounded at infinity.

A sufficient condition to define the operator

The first problem that we tackle in our analysis is finding of a Dirichlet realisation of (18.1) with non-empty
resolvent set. This is not a trivial task as we do not restrict the signs of ℜV and ℑV and so the standard
sectorial form techniques of [16, Sec. VI.2.1] are not available.

A simple example one should have in mind is

− d2

dx2
− x2 + ix3 in L2(R) , (18.2)
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for which the numerical range covers the whole complex plane. Due to the latter, even the Kato’s theorem
for accretive Schrödinger operators, based on Kato’s distributional inequality [8, Sec. VII.2], is not applicable
immediately.1 Here we can even go beyond operators like (18.2) for which the suitable Dirichlet realisation
can be actually found by available methods in [4, 5]. We allow much wilder behaviour of V in terms of the
possible growth at infinity and oscillations. In more detail, we essentially require that (cf. Assumption 18.1
and Proposition 18.1)

|∇V (x)| + |∇B(x)| = o
(
(|V (x)|+ |B(x)|) 3

2 + 1
)
, (18.3)

(ℜV (x))− = o
(
|V (x)|+ |B(x)| + 1

)
, (18.4)

as |x| → ∞, where (ℜV )− is the negative part of ℜV and B := dA is the magnetic matrix.
The condition (18.4) puts restrictions on the size of (ℜV )− which in fact represents a “small” perturbation

of an m-accretive operator (18.1) with V replaced by (ℜV )+ + iℑV . Notice however, that (ℜV )− can be
compensated not only by ℑV , but also by the magnetic field. In a different context (absence of eigenvalues), a
certain analogy between the magnetic field and ℑV was observed in [17].

About the power 3
2

The power 3
2 in the condition (18.3) is an improvement comparing to [4, 5] where the power 1 is assumed; in

these references (where (18.2) fits already), a big-O instead of the little-o is used. In the present paper, we can
therefore treat examples like

− d2

dx2
− ex

2

+ iex
4

in L2(R) . (18.5)

Moreover, we show in Theorem 18.2 that the operator domain of the found realisation of (18.1) possesses a
very convenient separation property, namely

D((−i∇+A)2 + V ) = D((−i∇+A)2) ∩ D(V ) . (18.6)

The power 3
2 in (18.3) is not a coincidence as it is known to be optimal (with little-o replaced by a sufficiently

small constant in (18.3)) with respect to the separation property in the self-adjoint case [14, 15, 8] (see also
[11], [20] in the magnetic case).

Weighted coercivity

Our approach for proving all the results of this paper is based on the generalised Lax-Milgram-type theorem
of Almog and Helffer [4] involving a new idea of weighted coercivity, which can be viewed as a generalisation
of the T-coercivity (see for instance [6, Def. 2.1]). While from the point of view of abstract Lax-Milgram
or representation theorems, an optimal “if and only if” condition for m-accretivity was found in the recent
work [29, Thm. 4.2], the weighted coercivity of Theorem 18.7 makes such abstract results directly applicable
for (18.1). Moreover, the present paper reveals a connection between weighted coercivity and exponential decay
of eigenfunctions stated in Theorem 18.4.

18.1.3 Examples of applications

Besides the independent interest of our results, we indicate below two connections to other recent works, both
when |V | is confining so that the resolvent of (18.1) is compact (see Proposition 18.2). The first one concerns the
completeness of eigensystem of (18.1), the second one the rates of eigenvalue convergence of domain truncations.

Eigensystem completeness

The crucial ingredient in a natural proof of the eigensystem completeness is the fundamental result of operator
theory (see, e.g., [12, Cor. XI.9.31]) combining the p-Schatten class property of the resolvent and a control of the
resolvent norm on a sufficient number of rays in C; for operators like (18.1), this approach was followed in [27, 4].
We indicate how the completeness results can be extended to operators satisfying weaker conditions (18.3) only.
Our domain separation and the graph norm estimate (cf. Theorem 18.2), the second resolvent identity and the
ideal property of Schatten classes show that the resolvent of (18.1) is in the p-Schatten class (0 < p < ∞) if
and only if the resolvent of the self-adjoint (18.1) with V replaced by |V | is in the p-Schatten class; to obtain

1Note that, in special self-adjoint settings, however, interesting alternative approaches can be found in the literature. For
instance, in [19], representation theorems for indefinite quadratic forms are established and can be used to define certain self-
adjoint operators possibly unbounded from below.
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the value of p depending on V and A, criteria of the type [4, Thm. 1.3] can be applied. To have the control of
the resolvent norm on rays in C, we can use the standard bound (1 over the distance to the numerical range)
if (18.1) is at least accretive and, in the non-accretive case, the perturbation result [16, Thm. IV.3.17] with
viewing (ℜV )− as a relatively bounded perturbation of an m-accretive operator (18.1) with V replaced by
(ℜV )+ + i ℑV (see [5, Prop. 2.4 (iv)] for details on such an approach).

Domain truncation

It was proved in [5] that eigenvalues of (18.1) on Rd with A = 0 and V satisfying (stronger) conditions of
the type (18.3)–(18.4), see [5, Asm. II], can be approximated without pollution by the eigenvalues of (18.1)
truncated to a sequence of expanding domains, e.g. balls, and subject to Dirichlet boundary conditions. The
rate of convergence for a given eigenvalue of (18.1) on Rd was estimated by the decay rate of the corresponding
eigenfunctions (and generalised eigenfunctions in the case of Jordan blocks) at infinity (see [5, Thm. 5.2]). Our
Agmon-type estimate (cf. Theorem 18.4 and Remark 18.3) shows that this convergence is exponential which
vastly generalises known facts for complex polynomial potentials (see, e.g., [26, 9]).

18.1.4 Organisation of the paper

In Section 18.2, we summarise our main results. The definition of (18.1) as a closed densely defined operator
together with a convenient characterisation of the operator domain is performed in Section 18.3. The spectral
properties are established in Section 18.4. At the end of the paper, we attach Appendix 18.5 with elements of
spectral theory related to the present study.

18.2 Main results

18.2.1 Assumptions

Let Ω be a non-empty open (possibly unbounded) subset of Rd, d ≥ 1. Another standing assumption of this
paper is that the electromagnetic potentials satisfy

(V,A) ∈ C1(Ω̄;C)× C2(Ω̄;Rd) .

This smoothness hypothesis is technically convenient, but it is definitely far from being optimal for the appli-
cability of our techniques and the validity of the obtained results. We write V = V1 + iV2 where V1 and V2 are
real-valued. Associated with the vector potential A, we consider the magnetic (skew-symmetric) matrix

B = (Bjk)j,k∈{1,...,d} , Bjk := ∂jAk − ∂kAj = i[Pj , Pk] , (18.7)

where Pℓ := −i∂ℓ +Aℓ.
As in [4], let us introduce functions

Φ :=
V2

mB,V
and Ψ :=

B

mB,V
, (18.8)

where

mB,V :=
√
1 + |B|2 + |V |2 .

Here |V (x)| denotes the usual norm of a complex number, while we use

|B(x)| :=

√√√√
d∑

j,k=1

Bjk(x)2 , |∇B(x)| :=

√√√√
d∑

j,k=1

|∇Bjk(x)|2 ,

where |∇Bjk(x)| is now the usual Euclidean norm of a vector in Rd. Finally, given a real-valued function a, we
adopt the standard notation a± := max(±a, 0).

With these notations, the main hypothesis of this paper reads:

Assumption 18.1. There exist constants γ1 > 0 and γ2 ∈ R such that

V 2
2 + 1

12d |B|2
mB,V

+ V1 − 9
(
|∇Φ|2 + |∇Ψ|2

)
≥ γ1mB,V − γ2 . (18.9)
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Remark 18.1. On the left-hand side in (18.9), the first term is non-negative, the last bracket gives a non-
positive contribution and V1 has no sign a priori. If V1 is bounded from below, then we only have to control the
last term to obtain the required inequality. The point is that V2 or B can be used to control the non-positive
contribution of V1. Note also that we can replace the assumption (18.9) by the weaker one:

V 2
2 + 1

12d |B|2
mB,V

+ V1 − 9
(
|∇Φ|2 + |∇Ψ|2

)
≥ γ1|V | − γ2 , (18.10)

up to slight modifications of our variational framework.

Assumption 18.1 is easily checked to hold for (18.2). A sufficient condition for the validity of Assumption 18.1
is contained in the following proposition.

Proposition 18.1. Suppose

|∇V (x)| + |∇B(x)| = o
(
m

3
2

B,V (x)
)
, (18.11)

(V1)− (x) = o
(
mB,V (x)

)
, (18.12)

as |x| → +∞. Then Assumption 18.1 is satisfied.

18.2.2 Definition of the operator

First we introduce the usual magnetic Sobolev space

H1
A
(Ω) := {u ∈ L2(Ω) : (−i∇+A)u ∈ L2(Ω)} ,

equipped with the norm
‖u‖H1

A
(Ω) :=

√
‖u‖2 + ‖(−i∇+A)u‖2 .

Here ‖·‖ denotes the norm of L2(Ω) and the associated inner product will be denoted by 〈·, ·〉. We also introduce
the subspace H1

A,0(Ω) defined as the closure of C∞
0 (Ω) for the norm ‖ · ‖H1

A
(Ω). Then we can introduce our

variational space as

V :=
{
u ∈ H1

A,0(Ω) : m
1
2

B,V u ∈ L2(Ω)
}
,

equipped with the norm

‖u‖
V

:=

√
‖u‖2H1

A
(Ω) +

∫

Ω

mB,V |u|2 dx ,

with respect to which V is complete.
We introduce a sesquilinear form

Q(u, v) := 〈(−i∇+A)u, (−i∇+A)v〉+
∫

Ω

V uv̄ dx , D(Q) := V .

For u, v ∈ C∞
0 (Ω), a dense subspace of V , we have

Q(u, v) =
〈
(−i∇+A)2u+ V u, v

〉
,

so Q is the form naturally associated with (18.1). If V were such that Q was sectorial, then Q would be closed
and it would give rise to an m-sectorial operator by Kato’s representation theorem [21, Thm. VI.2.1]. In our
general setting (where the numerical range of Q is allowed to be the whole complex plane), however, there is
no general representation theorem and even the notion of closedness for forms is not standard. Anyway, we are
still allowed to introduce an operator L by the Riesz theorem

∀u ∈ Dom(L ), ∀v ∈ V , Q(u, v) =: 〈L u, v〉 , (18.13)

where

Dom(L ) :=
{
v ∈ V :

u 7→ Q(u, v) is continuous on V for the norm of L2(Ω)
}
. (18.14)

The following theorem shows that such a defined operator L shares all the nice properties of operators
introduced by the standard representation theorem. The proof is based on the new abstract representation
theorem of Almog and Helffer (see [4, Thm. 2.2], reproduced below as Theorem 18.6).
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Theorem 18.1. Suppose Assumption 18.1. The following properties hold:

(i) Dom(L ) is dense in L2(Ω),

(ii) L is closed,

(iii) the resolvent set of L is not empty.

Furthermore, we have the following description of the domain of L .

Theorem 18.2. Let (18.11) and (18.12) hold. Then we have

Dom(L ) =
{
u ∈ V : (−i∇+A)2u ∈ L2(Ω) ∧ V u ∈ L2(Ω)

}
.

Moreover, for every δ > 0, there exists Cδ > 0 such that, for all u ∈ Dom(L ),

‖L u‖2 ≥ (1− δ)
(
‖(−i∇+A)2u‖2 + ‖V u‖2

)
− Cδ‖u‖2. (18.15)

18.2.3 Spectral properties

The reader may wish to consult Appendix 18.5, where we recall basic definitions related to the spectrum and
Fredholm properties.

First of all, we give a sufficient condition for L to have a purely discrete spectrum.

Proposition 18.2. Suppose Assumption 18.1. If

lim
|x|→+∞

mB,V (x) = +∞ , (18.16)

then L is an operator with compact resolvent.

In general, we give an estimate on the location of the essential spectrum. To this purpose, let us introduce
the quantity (which is either a finite non-negative number or infinity)

m∞ := lim inf
|x|→+∞

mB,V (x) ,

and the following family of subsets of the complex plane:

ρc := {µ ∈ C : −c− ℜµ− |ℑµ| > 0} ,
where c is any real number.

Theorem 18.3. Suppose Assumption 18.1. We have

ργ2 ⊂ ρ(L ) . (18.17)

Moreover, assuming that m∞ is positive, we have

ργ2 ⊂ ργ2−γ1m̌∞ ⊂ Fred0(L ) (18.18)

for all m̌∞ ∈ (0,m∞). The spectrum of L contained in ργ2−γ1m̌∞, if it exists, is formed by isolated eigenvalues
with finite algebraic multiplicity.

Remark 18.2. When m∞ = +∞, we recover from Theorem 18.3 the result of Proposition 18.2.

Finally, we state our main result. It shows in particular that the discrete spectrum in the region ργ2−γ1m̌∞

is associated with exponentially decaying eigenfunctions and that this decay may be estimated in terms of an
Agmon-type distance.

Theorem 18.4. Suppose Assumption 18.1. Let us assume that

sp(L ) ∩ ργ2−γ1m̌∞ 6= ∅
and consider λ in this set. Let us define the metric

g(x) := (γ1mB,V (x)−ℜ(λ) − |ℑ(λ)| − γ2)+ dx2 ,

and the corresponding Agmon distance (to any fixed point of Ω) dAg(x) that satisfies

|∇dAg|2 = (γ1mB,V −ℜ(λ)− |ℑ(λ)| − γ2)+ . (18.19)

Pick up any ε ∈ (0, 1). If ψ is an eigenfunction associated with λ, we have

e
1−ε
3 dAg ψ ∈ L2(Ω) . (18.20)

The same conclusion holds for all ψ in the algebraic eigenspace associated with λ.
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Remark 18.3. If there exist R > 0 and γ > 0 such that,

∀|x| ≥ R , γ1mB,V −ℜ(λ)− |ℑ(λ)| − γ2 ≥ γ ,

then there exists M ≥ 0 such that, in this region, dAg(x) ≥ γ |x| −M .

Remark 18.4. In relation to Remark 18.1, if one replaced (18.9) by (18.10), the metric g(x) would be changed
into

(γ1|V (x)| − ℜ(λ)− |ℑ(λ)| − γ2)+ dx2 ,

and thus the weaker assumption would lead to a weaker decay of eigenfunctions.

18.3 Weighted coercivity and representation theorems

The main objective of this section is to prove Theorems 18.1 and 18.2.

18.3.1 Two abstract representation theorems

We first recall the following generalised representation theorems from [4].

Theorem 18.5 ([4, Thm. 2.1]). Let V be a Hilbert space. Let Q be a continuous sesquilinear form on V× V.
Assume that there exist Φ1,Φ2 ∈ L(V) and α > 0 such that for all u ∈ V we have

|Q(u, u)|+ |Q(Φ1(u), u)| ≥ α ‖u‖2
V
,

|Q(u, u)|+ |Q(u,Φ2(u))| ≥ α ‖u‖2
V
.

The operator A defined by
∀u, v ∈ V, Q(u, v) = 〈A u, v〉

V

is a continuous isomorphism of V onto V with bounded inverse.

Theorem 18.6 ([4, Thm. 2.2]). In addition to the hypotheses of Theorem 18.5, assume that H is a Hilbert
space such that V is continuously embedded and dense in H and that Φ1 and Φ2 extend to bounded operators
on H. Then the operator L defined by

∀u ∈ Dom(L ), ∀v ∈ V, Q(u, v) =: 〈L u, v〉H
where

Dom(L ) :=
{
u ∈ V :

the map v 7→ Q(u, v) is continuous on V for the norm of H
}
,

satisfies the following properties:

(i) L is bijective from Dom(L ) onto H,

(ii) Dom(L ) is dense in V and in H,

(iii) L is closed.

18.3.2 Weighted coercivity estimates

For any complex number µ, consider the shifted form Qµ(u, v) := Q(u, v)−µ 〈u, v〉. The aim of this subsection
is to prove the following estimate and deduce Theorem 18.1 from it (with help of Theorem 18.6).

Theorem 18.7 (Weighted coercivity). For every µ ∈ C, W ∈ W 1,∞(Ω;R) and all u ∈ C∞
0 (Ω), we have

ℜ
[
Qµ(u, e

2Wu)
]
+ ℑ

[
Qµ(u,Φe

2Wu)
]
≥ 1

2

∥∥(−i∇+A)eWu
∥∥2

+

∫

Ω

|eWu|2
[
V 2
2 + 1

12d |B|2
mB,V

+ V1 −ℜµ− |ℑµ|

− 9
(
|∇Φ|2 + |∇Ψ|2 + |∇W |2

)
]
dx .
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In order to prove Theorem 18.7, we need two lemmata.

Lemma 18.1. For every u ∈ C∞
0 (Ω), we have

∫

Ω

|B|2
mB,V

|u|2 dx ≤ 3d ‖(−i∇+A)u‖2 + ‖(∇Ψ)u‖2 .

Proof. Let u ∈ C∞
0 (Ω) and j, k ∈ J1, dK := [1, d] ∩ Z. Using (18.7) and (18.8), we have

∫

Ω

B2
jk

mB,V
|u|2 dx =

〈
i[Pj , Pk]u,Ψjku

〉
=
〈
iPku, PjΨjku

〉
−
〈
iPju, PkΨjku

〉

=
〈
iPku,ΨjkPju

〉
−
〈
iPju,ΨjkPku

〉
−
〈
Pku, (∂jΨjk)u

〉
+
〈
Pju, (∂kΨjk)u

〉

≤ 3

2
‖Pju‖2 +

3

2
‖Pku‖2 +

1

2
‖(∂jΨjk)u‖2 +

1

2
‖(∂kΨjk)u‖2 .

We conclude by summing over j, k ∈ J1, dK.

The second lemma follows elementarily by a commutator computation.

Lemma 18.2. For every u ∈ C∞
0 (Ω) and χ ∈W 1,∞(Ω;R), we have

ℜ
〈
(−i∇+A)u, (−i∇+A)χ2u

〉
= ‖(−i∇+A)χu‖2 − ‖(∇χ)u‖2 .

Now we are in a position to prove Theorem 18.7.

Proof of Theorem 18.7. Let us consider u ∈ C∞
0 (Ω) and W ∈W 1,∞(Ω;R). Choosing χ := eW in Lemma 18.2,

we get the identity

ℜ
[
Q(u, e2Wu)

]
=

∫

Ω

V1|eWu|2 dx+
∥∥(−i∇+A)eWu

∥∥2 −
∥∥(∇W )eWu

∥∥2 . (18.21)

Moreover, we have

ℑ
[
Q(u,Φe2Wu)

]

= ℑ
〈
(−i∇+A)u, (−i∇+A)(Φe2Wu)

〉
+

∫

Ω

V 2
2

mB,V
|eWu|2 dx .

The first term of the right-hand side equals

ℑ
〈
(−i∇+A)u,−i(∇Φ+ 2Φ∇W )e2Wu)

〉

= ℑ
〈
eW (−i∇+A)u,−i(∇Φ+ 2Φ∇W )eWu)

〉

= ℑ
〈
(−i∇+A)eWu,−i(∇Φ+ 2Φ∇W )eWu)

〉
.

Consequently, for all α ∈ (0, 1), we have

|ℑ
〈
(−i∇+A)u, (−i∇+A)(Φe2Wu)

〉
|

≤ α
∥∥(−i∇+A)eWu

∥∥2 + 1

4α

∥∥(∇Φ + 2(∇W )Φ
)
eWu

∥∥2

and therefore

ℑ
[
Q(u,Φe2Wu)

]
≥
∫

Ω

V 2
2

mB,V
|eWu|2 dx

− α
∥∥(−i∇+A)eWu

∥∥2 − 1

4α

∥∥(∇Φ + 2(∇W )Φ
)
eWu

∥∥2 . (18.22)

Summing up (18.21) and (18.22), we deduce

ℜ
[
Q(u, e2Wu)

]
+ ℑ

[
Q(u,Φe2Wu)

]
≥ (1− α)

∥∥(−i∇+A)eWu
∥∥2

+

∫

Ω

|eWu|2
(

V 2
2

mB,V
+ V1 − |∇W |2 − 1

2α
|∇Φ|2 − 2

α
|∇W |2

)
dx .
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It remains to add the term involving |B|2. By Lemma 18.1, we have

∥∥(−i∇+A)eWu
∥∥2 ≥ 1

3d

(∫

Ω

|B|2
mB,V

|eWu|2 dx−
∥∥(∇Ψ)eWu

∥∥2
)
.

Thus, for all β ∈ [0, 1− α], we get

ℜ
[
Q(u, e2Wu)

]
+ ℑ

[
Q(u,Φe2Wu)

]
≥ (1− α− β)

∥∥(−i∇+A)eWu
∥∥2

+

∫

Ω

|eWu|2
[
V 2
2 + β

3d |B|2
mB,V

+ V1 −
2 + α

α
|∇W |2 − 1

2α
|∇Φ|2 − β

3d
|∇Ψ|2

]
dx .

The proof is concluded by taking α = β = 1
4 and adding the contribution related to the shift by µ.

With Theorems 18.6 and 18.7 we easily deduce Theorem 18.1.

Proof of Theorem 18.1. Under Assumption 18.1, the inequality of Theorem 18.7 extends to all u ∈ V . Applied
with W = 0, Theorem 18.7 then gives, for all u ∈ V ,

|Qµ(u, u)|+ |Qµ(u,Φu)| ≥
1

2
‖(−i∇+A)u‖2

+

∫

Ω

|u|2
(
V 2
2 + 1

12d |B|2
mB,V

+ V1 −ℜµ− |ℑµ| − 9(|∇Φ|2 + |∇Ψ|2)
)

dx . (18.23)

Using Assumption 18.1, it implies

|Qµ(u, u)|+ |Qµ(u,Φu)| ≥
1

2
‖(−i∇+A)u‖2

+

∫

Ω

(γ1mB,V −ℜµ− |ℑµ| − γ2) |u|2 dx .
(18.24)

Taking µ ∈ R such that µ < −γ2, the inequality establishes the coercivity of Qµ on V , so it is enough to apply
Theorem 18.6 to Qµ.

18.3.3 Description of the operator domain

At this moment, we only know that the operator domain of L is given by (18.14). This subsection is devoted
to a proof of Theorem 18.2, which gives a more explicit characterisation of D(L ).

Let us first state a density result.

Lemma 18.3. The set
D :=

{
u ∈ Dom(L ) : suppu is compact in Ω

}
(18.25)

is a core of L .

Proof. From the definition of Dom(L ) given by (18.14), we get that

Dom(L ) ⊂ {u ∈ V : (−i∇+A)2u+ V u ∈ L2(Ω)} . (18.26)

Take u ∈ Dom(L ) and notice that V u ∈ L2
loc(Ω) from our regularity assumption about V , thus (−i∇+A)2u ∈

L2
loc(Ω) as well. We define a suitable cut-off, see [10, proof of Thm. 8.2.1]. Consider a non-negative function

ϕ ∈ C∞
0 (Rd) such that ϕ(x) = 1 if |x| < 1 and ϕ(x) = 0 if |x| > 2 and, for u ∈ Dom(L ), define, for all x ∈ Ω

and n ∈ N,

un(x) := u(x)ϕn(x) , ϕn(x) := ϕ
(x
n

)
. (18.27)

Since
(−i∇+A)2un = ϕn(−i∇+A)2u− 2i∇ϕn · (−i∇+A)u− (∆ϕn)u , (18.28)

we have from the derived regularity of u and the compactness of suppϕn that {un}n∈N ⊂ D. Moreover, by the
dominated convergence theorem, ‖un − u‖ → 0 as n→ ∞ and

‖[(−i∇+A)2 + V ]u− [(−i∇+A)2 + V ]un‖
≤ ‖(1− ϕn)[(−i∇+A)2 + V ]u‖+ 2‖∇ϕn · (−i∇+A)u‖+ ‖(∆ϕn)u‖ −−−−→

n→∞
0 ,

since ‖∇ϕn‖L∞(Rd) = n−1‖∇ϕ‖L∞(Rd), ‖∆ϕn‖L∞(Rd) = n−2‖∆ϕ‖L∞(Rd) and u ∈ V .
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By integrating by parts, we get the following lemma.

Lemma 18.4. For all u ∈ D and δ > 0, we have

2 ‖(−i∇+A)u‖2 ≤ δ‖(−i∇+A)2u‖2 + δ−1‖u‖2 .

Proof. For every u ∈ D, we have

‖(−i∇+A)u‖2 = 〈(−i∇+A)u, (−i∇+A)u〉 =
〈
(−i∇+A)2u, u

〉

where the second equality employs an integration by parts using our regularity assumptions about V and A,
namely V u ∈ L2(Ω) with (18.26). The proof is concluded by applying the Cauchy-Schwarz and Young inequal-
ities.

In the following Lemma 18.5 and Proposition 18.3, we establish estimates on |B|u; the proofs are adaptations
of [4, Lem. 3.4].

Lemma 18.5. Suppose (18.11). There exists C > 0 such that, for all u ∈ D,

∥∥|B|u
∥∥2 ≤ C

(
‖m

1
2

B,V (−i∇+A)u‖2 + ‖V u‖2 + ‖(−i∇+A)2u‖2 + ‖u‖2
)
. (18.29)

Proof. Let u ∈ D. Then Bjku ∈ V and similarly as in Lemma 18.1, we have

‖Bjku‖2 = ℑ〈[Pj , Pk]u,Bjku〉 ≤ |〈Pku, PjBjku〉|+ |〈Pju, PkBjku〉| (18.30)

for every j, k ∈ J1, dK. Further, using the assumption (18.11), we get that, for all ε1 > 0, there exist Cε1 , C̃ε1 > 0
such that

|〈Pku, PjBjku〉| ≤ |〈BjkPku, Pju〉|+ |〈Pku, u∂jBjk〉|

≤ ‖|Bjk|
1
2Pku‖ ‖|Bjk|

1
2Pju‖+ ε1‖m

1
2

B,V Pku‖ ‖mB,V u‖
+ Cε1‖Pku‖ ‖u‖

≤ ‖|Bjk|
1
2Pku‖ ‖|Bjk|

1
2Pju‖+

+ ε1

(
‖m

1
2

B,V Pku‖2 + ‖mB,V u‖2 + ‖Pku‖2
)
+ C̃ε1‖u‖2 .

(18.31)

Summing up over j and k, we get from (18.30) and (18.31) that there exists C1 > 0 such that, for all ε1 ∈ (0, 1),
there exists Ĉε1 > 0 such that

‖|B|u‖2 ≤ C1

(
‖m

1
2

B,V (−i∇+A)u‖2 + ε1
(
‖mB,V u‖2 + ‖(−i∇+A)u‖2

))

+ Ĉε1‖u‖2 .

We now use Lemma 18.4 to get the desired estimate.

Proposition 18.3. Suppose (18.11). There exists C > 0, such that, for all u ∈ D, we have

‖|B|u‖2 + ‖m
1
2

B,V (−i∇+A)u‖2 ≤ C
(
‖(−i∇+A)2u‖2 + ‖V u‖2 + ‖u‖2

)
. (18.32)

Proof. Let us first show that, for all ε > 0, there exists Cε > 0 such that, for all u ∈ D,

‖m
1
2

B,V (−i∇+A)u‖2 ≤ Cε(‖(−i∇+A)2u‖2 + ‖u‖2) + ε‖mB,V u‖2 . (18.33)

We write
‖m

1
2

B,V (−i∇+A)u‖2 = 〈mB,V (−i∇+A)u, (−i∇+A)u〉 ,
so that, by an integration by parts,

‖m
1
2

B,V (−i∇+A)u‖2 = 〈(−i∇mB,V )(−i∇+A)u, u〉+ 〈mB,V (−i∇+A)2u, u〉 . (18.34)

We have, for all ε1 ∈ (0, 1),

|〈mB,V (−i∇+A)2u, u〉| ≤ ε1
2
‖mB,V u‖2 +

1

2ε1
‖(−i∇+A)2u‖2 . (18.35)
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Moreover, by using (18.11) and Lemma 18.4, for all ε1 ∈ (0, 1), there exists Cε1 > 0 such that

|〈(−i∇mB,V )(−i∇+A)u, u〉| ≤ ε1
2

(
‖m

1
2

B,V (−i∇+A)u‖2 + ‖mB,V u‖2
)

+ Cε1
(
‖u‖2 + ‖(−i∇+A)2u‖2

)
. (18.36)

Using (18.34), (18.35) and (18.36), we deduce (18.33). Having established (18.33), it remains to combine it
with Lemma 18.5 and choose ε sufficiently small.

Now we are in a position to establish Theorem 18.2.

Proof of Theorem 18.2. For all u ∈ D, we have

‖L u‖2 = ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2ℜ〈(−i∇+A)2u, V u〉
= ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2ℜ〈(−i∇+A)u, (−i∇+A)(V u)〉

≥ ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2

∫

Ω

V1|(−i∇+A)u|2 dx

− 2〈|(−i∇+A)u|, |∇V ||u|〉 .

(18.37)

Note that the second step is justified since V u ∈ V . We proceed by estimating the last term of (18.37). Let
ε ∈ (0, 1). There exist Cε, C̃ε > 0 such that

2〈|(−i∇+A)u|, |∇V ||u|〉 (18.38)

≤ 2ε〈|(−i∇+A)u|,m
3
2

B,V |u|〉+ 2Cε〈|(−i∇+A)u|, |u|〉

≤ 2ε(‖m
1
2

B,V (−i∇+A)u‖2 + ‖mB,V u‖2) + C̃ε‖u‖2 .

From (18.37), (18.38), (18.12) and Lemma 18.4, we deduce that, for some Ĉε > 0,

‖L u‖2 ≥ (1− 2ε)
(
‖(−i∇+A)2u‖2 + ‖V u‖2

)
− 2ε‖|B|u‖2

− 3ε‖m
1
2

B,V (−i∇+A)u‖2 − Ĉε‖u‖2 .
(18.39)

Finally, using Proposition 18.3, we get

‖L u‖2 ≥ (1− 2ε− 3Cε)
(
‖(−i∇+A)2u‖2 + ‖V u‖2

)
− (Ĉε + 3Cε)‖u‖2 . (18.40)

The claim follows by the density of D in Dom(L ), see Lemma 18.3.

18.3.4 On Assumption 18.1

We conclude this section by establishing the sufficient condition of Proposition 18.1. Note that Theorem 18.1
is proved under Assumption 18.1, while our proof of Theorem 18.2 requires the stronger hypotheses (18.11)
and (18.12).

Proof of Proposition 18.1. The proof follows from the fact that, by (18.11),

|∇Φ(x)|2 + |∇Ψ(x)|2 =
|x|→+∞

o(mB,V (x)) .

Indeed, using in addition (18.12), we may write

V 2
2 + 1

12d |B|2
mB,V

+ V1 − 9
(
|∇Φ|2 + |∇Ψ|2

)

≥ 1

12d

|V |2 + |B|2
mB,V

+ V1 −
V 2
1

mB,V
− 9

(
|∇Φ|2 + |∇Ψ|2

)

≥ 1

12d
mB,V − 1

12d
+ o(mB,V ) ,

which provides (18.9).

18.4 Discrete spectrum and exponential estimates of eigenfunctions

The main objective of this section is to establish Proposition 18.2 and Theorems 18.3 and 18.4.
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18.4.1 Confining potentials

In addition to Assumption 18.1, let us assume that V is confining in the sense of (18.16).

Proof of Proposition 18.2. By Theorem 18.1, we already know that the resolvent of L exists at a point of the
complex plane. Hence, it is enough to show that D(L ) is compactly embedded in L2(Ω). Consider (18.24)
with µ = 0. By the definition of L given in (18.13) and the Cauchy-Schwarz inequality, we get

∫

Ω

(γ1mB,V − γ2)|u|2 dx ≤ 2‖L u‖‖u‖ ≤ ‖L u‖2 + ‖u‖2 =: ‖u‖2L

for all u ∈ Dom(L ). Moreover, we have Dom(L ) ⊂ H2
loc(Ω). Thus, by the Riesz-Fréchet-Kolmogorov criterion,

the unit ball for the graph norm of L is precompact in L2(Ω) and thus L is an operator with compact
resolvent.

18.4.2 General potentials

Now let us assume only Assumption 18.1.

Proof of Theorem 18.3. The inclusion (18.17) is again a consequence of (18.24) and Theorem 18.6. It is suffi-
cient to prove (18.18). Let µ ∈ ργ2−γ1m̌∞ . Of course, if µ ∈ ργ2 there is nothing to prove. Let us define R > 0
such that,

∀|x| ≥ R , mB,V (x) ≥ m̌∞ . (18.41)

Then, we have

γ1mB,V (x)−ℜµ− |ℑµ| − γ2 ≥ γ1m̌∞ −ℜµ− |ℑµ| − γ2 =: γ > 0 (18.42)

for all |x| ≥ R. Let us introduce a real-valued smooth function with compact support 0 ≤ χ ≤ 1 such that
χ(x) = 0 for all |x| ≥ 2R and χ(x) = 1 for all |x| ≤ R. We define

M := |γ2 + ℜµ+ |ℑµ||+ 1 ∈ [1,+∞) .

Let us write

L − µ = L +Mχ− µ−Mχ .

We introduce the (closed) operator L̃ := L +Mχ and, for µ ∈ C, the corresponding shifted form Q̃µ :=
Qµ +Mχ.

Let us explain why L̃ − µ is invertible. For that purpose, we recall that by Theorem 18.7 (with W = 0)
and Assumption 18.1, we have, for all u ∈ V ,

ℜ
[
Q̃µ(u, u)

]
+ ℑ

[
Q̃µ(u,Φu)

]

≥ 1

2
‖(−i∇+A)u‖2 +

∫

Ω

(
Mχ+ γ1mB,V − γ2 −ℜµ− |ℑµ|

)
|u|2 dx .

By the definitions of M and γ, we deduce that

ℜ
[
Q̃µ(u, u)

]
+ ℑ

[
Q̃µ(u,Φu)

]
≥ 1

2
‖(−i∇+A)u‖2 +min(1, γ) ‖u‖2 .

This proves the coercivity of Q̃µ on V and thus, by Theorem 18.6, L̃ − µ is invertible.

Now, the multiplication operator Mχ is a relatively compact perturbation of L̃ − µ. Therefore, by
Lemma 18.7, L − µ is a Fredholm operator with index 0. From Lemma 18.8, we deduce that the spectrum in
ργ2−γ1m̌∞ is discrete (that is, made of isolated eigenvalues of finite algebraic multiplicity, see Appendix 18.5).

This concludes the proof of the theorem.

18.4.3 Agmon-type estimates

Theorem 18.4 is essentially a consequence of the following proposition about properties of solutions of an
inhomogeneous equation in a weighted space.
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Proposition 18.4. Let λ ∈ sp(L ) ∩ ργ2−γ1m̌∞ 6= ∅. Let us consider ψ0 ∈ L2(Ω) such that

e
1−ε
3 dAg(x)ψ0 ∈ L2(Ω) (18.43)

for some ε ∈ (0, 1) and assume that ψ ∈ Dom(L ) satisfies

Lψ = λψ + ψ0 . (18.44)

Then
e

1−ε
3 dAg(x)ψ ∈ L2(Ω) . (18.45)

Proof. By Theorem 18.3, λ is an eigenvalue of finite algebraic multiplicity. Given W ∈W 1,∞(Ω;R), we have

ℜQ(ψ, e2Wψ) = ℜ(λ)‖eWψ‖2 + ℜ
〈
eWψ0, e

Wψ
〉
,

ℑQ(ψ,Φe2Wψ) = ℑ(λ)
∫

Ω

Φe2W |ψ|2 dx+ ℑ
〈
eWψ0,Φe

Wψ
〉
.

By Theorem 18.7 (with µ = 0) and Assumption 18.1,

(
ℜ(λ) + |ℑ(λ)|

) ∥∥eWψ
∥∥2

≥
∫

Ω

(
γ1mB,V − γ2 − 9|∇W |2

)
|eWψ|2 dx−

∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ .

Thus, we get

∫

Ω

(
γ1mB,V −ℜ(λ)− |ℑ(λ)| − γ2 − 9|∇W |2

)
|eWψ|2 dx

≤
∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ .

Let R be as in (18.41). Splitting the integral into two parts, we get

∫

{|x|>R}

(
γ1mB,V −ℜ(λ) − |ℑ(λ)| − γ2 − 9|∇W |2

)
|eWψ|2 dx

≤
∫

{|x|<R}

(
−γ1mB,V + ℜ(λ) + |ℑ(λ)|+ γ2 + 9|∇W |2

)
|eWψ|2 dx

+
∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ ,

so that, for some C > 0, we have by (18.19),

∫

{|x|>R}

(
|∇dAg(x)|2 − 9|∇W |2

)
|eWψ|2 dx

≤
∫

{|x|<R}

(
C + 9|∇W |2

)
|eWψ|2 dx+

∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ . (18.46)

We set η :=
√
1−ε
3 and we consider the functions (χn)n≥1 defined as follows

χn(s) :=





s for 0 ≤ s ≤ n ,

2n− s for n ≤ s ≤ 2n ,

0 for s ≥ 2n .

Note that |χ′
n(s)| = 1 a.e. on [0, 2n] and |χ′

n(s)| = 0 for s > 2n.
Then for n ≥ 1 and x ∈ Ω we set

Wn(x) := η χn(dAg(x)) .

We have
∇Wn(x) = η χ′

n(dAg(x))∇dAg(x)

and

|∇Wn(x)|2 ≤ η2|∇dAg(x)|2 =
1− ε

9
|∇dAg(x)|2 .
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By (18.46) we obtain that there exists C > 0 such that, for all n ≥ 1,

∫

{|x|>R}
ε|∇dAg(x)|2|eWnψ|2 dx ≤ C‖ψ‖2 +

∥∥eWnψ
∥∥ ∥∥eWnψ0

∥∥ ,

and therefore, by (18.42),

∫

{|x|>R}
εγ|eWnψ|2 dx ≤ C‖ψ‖2 + εγ

2

∥∥eWnψ
∥∥2 + 1

2εγ

∥∥eWnψ0

∥∥2 .

For another constant C > 0 independent of n, we get

∫

Ω

|eWnψ|2 dx ≤ C‖ψ‖2 + C
∥∥eWnψ0

∥∥2 .

It remains to take the limit n→ +∞ and use the Fatou lemma to conclude.

Now we are in a position to prove the main result of this paper.

Proof of Theorem 18.4. If ψ ∈ N(L − λ), we apply Proposition 18.4 with ψ0 = 0 to deduce that ψ satisfies
(18.20).

Let us now explain why this conclusion holds also for the algebraic eigenspace (see Appendix 18.5). Let us
consider ψ in this space.

We have

(L − λ)rψ = 0 with r := dimR(Pλ) ≥ 1 .

Now, we proceed by induction. Consider k ∈ J1, rK and assume that

(L − λ)kψ ∈ L2
(
Ω, e

1−ε
3 dAg(x) dx

)
.

Then, we write

(L − λ)
{
(L − λ)k−1ψ

}
= (L − λ)kψ .

We are in the situation (18.44) and we deduce that

(L − λ)k−1ψ ∈ L2
(
Ω, e

1−ε
3 dAg(x) dx

)
.

This concludes the proof.

18.5 Appendix: Reminders of spectral theory

Since spectral theory of non-self-adjoint operators is less unified than its self-adjoint sister, in this appendix
we collect some notions used throughout the paper. We refer to standard monographs [21], [13, Chap. I.3, IX]
and [18, Chap. XVII] or a recent summary [22] for a more comprehensive exposition.

Let H be a Hilbert space. An operator M : Dom(M ) → H is said to be Fredholm when N(M ) finite-
dimensional and R(M ) is closed with finite codimension. Then the index of M is defined by ind(M ) :=
dimN(M )− codimR(M ). When Dom(M ) is dense in H, we may classically define the adjoint M ∗ of M and
then we have dimN(M ∗) = codimR(M ). We denote by Fred0(M ) the set of all complex numbers λ such that
M − λ is a Fredholm operator with index 0.

Let M be an arbitrary closed operator in H. The spectrum sp(M ) is defined as the set of all complex
numbers λ such that M − λ is not bijective as an operator from D(M ) to H. The resolvent set ρ(M ) is the
complement of the spectrum in the complex plane. We call the intersection spfre(M ) := sp(M )∩Fred0(M ) the
Fredholm spectrum and define the essential spectrum by the complement spess(M ) := sp(M ) \ spfre(M ) (it is
the essential spectrum due to Schechter denoted by spe4(M ) in [13]). Finally, we define the discrete spectrum
spdis(M ) to be the set of all isolated eigenvalues λ for which the algebraic (or root) eigenspace

⋃∞
k=1 N([M −λ]k)

is finite-dimensional and such that M − λ has a closed range. The elements of spdis(M ) are called the discrete
eigenvalues of M .

Let λ be an isolated eigenvalue of M . Another characterisation of λ to belong to the discrete spectrum is
through the eigenprojection

Pλ :=
1

2iπ

∫

Γλ

(z − M )−1 dz , (18.47)
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where Γλ is a contour that enlaces only λ as an element of the spectrum. Pλ : H → Dom(M ) ⊂ H is a bounded
operator which commutes with M and does not depend on the choice of the contour Γλ. We say that λ has
finite algebraic multiplicity when the range of Pλ is finite-dimensional. In this case, λ is a discrete eigenvalue
of M . Moreover, the range of Pλ coincides with the algebraic eigenspace of λ. It is an invariant subspace of M

of finite dimension and such that the spectrum of M|R(Pλ) equals {λ}.
Finally, we recall three standard results. For the proofs see [13, Chap. I.3], [13, Thm. IX.2.1] and [18,

Thm. XVII.2.1], respectively.

Lemma 18.6. Let (M ,Dom(M )) be a closed operator in a Hilbert space H. Let us equip Dom(M ) with the
graph norm ‖ · ‖M , which makes (Dom(M ), ‖ · ‖M ) a new Hilbert space. Let M be the operator M reconsidered
as an operator from (Dom(M ), ‖ · ‖M ) to H. The following properties hold:

(i) M is bounded,

(ii) M is Fredholm if and only if M is Fredholm.
In this case, ind(M) = ind(M ).

Lemma 18.7. Let (M ,Dom(M )) be a closed invertible operator and consider another operator (P,Dom(M ))
in a common Hilbert space H. Assume that (M + P,Dom(M )) is closed and PM−1 is compact. Then the
operator (M + P,Dom(M )) is Fredholm and ind(M + P) = ind(M ) = 0.

Lemma 18.8. Let (M ,Dom(M )) be a closed operator in a Hilbert space H with a non-empty resolvent set and
let △ be an open connected subset of

{z ∈ C : M − z is Fredholm}.

If △∩ρ(M ) 6= ∅, then sp(M )∩△ is a countable set, with no accumulation point in △, consisting of eigenvalues
of M with finite algebraic multiplicities.
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On the metric operator for the imaginary cubic oscillator

P. Siegl1,2 and D. Krejčǐŕık2

1 Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, Av. Prof. Gama
Pinto 2, 1649-003 Lisboa, Portugal.

2 Department of Theoretical Physics, Nuclear Physics Institute ASCR, 25068 Řež, Czech Republic

Abstract. We show that the eigenvectors of the PT-symmetric imaginary cubic oscillator are com-
plete, but do not form a Riesz basis. This results in the existence of a bounded metric operator
having intrinsic singularity reflected in the inevitable unboundedness of the inverse. Moreover, the
existence of non-trivial pseudospectrum is observed. In other words, there is no quantum-mechanical
Hamiltonian associated with it via bounded and boundedly invertible similarity transformations.
These results open new directions in physical interpretation of PT-symmetric models with intrin-
sically singular metric, since their properties are essentially different with respect to self-adjoint
Hamiltonians, for instance, due to spectral instabilities.

19.1 Introduction

At the turn of the millennium, Bender et al. came up with the idea to extend quantum mechanics by con-
sidering Hamiltonians that are invariant under a space-time reflection PT rather than being Hermitian [1, 2].
The development of the so-called PT-symmetric quantum mechanics was in fact initiated in these papers by
considering a prominent Hamiltonian

H = − d2

dx2
+ ix3. (19.1)

While this operator is manifestly non-Hermitian, it is invariant under a simultaneous space reflection P (x 7→
−x) and time reversal T (complex conjugation). Moreover, numerical studies suggested that the spectrum of H
is real, which was later proved in [3, 4]. The Hamiltonian (19.1) can be considered as a prototype of many other
examples of PT-symmetric Hamiltonians that have been so far studied in a still growing literature (see [5, 6]
and references therein). PT-symmetric models found applications in various domains of physics – namely in
optics [7, 8, 9, 10, 11], solid state [12], Bose-Einstein condensates [13], LRC circuits [14, 15], superconductivity
[16, 17], electromagnetism [18, 19], and reflectionless scattering [20].

It is commonly accepted that a quantum-mechanical interpretation of PT-symmetry must be implemented
through a similarity transformation Ω, i.e.

h := ΩHΩ−1, (19.2)

where h is a self-adjoint operator, i.e. h = h†. This intertwining relation is closely related to the quasi-
Hermiticity [21, 22]

ΘH = H†Θ, (19.3)

where Θ is a positive operator often called metric operator (its special variant PC was suggested in Refs. [2, 23]).
Hamiltonian H with property (19.3) is called quasi-Hermitian because it is actually Hermitian with respect to
the modified inner product 〈·,Θ·〉. The relation between Ω and Θ is the decomposition of a positive operator
Θ = Ω†Ω. The essential idea is that a non-Hermitian H can be viewed as an alternative representation of a
Hermitian operator h.

The advantage of the above described representation (19.2) stems from the observation that the Hermitian
counterpart h for a differential albeit non-Hermitian operator H has typically a non-local and very complicated
structure. This was demonstrated for a class of operators with non-Hermitian (not necessarily PT-symmetric)
point interactions in [25, 26, 27], where, in addition, explicit formulae for the similarity transformation Ω, metric
operator Θ, C operator, and similar self-adjoint operator h were presented in a closed form. Nevertheless, the
non-Hermiticity and non-locality are not always equivalent in the described sense [28, 29, 30].

Partly motivated by the relevance of the cubic interaction in quantum field theory, the problem of similarity
of the Hamiltonian (19.1) to a self-adjoint operator was investigated in several works [23, 24, 31]. However, due
to the complexity of the task, the approach used in these papers was necessarily formal, based on developing
the metric into an infinite series composed of unbounded operators. There has been no proof of the quasi-
Hermiticity of the imaginary cubic oscillator so far. The objective of the present note is to establish the
following intrinsic facts about the metric of (19.1):

1. There exists a bounded metric. That is, operator (19.1) is quasi-Hermitian in the sense of (19.3) with
bounded Θ.
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2. No bounded metric with bounded inverse exists. That is, any metric operator for (19.1) necessarily
possesses an inevitable singularity.

We have chosen the prominent Hamiltonian (19.1) to prove the negative result 2 just because the ix3

potential is considered as the fons et origo of PT-symmetric quantum mechanics [1, 2]. However, the absence
of bounded or boundedly invertible metric is by far not restricted to the Hamiltonian (19.1) only. For instance,
the method of the present note also applies to an equally extensively studied x2 + ix3 potential and many
others, see Eq. (19.17) and the surrounding text.

Our results have important consequences for the physical interpretation of the PT-symmetric Hamiltonians.
If the metric happens to be singular (i.e. unbounded, not invertible or unboundedly invertible), the quantum-
mechanical interpretation using the similarity transformation is lost. Indeed, the eigenvectors, despite possibly
being complete, do not form a “good” basis, i.e. an unconditional (Riesz) basis. The spectrum of such highly
non-self-adjoint operators does not contain sufficient information about the system and in addition to the
reality and (algebraic) simplicity of the spectrum, more involved spectral-theoretic properties (such as basicity,
pseudospectrum, etc.) must be taken into account.

Our result about the singularity of any metric may seem negative at the first glance. However, we believe
that in the same way as the exceptional points represent one of the most interesting configurations, where
important physical phenomena arise, the established intrinsic singularities in the metric operator are precisely
the point where new developments of the physics of PT-symmetric models may originate.

This paper is organized as follows. In Section 19.2 we emphasize some aspects of unbounded operators
and defects of quasi-Hermiticity based on singular metrics. In Section 19.3 we recall known facts about the
imaginary cubic oscillator and perform our proofs of the new properties regarding the metric operator. Finally,
in Section 19.4 we refer to some open problems and comment on possible extensions of our results.

19.2 Infinite-dimensional subtleties

While the concepts of similarity to a self-adjoint operator and quasi-Hermiticity work smoothly if the dimension
of the underlying Hilbert space is finite, i.e. for matrices, essential difficulties may appear in the infinite-
dimensional spaces. The reason is obviously in the unboundedness of operators, which unavoidably restricts
their domains of definitions to a non-trivial subset of the Hilbert space. Therefore, the sense in which equalities
(19.2) and (19.3) hold must be carefully explained. We focus on the metric operator further, nonetheless, the
similarity transformation may be discussed along the same lines.

Relation (19.3) is an operator equality and as such it requires that the operator domains D(ΘH) and
D(H†Θ) are equal in addition to the validity of the corresponding vector identity ΘHψ = H†Θψ for every
ψ ∈ D(ΘH) ∩ D(H†Θ). Problems arise if the involved operators are unbounded, since one of the operator
domains of the products or their intersection might be reduced to a single element 0. To avoid such pathological
situations, it is usually assumed that the metric operator Θ is bounded. Then the above requirements reduce
to the mapping property Θ[D(H†)] ⊂ D(H) and the quasi-Hermitian identity should hold for every ψ ∈ D(H).

If, in addition to the boundedness, Θ is boundedly invertible, then some fundamental and extremely useful
properties of self-adjoint operators are valid for H as well: real spectrum, spectral decomposition, spectral
stability with respect to perturbations, unitary evolution (in a topologically equivalent Hilbert space), etc.
However, if the metric becomes singular, none of the mentioned properties is guaranteed by the validity of (19.3).
As a matter of fact, as we demonstrate in this paper, the imaginary cubic oscillator and many other PT-
symmetric Hamiltonians, despite possessing real spectra, exhibit pathological features with respect to self-
adjoint behaviour, due to the intrinsic singularities of the metric (and therefore also in C-operators and similarity
transformations). Let us demonstrate the defects of theories with singular metrics in the following subsections.

19.2.1 Spectrum

Let H be a complex Hilbert space. The spectrum is meaningfully defined only for closed operators, i.e. those
operators H for which the elements {ψ,Hψ} with ψ ∈ D(H) form a closed linear subspace of H × H. If H
were finite-dimensional, then the spectrum of H , σ(H), would be exhausted by eigenvalues, i.e. those complex
numbers λ for which H−λ is not injective. In general, however, there are additional parts of spectra composed
by those λ which are not eigenvalues but H − λ : D(H) → H is not bijective: depending on whether the
range R(H − λ) is dense in H or not, one speaks about the continuous or residual spectrum, respectively. In
other words, the complement of the spectrum of H , called the resolvent set of H , ρ(H), is composed of all the
complex numbers z for which the resolvent operator (H − z)−1 : H → H exists and is bounded.

It is an important property of self-adjoint operators that their (total) spectrum is always non-empty, real
and that the residual spectrum is empty. For non-self-adjoint operators, however, the spectrum can be empty
or cover the whole complex plane, see e.g. [28, 32].
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Let us demonstrate how singular metrics lead to pathological situations as regards spectral properties.
Let H be an operator with purely discrete spectrum (i.e. just isolated eigenvalues with finite multiplicities) and
assume that the similarity relation (19.2) holds with unbounded Ω−1. Then R(h − λ) ⊂ R(Ω) 6= H for every
λ ∈ C. Consequently, the whole complex plane except for the set of eigenvalues of H belongs to the continuous
spectrum of h. Summing up, the continuous spectrum is not preserved by unbounded similarity transformations.
It is a striking phenomenon since the continuous part of spectrum contains physical energies corresponding to
scattering/propagating states.

A similar argument shows that unbounded Θ satisfying (19.3) with D(Θ) ⊃ D(H) and Θ[D(H)] ⊂ D(H†)
cannot exist for closed operators H with a physically reasonable property σ(H) 6= C. In this way, one can also
show that the C-operator of [33] for (19.1) cannot exist.

19.2.2 Eigenbasis

Eigenfunctions of self-adjoint operators corresponding to different eigenvalues are mutually orthogonal. Fur-
thermore, the set of all eigenfunctions {ψn}∞n=1 of a self-adjoint operator with purely discrete spectrum can be
normalized in such a way that it forms a complete orthonormal family in the Hilbert space H. Recall that the
completeness means that the orthogonal complement in H of the linear span of the family consists only of the
zero function only. A necessary and sufficient condition for completeness of an orthonormal family {ψn}∞n=1 is
the validity of the Parseval equality

∀ψ ∈ H,

∞∑

n=1

|〈ψn, ψ〉|2 = ‖ψ‖2. (19.4)

In this case we also have the unique expansion

∀ψ ∈ H, ψ =

∞∑

n=1

cnψn. (19.5)

That is, {ψn}∞n=1 is a basis in H.
Eigenfunctions of non-Hermitian operators are typically not orthogonal. Even worse, they may not form a

basis or even not a complete family. In this respect, it is absolutely essential to stress that the completeness
of a non-orthonormal family {ψn}∞n=1 does not imply that any ψ ∈ H admits a unique expansion (19.5); see
e.g. [34] for further details.

The notion of “eigenbasis” is so important in quantum mechanics that one needs to have a replacement
for (19.4) in the case of eigenfunctions of non-Hermitian operators. This is provided by the notion of Riesz
basis

∀ψ ∈ H, C−1‖ψ‖2 ≤
∞∑

n=1

|〈ψn, ψ〉|2 ≤ C‖ψ‖2 (19.6)

with a positive constant C independent of ψ. Eigenfunctions of an operator H with purely discrete spectrum
form a Riesz basis if, and only if, H is quasi-Hermitian (19.3) with bounded and boundedly invertible metric Θ.

As in the case of spectrum, Riesz-basicity property is not preserved by unbounded transformations. As a
matter of fact, it is the objective of the present paper to show that the eigenfunctions of (19.1) do not form a
Riesz basis, so that the metric Θ is necessarily singular. Any claim of the type “(19.1) is similar to a self-adjoint
operator” is thus necessarily of doubtful usefulness for physics, since H and h appearing in (19.2) would have
very different basicity properties.

19.2.3 Pseudospectrum

The notion of pseudospectra arose as a result of the realization that several pathological properties of highly
non-Hermitian operators were closely related. We refer to by now classical monographs by Trefethen and
Embree [35] and Davies [34] for more information on the subject, physical and numerical applications, and
many references.

Given a positive number ε, we define the pseudospectrum of H by

σε(H) :=
{
z ∈ C

∣∣ ‖(H − z)−1‖ > ε−1
}
, (19.7)

with the convention that ‖(H − z)−1‖ = ∞ for z ∈ σ(H). The pseudospectrum always contains an ε-
neighbourhood of the spectrum:

{
z ∈ C

∣∣ dist
(
z, σ(H)

)
< ε
}
⊂ σε(H) . (19.8)
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Since equality holds here ifH is self-adjoint (or more generally normal), it follows that the notion of pseudospec-
tra becomes trivial for such operators. On the other hand, if H is “highly non-self-adjoint”, the pseudospectrum
σε(H) is typically “much larger” than the ε-neighbourhood of the spectrum.

For non-Hermitian operators the pseudospectra are much more reliable objects than the spectrum itself.
Probably the strongest support for this claim is due to phenomenon of spectral instability: very small perturba-
tions may drastically change the spectrum of a non-Hermitian operator. For instance, new complex eigenvalues
can appear very far from the original ones. On the other hand, perturbations whose norm is less than ε still
lie inside σε(H). These effects were extensively studied in numerics, hydrodynamics, optics, etc. (see [35] and
references therein).

Of course, such pathological situations do not occur for self-adjoint operators whose spectrum is changed
at most by the norm of the perturbation. It is also impossible for operators similar to self-adjoint operators
by bounded and boundedly invertible similarity transformations. On the other hand, the pseudospectrum is
not preserved by unbounded transformations (we refer to [36] for a warning discussion of the shifted harmonic
oscillator in this context). The pseudospectrum thus represents a useful test whether a given non-Hermitian
operator can be similar to a self-adjoint one via a physically reasonable transformation. In this paper we show
that the pseudospectrum of (19.1) is highly non-trivial.

19.2.4 Singular metric?

The observations made in previous subsections constitute a strong support for our belief that the singular
metrics are not relevant objects for physical interpretation of non-Hermitian Hamiltonians, since they yield
only singular similarity transformations. However, putting it differently, singular metrics necessarily lead to
fundamentally new physics, since the transformed operators exhibit completely different properties.

In this context we feel necessary to mention that there exists a recent attempt of Mostafazadeh [37],
reproducing equivalently the original idea of Kretschmer and Szymanowski [38], to include singular metric
operators into the notion of quasi-Hermiticity. It involves a construction of a self-adjoint operator to which
the original non-Hermitian operator with purely discrete real spectrum is similar “at any cost”. Analogous
ideas for unbounded C-operators can be found in [39]. However, any such strategy has important drawbacks
that cannot be avoided. The problem with singular metric is mentioned already in [22], where an example
of operator possessing bounded metric operator without bounded inverse and having non-real spectrum was
constructed. As a corollary, Diedonné states: “in spite of the quasi-Hermiticity (without bounded inverse of
Θ), there is for instance no hope of building functional calculus that would follow more or less the same pattern
as the functional calculus of self-adjoint operators”.

The drawbacks consist in that the aforementioned non-self-adjoint pathologies of H are completely ignored
when analysing the “similar” self-adjoint operator h instead. This can be illustrated already for two-by-two
matrices: a Jordan-block matrix H and a diagonal matrix h with the same real eigenvalues. Although the
matrices possess the same (real) spectrum, their respective properties are very different, particularly the basicity
properties of eigenvectors and spectral stability with respect to small perturbations. But the construction of
[38, 37], when used in finite dimension, simply means that the authors disregard the Jordan-block structure
of the non-Hermitian matrix H and associate to it just the diagonal matrix h with same eigenvalues. The
metric operator and “similarity transformation” are non-invertible in this case. However, equality (19.3) and
a weaker variant of (19.2), i.e. ΩH = hΩ, do hold. Stating that h should in any reasonable sense represent H
is obviously very doubtful, since, for instance, all the physics of exceptional points would be omitted.

In infinite-dimensional spaces the situation is even more complex, since another possibility of singularity
of metric exists, namely the unboundedness of the inverse. Although this may seem to be a minor issue or
only a technical problem of infinite dimension, such an interpretation is very misleading. The pathological
properties of non-self-adjoint H with only unboundedly invertible metric may be much more serious than
existence of finite-dimensional Jordan blocks, i.e. usual exceptional points. In the latter case, although the
metric cannot be invertible, the eigenvectors together with generalized ones may form a Riesz basis. In other
words, except a finite-dimensional subspace, H is similar to a self-adjoint operator. Therefore a version of the
spectral decomposition (generalized Jordan form) may be available and the spectrum of H may be stable with
respect to small perturbations. This is not the case of the imaginary cubic oscillator, where there is no Riesz
basis of eigenvectors and no spectral stability: complex eigenvalues may appear very far from the unperturbed
real ones despite the norm of the perturbation is arbitrarily small.

19.3 Imaginary cubic oscillator

Let us begin by properly introducing the Hamiltonian (19.1) as a closed realization in the Hilbert space L2(R).
We consider the maximal realization of the differential expression (19.1) by taking for the operator domain
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of H the maximal domain

D(H) :=
{
ψ ∈ L2(R) | − ψ′′ + ix3ψ ∈ L2(R)

}
. (19.9)

By an approach of [40, Sec. VII.2], based on a distributional Kato’s inequality, it follows that such a defined
operator H is m-accretive and that it coincides with the closure of (19.1) initially defined on infinitely smooth
functions of compact support. (The difficulties with the existence of different closed extensions, cf [41, 42], do
not arise here since, ℜV is trivially bounded from below.)

Now it can be rigorously verified that H is PT-symmetric, i.e. [H,PT] = 0, where the commutator should be
interpreted as PTHψ = HPTψ for all ψ ∈ D(H), with (Pψ)(x) := ψ(−x) and (Tψ)(x) := ψ(x). Moreover, since
the adjoint H† of H is simply obtained by taking −i instead of i in the definition of the operator (including the
operator domain), it can be also verified that H is P-self-adjoint, H† = PHP, and T-self-adjoint, H† = THT.
The latter is a particularly useful property for non-self-adjoint operators since it implies that the residual
spectrum of H is empty [43].

As an immediate consequence of the fact that H is m-accretive, we know that the spectrum of H is located
in the right complex half-plane. Furthermore, it has been shown in [3, 4] that all eigenvalues of H are real and
simple (in the sense of geometric multiplicity). The algebraic simplicity has been established in [44, 45]. The
fact that the spectrum of H is purely discrete follows from the compactness of its resolvent. The latter can be
deduced from the identity

D(H) =
{
ψ ∈ H2(R) |x3ψ ∈ L2(R)

}
(19.10)

established in [46] and the compact embedding of this set into L2(R). Furthermore, the authors of [46] show
that the resolvent of H is a Hilbert-Schmidt operator. The key ingredient in the proof is the explicit knowledge
of the resolvent kernel of H−1 that can be written in terms of Hankel functions with known asymptotics. A
deeper analysis of the resolvent of H reveals that it actually belongs to the trace class [47]; alternatively, one
can use a general result of [48].

19.3.1 Completeness of eigenfunctions

Let us show that the eigenfunctions ofH form a complete set in L2(R). Recall that the completeness of {ψn}∞n=1

means that the span of ψn is dense in L2(R), or equivalently
(
span{ψn}∞n=1)

⊥ = {0}. Nevertheless, we stress
that the result on completeness does not imply that any ψ admits the unique expansion (19.5).

The m-accretivity of H implies ℜ〈ψ,Hψ〉 ≥ 0 for all ψ ∈ D(H). Consequently, −iH is dissipative,
i.e. ℑ〈ψ,Hψ〉 ≤ 0 for all ψ ∈ D(H). It is then easy to check that the imaginary part of the resolvent of
−iH at ξ < 0 is non-negative, i.e.,

1

2i

(
(−iH − ξ)−1 − (iH† − ξ)−1

)
≥ 0 (19.11)

in the sense of forms. Since the resolvent is trace class, it is enough to apply the completeness theorem [49,
Thm.VII.8.1] to the operator (−iH − ξ)−1.

More specifically, it follows by this result that H has a complete system of eigenvectors and generalized
eigenvectors. The latter, however, do not appear in our situation since all the eigenvalues are algebraically
simple (see above).

19.3.2 Existence of a bounded metric

Already at this stage, we can show that there exists a bounded metric for H . We would like to emphasize that
this follows actually in general from the reality and simplicity of eigenvalues and completeness of eigenfunctions
for H . We remark that H† shares these properties due to the simplicity of eigenvalues and T- or P-self-
adjointness of H .

In detail, let H be a densely defined and closed operator such that ρ(H) ∩ ρ(H†) ∩ R 6= ∅ and let z0 be a
number from this intersection. Then the existence of a bounded positive Θ satisfying (19.3) is equivalent to
the fact that the resolvent of H satisfies (19.3), i.e.,

Θ(H − z0)
−1 = (H† − z0)

−1Θ. (19.12)

Thus we can transfer the problem of finding the metric for an unbounded H to the same problem for its bounded
resolvent. Using [22, Prop.3], which is in fact the construction of a bounded metric using the well-known formula

Θ :=

∞∑

n=1

cnφn〈φn, ·〉 (19.13)
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with φn being the eigenfunctions of H† and cn > 0 tending to zero sufficiently fast, yields the following: If all
the eigenvalues of H† are real and the associated eigenfunctions φn are complete, then a bounded metric for
(H − z0)

−1, and therefore for H , exists.
In our situation, we know that all the eigenvalues of (19.1) as well as its adjoint are simple and real, for z0

we can take any negative number due to m-accretivity of H and H†, and we have shown that the eigenfunctions
of H and therefore also H† are complete. Hence the existence of a bounded Θ follows.

19.3.3 Singularity of any metric

After the two preceding positive results, we show now that any metric for the imaginary cubic oscillator is
singular, i.e. either unbounded or unboundedly invertible. We proceed by contradiction. Let there exist a
bounded positive operator Θ with bounded inverse satisfying (19.3). Then the following norm estimate for the
resolvent holds: ∥∥(H − z)−1

∥∥ ≤ C

|ℑz| (19.14)

for every z ∈ C such that ℑz 6= 0, where C is a positive constant bounded by
∥∥√Θ

∥∥∥∥√Θ−1
∥∥. By establishing a

lower bound to the resolvent appearing in (19.14), we show that the inequality (19.14) cannot hold. The lower
bound follows by a direct construction of a continuous family of approximate eigenstates of complex energies
far from the spectrum due to Davies [50].

Using the strategy in [50, Thm. 2], we consider ‖(H − σz)−1‖ with σ > 0 large and 0 < arg z < π/2. By a
simple scaling argument in x, the problem can be transferred into a semi-classical one, namely ‖(H−σz)−1‖ =
σ−1‖(Hh − z)−1‖, where

Hh := −h2 d2

dx2
+ ix3, (19.15)

with h := σ−5/6. In order to apply [50, Thm. 1], we have to verify that ℑV ′(a) 6= 0, where V (x) := ix3 and a is
obtained from the relation z = η2+ ia3 with η ∈ R \ {0}. However, this can be easily checked for ℑV ′(a) = 3a2

and a 6= 0 since ℑz 6= 0 by assumption. It then follows from [50, Thm. 1] that the norm of the resolvent of Hh

diverges faster than any power of h−1 as h → 0. More specifically, there exists positive h0 and for each n > 0
a positive constant cn such that if h ∈ (0, h0) then

∥∥(Hh − z)−1
∥∥ ≥ cn

hn
. (19.16)

The relation between H and Hh provides an analogous claim for ‖(H − σz)−1‖ and therefore the resolvent
bound (19.14) when combined with (19.16) cannot hold if n is chosen sufficiently large (namely, n > 6/5).

19.4 Concluding remarks

Although the imaginary cubic oscillator (19.1) is PT-symmetric with purely real and discrete spectrum, it
cannot be similar (via a bounded and boundedly invertible transformation) to any self-adjoint operator or,
equivalently, the eigenfunctions of H cannot form the Riesz basis. We remark that the question whether
eigenvectors of H form a basis remains open.

We established the existence of a bounded metric, which is in fact equivalent to the completeness of eigen-
functions that we proved and the reality and simplicity of eigenvalues. However, the singular nature of any
metric is inevitable. The latter was established by semiclassical tools, namely the pseudomode construction
due to [50]. The method of proof implies that (19.1) possesses a very non-trivial pseudospectrum and regions of
strong spectral instabilities, cf (19.7) and (19.16). In the language of exceptional points, the imaginary cubic
oscillator possesses an “intrinsic exceptional point” that is much stronger than any exceptional point associated
with finite Jordan blocks, cf subsections 19.2.4, 19.3.3.

The method of this paper, namely the disproval of quasi-Hermiticity with bounded and boundedly invertible
metric based on the localized semiclassical pseudomodes, does not restrict to the particular Hamiltonian (19.1).
It also applies to the already mentioned x2 + ix3 potential, and to many others. As a large class of admissible
operators let us mention for instance the Schrödinger operators considered by Davies [50]:

− d2

dx2
+

2n∑

m=1

cmx
m , (19.17)

where the constant c2n has positive real and imaginary parts; then the corresponding closed realization is
an m-sectorial operator. Later, the results of [50] were substantially generalized to higher dimensions and
pseudodifferential operators in [51, 52].



III.19 On the metric operator for the imaginary cubic oscillator 331

Acknowledgements

We are grateful to K. C. Shin for informing us about the results on algebraic multiplicities of the imaginary
cubic oscillator and to D. Robert for telling us about his general result on Schatten-class properties of non-
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20.1 Introduction

In the highly non-normal case, vivid though the image may be, the location of the eigenvalues may
be as fragile an indicator of underlying character as the hair colour of a Hollywood actor.

Trefethen and Embree, [77, p. 11]

It has long been known to numerical analysts that many important spectral properties of self-adjoint operators
are lost when considering non-normal operators. In the 2005 monograph [77], Trefethen and Embree discuss
decades of ongoing research and advocate the use of pseudospectra instead of spectra when studying a matrix
or operator which is non-self-adjoint or non-normal.

In this paper we stress the importance of pseudospectra, a set which measures the instability of the spec-
trum of a non-normal operator, in the so-called “non-Hermitian quantum mechanics”. Contrary to a common
misconception, we demonstrate that the spectrum alone contains by far insufficient information to draw any
quantum-mechanically relevant conclusions for non-Hermitian operators. In particular, the fact that the spec-
trum of an operator is real, or even the presence of a reduction to a self-adjoint operator using an unbounded
similarity transformation, is not sufficient to guarantee that an operator with non-trivial pseudospectrum has
a meaning in the context of conventional quantum mechanics.

By non-Hermitian quantum mechanics we mean the attempts of Bender et al. [15, 16] to extend quantum
mechanics to include observables represented by PT-symmetric non-Hermitian operators, see [1], with real
spectra. Here, PT-symmetry refers to the invariance of an operator H on the Hilbert space L2(Rd) with
respect to a simultaneous parity and time reversal, i.e.,

[H,PT] = 0 , (20.1)

where (Pψ)(x) := ψ(−x) and (Tψ)(x) := ψ(x). It has been argued that if the operator possesses, in addition to
the obvious PT-symmetry, a special hidden symmetry – a so-called C-symmetry – then indeed the spectrum ofH
is real. It has furthermore been suggested that a consistent quantum theory can be built by changing the inner
product into one for which the operatorH is Hermitian and the time evolution is unitary. The procedure can be
understood by the concept of pseudo-Hermiticity as developed by Mostafazadeh [52, 53, 54]: a CPT-symmetric
operator can be transformed into a self-adjoint operator Hsa = H∗

sa via a similarity transformation Ω, i.e.,

Hsa = ΩHΩ−1 . (20.2)

The latter is the basis for a possible quantum-mechanical interpretation of H as an equivalent representation
of a physical observable which would be conventionally represented by the self-adjoint operator Hsa.

If Ω in (20.2) is bounded and boundedly invertible, cf [2], although not necessarily unitary, then indeed
the spectra of Hsa and H coincide and the pseudospectra are related by simple approximate inclusions; see
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(20.8). Moreover, if the spectrum is discrete, the eigenfunctions of H and Hsa share essential basis properties.
In this case, the PT-symmetry can be understood through an older notion of quasi-Hermiticity [30, 66] and the
quantum-mechanical description of H via Hsa is consistent: H and Hsa represent the same physical system.

However, problems arise if Ω or Ω−1 entering the fundamental relation (20.2) are allowed to be unbounded.
We list several potential pitfalls below. We do not claim that there are no physical problems where an un-
bounded similarity transformation could be useful (in fact, there are!), nevertheless, if any of the pathological
situations described below occur, Hsa andH cannot be viewed as equivalent representatives of the same physical
observable in quantum mechanics.

1. It is not always easy to give a good meaning to the operator identity (20.2) when taking into account
the respective domains. The relation (20.2) may hold on some particular functions, e.g. C∞

0 (Rd), but the
operator identity may not be satisfied.

2. Spectra are not preserved by unbounded transformations. It may well happen that the spectrum of H is
purely discrete, while Hsa has no eigenvalues or some continuous spectrum, and vice versa.

3. Unbounded transformations may turn a nice (even orthonormal) eigenbasis to a set of functions that
cannot form any kind of reasonable basis.

4. Spectra of non-Hermitian operators are known to lie deep inside very large pseudospectra, while the
pseudospectrum of a self-adjoint operator is just a tubular neighbourhood of its spectrum. Consequently,
the spectrum of Hsa is stable under small perturbations, while an arbitrarily small perturbation of H can
create eigenvalues very far from the spectrum of H .

5. Even if the spectrum of H were purely real, −iH does not need to be the generator of a bounded
semigroup. In fact, a wild behaviour of the pseudospectrum of H prevents to associate a bounded time-
evolution to H via the Schrödinger equation (cf [26, Thm. 8.2.1]).

The objective of this paper is to demonstrate by a careful mathematical analysis that these commonly
overlooked problems do appear in more or less famous models of non-Hermitian quantum mechanics and to
emphasize that the concept of pseudospectra gives important information missing in prior works. In conclusion,
the present study necessarily casts doubt on certain commonly accepted conclusions based on formal manipu-
lations in the physical literature, cf the reviews [14, 55], particularly on the physical relevance of PT-symmetry
in the quantum-mechanical context. We notably refer to the concrete examples presented in Section 20.7 for
specific controversies. We also remark that the unbounded time-evolution has been recently studied more ex-
plicitly for some of the models presented below, namely in [36] for the gauged oscillator (see Section 20.7.7)
and in [8, 9] for quadratic operators (see Section 20.7.8).

Our approach relies on standard tools of modern functional analysis, nonetheless, several innovations appear.
Particularly, we construct new pseudomodes for the (non-semiclassical) shifted harmonic oscillator, where the
scaling leads to the fractional power of h, cf Theorem 20.2. We also give a new and very short proof of the rate of
spectral projection growth for the rotated oscillator analysed previously in [27, 38, 79], cf Appendix 20.9. Last
but not least, we establish an explicit unitary equivalence between the rotated and gauged oscillator (Swanson’s
model), which has not been noticed previously. We furthermore describe how to identify an equivalent rotated
oscillator for each such quadratic operator in a class identified in [58].

The paper is organized as follows. In the Section 20.2 we summarize some basic properties of pseudospectra.
Since PT-symmetry is a special example of an antilinear symmetry, we briefly discuss pseudospectral properties
of operators commuting with antiunitary operators in Section 20.3. Our main mathematical tool for proving
the existence of large pseudospectra is stated as Theorem 20.1 of Section 20.4; it is based on a construction
of pseudomodes of semiclassical operators adapted from [29]. In Section 20.5 we relate the pseudospectrum
to the concept of quasi-Hermiticity and similarity to a self-adjoint operator. A relationship between basis
properties of eigenfunctions is pointed out in Section 20.6. Finally, in Section 20.7 (which occupies the bulk of
the paper), we present a number of non-self-adjoint ordinary differential operators exhibiting striking spectral
and pseudospectral properties; they will serve as an illustration of the abstract operator-theoretic methods
summarized in this paper. Certain technical proofs are reserved for the Appendix.

20.2 Pseudospectra

The notion of pseudospectra arose as a result of the realization that several pathological properties of highly
non-Hermitian operators were closely related. We refer to by now classical monographs by Trefethen and
Embree [77] and Davies [26] for more information on the subject and many references.
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Let H be a closed densely defined operator (bounded or unbounded) on a complex Hilbert space H. The
spectrum of H , denoted by σ(H), consists of those complex points z for which the resolvent (H−z)−1 does not
exist as a bounded operator on H. If H were finite-dimensional, then the spectrum of H would be exhausted
by eigenvalues (i.e. those complex numbers λ for which H − λ is not injective). In general, however, there are
additional parts of the spectrum composed of those λ which are not eigenvalues but for whichH−λ : D(H) → H

is not bijective: depending on whether the range R(H−λ) is dense in H or not, one speaks about the continuous
or residual spectrum, respectively.

The complement of σ(H) in C is called the resolvent set of H . The numerical range Num(H) of H is defined
by the set of all complex numbers (ψ,Hψ) where ψ ranges over all ψ from the operator domain D(H) with
‖ψ‖ = 1.

Given a positive number ε, we define the ε-pseudospectrum (or simply pseudospectrum) of H as

σε(H) := σ(H) ∪
{
z ∈ C

∣∣ ‖(H − z)−1‖ > ε−1
}
; (20.3)

sometimes the convention that ‖(H − z)−1‖ = ∞ for z ∈ σ(H) is used. (We refer to the interesting essays
[67, 68] by Shargorodsky on the distinction between the definition of pseudospectra with strict and non-strict
inequalities.) Here we summarize some basic well-known properties of pseudospectra.

• Topology. For every ε > 0, σε(H) is a non-empty open subset of C and any bounded connected component
of σε(H) has a non-empty intersection with σ(H). (If the spectrum of H is empty, then σε(H) is unbounded
for every ε > 0.) These facts follow from the subharmonicity of ‖(H − z)−1‖ as a function of z 6∈ σ(H) to
(0,∞).

• Relation to spectra. The pseudospectrum always contains an ε-neighbourhood of the spectrum, and if
C \Num(H) is connected and has a non-empty intersection with the resolvent set of H , the pseudospectrum is
in turn contained in an ε-neighbourhood of the numerical range:

{
z ∈ C

∣∣ dist
(
z, σ(H)

)
< ε
}
⊆ σε(H) ⊆

{
z ∈ C

∣∣ dist
(
z,Num(H)

)
< ε
}
. (20.4)

The first inclusion follows from the bound ‖(H − z)−1‖ ≥ dist
(
z, σ(H)

)−1
, which is valid for any operator.

Since equality holds there if H is self-adjoint (or more generally normal, i.e. H∗H = HH∗), it follows that
the pseudospectra for such operators give no additional information not already given by the spectrum. On
the other hand, if H is “highly non-self-adjoint”, the pseudospectrum σε(H) is typically “much larger” than
the ε-neighbourhood of the spectrum. In any case, the second inclusion shows that the pseudospectra are well
behaved outside the numerical range.

• Spectral instability. There is an important property (known sometimes as the Roch-Silberman theorem
[64], although the result is already mentioned in [63]) relating the pseudospectra to the stability of the spectrum
under small perturbations:

σε(H) =
⋃

‖V ‖<ε
σ(H + V ) . (20.5)

The importance of this property is summarized by the following statement from [25]:

Very large pseudospectra are always associated with eigenvalues which are very unstable with respect
to perturbations. This is clearly of great importance to numerical analysts: if a spectral problem is
unstable enough, no numerical procedure can enable one to find the eigenvalues, whose significance
therefore becomes a moot point.

The relation (20.5) likely lends the strongest support for the usage of pseudospectra instead of spectra in the
case of non-Hermitian operators.

• Pseudomodes. A complex number z belongs to σε(H) if, and only if, z ∈ σ(H) or z is a pseudoeigenvalue
(or approximate eigenvalue), i.e.,

‖(H − z)ψ‖ < ε‖ψ‖ for some ψ ∈ D(H) . (20.6)

Any ψ satisfying (20.6) is called a pseudoeigenvector (or pseudoeigenfunction or pseudomode). Again, for
operators H which are far from self-adjoint, pseudoeigenvalues may not be close to the spectrum of H . This
is particularly striking if we realize that these pseudoeigenvalues can be turned into true eigenvalues by a very
small perturbation, cf (20.5). What is more, we can often construct very nice (e.g. smooth and with compact
support) pseudoeigenfunctions; see Section 20.4 and the references therein.
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• Adjoints. Using the identity ‖(H∗− z̄)−1‖ = ‖(H− z)−1‖, it is easy to see that the pseudospectrum of H∗

is given by the mirror image of σε(H) with respect to the real axis, i.e.,

λ ∈ σε(H) ⇐⇒ λ ∈ σε(H
∗) . (20.7)

• Similarity. Let the similarity relation (20.2) hold with a bounded and boundedly invertible operator Ω.
Then the operators H and Hsa have the same spectra, but their pseudospectra may be very different, unless
the condition number κ := ‖Ω‖‖Ω−1‖ ≥ 1 is fairly close to one. Indeed, we have

σε/κ(H) ⊆ σε(Hsa) ⊆ σεκ(H) . (20.8)

20.3 Antilinear symmetry

We understand PT-symmetry as a special example of invariance of a closed densely defined operator H with
respect to an antiunitary transformation S, i.e.,

[H, S] = 0 . (20.9)

Recall that S is an antiunitary transformation if S is a bijective antilinear operator on H satisfying (Sφ, Sψ) =
(ψ, φ) for every φ, ψ ∈ H. As usual for the commutativity of an unbounded operator and a bounded operator
[44, Sec. III.5.6], we understand (20.9) by the operator relation SH ⊆ HS. In other words, whenever ψ ∈ D(H),
the image Sψ also belongs to D(H) and SHψ = HSψ.

• Symmetry. It is well known that the spectra of PT-symmetric operators on L2(Rd) are symmetric with
respect to the real axis. In our general situation (20.9), this follows from the identity

(H − z)−1 = S−1(H − z̄)−1S, (20.10)

which is valid for any z in the resolvent set of H ; the symmetry can then be deduced from (20.9). Furthermore,
(20.10) yields the same relation for the pseudospectra of S-symmetric operators H :

λ ∈ σε(H) ⇐⇒ λ ∈ σε(H) . (20.11)

This identity holds trivially when the resolvent set of H is empty.

• J-self-adjointness. An alternative framework for PT-symmetric operators was suggested in [19] in terms
of J-self-adjoint operators. Here J is a conjugation, i.e. an antiunitary involution, and H is said J-self-adjoint
if H∗ = JHJ, cf [33, Sec. III.5]. (The present J-self-adjointness should not be confused with a terminologically
similar but different concept in Krein spaces [7, 37].) An example of such a J on L2(Rd) is T, i.e. complex
conjugation. A particularly useful property of J-self-adjoint operators is that their residual spectrum is always
empty, cf [19].

20.4 Microlocal analysis

It was Davies [23] who first realized that and how semiclassical methods can be applied to the study of pseu-
dospectra of non-Hermitian Schrödinger operators. Shortly thereafter, Zworski [81] pointed out that Davies’
discoveries could be related to long-established results in the microlocal theory of partial differential operators
due to Hörmander and others. We refer to a paper of Dencker, Sjöstrand and Zworski [29] for an important
development of the idea in the context of pseudodifferential operators. We state here a version of their general
result for the special case of differential operators with analytic coefficients in one dimension, in a formulation
given in [77, Thm. 11.1].

We recall some standard notions first. Let h > 0 be a (small) parameter. Given continuous functions
aj : R → C, with j = 0, . . . , n, we define a symbol

f(x, ξ) :=

n∑

j=0

aj(x)(−iξ)j , (x, ξ) ∈ R2 , (20.12)

and the associated semiclassical differential operator

Hh :=

n∑

j=0

aj(x)h
j dj

dxj
, D(Hh) := C∞

0 (R) . (20.13)
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The Poisson bracket {·, ·} is defined as

{u, v} :=
∂u

∂ξ

∂v

∂x
− ∂u

∂x

∂v

∂ξ
(20.14)

and, for u = f , v = f̄ , it simplifies to

{f, f̄} = 2i

(
∂ℑf
∂ξ

∂ℜf
∂x

− ∂ℜf
∂ξ

∂ℑf
∂x

)
.

The closure of the set

Λ :=
{
f(x, ξ) : (x, ξ) ∈ R2,

1

2i
{f, f̄}(x, ξ) > 0

}
(20.15)

is referred to as the semiclassical pseudospectrum of Hh, cf [29]. In the special case of Hh being a Schrödinger
operator with an analytic potential, the condition 1

2i{f, f̄}(x, ξ) > 0 reduces to ℑV ′(x) 6= 0 and ξ 6= 0, because
the sign of ξ can be chosen freely, and it is also equivalent to the twist condition of [77, Sec. III.11]. The
nonvanishing of {f, f̄} is a classical analogue of the operator Hh not being normal [29].

Theorem 20.1 (Semiclassical pseudomodes.). Let the functions aj, j = 0, . . . , n, be analytic and let Hh be the
semiclassical differential operator (20.13). Then for any z ∈ Λ, there exist C = C(z) > 1, h0 = h0(z) > 0 and
an h-dependent family of C∞

0 (R) functions {ψh}0<h≤h0 with the property that, for all 0 < h ≤ h0,

‖(Hh − z)ψh‖ < C−1/h ‖ψh‖.

Such of family of functions is called a pseudoeigenfunction (or pseudomode) for the operatorHh correspond-
ing to pseudoeigenvalue (or approximate eigenvalue) z.

In Appendix 20.8, we include a proof of the theorem in the special case of Schrödinger operators.
The theorem can be generalized significantly beyond the restrictive assumption that the coefficients are

globally analytic. As stated in [77, Thm. 11.1], one only needs that the aj are analytic in a neighborhood
of some x0 ∈ R corresponding to an (x0, ξ0) ∈ R2 putting z ∈ Λ. Furthermore, [29] shows the existence of
pseudomodes for pseudodifferential operators (which include differential operators) whose symbols are only
assumed to be smooth (and bounded). The price of abandoning the assumption of analytic coefficients is a
slower rate of growth. In the smooth case, instead of an upper bound of C−1/h‖ψh‖ one has an upper bound
for each N ∈ N and constant C(N) > 0 depending on N :

‖(Hh − z)ψh‖ <
hN

C(N)
‖ψh‖ ,

for all 0 < h ≤ h0. For the examples to follow, it will be sufficient to consider the analytic case as written in
Theorem 20.1.

Although Theorem 20.1 is stated for semiclassical operators, scaling techniques allow its application to
non-semiclassical operators where the spectral parameter tends to infinity. This is based on the principle that
the semiclassical limit is equivalent to the high-energy limit after a change of variables; this principle is made
concrete in many of the examples below. For further details, the reader could consult [82].

20.5 Metric operators

The similarity relation (20.2) is closely related to the quasi-Hermiticity of H :

H∗Θ = ΘH , (20.16)

where Θ is a positive operator called a metric [30, 66]. The terminology comes from the observation that H is
formally self-adjoint with respect to the modified inner product 〈·,Θ·〉. More precisely, we have

Proposition 20.1. The operator H is similar to a self-adjoint operator via a bounded and boundedly invertible
positive transformation ( i.e. (20.2) holds) if, and only if, H is quasi-Hermitian with a positive, bounded, and
boundedly invertible metric ( i.e. (20.16) holds).

Proof. If H satisfies (20.16) with a bounded and boundedly invertible Θ > 0, then the similarity relation (20.2)
to a self-adjoint operator h holds with any Ω satisfying the decomposition Θ = Ω∗Ω. Conversely, if (20.2) holds
with a bounded and boundedly invertible Ω, then it is easy to check that (20.16) holds with Θ = Ω∗Ω > 0.

As emphasized in [71], fundamental problems arise if one starts to relax the conditions on boundedness or
bounded invertibility of the transformations.



342 III Pseudospectra

• Trivial pseudospectra. We say that the pseudospectrum of H is trivial if there exists a fixed constant C
such that, for all ε > 0,

σε(H) ⊆
{
z ∈ C

∣∣ dist
(
z, σ(H)

)
< Cε

}
.

That is, the pseudospectrum of H is contained in a tubular neighbourhood of the spectrum of H (although of
possibly larger radius than ε). Recalling the text below (20.4), the pseudospectra of self-adjoint and normal
operators are trivial.

Proposition 20.2. Let H be quasi-Hermitian (20.16) with a positive, bounded and boundedly invertible metric.
Then the pseudospectrum of H is trivial.

Proof. It is enough to recall Proposition 20.1 and (20.8); the condition number plays the role of the constant C.

Proposition 20.2 can be conveniently used in the reverse sense, where the presence of nontrivial pseu-
dospectrum for a given operator H immediately implies that the operator cannot possess a physically relevant
(i.e. bounded and boundedly invertible) metric.

20.6 Basis properties

Let H be an operator with compact resolvent throughout this section. Then the spectrum of H consists entirely
of isolated eigenvalues with finite (algebraic) multiplicities. Below, we recall that similarity to a self-adjoint
operator, or quasi-Hermiticity, is equivalent to having the set of eigenvectors form a Riesz basis.

First, we recall the definition of a basis. We say that {ψk}∞k=1 is a (Schauder or conditional) basis if every
ψ ∈ H has a unique expansion in the vectors {ψk}, i.e.

∀ψ ∈ H, ∃!{αk}∞k=1, ψ =

∞∑

k=1

αkψk , (20.17)

where the infinite sum is understood as a limit in the strong topology of H.

• Riesz basis. We say that {ψk}∞k=1, normalized to 1 in H, forms a Riesz (or unconditional) basis if it forms
a basis and the inequality

∀ψ ∈ H, C−1‖ψ‖2 ≤
∞∑

k=1

|〈ψk, ψ〉|2 ≤ C‖ψ‖2 (20.18)

holds with a positive constant C independent of ψ (see [26, Thm.3.4.5] for equivalent formulations). In view of
the Parseval equality, for any self-adjoint operator with a purely discrete spectrum one may choose orthonormal
eigenvectors which form a Riesz basis with C = 1. For non-self-adjoint operators, however, it is not even clear
that the eigenfunctions form a basis or even a complete set in H.

Proposition 20.3. Let H be an operator with compact resolvent for which σ(H) ⊂ R. Then H is quasi-
Hermitian with a positive, bounded and boundedly invertible metric ( i.e. (20.16) holds) if, and only if, the
eigenfunctions of H form a Riesz basis ( i.e. (20.18) holds).

Proof. If H is quasi-Hermitian with bounded, boundedly invertible, and positive metric Θ, then, by Proposi-
tion 20.1, H is similar to a self-adjoint operator h via a bounded and boundedly invertible transformation Ω.
Consequently, Ωψk/‖Ωψk‖ form a complete orthonormal family in H satisfying the Parseval inequality, from
which (20.18) follows. Conversely, assuming (20.18), we construct a bounded and boundedly invertible positive
operator L :=

∑∞
k=1 ψk〈ψk, ·〉. It is easy to check that (20.16) holds with Θ = L−1.

Combining Proposition 20.3 with Proposition 20.2, we see that the pseudospectrum can be employed as a
useful indicator of whether a non-self-adjoint operator possesses a Riesz basis.

• No basis. Eigensystems of non-self-adjoint operators can have very wild basis properties. We recall that
if {ψk}∞k=1 is a basis, then there exists a sequence {φk}∞k=1 for which the pair {ψk}, {φk} is biorthogonal,
i.e. 〈φm, ψn〉 = δm,n, such that αk = 〈φk, ψ〉, cf [26, Lem. 3.3.1]. Let us denote the associated one-dimensional
projections as

Pk := ψk〈φk, ·〉. (20.19)

The uniform boundedness principle is used to derive the following standard result.

Proposition 20.4. If {ψk}∞k=1 is a basis, then both Pk and
∑N
k=1 Pk are uniformly bounded in H.
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Proof. The definition (20.17) implies that, for every ψ ∈ H,

∀ε > 0, ∃Nψ,ε, ∀n,m > Nψ,ε,

∥∥∥∥∥
n∑

k=1

Pkψ −
m∑

k=1

Pkψ

∥∥∥∥∥ < ε . (20.20)

In particular, putting m := n−1 and ε := 1, we obtain ‖Pnψ‖ < 1 if n > Nψ,ε. Consequently, supk ‖Pkψ‖ <∞
for every ψ ∈ H. Finally, the uniform boundedness principle [61, Thm. III.9] yields supk ‖Pk‖ <∞. The proof
of the second claim is analogous, see also [26, Lem. 3.3.3].

For operatorsH with positive discrete spectrum, the basis property of the eigensystem ofH may be excluded
by the following corollary of [24, Thm. 3].

Proposition 20.5. Let H be an operator with compact resolvent, let its eigenvalues be simple and satisfy
λn ≥ bnβ for some b, β > 0 and all n ∈ N and let the corresponding eigenvectors form a basis. Then there exist
positive constants k,m such that

‖(H − z)−1‖ ≤ k
(1 + |z|2)m2

|ℑz| , z /∈ R. (20.21)

In Section 20.7 we shall give a number of examples of non-self-adjoint operators which have no basis of
(generalized) eigenvectors. This will immediately follow upon demonstrating that the norms of their eigenpro-
jectors diverge or that the pseudospectrum of H does not obey the restriction (20.21). The resolution of the
identity, which plays a central role in quantum mechanics, is simply not available.

• Completeness. There exist weaker notions of basis in the literature (e.g. Abel-Lidskii basis), but they are
not nearly as useful in applications. The weakest is to merely require the completeness of {ψk}∞k=1, i.e. that the
span of {ψk}∞k=1 is dense in H, or equivalently

(
span{ψk}∞k=1)

⊥ = {0}. We have a converse of Proposition 20.4
for a minimal complete set {ψk}∞k=1, which implies that the projections Pk in (20.19) may be defined: if the

sums of projectors
∑N

k=1 Pk are uniformly bounded, then {ψk}∞k=1 is a basis, cf [26, Lem. 3.3.3].

20.7 Examples

In this last section we present a number of examples exhibiting remarkable pseudospectral behaviour due to non-
Hermiticity and use them to demonstrate that the concept of pseudospectrum is a more relevant consideration
for the description of the operators, specifically in the context of quantum mechanics.

We restrict ourselves mainly to the concrete situation of one-dimensional differential operators familiar from
“non-Hermitian quantum mechanics”. However, we emphasize that there exist versions of Theorem 20.1 for
partial differential (even pseudodifferential) operators too (see [81, 29]) and it is straightforward to construct
similar examples with non-trivial pseudospectra in higher dimensions. Non-Hermitian spectral effects for PT-
symmetric waveguides were previously observed in [19, 49, 20].

To avoid complicated notation, we study an operator H which changes in each subsection. Where there is a
parameter dependence, we may write a subscript as in Hh. The notation Hsa will denote a self-adjoint operator,
related to H usually via a formal (unbounded) conjugation. The symbol C (occasionally with a subscript) will
denote a generic constant which may change from line to line.

20.7.1 The imaginary Airy operator

The non-self-adjoint operator

H := − d2

dx2
+ ix on L2(R) (20.22)

arises in the Ginzburg-Landau model of superconductivity [10, 12, 11] and also in the study of resonances of
quantum Hamiltonians with electric field via the method of complex scaling [40]. It is well defined as a closed
operator when considered on its maximal domain

D(H) :=
{
ψ ∈ L2(R) | − ψ′′ + ixψ ∈ L2(R)

}
. (20.23)

Indeed, such a definition coincides with the closure of (20.22) initially defined on smooth functions of compact
support, cf [33, Cor. VII.2.7]. More importantly, H is m-accretive, i.e., the numerical range Num(H) is
contained in the closed right complex half-plane and the resolvent bound ‖(H − z)−1‖ ≤ |ℜz|−1 holds for
all z with ℜz < 0. The adjoint H∗ of H is simply obtained by replacing i with −i in (20.22) and (20.23).
Furthermore, H is PT-symmetric and T-self-adjoint.
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• Spectrum. Integrating by parts, we easily check that

‖ψ′‖2 = 〈ψ′, ψ′〉 = 〈ψ,−ψ′′〉 ≤ ‖ψ‖‖ψ′′‖ ≤ δ‖ψ′′‖2 + δ−1‖ψ‖2 , (20.24)

‖Hψ‖2 = ‖ψ′′‖2 + ‖xψ‖2 + 2ℜ〈ixψ,−ψ′′〉 = ‖ψ′′‖2 + ‖xψ‖2 + 2ℜ〈iψ, ψ′〉
≥ ‖ψ′′‖2 + ‖xψ‖2 − 2‖ψ‖‖ψ′‖ ≥ ‖ψ′′‖2 + ‖xψ‖2 − δ‖ψ′‖2 − δ−1‖ψ‖2 ,

for every ψ ∈ C∞
0 (R) and δ > 0. Combining these inequalities for δ > 0 sufficiently small and using the density

of C∞
0 (R) in D(H), we arrive at the non-trivial fact that

D(H) =
{
ψ ∈W 2,2(R) | xψ ∈ L2(R)

}
.

Here W 2,2(R) denotes the usual Sobolev space of functions in L2(R) whose weak first and second derivatives
belong to L2(R), cf [3]. Now it is clear that D(H) is compactly embedded in L2(R) and H is an operator with
compact resolvent, cf [62, Thm. XIII.65]. It follows that the spectrum of H may consist of isolated eigenvalues
only. However, the eigenvalue equation Hψ = λψ implies that for any c ∈ R we also have Hψc = λcψc with
ψc(x) := ψ(x+ c) and λc := λ− ic. Consequently, the spectrum of H is empty,

σ(H) = ∅ .

This is a peculiar property, possible for non-self-adjoint operators only. We deduce that H is not similar to a
self-adjoint operator, via a bounded and boundedly invertible similarity transform.

• Pseudospectrum. While H has no spectrum, the pseudospectrum of H is far from trivial. A priori, we
only know that the pseudospectrum is symmetric with respect to the real axis, i.e. (20.11) holds, which follows
from the PT-symmetry of H . In order to apply Theorem 20.1, we have to convert H into a semiclassical
operator. This can be achieved by introducing the unitary transform U on L2(R) defined by

(Uψ)(x) := τ1/2ψ(τx) , (20.25)

where τ ∈ R is positive (and typically large in the sequel). Then

UHU−1 = τHh with Hh := −h2 d2

dx2
+ ix and h := τ−3/2 .

For the symbol f = ξ2 + ix associated with Hh we have {f, f̄} = −4iξ. Hence, the interior of the semiclassical
pseudospectrum is Λ = {z ∈ C | ℜz > 0}, using definition (20.15).

The same translation argument which shows that the spectrum is empty shows that

‖(H − z)−1‖ = ‖(H −ℜz)−1‖.

Note that 1 ∈ Λ. Applying the unitary relation and Theorem 20.1, there exists some C > 1 where, for h
sufficiently small (that is, τ > C1 for some C1 > 0 sufficiently large),

‖(H − τ)−1‖ = τ−1‖(Hh − 1)−1‖ > h2/3C1/h .

We then have that τ ∈ σε(H) whenever τ−1Cτ
3/2

> ε−1. We may simplify the inequality by taking logarithms:
it reads

τ3/2 − log τ

logC
>

1

logC
log

1

ε
.

Since log τ is negligible compared with τ3/2 for τ > 0 large, a sufficient condition to guarantee that τ ∈ σε(H)
is given by

τ > C2

(
log

1

ε

)2/3

with some C2 > 0; this gives the correct order of growth as ε→ 0.
Since the resolvent norm only depends on the real part of the spectral parameter z, we arrive at the

conclusion that there exist C1, C2 > 0 such that, for all ε > 0,

σε(H) ⊇
{
z

∣∣∣∣∣ ℜz ≥ C1 & ℜz ≥ C2

(
log

1

ε

)2/3
}
.

In particular, for any ε there are complex points with positive real part and magnitude only logarithmically
large in 1/ε that lie in the pseudospectrum σε(H).

A quite precise study of the resolvent norm of H as ℜz → ∞ can be found in [18, Cor. 1.4].
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• Time evolution. Since H is m-accretive, it is a generator of a one-parameter contraction semigroup,
e−tH , on L2(R). Here t can be interpreted as time, viewing ψ(t, x) = e−tHψ(0, x) as arising as a solution of the
parabolic equation ∂tψ +Hψ = 0. Using the Fourier transform, it is possible to show (cf [26, Ex. 9.1.7]) that

‖e−tH‖ = e−t
3/12 .

Note that the time decay rate is not determined by the (nonexistent) spectrum of H . In fact, the superexpo-
nential decay rate implies by itself that the spectrum of H must be empty. We refer to [12] for pseudospectral
estimates on the decay of the semigroup in analogous higher-dimensional models.

20.7.2 The imaginary cubic oscillator

The non-self-adjoint (but T-self-adjoint) operator

H := − d2

dx2
+ ix3 on L2(R) (20.26)

is considered the fons et origo of PT-symmetric quantum mechanics [15, 16], but it was also considered pre-
viously in the context of statistical physics and quantum field theory [34]. The existence of a metric operator
and other spectral and pseudospectral properties of H have been recently analysed in [71]. Let us recall the
basic results here, referring to the last article for more details and references.

• Spectrum. The operator H is again m-accretive when considered on its maximal domain (i.e. (20.23)
with x replaced by x3) and its resolvent is compact. Contrary to the imaginary Airy operator, the spectrum is
not empty; it is composed of an infinite sequence of discrete real eigenvalues, cf [69, 32, 35]. As a new result,
it is proved in [71] that the eigenfunctions form a complete set in L2(R).

• Pseudospectrum. Employing the unitary transform (20.25), we introduce a semiclassical analogue of H ,

UHU−1 = τ3Hh with Hh := −h2 d2

dx2
+ ix3 and h := τ−5/2 .

For the symbol f associated with Hh we now have {f, f̄} = −12iξx2, so that the interior of the semiclassical
pseudospectrum is Λ = {z ∈ C | ℜz > 0 & ℑz 6= 0}.

The translation argument used for the imaginary Airy operator is unavailable for the imaginary cubic
oscillator, but we nonetheless have by Theorem 20.1 for any z ∈ Λ, there exists C > 0 sufficiently large and h0
sufficiently small that, for all 0 < h ≤ h0,

‖(H − τ3z)−1‖ = τ−3‖(Hh − z)−1‖ > h6/5C1/h . (20.27)

One may check that the exponential growth in Theorem 20.1 may be made uniform on compact subsets K ⊂ Λ,
as explained at the end of Appendix 20.8. What is more, one may extend the reasoning to include real z > 0,
despite the fact that formally z /∈ Λ: one only needs to verify (20.87) by hand, which is straightforward.

Since we are using a scaling argument, we may reduce to fixing δ > 0 and letting

K = {z ∈ C | |z| = 1 & | arg z| < π/2− δ}.

We therefore have that, for some positive constant C depending on δ, the pseudospectrum σε(H) contains τ3K

so long as τ > 0 is large enough to verify τ−3Cτ
5/2

> ε−1. We may then identify τ3 with the absolute value
of the spectral parameter, and so h = τ−5/2 = |z|−5/6. Taking logarithms and discarding the negligible term
involving logarithms, as before, allows us to conclude that, for any δ > 0, there exist C1, C2 > 0 such that, for
all ε > 0,

σε(H) ⊇
{
z ∈ C

∣∣∣∣∣ |z| ≥ C1 & | arg z| <
(π
2
− δ
)

& |z| ≥ C2

(
log

1

ε

)6/5
}
. (20.28)

Again, for any ε there are complex points with positive real part, non-zero imaginary part, and large magnitude
that lie in the pseudospectrum σε(H). A numerical computation of some pseudospectral lines of H is presented
in Figure 20.1. The asymptotic behaviour of the pseudospectral lines is studied in [18, Prop. 4.1]. The result
is surprising because it implies the existence of pseudoeigenvalues very far from the spectrum of H . In view
of (20.5), it follows that a very small perturbation V added to H can create (genuine) eigenvalues very far from
the spectrum of the unperturbed operator H . In this way, the spectrum is highly unstable.
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Figure 20.1: Spectrum (red dots) and pseudospectra (enclosed by the blue contour lines) of the imaginary cubic
oscillator.

As a consequence of the existence of the highly non-trivial pseudospectrum, we also get that H is not quasi-
Hermitian with a bounded and boundedly invertible metric (Proposition 20.2), it is not similar to a self-adjoint
operator via bounded and boundedly invertible transformations (Proposition 20.1), and the eigenfunctions of H
do not form a Riesz basis (Proposition 20.3). It has been shown recently in [39] that the norms of the spectral
projections grow as

lim
k→∞

log ‖Pk‖
k

=
π√
3
, (20.29)

and therefore the eigenfunctions cannot form a basis, cf Proposition 20.4. Alternatively, we can derive the
latter using Proposition 20.5 and (20.27).

20.7.3 An advection-diffusion operator

The examples which follow are similar to self-adjoint operators via unbounded transformations. In order to
emphasize the danger of formal manipulations when the transformations are allowed to be unbounded, in this
subsection we present a very simple non-self-adjoint operator for which heuristic approaches would lead to a
number of striking paradoxes. The example is borrowed from [60, 25], although it is natural to expect that it
has appeared in many other works. We are indebted to E. B. Davies and M. Marletta [28] for telling us about
this example and for proposing the possibility of the non-invariance of point spectra discussed below.

Consider the differential operator

H := − d2

dx2
+

d

dx
on L2(R) . (20.30)

The diffusion term −d2/dx2 corresponds to the familiar free Hamiltonian in quantum mechanics, which is
self-adjoint when defined on W 2,2(R). The advection term represents a relatively bounded perturbation with
relative bound equal to zero, so that D(H) =W 2,2(R), cf [44, Sec. IV.1.1]. Employing the first line of (20.24),
we find

|ℑ(ψ,Hψ)| ≤ ‖ψ‖‖ψ′‖ = ‖ψ‖
√
ℜ(ψ,Hψ)

for every ψ ∈ D(H). It follows that the numerical range Num(H) is contained in the parabolic domain
Σ := {z ∈ C | ℜz ≥ 0 & |ℑz|2 ≤ ℜz}. In particular, H is not only m-accretive but even m-sectorial, meaning
that, in addition, its numerical range is a subset of a sector in the complex plane. By conjugating with the
Fourier transform, it is easy to check that the spectrum of H coincides with the parabola

σ(H) = ∂Σ = {z ∈ C | ℜz ≥ 0 & |ℑz|2 = ℜz} ,

see Figure 20.2.

• Non-invariance of the continuous spectrum. Completing the square, we may write

H = −
(

d

dx
− 1

2

)2

+
1

4
.

This suggests that the similarity transformation Ω := e−x/2 formally maps H to a shifted free Hamiltonian

Hsa := − d2

dx2
+

1

4
, (20.31)



III.20 Pseudospectra in non-Hermitian quantum mechanics 347

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−2

0

2

Figure 20.2: Spectrum of the advection-diffusion operator (red parabola) compared with the spectrum of the
shifted free Hamiltonian (blue line) to which the former is formally similar and pseudospectral contours (green
curves parallel to the parabola).

which is self-adjoint on D(Hsa) := W 2,2(R). The word “formally” is absolutely essential here, since neither Ω
nor Ω−1 is bounded and (20.2) cannot hold as an operator identity. Nevertheless, one can check that (20.2)
holds on smooth functions with compact support, which form a dense subset of both D(H) and D(Hsa). Now
we arrive at a surprising paradox because

σ(Hsa) = [ 14 ,∞)

substantially differs from the complex parabolic spectrum of H , see Figure 20.2. This is caused by the fact
that the continuous spectrum is in general not preserved by unbounded similarity transformations.

• Non-invariance of the point spectrum. The situation is in fact even worse, since it may also happen
that even the eigenvalues are not preserved by the similarity transformation Ω. Let us perturb the self-adjoint
Hamiltonian H0 by a smooth non-trivial potential V ≤ 0 which has a compact support in R. Then it is
well known (see, e.g., [65, Cor. 4.5.2]) that the self-adjoint operator Hsa + V possesses at least one eigenvalue
λ < 1/4. The corresponding eigenfunction ψ has asymptotics exp(−

√
1/4− λ |x|) as x → ±∞. It is also

known that λ is positive provided that the supremum norm of V is sufficiently small, cf [72]. However, the
corresponding “eigenfunction” Ω−1ψ of H + V is not admissible because it is not square-integrable on R.

• Pseudospectrum. Even if H is not self-adjoint (nor T-self-adjoint or PT-symmetric), it is normal (and
in fact real). Hence the pseudospectra are trivial; see Figure 20.2. The situation would be very different
if we considered (20.30) on a finite interval (0, L), subject to Dirichlet boundary conditions. Let us denote
this operator by H(L). Then the similarity transformation Ω = e−x/2 is bounded and boundedly invertible

and (20.2) with the self-adjoint operator H
(L)
sa that acts as (20.31) on (0, L), subject to Dirichlet boundary

conditions, is well defined. We indeed have

σ(H(L)) = σ(H(L)
sa ) =

{(
πk

L

)2

+
1

4

∣∣∣∣ k = 1, 2, . . .

}
.

However, the pseudospectra of H(L) substantially differ from those of H
(L)
sa ; the former approach the parabola

∂Σ in the limit as L→ ∞, thus reflecting better the wild spectral instability of the limit; see Figure 20.2. We
refer to [60] for more details.

20.7.4 The rotated harmonic oscillator

The quantum Hamiltonian of the harmonic oscillator

Hsa := − d2

dx2
+ x2 on L2(R) (20.32)

is self-adjoint on its maximal domain. The operator Hsa has compact resolvent and its eigenvalues are well-
known:

σ(Hsa) = {2k + 1 | k = 0, 1, . . .} . (20.33)

Of course, the pseudospectrum of Hsa is trivial; see Figure 20.4.
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• Creation and annihilation operators. Recall also the factorization Hsa = a∗a+ 1, where a∗ and a are
the creation and annihilation operators defined by

a∗ := − d

dx
+ x , a :=

d

dx
+ x , (20.34)

with D(a) = D(a∗) := W 1,2(R) ∩ L2(R, x2 dx). As the notation suggests, a∗ and a are mutually adjoint. The
operator domain D(a) in fact coincides with the form domain ofHsa, for which C

∞
0 (R) is a core. We incidentally

remark that a∗ and a represent interesting examples of highly non-self-adjoint operators for which the resolvent
operator is not defined at any point of the complex plane:

σ(a∗) = σ(a) = C .

Indeed, ψ(x) := exp (λx − x2/2) is an eigenfunction of a for every λ ∈ C. On the other hand, the point
spectrum of a∗ is empty, but every complex point belongs to the residual spectrum of a∗. The latter follows by
the general fact that the orthogonal complement of the range of a densely defined closed operator in a Hilbert
space is equal to the kernel of its adjoint.

• Complex dilation. The rotated harmonic oscillator H is formally obtained by the similarity transfor-
mation (20.2), where Ω−1 is the complex dilation operator defined by (Ω−1ψ)(x) := eiθ/4ψ(eiθ/2x). If θ were
purely imaginary, Ω−1 would be unitary, but we assume θ ∈ R when Ω−1 is in fact unbounded. The formal
computation yields

H = −e−iθ d2

dx2
+ eiθx2 = e−iθ

(
− d2

dx2
+ e2iθx2

)
on L2(R) , (20.35)

which we take as a definition and restrict to |θ| < π/2. The operator H is sometimes referred to as Davies’
oscillator due to his important investigation [22] (see also [26, Sec. 14.5] for a summary and other references).
The presence of the prefactor e−iθ in our definition is inessential, but it is useful for symmetry reasons. In
particular, we have

|ℑ(ψ,Hψ)| ≤ | tan θ| ℜ(ψ,Hψ) = | sin θ| (ψ,Hsaψ)

for every ψ ∈ C∞
0 (R). That is, under our restriction on θ, the operator H can be understood as obtained

as a relatively form bounded perturbation of Hsa, keeping the same form domain D(a). The numerical range
Num(H) lies in the symmetric sector {z ∈ C | |ℑz| ≤ | tan θ|ℜz & ℜz ≥ 0}. Unless θ = 0, H is neither
self-adjoint nor PT-symmetric, but it is always T-self-adjoint.

• Spectrum and pseudospectrum. The resolvent of H is again compact and the spectrum coincides with
that of Hsa:

σ(H) = σ(Hsa) . (20.36)

In particular, the spectrum is real. However, the pseudospectrum and basis properties of the eigenfunctions are
very different from the self-adjoint situation. In the same way as we applied Theorem 20.1 to the imaginary
Airy operator or cubic oscillator, we find

Λ = {z ∈ C\{0} | | arg z| < θ}.

When θ = 0, Λ is empty and Hsa is self-adjoint, so that we know that its pseudospectrum is trivial. If θ 6= 0,
however, we have exponential growth for the resolvent indicated by Theorem 20.1, which may be made uniform
for a compact subset contained in the interior of the semiclassical pseudospectrum. What is more, from [41,
Thm. 1.1, Rem. 1.3], we have upper bounds for the resolvent norm of essentially the same exponential type,
though the gap in the constant leaves much to be understood about the precise behaviour.

A scaling argument similar to that used for (20.28) gives us an idea of size of the ε-pseudospectrum, which
includes more or less those z ∈ Num(H) for which |z| > C log(1/ε), which grows very slowly as ε→ 0.

Specifically, for any δ > 0, we have from Theorem 20.1 that there exist C1, C2 > 0 such that, for all ε > 0,

σε(H) ⊇
{
z

∣∣∣∣ |z| > C1 & | arg z| ≤ θ − δ & |z| > C2 log
1

ε

}
.

The numerical range inequality (20.4) gives that

σε(H) ⊆ {z | dist(z,Num(H)) < ε} .
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Figure 20.3: Diagram of region (dark gray) which contains σε(H) and region with pseudomodes (light gray)
which is definitely contained in σε(H).

What is more, rescaling the upper bound [41, Eq. (1-8)] gives that there exists C3 > 0 for which

∥∥(H − z)−1
∥∥ ≤ C3e

C3|z|

dist(z, σ(H))
.

We therefore see that z cannot be in the pseudospectrum unless it is logarithmically large in 1/ε or close to
the spectrum:

σε(H) ⊆
{
z

∣∣∣∣ |z| >
1

C3

(
log

1

ε
− logC3

)}
∪
{
z
∣∣∣ dist(z, σ(H)) < C3εe

C3|z|
}
.

In Figure 20.3, we have a diagram illustrating the sorts of regions containing and contained by the pseudospec-
trum. We emphasize that the constants involved were chosen by hand and do not reflect a precise application
of the relevant theorems. As in the previous examples, for any ε > 0 there are complex points with positive
real part, non-zero imaginary part, and large magnitude that lie in the pseudospectrum σε(H); see Figure 20.4.
The asymptotic behaviour of the pseudospectrum has been also studied in [56, 18].

• Wild basis properties. H0 is self-adjoint and we know a priori that its eigenfunctions (after normalization)
form a complete orthonormal family in L2(R). If θ 6= 0, it is still true that the eigenfunctions of H and H∗ (after
a suitable normalization) form a biorthonormal sequence. However, the eigenfunctions do not form a Riesz
basis or even a basis, as can be deduced from the non-trivial pseudospectrum (cf Propositions 20.3 and 20.5).

Furthermore, it was shown in [27] that the norms of the spectral projections ofH associated with eigenvalues
2k+1 grow exponentially as k → ∞, and the exact exponential rate of growth was identified. This exponential
growth rate was sharpened in [38, Thm. 1.2, Rem. 1.3] to include an asymptotic expansion for the remainder
and a generalization to operators including −d2/dx2 + e2iθ|x|2m for m ∈ N and natural restrictions on θ.

In the case of the rotated harmonic oscillator, one has from [79, Cor. 1.7, Ex. 3.6] an exact integral formula
leading to a similar asymptotic expansion and a simplification of the formula for the exponential growth rate
to

lim
k→+∞

log ‖Pk‖
k

=
1

2
log

(
1 + | sin θ|
1− | sin θ|

)
. (20.37)

The new and very short proof of this formula using special functions is given in Appendix 20.9.
Summing up, despite the reality of the spectrum ofH and the existence of a formal similarity transformation

given by a complex dilation, we see that H exhibits very different properties from those enjoyed by self-adjoint
operators.

20.7.5 The shifted harmonic oscillator

The shift operator Tt is, for t ∈ R, well defined as a bounded operator on L2(R) by the formula (Ttψ)(x) :=
ψ(x + t). It is in fact a unitary group Tt = etd/dx with the self-adjoint generator −i d/dx defined on W 1,2(R)
being the familiar momentum operator in quantum mechanics. Let Hsa be again the self-adjoint harmonic
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oscillator (20.32) and perform the formal conjugation (20.2) with the unbounded operator Ω := T−i. Then we
arrive at the non-self-adjoint operator

H = − d2

dx2
+ (x+ i)2 on L2(R) , (20.38)

which we again take as a definition. The extra term 2ix−1 clearly represents a relatively bounded perturbation
of Hsa with the relative bound equal to zero, so that D(H) = D(Hsa). It is also relatively form bounded with
relative bound equal to zero, so that H is m-sectorial on D(a). The operator H is PT-symmetric and T-self-
adjoint.

• Spectrum and pseudospectrum. The above remarks on the smallness of the perturbations imply that
the resolvent of H is compact. Notice that conjugation with the Fourier transform casts H into a unitarily
equivalent operator

Ĥ :=

(
−i d

dx
− i

)2

+ x2 ,

which is related to (20.32) via the unbounded similarity transform Ω̂ψ(x) := exψ(x). Using that the eigenfunc-
tions of the harmonic oscillator (20.32) are known to decay superexponentially, it can be showed that

σ(H) = σ(Hsa) ,

analogously to (20.36).
Numerical computations show that the pseudospectrum of H is non-trivial; see Figure 20.4. Because of

the different scaling properties of x2 and x, Theorem 20.1 is not directly applicable. Nonetheless, we show, by
adapting the construction of pseudomodes, that there are indeed large complex pseudoeigenvalues in parabolic
regions of the complex plane.

Theorem 20.2. Let H be the operator from (20.38). Fix ε > 0. Then there exists C > 0 sufficiently large
such that for all z ∈ C for which ℜz > C and

|ℑz| ≤ 2(1− ε)
√
ℜz,

we have the resolvent lower bound

‖(H − z)−1‖ ≥ 1

C
e
√
ℜz/C .

We postpone the proof to Appendix 20.8.

• Wild basis properties. The pseudospectral criteria of Propositions 20.2, 20.3 and 20.5 show that the
eigenfunctions ofH cannot form a Riesz basis or even a basis. Moreover, explicit formulas for the eigenfunctions
can be used to prove their completeness in L2(R) and to find the rate of the norms of spectral projections,
namely

lim
k→+∞

log ‖Pk‖√
k

= 23/2, (20.39)

see [51, Sec. 2] for the detailed proof.

20.7.6 The decaying and singular potential perturbations of harmonic oscillator

Examples in previous sections show that the perturbations of harmonic oscillator may have very non-trivial
pseudospectra and wild basis properties, although the spectrum is preserved. In order not to leave an impression
that this is typical for any perturbation of the harmonic oscillator, we mention that the system of all generalized
eigenfunctions of perturbations H = Hsa+V ofHsa in (20.32) contains a Riesz basis when the perturbation V is
multiplication by a function satisfying, for instance, V ∈ Lp(R), 1 ≤ p <∞, or V is a finite linear combination
of δ-potentials with complex couplings; cf [4, 5, 50] for details and additional examples. It is also showed
in these works that the eigenvalues of the perturbed operator H , excluding possibly a finite number, remain
simple. Therefore, if the perturbation satisfies some symmetries, e.g. it is PT-symmetric, we can conclude that
the eigenvalues of H are real, again up to a finite number. Moreover, if we insert a sufficiently small coupling
constant ε in front of V , we obtain that all eigenvalues are simple and real. When the coupling constant is
increased, low lying eigenvalues may collide, create a Jordan block, and then become complex. This behaviour
is illustrated in Figure 20.5 for an example of H where V is PT-symmetric and has the form (20.40).
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Figure 20.4: From top to bottom: Pseudospectra of the self-adjoint (20.32), rotated (20.35) with θ = π/4 and
shifted (20.38) harmonic oscillators which are formally conjugate to each other. Although the spectra (red
dots) coincide in all these examples, the pseudospectra exhibit striking differences.
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Figure 20.5: Real parts of eigenvalues of H with (20.40) as a function of ε.

• Pseudospectrum. Let us recall that the facts that the eigensystem contains a Riesz basis and the spectral
properties described above imply that H is similar to a diagonal operator up to a possible finite number of
finite dimensional Jordan blocks corresponding to the low lying eigenvalues. This in turn means that the
pseudospectrum of H is trivial if there are no Jordan blocks. If λ0 is a degenerate eigenvalue for which the
algebraic multiplicity is strictly larger than the geometric one, the Jordan block result in a more singular
behaviour of the resolvent, i.e.

‖(H − z)−1‖ ∼ |λ0 − z|−n, n > 1,
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around λ0. This is visible in the plot of the pseudospectrum, since the peak around the degenerate eigenvalue
λ0 is wider, i.e. the level lines are further from λ0, and we can call the pseudospectrum “almost trivial”. We
illustrate such a behaviour with the example

V (x) := iε

(
1√

|x+ 1|
− 1√

|x− 1|

)
, (20.40)

see Figure 20.6.
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Figure 20.6: Pseudospectra around low lying eigenvalues of (20.40) for three increasing values of ε. From left
to right: The simple eigenvalues (red dots) collide and create a Jordan block, then become again simple, but
complex. The Jordan block structure is indicated by the wider peak around the degenerate eigenvalue.

Similar features appear in for instance a model on a finite interval with PT-symmetric Robin boundary
conditions, cf [47, 46, 48, 45], or for a PT-symmetric square-well, cf [80, 70].

20.7.7 The gauged oscillator (Swanson’s model)

We also study the operator
H := ω a∗a+ α a2 + β (a∗)2 + ω in L2(R) , (20.41)

introduced by Ahmed in [6] and later studied by Swanson in [75]. Here the creation and annihilation operators
are defined in (20.34) (the reader is warned that a different convention is used in [75]) and ω, α, β are real
parameters. It is assumed in [75] only that

ω2 − 4αβ ≥ 0 , (20.42)

but we shall see that this condition is by far insufficient to make the results rigorous.

• Rigorous definition of the operator. First of all, we always assume ω 6= 0 in order to define H as a
perturbation of the harmonic oscillator Hsa defined in (20.32); without loss of generality, let us take ω > 0.
Second, we need to impose a condition on the smallness of α and β in order to ensure that the extra unbounded
terms r := αa2 + β (a∗)2 added in (20.41) to ω a∗a = ωHsa − ω do not completely change the character of the
operator Hsa; see Section 20.7.8 for a discussion of the relevant condition in a more general setting.

Expressing annihilation and creation operators in terms of x and d/dx, we obtain an equivalent form

H = −(ω + α+ β)
d2

dx2
+ (ω − α− β)x2 + (α− β)(

d

dx
x+ x

d

dx
) on L2(R). (20.43)

We introduce H as an m-sectorial operator with compact resolvent under the condition

ω − |α+ β| > 0. (20.44)

Notice that this condition is stronger than (20.42) and it ensures that the real part of H indeed resembles the
usual harmonic oscillator, because the constants in front of −d2/dx2 and x2 are both positive.

We define a form
t[ψ] := (ω + α+ β)‖ψ′‖2 + (ω − α− β)‖xψ‖2

+ (α− β)(〈ψ′, xψ〉 + 〈xψ, ψ′〉),
D(t) := D(a) = {ψ ∈W 1,2(R) |xψ ∈ L2(R)}.

(20.45)
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Since the imaginary part of t satisfies

|ℑt[ψ]| = |(α − β)(〈ψ′, xψ〉+ 〈xψ, ψ′〉)|
≤ |α− β|(‖ψ′‖2 + ‖xψ‖2)

≤ |α− β|
ω − |α+ β| ((ω + α+ β)‖ψ′‖2 + (ω − α− β)‖xψ‖2)

=
|α− β|

ω − |α+ β|ℜt[ψ],

(20.46)

the form t is sectorial. Moreover, it is closed, since ℜt is closed on the given domain. The operator H is then
defined via the first representation theorem, cf [44, Thm. VI.2.1], as the unique m-sectorial operator associated
with t. The operator H has a compact resolvent, which follows from [44, Thm. VI.3.3] and the fact that ℜH
has a compact resolvent; notice that ℜH is an operator associated with ℜt and it can be verified that

ℜH = −(ω + α+ β)
d2

dx2
+ (ω − α− β)x2,

as expected.

• Spectrum and pseudospectrum. Since the resolvent of H is compact, the spectrum of H is discrete. To
find the eigenvalues of H , we observe that H is formally similar to a self-adjoint harmonic oscillator. Indeed,
substituting (20.34) to (20.41) and completing the square, we find

H = −(ω − α− β)

(
d

dx
+

β − α

ω − α− β
x

)2

+
ω2 − 4αβ

ω − α− β
x2 . (20.47)

From this formula it is clear that H is self-adjoint if, and only if, α = β. For α 6= β, H is neither self-adjoint
nor T-self-adjoint, but it is PT-symmetric and in fact real. The difference α − β acts as a sort of imaginary
magnetic field. The magnetic field can be gauged out in one dimension; employing the same gauge transform
for our “imaginary magnetic field,” we formally check that H̃sa = ΩHΩ−1 with

H̃sa := −(ω − α− β)
d2

dx2
+
ω2 − 4αβ

ω − α− β
x2 , Ω := exp

(
β − α

ω − α− β

x2

2

)

The word “formal” refers again to the fact that Ω is unbounded. Nevertheless, the similarity relation H̃sa =
ΩHΩ−1 is well defined on eigenfunctions of H̃sa and we can deduce that

σ(H) = σ(H̃sa) =
{
(2k + 1)

√
ω2 − 4αβ

∣∣∣ k = 0, 1, . . .
}
,

since eigenfunctions of H are complete in L2(R). The latter can be verified by adapting the standard proof of
completeness of Hermite functions; see e.g. [17, Ex. 2.2.3].

Large pseudoeigenvalues can be shown to exist by applying Theorem 20.1, as before. Employing the unitary
transform (20.25), we introduce a semiclassical analogue of H via UHU−1 = σ2Hh, where Hh is (20.47) with
the small number h := σ−2 put in front of the derivative. For the symbol f associated with Hh we get

{f, f̄} = 8i(α− β)
[
(ω + α+ β) ξ2 − (ω − α− β)x2

]
.

Consequently, Λ has the same structure as that of the rotated harmonic oscillator: a cone in the right complex
half-plane with two semiaxes removed. Applying Theorem 20.1, we see that there is exponentially rapid
resolvent growth in the interior of the cone. Again, for any ε > 0 there are complex points with positive real
part, non-zero imaginary part, and large magnitude that lie in the pseudospectrum σε(H).

Although the straightforward application of Theorem 20.1 already shows non-trivial character of the pseu-
dospectrum, there is significantly more structure to be found. In fact, we show that H is unitarily equivalent to
a certain rotated harmonic oscillator, discussed in Section 20.7.4, and therefore information on the pseudospec-
trum and basis properties of eigenfunctions can be transferred directly to Swanson’s model. Such a unitary
equivalence is not a special property of this particular model; see Section 20.7.8.

In our particular case, a suitable unitary transform for H reads

U := U1U2U3,

(U1ψ)(x) := e−iδx
2/2ψ(x),

(U2ψ)(x) := (F−1e−iξ
2/(4δ)Fψ)(x),

(U3ψ)(x) := (2δ)1/4ψ((2δ)1/2x),

(20.48)
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where δ := (ω + α+ β)1/2(ω − α− β)−1/2 and F is the unitary Fourier transform

Fu(ξ) =
1√
2π

∫

R

e−ixξ u(x) dx, u ∈ L1(R) ∩ L2(R). (20.49)

The key steps are the relations for U∗
2U

∗
1xU1U2 and U∗

2U
∗
1pU1U2. Several straightforward manipulations and

properties of F yield that for any ϕ ∈ S (R)

U
∗
2U

∗
1xU1U2ϕ =

(
x− i

2δ

d

dx

)
ϕ, U

∗
2U

∗
1pU1U2ϕ =

(
− i

2

d

dx
− δx

)
ϕ. (20.50)

The latter implies

U∗
2U

∗
1HU1U2 = ζ

(
− 1

2δ

d2

dx2
+ 2δ

ζ

ζ
x2
)

(20.51)

with ζ :=
√
ω2 − (α+ β)2 + i(α − β). The additional rescaling U3 finally gives a multiple of the rotated

harmonic oscillator:

U∗HU = ζ

(
− d2

dx2
+
ζ

ζ
x2
)
. (20.52)

The unitary equivalence shows that the eigenvectors of H do not form a basis and the norms of the spectral
projections grow as in (20.37) with an appropriately chosen θ. Moreover, the numerically computed pseu-
dospectra for H correspond to those for the rotated oscillator in Figure 20.4 after the appropriate adjustment
of parameters. As in previous examples, the existence of non-trivial pseudospectra makes H very different from
any self-adjoint operator, despite the reality of its spectrum and a formal similarity to a self-adjoint operator.
In particular, the spectrum is highly unstable under small perturbations.

20.7.8 Elliptic quadratic operators

To better understand and extend the reduction (20.52) applied to the gauged oscillator, we now discuss general
operators which are quadratic in (x, d/dx). We begin with a quadratic symbol q : R2 → C,

q(x, ξ) := αx2 + 2βxξ + γξ2,

where the x variable represents the multiplication operator and the ξ variable represents the self-adjoint mo-
mentum operator −i d/dx defined on W 1,2(R). Such a representation necessarily involves a choice for xξ
between x(d/dx) and (d/dx)x; in the quadratic case, the Weyl quantization makes the choice

xξ 7→ 1

2

(
x
(
− i

d

dx

)
+
(
− i

d

dx

)
x

)
.

This choice ensures that real-valued q lead to self-adjoint operators, in addition to other convenient properties.
(See, for instance, [31, Chap. 7] or [43, Sec. 18.5] for a far more general setting.)

We therefore arrive at the operator

Q := qw(x, ξ) = αx2 − iβ

(
x
d

dx
+

d

dx
x

)
− γ

d2

dx2
,

DQ := {u ∈ L2(R)
∣∣ Qu ∈ L2(R)}.

(20.53)

The characterization of the domain as the graph closure of the restriction to S (R) or C∞
0 (R) may be found in

[42, pp. 425–426].

• Ellipticity It is natural to assume that q(x, ξ) only vanishes at the origin:

q(x, ξ) = 0 =⇒ (x, ξ) = (0, 0). (20.54)

However, this is not sufficient to rule out degenerate behaviour of Q, and so one adds the assumption that

q(R2) 6= C. (20.55)

These conditions together assure us that there exists some nonzero complex number µ ∈ C for which

ℜ(µq(x, ξ)) ≥ |(x, ξ)|2 (20.56)
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and thus ℜ(µQ) = 1
2 (µQ + µQ∗) acts like a harmonic oscillator.

If (20.54) holds but (20.55) fails, we find ourselves in a situation resembling that of a creation or annihilation
operator (20.34) squared: either dimN(Q − z) = 2 for all z ∈ C or dimR(Q − z)⊥ = 2 for all z ∈ C; see [58,
Sec. 3.1]. This is precisely the situation which arises for the gauged oscillator, Section 20.7.7, when (20.42)
holds but (20.44) fails.

Under (20.54) and (20.55), the spectral theory of the operator Q can be deduced from the spectral theory
of the matrix sometimes called the fundamental matrix :

F :=

(
β γ
−α −β

)
. (20.57)

It is shown in [73, Prop. 3.3] that

σ(F ) = ±λ,
N(F ∓ λ) = span {(1, a±)} , ±ℑa± > 0.

(20.58)

We note that, in dimension 1, we can identify µ = i/λ in (20.56) through choosing λ according to the signs of
ℑa±. Taking this notation into account, we then have from [73, Thm. 3.5] that

σ(Q) =
{
− iλ(2k + 1)

∣∣ k = 0, 1, 2, . . .
}
.

• Linear symplectic transformations One advantage of the Weyl quantization is that we may transform
our symbols by composition with symplectic transformations; see e.g. [43, Sec. 18.5] for a detailed accounting
of the theory. In our simplified (linear, dimension one) setting, the set of real linear symplectic transformations
is simply the set of a 2-by-2 matrices with real entries and determinant equal to one. Any such matrix may be
written [43, Lem. 18.5.8] as a composition of matrices of the form

Gb :=

(
1 0
b 1

)
, Vc :=

(
c 0
0 1/c

)
, J :=

(
0 1
−1 0

)
. (20.59)

with b, c ∈ R and c 6= 0.
What is more, one may transform a quadratic symbol by composing with such a matrix by conjugating

with an easily-understood unitary transformation on L2(R). Specifically, we use multiplication by a complex
Gaussian

Gbu(x) := eibx
2/2u(x), (20.60)

a scaling change of variables,
Vcu(x) := c−1/2u(x/c), (20.61)

and the unitary Fourier transform (20.49). Using definition (20.53), it is then straightforward to check that

G∗
bq
w(x, ξ)Gb = (q ◦Gb)w(x, ξ),

V
∗
cq
w(x, ξ)Vc = (q ◦ Vc)w(x, ξ),

F∗qw(x, ξ)F = (q ◦ J)w(x, ξ).

One important example is the change of variables which gives us the correspondence between high-energy
and semiclassical limits: for any z ∈ C,

qw(x, ξ) − z = V∗√
h

(
1

h
(qw(x, hξ)− hz)

)
V√

h. (20.62)

Therefore the regime with spectral parameter rz as r → ∞ for the operator qw(x, ξ) is unitarily equivalent to
the regime with spectral parameter z fixed for the operator 1

hq
w(x, hξ) as h = 1/r → 0+.

• Reduction to rotated harmonic oscillator In [57, Lem. 2.1], Pravda-Starov identifies a procedure for
taking an elliptic quadratic form q and finding µ ∈ C\{0} and a real matrix T with detT = 1 for which

(q ◦ T )(x, ξ) = µ
(
(1 + iλ1)x

2 + (1 + iλ2)ξ
2
)

(20.63)

for λ1, λ2 ∈ R. Applying a scaling like (20.62) and scaling µ allows us to assume that the coefficients of x2

and ξ2 have the same modulus. It is then evident that the resulting symbol is a multiple of that of a rotated
harmonic oscillator (20.35).
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If one wishes only to identify the parameters of the rotated harmonic oscillator involved, one may appeal
to the spectral decomposition of the fundamental matrix and the growth of the spectral projections. An
application of Corollary 1.7 in [79] in terms of the eigensystem (20.58) shows that the norm of the spectral
projections Pk for the eigenvalues (2k + 1)λ/i obey the asymptotics

lim
k→∞

log ‖Pk‖
k

=
1

2
log

1 + |c+|
1− |c+|

, c+ = −a+ − a−
a+ − a−

.

From (20.37), we see that this uniquely identifies a rotated harmonic oscillator with θ ≥ 0. The multiplicative
factor, in turn, is determined by the ground state energy, that is, the eigenvalue corresponding to k = 0. We
arrive at the following proposition.

Proposition 20.6. Let Q be any quadratic operator as in (20.53) with symbol q. Assume that q is elliptic as
in (20.54) and (20.55), and therefore let the eigensystem of the fundamental matrix of q be as in (20.58). Let
θ ∈ [0, π/2) be determined by

sin θ =

∣∣∣∣
a+ − a−
a+ − a−

∣∣∣∣ .

Then Q, as an unbounded operator on L2(R), is unitarily equivalent to

λ

(
−e−iθ d2

dx2
+ eiθx2

)
.

• Higher dimension The extension of the spectral and pseudospectral theory to elliptic quadratic operators
in higher dimension is well-developed but not complete. We content ourselves with a brief description and
references.

The Weyl quantization of a quadratic form

q(x, ξ) : R2d → C

in dimension d ≥ 2 also associates the variable xj with multiplication by xj , associates the variable ξj with
−i∂/∂xj, and resolves the problem of commutativity (in the quadratic case) by taking an average:

(xjξj)
wu(x) =

1

2i

(
xj

∂

∂xj
u(x) +

∂

∂xj
(xju(x))

)
.

The ellipticity hypothesis is simpler, since in dimension 2 or greater, (20.54) implies (20.55), shown in [73,
Lem. 3.1].

Under the assumption (20.54), the spectrum of Q = qw(x, ξ) is a lattice determined by eigenvalues of the
matrix corresponding to the fundamental matrix (20.57); the formula is given in [73, Thm. 3.5].

It was recently shown in [21] that, regardless of dimension, an elliptic quadratic form obeying a PT-symmetry
condition is formally similiar to a self-adjoint operator if and only if the spectrum is real and the fundamental
matrix is diagonalizable. This similarity is only enacted eigenspace by eigenspace, and the authors observe that
the pseudospectral considerations prevent the similarity transformations from being bounded with bounded
inverse on L2(Rd).

In [58], Pravda-Starov conducts a complete study of the semiclassical pseudospectrum for non-normal
elliptic quadratic operators. It is shown in [58, Sec. 3.2] that, for a non-normal operator, the bracket condition is
violated everywhere in the interior of the range of the symbol and therefore exponentially accurate pseudomodes
exist.

Conversely, exponential upper bounds for the resolvent are proven in [41], except that exponential growth
C1/h may need to be replaced by the more rapid growth (C/h)C/h when the fundamental matrix contains
Jordan blocks.

Finally, the associated spectral projections for a non-normal quadratic operator were shown in [79] to usually
increase at an exponential rate, though there are degenerate situations such as when Jordan blocks are present
in the fundamental matrix.

20.7.9 Numerical computation of JWKB solutions

The proof of Theorem 20.1 proceeds by creating pseudomodes as JWKB (Jeffreys-Wentzel-Kramers-Brillouin)
approximations for which (H−z)u ≈ 0. Focusing on the one-dimensional Schrödinger case, these functions can
be expressed using a few elementary operations, including differentiation and integration; see (20.67), (20.70),
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Figure 20.7: Pseudomode (left) and image (right) for semiclassical rotated harmonic oscillator. The red curve
is the real part, and the blue the imaginary.

(20.72), and (20.73). The software package Chebfun [78] allows us to easily compute these pseudomodes with
high accuracy.

In Figure 20.7 we compare a JWKB pseudomode for the semiclassical rotated harmonic oscillator

Hh = −h2e−iπ/4 d2

dx2
+ eiπ/4x2 (20.64)

discussed in Section 20.7.4 with z = e−iπ/4(1/2 + i), h = 2−5, and

u(x;h) = χ(x)eiϕ(x)/h
6∑

j=0

hjaj(x).

The plot on the left is of the real part (red) and the imaginary part (blue) of the pseudomode, and the plot on
the right is of the image, (Hh − z)u. One may compute that

‖(Hh − z)u‖
‖u‖ ≈ 2.5041× 10−4.

One can clearly see the contributions from the gradient of the support of the cutoff function, which is [0.2, 0.4]∪
[1.6, 1.8].

If one studies instead the semiclassical rescaling of the shifted harmonic oscillator

Hh = −h2 d2

dx2
+ x2 + 2ih1/2x− h (20.65)

discussed in Section 20.7.5 we have noticeable but less accurate pseudomodes, with the principal error given
on the support of the cutoff function. In Figure 20.8, one has a similar JWKB solution and its image with
h = 2−8, z = 2− h+ 2ih1/2, and

u(x;h) = χ(x)eiϕ(x)/h
2∑

j=0

hjaj(x).

(We may see numerically that there is practically no difference in norms when taking one, two, or ten terms in
the expansion.) Since h is very small, the JWKB function oscillates quite rapidly, and since the decay of eiϕ/h

is comparatively weak, the principal error comes from the cutoff function, whose gradient is again supported
on [0.2, 0.4]∪ [1.6, 1.8]. We have here

‖(Hh − z)u‖
‖u‖ ≈ 2.0290× 10−3.
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Figure 20.8: Pseudomode (left) and image (right) for semiclassical rescaling of shifted harmonic oscillator. The
red curve is the real part, and the blue the imaginary.

We can then compare the accuracy of the L2(R)-normalized pseudomodes by plotting ‖(Hh − z)u‖ versus
1/h for a variety of h, presented in Figure 20.9. On the left, we have the norms for the semiclassical rotated
harmonic oscillator (20.64) at z = 1 + 4i, and on the right, we have those for the rescaled shifted harmonic
oscillator (20.65) at z = 2 − h + 2ih1/2. We can observe that the norm ratios for the pseudomodes for the
rotated harmonic oscillator decrease like exp(−c/h) while those for the shifted harmonic oscillator decrease
more slowly.
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Figure 20.9: ‖(Hh−z)u‖ as a function of 1/h for normalized pseudomodes for rotated harmonic oscillator (left)
and shifted harmonic oscillator (right).
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20.8 Appendix: Existence proofs for pseudomodes

For the interested reader, we include detailed proofs of Theorem 20.1 in the case of a Schrödinger operator
and of Theorem 20.2. In these proofs, the constant C > 0 may change from line to line. Furthermore, we
understand semiclassical statements involving h to only hold for h ∈ (0, h0] for some h0 > 0; so long as h0
changes only finitely many times in the proof, we are allowed to make conclusions “for h sufficiently small” in
our theorems.

20.8.1 Proof of special case of Theorem 20.1

We restrict our attention to the case

Hh = −h2 d2

dx2
+ V (x).

The symbol of Hh is

f(x, ξ) = ξ2 + V (x), (20.66)

and
1

2i

{
f, f̄
}
= −2ξℑV ′(x).

Therefore z ∈ Λ, defined in (20.15), if and only if there exists (x0, ξ0) ∈ R2 with z = ξ20 + V (x0), ℑV ′(x0) 6= 0,
and −ξ0ℑV ′(x0) > 0. Equivalently, since we may choose the sign of ξ0, there exists some x0 ∈ R where
ℑV ′(x0) 6= 0 and z − V (x0) is a positive real number. We only need to assume that V (x) is analytic in a
neighborhood of x0.

After a translation, we may assume that x0 = 0. We seek a JWKB approximation (see for instance [31,
Chap. 2]) to a solution of (Hh − z)u = 0 of the form

u(x;h) = eiϕ(x)/h
N(h)∑

j=0

hjaj(x) (20.67)

for aj(x) analytic near x0 = 0. The strategy is to choose the phase function such that conjugation by the
multiplication operator e−iϕ(x)/h reduces Hh to a transport equation plus an error in h. The functions aj may
be found iteratively and then N(h) may be chosen to give an accurate local solution. The quasimode will
then be obtained by multiplying u(x;h) by a fixed cutoff function χ localizing to a neighborhood of x0 = 0.
An important difference making the JWKB theory for non-self-adjoint operators somewhat simpler is that the
phase function ϕ(x) has a significant imaginary part. This allows for multiplication by cutoff functions with
small errors, a technique which is generally not available for self-adjoint operators where ϕ is real-valued.

We require that the phase function ϕ(x) satisfies the eikonal equation

f(x, ϕ′(x)) − z = 0

for f from (20.66). Clearly this implies that ϕ′(x) = ±
√
z − V (x). Since z−V (0) > 0, this function is analytic

in a neighborhood of 0 ∈ C.
We allow the sign to be determined by the bracket condition

1

2i
{f, f̄}(x, ξ) = −2ℑV ′(x)ξ > 0. (20.68)

Applying this to (x, ξ) = (0, ϕ′(0)) indicates that the sign of ϕ′(0) should be taken to be the opposite of the
sign of ℑV ′(0). Alternately, the importance of this choice of sign may be seen by observing that

ϕ′′(x) = − V ′(x)

2ϕ′(x)
(20.69)

and thus our choice is made so that ℑϕ′′(0) > 0, which means that eiϕ(x)/h has rapid decay away from x = 0.
We arrive at the formula

ϕ(x) = − sgn(ℑV ′(x0))

∫ x

0

√
z − V (y) dy. (20.70)

We may then check that

e−iϕ/h(Hh − z)eiϕ/h =
2h

i
(ϕ′ d

dx
+

1

2
ϕ′′)− h2

d2

dx2
.
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So long as {aj}∞j=0 satisfy the transport equations

ϕ′(x)a′0(x) +
1

2
ϕ′′(x)a0(x) = 0

and

ϕ′(x)a′j(x) +
1

2
ϕ′′(x)aj(x) =

i

2
a′′j−1(x), j = 1, 2, . . . ,

we have

e−iϕ/h(Hh − z)eiϕ/h




N∑

j=0

hjaj


 = −hN+2a′′N . (20.71)

We are free to choose a0(0) = 1 and aj(0) = 0 for all j > 0. Using the integrating factor exp(
∫ x
0
ϕ′′(y)/(2ϕ′(y)) dy) =

C
√
ϕ′(x) immediately gives that

a0(x) =

√
ϕ′(0)√
ϕ′(x)

(20.72)

and that, for j > 0,

aj+1(x) =
1√
ϕ′(x)

∫ x

0

ia′′j (y)

2
√
ϕ′(y)

dy. (20.73)

We note that, in a sufficiently small neighborhood of zero in the complex plane, ϕ′ may be extended to
an analytic function which is bounded away from zero, and therefore each aj is certainly analytic on that
neighborhood of zero.

We now consider bounds on the functions aj. As in Example 1.1 of [74], we will show that the aj obey the
estimates

|aj(z)| ≤ Cj+1
1 jj (20.74)

for some C1 > 0 and all z in a neighborhood of the origin. A sequence of functions satisfying these estimates
is said to be a formal analytic symbol. Once these bounds are established, we may define the h-dependent
function

a(z;h) =
∑

0≤j≤(eC1h)−1

hjaj(z), (20.75)

summing over a collection of j chosen such that

|hjaj(z)| ≤ C1(C1hj)
j ≤ C1e

−j . (20.76)

Since {e−j}j≥0 is summable, we will therefore have that {a(z;h)}0<h≤h0 is a uniformly bounded collection of
analytic functions on the set where (20.74) holds.

The natural norm to use here for analytic functions is the supremum norm, so for K ⊆ C we write

‖g‖K = sup
z∈K

|g(z)|.

For balls in the complex plane centered at zero, we use the notation

B(R) =
{
z ∈ C

∣∣ |z| < R
}
.

Fix R0 > 0 such that, on B(R0), the phase function ϕ is analytic, the modulus of the derivative |ϕ′| is bounded
from above and below, and ℑϕ′′(x) > 1/C for some C > 0.

Cauchy’s estimates for the second derivative of a analytic bounded function g defined on B(R) read

|g′′(z)| ≤ 2‖g‖B(R)

(R − |z|)2 . (20.77)

We integrate the estimates applied to a′′j to obtain bounds for aj+1:

|aj+1(z)| =
∣∣∣∣∣

1√
ϕ′(z)

∫ z

0

ia′′j (ζ)

2
√
ϕ′(ζ)

dζ

∣∣∣∣∣

≤ ‖(ϕ′)−1‖B(R)

∫ |z|

0

‖aj‖B(R)

(R− t)2
dt

≤ ‖(ϕ′)−1‖B(R)‖aj‖B(R)

(
1

R− |z| −
1

R

)

=
|z|

R(R− |z|)‖(ϕ
′)−1‖B(R)‖aj‖B(R).

(20.78)
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The estimate for |aj+1(z)| is stronger than the usual Cauchy’s estimate for the first derivative when z is near
zero, which corresponds to having set aj+1(0) = 0.

To obtain the estimates (20.74) on B(R0/2), we fix j > 0 and iterate (20.78) on balls of radius

Rk =

(
1− k

2j

)
R0, k = 0, . . . , j − 1.

When |z| ≤ Rk+1, we have

|z|
Rk(Rk − |z|) ≤ |z|

Rk(Rk − Rk+1)
=

|z|
(R0/2)(R0/2j)

≤ 4j|z|
R2

0

,

since Rk > R0/2 when k < j. Therefore we may bound ak+1 on the disc of radius Rk+1 using a bound for ak
on the disc of radius Rk and (20.78):

‖ak+1‖B(Rk+1) ≤
|z|

Rk(Rk − |z|)‖(ϕ
′)−1‖B(Rk)‖ak‖B(Rk)

≤ 4j|z|
R2

0

‖(ϕ′)−1‖B(R0)‖ak‖B(Rk).

(20.79)

Therefore, when j > 0, we take the product of the estimates (20.79) for k = 0, . . . , j − 1 to obtain

‖aj‖B(R0/2) ≤ ‖a0‖B(R0) (C2|z|j)j , C2 =
4

R2
0

‖(ϕ′)−1‖B(R0). (20.80)

The estimate (20.74) on B(R0/2) immediately follows, with

C1 = max

(
‖a0‖B(R0),

2

R0
‖(ϕ′)−1‖B(R0)

)
. (20.81)

Having established estimates for a(z;h) when z ∈ B(R0/2), let χ ∈ C∞
0 (R) be equal to one in a neighborhood

of 0 ∈ R and have support in a compact subset of the interval (−R0/2, R0/2). We then define our pseudomode
as

u(x;h) = eiϕ(x)/hχ(x)a(x;h),

with a(x;h) defined in (20.75).
We then estimate the L2(R) norm

‖Hh − z)u(x;h)‖ ≤ ‖χ(Hh − z)eiϕ/ha‖+ ‖[(Hh − z), χ]eiϕ/ha‖ (20.82)

as follows. First, we recall that we have chosen R0 such that ℑϕ′′(x) > 1/C3 for some C3 > 0. Since ϕ(0) = 0
and ϕ′(0) is real, we therefore have that

|eiϕ(x)/h| ≤ exp

(
− 1

2C3h
x2
)
, ∀x ∈ suppχ. (20.83)

Since |e−iϕ/h| ≥ 1 on suppχ, we may multiply by e−iϕ/h and use (20.71) to obtain

‖χHhe
iϕ/ha‖ ≤ ‖χe−iϕ/hHhe

iϕ/ha‖ = ‖hN+2a′′N (x)χ(x)‖,

with N = N(h) = ⌊(eCh)−1⌋. Cauchy’s estimates (20.77) along with (20.76) show that hN+2a′′N (x) ≤
Ce−1/(Ch) for C > 0 independent of h and all x ∈ suppχ. We therefore have, for some C > 0, the esti-
mate

‖χHhe
iϕ/ha‖ ≤ Ce−1/(Ch).

In the commutator of (Hh − z) and χ, only the derivatives in Hh play a role. We compute

[(Hh − z), χ] eiϕ/ha =

[
−h2 d2

dx2
, χ

]
eiϕ/ha

= −h2eiϕ/h
(
χ′′a+ 2χ′

(
a′ +

iϕ′

h
a

))
.

(20.84)

On supp(χ), we have uniform bounds on a by (20.76) and therefore on a′ by Cauchy’s estimates. As before, ϕ′

is controlled by the choice of R0. Exponential decay comes from the fact that supp(χ′) avoids a neighborhood
of 0: by (20.83), we have that

|eiϕ(x)/h| ≤ e−1/(Ch), ∀x ∈ supp(χ′). (20.85)
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Therefore the second term in (20.82) is also exponentially small in 1/h.
Having proven that both terms in (20.82) are exponentially small, the proof is complete upon showing that

u(x;h) is not exponentially small. Intuitively, this is clear from the choice of ϕ and that a0(0) = 1 and aj(0) = 0

for j > 0, from which we know that u(x;h) resembles e−ϕ
′′(0)x2/(2h) in a small neighborhood of zero. Formally,

since (20.80) gives |hjaj(z)| ≤ C(C|z|)j for |z| < R0/2 and 0 < j ≤ N(h) = (eC1h)
−1, we have for some r0 > 0

sufficiently small the estimate ∥∥∥∥∥∥

N(h)∑

j=1

hjaj(z)

∥∥∥∥∥∥
B(r)

≤ Cr, 0 < r ≤ r0.

Since a0(z) is close to 1 and ℑϕ(z) is close to 1
2ℑϕ′′(0)z2 when z is close to 0, we can consider r sufficiently

small and fixed to obtain

‖u(x;h)‖ ≥ ‖u(x;h)‖L2((−r,r)) ≥
1

C

(∫ r

−r
exp

(
1

Ch
x2
)
dx

)1/2

≥ 1

C
h1/4

when h is sufficiently small.
Since we have shown that ‖Hhu(x;h)‖ ≤ Ce−1/(Ch) and ‖u(x;h)‖ ≥ h1/4/C, this completes the proof of

the theorem in this special case.

• Uniformity on compact sets. We also remark that the exponential resolvent growth may generally be
made uniform on compact subsets of Λ, the interior of the semiclassical pseudospectrum defined in (20.15). In
the case of the Schrödinger operator, for any z ∈ Λ we may take x0 with ℑV (x0) = ℑz and define the phase
function

ϕ(x) = ±
∫ x

x0

√
z − V (y) dy,

with the sign chosen so that ℑϕ′′(x0) > 0.
The exponentially rapid resolvent growth then follows from having C > 0 and R1 > R0 > 0 for which the

estimates

|x− x0| < R1 =⇒ 1

C
≤ |ϕ′(x)| ≤ C (20.86)

and

R0 < |x− x0| < R1 =⇒ ℑϕ(x) ≥ 1

C
(20.87)

hold: the former gives (20.74) by way of (20.81) and the latter gives (20.85), which are together sufficient to
prove exponential growth of the resolvent.

The condition ℑV ′(x0) 6= 0 means that x0 may be chosen locally as a continuous function of ℑz; it is then a
simple matter to verify that (20.86) holds with uniform constants in a neighborhood of z ∈ Λ. Local uniformity
of (20.87) then follows from ℑϕ′′(x0) > 0.

20.8.2 Proof of Theorem 20.2

As usual, we may make the change of variables y = h−1/2x, arriving at an operator unitarily equivalent to
hHh:

H̃h = −h2 d2

dy2
+ y2 + 2ih1/2y − h ≃ hHh.

We will let h−1 = ℜz so that

Hh − z ≃ h−1(H̃h − (1 + it)), t =
ℑz
ℜz .

In this case, we have a symbol

f̃(y, η) = η2 + y2 + 2ih1/2y − h,

and so we cannot directly apply the results of [29]. We can, however, adapt the previous proof.
We can see that 1 + it = f̃(y0, η0) for some (y0, η0) ∈ R2 if and only if

1 + h = η20 + y20 , t = 2ih1/2y0,

implying that |y0| ≤ 1 + h and

|t| ≤ 2h1/2(1 + h).
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The eikonal equation f̃(y, ϕ′(y)) = 0 is then solved by integrating

ϕ′(y) = −
√
(1 + h+ it)− ih1/2y − y2

= −(1 + h− y2)

(
1 +

i(t− 2h1/2y)

1 + h− y2
+ O

((
t− 2h1/2y

1 + h− y2

)2
))

.

As usual, we choose the sign of the square root to satisfy a bracket condition like (20.68).
To ensure that, on a uniform neighborhood of y0, the phase ϕ′(y) is analytic and there exists C > 0 for

which 1/C ≤ |ϕ′(y)| ≤ C, we must assume that 1 + h − y2 is bounded away from zero by a constant. We
therefore assume that |y0| < 1 − ε for some ε > 0. We remark that this is connected to assuming that 1 + it
is in the interior of the range of the symbol. The scaling argument shows that this assumption is equivalent to
the hypothesis that

ℑz ≤ 2
(
1− ε+ (ℜz)−1

)√
ℜz.

The term (ℜz)−1 is negligible as ℜz → ∞.
Note that

ϕ′′(y) =
−ih1/2 − y

ϕ′(y)

and so, since we chose the sign of the square root to have ϕ′(y0) < 0, we have

1

C

√
h ≤ ℑϕ′′(y) ≤ C

√
h

on a sufficiently small but fixed neighborhood.
We may then construct exponentially accurate approximations to a solution of

e−iϕ/hH̃he
iϕ/ha(x;h) = 0

exactly as in the case of the semiclassical Schrödinger operator above. Taking a cutoff function χ supported
near y0 and writing

u(y;h) = χ(y)eiϕ(y)/ha(y;h)

as before, we have the same argument for exponential smallness except where we commute H̃h past the cutoff
function χ. Because ℑϕ(y) increases more slowly, we only have

|eiϕ(y)/h| ≤ e−1/(Ch1/2), y ∈ supp(χ′).

We arrive at

‖H̃hu(y;h)‖L2 ≤ Ce−1/(Ch1/2)

and

‖u(y;h)‖L2 ≥ 1

C
h1/8

for h sufficiently small and positive. Conjugating by the change of variables y = (ℜz)1/2x with which we began
and ignoring harmless powers of h = (ℜz)−1 proves the theorem.

20.9 Appendix: Spectral projections of the rotated oscillator

Asymptotics for the norms of the spectral projections of the rotated oscillator may be found using an estab-
lished integral formula involving the Hermite functions, pointed out in [13], and asymptotics of the Legendre
polynomials. This approach is analogous to one applied to the shifted harmonic oscillator in [51, Sec. 2], and
it simplifies and sharpens the result of [27].

The eigenfunctions of H defined in (20.35) can be written explicitly through a complex scaling of Hermite
functions:

H
(
hk(e

iθ/2x)
)
= (2k + 1)hk(e

iθ/2x), (20.88)

where hk denote (normalized) Hermite functions. The eigenfunctions of the adjoint H∗ are obtained by complex
conjugation, and it is easy to verify the biorthonormal relation

〈hk(eiθ/2x), hl(e−iθ/2x)〉 = δkl. (20.89)
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One may show that the eigenfunctions are complete in L2(R), the corresponding eigenvalues are algebraically
simple, and there are no other points in the spectrum, cf [22]. Consequently, the spectral projections Pk of H
can be written as

Pk = hk(e
iθ/2x)〈hk(e−iθ/2x), ·〉. (20.90)

The Cauchy-Schwarz inequality, the biorthonormal relation (20.89), and symmetries of the Hermite functions
can be used to show that

‖Pk‖ = ‖hk(eiθ/2x)‖‖hk(e−iθ/2x)‖ = ‖hk(eiθ/2x)‖2. (20.91)

The resulting norms can be calculated explicitly. As pointed out by F. Bagarello in [13], the formula [59,
Eq. 2.20.16.2, p. 502] ∫ ∞

0

e−ax
2

Hk(bx)Hk(cx)dx

=
2k−1k!

√
π

a(k+1)/2
(b2 + c2 − a)k/2Pk

(
bc√

a(b2 + c2 − a)

)
,

(20.92)

which is valid if ℜa > 0 and where Pk are the Legendre polynomials, yields

‖Pk‖ =
1

(cos θ)1/2
Pk

(
1

cos θ

)
. (20.93)

The final result comes from the asymptotic behaviour of Pk(x), cf the Laplace-Heine formula [76, Thm. 8.21.1]
or its generalization [76, Thm. 8.21.2] which provides further terms:

‖Pk‖ =
1√

2πk| sin θ|

(
1 + | sin θ|

cos θ

)k+1/2

(1 + o(1)) . (20.94)

We note that this exponential factor agrees with (20.37) and with [27], [38], following a simple computation in
[79, Ex. 3.6].
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[20] D. Borisov and D. Krejčǐŕık. The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary
conditions. Asympt. Anal., 76:49–59, 2012.
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[48] D. Krejčǐŕık and Siegl. PT-symmetric models in curved manifolds. Journal of Physics A: Mathematical and
Theoretical, 43:485204, 2010.
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21.1 Introduction

Extensive work has been done recently in understanding the spectral properties of non-self-adjoint operators
through the concept of pseudospectrum. Referring to by now classical monographs by Trefethen and Embree [33]
and Davies [8], we define the pseudospectrum of an operator T in a Hilbert space H to be the collection of sets

σε(T ) := σ(T ) ∪
{
z ∈ C : ‖(T − z)−1‖ > ε−1

}
, (21.1)

parametrised by ε > 0, where ‖ · ‖ is the operator norm of H. If T is self-adjoint (or more generally normal),
then σε(T ) is just an ε-tubular neighbourhood of the spectrum σ(T ). Universally, however, the pseudospectrum
is a much more reliable spectral description of T than the spectrum itself. For instance, it is the pseudospectrum
that measures the instability of the spectrum under small perturbations by virtue of the formula

σε(T ) =
⋃

‖U‖≤1

σ(T + εU) . (21.2)

Leaving aside a lot of other interesting situations, let us recall the recent results when T is a differential
operator. As a starting point we take the harmonic-oscillator Hamiltonian with complex frequency, which is
also known as the rotated or Davies’ oscillator (see [8, Sec. 14.5] for a review and references). Although the
complexification has a little effect on the spectrum (the eigenvalues are just rotated in the complex plane),
a careful spectral analysis reveals drastic changes in basis and other more delicate spectral properties of the
operator, in particular, the spectrum is highly unstable against small perturbations, as a consequence of the
pseudospectrum containing regions very far from the spectrum. Similar peculiar spectral properties have been
established for complex anharmonic oscillators (to the references quoted in [8, Sec. 14.5], we add [15, 24] for
the most recent results), quadratic elliptic operators [27, 17, 34], complex cubic oscillators [30, 16, 21, 26], and
other models (see the recent survey [21] and references therein).

A distinctive property of the complexified harmonic oscillator is that the associated spectral problem is
explicitly solvable in terms of special functions. A powerful tool to study the pseudospectrum in the situations
where explicit solutions are not available is provided by microlocal analysis [7, 39, 11]. The weak point of
the semiclassical methods is the usual hypothesis that the coefficients of the differential operator are smooth
enough (e.g. the potential of the Schrödinger operator must be at least continuous), and it is indeed the case
of all the models above. Another common feature of the differential operators whose pseudospectrum has been
analysed so far is that their spectrum consists of discrete eigenvalues only.

The objective of the present work is to enter an unexplored area of the pseudospectral world by studying the
pseudospectrum of a non-self-adjoint Schrödinger operator whose potential is discontinuous and, at the same
time, such that the essential spectrum is not empty. Among various results described below, we prove that the
pseudospectrum is non-trivial, despite the boundedness of the potential. Namely, we show that the norm of
the resolvent can become arbitrarily large outside a fixed neighbourhood of its spectrum. We hope that our
results will stimulate further analysis of non-self-adjoint differential operators with singular coefficients.
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21.2 Main results

In this section we introduce our model and collect the main results of the paper. The rest of the paper is
primarily devoted to proofs, but additional results can be found there, too.

21.2.1 The model

Motivated by the role of step-like potentials as toy models in quantum mechanics, in this paper we consider
the Schrödinger operator in L2(R) defined by

H := − d2

dx2
+ i sgn(x) , D(H) :=W 2,2(R) . (21.3)

In fact, H can be considered as an infinite version of the PT-symmetric square well introduced in [37] and
further investigated in [38, 29].

Note that H is obtained as a bounded perturbation of the (self-adjoint) Hamiltonian of a free particle in
quantum mechanics, which we shall simply denote here by −∆. Consequently, H is well defined (i.e. closed
and densely defined). In fact, H is m-sectorial with the numerical range (defined, as usual, by the set of all
complex numbers (ψ,Hψ) such that ψ ∈ D(H) and ‖ψ‖ = 1) coinciding with the closed half-strip

Num(H) = S , where S := [0,+∞) + i (−1, 1) . (21.4)

The adjoint ofH , denoted here byH∗, is simply obtained by changing +i to −i in (21.3). Consequently, H is
neither self-adjoint nor normal. However, it is T-self-adjoint (i.e. H∗ = THT), where T is the antilinear operator
of complex conjugation (i.e. Tψ := ψ). At the same time, H is P-self-adjoint, where P is the parity operator
defined by (Pψ)(x) := ψ(−x). Finally, H is PT-symmetric in the sense of the validity of the commutation
relation [H,PT] = 0.

Due to the analogy of the time-dependent Schrödinger equation for a quantum particle subject to an external
electromagnetic field and the paraxial approximation for a monochromatic light propagation in optical media
[23], the dynamics generated by (21.3) can experimentally be realised using optical systems. The physical
significance of PT-symmetry is a balance between gain and loss [5].

21.2.2 The spectrum

As a consequence of (21.4), the spectrum of H is contained in S. Moreover, the PT-symmetry implies that
the spectrum is symmetric with respect to the real axis. By constructing the resolvent of H and employing
suitable singular sequences for H , we shall establish the following result.

Proposition 21.1. We have
σ(H) = σess(H) = [0,+∞) + i {−1,+1} . (21.5)

The fact that the two rays [0,+∞)± i form the essential spectrum of H is expectable, because they coincide
with the spectrum of the shifted Laplacian −∆± i in L2(R) and the essential spectrum of differential operators
is known to depend on the behaviour of their coefficients at infinity only (cf [12, Sec. X]). The absence of
spectrum outside the rays is less obvious.

In fact, the spectrum in (21.5) is purely continuous, i.e. σ(H) = σc(H), for it can be easily checked that no
point from the set on the right hand side of (21.5) can be an eigenvalue of H (as well as H∗). An alternative
way how to a priori show the absence of the residual spectrum of H , σr(H), is to employ the T-self-adjointness
of H (cf [20, Sec. 5.2.5.4]).

21.2.3 The pseudospectrum

Before stating the main results of this paper, let us recall that a closed operator T is said to have trivial
pseudospectra if, for some positive constant κ, we have

∀ε > 0 , σε(T ) ⊂
{
z : dist

(
z, σ(T )

)
≤ κ ε

}
,

or equivalently,

∀z ∈ C \ σ(T ) , ‖(T − z)−1‖ ≤ κ

dist
(
z, σ(T )

) . (21.6)

Normal operators have trivial pseudospectra, because for them the equality holds in (21.6) with κ = 1.
In view of (21.4), in our case (21.6) holds with κ = 1 if the resolvent set is replaced by C \ S. However, the

following statement implies that (21.6) cannot hold inside the half-strip S.
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Theorem 21.1. For all ε > 0, there exists a positive constant r0 such that, for all z ∈ S with ℜz ≥ r0,

(1− ε)
ℜz√

1− (ℑz)2
≤ ‖(H − z)−1‖ ≤ 4 (1 + ε)

ℜz
1− |ℑz| . (21.7)

Although the estimates give a rather good description of the qualitative shape of the pseudospectra, the
constants and dependence on dist(z, σ(H)) = 1− |ℑz| for z ∈ S are presumably not sharp.

In view of Theorem 21.1, H represents another example of a PT-symmetric operator with non-trivial
pseudospectra. The present study can be thus considered as a natural continuation of the recent works [30,
16, 21]. However, let us stress that the complex perturbation in the present model is bounded. Moreover,
comparing the present setting with the situation when (21.3) is subject to an extra Dirichlet condition at zero
(cf Section 21.7.3), the difference between these two realisations is indeed seen on the pseudospectral level only.

Even though the step-like shape of the potential in (21.3) is a feature of the present study, we stress that
the discontinuity by itself is not the source of the non-trivial pseudospectra, see Remark 21.3 below.

The pseudospectrum of H computed numerically using Eigtool [36] by Mark Embree is presented in Fig-
ure 21.1.
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Figure 21.1: The curves ‖(H − z)−1‖ = ε−1 in the complex z-plane computed for several values of ε; the
different colours correspond to log10 ε, while the thick black lines are the essential spectrum of H . (Courtesy
of Mark Embree.)

21.2.4 Weak coupling

Inspired by (21.2), we eventually consider the perturbed operator

Hε := H +̇ εV (21.8)

in the limit as ε → 0. Here V is the operator of multiplication by a function V ∈ L1(R) that we denote by
the same letter. Since V is not necessarily relatively bounded with respect to H , the dotted sum in (21.8) is
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understood in the sense of forms. We remark that the perturbation does not change the essential spectrum,
i.e., σess(Hε) = σess(H), and recall Proposition 21.1.

If H were the free Hamiltonian −∆ and V were real-valued, the problem (21.8) with ε → 0 is known
as the regime of weak coupling in quantum mechanics. In that case, it is well known that (under some
extra assumptions on V ) the perturbed operator −∆+̇ εV possesses a unique discrete eigenvalue for all small
positive ε if, and only if, the integral of V is non-positive (see [32] for the original work). This robust existence
of “weakly coupled bound states” is of course related to the singularity of the resolvent kernel of the free
Hamiltonian at the bottom of the essential spectrum. Indeed, these bound states do not exist in three and
higher dimensions, which is in turn related to the validity of the Hardy inequality for the free Hamiltonian (see,
e.g., [35]).

Complex-valued perturbations of the free Hamiltonian have been intensively studied in recent years [1, 14,
6, 22, 9, 13, 10]. In [4, 25] the authors consider perturbations of an operator which is by itself non-self-adjoint.
In all of these papers, however, the results are inherited from properties of the resolvent of the free Hamiltonian.

In the present setting, the unperturbed operator H is non-self-adjoint. Moreover, its resolvent kernel has
no local singularity, but it blows up as |z| → +∞ when |ℑz| < 1, see Section 21.3. Consequently, discrete
eigenvalues of Hε can only “emerge from the infinity”, but not from any finite point of (21.5). The statement
is made precise by virtue of the following result.

Theorem 21.2. Let V ∈ L1
(
R, (1+x2) dx

)
. There exists a positive constant C (independent of V and ε) such

that, whenever

ε
∥∥(1 + | · |2)V ‖L1(R) ≤

1

C
,

we have

σp(Hε) ⊂ S ∩
{
ℜz ≥ C

ε2 ‖V ‖2L1(R)

}
. (21.9)

It is interesting to compare this estimate on the location of possible eigenvalues of Hε with the celebrated
result of [1]

σp(−∆+̇ εV ) ⊂
{
|z| ≤

ε2 ‖V ‖2L1(R)

4

}
. (21.10)

Our bound (21.9) can be indeed read as an inverse of (21.10). It demonstrates how much the present situation
differs from the study of weakly coupled eigenvalues of the free Hamiltonian.

Under some additional assumptions on V , the claim of Theorem 21.2 can be improved in the following way.

Theorem 21.3. Let n ≥ 2 and V ∈ L1
(
R, (1 + x2n) dx

)
∩W 1,1(R). There exist positive constants ε0 and C

such that, for all ε ∈ (0, ε0), we have

σp(Hε) ⊂ S ∩
{
ℜz ≥ C

ε2n

}
. (21.11)

In particular, if for instance V belongs to the Schwartz space S (R), then every eigenvalue λ(ε) of Hε must
“escape to infinity” faster than any power of ε−1 as ε→ 0, namely |λ(ε)|−1 = O(ε∞).

Remark 21.1. The reader will notice that statement (21.9) differs from (21.11) in that the latter does not
highlight the dependence of the right hand side on the potential V but only on its amplitude ε. The reason is
that it is the behaviour of Hε on diminishing ε that primarily interests us. Moreover, the proofs of the theorems
are different and it would be cumbersome (but doable in principle) to gather the dependence of the right hand
side in (21.11) on (different) norms of V .

21.2.5 The content of the paper

The organisation of this paper is as follows.
In Section 21.3, we find the integral kernel of the resolvent (H − z)−1, cf Proposition 21.2, and use it to

prove Proposition 21.1.
In Section 21.4, the explicit formula of the resolvent kernel is further exploited in order to prove Theo-

rem 21.1.
The definition of the perturbed operator (21.8) and its general properties are established in Section 21.5.

In particular, we locate its essential spectrum (Proposition 21.3) and prove the Birman-Schwinger principle
(Theorem 21.4).

Section 21.6 is divided into two respective subsections, in which we prove Theorems 21.2 and 21.3 with help
of the Birman-Schwinger principle and, again, using the explicit formula of the resolvent kernel.

Finally, in Section 21.7, we present two concrete examples of the perturbed operator (21.8). Moreover, we
make a comparison of the present study with a decoupled model due to an extra Dirichlet condition.
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21.3 The resolvent and spectrum

Our goal in this section is to obtain an integral representation of the resolvent of H . Using that result, we give
a proof of Proposition 21.1.

In the following, we set

k+(z) :=
√
i− z and k−(z) :=

√
−i− z ,

where we choose the principal value of the square root, i.e., z 7→ √
z is holomorphic on C\ (−∞, 0] and positive

on (0,+∞).

Proposition 21.2. For all z /∈ R+ + i {−1, 1} , H − z is invertible and, for every f ∈ L2(R) ,

[(H − z)−1f ](x) =

∫

R

Rz(x, y) f(y) dy , (21.12)

where

Rz(x, y) :=





1

k+(z) + k−(z)
e−k±(z)|x|−k∓(z)|y| , ±x ≥ 0 , ±y ≤ 0 ,

1

2k±(z)
e−k±(z)|x−y|

± k+(z)− k−(z)

2k±(z)
(
k+(z) + k−(z)

) e−k±(z)|x+y| , ±x ≥ 0 , ±y ≥ 0 .

(21.13)

Remark 21.2. The kernel Rz(x, y) is clearly bounded for every (x, y) ∈ R2 and fixed z 6= ±i. Moreover,
using (21.24) below, it can be shown that it remains bounded for z = ±i as well. Hence, contrary to the
case of the resolvent kernel of the free Hamiltonian −∆ in one or two dimensions, the resolvent kernel of H
has no local singularity. On the other hand, and again contrary to the case of the Laplacian, for all fixed
(x, y) ∈ R2, |Rz(x, y)| −→ +∞ as ℜz → +∞, z ∈ S. Hence, the kernel exhibits a blow-up at infinity. The
absence of singularity will play a fundamental role in the analysis of weakly coupled eigenvalues in Section 21.6.
Moreover, we shall see in Section 21.4 that the singular behaviour at infinity is responsible for the spectral
instability of H .

Proof of Proposition 21.2. Let z /∈ [0,∞) + i{−1, 1} and f ∈ L2(R). We look for the solution of the resolvent
equation (H − z)u = f .

The general solutions u± of the individual equations

− u′′ + (±i− z)u− f = 0 in R± , (21.14)

where R+ := [0,+∞) and R− := (−∞, 0], are given by

u±(x) = α±(x) e
k±(z)x + β±(x) e

−k±(z)x ,

where α±, β± are functions to be yet determined. Variation of parameters leads to the following system:

{
α′
±(x)e

k±(z)x + β′
±(x)e

−k±(z)x = 0 ,

k±(z)α′
±(x)e

k±(z)x − k±(z)β′
±(x)e

−k±(z)x = −f .

Hence, we can choose

α±(x) = − 1

2k±(z)

∫ x

0

f(y) e−k±(z)ydy +A± , ±x > 0 ,

β±(x) =
1

2k±(z)

∫ x

0

f(y) ek±(z)ydy +B± , ±x > 0 ,

where A±, B± are arbitray complex constants. The desired general solutions of (21.14) are then given by

u±(x) =
−1

k±(z)

∫ x

0

f(y) sinh
(
k±(z)(x− y)

)
dy +A±e

k±(z)x +B±e
−k±(z)x , (21.15)

with (A+, A−, B+, B−) ∈ C4 .
Among these solutions, we are interested in those which satisfy the regularity conditions

u+(0) = u−(0) , u′+(0) = u′−(0) . (21.16)
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These conditions are equivalent to the system

{
A+ +B+ = A− +B− ,

k+(z)A+ − k+(z)B+ = k−(z)A− − k−(z)B− ,

whence we obtain the following relations:

{
2A+ =

(
k+(z) + k−(z)

)
A− +

(
k+(z)− k−(z)

)
B− ,

2B+ =
(
k+(z)− k−(z)

)
A− +

(
k+(z) + k−(z)

)
B− .

(21.17)

Summing up, assuming (21.17), the function

u(x) :=

{
u+(x) if x ≥ 0 ,

u−(x) if x ≤ 0 ,
(21.18)

belongs to W 2,2
loc (R) and solves the differential equation (21.14) in the whole R. It remains to check some decay

conditions as x→ ±∞ in addition to (21.17). This can be done by setting

A+ :=
1

2k+(z)

∫ +∞

0

f(y) e−k+(z)ydy , (21.19)

B− :=
1

2k−(z)

∫ 0

−∞
f(y) ek−(z)ydy . (21.20)

Indeed, then

u+(x) = − 1

2k+(z)
ek+(z)x

∫ +∞

x

f(y) e−k+(z)ydy

+e−k+(z)x

(
1

2k+(z)

∫ x

0

f(y) ek+(z)ydy +B+

)

goes to 0 as x→ +∞, and similarly for u−.
By gathering relations (21.17), (21.19) and (21.20), we obtain the following values for A− and B+:

A− =
1

k+(z) + k−(z)

∫ +∞

0

f(y) e−k+(z)ydy

− k+(z)− k−(z)

2k−(z)
(
k+(z) + k−(z)

)
∫ 0

−∞
f(y) ek−(z)ydy , (21.21)

B+ =
k+(z)− k−(z)

2k+(z)
(
k+(z) + k−(z)

)
∫ +∞

0

f(y) e−k+(z)ydy

+
1

k+(z) + k−(z)

∫ 0

−∞
f(y) ek−(z)ydy . (21.22)

Replacing the constants A+, A−, B+, B− by their values (21.19), (21.21), (21.22) and (21.20), respectively,
expression (21.18) with (21.15) gives the desired integral representation

u(x) =

∫

R

Rz(x, y) f(y) dy (21.23)

for a decaying solution of the differential equation (21.14) in R.
To complete the proof, it remains to check that u given by (21.23) is indeed in the operator domain

D(H) = W 2,2(R). Using for instance the Schur test (cf (21.28) below), it is straightforward to check that u
is in L2(R) provided that f ∈ L2(R). Therefore u′′ = (i sign x − z)u − f ∈ L2(R) , whence u ∈ W 2,2(R) and
u = (H − z)−1f .

This representation of the resolvent will be used in Sections 21.5 and 21.6 to study the location of weakly
coupled eigenvalues. It will also enable us to prove the existence of non-trivial pseudospectra in Section 21.4.
In this section we use it to prove Proposition 21.1.

Proof of Proposition 21.1. According to Proposition 21.2, we have

σ(H) ⊂ R+ + i {−1,+1} .
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It remains to prove the inverse inclusion. This can be achieved by a standard singular sequence construction.
Let (aj)j≥1 be a real increasing sequence such that, for all j ≥ 1, aj+1 − aj > 2j + 1. Let ξj ∈ C∞

0 (R) be
such that Supp ξj ⊂ (aj − j, aj + j), ξj(x) = 1 for all x ∈ [aj − 1, aj + 1], and

sup |ξ′j | ≤
C

j
, sup |ξ′′j | ≤

C

j2
,

for some C > 0 .
Then, for all r ≥ 0, the sequence

u±j (x) := Cj ξj(±x) eirx ,
where Cj is chosen so that ‖u±j ‖ = 1, is a singular sequence for H corresponding to z = ±i+ r in the sense of
[12, Def. IX.1.2]. Hence, according to [12, Thm. IX.1.3], we have

σ(H) ⊃ R+ + i {−1,+1} .

This completes the proof of the proposition.

21.4 Pseudospectral estimates

The main purpose of this section is to give a proof of Theorem 21.1.

Proof of Theorem 21.1. Let z = τ + iδ , where τ > 0 and δ ∈ (−1, 1). Recall our convention for the square root
we fixed at the beginning of Section 21.3. The following expansions hold

k+(z) =
√
i(1− δ)− τ = i

√
τ − i(1− δ) = i

√
τ +

1− δ

2
√
τ

+ O

(
1

|τ |3/2
)
,

k−(z) =
√
i(−1− δ)− τ = −i

√
τ + i(1 + δ) = −i√τ + 1 + δ

2
√
τ

+ O

(
1

|τ |3/2
)
,

(21.24)

as τ → +∞. As a consequence, we have the asymptotics

|k+(z)| ∼
√
τ , |k−(z)| ∼

√
τ , (21.25)

ℜk+(z) ∼
1− δ

2
√
τ
, ℜk−(z) ∼

1 + δ

2
√
τ
, (21.26)

|k+(z) + k−(z)| ∼
1√
τ
, |k+(z)− k−(z)| ∼ 2

√
τ , (21.27)

as τ → +∞.
Let us prove the upper bound in (21.7) using the Schur test:

‖(H − z)−1‖2 ≤ sup
x∈R

∫

R

|Rz(x, y)| dy · sup
y∈R

∫

R

|Rz(x, y)| dx . (21.28)

After noticing the symmetry relation Rz(x, y) = Rz(y, x) valid for all (x, y) ∈ R2 (which is a consequence of
the T-self-adjointness of H), we simply have

‖(H − z)−1‖ ≤ sup
x∈R

∫

R

|Rz(x, y)| dy . (21.29)

By virtue of (21.13), for all x > 0,

∫

R

|Rz(x, y)| dy ≤ 1

|k+(z) + k−(z)|

∫ 0

−∞
e−ℜk+(z)x+ℜk−(z) y dy

+
1

2|k+(z)|

∫ +∞

0

e−ℜk+|x−y| dy

+
|k+(z)− k−(z)|

2|k+(z)||k+(z) + k−(z)|

∫ +∞

0

e−ℜk+(z)(x+y) dy

≤ 1

ℜk−(z)|k+(z) + k−(z)|
+

1

2ℜk+(z)|k+(z)|

+
|k+(z)− k−(z)|

2ℜk+(z)|k+(z)||k+(z) + k−(z)|
. (21.30)
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Similarly, if x < 0,
∫

R

|Rz(x, y)| dy ≤ 1

ℜk+(z)|k+(z) + k−(z)|
+

1

2ℜk−(z)|k−(z)|

+
|k+(z)− k−(z)|

2ℜk−(z)|k−(z)||k+(z) + k−(z)|
. (21.31)

According to (21.25)–(21.27), the right hand sides in (21.30) and (21.31) are both equivalent to

2τ
[
(1 + δ)−1 + (1 − δ)−1

]
≤ 4τ

1− |δ| ,

whence (21.29) yields the upper bound in (21.7).
In order to get the lower bound, we set

f0(x) := e−k+(z)xχ(0,∞)(x) , (21.32)

where χΣ denotes the characteristic function of a set Σ. Then according to (21.13),

‖(H − z)−1f0‖2 ≥
∫ 0

−∞

∣∣∣∣
1

k+(z) + k−(z)

∫ +∞

0

ek−(z) x−2ℜk+(z) y dy

∣∣∣∣
2

dx (21.33)

=
1

|k+(z) + k−(z)|2
∫ 0

−∞
e2ℜk−(z)x dx

(∫ +∞

0

e−2ℜk+(z) y dy

)2
(21.34)

=
1

(
2ℜk+(z)

)2
2ℜk−(z) |k+(z) + k−(z)|2

. (21.35)

On the other hand, we have

‖f0‖2 =
1

2ℜk+(z)
. (21.36)

Hence, using (21.26) and (21.27),

‖(H − z)−1f0‖
‖f0‖

≥ 1

2
√
ℜk+(z)ℜk−(z) |k+(z) + k−(z)|

∼ τ√
1− δ2

as τ → +∞ , and the lower bound in (21.7) follows.

Remark 21.3 (Irrelevance of discontinuity). Although the proof above relies on the particular form of the
potential i sgn(x), it turns out that the discontinuity at x = 0 is not responsible for the spectral instability
highlighted by Theorem 21.1. Indeed, consider instead of the potential i sgn(x) a smooth potential V (x) such
that, for some a > 0, the difference

h(x) := i sgn(x) − V (x)

is supported in the interval [−a, 0]. In order to get a lower bound for the norm of the resolvent of the regularised

operator H̃ := − d2

dx2 + V (x), we shall use the pseudomode

g0 := (H − z)−1f0 ,

where the function f0 is introduced in (21.32). Using again the asymptotic expansions (21.24), one can check
that, provided that ℜz is large enough,

‖hg0‖2 ≤ C (ℜz)2

for some C > 0 independent of z. Thus, in view of (21.36), we have

‖(H̃ − z)g0‖ ≤ ‖f0‖+ ‖hg0‖ = O(ℜz)
as ℜz → +∞, z ∈ S. On the other hand, (21.35) yields

‖g0‖2 ≥ C′ (ℜz)5/2

for some C′ > 0 independent of z. Consequently, g0 is a (ℜz)−1/4-pseudomode for H̃ − z, or more specifically,

‖(H̃ − z)−1‖ ≥ c (ℜz)1/4 (21.37)

with c > 0 independent of z, as ℜz → +∞, z ∈ S.
Summing up, despite of the fact that the lower bound in (21.37) is not as good as that of Theorem 21.1, the

presence of non-trivial pseudospectra for the operator H̃ clearly indicates that the discontinuity of the potential
i sgn(x) does not really play any essential role in the spectral instability of H .
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21.5 General properties of the perturbed operator

In this section, we state some basic properties about the perturbed operator Hε introduced in (21.8). Here ε
is not necessarily small and positive.

21.5.1 Definition of the perturbed operator

The unperturbed operator H introduced in (21.3) is associated (in the sense of the representation theorem [18,
Thm. VI.2.1]) with the sesquilinear form

h(ψ, φ) :=

∫

R

ψ′(x)φ̄′(x) dx + i

∫ +∞

0

ψ(x)φ̄(x) dx − i

∫ 0

−∞
ψ(x)φ̄(x) dx ,

D(h) :=W 1,2(R) .

In view of (21.4), h is sectorial with vertex −1 and semi-angle π/4. In fact, h is obtained as a bounded
perturbation of the non-negative form q associated with the free Hamiltonian −∆,

q(ψ, φ) :=

∫

R

ψ′(x)φ̄′(x) dx ,

D(q) :=W 1,2(R) .

Given any function V ∈ L1(R), let v be the sesquilinear form of the corresponding multiplication operator
(that we also denote by V ), i.e.,

v(ψ, φ) :=

∫

R

V (x)ψ(x)φ̄(x) dx ,

D(v) :=
{
ψ ∈ L2(R) : |V |1/2ψ ∈ L2(R)

}
.

As usual, we denote by v[ψ] := v(ψ, ψ) the corresponding quadratic form.

Lemma 21.1. Let V ∈ L1(R). Then D(v) ⊃W 1,2(R) and, for every ψ ∈ W 1,2(R),

|v[ψ]| ≤ 2‖V ‖L1(R)‖ψ′‖‖ψ‖ . (21.38)

Proof. Set f(x) :=
∫ x
−∞ V (ξ)dξ. For every ψ ∈ C∞

0 (R), an integration by parts together with the Schwarz
inequality yields

|v[ψ]| =
∣∣∣∣
∫

R

f ′(x)|ψ(x)|2 dx
∣∣∣∣ =

∣∣∣∣
∫

R

f(x) 2ℜ
(
ψ′(x)ψ̄(x)

)
dx

∣∣∣∣
≤ 2‖V ‖L1(R)‖ψ′‖‖ψ‖ .

By density of C∞
0 (R) in W 1,2(R), the inequality extends to all ψ ∈ W 1,2(R) and, in particular, |v[ψ]| < ∞

whenever ψ ∈W 1,2(R).

It follows from the lemma that v is 1
2 -subordinated to q, which in particular implies that v is relatively

bounded with respect to q with the relative bound equal to zero. Classical stability results (see, e.g., [20,
Sec. 5.3.4]) then ensure that the form q + v is sectorial and closed. Since h is a bounded perturbation of q, we
also know that h1 := h+ v is sectorial and closed. We define H1 to be the m-sectorial operator associated with
the form h1. The representation theorem yields

H1ψ = −ψ′′ + i sgnψ + V ψ ,

D(H1) =
{
ψ ∈ W 1,2(R) : ∃η ∈ L2(R), ∀φ ∈ W 1,2(R), h1(ψ, φ) = (η, φ)

}

=
{
ψ ∈ W 1,2(R) : −ψ′′ + V ψ ∈ L2(R)

}
,

(21.39)

where −ψ′′ + V ψ should be understood as a distribution. By the replacement V 7→ εV , we introduce in the
same way as above the form hε := h + εv and the associated operator Hε for any ε ∈ R. Of course, we have
H0 = H .
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21.5.2 The Birman-Schwinger principle

As regards spectral theory, Hε represents a singular perturbation of H , for we are perturbing an operator with
purely essential spectrum. An efficient way to deal with such problems in self-adjoint settings is the method
of the Birman-Schwinger principle, due to which a study of discrete eigenvalues of the differential operator Hε

is transferred to a spectral analysis of an integral operator. We refer to [2, 28] for the original works and
to [31, 32, 3, 19] for an extensive development of the method for Schrödinger operators. In recent years,
the technique has been also applied to Schrödinger operators with complex potentials (see, e.g., [1, 22, 13]).
However, our setting differs from all the previous works in that the unperturbed operator H is already non-self-
adjoint and its resolvent kernel substantially differs from the resolvent of the free Hamiltonian. The objective
of this subsection is to carefully establish the Birman-Schwinger principle in our unconventional situation.

In the following, given V ∈ L1(R), we denote

V1/2(x) := |V |1/2ei arg V (x) ,

so that V = |V |1/2V1/2.
We have introduced H as an unbounded operator with domain D(H) = W 2,2(R) acting in the Hilbert

space L2(R). It can be regarded as a bounded operator from W 2,2(R) to L2(R). More interestingly, using the
variational formulation, H can be also viewed as a bounded operator from W 1,2(R) to W−1,2(R), by defining
Hψ for all ψ ∈ W 1,2(R) by

∀φ ∈W 1,2(R) , −1〈Hψ, φ〉+1 := h(ψ, φ) ,

where −1〈·, ·〉+1 denotes the duality bracket between W−1,2(R) and W 1,2(R).
Similarly, in addition to regarding the multiplication operators |V |1/2 and V1/2 as operators from W 1,2(R)

to L2(R), we can view them as operators from L2(R) to W−1,2(R), due to the relative boundedness of v with
respect to q (cf Lemma 21.1 and the text below it).

Finally, let us notice that, for all z ∈ C \ σ(H), the resolvent (H − z)−1 can be viewed as an operator from
W−1,2(R) to W 1,2(R). Indeed, for all η ∈W−1,2(R), there exists a unique ψ ∈ W 1,2(R) such that

∀φ ∈W 1,2(R) , −1〈η, φ〉+1 = h(ψ, φ)− z(ψ, φ) , (21.40)

where (·, ·) denotes the inner product in L2(R). Hence the operator (H−z) :W 1,2(R) →W−1,2(R) is bijective.
With the above identifications, for all z ∈ C \ σ(H), we introduce

Kz := |V |1/2(H − z)−1V1/2 (21.41)

as a bounded operator on L2(R) to L2(R). Kz is an integral operator with kernel

Kz(x, y) := |V |1/2(x)Rz(x, y)V1/2(y) , (21.42)

where Rz is the kernel of the resolvent (H−z)−1 written down explicitly in (21.13). The following result shows
that Kz is in fact compact.

Lemma 21.2. Let V ∈ L1(R). For all z ∈ C \ σ(H), Kz is a Hilbert-Schmidt operator.

Proof. By definition of the Hilbert-Schmidt norm,

‖Kz‖HS =

∫

R2

|V (x)||Rz(x, y)|2|V (y)| dx dy

≤ ‖V ‖2L1(R) sup
(x,y)∈R2

|Rz(x, y)|2 .
(21.43)

According to (21.13), we have

sup
(x,y)∈R2

|Rz(x, y)|2

≤ 1

|k+(z) + k−(z)|2
+

(
1

|k+(z)|2
+

1

|k−(z)|2
)(

1 +
|k+(z)− k−(z)|2
|k+(z) + k−(z)|2

)
,

where the right hand side is finite for all z ∈ C \ σ(H).

We are now in a position to state the Birman-Schwinger principle for our operator Hε.

Theorem 21.4 (Birman-Schwinger principle). Let V ∈ L1(R) and ε ∈ R. For all z ∈ C \ σ(H), we have

z ∈ σp(Hε) ⇐⇒ −1 ∈ σ(εKz) .
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Proof. Clearly, it is enough to establish the equivalence for ε = 1.
If z ∈ σp(H1), then there exists a non-trivial function ψ ∈ D(H1) such that H1ψ = zψ. In particular,

ψ ∈ D(h1) =W 1,2(R) and
h1(ψ, φ) ≡ h(ψ, φ) + v(ψ, φ) = z(ψ, φ) (21.44)

holds for every φ ∈ W 1,2(R). We set g := |V |1/2ψ ∈ L2(R). Given an arbitrary test function ϕ ∈ L2(R), we
introduce an auxiliary function η := (H∗ − z̄)−1|V |1/2ϕ ∈ W 1,2(R). (Note that σ(H∗) = σ(H) and that the
spectrum is symmetric with respect to the real axis, so the resolvent (H∗ − z̄)−1 is well defined. Moreover,
recall that H is T-self-adjoint.) We have

(Kzg, ϕ) = v(ψ, η)

= −h(ψ, η) + z(ψ, η) = −h∗(η, ψ) + z̄(η, ψ)

= −−1〈|V |1/2ϕ, ψ〉+1

= −(ϕ, |V |1/2ψ)
= −(g, ϕ) .

Here the first equality uses the integral representation (21.42) of Kz, the second equality is due to (21.44) and
the equality on the third line is a version of (21.40) for H∗. Hence, g is an eigenfunction of Kz corresponding
to the eigenvalue −1.

Conversely, if −1 ∈ σ(Kz), then −1 is an eigenvalue of Kz, because Kz is compact (cf Lemma 21.2). Hence,
there exists a non-trivial g ∈ L2(R) such that Kzg = −g. Defining, ψ := (H − z)−1V1/2 g ∈ W 1,2(R), we have

h1(ψ, φ) = h(ψ, φ)− z(ψ, φ) + z(ψ, φ) + v(ψ, φ)

= −1〈V1/2 g, ψ〉+1 + z(ψ, φ) + −1〈V ψ, φ〉+1

= −1〈V1/2 g, ψ〉+1 + z(ψ, φ) + −1〈V1/2Kzg, φ〉+1

= z(ψ, φ)

for all φ ∈ W 1,2(R), where the eigenvalue equation is used in the last equality. It follows that ψ ∈ D(H)
(cf (21.39)) and Hψ = zψ.

21.5.3 Stability of the essential spectrum

As the last result of this section, we locate the essential spectrum of the perturbed operator Hε.
Since there exist various definitions of the essential spectrum for non-self-adjoint operators (cf [12, Sec. IX]

or [20, Sec. 5.4]), we note that we use the widest (that due to Browder) in this paper. More specifically, given
a closed operator T in a Hilbert space H, we set σess(T ) := σ(T ) \ σdisc(T ), where the discrete spectrum is
defined as the set of isolated eigenvalues λ of T which have finite algebraic multiplicity and such that R(T −λ)
is closed in H.

Our stability result will follow from the following compactness property.

Lemma 21.3. Let V ∈ L1(R) and ε ∈ R. For all z ∈ C\ [σ(H)∪σ(Hε)], the resolvent difference (Hε− z)−1−
(H − z)−1 is a compact operator in L2(R).

Proof. It is straightforward to verify the resolvent equation

(Hε − z)−1 − (H − z)−1 = −εA∗B ,

where
A := V 1/2(H

∗
ε − z̄)−1 and B := |V |1/2(H − z)−1

are bounded operators (recall that D(hε) =W 1,2(R) ⊂ D(v)). It is thus enough to show that B is compact. It
is equivalent to proving that BB∗ is compact. However, BB∗ is an integral operator with kernel

|V |1/2(x)Nz(x, y) |V |1/2(y) ,

where

Nz(x, y) :=

∫

R

Rz(x, ξ)Rz(y, ξ) dξ

is the integral kernel of (H − z)−1(H∗ − z̄)−1. Consequently,

‖BB∗‖HS ≤ ‖V ‖L1(R) sup
(x,y)∈R2

|Nz(x, y)| . (21.45)
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Using (21.13), it is straightforward to check that, for all z ∈ C \ σ(H), Rz ∈ L∞(R;L2(R)
)
, and thus the

supremum on the right-hand side of (21.45) is a finite (z-dependent) constant. Summing up, BB∗ is Hilbert-
Schmidt, in particular it is compact.

Proposition 21.3. Let V ∈ L1(R). For all ε ∈ R, we have

σess(Hε) = σess(H) = R+ + i {−1,+1} . (21.46)

Proof. First of all, notice that, since Hε is m-sectorial for all ε ∈ R, the intersection of the resolvent sets of Hε

and H is not empty. By Lemma 21.3 and a classical stability result about the invariance of the essential spectra
under perturbations (see, e.g., [12, Thm. IX.2.4]), we immediately obtain (21.46) for more restrictive definitions
of the essential spectrum. To deduce the result for our definition of the essential spectrum, it is enough to
notice that the exterior of σess(H) is connected (cf [20, Prop. 5.4.4]).

Remark 21.4. In view of Proposition 21.3, the equivalence of Theorem 21.4 remains to hold if σp(Hε) is
replaced by σ(Hε) or σdisc(Hε).

21.6 Eigenvalue estimates

In this section, we consecutively prove Theorems 21.2 and 21.3.

21.6.1 Proof of Theorem 21.2

Our strategy is based on Theorem 21.4 and on estimating the norm of the Birman-Schwinger operator Kz by
its Hilbert-Schmidt norm. To get a better estimate than that of (21.43), we proceed as follows.

Let us partition the complex plane into several regions where z 7→ Rz has a different behaviour. We set

D+ :=
{
z ∈ C : |z − i| ≤ 3/2

}
\
(
R+ + i

)
,

D− :=
{
z ∈ C : |z + i| ≤ 3/2

}
\
(
R+ − i

)
,

U := C \
(
S̄ ∪D+ ∪D−

)
,

W := S \
(
D+ ∪D−

)
,

where S is defined in (21.4), see Figure 21.2. We have indeed

C \
(
R+ + i{−1, 1}

)
= D+ ∪D− ∪ U ∪W .

First, let us estimate sup
R2 |Rz| for z ∈ D+. As z → i, we have k+(z) → 0 and k−(z) →

√
−2i. Thus, there

exist positive constants c0 , c1 and c2 such that, for all z ∈ D+,

|k+(z) + k−(z)| ≥
1

c0
, |k+(z)− k−(z)| ≤ c1 , |k−(z)| ≥

1

c2
. (21.47)

According to (21.13), we then have, for all (x, y) ∈ R2 such that xy ≤ 0,

|Rz(x, y)| ≤
1

|k+(z) + k−(z)|
≤ c0 , (21.48)

and, for all (x, y) ∈
{
x ≤ 0, y ≤ 0

}
,

|Rz(x, y)| ≤
1

2|k−(z)|

(
1 +

|k+(z)− k−(z)|
|k+(z) + k−(z)|

)
≤ c2

2
(1 + c0c1) . (21.49)

It remains to check that there is no singularity as z → i for x > 0 , y > 0 :

|Rz(x, y)| =
1

2|k+(z)|

∣∣∣∣e−k+(z)|x−y| +
(
− 1 +

2k+(z)

k+(z) + k−(z)

)
e−k+(z)(|x|+|y|)

∣∣∣∣

≤ 1

2|k+(z)|
∣∣∣e−k+(z)|x−y| − e−k+(z)(|x|+|y|)

∣∣∣+ 1

|k+(z) + k−(z)|

≤ c0 +
1

2|k+(z)|
∣∣∣
(
e−k+(z)|x−y| − 1

)
−
(
e−k+(z)(|x|+|y|) − 1

)∣∣∣

≤ c0 +
|x− y|+ |x|+ |y|

2
≤ c0 + |x|+ |y| , (21.50)
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Figure 21.2: The subdomains D+, D−, U and W .

where we have used the inequality |e−ω − 1| ≤ |ω| for ℜω ≥ 0. Using (21.48), (21.49) and (21.50), we then get,
for all z ∈ D+,

‖Kz‖2HS ≤
∫

R2

|V (x)|
(
3c20 +

c22
4
(1 + c0c1)

2 + 2
(
|x|+ |y|

)2)|V (y)| dx dy

≤ C+

(∫

R

(1 + |x|2)|V (x)| dx
)2

, (21.51)

with some C+ > 0.

Similarly, one can check that there exists C− > 0 such that, for all z ∈ D−,

‖Kz‖2HS ≤ C−

(∫

R

(1 + |x|2)|V (x)| dx
)2

. (21.52)

Now let us consider the region U . Notice that, as |z| → +∞, z ∈ U , we have

k+(z)− k−(z) −→ 0 and k+(z) ∼ k−(z) ∼
√
−z ,

hence |k+ + k−|−1, |k+|−1, |k−|−1 and |k+ − k−| are uniformly bounded in U . Thus, there exists C1 > 0 such
that, for all z ∈ U ,

‖Kz‖2HS ≤ ‖V ‖2L1(R) sup
(x,y)∈R2

|Rz(x, y)|2 ≤ C1‖V ‖2L1(R) . (21.53)

Finally, for z ∈ W , we use the asymptotic expansions (21.25) and (21.27). In particular, there exist c3 > 0,
c4 > 0 and c5 > 0 such that, for all z ∈W ,

2|k±(z)| ≥
√
ℜz
c3

, |k−(z)− k+(z)| ≤ c4
√
ℜz , |k+(z) + k−(z)| ≥

1

c5
√
ℜz

.

Thus, according to (21.13), we have

sup
(x,y)∈R2

|Rz(x, y)| ≤
c3√
ℜz

+ c3c4c5
√
ℜz ≤

√
C2ℜz

for some C2 > 0, hence

‖Kz‖2HS ≤ C2 ℜz ‖V ‖2L1(R) . (21.54)
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Gathering (21.51), (21.52), (21.53) and (21.54), we obtain, for all z ∈ C \
(
R+ + i{−1,+1}

)
,

‖Kz‖2HS ≤ max
(
max(C+, C−, C1)

∥∥(1 + | · |2)V
∥∥2
L1(R)

, C2 ℜz ‖V ‖2L1(R)

)
, (21.55)

and more precisely when z /∈ S,

‖Kz‖2HS ≤ max(C+, C−, C1)
∥∥(1 + | · |2)V

∥∥2
L1(R)

.

In particular, if ‖(1 + | · |2)V ‖2L1(R) < max(C+, C−, C1)
−1 and either z /∈ S or ℜz < (C2 ‖V ‖2L1(R))

−1, then

‖Kz‖HS < 1 and −1 cannot be in the spectrum of Kz. After the replacement V 7→ εV , we therefore get
Theorem 21.2 as a consequence of Theorem 21.4.

21.6.2 Proof of Theorem 21.3

Let V satisfy the assumptions of Theorem 21.3 with n ≥ 2 and ε > 0. The present proof is again based on
Theorem 21.4, but we use a more sophisticated estimate of the norm of Kz for which the extra regularity
hypotheses are needed.

The first step in our proof is to isolate the singular part of the kernel Kz. The idea comes back to [32],
where the singularity of the free resolvent (−∆− z)−1 at z = 0 is singled out. In the present setting, however,
the resolvent (H − z)−1 is rather singular as ℜz → +∞. In other words, we want to find a decomposition of
the form

Kz = Lz +Mz , (21.56)

where ‖Lz‖ → +∞ as ℜz → +∞, while Mz stays uniformly bounded with respect to z. The integral kernels
of Lz and Mz will be denoted by Lz and Mz, respectively.

Notice that it is enough to consider z ∈ S since, according to Theorem 21.2, every eigenvalue of Hε belongs
to the half-strip S provided that ε is small enough.

In this paper, motivated by the asymptotic expansions (21.24), we use the decomposition (21.56) with the
singular part Lz given by the integral kernel

Lz(x, y) :=
√
ℜz |V |1/2(x) e−i

√
ℜz (x+y) V1/2(y) . (21.57)

Properties of Mz are then stated in the following lemma.

Lemma 21.4. For all z ∈ S and (x, y) ∈ R2, the integral kernel of the operator Mz defined by (21.56)
with (21.57) satisfies

Mz(x, y) =
1

2
|V |1/2(x)e−i

√
ℜz (x+y)[ℑz (x+ y)− (|x|+ |y|)

]
V1/2(y) +mz(x, y) , (21.58)

where for some k > 0 , the function mz satisfies, for all z ∈ S such that ℜz ≥ 1 ,

|mz(x, y)| ≤
k√
ℜz

|V |1/2(x) (1 + x2 + y2) |V |1/2(y) . (21.59)

If V ∈ L1
(
R, (1 + x4) dx

)
, then ‖Mz‖HS is uniformly bounded with respect to z ∈ S.

Proof. In the following computations we assume ℜz ≥ 1 .
First, let x ≥ 0 and y ≤ 0. Then, according to (21.13) and the asymptotic behaviour of k+(z) and k−(z)

given in (21.24),

Rz(x, y) =
1

k+(z) + k−(z)
e−k+(z)x+k−(z) y = e−k+(z)x+k−(z) y

(√
ℜz + δ1(z)

)
,

where δ1(z) does not depend on (x, y) and δ1(z) = O(1/
√
ℜz). Thus,

Mz(x, y) =
√
ℜz |V |1/2(x) e−i

√
ℜz (x+y)

(
eΛz(x,y) − 1

)
V1/2(y)

+ δ1(z) |V |1/2(x) e−k+(z) x+k−(z) y V1/2(y) , (21.60)

where

Λz(x, y) :=
(
−k+(z) + i

√
ℜz
)
x+

(
k−(z) + i

√
ℜz
)
y .
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Writing a Taylor expansion for the two real-valued functions

[0, 1] ∋ t 7−→ ℜetΛz(x,y) and [0, 1] ∋ t 7−→ ℑetΛz(x,y) ,

we obtain that, for some t1, t2 ∈ [0, 1],

eΛz(x,y) − 1 = Λz(x, y) +
1

2

[
ℜ
(
Λz(x, y)

2et1Λz(x,y)
)
+ iℑ

(
Λz(x, y)

2et2Λz(x,y)
)]
. (21.61)

Notice that, for all z ∈ S, x ≥ 0 and y ≤ 0, ℜΛz(x, y) ≤ 0, hence

1

2

∣∣∣ℜ
(
Λz(x, y)

2et1Λz(x,y)
)
+ iℑ

(
Λz(x, y)

2et2Λz(x,y)
)∣∣∣ ≤ |Λz(x, y)|2 . (21.62)

Moreover, due to (21.24), we have

Λz(x, y) =
(ℑz − 1)x+ (ℑz + 1) y

2
√
ℜz

+
βz x+ γz y

(ℜz)3/2 ,

for some complex constants βz and γz independent of (x, y) and uniformly bounded with respect to z. As a
consequence, (21.61) and (21.62) yield

eΛz(x,y) − 1 =
1√
ℜz

(
(ℑz − 1)x+ (ℑz + 1) y

2
+ δ2(z;x, y)

)
,

where, for all z ∈ S, x ≥ 0 and y ≤ 0,

|δ2(z;x, y)| ≤ C0
1 + x2 + y2√

ℜz
,

with some C0 > 0. Summing up, (21.60) reads

Mz(x, y) = |V |1/2(x)
(
M̃0
z(x, y) + rz(x, y)

)
V1/2(y) , (21.63)

where (x ≥ 0, y ≤ 0)

M̃0
z(x, y) :=

1

2
e−i

√
ℜz (x+y) [(ℑz − 1)x+ (ℑz + 1) y

]

=
1

2
e−i

√
ℜz (x+y) [ℑz (x+ y)− (|x| + |y|)

]
(21.64)

and
rz(x, y) := e−i

√
ℜz (x+y) δ2(z;x, y) + e−k+(z)x+k−(z) y δ1(z) (21.65)

satisfies, with some positive constant C,

∀z ∈ S , x ≥ 0 , y ≤ 0 , |rz(x, y)| ≤
C√
ℜz

(1 + x2 + y2) . (21.66)

By a similar analysis, we get the decomposition of the form (21.63) for x ≤ 0 and y ≥ 0 as well, where
(x ≤ 0, y ≥ 0)

M̃
0
z(x, y) :=

1

2
e−i

√
ℜz (x+y)[(ℑz + 1)x+ (ℑz − 1) y

]

=
1

2
e−i

√
ℜz (x+y)[ℑz (x+ y)− (|x|+ |y|)

]
(21.67)

and the bound (21.66) holds also for x ≤ 0, y ≥ 0.
The case xy ≥ 0 can also be treated alike, by noticing that in this case the first term on the right-hand side

of (21.13) satisfies ∣∣∣∣
1

2k±(z)
e−k±(z)|x−y|

∣∣∣∣ ≤
C′

√
ℜz

with some C′ > 0. Moreover, using (21.24),

± k+(z)− k−(z)

2k±(z)
(
k+(z) + k−(z)

) e−k±(z)(|x|+|y|) −
√
ℜz e−i

√
ℜz (x+y)

=
1

2
e−i

√
ℜz (x+y) [ℑz (x+ y)− (|x| + |y|)

]
+ ρz(x, y) ,
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where ρz(x, y) satisfies the bound (21.66). The decomposition (21.58) with (21.59) is therefore proved.

To complete the proof of the lemma, it remains to prove the uniform boundedness of Mz. This can be
deduced from (21.58) and (21.59). Indeed, with some C1 > 0, we have, for ℜz ≥ 1,

‖Mz‖2HS ≤ C1

∫

R2

|V (x)| (1 + x2 + y2)2 |V (y)| dx dy ,

where the right hand side is finite if V ∈ L1(R, (1 + x4) dx) and actually independent of z. If ℜz ≤ 1, then
according to (21.55) and the expression (21.57) of the kernel Lz , we have

‖Mz‖HS ≤ ‖Kz‖HS + ‖Lz‖HS ≤ C2

√∫

R2

|V (x)| (1 + |x|+ |y|)2 |V (y)| dx dy

with some C2 > 0, hence the norm ‖Mz‖HS is uniformly bounded for ℜz ≤ 1 as well.

Remark 21.5. Using a first-order expansion in (21.61) instead of the second-order expansion, we would obtain
the uniform boundedness of Mz under the weaker assumption V ∈ L1

(
R, (1 + x2) dx). However, the second-

order expansion in (21.61) is required in order to get the exact expression (21.64) of the principal term M̃0
z(x, y)

in (21.63).

Since ‖Mz‖ is uniformly bounded with respect to z ∈ S, the operator (1 + εMz) is boundedly invertible for
all ε small enough. Consequently, in view of the identity

εKz + 1 = ε(Lz +Mz) + 1 = (1 + εMz)
[
ε(1 + εMz)

−1Lz + 1
]

and Theorem 21.4, we have (for all z ∈ S)

z ∈ σp(Hε) ⇐⇒ −1 ∈ σ
(
ε(1 + εMz)

−1Lz
)
. (21.68)

From the definition (21.57) we see that Lz is a rank-one operator. Consequently, ε(1+ εMz)
−1Lz is of rank

one too. Indeed, for all f ∈ L2(R), we have

ε(1 + εMz)
−1Lzf = ε

√
ℜz (f, ψ̄z) (1 + εMz)

−1φz ,

where

φz(x) := e−i
√
ℜz x |V |1/2(x) and ψz(x) := e−i

√
ℜz x V1/2(x) .

It follows that ε(1 + εMz)
−1Lz has the unique non-zero eigenvalue

ε
√
ℜz
(
(1 + εMz)

−1φz , ψ̄z
)
.

Equivalence (21.68) thus reads

z ∈ σp(Hε) ⇐⇒ −1 = ε
√
ℜz
(
(1 + εMz)

−1φz, ψ̄z
)
. (21.69)

Note that the right hand side represents an implicit equation for z.

Writing

(1 + εMz)
−1 =

n−1∑

j=0

(−1)jεjM j
z + (−1)nεnMn

z (1 + εMz)
−1 ,

the condition on the right hand side of (21.69) reads

1√
ℜz

=
n∑

j=1

(−1)j
(
M j−1
z φz, ψ̄z

)
εj + (−1)n+1

(
Mn
z (1 + εMz)

−1φz , ψ̄z
)
εn+1 . (21.70)

In the following we estimate each term on the right hand side of (21.70).

For j = 1, . . . , n , denoting

V ⊗j(x1, . . . , xj) := V (x1) . . . V (xj) ,
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and using the decomposition (21.60) with (21.67), we have

(
M j−1
z φz, ψ̄z

)
=

∫

Rj

Mz(x1, x2) . . .Mz(xj−1, xj)φz(xj)ψz(x1) dx1 . . . dxj

=

∫

Rj

(
j−1∏

ℓ=1

|V |1/2(xℓ)
[
M̃0
z(xℓ, xℓ+1) + rz(xℓ, xℓ+1)

]
V1/2(xℓ+1)

)

× |V |1/2(xj) e−i
√
ℜz (x1+xj) V1/2(x1) dx1 . . . dxj

=

∫

Rj

e−i
√
ℜz (x1+xj) V ⊗j(x1, . . . , xj)

×
j−1∏

ℓ=1

[
M̃0
z(xℓ, xℓ+1) + rz(xℓ, xℓ+1)

]
dx1 . . . dxj

= Ij−1(z) +Rj−1(z) , (21.71)

where

Ij−1(z) :=
1

2j−1

∫

Rj

e−2i
√
ℜz

∑j
ℓ=1 xℓ V ⊗j(x1, . . . , xj)

×
j−1∏

ℓ=1

[
ℑz (xℓ + xℓ+1)− (|xℓ|+ |xℓ+1|)

]
dx1 . . . dxj (21.72)

and Rj−1(z) := (M j−1
z φz , ψ̄z)− Ij−1(z) contains all the integral terms involving at least one factor of the form

rz(xℓ, xℓ+1). Using (21.66), one can easily check that

Rj−1(z) = O

(
1√
ℜz

)
(21.73)

whenever V ∈ L1(R, (1 + x2n) dx).
On the other hand, we have

j−1∏

ℓ=1

[
ℑz (xℓ + xℓ+1)− (|xℓ|+ |xℓ+1|)

]
=

∑

~ℓ∈Jj−1

j−1∏

m=1

(ℑz xℓm − |xℓm |) ,

for a subset Jj−1 ⊂ {1, . . . , j}j−1 such that, for all ~ℓ ∈ Jj−1, each coordinate in ~ℓ is repeated at most twice.
Consequently, separating the variables in (21.72), we get, for some positive integer Mj ,

Ij−1(z) =
1

2j−1

Mj∑

k=1

I
(k)
j−1(z) , (21.74)

where each term I
(k)
j−1(z) has the form

I
(k)
j−1(z) =

(∫

R

e−2i
√
ℜz x V (x) dx

)ak,j

×
(∫

R

e−2i
√
ℜz x(ℑz x− |x|)V (x) dx

)bk,j

×
(∫

R

e−2i
√
ℜz x (ℑz x− |x|)2V (x) dx

)ck,j
,

with ak,j , bk,j , ck,j such that 



ak,j > 0 , bk,j ≥ 0 , ck,j ≥ 0 ,
ak,j + bk,j + ck,j = j ,
bk,j + 2ck,j = j − 1 .

Thus, if F[f ](ξ) denotes the Fourier transform of f at point ξ, we have

I
(k)
j−1(z) =

(
F[V ](2

√
ℜz)

)ak,j (
F
[
(ℑz x− |x|)V (x)

]
(2
√
ℜz)

)bk,j

×
(
F
[
(ℑz x− |x|)2V (x)

]
(2
√
ℜz)

)ck,j
. (21.75)
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Now, since for s = 1, 2 the function x 7→ (ℑz x − |x|)sV (x) belongs to L1(R) by assumption, its Fourier
transform is in L∞(R) and it is continuous. Hence there exists M1 > 0 such that, for all z ∈ S and s = 1, 2,

∣∣∣F
[
(ℑz x− |x|)sV (x)

]
(2
√
ℜz)

∣∣∣ ≤M1 .

Similarly, since V ∈ W 1,1(R), the function ξ 7→ ξ F[V ](ξ) belongs to L∞(R) and it is continuous. Hence there
exists M2 > 0 such that, for all z ∈ S, ∣∣∣F[V ](2

√
ℜz)

∣∣∣ ≤ M2√
ℜz

.

Thus (21.74) and (21.75) give

Ij−1(z) = O

(
1√
ℜz

)
. (21.76)

Finally, (21.71), (21.73) and (21.76) yield

(
M j−1
z φz , ψ̄z

)
= O

(
1√
ℜz

)

for all j = 1, . . . , n. Thus, according to (21.70),

1√
ℜz
(
1− O(ε)

)
= (−1)n+1

(
Mn
z (1 + εMz)

−1φz , ψ̄z
)
εn+1 ,

uniformly with respect to z as ε → 0. We then notice that the right hand side in the above identity has the
form O(εn+1), uniformly with respect to z, as ε→ 0. Therefore, we have

1√
ℜz

= O(εn+1) ,

which concludes the proof of Theorem 21.3.

21.7 Examples

21.7.1 Dirac interaction

In order to test our results on an explicitly solvable model, let us consider the operator formally given by the
expression

Hα = − d2

dx2
+ i sgn(x) + α δ(x) , α ∈ C ,

where δ is the Dirac delta function. In fact, Hα can be rigorously defined (cf [20, Ex. 5.27]) as the m-sectorial
operator in L2(R) associated with the form sum h+ αv, where

v(ψ, φ) := ψ(0)φ̄(0) , D(v) :=W 1,2(R) .

We have
(Hαψ)(x) = −ψ′′(x) + i sgn(x)ψ(x) for a.e. x ∈ R ,

D(Hα) =
{
ψ ∈ W 1,2(R) ∩W 2,2(R \ {0}) : ψ′(0+)− ψ′(0−) = αψ(0)

}
.

It is also possible to show that Hα is T-self-adjoint.
Using for instance [12, Corol. IX.4.2], we have the stability result

σess(Hα) = σess(H) = [0,+∞) + i {−1,+1}

for all α ∈ C. Since Hα is T-self-adjoint, the residual spectrum of Hα is empty (cf [20, Sec. 5.2.5.4]). Finally,
the eigenvalue problem for Hα can be solved explicitly and we find that Hα possesses a unique (discrete)
eigenvalue given by

λ(α) :=
1

α2
− α2

4
(21.77)

if, and only if,

λ(α) 6∈ [0,+∞) + i {−1,+1} . (21.78)
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In particular, the eigenvalue exists for all α ∈ R \ {0} and in this case it is real. It is interesting that the rate
at which λ(α) tends to infinity as α→ 0 coincides with the bound of Theorem 21.2, even if this theorem does
not apply to the present singular potential and even for non-real α.

Now, in order to state the condition (21.78) more explicitly in terms of α, let us set, for all σ = (σ1, σ2, σ3) ∈
{−1,+1}3,

Γσ :=

{
σ1

√
−2(r + iσ2) + 2σ3

√
r(r + 2iσ2) : r ∈ [0,+∞)

}
.

Notice that, for all r ∈ [0,+∞), the square roots in the expression above are well defined. Then the condi-
tion (21.78) is equivalent to α /∈ Γ, where

Γ :=
⋃

σ∈{−1,+1}3

Γσ . (21.79)

The curve Γ is represented in Figure 21.3.

- 1.0 - 0.5 0.5 1.0
Re

- 4

- 2
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4
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Figure 21.3: The curve Γ in the complex plane representing values of α for which the eigenvalue of Hα does
not exist.

Let us summarise the spectral properties into the following proposition.

Proposition 21.4. For any α ∈ C, we have

σr(Hα) = ∅ ,

σc(Hα) = [0,+∞) + i {−1,+1} ,

σp(Hα) =

{
∅ if α ∈ Γ ,

{λ(α)} if α 6∈ Γ ,

where λ(α) is given by (21.77) and Γ is the domain defined in (21.79).

21.7.2 Step-like potential

To have a definitive support for the existence of discrete spectra for the operators of the type (21.8), here we
consider ε = 1 and the following step-like profile for the perturbing potential:

Va,b(x) := (−i sgn(x)− b)χ[−a,a](x) ,

where a > 0 and b ∈ C. We set Ha,b := H + Va,b. By Proposition 21.3,

σess(Ha,b) = [0,+∞) + i {−1,+1} (21.80)
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for all a > 0 and b ∈ C.
The differential equation of the eigenvalue problem Ha,bψ = λψ can be solved in terms of sines and cosines

in each of the intervals (−∞,−a), (−a, a) and (a,+∞). Choosing integrable solutions in the infinite intervals
and gluing the respective solutions at ±a by requiring the W 2,2-regularity, we arrive at the following equation

[√
λ2 + 1− λ− b

]sin
(
2a

√
λ+ b

)
√
λ+ b

− i
(√
λ+ i−

√
λ− i

)
cos
(
2a

√
λ+ b

)
= 0 (21.81)

for eigenvalues λ satisfying |ℑλ| < 1 and λ+ b 6∈ (−∞, 0). The equation for the case λ = −b is recovered after
taking the limit λ→ −b in the above equation. For eigenvalues λ satisfying |ℑλ| < 1 and λ+ b ∈ (−∞, 0), we
find

[√
λ2 + 1− λ− b

] sinh
(
2a
√
|λ+ b|

)
√
|λ+ b|

− i
(√
λ+ i−

√
λ− i

)
cosh

(
2a
√
|λ+ b|

)
= 0 .

In the same manner, it is possible to derive equations for eigenvalues λ satisfying |ℑλ| ≥ 1. However, we shall
not present these formulae, for below we are particularly interested in real eigenvalues. We only mention that
it is easy to verify that no point in the essential spectrum (21.80) can be an eigenvalue.

Henceforth, we investigate the existence of real eigenvalues. Moreover, we restrict to real b and look for
eigenvalues λ > −b, so that it is enough to work with (21.81). First of all, notice that, for any λ > −b
satisfying (21.81), sin

(
2a

√
λ+ b

)
never vanishes. At the same time, ℑ

√
λ+ i is non-zero for real λ. We can

thus rewrite (21.81) as follows

cot
(
2a

√
λ+ b

)
= −

√
λ2 + 1− (λ+ b)

2
√
λ+ b ℑ

√
λ+ i

∼ b as λ→ +∞ .

Since there is a periodic function with range R on the left hand side, it follows from the asymptotics that Ha,b

possesses infinitely many eigenvalues for every real b. Let us highlight this result by the following proposition.

Proposition 21.5. For any a > 0 and b ∈ R, Ha,b possesses infinitely many distinct real discrete eigenvalues.

Several real eigenvalues of Ha,b as functions of b ∈ R are represented in Figure 21.4.

21.7.3 Dirichlet realisation

Since the spectrum of H is the union of the two half-lines R+ + i and R+ − i, one might have expected

the operator H to behave as some sort of decoupling of two operators − d2

dx2 + i in L2(R+) and − d2

dx2 − i in
L2(R−). The existence of non-trivial pseudospectra (cf Theorem 21.1) actually indicates that this is not the
case. Indeed, the situation strongly depends on the way the operator is defined, emphasising the importance
of the choice of domain in the pseudospectral behaviour of an operator.

For comparison, let HD be the operator in L2(R) that acts as H in R∗
+ := (0,+∞) and R∗

− := (−∞, 0),
but satisfies an extra Dirichlet condition at zero, i.e.,

D(HD) :=
(
W 2,2 ∩W 1,2

0

)(
R \ {0}

)
.

Considering this operator instead of H means that the previous matching conditions at x = 0, u(0−) = u(0+)
and u′(0−) = u′(0+) for u ∈ D(H), are replaced by the conditions u(0−) = 0 = u(0+) for u ∈ D(HD).

We can write HD as a direct sum

HD = HD
− ⊕HD

+ , (21.82)

where HD
± are operators in L2(R∗

±) defined by

HD
± := − d2

dx2
± i , D(HD

± ) :=
(
W 2,2 ∩W 1,2

0

)
(R∗

±) . (21.83)

Since the spectra of HD
± are trivially found, we therefore have (see [12, Sec. IX.5])

σ(HD) = σ(HD
− ) ∪ σ(HD

+ ) = R+ + i {−1,+1} .

Hence HD and H have the same spectrum (cf Proposition 21.1).
We can also decompose the resolvent of HD as follows

(HD − z)−1 = (HD
− − z)−1 ⊕ (HD

+ − z)−1
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Figure 21.4: Dependence of real eigenvalues of Ha,b on b for a = 1.

for every z 6∈ R+ + i {−1,+1}. Since HD
± are obtained from self-adjoint operators shifted by a constant,

they both have trivial pseudospectra. Consequently, HD has trivial pseudospectra as well. In other words,
although HD and H have the same spectrum, that of H is far more unstable (cf Theorem 21.1).

To be more specific, let us write down the integral kernel RDz of (HD − z)−1. For f ∈ L2(R), the function
(HD−z)−1f has the form (21.15), where the constantsA+, A−, B+, B− are uniquely determined by the Dirichlet
condition at 0 together with the condition (HD − z)−1f(x) → 0 as x → ±∞. The former yields B+ = −A+

and B− = −A−, while the latter gives the following values for A+ and A−:

A+ =
1

2k+(z)

∫ +∞

0

f(y) e−k+(z)y dy , A− = − 1

2k−(z)

∫ 0

−∞
f(y) ek+(z)y dy .

Eventually, we obtain the following expression for the integral kernel:

RDz (x, y) =
1

2k±(z)

(
e−k±(z)|x−y| − e−k±(z)(|x|+|y|)

)
χR±(y) , ±x > 0 .

Now, as in Section 21.5.1, we can consider the perturbed operator

HD
ε := HD+̇εV

for any V ∈ L1(R). We claim that, under the additional assumption V ∈ L1(R, (1+x2) dx), the Hilbert-Schmidt
norm of the Birman-Schwinger operator

KD
z := |V |1/2 (HD − z)−1 V1/2

is uniformly bounded with respect to z /∈ R+ + i{−1, 1}. To see it, let us first assume x > 0. If |z − i| ≤ c0 for
some positive c0, then

|RDz (x, y)| ≤
1

2|k+(z)|
(∣∣e−k+(z)|x−y| − 1

∣∣+
∣∣(e−k+(z)(|x|+|y|) − 1

∣∣
)

≤ |x− y|+ |x|+ |y|
2

,
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where we have used the inequality |e−ω − 1| ≤ |ω| for ℜω ≥ 0. On the other hand, if |z − i| > c0, then |k+(z)|
is uniformly bounded from below, hence RDz (x, y) is uniformly bounded with respect to x ≥ 0, y ∈ R and z
such that |z − i| > c0. The same analysis can be performed for x < 0, thus there exists C > 0 such that, for
all (x, y) ∈ R2 and z /∈ [0,+∞) + i{−1, 1},

|RDz (x, y)| ≤ C(1 + |x|+ |y|) .

Consequently, the computation of the Hilbert-Schmidt norm of KD
z yields

‖KD
z ‖HS ≤ C

∫

R

(1 + x2)|V (x)| dx . (21.84)

After noticing that σess(H
D
ε ) = σess(H

D) for all ε ∈ R (by the same arguments as in the proof of Propo-
sition 21.3), the Birman-Schwinger principle (i.e. a version of Theorem 21.4 for HD

ε ) leads to the following
statement.

Proposition 21.6. Let V ∈ L1
(
R, (1 + x2) dx

)
. There exists a positive constant ε0 > 0 such that, for all

ε ∈ (0, ε0), we have
σ(HD

ε ) = σ(HD) = R+ + i {−1, 1} .

In other words, in the simpler situation of the operator HD, we are able to prove the absence of weakly
coupled eigenvalues. Proposition 21.6 can be considered as some sort of “Hardy inequality” or “absence of
virtual bound state” for the non-self-adjoint operator HD. Let us also notice that a similar result has been
established by Frank [13] in the case of Schrödinger operators with complex potentials in three and higher
dimensions.

Acknowledgment

The authors are grateful to Mark Embree for his Figure 21.1 and to Petr Siegl for valuable suggestions. The
authors also thank the anonymous referee for helpful comments. The research was partially supported by the
project RVO61389005 and the GACR grant No. 14-06818S. The first author acknowledges the support of the
ANR project NOSEVOL. The second author also acknowledges the award from the Neuron fund for support
of science, Czech Republic, May 2014.



References

[1] A. A. Abramov, A. Aslanyan, and E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys. A: Math.
Gen. 34 (2001), 57–72.

[2] M. Sh. Birman, On the spectrum of singular boundary-value problems, Mat. Sb. 55 (1961), 127–174, (in Russian).
English translation in: Eleven Papers on Analysis, AMS Transl. 53, 23-80, AMS, Providence, R.I., 1966.

[3] R. Blackenbecler, M. L. Goldberger, and B. Simon, The bound states of weakly coupled long-range one-dimensional
quantum Hamiltonians, Ann. Phys. 108 (1977), 69–78.
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[38] M. Znojil and G. Lévai, Spontaneous breakdown of PT-symmetry in the solvable square-well model, Mod. Phys.
Lett. A 16 (2001), 2273–2280.

[39] M. Zworski, A remark on a paper of E. B. Davies, Proc. Amer. Math. Soc. 129 (2001), 2955–2957.

https://github.com/eigtool


Chapter 22

Pseudomodes for Schrödinger
operators with complex potentials

Preprint on: arXiv:1705.01894 [math.SP] (2017)

https://arxiv.org/abs/1705.01894

Joint work with: Petr Siegl

395

https://arxiv.org/abs/1705.01894


396 III Pseudospectra



III.22 Pseudomodes for Schrödinger operators with complex potentials 397

Pseudomodes for Schrödinger operators with complex potentials
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Abstract. For one-dimensional Schrödinger operators with complex-valued potentials, we con-
struct pseudomodes corresponding to large pseudoeigenvalues. We develop a first systematic non-
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22.1 Introduction

While the spectral theorem reduces the study of self-adjoint operators to a spectral analysis, it is well known
that the spectrum of a non-normal operator provides by far insufficient information about its properties. It is
not the spectrum that determines the decay of the associated heat semigroup and the behaviour of eigenvalues
under small perturbations, but rather the pseudospectrum, which measures the largeness of the resolvent, see
e.g. [20, 6, 11].

The ε-pseudospectrum of a closed operator H consists of the union of its spectrum and complex points λ
satisfying ‖(H − λ)f‖ < ε ‖f‖ for some vector f from the domain of H . The number λ and the vector f are
respectively called the pseudoeigenvalue (or approximate eigenvalue) and pseudoeigenvector (or pseudomode)
of H . The pseudoeigenvalues of H may be turned into genuine eigenvalues of the perturbed operator H + L
with ‖L‖ < ε and they can lie outside (in fact “very far” from) the ε-tubular neighbourhood of the spectrum
of H if the operator is not normal. This is the well-known spectral instability of non-normal operators under
small perturbations.

This paper is concerned with a study, in several aspects complete, of approximate eigenvalues and pseudo-
modes of the one-dimensional Schrödinger operators

HV := − d2

dx2
+ V (x) , (22.1)

where V is a complex -valued function. We consider L2-realisations of HV on the whole line R or the semi-
axis R+, the latter having immediate consequences for the multi-dimensional operators with radial potentials
and their perturbations. Thus our objective is to construct a λ-dependent family of pseudomodes fλ such that

‖(HV − λ)fλ‖ = o(1) ‖fλ‖ as λ→ ∞ in Ω ⊂ C. (22.2)

The abstract self-adjoint theory yields immediately that real-valued potentials V are irrelevant here, since
then (22.2) may hold only when λ approaches the spectrum of HV . On the other hand, the by now well-known
examples of potentials for which (22.2) holds in vast complex regions Ω are just purely imaginary monomials
V (x) := ixn and their perturbations, see e.g. [5, 4, 18, 19, 12, 16]. Hence, the state of the art of the current
research in construction of the “large-energy” pseudomodes for (non-semiclassical) Schrödinger operators is by
far incomplete and the objective of this paper is to fill up the gap. In fact, all known cases (as well as all
semi-classical ones) represent the simplest illustrations of our results, see Examples 22.1, 22.9 and 22.10.

The fundamental questions that we address here read as follows:

• For which potentials there is a non-trivial region Ω ⊂ C where (22.2) holds?

• Comparing to ℑV , how large can ℜV be so that (22.2) is preserved?

• Depending on V , what is the shape of Ω?

• Is the polynomial-like character of the so far studied operators important?
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• What is the role of the regularity of V ?

Basically all available results on non-trivial pseudospectra of Schrödinger operators are deduced by scaling
from semiclassical pseudomodes, where a small parameter h2 is added in front of the second-derivative in (22.2),
see e.g., [5, 7]. However, such an approach has several drawbacks. First of all, only very specific (homogeneous
or their perturbations) potentials can be treated and unboundedness of ℑV at infinity may seem to be crucial
due to the scaling. Second, the artificial transition to the new parameter h, related in various ways to λ,
complicates the natural interpretation of the results as well as the main points in the proofs. Finally, with
the exception of the imaginary shifted harmonic oscillator V (x) := (x + i)2 treated in [12], no claims seem to
be available when ℜV is larger than ℑV at infinity. For these reasons, in this paper we attack the problem
directly (without introducing the semiclassical parameter h) and provide several answers to the aforementioned
questions.

The present results have also a connection to some open problems posed during the 2015 AIM workshop [1].
In particular, we would like to emphasise the following insights provided by this paper.

The semiclassical setting as a consequence

From our approach the known claims in the semiclassical setting follow immediately. In particular, the Davies’
condition [5] ℑV ′ 6= 0 or its (weaker) versions (see [21, 17]) can be easily generalised, see Example 22.10. It is
also worth noting that our general non-semiclassical pseudomodes do not always localise, instead their support
may extend.

Optimality of potentials

Our assumption (22.30) on the allowed size of ℜV is optimal, at least for polynomial-like potentials (with
ν± = −1 in assumption (22.29)). Indeed, by completely different methods, it has been established in [14, 15]
that e.g. for potentials V satisfying ℜV (x) = |x|β with β ≥ 1 and

∃ǫ > 0, |ℑV (x)|2 = O(|x|β−2−ǫ), |x| → ∞, (22.3)

the eigensystem of HV contains a Riesz basis (and only a finitely many multiple eigenvalues) and hence the
only non-trivial pseudomodes exist for λ close to the eigenvalues of HV (with known asymptotics, see [14]). In
turn, the current results suggest that the condition (22.3) is optimal with respect to the Riesz basis property
of HV (which can be indeed concluded if more information about the position of eigenvalues of HV is available)
and confirms that the borderline case (potentials with ǫ = 0 in (22.3)) is the most challenging one, see [1, Open
Problem 15.1]. Moreover, the assumption (22.30) has a very natural interpretation, namely, the pseudomodes
loose their exponential decay if (22.30) is not satisfied, see Remark 22.2.

Optimality of pseudospectral regions

Our restrictions on the set Ω in (22.141), expressed in terms of conditions on a := ℜλ and b := ℑλ, seem to
be optimal. The optimality for the rotated harmonic oscillator V (x) := ix2 follows by Boulton’s conjecture [4]
solved by Pravda-Starov [18], see Example 22.9. The lower bound of (22.156) is also known to be optimal for
the imaginary cubic oscillator V (x) := ix3, see [3, Sec. 4.1]. The study of optimality of our estimates on the
region Ω in general cases constitute an interesting open problem.

Generality

We are able to treat a wide class of potentials being far beyond polynomial or scalable ones (we also allow a
large ℜV without restricting its sign). The method can be further straightforwardly generalised for even wilder
potentials than already a quite wide range covered here (from bounded or even decaying, see Section 22.3.5, to
super-exponential ones). For instance, the previously inaccessible (non-scalable) cases like V (x) := i sinh(x) or
V (x) := i arctan(x) are included, see Examples 22.2 and 22.3. It is also important to stress that for realisations
in L2(R), just the different asymptotic behaviour of ℑV at ±∞:

lim
x→−∞

ℑV (x) · lim
x→+∞

ℑV (x) < 0 (22.4)

(see also (22.28) for a slight generalisation) is crucial to ensure the “significant non-self-adjointness” of HV and
thus the validity of (22.2) for λ → +∞. For decaying but non-integrable potentials V , condition (22.4) can
be further weakened by requiring that ℑV approaches 0 from opposite sides at ±∞, see Section 22.3.5. The
various conditions of the type (22.4) can be viewed as a global version of the local Davies’ condition ℑV ′ 6= 0
or its weaker versions mentioned above.
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Rough potentials

In fact, we cover even discontinuous potentials, which were previously inaccessible to semiclassical techniques.
This is achieved by developing a robust method of λ-dependent mollifications of the potential. This new idea
enables us to eventually solve an open problem raised during the AIM workshop [1, Open Problem 10.1].

The regularity of potentials and decay rates of pseudomodes

We explicitly demonstrate the crucial influence of the regularity (or local deformations) of V on the best
possible rates in (22.2). The latter was observed (although not proved due to the missing upper bounds on
the resolvent) in the difference for analytic and smooth potentials (exponential versus “faster than any power”
rates), see e.g. [5, 7]. In this paper we stress (and prove) the difference in rates for various step-like potentials
of the type (arctan may be replaced by any “regularisation” of sgn)

V1(x) := i sgn(x) versus V2(x) := i arctan(x). (22.5)

Here the best possible rate is linear in the first case (as proved in [9] by a careful analysis of the resolvent
kernel) versus the “faster than any power” rate in the second case, see Example 22.3. Notice that the even
more drastic local deformation, namely the operator −d2/dx2 + i sgn(x) subject to an additional Dirichlet
boundary condition at 0, exhibits no decay for λ→ +∞ in (22.2), since such an operator becomes normal.

Laptev-Safronov eigenvalue bounds

Our results for decaying potentials from Section 22.3.5 show that the bound on individual eigenvalues of one-
dimensional Schrödinger operators due to Laptev and Safronov (see [13, Thm. 5] and [1, Open Problem 7.1])
cannot be improved using the Birman-Schwinger technique (since the norm estimate on the Birman-Schwinger
operator provides a resolvent estimate). To justify the latter, we find simple Lp-potentials with p > 1 for
which (22.2) holds, with the decay rate faster than any power of 1/|λ|, in a region Ω determined by (22.81),
which essentially coincides with the set appearing in [13, Thm. 5]. Thus the very natural reason for the
appearance of such Ω is provided.

The existence of this region Ω, where the spectrum of HV is extremely unstable with respect to further, even
tiny, perturbations, is a crucial difference with respect to the L1-potentials. In the latter case, the resolvent
estimate preventing that the resolvent of HV explodes for large λ’s again follows from the Birman-Schwinger
estimate, see [2].

Higher dimensions

The results and methods of this paper are essentially one-dimensional. Nonetheless, the results have conse-
quences for multi-dimensional Schrödinger operators with (at least local) symmetries and their not too strong
perturbations. The pseudomodes in L2(R) from Section 22.3 are obviously applicable for problems allowing for
the separation of variables in Cartesian coordinates, while the pseudomodes in L2(R+) from Section 22.5 are
applicable for radially symmetric problems. Finally, the pseudomodes from Example 22.11 arising due to the
strongly singular potential at 0, namely

V (r) :=
c

r2
+

i

rα
, c ∈ R, α > 2, r > 0 , (22.6)

localise in a vicinity of 0 and so are applicable for multi-dimensional potentials with a local radial singularity of
the type (22.6). Unlike in one dimension, these pseudomodes do not show the optimality of region Ω in Laptev-
Safronov multi-dimensional eigenvalue bounds since the condition α > 2 cannot be satisfied for V ∈ Lp(Rd)
with p ≥ d/2 (or p > 1 for d = 2).

Organisation of the paper

In Section 22.2 we outline our strategy to construct the pseudomodes and settle a number of important pre-
requisites for the subsequent applications. Section 22.3 is devoted to large positive pseudoeigenvalues, while
the case of general complex regions is treated only in Section 22.5; these two sections are concerned with
sufficiently regular potentials (at least continuous). Large positive pseudoeigenvalues for discontinuous and
singular potentials are dealt with in the intermediate Section 22.4.
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Notations

Let us fix some notations employed throughout the paper. We use the following conventions for number sets,
N := {1, 2, . . .}, N0 := N ∪ {0}, R+ := (0,∞) and R− := (−∞, 0). Given an interval I ⊂ R, the norm of Lp(I)
is denoted by ‖ · ‖Lp(I). If I = R, we abbreviate ‖ · ‖p := ‖ · ‖Lp(R) and ‖ · ‖ := ‖ · ‖2. The Lp spaces with a
weight are denoted by

Lpα(I) := {f measurable : 〈x〉αf(x) ∈ Lp(I)}, α ∈ R , (22.7)

where 〈x〉 := (1 + x2)
1
2 . For an “integer interval” we use the double brackets, [[m,n]] := [m,n] ∩ Z. To avoid

using many irrelevant constants, we employ the convention that a . b if there is a constant C > 0, independent
of λ and x (or any other relevant parameter), such that a ≤ Cb; the convention for & is analogous. By a ≈ b
it is meant that a . b and a & b.

22.2 Preliminaries

A standing hypothesis of this paper is that the complex-valued potential V satisfies the local square-integrability
condition V ∈ L2

loc(R). We understand the Schrödinger operator (22.8) as the maximal operator generated by
the differential expression, i.e.,

HV f := −f ′′ + V f ,

D(HV ) := {f ∈ L2(R) : −f ′′ + V f ∈ L2(R)} .
(22.8)

If ℜV is bounded from below, Kato’s theorem (cf [8, Sec. VII.2.2]) yields that HV is m-accretive and,
moreover, C∞

0 (R) is a core of HV . The m-accretivity ensures that (22.8) is well defined as a closed operator
with non-empty resolvent set. The latter properties of HV are valid also in the non-accretive case under
alternative assumptions on V , see [10]. For the pseudomode constructions performed in the present paper,
however, not even the closedness of HV is necessary.

22.2.1 The JWKB Ansatz

Our construction of pseudomodes is based on the Liouville-Green approximation (also known as the JWKB
method). If V were constant, i.e. V (x) = V0 for all x ∈ R, exact solutions of the differential equation
−g′′ + V0g = λg would be given by

e±i
∫
x
0

√
λ−V0 dt . (22.9)

We shall be particularly interested in the limit λ→ +∞ and consistently consider the principal branch of the
square root. More generally, we always restrict to

λ ∈ C \ (−∞, 0) . (22.10)

For a variable potential V , we still take (22.9) with V0 replaced by V and with the minus sign (due
to assumptions on the signs of ℑV , see (22.28)) as a basic Ansatz to get the approximate solutions (22.2).
Nonetheless, usually more terms will be needed for unbounded potentials or when V is sufficiently regular and
more information on the decay rates in (22.2) are sought. In general, we therefore take

g(x) := exp

(
−

n−1∑

k=−1

λ−
k
2 ψk(x)

)
, (22.11)

where functions ψk are to be determined. Not surprisingly, ψ−1 will turn out to be given by ψ−1(x) :=
iλ−1/2

∫ x
0

√
λ− V (t) dt. As we will show in examples in Section 22.3.4, most of interesting potentials can be

treated already with the expansion (22.11) up to n = 2.

22.2.2 The cut-off

To obtain admissible pseudomodes, it is important to employ a λ-dependent cut-off of the JWKBAnsatz (22.11).
To this aim, we consider a function ξ : R → R satisfying the following properties:

ξ ∈ C∞
0 (R), 0 ≤ ξ ≤ 1,

∀x ∈ (−δ− +∆−, δ+ −∆+), ξ(x) = 1,

∀x /∈ (−δ−, δ+), ξ(x) = 0;

(22.12)
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the λ-dependent positive numbers δ± = δ±(λ) and ∆± = ∆±(λ) < δ± will be determined later. Notice that ξ
can be selected in such a way that

‖ξ(j)‖L∞(R±) . ∆−j
± , j = 1, 2. (22.13)

To simplify notations, we also define intervals

J := (−δ−, δ+), J± := {x ∈ R± : |x| < δ±},
J
′ := (−δ− +∆−, δ+ −∆+), J

′
± := {x ∈ R± : |x| < δ± −∆±}.

(22.14)

Our Ansatz for a general potential V then reads

f := ξ g. (22.15)

where g is defined in (22.11) and the index n ∈ N0 will be chosen according to the smoothness of V .

22.2.3 The strategy

Let us informally describe the strategy. Recalling (22.11), we have

−f ′′ + (V − λ)f = −(ξ g)′′ + (V − λ)ξ g

= −ξ′′g − 2ξ′g′ + ξ[−g′′ + (V − λ)g].
(22.16)

When n = 0, the appearing terms read

g′ = −i
√
λ− V g, −g′′ + (V − λ)g =

−iV ′
√
λ− V

g , (22.17)

which already suggests what needs to be done. First, V must be sufficiently regular so that f ∈ D(HV ); in
fact, the more terms in (22.11) are taken, the more regular V is needed. Second, functions ψk in (22.11) and
the cut-off ξ must be selected in such a way that the L2-norm of the third term on the second line of (22.16)
is as small as possible when λ is large. Third, the assumption on the sign of ℑV , see (22.28), implies that |g|
decays exponentially, see Lemma 22.4, and so the terms with ξ′ and ξ′′ are expected to be small; nevertheless,
an appropriate restriction of δ±, ∆± must be given.

Since our goal is to deal with potentials of low regularity, the construction consists of more steps. First we
deal with sufficiently regular potentials V , later we add a singular termW and follow various possible strategies
how to treat it, see Section 22.4.

22.2.4 The expansion

For g given in (22.11), we have

−g′′ + (V − λ)g =

(
n−1∑

k=−1

λ−
k
2 ψ′′

k

)
g −

(
n−1∑

k=−1

λ−
k
2 ψ′

k

)2

g + (V − λ)g

=:




2(n−1)∑

k=−2

λ−
k
2 φk+1


 g, n ∈ N.

(22.18)

Here the functions φk with k ∈ [[−1, 2n− 1]] are naturally defined after grouping together the terms with the
same power of λ on the right hand side of the first line in (22.18), with the exception of V which we include in
the leading order term:

(k = −2) λ1 : −(ψ′
−1)

2 +
V − λ

λ
=: φ−1,

(k = −1) λ
1
2 : ψ′′

−1 − 2ψ′
−1ψ

′
0 =: φ0,

(k = 0) λ0 : ψ′′
0 − 2ψ′

−1ψ
′
1 − (ψ′

0)
2 =: φ1,

(k = 1) λ−
1
2 : ψ′′

1 − 2ψ′
−1ψ

′
2 − 2ψ′

0ψ
′
1 =: φ2,

. . .

(22.19)

For −1 ≤ k ≤ 2(n− 1), the formulae can be written concisely as

ψ′′
k −

∑

α+β=k

ψ′
αψ

′
β = φk+1 , (22.20)
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with the convention that ψα = 0 whenever α ≥ n or α ≤ −2.

For the given n ∈ N, we have n + 1 functions ψ−1, . . . , ψn−1 and 2n + 1 functions φ−1, . . . , φ2n−1. The
strategy is to require that the first n + 1 functions φ−1, . . . , φn−1 are equal to zero, which determines all
available ψk. Using (22.20), this leads to a system of n+ 1 first-order differential equations that the functions
ψ−1, . . . , ψn−1 must satisfy:

ψ′
−1 = iλ−

1
2 (λ− V )

1
2 ,

ψ′
k+1 =

1

2ψ′
−1

(
ψ′′
k −

∑

α+β=k
α,β 6=−1

ψ′
αψ

′
β

)
, k ∈ [[−1, n− 2]] , (22.21)

with the convention as above that ψα = 0 whenever α ≥ n or α ≤ −2. Here and in the sequel λ is, in addition
to (22.10), assumed to be such that λ− V (x) ∈ C \ (−∞, 0) for all x ∈ R. Recall that the principal branch of
the square root is considered in this paper.

Notice that we had a freedom in the choice of sign in the definition of ψ′
−1 to make φ−1 = 0, see (22.19).

Our choice made in (22.21) will be consistently followed in this paper.

Finally, with this choice of functions ψk we get

− g′′ + (V − λ)g =




2(n−1)∑

k=n−1

λ−
k
2 φk+1


 g =: rn g, n ∈ N. (22.22)

The essential point for estimating the resulting term is the understanding of the structure of functions ψ′
k

and remainders rn, which is the content of the following lemmata. The proof is based on a straightforward but
rather lengthy induction argument.

Lemma 22.1. Let n ∈ N0, V ∈ Wn+1,2
loc (R) and functions {ψ′

k}k∈[[−1,n−1]] be determined by (22.21). Then

ψ
(m)
k =

λ
k
2

(λ− V )
k
2

k+m∑

j=0

T k+m,k+m+1−j
j

(λ − V )j
, m ∈ [[1, n+ 1− k]], (22.23)

where (with some cα ∈ C)

T r,sj :=
∑

α∈I
r,s
j

cα(V
(1))α1(V (2))α2 . . . (V (s))αs ,

I
r,s
j :=

{
α ∈ Ns0 :

s∑

i=1

iαi = r &

s∑

i=1

αi = j

}
.

(22.24)

Moreover, if r ≥ 1, then I
r,r+1
0 = ∅.

Lemma 22.2. Let n ∈ N0, V ∈ Wn+1,2
loc (R) and functions {ψ′

k}k∈[[−1,n−1]] be determined by (22.21), {φk}k∈[[−1,2n−1]]

be as in (22.20) and rn as in (22.22). Then

|rn| .
|V (n+1)|

|λ− V |n+1
2

+

n−1∑

k=0

1

|λ− V |n−1+k
2

n+1+k∑

l=2

|T n+1+k,n
l |
|λ− V |l , (22.25)

where T r,sj are as in (22.24).

As an illustration for the expansions above with n = 0, 1, 2 we list functions ψ′
k:

(n = 0) ψ′
−1 = i

(λ− V )
1
2

λ
1
2

,

(n = 1) ψ′
0 = −1

4

V ′

λ− V
,

(n = 2) ψ′
1 =

i

2

λ
1
2

(λ− V )
1
2

(
1

4

V ′′

λ− V
+

5

16

V ′2

(λ− V )2

)
,

(22.26)
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together with the remainders rn on the right of (22.22):

r0 = − i

2

V ′

(λ− V )
1
2

,

r1 = −1

4

V ′′

λ− V
− 5

16

V ′2

(λ− V )2
,

r2 =
i

8

1

(λ − V )
1
2

(
V ′′′

(λ− V )
+

9

2

V ′V ′′

(λ− V )2
+

15

4

V ′3

(λ− V )3

)

+
1

64

1

(λ− V )

(
V ′′2

(λ− V )2
+

5

2

V ′2V ′′

(λ − V )3
+

25

16

V ′4

(λ − V )4

)
.

(22.27)

22.3 Pseudomodes for λ → +∞
In this section, unless otherwise stated, we always assume that λ is positive and typically very large.

22.3.1 Admissible class of potentials

We proceed under the following hypothesis about the (possibly unbounded) potential V .

Assumption 22.1. Let N ∈ N and let V ∈ WN,∞
loc (R) satisfy the following conditions:

a) ℑV has a different asymptotic behaviour at ±∞:

lim sup
x→−∞

ℑV (x) < 0, lim inf
x→+∞

ℑV (x) > 0; (22.28)

b) derivatives of V are controlled by V : ∃ν± ∈ R, ∀m ∈ [[1, N ]],

|ℑV (m)(x)| = O (|ℑV (x)|〈x〉mν± ) , x→ ±∞,

|V (m)(x)| = O (|V (x)|〈x〉mν± ) , x→ ±∞;
(22.29)

c) ℑV is sufficiently large:

i) if V is unbounded at ±∞, then suppose that: ∃ε1 > 0,

〈x〉4(ν±+ε1)+2(〈x〉4ν±+2 + |ℜV (x)|) = O
(
|ℑV (x)|2

)
, x→ ±∞; (22.30)

ii) if V is bounded at ±∞, then suppose that ν± < 1, where ν± are the numbers from (22.29).

Several comments on the assumption are in place. First of all, notice that V is necessarily continuous due
to V ∈W 1,∞

loc (R).
The condition (22.28) ensures that the operator (22.1) is “significantly non-self-adjoint”. More precisely,

HV is not normal as a consequence of (22.28), the normality being equivalent to the condition that ℑV
is constant. Furthermore, hypothesis (22.28) ensures that the pseudomode g from (22.11) is exponentially
decaying. The correct sign for the decay can be seen (if the shape of g is determined mainly by ψ−1) by
employing (22.28) and the complex square root formula

ℜ
(
λ

1
2ψ′

−1

)
= −ℑ(λ− V )

1
2

=
1

2
1
2

ℑV
(
[(λ −ℜV )2 + (ℑV )2]

1
2 + (λ−ℜV )

) 1
2

,
(22.31)

valid for all positive λ satisfying in addition the requirement λ − V (x) ∈ C \ (−∞, 0) for all x ∈ R. The
remaining two intertwined conditions guarantee that the exponential decay of g is not spoiled by too large ℜV
or too wild behaviour of the derivatives of V .

The condition (22.29) restricts the growth and oscillations of V , nonetheless, it is still quite flexible as

e.g. V (x) := ±iex2

for x→ ±∞ is covered. Notice that Gronwall’s inequality implies that (with some M > 0)

∀x ≥ 0, |V (x)| .





eMx1+ν+
, ν+ > −1,

〈x〉M , ν+ = −1,

1, ν+ < −1;

(22.32)
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an analogous estimate holds also for x ≤ 0.
If V is bounded, we do not require that the derivatives of V are bounded in general, thus e.g. rapidly

oscillating potentials are allowed. In such cases, the estimate from Gronwall’s inequality becomes very crude.
The condition (22.29) also implies that for ν+ ≥ −1 and all sufficiently large x > 0 and every |∆| ≤ x−ν+/4,

we have
|ℑV (x+ 2∆)|

|ℑV (x)| ≈ 1. (22.33)

Indeed, for ν+ > −1,

∣∣∣∣log
|ℑV (x + 2∆)|

|ℑV (x)|

∣∣∣∣ =
∣∣∣∣∣

∫ x+2∆

x

ℑV ′(t)

ℑV (t)
dt

∣∣∣∣∣ .
∣∣|x+ 2∆|ν++1 − |x|ν++1

∣∣

. xν+ |∆|+ O(|∆|2xν+−1),

(22.34)

and similarly for ν+ = −1. The conclusion (22.33) is clearly valid also for bounded V as we require (22.28).

22.3.2 Localisation of the pseudomode and cut-off

To estimate |g| we first show that under Assumption 22.1 the function
∫ x
0
[λ

1
2ψ′

−1(t) + ψ′
0(t)] dt in the expan-

sion (22.11) dominates over the other terms with k ≥ 1. Thus estimates simplify significantly even for many
terms in (22.11). Already at this step, it is important to employ a suitable cut-off. Namely, for every λ > 0 we
define:

δ± :=





inf

{
δ ≥ 0 :

|ℑV (±δ)|2
〈δ〉4ν±+2ε1+2

= λ

}
if V is unbounded at ±∞,

λ
1+ε2

2 with 0 < ε2 < 1− ν± if V is bounded at ±∞,

∆± :=
1

4

{
δ
−ν±
± if V is unbounded at ±∞,

δ± if V is bounded at ±∞.

(22.35)

Remark 22.1 (Properties of δ± and ∆±). The following hold.

i) The infimum can be infinite (inf ∅ = +∞), however, for all sufficiently large λ > 0, the numbers δ± are
finite and

lim
λ→+∞

δ± = +∞; (22.36)

ii) ∆± are so small that the values of ℑV (x) are comparable if |x− δ±| ≤ 2∆±;

iii) for all sufficiently large λ > 0,
∀x ∈ J, |λ− V (x)| ≈ λ. (22.37)

Proof. All the three properties are obvious for bounded V . We further assume that V is unbounded at +∞
and prove the claims; the case of V unbounded at −∞ is analogous.

i) It follows from the assumption (22.30) that for all sufficiently large δ > 0

|ℑV (δ)|2
〈δ〉4ν++2ε1+2

& 〈δ〉2ε1 , (22.38)

thus for all

λ > min
δ≥0

|ℑV (δ)|2
〈δ〉4ν++2ε1+2

(22.39)

the number δ+ is finite. Since ℑV is continuous, (22.36) follows.
ii) See (22.33).
iii) From (22.30), we obtain that for all x > x0 with x0 sufficiently large,

|ℑV (x)| . |ℑV (x)|2
〈x〉4ν++2ε1+2

, |ℜV (x)| . |ℑV (x)|2
〈x〉4ν++4ε1+2

; (22.40)

thus we may assume that x0 is chosen so large that for all x > x0, we have

|ℜV (x)| ≤ 1

2

|ℑV (x)|2
〈x〉4ν++2ε1+2

. (22.41)
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Thus, using (22.35), already proved i) and the continuity of V , we can select sufficiently large λ0 > 0 such that
for all λ > λ0 and all x ∈ [0, δ+], we have

|ℑV (x)| . λ, |ℜV (x)| ≤ λ

2
. (22.42)

Hence (22.37) follows.

Remark 22.2 (More on the assumption on ℜV ). The restriction on ℜV made in (22.30) arises in a very natural
way. As an illustration, let us consider the potential V (x) := |x|β + i sgn(x) |x|γ with positive powers β, γ. In
this case we can take ν± := −1 to satisfy hypothesis (22.29) and assumption (22.30) imposes the relationship
β − 2 + 4ε1 ≤ 2γ. Choosing on the contrary β > 2γ + 2 so that (22.30) is violated, the dominant part in

the expansion (22.11), which is given by ℜ
(
λ

1
2ψ′

−1

)
as we show later, becomes (uniformly in λ) integrable in

x ∈ R. Indeed, with the substitution t = λ1/βs and by straightforward estimates,

∫ δ+

0

∣∣∣ℜ
(
λ

1
2ψ′

−1(t)
)∣∣∣ dt . λ

2+2γ−β
2β

∫ ∞

0

sγ

|1− sβ| 12
ds = o(1), λ→ +∞. (22.43)

Moreover, notice that by taking a larger δ, so that it is possible that ℜV (x) ≥ λ, we get into troubles with the
decay of |rn| for which the estimate |ℜV − λ| & λ is essential.

Using the properties of δ± and ∆±, we obtain the following estimates.

Lemma 22.3. Let Assumption 22.1 hold, let 0 ≤ n ≤ N and {ψ′
k}k∈[[−1,n−1]] be determined by (22.21) and

let δ± be as in (22.35). Then for all sufficiently large λ > 0

∀x ∈ J, λ
1
2ℜψ′

−1(x) ≈ λ−
1
2ℑV (x), (22.44)

and

∀k ∈ [[0, n− 1]], ∀x ∈ J±, λ−
k
2 |ψ′

k(x)| .
|V (x)|〈x〉(k+1)ν±

λ
k
2+1

. (22.45)

Proof. The estimate (22.44) follows immediately from (22.31) using (22.37) and (22.42). The rest is based on
Lemma 22.1 and assumptions (22.29), (22.30).

For k ≥ 0, Lemma 22.1 yields

λ−
k
2 |ψ′

k| ≤
1

|λ− V | k2

k+1∑

j=1

|T k+1,k+2−j
j |
|λ− V |j

.
1

|λ− V | k2

k+1∑

j=1

∑
α∈I

k+1,k+2−j
j

|V ′|α1 |V ′′|α2 . . . |V (k+2−j)|αk+2−j

|λ− V |j .

(22.46)

Notice that the highest derivative of V that appears is V (n) and that the product of |V (i)| consists always of
j factors (counting with powers) since

∑k+2−j
i=1 αi = j; see (22.24). Thus all appearing derivatives of V are

continuous and the assumption (22.29) with
∑k+2−j

i=1 iαi = k + 1 from (22.24) yields that for all sufficiently
large x > 0

λ−
k
2 |ψ′

k(x)| .
〈x〉(k+1)ν+

|λ− V (x)| k2

k+1∑

j=1

|V (x)|j
|λ− V (x)|j .

|V (x)|〈x〉(k+1)ν+

λ
k
2+1

; (22.47)

in the last step we have used (22.37). For small x > 0, the estimate (22.45) follows immediately from (22.46)
and the continuity of the derivatives of V . For x < 0, the estimate is analogous.

Localising the Ansatz (22.11) on the interval J, the preceding lemma shows that the shape of g is determined
mainly by ψ−1 and ψ0. More specifically, given the derivatives ψ′

k from (22.21), henceforth we choose the
primitive functions ψk by fixing the integration constant by the requirement

ψk(0) := 0 , k ∈ [[−1, n− 1]] . (22.48)

With this standing convention, we have the following two-sided bounds.
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Lemma 22.4. Let Assumption 22.1 hold, g be as in (22.11) with {ψ′
k}k∈[[−1,n−1]], 0 ≤ n ≤ N , determined

by (22.21) and let δ± be as in (22.35). Then there exist c1, c2 > 0 such that for all sufficiently large λ > 0 and
all x ∈ J we have

exp

(
− c1

λ
1
2

∫ |x|

0

|ℑV (t)| dt
)

. |g(x)| . exp

(
− c2

λ
1
2

∫ |x|

0

|ℑV (t)| dt
)
. (22.49)

Proof. Notice that the formula (22.26) for ψ′
0 is exceptional since it can be easily integrated, hence

g(x) =
[λ− V (0)]

1
4

[λ− V (x)]
1
4

exp


−

n−1∑

k=−1
k 6=0

λ−
k
2

∫ x

0

ψ′
k(t) dt


 . (22.50)

From (22.37) we get

∀x ∈ J,

∣∣∣∣
λ− V (0)

λ− V (x)

∣∣∣∣ ≈ 1. (22.51)

We continue with estimates for x > 0, the other case is analogous. For any x0 > 0 fixed, we have from
Lemma 22.3 that ∣∣∣∣∣ℜ

n−1∑

k=−1

λ−
k
2

∫ x0

0

ψ′
k(t) dt

∣∣∣∣∣ . λ−
1
2 . (22.52)

The remaining estimate for x > x0 follows from (22.45), (22.35) and assumption (22.30), namely

ℜ
n−1∑

k=−1
k 6=0

λ−
k
2

∫ x

x0

ψ′
k(t) dt =

∫ x

x0

λ
1
2ℜψ′

−1(t) [1 + S(t)] dt, . (22.53)

where

|S(t)| .





λ−
1
2 if V is unbounded,

λ−
1
2 if V is bounded and ν+ < 0,

λ−
1−(1+ε2)ν+

2 if V is bounded and ν+ ≥ 0.

(22.54)

Indeed, in the first case Lemma 22.3, assumption (22.30), (22.37) and (22.44) give

λ
k
2 |ψ′

k(x)|
λ

1
2 |ℜψ′

−1(x)|
.

〈x〉(k+1)ν±

λ
k−1
2 |ℑV (x)|

.
1

〈x〉 k+1
2 (ε1+1)λ

k+1
4

; (22.55)

the other cases can be verified similarly.
Hence using (22.44) we get

ℜ
n−1∑

k=−1
k 6=0

λ−
k
2

∫ x

x0

ψ′
k(t) dt ≈ λ−

1
2

∫ x

x0

ℑV (t) dt. (22.56)

Putting all estimates from above together, we obtain (22.49).

The following proposition ensures that the terms in (22.16) containing derivatives of the cut-off function
are negligible in a sense.

Proposition 22.1. Let Assumption 22.1 hold, g be as in (22.11) with {ψ′
k}k∈[[−1,n−1]], 0 ≤ n ≤ N , determined

by (22.21) and ξ be as in (22.12) with δ±, ∆± as in (22.35). Then

κ(λ) :=
‖ξ′′g‖+ ‖ξ′g′‖

‖ξg‖ = o(1), λ→ +∞. (22.57)

More precisely, κ(λ) = κ−(λ) + κ+(λ) where (with some c > 0)

κ±(λ) =




O

(
exp(−c δν±+1+ε1

± )
)

if V is unbounded at ±∞,

O

(
exp

(
−c λ ε22

))
if V is bounded at ±∞.

(22.58)
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Proof. First notice that from (22.49) we have ‖ξg‖ & 1. The main step is to estimate |g(x)|2 for x ∈ J \ J′
where ξ′ and ξ′′ are supported. We give details only for x > 0; the other case is analogous.

We start with the case when V is unbounded at +∞. Let x0 > 0 be so large that ℑV (x) > 0 for all x > x0.
From the property (22.33) and selected size of ∆+, see (22.35), we obtain for x ∈ J+ \ J′+ that

∫ x

x0

ℑV (t) dt ≥
∫ x

δ+−2∆+

ℑV (t) dt & ∆+ℑV (δ+) &
ℑV (δ+)

δ
ν+
+

. (22.59)

Thus using (22.35), we get

λ−
1
2

∫ x

0

ℑV (t) dt = λ−
1
2

∫ x0

0

ℑV (t) dt+ λ−
1
2

∫ x

x0

|ℑV (t)| dt

& −λ− 1
2 +

δ
2ν++ε1+1
+

ℑV (δ+)

ℑV (δ+)

δ
ν+
+

& δ
ν++ε1+1
+ .

(22.60)

Hence it follows from (22.49) that (with some c3 > 0)

∀x ∈ J+ \ J′+, |g(x)| . exp(−c3δν++ε1+1
+ ). (22.61)

Additional terms appearing in ‖ξ′g′‖L2(R+) can be estimated using (22.13), (22.35), (22.45), (22.37) and
(22.32). In detail, for all x ∈ J+ \ J′+ we have (with some c4 > 0)

|ξ′(x)g′(x)| . δ
ν+
+

n∑

k=−1

λ
k
2 |ψ′

k(x)| exp(−c3δν++ε1+1
+ )

. δ
ν+
+

(
λ

1
2 +

n∑

k=0

〈x〉(k+1)ν+

λ
k
2

)
exp(−c3δν++ε1+1

+ )

. δ
ν+
+

(
|V (δ+)|
δ
2ν++ε1+1
+

+ δ
(n+1)ν+
+

)
exp(−c3δν++ε1+1

+ )

. exp(−c4δν++ε1+1
+ ).

(22.62)

The term ‖ξ′′g‖L2(R+) is estimated similarly (and in fact more easily).
Putting everything together, we obtain (with some c5 > 0)

‖ξ′′g‖L2(R+) + ‖ξ′g′‖L2(R+)

‖ξg‖L2(R+)
. exp(−c5δν+ε1+1

+ ). (22.63)

If V is bounded at +∞, the appropriate rate in (22.58) follows immediately from (22.49) and the selected
size of δ± and ∆±, see (22.35).

22.3.3 Remainder estimate

Theorem 22.1. Let Assumption 22.1 hold and set n := N − 1. Let g be as in (22.11) with {ψ′
k}k∈[[−1,n−2]]

determined by (22.21), ξ be as in (22.12) with δ±, ∆± as in (22.35) and f be as in (22.15). Then

‖(HV − λ)f‖
‖f‖ = κ(λ) + σ(n)(λ), (22.64)

where κ is as in (22.58) and σ(n) = σ
(n)
− + σ

(n)
+ with, as λ→ +∞,

i) if V is unbounded at ±∞

σ
(n)
± (λ) =




O(λ−

n+1
2 supx∈J±

|V (x)|〈x〉(n+1)ν± ), ν± < 0,

O

(
δ
(n+1)ν±
± λ

1−n
2

)
, ν+ ≥ 0,

(22.65)

ii) if V is bounded at ±∞

σ
(n)
± (λ) =




O

(
λ−

n+1
2

)
, ν± < 0,

O

(
λ−

n+1
2 (1−(1+ε2)ν±)

)
, ν± ≥ 0.

(22.66)
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Proof. We employ the pseudomode construction for n = N − 1. The estimate of the remainder rn, see (22.25),
and the assumption (22.29) together with (22.37) and (22.42) yield that for x > 0 and V unbounded at +∞
we have

|rn(x)| .
{
|V (x)|〈x〉(n+1)ν+λ−

n+1
2 , ν+ < 0,

δ
(n+1)ν+
+ λ

1−n
2 , ν+ ≥ 0,

(22.67)

and similarly for x < 0. Here the case ν+ ≥ 0 also employs λ & 〈δ+〉4ν++2ε1+2, which is a consequence
of (22.30) and (22.35). If V is bounded at ±∞, the estimate of rn follows straightforwardly from (22.25),
assumptions (22.29), (22.30) and the choice of δ± in (22.35).

22.3.4 Examples

Example 22.1 (Polynomial-like potentials). Consider V satisfying Assumption 22.1 with ν− = ν+ = −1 and
having the form

V := Pβ + iQγ , (22.68)

where Pβ and Qγ are real-valued functions satisfying

∀|x| & 1, |Pβ(x)| . 〈x〉β , |Qγ(x)| ≈ 〈x〉γ , (22.69)

with some numbers β ∈ R and γ ≥ 0. Typical examples of Pβ and Qγ are polynomials of degree β and γ,
respectively. Notice that a necessary condition to satisfy (22.28) is γ ≥ 0, while a sufficient which guaran-
tees (22.30) additionally requires γ > (β − 2)/2. In particular for β < 2 (i.e. |ℜV (x)| grows slower than x2)
even a bounded ℑV fits.

We define the quantity
ω := max{β, γ} ≥ 0 (22.70)

and observe that ω = 0 if, and only if, V is bounded. If ω is positive, then (22.35) yields

δ = δ− = δ+ ≈ λ
1

2(γ+1)
+ǫ, (22.71)

where ǫ > 0 can be made arbitrarily small by an appropriate choice of (small) ε1 > 0. Hence the application
of Theorem 22.1 yields (with n := N − 1)

‖(HV − λ)f‖
‖f‖ =




O

(
λ−

n+1
2

)
, ω ≤ n+ 1,

O

(
λ−

n+1
2 +ω−n−1

2(γ+1)
+ǫ(ω−n−1))

)
, ω > n+ 1,

(22.72)

as λ→ +∞. Notice that the first case particularly involves bounded potentials (because N ≥ 1) and that the
decay rate in the second case improves by diminishing ǫ. It is also worth noticing that the restrictions on β
and γ made above imply the uniform bounds

ω − n− 1

2(γ + 1)
<

{
1/2 if γ ≥ β ,

1 if γ < β ,
(22.73)

which provides a rough estimate on the decay rate in the second case of (22.72).
Observe that the pseudomode with n = 1 (i.e. we require N ≥ 2) is sufficient to treat all polynomial-like

potentials. The pseudomode with n = 0 (i.e. N ≥ 1) suffices for potentials growing not faster than linearly.
Notice also that for smooth potentials (N = ∞) the obtained rate is faster than any power of λ−1.

Example 22.2 (Exponential potentials). Consider V satisfying Assumption 22.1 with ν− = ν+ = 0 andN ≥ 3;
a simple smooth choice is V (x) := coshx + i sinhx. Since |V (x)| . e|x|, see (22.32), we have for sufficiently
large λ > 0 that

δ = δ− = δ+ ≈ logλ. (22.74)

Theorem 22.1 then gives
‖(HV − λ)f‖

‖f‖ = O

(
λ

2−N
2

)
, (22.75)

thus exponential-type potentials can be treated with pseudomodes with n = 2.

Example 22.3 (Bounded oscillating potentials). Consider two smooth potentials

V1(x) := i arctanx, V2(x) := 2i arctanx+ i sin
(
〈x〉1+µ

)
, 0 < µ < 1. (22.76)

Clearly, ν± = −2 for V1, however ν± = µ for V2. Since both potentials are smooth, we can achieve an arbitrarily
fast decay in (22.66) in both cases by taking N large, nevertheless, substantially more terms in the pseudomode
construction must be taken in the second case if µ is close to 1.
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22.3.5 Decaying potentials

Finally, we discuss a class of potentials that do not satisfy the basic assumption (22.28), but the method of the
present section still enables one to construct the desired pseudomodes. Indeed, the inequalities (22.49) suggest
that the assumption (22.28) can be relaxed basically to ℑV /∈ L1(R) if ℑV has an appropriate sign for x & 1
and x . 1. Here we analyse the simplest examples, namely a class of smooth potentials with the asymptotic
behaviour

V (x) := i
sgn(x)

〈x〉γ , |x| & 1, 0 < γ < 1. (22.77)

Since the essential spectrum of HV with this potential covers [0,+∞) and the numerical range of HV is a
shrinking neighbourhood of this set, we will consider λ = a+ ib with a→ +∞ and b→ 0+.

The selection of a suitable δ± for the cut-off is inspired by the estimate for x & 1 (the case x . −1 and
upper bounds are simpler)

∫ x

0

ℜ(λ 1
2ψ′

−1(t)) dt & a−
1
2

∫ x

0

(〈t〉−γ − b) dt &
x1−γ [1− (1 − γ)bxγ ]− C

a
1
2

(22.78)

with some C ≥ 0. Thus, requiring that the first term in the expansion (22.11) leads to an integrable exponential,
sought restrictions on δ+ read

a
1
2 δγ−1

+ + bδγ+ = o(1), λ→ ∞; (22.79)

δ− can be selected similarly and we can take ∆± := δ±/4. It can be also checked that the other terms in the
expansion are negligible. Since V is bounded, it is clear that the cut-off works and we indeed have a decay
like in (22.57). Regarding the remainders rn, by taking sufficiently many terms in the expansion, we obtain a
decay in (22.2) that is faster than any power of a.

The set Ω where (22.2) holds can be obtained from (22.79); in detail, we need

ba
γ

2(1−γ) = o(1), λ→ ∞. (22.80)

Observing that V ∈ Lp(R) if pγ > 1, we can further describe Ω by a condition essentially appearing in [13,
Thm. 5]:

bp−1 = o(a−
1
2 ), λ→ ∞. (22.81)

22.4 Lower regularity

Our goal in this section is to treat potentials of lower regularity. The first possibility is a perturbative approach,
i.e. we search for conditions on a possibly singular perturbation W guaranteeing that the pseudomodes con-
structed for a regular part V , thus ignoringW , still exhibit a decay in (22.2). The second option is to introduce
a λ-dependent mollification W ε of W with ε = ε(λ) and perform the construction for V +W ε; naturally the
crucial point is to determine suitable dependence of the mollification on λ.

In both approaches we need eventually more precise information on the Lp-norms of pseudomodes. We
make here additional assumptions on the growth of V ; in fact we analyse in detail potentials with a polynomial
growth, nonetheless, other cases may be treated similarly.

22.4.1 Weighted Lp-norms of pseudomodes

Lemma 22.5. Let Assumption 22.1 hold, let f be as in (22.15) with 0 ≤ n ≤ N . Then for all sufficiently large
λ > 0 the following holds.

i) If there is γ ≥ 0 such that

∀x & 1, |ℑV (x)| . |x|γ , or ∀x . −1, |ℑV (x)| . |x|γ , (22.82)

then
‖f‖p & λ

1
2p(γ+1) , 2 ≤ p ≤ ∞. (22.83)

ii) If there are γ± ≥ 0 such that

|ℑV (x)| &
{
|x|γ+ , x & 1,

|x|γ− , x . −1,
(22.84)

then

‖〈x〉αf(x)‖Lp(R±) . λ
1+pα

2p(γ±+1) , 2 ≤ p ≤ ∞, α ≥ 0. (22.85)
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Proof. i) Suppose that the first inequality in (22.82) holds. From (22.49) we have (with some C ≥ 0, c > 0)

‖f‖pp &
∫ δ+−∆+

C

e−pcλ
− 1

2 xγ+1

dx = λ
1

2(γ+1)

∫ (δ+−∆+)λ
− 1

2(γ+1)

Cλ
− 1

2(γ+1)

e−pcy
γ+1

dy. (22.86)

Thus it remains to verify that (δ+−∆+)λ
− 1

2(γ+1) & 1. The latter follows from (22.35). The case of bounded V
is simple and in the unbounded case (necessarily with ν+ ≥ −1, see (22.32)) we get from (22.82) and (22.35)
that

δ
2(γ+1)
+

λ
≈ δ

2(γ+1)+4ν++2ε1+2
+

|ℑV (δ+)|2
& δ

4ν++4+2ε1
+ & 1. (22.87)

This proves (22.83) for p ∈ [2,∞) under the first of the assumptions in (22.82), the second alternative is treated
similarly. The case p = ∞ is even simpler to show.

ii) For x ≥ 1 we have 〈x〉 ≈ x, thus (22.49) and (22.84) yield (with some C ≥ 1, c > 0)
(∫ C

0

+

∫ δ+

C

)
〈x〉pαe−pcλ− 1

2 xγ++1

dx . 1 + λ
1+pα

2(γ++1)

∫ ∞

0

ypαe−pcy
γ++1

dy. (22.88)

The case p = ∞ can be checked by calculating the maximum of |f | and the second case for x . −1 is
analogous.

The immediate consequence is a possibility to employ pseudomodes constructed for V even for V +W ,
where W is an Lr-perturbation.

Theorem 22.2. Let Assumption 22.1 hold and set n := N − 1. Let ℑV satisfy (22.82) and (22.84) and let
W ∈ Lr−(R−) + Lr+(R+) with some 2 ≤ r± <∞. Then

‖(HV+W − λ)f‖
‖f‖ = κ(λ) + σ(n)(λ) + ρ(λ), (22.89)

where f , κ and σ(n) are as in Theorem 22.1 and ρ = ρ− + ρ+ with

ρ±(λ) = O

(
λ

γ−γ±− 2
r±

(γ+1)

4(γ±+1)(γ+1)

)
, λ→ +∞, (22.90)

where γ and γ± are as in Lemma 22.5.

Proof. The estimate follows from (22.83), (22.85) with α = 0 and Hölder inequality. In detail, with 2/r± +
2/s± = 1, we have

‖Wf‖L2(R±)

‖f‖ ≤ ‖W‖Lr±(R±)‖f‖Ls±(R±)

‖f‖ . λ
2(γ+1)−s±(γ±+1)

4s±(γ+1)(γ±+1 (22.91)

and the claim follows when s± is expressed in terms of r±.

The weighted Lp-estimates of f can be used also to employ the pseudomode with n = N , instead of
n = N − 1 in Theorem 22.1, and thereby lower assumptions on the regularity of V .

Theorem 22.3. Let Assumption 22.1 hold and set n := N . Let ℑV satisfy (22.82) and (22.84) and let
V (N+1) ∈ L2(R) + L∞

−α−
(R−) + L∞

−α+
(R+) with some α± ≥ 0. Then

‖(HV − λ)f‖
‖f‖ = κ(λ) + σ(n)(λ) + τ(λ), (22.92)

where f is the pseudomode with n = N , κ and σ(n) are as in Theorem 22.1 and τ = τ− + τ+ with

τ±(λ) = O

(
λ−

N+1
2 − 1

4(γ+1) + λ
−N+1

2 +
γ−γ±+2α±(γ+1)

4(γ±+1)(γ+1)

)
, λ→ +∞, (22.93)

where γ and γ± are as in Lemma 22.5.

Proof. If f is taken as the pseudomode with n = N , the terms κ and σ(n) in (22.92) are estimated in the same
way as in Theorem 22.1. The difference arises in the first term of rn, see (22.25), since it contains V (N+1),
more precisely, we need to estimate

λ−
N+1

2 ‖V (N+1)f‖. (22.94)

The claim follows straightforwardly from assumption on V (N+1), Hölder inequality, (22.83) and (22.85).
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22.4.2 Examples

Example 22.4 (Singularly perturbed polynomial-like potentials). Let V be as in Example 22.1 and W ∈
Lr−(R−) + Lr+(R+) with 2 ≤ r± < ∞. If Assumption 22.1 holds with N ≥ 2, Theorem 22.2 and the already
obtained rates σ(n), see Example 22.1 and in particular (22.73), yield

‖(HV+W − λ)f‖
‖f‖ = O

(
λ
− 1

2r±(γ+1)

)
+




O

(
λ−

N
2

)
, ω ≤ N,

O

(
λ−

N
2 + ω−N

2(γ+1)+ǫ(ω−N)

)
ω > N,

= O

(
λ
− 1

2r±(γ+1)

)
, (22.95)

as λ→ +∞. Here the second equality follows by the restrictions made on β and γ in Example 22.1 (cf partic-
ularly (22.73)). In other words, adding the singularity W deteriorates the decay rate (22.72) (at least by using
the result of Theorem 22.2).

Example 22.5 (Imaginary step-like potential). Now we would like to treat the discontinuous example from (22.5).
First, to apply Theorem 22.2, we specify a suitable splitting (to have a sufficiently regular V )

V (x) := i(1− η(x)) sgn(x), W (x) := iη(x) sgn(x), (22.96)

with some η ∈ C∞
0 ((−1, 1)) and η = 1 on a neighbourhood of 0. Then Theorem 22.2 (with N ≥ 1, r± := 2 and

γ± := 0 =: γ) yields
‖(Hi sgn − λ)f‖

‖f‖ = O

(
λ−

1
4

)
, λ→ +∞. (22.97)

Example 22.6 (Polynomial growth with a local singularity). As an application of Theorem 22.3, let us consider
the following class of potentials

V (x) := i sgn(x) |x|γ
(
2 + sin |x|−µ

)
, µ ∈ (0, 1) , γ ∈ N .

If γ ≥ 2 and N := γ − 1, it is easy to verify that V satisfies also the other items of Assumption 22.1 (with
ν± := −1), namely the basic regularity requirement V ∈ WN,∞(R). Since the derivative V (γ) has a singularity
at zero, however, the best decay rate we can obtain by directly applying Theorem 22.1 is

‖(HV − λ)f‖
‖f‖ = O

(
λ−

γ−1
2

+ 1
2(γ+1)

+ǫ
)
, λ→ +∞, (22.98)

where ǫ > 0 can be made arbitrarily small (cf (22.71)). On the other hand, observing that V (γ) ∈ L2(R)+L∞(R)
and applying Theorem 22.3 (with α± := 0 and γ± := γ), where a pseudomode with one more term in the
expansion is employed, we obtain a better result, namely

‖(HV − λ)f‖
‖f‖ = O

(
λ−

γ
2

)
, λ→ +∞. (22.99)

22.4.3 Mollification strategy

Now we turn to the alternative approach to deal with irregular potentials.
Let w ∈ C∞

0 (R) with 0 ≤ w ≤ 1, suppw = [−1, 1] and ‖w‖1 = 1 and define

wε(x) :=
1

ε
w
(x
ε

)
, x ∈ R, ε > 0. (22.100)

For φ ∈ Lploc(R), we introduce the Lp modulus of continuity on an interval J ⊂ R by

ωp(ε;φ, J) := sup
0<|t|<ε

‖φ(·+ t)− φ‖Lp(J), 1 ≤ p <∞. (22.101)

Finally, we introduce an ε-neighbourhood of J, Jε := {x ∈ R : dist(x, J) < ε}.
The main idea in what follows is the mollification of a singular part of the potential. For φ ∈ Lploc(R) and

wε as in (22.100), we denote
φε := wε ∗ φ. (22.102)

To be able to estimate newly constructed pseudomodes, we need several basic properties of mollifications
and their relation to the Lp modulus of continuity summarised in the following lemma; the proof relies on
Minkowski’s integral inequality and properties of the convolution and of w.
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Lemma 22.6. Let φ ∈ Lploc(R) with 1 ≤ p < ∞, φε be as in (22.102), J be an interval and Jε its ε-
neighbourhood. Then for every 1 ≤ p <∞, j ∈ N and ε > 0 we have

‖φε‖Lp(J) ≤ ‖φ‖Lp(Jε), ‖φε‖L∞(J) ≤ ε−
1
p ‖φ‖Lp(Jε), (22.103)

‖φ− φε‖Lp(J) ≤ ωp (ε;φ, J) , ‖(φε)(j)‖Lp(J) ≤ ε−j ωp (ε;φ, J) ‖w(j)‖L1 . (22.104)

We proceed with the construction of pseudomodes for a potential V +W whereW is possibly discontinuous
and singular. In fact the pseudomodes are constructed for V +W ε with certain λ-dependent mollification.
Thus besides usual remainders (22.22) we need to estimate also ‖(W −W ε)f‖.

While construction can be in principle performed with an arbitrary number of terms, we restrict ourselves to
the case n ∈ [[0, 1]] since assumptions on the singular part W would become more complicated and implicit for
n > 1. In spite of this restriction, we can still treat potentials with ν± < 0, i.e. even with some super-polynomial
growth or oscillations. More precisely, new pseudomodes are constructed under the following assumptions.

Assumption 22.2. Let V satisfy Assumption 22.1 withN ∈ [[1, 2]] and ν± < 0 and suppose thatW =W1+W2

satisfy

a) |ℑW1| ≤ (1− ε)|ℑV | with some 0 < ε < 1 and with ε1 > 0 from Assumption 22.1

∀x ∈ R±, |ℜW1(x)| . |ℑV (x)|2〈x〉−4(ν±+ε1)−2. (22.105)

b) W2 ∈ L2(R) and suppW2 is compact.

The mollification (22.102) is done separately for three parts of W , namely

W̃ := (χ−W1)
ε− + (χ+W1)

ε+ +W ε0
2 (22.106)

with χ± being the characteristic function of R± and

ει := λ−αι , αι ∈ (0, 1), ι ∈ {−,+, 0}. (22.107)

The expansion (see (22.11))

g̃ := exp

(
−

n−1∑

k=−1

λ−
k
2 ψk(x)

)
, n ≤ 1, (22.108)

is determined by functions ψ′
k satisfying (22.26) with V replaced by

Ṽ := V + W̃ . (22.109)

On the other hand, we keep the size of the cut-off the same as for V only, i.e. the new pseudomodes read

f̃ := ξg̃, (22.110)

where ξ is as in (22.12) with δ±, ∆± as in (22.35) with V .

Lemma 22.7. Let Assumption 22.2 hold and g̃ be as in (22.108) with (22.109). Then

κ(λ) :=
‖ξ′′g̃‖+ ‖ξ′g̃′‖

‖g̃‖ = o(1), λ→ +∞, (22.111)

with κ as in (22.58) (with possibly a smaller positive constant c > 0).

Proof. We start with showing

‖f̃‖2 &
∫

J

exp

(
−c3λ−

1
2

∫ |x|

0

|ℑV (t)| dt
)

dx (22.112)

with some c3 > 0, where f̃ is defined in (22.110). We give details on estimates on R+, the other case is
analogous. First notice that W̃ is locally bounded, see Lemma 22.6. Moreover, since ε± = o(∆±), we obtain
from (22.29), (22.33) and assumptions on W that

|ℑ(χ±W1)
ε±(x)| ≤

∫

R

wε± (y)|ℑW1(x − y)| dy ≤ sup
|y|<ε±

|ℑW1(x − y)|

≤ (1 − ε) sup
|y|<ε±

|ℑV (x− y)|

≤ (1 − ε)

(
|ℑV (x)| + sup

|y|<ε±

∣∣∣∣
∫ x−y

x

|ℑV ′(t)| dt
∣∣∣∣

)
,

≤ (1 − ε)|ℑV (x)|(1 + O(ε±))

(22.113)
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and similarly, using (22.105) and (22.33),

∀x ∈ R±, |ℜ(χ±W1)
ε±(x)| . |ℑV (x)|2〈x〉−4(ν±+ε1)−2. (22.114)

For W2, Lemma 22.6 yields immediately

|W ε0
2 (x)| ≤ ε

− 1
2

0 ‖W2‖ = o
(
λ

1
2

)
, λ→ +∞. (22.115)

The estimates above imply that W̃ can actually be absorbed by V or λ in all relevant estimates in Lem-
mata 22.3, 22.4 and Proposition 22.1; in particular notice that W2 affects the estimates only on a compact set
due to the assumed boundedness of suppW2, and that the size of ℜW̃ is the largest possible complying with
(22.30) and (22.35). Straightforward estimates of (22.50) with n ∈ [[0, 1]] and with V replaced by Ṽ lead to
(with some c1, c2 > 0)

e−c1λ
− 1

2
∫ |x|
0 |ℑV (t)| dt . |g̃(x)| . e−c2λ

− 1
2
∫ |x|
0 |ℑV (t)| dt (22.116)

for n ∈ [[0, 1]], all sufficiently large λ and all x ∈ J; here (22.113), (22.114), (22.115) and the boundedness of
suppW2 were used. Hence (22.112) follows.

To verify (22.111), we need in addition that

∀x ∈ J±, |((χ+W1)
ε±)′(x)| . |ℑV (x)|+ |ℑV (x)|2〈x〉−4(ν±+ε1)−2

ε±
; (22.117)

the proof si similar to (22.113) and (22.114). Hence, using (22.26), (22.117) and (22.107), we obtain

∀x ∈ J±, λ
1
2 |ψ′

−1(x)| + |ψ′
0(x)| . λ

1
2 + |V (x)| + |ℑV (x)|2〈x〉−4(ν±+ε1)−2. (22.118)

The rest of the proof is a simple modification of the one of Proposition 22.1.

Now we are in a position to state the main result of this section.

Theorem 22.4. Let Assumption 22.2 hold and f̃ be as in (22.110) with n ∈ [[0, 1]]. Then

‖(HV+W − λ)f̃‖
‖f̃‖

= κ(λ) + σ(n)(λ) +
ζ(n)(λ)

‖f̃‖
, (22.119)

where κ and σ(n) are as in Theorem 22.1 and ζ(n) = ζ
(n)
− + ζ

(n)
+ + ζ

(n)
0 with, as λ→ +∞,

ζ
(0)
± (λ) = O

(
ω2(ε±;W1, J±)

(
1 + ε−1

± λ−
1
2

))
,

ζ
(0)
0 (λ) = O

(
ω2(ε0;W2,R)

(
1 + ε−1

0 λ−
1
2

))
,

ζ
(1)
± (λ) = O

(
ω2(ε±;W1, J±)

(
1 + ε−2

± λ−1
)
+ ω4(ε±;W1, J±)ε

−2
± λ−2

)
,

ζ
(1)
0 (λ) = O

(
ω2(ε0;W2,R)

(
1 + ε−2

0 λ−1
)
+ ω4(ε0;W2,R)ε

−2
0 λ−2

)
,

(22.120)

where ει are as in (22.107).

Proof. Inserting the pseudomode f̃ , we obtain

‖(HV+W − λ)f̃‖ ≤ ‖(HṼ − λ)f̃‖+ ‖(W̃ −W )f̃‖. (22.121)

We need to estimate remainders (22.22) with Ṽ and the second term in (22.121). The claim follows straight-
forwardly from (22.27) and the properties of mollification, see Lemma 22.6.

22.4.4 Examples

First we prove a lemma on Lp modulus of continuity of a piece-wise C1 potentials with a controlled growth.

Lemma 22.8. Let W be a piece-wise C1 function, more precisely W ∈ C1(R \ M) with M := {ak}k∈Z such
that for all k ∈ Z, ak+1 − ak & 1 and for all k ∈ Z the one-sided limits limx→ak±

W (x) exist and are finite.
Moreover, let W satisfy

∃β± ∈ R, ∀x ∈ R±, |W (x)| . 〈x〉β± , (22.122)
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and
∃γ± ∈ R, ∀x ∈ R± \M, |W ′(x)| . 〈x〉γ± . (22.123)

Then, for all ε small and δ± large,

ωp(ε;W, J±) . εδ
γ±+ 1

p

± + ε
1
p δ
β±+ 1

p

± , 2 ≤ p <∞. (22.124)

If in addition suppW is bounded, then

ωp(ε;W,R) . ε
1
p , 2 ≤ p <∞. (22.125)

Proof. We analyse only the case with J+, the other situation being analogous. We can assume that a0 = 0 and
aL+1 = δ+ with some L ∈ N. Splitting the intervals (ak, ak+1) to ε-neighbourhoods of the discontinuities and
the rest and employing the assumptions on W and W ′, we have, for every |t| < ε,

∫

J+

|W (x+ t)−W (x)|p dx =

L∑

k=0

∫ ak+1

ak

|W (x + t)−W (x)|p dx

=

L∑

k=0

∫ ak+1−ε

ak

∣∣∣∣
∫ x+t

x

W ′(ξ) dξ

∣∣∣∣
p

dx+

L∑

k=0

∫ ak+1

ak+1−ε
|W (x+ t)−W (x)|p dx

.
L∑

k=0

∫ ak+1−ε

ak

dx
(

esssup
(a0−ε,aL+1)

|W ′|
)p
εp +

L∑

k=0

∫ ak+1

ak+1−ε
dx sup

(ak+1−ε,ak+1+ε)

|W |p

. δ
1+pγ+
+ εp + ε

L∑

k=0

a
pβ+

k+1.

Consequently, (22.124) follows since ak+1 − ak & 1 and the last sum can be estimated by an integral (details
are omitted).

If suppW is bounded, then the estimates are performed on a bounded interval independent of δ± and so
(22.125) follows as well.

Example 22.7 (Imaginary step-like potential continued). Following Example 22.5, we keep the splitting of
the imaginary sign potential i sgn to the sum of the smooth potential V and the discontinuous W of compact
support, see (22.96). The latter obeys Assumption 22.2 with W1 := 0. Applying Theorem 22.4 (with n := 1
and α0 := 1/2 in (22.107)) with help of Lemma 22.5 (with γ := 0 and p := 2) to estimate ‖f̃‖ and Lemma 22.8
to estimate the moduli of continuity in ζ(1)(λ), we arrive at

‖(Hi sgn − λ)f̃‖
‖f̃‖

= O

(
λ−

1
2

)
, λ→ +∞ .

This is an improvement with respect to the rate λ−
1
4 provided by Theorem 22.2, see Example 22.5. Nevertheless,

even this better rate is not optimal, as it is known from [9] that there exists a pseudomode with the decay rate
O(λ−1) and that it is actually the best possible.

Example 22.8 (Infinite steps). Let us consider the step-like (odd) potential

U(x) := i ⌊|x|⌋γ sgn(x) , γ > 0 , (22.126)

where ⌊·⌋ denotes the floor function. Hence U represents a piece-wise approximation of x 7→ i |x|γ sgn(x)
(cf Example 22.1 with Pβ := 0). The basic hypothesis (22.28) is clearly satisfied, so it is expected that HU

admits pseudomodes. However, Theorem 22.1 cannot be used because of the lack of regularity required by
Assumption 22.1.

We show how Theorem 22.4 can be used instead. To this end, we split U as

U = V +W , W =W1 +W2 , (22.127)

where
V (x) := i (1− η(x)) |x|γ sgn(x) ,
W1(x) := i (1− η(x)) (⌊|x|⌋γ − |x|γ) sgn(x) ,
W2(x) := iη(x) ⌊|x|⌋γ sgn(x) ,

(22.128)



III.22 Pseudomodes for Schrödinger operators with complex potentials 415

and η ∈ C∞
0 (R) is such that 0 ≤ |η| ≤ 1 and η = 1 on the interval [−γ − 1, γ + 1]. Using the mean value

theorem and properties of the floor function, we have

|W1(x)| ≤ (1 − η(x)) γ |x|γ−1
∣∣⌊|x|⌋ − |x|

∣∣ ≤ (1− η(x)) γ |x|γ−1 (22.129)

for every x ∈ R. Since W1(x) equals zero if |x| ≤ γ + 1, we see that Assumption 22.2 clearly holds with
ε := 1/(γ + 1).

Now we are in a position to apply Theorem 22.4 with n := 1. For σ(1)(λ), we always have a decay, see
Example 22.1. Lemma 22.5 with p := 2 yields

‖f̃‖ & λ
1

4(γ+1) (22.130)

for all sufficiently large λ and Lemma 22.8 immediately implies (we take α0 := 1/2)

ζ
(1)
0 (λ) = O

(
λ−

1
4

)
, λ→ +∞ . (22.131)

Again from Lemma 22.8 (with β± := γ − 1 and γ± arbitrarily large negative), we obtain for W1 (with α± :=
α ∈ (0, 1))

λ−
1

4(γ+1)ωp(λ
−α;W1, J±) = O

(
λ−

α
p+

1
2p(γ+1)

+ 2γ−3
4(γ+1)

+ǫ
)
, λ→ +∞, (22.132)

where ǫ = ǫ(γ, p) > 0 can be made arbitrarily small. Calculating the individual terms in ζ
(1)
± , we obtain the

following conditions on α to have a decay in (22.119):

γ − 1

γ + 1
< α <

1

3

γ + 3

γ + 1
. (22.133)

These can be satisfied only if γ < 3 and the corresponding decay rate in (22.119) can be calculated in a
straightforward way.

22.5 Pseudomodes for general curves

In this section, we focus on potentials V with unbounded ℑV and investigate pseudomodes for other curves in
the complex plane than lines parallel to the real axis. The construction is basically the same as in Section 22.3,
however, instead of having the pseudomode localised around 0, we work around a λ-dependent point.

As the support of the pseudomode will be contained in R+, this construction is suitable also for operators
in L2(R+). In fact we shall rather proceed reversely and formulate the strategy for such a situation, the
subsequent applicability of the results for problems in L2(R) being obvious.

22.5.1 Admissible class of potentials and curves

To keep the previous strategy working without more complicated and implicit conditions on V , we add an
additional condition on ℑV , namely a control of ℑV ′(x). In detail, we assume the following.

Assumption 22.3. Let N ∈ N, N > 1, let V ∈WN,∞
loc (R+) satisfy

lim
x→+∞

ℑV (x) = +∞ (22.134)

together with all the conditions of Assumption 22.1 for x > 0. In addition suppose that

∀x & 1, ℑV ′(x) & ℑV (x)〈x〉ν , (22.135)

where ν := ν+.

In this section, we write
λ = a+ ib, a ∈ R, b ∈ R+. (22.136)

For sufficiently large b we define the turning point xb of ℑV by the equation

ℑV (xb) = b, (22.137)

which is well-defined due to (22.135). The cut-off is taken around the turning point xb, namely:

ξ ∈ C∞
0 (R+), 0 ≤ ξ ≤ 1,

∀x ∈ (xb − δ +∆, xb + δ −∆), ξ(x) = 1,

∀x /∈ (xb − δ, xb + δ), ξ(x) = 0.

(22.138)
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Here we take

δ :=
x−νb
2
, ∆ :=

δ

4
, (22.139)

and denote
Jb := (xb − δ, xb + δ), J′b := (xb − δ +∆, xb + δ −∆). (22.140)

Finally, we restrict the real part of λ by

∀x ∈ Jb, b
2
3x

2ν
3

b . |a| . a−ℜV (x) . b2x−4ν−4ε1−2
b . (22.141)

The set of admissible a’s is non-empty since supx∈Jb
|ℜV (x)| . b2x−4ν−4ε1−2

b by assumption (22.30) and the

choice of Jb in (22.140); moreover it follows from (22.30) that b
2
3x

2ν
3

b . b2x−4ν−4ε1−2
b for every sufficiently small

ε1 > 0.

22.5.2 Pseudomode construction

The pseudomode will have the form

f(x) := ξ(x)g(x) with g(x) := exp

(
−

n−1∑

k=−1

λ−
k
2

∫ x

xb

ψ′
k(t) dt

)
, (22.142)

where {ψ′
k}k∈[[−1,n−1]] are determined by (22.21).

Proposition 22.2. Let Assumption 22.3 hold, 0 ≤ n ≤ N , {ψ′
k}k∈[[−1,n−1]] be determined by (22.21), Jb, J

′
b

be as in (22.140), ξ, g be as in (22.138), (22.142), respectively, and a satisfy (22.141). Then there exists c > 0
such that

‖ξ′′g‖L2(R+) + ‖ξ′g′‖L2(R+)

‖ξg‖L2(R+)
= O(exp(−cxν+1+2ε1

b )), b→ +∞. (22.143)

Proof. Let us first estimate sgn(x− xb)
∫ x
xb

ℜ(λ 1
2ψ′

−1(t)) dt. For xb < x < xb + δ (the other case is analogous),

an analogue of the the complex square root formula (22.31), the choice of a in (22.141) and the mean value
theorem lead to

ℜ(λ 1
2ψ′

−1(x)) &
ℑV (x)− b

(a−ℜV (x))
1
2 + (ℑV (x)− b)

1
2

&
ℑV ′(xb)(x− xb)

|a| 12 + (ℑV ′(xb)(x − xb))
1
2

.

(22.144)

In the second inequality we have also used that the values of ℑV ′ at Jb are comparable, see (22.29) and (22.33).
Hence, for every x ∈ Jb \ J′b, we have

∫ x

xb

ℜ(λ 1
2ψ′

−1(t)) dt &
b x−νb

|a| 12 + b
1
2

&

{
xν+1+2ε1
b , |a| > b,

b
1
2 x−νb , |a| ≤ b.

(22.145)

Here the first inequality employs (22.135) in the numerator and (22.29) in the denominator, while the second

inequality follows from (22.141). Notice that by (22.30) we have b
1
2 x−νb & xν+1+2ε1

b , so the left hand side tends
to infinity as b→ +∞ too.

Next we investigate
∫ x
xb

|λ− k
2ψ′

k| for k ∈ [[0, n− 1]] and x ∈ Jb. The estimates analogous to (22.46), (22.47)

and the choice of a in (22.141) yield

∫ x

xb

|λ− k
2 ψ′

k(t)| dt .
k+1∑

j=1

∫ x

xb

|V (t)|jx(k+1)ν
b

|a−ℜV (t)|j+ k
2

dt .
k+1∑

j=1

(|a|j + bj)xkνb
|a|j+ k

2

. (22.146)

Further from (22.141) and (22.30)

k+1∑

j=1

|a|jxkνb
|a|j+ k

2

.

(
xνb
|a| 12

)k
.

(
x2νb
b

) k
3

. x
− 2

3k(ν+1+ε1)

b (22.147)

and
k+1∑

j=1

bjxkνb

|a|j+ k
2

.




x
−k(ν+1+ε1)
b , |a| > b,

∑k+1
j=1

(
bx−2ν
b

) j−k
3 , |a| ≤ b.

(22.148)
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Thus, using again (22.30), for every x ∈ Jb \ J′b we get

∫ x
xb

|λ− k
2ψ′

k(t)| dt∫ x
xb

ℜ(λ 1
2ψ′

−1(t)) dt
. x

−( 2
3k+1)(ν+1+ε1)

b +

{
x
−(k+1)(ν+1+ε1)
b , |a| > b,

x
−(ν+1+ε1)
b , |a| ≤ b.

(22.149)

Using (22.145) with help of (22.149) and (22.13), we obtain (with some C1 > 0)

‖ξ′′g‖L2(R+) + ‖ξ′g′‖L2(R+) . exp

(
−C1

bx−νb
|a| 12 + b

1
2

)
. (22.150)

The estimate is clear for the first norm on the left hand side. To control the extra terms obtained by differen-
tiating g, we employ the bounds coming from Gronwall’s inequality (22.32) for the term λ

1
2ψ′

−1 and the other

terms λ−
k
2ψ′

k can be estimated similarly as in (22.146).
Finally, to show (22.143), we need to verify that ‖ξg‖L2(R+) is not too small. To this end notice that for

a < b ∫ xb+x
−2|ν|
b

xb

|ℜ(λ 1
2ψ′

−1(t))| dt .
∫ xb+x

−2|ν|
b

xb

|ℑV (t)− b| 12 dt

. b
1
2 x

−3|ν|+ 1
2ν

b

(22.151)

and for a ≥ b ∫ xb+x
−2|ν|
b

xb

|ℜ(λ 1
2ψ′

−1(t))| dt .
∫ xb+x

−2|ν|
b

xb

ℑV ′(xb)(t− xb)

|a| 12
dt

. |a|− 1
2 b x

ν−4|ν|
b .

(22.152)

Since 



b
1
2x

−3|ν|+ 1
2ν

b = o

(
b x−νb

|a| 12 + b
1
2

)
, a < b,

|a|− 1
2 b x

ν−4|ν|
b = o

(
b x−νb

|a| 12 + b
1
2

)
, a ≥ b,

(22.153)

we obtain in both cases (with some C2 > 0)

‖ξ′′g‖L2(R+) + ‖ξ′g′‖L2(R+)

‖ξg‖L2(R+)
. exp

(
−C2

b x−νb
|a| 12 + b

1
2

)
. (22.154)

The claim (22.143) follows from the last inequality in (22.145).

Theorem 22.5. Let Assumption 22.3 hold, f be as in (22.142) with n = N − 1 and a satisfy (22.141). Then,
as b→ +∞,

‖(HV − λ)f‖L2(R+)

‖f‖L2(R+)
= O

(
exp(−cxν+1+2ε1

b ) + xNνb sup
x∈Jb

b + |ℜV (x)|
(a−ℜV (x))

N
2

+

N−2∑

k=0

N+k∑

l=2

x
(N+k)ν
b sup

x∈Jb

(b+ |ℜV (x)|)l

(a−ℜV (x))
N−2+k

2 +l

)
.

(22.155)

Proof. The claim follows straightforwardly from Proposition 22.2, the estimate of the remainder |rn|, see (22.25),
and the choice of a, see (22.141).

Example 22.9 (Example 22.1 continued). We illustrate applicability of Theorem 22.5 on the imaginary mono-

mial potentials, namely V (x) = ixγ for x > 0 and γ ≥ 1. With this choice, we have ν = −1, xb = b
1
γ and we

may take a as (with ε > 0)

b
2
3
γ−1
γ +ε . a . b2

γ+1
γ −ε, (22.156)

see (22.141). Straightforward calculations yield that for a sufficiently large N we get a decay in (22.155). In
other words we show that there are pseudomodes (with a decay in (22.155)) in the region bounded by curves
Γ1,2 in C given by

Γ1(t) := t
2
3
γ−1
γ +ε + it, Γ2(t) := t2

γ+1
γ −ε + it. (22.157)

Notice that for γ = 2, we obtain (with obvious re-parametrisation) curves η + iηp with 1/3 < p < 3 of the
Boulton’s conjecture, cf [4], which are known to be optimal, cf [18].
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Example 22.10 (Semiclassical operators). Let us briefly explain how the semiclassical setting, see e.g. [5], can
be treated using our approach and how previously used assumptions can be relaxed. For a sufficiently regular
potential U , we search for pseudomodes of the semiclassical operator

− h2
d2

dx2
+ U(x) − z, h > 0, (22.158)

corresponding to a pseudoeigenvalue z ∈ C, in the limit h→ 0.
First we factor the parameter h2 out and obtain (22.1) with the scaled potential V (x) := h−2U(x) and

pseudoeigenvalue λ := h−2z in our notations, see (22.2). The pseudomode is constructed around the point x0
satisfying the equation ℑV (x0) = ℑλ, i.e. ℑU(x0) = ℑz. Notice that x0 is determined only by ℑz, which is
fixed here.

The cut-off is successful if there are δ± such that for all x ∈ (x0 + δ+/2, x0 + δ+)

∫ x

x0

ℑU(t)−ℑU(x0)

(ℜz −ℜU(t))
1
2 + |ℑU(t)−ℑU(x0)| 12

dt & h1−ε (22.159)

with some ε > 0 and similarly for δ−. Indeed, appropriately modified first inequality in (22.144) yields

ℜ(λ 1
2ψ′

−1(t)) & h−1 ℑU(t)−ℑU(x0)

(ℜz −ℜW (t))
1
2 + |ℑU(t)−ℑU(x0)| 12

. (22.160)

However, (22.159) can be satisfied e.g. when Davies’ condition [5]

ℑU ′(x0) > 0 and z = η2 + U(x0) with η2 > 0 (22.161)

is imposed; indeed, Taylor’s theorem yields

ℑU(t)−ℑU(x0) = ℑU ′(x0)(t− x0) + O((t− x0)
2),

ℜz −ℜU(t) = η2 + O(|t− x0|), t→ x0,
(22.162)

and so the choice δ+ := h
1−ε
2 works. It can be also easily checked that the other terms in the expansion

are harmless. Finally, the decay of the remainders rn follows easily if |ℜz − ℜU(x)| is not too small on
(x0 − δ−, x0 + δ+), which is satisfied when Davies’ condition (22.161) holds; as an illustration, we have

h2|r0| .
h

|ℜz −ℜU(x)| 12
(22.163)

for all x ∈ (x0 − δ−, x0 + δ+).
In summary, the semiclassical setting allows for many simplifications and a suitable behaviour of U around

a fixed point x0 only is needed to obtain pseudomodes (localising around x0) as h→ 0. It is also clear that the
previously used conditions of the type ℑU ′(x0) 6= 0 are not needed as we may use larger neighbourhood of x0
and take sufficiently large η to satisfy (22.159) and obtain a decay of rn.

Example 22.11 (Strong local singularities). In all previous pseudomode constructions, we used the behaviour
of the potential V at infinity. If V is sufficiently singular at a finite point, the construction of the present
Section 22.5 can be adapted accordingly. We illustrate this on an example in L2(R−) with

V (x) :=
i

|x|α for x ∈ (−1, 0), α > 2, (22.164)

and arbitrary behaviour outside (−1, 0). We consider R− for convenience only so that (22.134) holds for
x → 0− and the shape of already derived formulas is preserved. Considering R+ instead of R− and further
generalisations in the sense of Section 22.5.1 (like ℜV 6= 0 or ν > −1) are straightforward. We emphasise
in particular the potentials with ℜV (x) = c/|x|2, c ∈ R, appearing in the radial part of higher-dimensional
Schrödinger operators.

We follow the notations of Section 22.5.1 and construct a pseudomode of the type (22.142) around the
turning point xb of ℑV that tends to 0− as b→ +∞. In more detail, we take here

λ = a+ ib, a, b ∈ R+,

ℑV (xb) = b, δ :=
|xb|
2
, ∆ :=

δ

4
,

(22.165)
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with δ going to zero as b → ∞, and the cut-off ξ as well as intervals Jb and J′b are as in (22.138), (22.140),
respectively. The new condition on admissible a’s (corresponding to the simple case (22.164)) reads

b
2
3 (1+

1
α ) . a . b2(1−

1
α )−ǫ (22.166)

with some ǫ > 0.
Following and slightly adapting the estimates in the proof of Proposition 22.2, we get for every x ∈ Jb \ J′b

with x > xb that ∫ x

xb

ℜ(λ 1
2ψ′

−1(t)) dt &
b1−

1
α

a
1
2 + b

1
2

. (22.167)

Here the importance of the assumed condition α > 2, as well as (22.166), is clearly visible in order to ensure
that the right-hand side tends to infinity as b → +∞. It can be further checked straightforwardly that the
cut-off is indeed successful and an analogue of (22.154) holds; we remark that in estimates like (22.151) and
(22.152) we integrate e.g. over (xb, xb + x2b).

The remainder estimate is also straightforward, using (22.25), we obtain altogether that with V as in
(22.164) there is a positive constant c such that

‖(HV − λ)f‖L2(R−)

‖f‖L2(R−)
= O

(
exp(−cb ǫ2 ) + b1+

n+1
α

a
n+1
2

+

n−1∑

k=0

n+1+k∑

l=2

bl+
n+1+k
α

al+
n−1+k

2

)
(22.168)

as b→ +∞ (then necessarily also a → +∞ due to (22.166)). Similarly as in Example 22.9, we can check that
if we strengthen (22.166) to

b
2
3 (1+

1
α )+ǫ . a . b2(1−

1
α )−ǫ (22.169)

with some ǫ > 0, then for a sufficiently large n we indeed have a decay in (22.168).
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[19] P. Siegl and D. Krejčǐŕık, On the metric operator for the imaginary cubic oscillator, Phys. Rev. D 86 (2012),
121702(R).

[20] L. N. Trefethen and M. Embree, Spectra and pseudospectra, Princeton University Press, 2005.

[21] M. Zworski, A remark on a paper of E. B. Davies, Proc. Amer. Math. Soc. 129 (2001), 2955–2957.

421

http://www.aimath.org/pastworkshops/nonselfadjoint.html


422 III Pseudospectra



Appendix

423





Appendix A

Elements of Spectral Theory without
the Spectral Theorem

Published in: “Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects”,
F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, and M. Znojil, Eds., Wiley-Interscience, 2015

http://dx.doi.org/10.1002/9781118855300

Joint work with: Petr Siegl

425

http://dx.doi.org/10.1002/9781118855300


426 Appendix



A Elements of Spectral Theory without the Spectral Theorem 427

Elements of spectral theory without the spectral theorem

David Krejčǐŕık1 and Petr Siegl2

1 Nuclear Physics Institute ASCR, 25068 Řež, Czech Republic
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A.1 Introduction

Many physical systems can be described by partial differential equations and the latter can often be viewed
as generating abstract operators between Banach spaces. A typical example is quantum mechanics where the
traditional mathematical discipline is the functional analysis of self-adjoint operators in Hilbert spaces. There
are also effective models (typically describing open quantum systems, including non-real fields or complex
boundary conditions) or more generally non-conservative processes in Nature on the whole where the underlying
operator is non-self-adjoint. More intrinsically, there have been recent attempts to build quantum mechanics
with physical observables represented by non-self-adjoint operators.

From the mathematical point of view, the theory of self-adjoint operators is well understood, while the
non-self-adjoint theory is still in its infancy. Or maybe more appropriate would be to say that the theory is
“underdeveloped”, as spectral theory of non-self-adjoint operators is an equally old branch of functional analysis.
Indeed, the first pioneering works (1908–1913) of G. D. Birkhoff on non-self-adjoint boundary value problems
were written almost at the same time as D. Hilbert’s famous papers (1904–1910) that initiated self-adjoint
spectral theory (cf [61, p. viii]). But it was not until M. V. Keldyš’ work (1951) when first abstract results on
non-self-adjoint problems appeared in the literature, while the self-adjoint theory was already enjoying all the
pleasures of life due to the needs of quantum mechanics at that time.

It is frustrating that the powerful techniques of the self-adjoint theory, such as the spectral theorem and
variational principles, are not available for non-self-adjoint operators. Moreover, recent studies have revealed
that this lack of tools is fundamental; the non-self-adjointness may lead to new and unexpected phenomena.
Although there exist many interesting observations coming from physics and numerical studies of non-self-
adjoint operators, the deep theoretical understanding is still missing. The problem is that the non-self-adjoint
theory is much more diverse and it is difficult, if not impossible, to find a common thread. Indeed it can hardly
be called a theory. This is a quotation from the preface of E. B. Davies’ 2007 book [17], where a significant
amount of work on spectral theory of non-self-adjoint operators can be found. The author continues:

Studying non-self-adjoint operators is like being a vet rather than a doctor: one has to acquire a much wider
range of knowledge, and to accept that one cannot expect to have as high a rate of success when confronted

with particular cases.

We fully endorse this opinion and understand that the only way how “to acquire the much wider range of
knowledge” is by studying many distinct cases. This chapter is particularly concerned with various cases
coming from the rapidly developing field of quantum mechanics with non-self-adjoint operators. But we hope
the present material will be useful for anybody interested in methods of spectral theory when the spectral
theorem is not available.

The structure of this chapter is as follows. The forthcoming Section A.2 is mainly devoted to a collection of
basic facts from the spectral theory of operators in Hilbert spaces. In Section A.3 we summarise some efficient
methods how to construct a closed operator with non-empty resolvent set. The theory of compact operators
and various definitions of essential spectra are recalled in Section A.4. Section A.5 is concerned with operators
which are similar to self-adjoint (or more generally normal) operators. Finally, in Section A.6, we recall the
notion of pseudospectra as a more reliable information about non-self-adjoint operators than the spectrum
itself.

Our exposition is in many respects based on the classical monographs [23, 34] to which we refer for statements
presented here without (or just sketchy) proofs. In addition to these references, we also use the new edition [1]
about Sobolev spaces, which are denoted here by Hm(Ω), and the book [29] about partial differential equations.
Other references are quoted in the text. The majority of the material is standard, but we illustrate the abstract
exposition by some unconventional quantum-mechanically motivated examples.

A.2 Closed operators in Hilbert spaces

Having in mind the applications of differential operators in quantum mechanics, we concentrate on closed
operators acting in Hilbert spaces, although many concepts summarised below are relevant in Banach spaces as
well.
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A.2.1 Basic notions

Throughout this chapter H stands for a separable Hilbert space over the complex number field C. The norm
and inner product (antilinear in the first component) in H will be denoted by ‖ · ‖ and (·, ·), respectively. A
paradigmatic example is the Lebesgue space L2(Ω) of square-integrable functions over an open set Ω ⊂ Rd.

We define a linear operator H in H to be a pair consisting of a linear subspace D(H) ⊂ H called the domain
of H and a linear map H : D(H) → H. If D(H) is dense in H, H is said to be densely defined . The image
R(H) := HD(H) is called the range of H . The null space or kernel N(H) of H is the set of all ψ ∈ D(H) such
that Hψ = 0.

If H1 and H2 are two operators in H such that D(H1) ⊂ D(H2) and H1ψ = H2ψ for all ψ ∈ D(H1), we
write H1 ⊂ H2 and say that H2 is an extension of H1 and H1 is a restriction of H2.

The following quantities play an important role in spectral theory:

nullity, nul(H) := dimN(H) ,

deficiency, def(H) := codimR(H) .

Recall that the codimension of a subspace H′ ⊂ H is defined as the dimension of the quotient space H/H′.
If H′ is closed, then codimH′ = dimH′⊥, where ⊥ denotes the orthogonal complement, but this equality does
not extend to non-closed subspaces, as the following example shows.

Example A.1 (Identity operator). The identity operator I in L2(R), i.e. Iψ := ψ, D(I) := L2(R), has a closed
range, R(I) = L2(R), by definition, so def(I) = 0. The situation is very different for its restriction I ′ψ := Iψ,
D(I ′) := C∞

0 (R), when R(I ′) = C∞
0 (R). Since R(I ′) is dense in L2(R), we have dimR(I ′)⊥ = 0. However,

R(I ′) is not closed and def(I ′) = +∞; indeed, for instance Hermite functions are supported everywhere in R

and form an orthonormal basis of L2(R).

The operator H : D(H) → H, understood as a mapping between two normed spaces (D(H), ‖ · ‖) and
H, is said to be bounded if there exists a non-negative number M such that ‖Hψ‖ ≤M‖ψ‖ for all ψ ∈ D(H).
The smallest number M with this property is called the norm of H and is denoted by ‖H‖D(H)→H, i.e.

‖H‖D(H)→H := sup
ψ∈D(H),ψ 6=0,

‖Hψ‖
‖ψ‖ .

If H is bounded and D(H) = H, i.e. H is an operator on H to H, we drop the subscript in the notation of
the norm, i.e. ‖H‖ := ‖H‖H→H. The space of all bounded operators on H to H is denoted by B(H). H is
bounded if and only if it is continuous , i.e.,

D(H) ∋ ψn −−−−→
n→∞

ψ ∈ D(H) =⇒ H(ψn − ψ) −−−−→
n→∞

0 .

Most of the physically relevant operators are unbounded, including differential operators in L2(Ω).
A suitable substitute for the continuity in the more general situation of unbounded operators is the important

notion of closedness. We say that H is closed if

D(H) ∋ ψn −−−−→
n→∞

ψ ∈ H

Hψn −−−−→
n→∞

φ ∈ H



 =⇒

[
ψ ∈ D(H) ∧ Hψ = φ

]
.

Since the spectrum is defined only for closed operators, cf Section A.2.2, checking that a given operator H is
closed should be the first step in any spectral analysis of H . In what follows, H is thus typically assumed to
be a closed operator in H.

We also assume that H is densely defined, which is convenient in order to have the unique adjoint H∗

defined as follows
D(H∗) :=

{
φ ∈ H : ∃φ∗ ∈ H, ∀ψ ∈ D(H), (φ,Hψ) = (φ∗, ψ)

}
,

H∗φ := φ∗ .
(A.1)

H∗ is always a closed operator, regardless whether H is closed or not, but it may happen that D(H∗) = {0}.
For any densely defined operator H , we have

N(H∗) = R(H)⊥ . (A.2)

It turns out that differential operators in L2(Ω) are closed and densely defined when their domains are
properly chosen. We illustrate the situation on several characteristic examples coming from quantum mechanics.
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Example A.2 (Multiplication operator). Given an open set Ω ⊂ Rd, let MV be the operator of multiplication
in L2(Ω) by a measurable function V : Ω → C. It is defined by MV ψ := V ψ on its maximal domain
D(MV ) := {ψ ∈ L2(Ω) : V ψ ∈ L2(Ω)}. MV is densely defined and closed. MV is bounded on L2(Ω) if and only
if V is essentially bounded, in which case we have ‖MV ‖ = ‖V ‖∞. The adjoint of MV is obtained by simply
taking the complex conjugate of V , i.e. M∗

V =MV , in particular, D(M∗
V ) = D(MV ). A quantum-mechanically

distinguished example is the position operator q in L2(R) which is associated with the choice V (x) := x.

Example A.3 (Momentum operator). Given an open interval Ω ⊂ R, we introduce the momentum operator p
in L2(Ω) by pψ := −iψ′ and D(p) := H1(Ω). The operator p is densely defined, closed and always unbounded.
The adjoint acts in the same way, but it satisfies an extra Dirichlet boundary condition on ∂Ω, i.e. p∗ψ = −iψ′

and D(p∗) = H1
0 (Ω). In L

2(R), p and q are unitarily equivalent via the Fourier transform.

Example A.4 (Creation and annihilation operators). In L2(R), we introduce the creation and annihilation
operators as follows. The annihilation operator is introduced as a := ip+ q; by definition, D(a) = D(p)∩D(q).
The operator a is densely defined and it can be proved that it is closed and that its adjoint, the creation
operator, reads a∗ = −ip+ q (with D(a∗) = D(a)).

The famous harmonic-oscillator Hamiltonian

HHO := p2 + q2 , D(HHO) = {ψ ∈ H2(R) : x2ψ ∈ L2(R)}, (A.3)

is closed and it can be verified that HHO = a∗a+ 1, i.e. particularly the equality of the domains holds (notice
that by definition of the product of two operators, D(a∗a) = {ψ ∈ D(a) : aψ ∈ D(a∗)}).
Example A.5 (Free Hamiltonian and constraints). Given an open connected set Ω in Rd, let us introduce an
auxiliary densely defined operator −∆Ω in L2(Ω) which acts on the Sobolev space D(−∆Ω) := H2(Ω) as the
Laplacian, i.e. −∆Ωψ := −∆ψ. The case Ω = Rd corresponds to the free Hamiltonian describing the motion a

quantum particle in the whole space with the absence of external fields. It is well known that −∆R
d

is closed,

in fact −∆R
d

= (−∆R
d

)∗. If the boundary ∂Ω is not empty, a physically relevant closed realisation of −∆Ω is
typically obtained by imposing suitable boundary conditions. For sufficiently regular Ω, so that the boundary
traces H2(Ω) →֒ H1(∂Ω) exist, we consider

Dirichlet boundary conditions, ψ = 0 on ∂Ω , (A.4)

Neumann boundary conditions,
∂ψ

∂n
= 0 on ∂Ω , (A.5)

Robin boundary conditions,
∂ψ

∂n
+ αψ = 0 on ∂Ω , (A.6)

where ψ ∈ H2(Ω), n denotes the exterior unit normal vector field of ∂Ω and α : ∂Ω → C. We denote by
−∆Ω

D, −∆Ω
N and −∆Ω

α the operators in L2(Ω) that act as −∆Ω on smaller domains D(−∆Ω
ι ) := {ψ ∈ H2(Ω) :

(ι) holds}, where ι ∈ {D,N, α} and (ι) stands for (A.4), (A.5) or (A.6), respectively. We call the operators
the Dirichlet, Neumann and Robin Laplacians, respectively. All these operators are closed if Ω and α are
sufficiently regular (e.g. Ω bounded with boundary of class C2 and α ∈ C1(∂Ω)). Clearly, −∆Ω

N = −∆Ω
0 , while

−∆Ω
D can be formally considered as corresponding to the extreme situation “α = ∞”.

A.2.2 Spectra

An eigenvalue of H is defined as a complex number λ such that the equation Hψ = λψ has a non-zero solution
ψ ∈ D(H) called eigenvector . In other words, λ is an eigenvalue of H if the null space N(H − λ) is not {0};
this null space is the geometric eigenspace for λ and the nullity mg(λ) := nul(H − λ) is called the geometric
multiplicity of λ. The algebraic (or root) eigenspace for λ is defined by

Mλ :=

∞⋃

n=1

N([H − λ]n) ,

non-zero elements of Mλ are called generalised eigenvectors (or root vectors) corresponding to λ and ma(λ) :=
dimMλ is called the algebraic multiplicity of λ. Obviously, ma(λ) ≥ mg(λ), where the inequality can be strict
in general.

Example A.6 (Matrices with degenerate eigenvalues). The nilpotent matrix H := ( 0 1
0 0 ) on C2 has only one

eigenvalue λ = 0 with an eigenvector ( 10 ) and a generalised eigenvector ( 01 ), so mg(0) = 1 and ma(0) = 2. On
the other hand, the null matrix H := ( 0 0

0 0 ) has one eigenvalue λ = 0 with two eigenvectors ( 1
0 ) and ( 01 ), so

mg(0) = 2 = ma(0). The null (infinite) matrix on l2(N) has λ = 0 as an eigenvalue of infinite geometric and
algebraic multiplicities (as in fact has the null operator on any infinite-dimensional Hilbert space) and it is
straightforward to construct examples of matrices with arbitrary values of mg(λ) and ma(λ).
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More interesting examples of (differential) operators will be presented later.
The set of all eigenvalues of H is called

the point spectrum, σp(H) := {λ ∈ C : N(H − λ) 6= {0}} .

If λ 6∈ σp(H), then the inverse (H − λ)−1 exists. The resolvent set ρ(H) of H is defined to be the set of
all λ’s for which (H − λ)−1 ∈ B(H), i.e. the inverse exists as a bounded operator on H (i.e. on H to H). The
operator-valued function λ 7→ (H − λ)−1 from ρ(H) to B(H) is called the resolvent of H . The complement
σ(H) := C \ ρ(H) is called the spectrum of H .

It is customary to introduce the spectrum for closed operators only, the reason being that the notion is
trivial otherwise.

Proposition A.1. If H is not closed, then σ(H) = C.

Proof. We prove it by contraposition: if λ ∈ ρ(H) 6= ∅, then N(H − λ) = {0} and (H − λ)−1 ∈ B(H). The
latter implies that (H − λ)−1 is closed. However, an invertible operator is closed if and only if its inverse is.
Consequently, H − λ and hence H are closed operators.

In what follows we thus assume that H is a closed operator in H.
The spectrum of operators in finite-dimensional Hilbert spaces is exhausted by eigenvalues. In general,

however, there are additional subsets:

continuous spectrum, σc(H) :=
{
λ ∈ σ(H) \ σp(H) : R(H − λ) = H

}
,

residual spectrum, σr(H) :=
{
λ ∈ σ(H) \ σp(H) : R(H − λ) 6= H

}
.

By the closed-graph theorem [34, Sec. III.5.4], the pathological situation of λ ∈ σ(H)\σp(H) with R(H−λ) = H

cannot occur, therefore
σ(H) = σp(H) ∪ σc(H) ∪ σr(H)

and the unions are disjoint. In other words, λ ∈ σ(H) if and only if H − λ is not bijective as an operator
from D(H) to H.

From the Neumann series for the resolvent, it follows that the resolvent set ρ(H) is an open subset of C,
consequently the spectrum σ(H) is closed (it can be empty or cover the whole complex plane).

The spectra of a densely defined closed operator H and its adjoint H∗ are simply related via a mirror
symmetry with respect to the real axis,

∀λ ∈ C , λ ∈ σ(H) ⇐⇒ λ ∈ σ(H∗) .

However, the individual subsets of the spectrum may not satisfy this symmetry; in general, we have the following
implications only.

Proposition A.2. Let H be a densely defined closed operator and λ ∈ C. Then

• λ ∈ σp(H) =⇒ λ ∈ σp(H
∗) ∪ σr(H∗) ,

• λ ∈ σr(H) =⇒ λ ∈ σp(H
∗) ,

• λ ∈ σc(H) ⇐⇒ λ ∈ σc(H
∗) .

(A.7)

In particular,
σr(H) =

{
λ ∈ C \ σp(H) : λ ∈ σp(H

∗)
}
. (A.8)

Proof. We prove the first two implications from which the rest follows. Let λ ∈ σp(H) and denote by φ
the corresponding eigenvector. Then, for every ψ ∈ D(H∗), ((H∗ − λ)ψ, φ) = (ψ, (H − λ)φ) = 0, therefore
R(H∗ − λ)⊥ 6= {0}, hence λ /∈ σc(H

∗). Let λ ∈ σr(H), then (A.2) yields N(H∗ − λ) = R(H − λ)⊥ 6= {0}, hence
λ ∈ σp(H

∗).

Example A.7 (Spectrum of the multiplication operator). In the full generality of Example A.2, we have

σ(MV ) =
{
λ ∈ C :

∣∣{x ∈ Ω : λ− ε ≤ V (x) ≤ λ+ ε}
∣∣ > 0 for all ε

}
,

σp(MV ) =
{
λ ∈ C :

∣∣{x ∈ Ω : V (x) = λ}
∣∣ > 0

}
,

σr(MV ) = ∅ ,

where | · | denotes the Lebesgue measure. Note that the spectrum of MV equals the essential range of the
function V . In particular, if V is continuous, then σ(MV ) is the closure of the range of V . In the special case
of the position operator q in L2(R), we have σ(q) = σc(q) = R.
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Example A.8 (Spectrum of the momentum operator). The spectrum of the momentum operator p from
Example A.3 drastically depends on the choice of the configuration space Ω.

Ω σp(p) σc(p) σr(p) σp(p
∗) σc(p

∗) σr(p
∗)

R ∅ R ∅ ∅ R ∅

(0,+∞) C+ R ∅ ∅ R C−

(0, 1) C ∅ ∅ ∅ ∅ C

Here the notation C± := {λ ∈ C : ℑλ ≷ 0} for the upper and lower half-plane is used.

Example A.9 (Spectrum of the creation and annihilation operators). Recall Example A.4. We have σc(a) =
σc(a

∗) = ∅, σp(a) = σr(a
∗) = C and σr(a) = σp(a

∗) = ∅. The spectrum of the harmonic oscillator HHO is
given by algebraically simple eigenvalues 2n+ 1 with n = 0, 1, . . . .

Example A.10 (Spectrum of the Laplacians). The interesting dependence of the spectrum of the operators
from Example A.5 on the geometry of Ω is out of the scope of the present chapter. We only mention the

well-known result for the free Hamiltonian, σ(−∆R
d

) = σc(−∆R
d

) = [0,∞), and henceforth focus on the
one-dimensional situation Ω = (−a, a), a > 0. It is well known that

σ(−∆
(−a,a)
N ) = σp(−∆

(−a,a)
N ) =

{(nπ
2a

)2}∞

n=0

,

σ(−∆
(−a,a)
D ) = σp(−∆

(−a,a)
D ) =

{(nπ
2a

)2}∞

n=1

,

and all the eigenvalues are algebraically simple. The case of general Robin boundary conditions α : ∂Ω → C

is investigated in [40, 42]. In this one-dimensional situation it is natural to identify the function α with the
couple {α(−a), α(+a)}. Here and in the sequel we consider only the special choice α(±a) = ±iα0 with α0 ∈ R

that was originally introduced in [39, 38]. This choice admits an explicit solution

σ(−∆
(−a,a)
{−iα0,iα0}) = σp(−∆

(−a,a)
{−iα0,iα0}) =

{
α2
0

}
∪
{(nπ

2a

)2}∞

n=1

.

Furthermore, it is easy to check that all the eigenvalues are algebraically simple provided that 2α0a 6∈
{±π,±2π, . . . }, otherwise the eigenvalue α2

0 is doubly degenerated with geometric and algebraic multiplicity
one and two, respectively, and all the other eigenvalues are algebraically simple.

A.2.3 Numerical range

Despite of a usually direct physical interpretation of the spectrum, it is not an easily accessible quantity. Indeed,
there is no hope to get such explicit formulae for the spectra as we did for the examples of the preceding section
in the more general situation of differential operators with variable coefficients or defined on geometrically
more complicated sets. The objective of the present subsection is to estimate the spectrum in terms of a more
accessible quantity:

numerical range, Θ(H) := {(ψ,Hψ) : ψ ∈ D(H), ‖ψ‖ = 1} .

In general, Θ(H) is neither open nor closed, even when H is a closed operator. It is, however, always convex.
Let

Ξ(H) := ∁Θ(H) ≡ C \Θ(H) (A.9)

denote the exterior of the numerical range of H . In view of the convexity of the numerical range, Ξ(H) is either
an open connected set or a union of two half-planes (for this reason we like to use the disconnected symbol Ξ
to denote the exterior).

If H ∈ B(H), then the spectrum of H is a subset of the closure of Θ(H). More generally, we have

Proposition A.3. Let H be a closed operator such that each connected component of Ξ(H) has a non-empty
intersection with ρ(H). Then

σ(H) ⊂ Θ(H) and ‖(H − λ)−1‖ ≤ 1

dist
(
λ,Θ(H)

) (A.10)

for every λ ∈ ρ(H).
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Proof. By Theorem [34, Sec. V.3.2], R(H − λ) is closed and nul(H − λ) = 0 for each λ ∈ Ξ(H). Furthermore,
λ 7→ def(H − λ) is constant in each of the connected components of Ξ(H). Consequently, if a connected
component of Ξ(H) has a non-empty intersection with ρ(H), then it follows from (A.32) that this component
is actually a subset of ρ(H). This proves the set inclusion in the statement of the proposition. To show the
inequality for the resolvent norm, we note that

dist
(
λ,Θ(H)

)
≤ |(ψ,Hψ)− λ| = |(ψ, (H − λ)ψ)| ≤ ‖(H − λ)ψ‖

for any ψ ∈ D(H) with ‖ψ‖ = 1 and every λ ∈ C. Hence, the desired inequality follows by employing the fact
that Ξ(H) is a subset of ρ(H) where H − λ is bijective.

Example A.11 (Numerical range of the momentum operator). The assumption in Proposition A.3 about the
intersection of the exterior of the numerical range with the resolvent set is absolutely necessary. We demonstrate
it on the example of the momentum operator from Example A.3. The following table to be compared with
that of Example A.8 shows that the spectrum cannot be controlled by the numerical range in general.

Ω Θ(p) Θ(p∗)

R R R

(0,+∞) C R

(0, 1) C R

Indeed, we see that the spectrum is much larger than the numerical range of p∗ on the half-line or bounded
interval.

A.2.4 Sectoriality and accretivity

The extra condition in Proposition A.3 that ensures the useful properties (A.10) is of course annoying. The
good news of this subsection is that there exists a distinguished class of operators for which we can do better.
These are operators for which one can generically ensure that the exterior of the numerical range cannot have
two connected components, by employing the convexity of the numerical range. We have already mentioned
that it is the case of bounded operators, but this class of operators is insufficient for applications to differential
operators. A fairly wide class is given by sectorial operators H defined by the property that their numerical
range is a subset of a sector, i.e.,

Θ(H) ⊂ Sγ,ϑ := {λ ∈ C : | arg(λ− γ)| ≤ ϑ} (A.11)

with some γ ∈ R and 0 ≤ ϑ < π/2 called a vertex and a semi-angle of H , respectively. Since the inequality for
the semi-angle is strict, the exterior Ξ(H) is clearly a connected set.

It remains to state an extra property which would ensure that Ξ(H) has a non-empty intersection with ρ(H)
provided that H is sectorial. This is done ad hoc by introducing the notion of m-sectoriality: H is said to be
m-sectorial if it is sectorial and

ρ(H) ∩ ∁Sγ,ϑ 6= ∅ . (A.12)

(The latter is equivalent to ρ(H) ∩ Ξ(H) 6= ∅ due to the sectoriality.) Applying Proposition A.3, we may thus
conclude with

Proposition A.4. Let H be an m-sectorial operator. Then (A.10) holds.

For applications, however, it is sometimes needed to allow the extreme situation ϑ = π/2 in (A.11). H is
said to be quasi-accretive if Θ(H) ⊂ Sγ,π/2 with some γ ∈ R and it is said to be accretive if the vertex can be
chosen at the origin, i.e. Θ(H) ⊂ S0,π/2. For the convenience of the reader, we summarise the various notions
at one place here: an operator H is called

sectorial , if (A.11) holds with γ ∈ R and 0 ≤ ϑ < π/2,

accretive, if (A.11) holds with γ = 0 and 0 ≤ ϑ ≤ π/2,

quasi-accretive , if (A.11) holds with γ ∈ R and 0 ≤ ϑ ≤ π/2.

Again, we add the prefix m- to accretive if in addition (A.12) holds (which is now stronger than ρ(H) ∩
Ξ(H) 6= ∅, since Ξ(H) can have two disjoint components if ϑ = π/2). Obviously, H is quasi-m-accretive if
H + γ is m-accretive with some γ ∈ R and H is m-sectorial if it is sectorial and quasi-m-accretive. Inspecting
the proof of Proposition A.3, we easily check that H is m-accretive if and only if the standard requirements
(cf [34, Eq. (V.3.38)])

• {λ ∈ C : ℜλ < 0} ⊂ ρ(H) ,

• ∀λ ∈ C, ℜλ < 0 , ‖(H − λ)−1‖ ≤ 1

|ℜλ| ,
(A.13)
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are satisfied.
The meaning of the m- terminology is that any m-accretive (respectively, m-sectorial) operator ismaximal in

the sense that it has no proper accretive (respectively, sectorial) extension (cf [34, Sec. V.3.10]). Furthermore,
any m-accretive operator is automatically closed (cf Proposition A.1) and densely defined.

While checking the condition (A.11) on the numerical range for a given operator may be straightforward,
more sophisticated tools are usually needed to verify (A.12). We shall be concerned with such methods in
Section A.3.

The Laplacians from Example A.5 together with operators constructed from them by “small perturba-
tions” (cf Section A.3.4) are m-sectorial. At the same time, the harmonic-oscillator Hamiltonian HHO from
Example A.4 is m-sectorial with vertex 1 and semi-angle 0. On the other hand, the momentum operators from
Example A.3 (recall also Examples A.8 and A.11) are not even sectorial, although ±ip and ±ip∗ on R as well
as ip∗ on the half-line are m-accretive. As a matter of fact, ip∗ on the half-line is a warning example for the
fact that no general variant of Proposition A.4 for quasi-m-accretive operators is available. Here we present
other examples of quasi-accretive operators which are not sectorial:

Example A.12 (Imaginary Airy operator). Consider in L2(R) the operator:

HAiry := p2 + iq , D(HAiry) = {ψ ∈ H2(R) : xψ ∈ L2(R)},

where p and q are introduced in Examples A.3 and A.2, respectively. HAiry is m-accretive. The accretivity
is simple to verify since, for all ψ ∈ D(HAiry), the integration by parts yields (ψ,HAiryψ) = ‖ψ′‖2 + i(ψ, xψ),
whence Θ(HAiry) ⊂ S0,π/2. However, it is much more delicate to check (A.12) (cf Example A.24).

Example A.13 (Imaginary cubic oscillator). The operator in L2(R):

Hcubic := p2 + iq3 , D(Hcubic) = {ψ ∈ H2(R) : x3ψ ∈ L2(R)},

is m-accretive. The reasoning is analogous to the previous example.

Example A.14 (Generator of the damped wave equation). Given a bounded open connected set Ω ⊂ Rd with
smooth boundary ∂Ω, consider the damped wave equation utt + a(x)ut −∆u = 0, where (x, t) ∈ Ω × (0,∞)
and a ∈ L∞(Ω) is real-valued, subject to Dirichlet boundary conditions u(x, t) = 0 for (x, t) ∈ ∂Ω × (0,∞)
and initial conditions u(·, 0) ∈ H1(Ω), ut(·, 0) ∈ L2(Ω). Writing ψ := ( uut ), the weak formulation of the
differential equation leads to an abstract evolution problem ψt = Haψ in the Hilbert space Ḣ1

0 (Ω)×L2(Ω) with

Ha :=
(

0 1
∆Ω
D −a

)
, D(Ha) := D(−∆Ω

D) × H1
0 (Ω). Here −∆Ω

D is the Dirichlet Laplacian from Example A.5 and

Ḣ1
0 (Ω) denotes the closure of C∞

0 (Ω) with respect to the norm ‖∇ · ‖ (it is equivalent to the H1
0 -norm since

we assume that Ω is bounded). Ha is m-accretive whenever a ≤ 0. We refer to [24, 25] for an application of
spectral analysis of Ha to stability issues related to the damped wave equation.

As the last example suggests, quasi-accretive operators play an important role in evolution processes. In
fact, by Hille-Yosida’s theorem, cf [12, Thm. 7.4], a closed densely defined operator H in a Hilbert space H is a
generator of a γ-contractive semigroup T (t) (i.e. ‖T (t)‖ ≤ eγt for all t ≥ 0) if and only if H + γ is m-accretive.

A.2.5 Symmetries

Proposition A.2 reveals that an additional relationship between H and its adjoint H∗ might have important
consequences on spectral properties of H . In this subsection, we recall such “symmetry” relations and the
corresponding spectral conclusions.

Symmetric operators

A (not necessarily closed) operator H in a Hilbert space H is said to be symmetric if it is densely defined and
the adjoint H∗ is an extension of H , i.e.

H∗ ⊃ H .

A densely defined operator H is symmetric if and only if it is a formal adjoint of itself in the sense that
(φ,Hψ) = (Hφ,ψ) for all φ, ψ ∈ D(H), which is equivalent to Θ(H) ⊂ R. We say that a symmetric operator H
is non-negative if inf Θ(H) ≥ 0. If H is symmetric, then the point and continuous spectra of H are real, but
the residual spectrum can be complex. (For instance, p∗ from Example A.3 considered on a bounded interval or
on the half-line is symmetric, but it has complex residual spectra, cf Example A.8.) However, if the resolvent
set ρ(H) contains at least one real number, then σ(H) ⊂ R.
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Self-adjoint operators

If H is densely defined and
H∗ = H

then H is said to be self-adjoint . H is automatically closed and has no proper symmetric extensions. With
help of the spectral properties of symmetric operators, Proposition A.2 implies that the residual spectrum of
self-adjoint operators is empty. Consequently, any self-adjoint operator H satisfies σ(H) ⊂ R. Moreover, the
following important identity holds: for every λ /∈ σ(H),

‖(H − λ)−1‖ =
1

dist
(
λ, σ(H)

) . (A.14)

It is usually a straightforward matter to determine whether or not an operator is symmetric, but self-
adjointness is a much more delicate property to establish. Regarding our examples, let us mention that the
momentum operator from Example A.3 considered in L2(R) is self-adjoint (so in fact p = p∗ if Ω = R); the

free Hamiltonian −∆R
d

from Example A.5 is self-adjoint, so are the Dirichlet Laplacian −∆Ω
D, the Neumann

Laplacian −∆Ω
N and the Robin Laplacian −∆Ω

α if α is real-valued; the operator of multiplication MV by a
function V from Example A.2 is self-adjoint if and only if V is real-valued; finally, iH0, where H0 is the
generator of the wave equation without damping (a = 0) from Example A.14, is self-adjoint.

By one of von Neumann’s axioms, physical observables are represented by self-adjoint operators in quantum
mechanics. Contrary to what one can occasionally read in a physical literature, this is not just a mathematical
laziness, to have real spectra for free (and thus real-valued outcomes of measurement), but it is in fact required
by the conservative nature of the theory itself. Indeed, by Stone’s theorem, there is a one-to-one correspondence
between self-adjoint operators H and strongly continuous one-parameter unitary groups eitH (that determine
the time evolution in quantum mechanics).

Normal operators

An operator H is said to be normal if it is closed, densely defined and

H∗H = HH∗ ,

i.e. H commutes with its adjoint H∗. Self-adjoint operators are special cases of normal operators. By the
spectral theorem, functions of self-adjoint operators H are normal (including the unitary group eitH and the
resolvent (H − λ)−1 with ℑλ 6= 0). Normal operators can have complex spectra, but the residual spectrum is
again empty. This follows from Proposition A.2 and the property N(H) = N(H∗) for any normal operator H .
Identity (A.14) holds for normal operators as well.

Example A.15 (Laplacians arising from momentum operators). Let p and p∗ be the momentum operators of
Example A.3. In L2(R), p is self-adjoint and thus normal; in fact, p∗p = −∆R = pp∗, where −∆R is the free
Hamiltonian of Example A.5. In L2(Ω) with an arbitrary interval Ω, we have pp∗ = −∆Ω

D and p∗p = −∆Ω
N .

Complex-self-adjoint operators

We say that H in H is complex-self-adjoint (with respect to J) if it is densely defined and there exists an
antiunitary operator J in H such that

H∗ = JHJ−1 . (A.15)

Recall that the antiunitarity means that J : H → H is a bijective operator satisfying (Jφ, Jψ) = (ψ, φ) for
any φ, ψ ∈ H. (This notion should be compared with unitarity for which the inner product is preserved, i.e.
(Jφ, Jψ) = (φ, ψ)). In particular, an antiunitary J is antilinear (or conjugate-linear) and J, J−1 are bounded.
Any complex-self-adjoint operator is automatically closed, which follows from (A.15) and the closedness of the
adjoint. If H is complex-self-adjoint, then λ is an eigenvalue of H (with eigenfunction ψ ∈ D(H)) if and only
if λ is an eigenvalue of H∗ (with eigenfunction J−1ψ ∈ D(H∗)); consequently, by Proposition A.2,

σr(H) = ∅.

Example A.16 (Time-reversal operators). A simple example of an antiunitary operator in any Lebesgue
space L2(Ω) is the complex conjugation Tψ := ψ. T represents a time-reversal symmetry operation for a scalar
(i.e. spinless) Schrödinger equation in L2(Rd). For fermionic systems (i.e. half-integer non-zero spin), the time-
evolution is described by a Pauli equation in the spinorial Hilbert space L2(Rd)⊗ C2, where the time-reversal
operator can be represented by the antiunitary operator T1/2 :=

(
0 T

−T 0

)
. Note that T2 = 1, while T2

1/2 = −1,
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cf [37]. The imaginary Airy operator HAiry from Example A.12 as well as the imaginary cubic oscillator Hcubic

from Example A.13 are complex-self-adjoint with respect to T. It is easily seen by formal manipulations, but a
rigorous verification requires a somewhat more effort since the description of the domain of the adjoint operator
is needed; see Theorem A.2 below.

Complex-self-adjoint operators with respect to J that is involutive (i.e. J2 = I) are sometimes called
J-self-adjoint [31, Sec. I.4], [23, Sec. III.5] or (somewhat confusingly) J-symmetric or complex symmetric
[27, 28, 50]. For a recent review on this special class of complex-self-adjoint operators with many references we
refer to [26].

Pseudo-self-adjoint operators

We say that an operator H in H is pseudo-self-adjoint (with respect to G) if H is densely defined and there
exists a self-adjoint operator G ∈ B(H) with G−1 ∈ B(H) such that

H∗ = GHG−1. (A.16)

The crucial difference with respect to the notion of complex-self-adjoint operators is that G is assumed to be
linear. In general, G is indefinite; the case of positive G is very special and will be discussed in more detail in
Section A.5.2.

Any pseudo-self-adjoint operator is closed, the reasoning is the same as for complex-self-adjoint operators.
Relation (A.16) and Proposition A.2 imply symmetries of the spectra between H and H∗:

σι(H) = σι(H
∗) , ι ∈ {p, c, r} . (A.17)

Contrary to complex-self-adjoint operators, pseudo-self-adjoint operators may have a non-empty residual spec-
trum (cf Example A.18).

Example A.17 (Parity operator). A simple example of an indefinite operator G in L2(Rd) is the parity (or
space-reversal) operator (Pψ)(x) := ψ(−x), which represents a space-reversal symmetry operation in quan-
tum mechanics. The imaginary Airy operator HAiry from Example A.12 as well as the imaginary cubic
oscillator Hcubic from Example A.13 are pseudo-self-adjoint with respect to P; similarly to the complex-self-
adjointness, the proof of this fact is not immediate.

Example A.18 (Shifts on a lattice and perturbations). Let L be the left shift operator in l2(Z) defined by
Lej := ej−1, where ej := (δkj)k∈Z is the canonical basis in l2(Z). L is a unitary operator on l2(Z) and its
adjoint is the right shift operator Rej := ej+1, i.e. L

∗ = R. The spectrum of L is discussed in Example A.32.
The discrete parity Pej := e−j plays the role of an involutive G in this example. It is easy to verify that L is
pseudo-self-adjoint with respect to P.

As a perturbation, let us consider the operator

V := −e0(e1, ·)− e−1(e0, ·) + i

−∞∑

j=−1

ej(ej , ·)− i

∞∑

j=1

ej(ej , ·) .

Since V is again pseudo-self-adjoint with respect to P, the same holds for the sum H := L + V . Clearly
−i ∈ σp(H) = σp(H

∗) since e1 and e−1 are the corresponding eigenvectors of H and H∗, respectively. By
Proposition A.2, i is either in the point or residual spectrum of H and H∗. We can verify directly that i is not
in the point spectrum of H . Indeed,

(H − i)
∑

k∈Z

αkek = 0 =⇒
{

αk = 0, k ≤ 0,

αk+1 = (2i)kα1, k ≥ 1,

whence
∑

k∈Z
|αk|2 = +∞, and thus N(H − i) = {0}. In summary, H represents a pseudo-self-adjoint operator

with non-empty residual spectrum.

If G is indefinite and involutive, the Hilbert space H equipped additionally to the inner product (·, ·)
with the indefinite inner product (·, G·) is the so-called Krein space, cf [8, 7]. Then the pseudo-self-adjoint
operator H is in fact a self-adjoint operator in this Krein space, i.e. H is self-adjoint with respect to the
indefinite inner product.
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Commutativity

Finally, we discuss a notion which is probably closest to the term “symmetry” in physics. In quantum mechanics,
a symmetry operation is represented either by a unitary or antiunitary operator S in a Hilbert space H. We
say that a closed densely defined operator H has a symmetry S if

[H, S] = 0 , (A.18)

i.e. H commutes with S. As usual for the commutativity of an unbounded operator with a bounded operator
on H, we understand (A.18) by the operator relation SH ⊂ HS. It means that whenever ψ ∈ D(H), Sψ also
belongs to D(H) and SHψ = HSψ.

We also say that H is S-symmetric, but this notion should not be confused with J-symmetry or G-symmetry
used by other authors in the context of complex-self-adjoint or pseudo-self-adjoint operators, respectively.
Finally, we simply say that H has a symmetry if there exists a unitary or antiunitary operator S with respect
to which H is S-symmetric.

If the symmetry S is antiunitary, we deduce from (A.18) that the spectra of H are symmetric with respect
to the real axis,

(antiunitary symmetry ⇒) λ ∈ σι(H) ⇐⇒ λ ∈ σι(H) , ι ∈ {p, c, r} . (A.19)

Example A.19 (PT-symmetry). The composition operator PT, where T is the time-reversal operator from Ex-
ample A.16 and P is the space-reversal operator from Example A.17, is the famous (antiunitary) PT-symmetry.
Both the imaginary Airy operator HAiry from Example A.12 and the imaginary cubic oscillator Hcubic from

Example A.13 are PT-symmetric. The operator −∆
(−a,a)
{−iα0,iα0} from Example A.10 is also PT-symmetric.

Non-equivalence of the three operator classes

While the previous examples may suggest that the classes of complex-self-adjoint, pseudo-self-adjoint and
those having a symmetry are related, it is not the case in general. Examples of operators with non-empty
residual spectrum (cf Example A.18 and the right shift on l2(N) discussed below in this paragraph) show
that complex-self-adjoint operators are different from pseudo-self-adjoint operators and from those having an
antiunitary symmetry. Moreover, the operator H from Example A.18 is pseudo-self-adjoint, but it cannot have
any antiunitary symmetry since it does not satisfy (A.19). Finally, the right shift on l2(N), i.e. the restriction
of R from Example A.18 to l2(N), has the antiunitary symmetry T and its residual spectrum is the open unit
ball, cf [51, Sec.VI.3]. Thus, in view of the Proposition A.2, it cannot satisfy (A.17) and therefore cannot be
pseudo-self-adjoint.

A.3 How to whip up a closed operator

In the previous section, we illustrated the abstract notions of spectral theory on concrete examples of differential
operators. Since the examples are rather standard, we did not include proofs of closedness. However, our
spectral-theoretic approach to non-self-adjoint operators would be incomplete if we did not mention at all how
to verify this important property for them. Moreover, in addition to closedness, it is needed that the operator
associated with an evolution problem is maximal and quasi-accretive. In the present section, we thus collect
some abstract methods which can be effectively used to construct a quasi-m-accretive operator from a formal
expression. Again, because of applications, we focus on differential operators, but most of the techniques can
be applied more generally.

A.3.1 Closed sectorial forms

Another advantage of m-sectorial operators is that they naturally arise from quadratic forms. Symmetric forms
are familiar in quantum mechanics, where they have a physical interpretation of expectation values. For non-
self-adjoint operators, a more general class of sectorial forms is needed. Mathematically, the advantage consists
in that the theory of forms is simpler than that of operators in several respects.

A sesquilinear form (or just form) h in a Hilbert space H is a pair consisting of a linear subspace D(h) ⊂ H

called the domain of h and a map h : H × H → C such that h(φ, ψ) is linear in ψ ∈ D(h) for each fixed
φ ∈ D(h) and antilinear in φ ∈ D(h) for each fixed ψ ∈ D(h). h[ψ] := h(ψ, ψ) is called the quadratic form (or
again just form) associated with h. We say that h is densely defined if D(h) is dense in H. Extensions and
restrictions of forms are defined in an obvious way as in the case of operators. A form h is said to be bounded
on H if there exists a constant M > 0 such that |h[ψ]| ≤M‖ψ‖2 for all ψ ∈ H and it is coercive on H if there
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exists a constant m > 0 such that |h[ψ]| ≥ m‖ψ‖2 for all ψ ∈ H. The inner product (·, ·) is an example of an
everywhere defined bounded and coercive sesquilinear form in H (in fact, m,M = 1 in this case).

The adjoint form h∗ of h is defined in a much simpler way than the adjoint of an operator,

h∗(φ, ψ) := h(ψ, φ) , D(h∗) := D(h) .

We say that h is symmetric if h∗ = h and there is no notion of “self-adjoint form”. The real and imaginary
parts of h are respectively

ℜh :=
1

2
(h+ h∗) , ℑh :=

1

2i
(h+ h∗) .

This notation is justified by ℜh[ψ] = ℜ(h[ψ]) and ℑh[ψ] = ℑ(h[ψ]), although ℜh(φ, ψ) and ℑh(φ, ψ) are not
real-valued in general and have nothing to do with ℜ(h(φ, ψ)) and ℑ(h(φ, ψ)).

The numerical range of h is defined by

Θ(h) := {h[ψ] : ψ ∈ D(h), ‖ψ‖ = 1} .
As in the case of operators, Θ(h) is a convex set in the complex plane. Contrary to the case of operators,
however, we have a simple relation λ ∈ Θ(h) ⇔ λ ∈ Θ(h∗). A form h is symmetric if and only if Θ(h) ⊂ R. A
symmetric form h is said to be non-negative if Θ(h) ⊂ [0,∞).

An important class of forms is given by sectorial forms h for which Θ(h) ⊂ Sγ,ϑ, where Sγ,ϑ is the sector
defined in (A.11) with a vertex γ ∈ R and a semi-angle ϑ ∈ [0, π/2). We say that a sectorial form h is closed if

D(h) ∋ ψn −−−−→
n→∞

ψ ∈ H

h[ψn − ψm] −−−−−→
n,m→∞

0



 =⇒

[
ψ ∈ D(h) ∧ h[ψn − ψ] −−−−→

n→∞
0
]
.

If h is sectorial with a vertex γ > −∞ and a semi-angle ϑ < π/2, then

|(h− γ + 1)(φ, ψ)| ≤ (1 + tanϑ)
√

(ℜh− γ + 1)[φ]
√
(ℜh− γ + 1)[ψ] ,

|(h− γ + 1)[ψ]| ≥ (ℜh− γ + 1)[ψ] ,

for all φ, ψ ∈ D(h). Consequently, if h is closed, then it is actually bounded and coercive on the Hilbert
space D(h) equipped with the inner product ℜh(·, ·) + (−γ + 1)(·, ·). Applying the celebrated Lax-Milgram
theorem [23, Sec. IV.1], one can conclude with

Theorem A.1 (First representation theorem). Let h be a densely defined closed sectorial form in H. Then
the operator

D(H) :=
{
ψ ∈ D(h) : ∃η ∈ H, ∀φ ∈ D(h), h(φ, ψ) = (φ, η)

}
,

Hψ := η ,
(A.20)

is m-sectorial.

We say that H is associated with h and that D(h) is the form-domain of H . The adjoint of H is simply
given by the operator determined by the same theorem with the adjoint form h∗. The numerical range Θ(H)
is a dense subset of Θ(h). Clearly, D(H) ⊂ D(h) and h(φ, ψ) = (φ,Hψ) for every φ ∈ D(h) and ψ ∈ D(H) and
these conditions determine H uniquely.

Example A.20 (Multiplication operator defined by a sectorial form). If V is the function from Example A.2,
we define a quadratic form mV [ψ] :=

∫
Ω
V |ψ|2, D(mV ) := {ψ ∈ L2(Ω) : |V |1/2ψ ∈ L2(Ω)}. If V (Ω) ⊂ Sγ,ϑ with

γ ∈ R and 0 ≤ ϑ < π/2, then the multiplication operatorMV from Example A.2 coincides with the m-sectorial
operator associated with mV via Theorem A.1.

A.3.2 Friedrichs’ extension

By Theorem A.1, every densely defined closed sectorial form gives rise to an m-sectorial operator. The converse
correspondence is also valid. Indeed, if H is m-sectorial, then the form

ḣ[ψ] := (ψ,Hψ) , D(ḣ) := D(H) , (A.21)

is clearly densely defined and sectorial. The form ḣ is not necessarily closed, however, it is closable in the sense
that it admits a closed extension. Then ḣ has the closure h, i.e. the smallest closed extensions, defined by

D(h) :=

{
ψ ∈ H : ∃{ψn} ⊂ D(ḣ) , ψn −−−−→

n→∞
ψ ∧ ḣ[ψn − ψm] −−−−−→

n,m→∞
0

}
,

h[ψ] := lim
n→∞

ḣ[ψn] ,
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and H coincides with the operator associated with h. Summing up, there is a one-to-one correspondence
between the set of all m-sectorial operators and the set of all densely defined closed sectorial forms.

Example A.21 (Form associated with a Dirac interaction). The fact that the form ḣ defined by (A.21) is
closable employs the special structure of its action (cf [34, Thm. VI.1.27]). An example of a densely defined
sectorial form which is not closable is given by the form associated with the (formal) Dirac potential δ in L2(R):
mδ[ψ] := |ψ(0)|2, D(mδ) := H1(R). Note that the form is well defined because of the continuous embedding
H1(R) →֒ C0(R).

The above procedure of constructing a closed form h from a form ḣ defined by a sectorial operator H is
not limited to closed operators. Indeed, if Ḣ is just a densely defined sectorial operator, we construct a densely
defined sectorial form ḣ from it in the same way as in (A.21) (with H being replaced by Ḣ). Then we take the
closure h of ḣ as above and associate to it the m-sectorial operator H via Theorem A.1. Such a constructed H
is called the Friedrichs extension of Ḣ.

Any densely defined sectorial operator is closable (i.e. it admits a closed extension). But there might be
many closed extensions and the closure (i.e. the smallest closed extension) might not be m-sectorial. The
importance of the Friedrichs extension lies in the fact that it assigns a special m-sectorial extension to each
densely defined sectorial operator. The Friedrichs extension H of Ḣ is characterised by the properties that,
among all m-sectorial extensions of Ḣ, H has the smallest form-domain (i.e. D(h) is contained in the domain of
the form associated with any other of the extensions) and that H is the only extension of Ḣ with D(H) ⊂ D(h).

Example A.22 (The Neumann Laplacian defined by a sectorial form). On the example of the Neumann
Laplacian from Example A.5, let us show how to employ the Friedrichs extension in order to construct a closed
operator from a formal differential expression. Let Ω ⊂ Rd be an open connected (possibly unbounded) set of
class C0,1, so that the normal vector n(x) is defined for almost every x ∈ ∂Ω by Rademacher’s theorem. We
start with an operator Ḣ on L2(Ω) that acts as the Neumann Laplacian on nice functions, namely Ḣψ := −∆ψ,
D(Ḣ) := {ψ ∈ L2(Ω) : ∃ψ̃ ∈ C∞

0 (Rd) such that ψ = ψ̃ ↾ Ω and ψ satisfies (A.5)}. The operator Ḣ is densely
defined and sectorial; in fact, Ḣ is non-negative due to (ψ, Ḣψ) = ‖∇ψ‖2 ≥ 0 for all ψ ∈ D(Ḣ). We define a
densely defined sectorial form ḣ as in (A.21) (where H is replaced by Ḣ) and construct its closure h. Let H
be the m-sectorial operator associated with h via Theorem A.1 (in fact, H is self-adjoint and non-negative).
This procedure enable us to define a closed realisation of the Laplacian in Ω, subject to Neumann boundary
conditions on ∂Ω, under minimal regularity assumptions on Ω.

Unfortunately, unless we impose some additional restrictions on the boundary ∂Ω, H does not have to
coincide with −∆Ω

N defined in Example A.5 (since D(H) is not necessarily a subset of H2(Ω)). Even worse, the
boundary condition (A.5) that we understand in the sense of traces of ψ ∈ H2(Ω) might not be well defined.
That is, contrary to H , −∆Ω

N is not well defined under our minimal regularity assumption C0,1 on Ω. Let us
therefore assume for instance that Ω is bounded and of class C2; then the boundary traces H2(Ω) →֒ H1(∂Ω)
certainly exist [1, Thm. 5.36]. On the other hand, by [14, Thm. 7.2.1], we have D(h) = H1(Ω) (it is remarkable
that the boundary condition (A.5) disappears as soon as one passes from the operator Ḣ to the closure of its
quadratic form). From (A.20) we see that ψ ∈ D(H) is a solution of the variational problem (∇φ,∇ψ) = (φ, η)
for every φ ∈ H1(Ω), which is nothing else than a weak formulation of the Neumann problem −∆ψ = η ∈ L2(Ω)
in Ω, ∂ψ/∂n = 0 on ∂Ω. In particular, Hψ = −∆ψ ∈ L2(Ω), where ∆ψ means the distributional Laplacian
of ψ. Using elliptic regularity theory (see, e.g., [12, Thm. 9.26]), we know that the weak solutions ψ belong to
H2(Ω), which enables us to eventually conclude with D(H) = D(−∆Ω

N ). Hence, H = −∆Ω
N , as we wanted to

show. In the other extreme situation Ω = Rd, we verify in the same (in fact easier) manner that D(h) = H1(Rd)

and H = −∆R
d

N = −∆R
d

.

Finally, let us remark that one can introduce the “Neumann Laplacian” for any open set Ω by considering
the self-adjoint operator associated with the closed form h̃[ψ] := ‖ψ‖2, D(h̃) := H1(Ω). Again, this definition
coincides with −∆Ω

N from Example A.5 for sufficiently regular Ω.

Example A.23 (The Dirichlet Laplacian defined by a sectorial form). Dirichlet boundary conditions of Exam-
ple A.5 can be treated in the same way. To get a more robust result, we take the Friedrichs extension H of the
operator Ḣψ := −∆ψ, D(Ḣ) := C∞

0 (Ω). Then, in the full generality of any open set Ω ⊂ Rd, D(h) = H1
0 (Ω)

and Hψ = −∆ψ with D(H) = {ψ ∈ H1
0 (Ω) : ∆ψ ∈ L2(Ω)} is a self-adjoint non-negative operator. If Ω is sufi-

ciently regular (e.g., bounded and of class C2), we obtain H = −∆Ω
D. At the same time, H = −∆R

d

D = −∆R
d

if Ω = Rd.

Robin boundary conditions are best regarded as a perturbation and amenable to the stability methods
of Section A.3.4, cf Example A.28 below.
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A.3.3 M-accretive realisations of Schrödinger operators

The method of quadratic forms does not apply to the more general class of quasi-m-accretive operators. For
instance, the imaginary Airy operator from Example A.12 and the imaginary cubic oscillator Hcubic from
Example A.13 cannot be defined by means of the elegant techniques of Sections A.3.1 and A.3.2. To cover
these examples, we present now a specific result obtained by Kato in [36] for Schrödinger operators

H := −∆+ V with ℜV ≥ 0 ,

where V : Ω → C is a function (possibly with singularities). More specifically, we understand H as a formal
differential expression in an open set Ω ⊂ Rd and are concerned with an m-accretive realisation of H that is
characterised by Dirichlet boundary conditions. We refer to [23, Sec. VII.2] for a nice exposition of Kato’s
result and proofs of the present statements.

Assuming

V ∈ Lploc(Ω) with p





= 1 if d = 1 ,

> 1 if d = 2 ,

= 2d/(d+ 2) if d ≥ 3 ,

(A.22)

we have V ψ ∈ L1
loc(Ω) for all ψ ∈ H1

0 (Ω) and Hψ is well defined as a distribution. Then the operator H̃ψ := Hψ

with D(H̃) := {ψ ∈ H1
0 (Ω) : Hψ ∈ H−1(Ω)} is the maximal realisation of H as an operator from H1

0 (Ω) to its
dual H−1(Ω). The message of the following theorem is that the restriction of H̃ to L2(Ω) is an m-accretive
operator provided that ℜV ≥ 0 holds.

Theorem A.2 (Kato’s theorem). Let V : Ω → C satisfy (A.22) and ℜV ≥ 0. Then the operator H defined by

Hψ := Hψ , D(H) :=
{
ψ ∈ H1

0 (Ω) : Hψ ∈ L2(Ω)
}

(A.23)

is m-accretive in L2(Ω). Moreover, the adjoint H∗ of H reads

H∗ψ = Hψ , D(H∗) =
{
ψ ∈ H1

0 (Ω) : Hψ ∈ L2(Ω)
}
. (A.24)

Consequently, H is complex-self-adjoint with respect to the time-reversal operator T (complex conjugation)
introduced in Example A.16. The proof of Theorem A.2 leans heavily on a distributional inequality obtained
by Kato in [35], which is an interesting result on its own.

Example A.24 (M-accretivity of the imaginary Airy operator). Function V (x) := ix clearly belongs to L∞
loc(R)

and satisfies ℜV ≥ 0, so the operator H defined by Theorem A.2 is m-accretive. We intend to show that H
coincides with the operator of HAiry introduced in Example A.12. The inclusion HAiry ⊂ H is obvious. To
show the opposite one, we employ the fact that H coincides with the closure of H ↾ C∞

0 (R), cf [23, Corol. 2.7].
Hence, C∞

0 (R) is dense in D(H) for the graph norm of H . Integrating by parts, we easily check that

‖ψ′‖2 = (ψ,−ψ′′) ≤ ‖ψ‖‖ψ′′‖ ≤ ǫ ‖ψ′′‖2 + ǫ−1‖ψ‖2 ,
‖Hψ‖2 = ‖ψ′′‖2 + ‖xψ‖2 + 2ℜ(iψ, ψ′)

≥ ‖ψ′′‖2 + ‖xψ‖2 − ǫ ‖ψ′‖2 − ǫ−1‖ψ‖2 ,

for every ψ ∈ C∞
0 (R) and any ǫ > 0. Combining these inequalities with sufficiently small ǫ and using the density

of C∞
0 (R) in D(H), we arrive at the non-trivial fact that if ψ ∈ D(H), then ψ ∈ H2(R) and xψ ∈ L2(R), so

H ⊂ HAiry. Summing up, the m-accretive realisation H obtained by Theorem A.2 coincides with HAiry from
Example A.12.

The m-accretivity of the imaginary cubic oscillator from Example A.13 or the self-adjointness of the
harmonic oscillator from Example A.4 can be established in the same way.

A.3.4 Small perturbations

Finally, we present two classical perturbation results. If H0 is a closed operator in H and V is any operator
that belongs to B(H), then H0+V is also closed. For applications, it is necessary to have an extended version
of this stability result for a not necessarily bounded perturbation.
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Relative boundedness and subordination

Let H0 and V be two operators in H. We say that V is relatively bounded with respect to H0 if

• D(V ) ⊃ D(H0) ,

• ∀ψ ∈ D(H0) , ‖V ψ‖ ≤ a ‖H0ψ‖+ b ‖ψ‖ , (A.25)

where a, b are non-negative constants. The infimum of such a is called the relative bound of V with respect
to H0.

We say that V is p-subordinated to H0 if

• D(V ) ⊃ D(H0) ,

• ∀ψ ∈ D(H0) , ‖V ψ‖ ≤ c ‖H0ψ‖p‖ψ‖1−p ,
(A.26)

where c is a non-negative constant and p ∈ [0, 1).

Obviously, a bounded V is 0-subordinated to H0. Moreover, by Young’s inequality, any p-subordinated
perturbation is relatively bounded with respect to H0 with the relative bound equal to zero.

Theorem A.3 (Stability of closedness for operators). If H0 is closed and V is relatively bounded with respect
to H0 with the relative bound smaller than 1, then H0 + V is closed.

The converse is also true: if V is relatively bounded with respect to H0 with the relative bound smaller
than 1 and H0 + V is not closed, then H0 cannot be closed.

Example A.25 (Closedness of the generator of the damped wave equation). If Ha is the operator from
Example A.14, we write Ha = H0 + V , where V :=

(
0 0
0 −a

)
, D(V ) := Ḣ1

0 (Ω) × L2(Ω), is bounded and hence
relatively bounded with respect to H0 with the relative bound equal to zero. At the same time, H0 is m-
accretive because iH0 is self-adjoint. Therefore, Ha is densely defined and closed for any a ∈ L∞(Ω). It is
m-accretive if a ≤ 0.

Example A.26 (Shifted harmonic oscillator). When checking that the operator Hα := p2 + (q+α)2, where p
is the momentum operator from Example A.3, q is the position operator from Example A.2 and α ∈ C, is
closed in L2(R), it helps to regard it as a perturbation of the (self-adjoint) harmonic oscillator HHO from
Example A.4. Indeed, estimates analogous to those in Example A.24 yield that the graph norm of HHO,
i.e. (‖HHO · ‖2 + ‖ · ‖2)1/2, is equivalent to (‖∂2x · ‖2 + ‖x2 · ‖2 + ‖ · ‖2)1/2. Then it is easily checked that
Hα := HHO+V , where V := 2αq+α2, is 1

2 -subordinated to HHO+1 and therefore it is also relatively bounded
with respect to HHO with the relative bound equal to zero. Applying Theorem A.3, we thus know that Hα is
closed on D(Hα) = D(HHO).

Relative form-boundedness and subordination

The notion of relative boundedness can be introduced for any forms, but we restrict ourselves to sectorial ones.
Let h0 be a sectorial form in H. A form v in H (which need not be sectorial) is said to be relatively bounded
with respect to h0 if

• D(v) ⊃ D(h0) ,

• ∀ψ ∈ D(h0) , |v[ψ]| ≤ a |h0[ψ]|+ b ‖ψ‖2 ,
(A.27)

where a, b are non-negative constants. Again, the infimum of such a is called the relative bound of v with
respect to h0.

A form v in H is said to be p-subordinated to h0 if

• D(v) ⊃ D(h0) ,

• ∀ψ ∈ D(h0) , |v[ψ]| ≤ c |h0[ψ]|p‖ψ‖2−2p ,
(A.28)

where c is a non-negative constant and p ∈ [0, 1).

In parallel to the operator case, the p-subordinated form is also relatively bounded with respect to h0 with
the relative bound equal to zero.

Theorem A.4 (Stability of closedness for forms). If h0 is sectorial and closed and v is relatively bounded with
respect to h0 with the relative bound smaller than 1, then h0 + v is sectorial and closed.
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Again, the converse is also true: if h0 is sectorial, v is relatively bounded with respect to h0 with the relative
bound smaller than 1 and h0 + v (which is sectorial) is not closed, then h0 cannot be closed.

When H0 is an m-sectorial operator, Theorem A.4 enables one to define operators “H0 + V ” even if V has
no operator sense. Indeed, the densely defined closed sectorial form h0 obtained by the closure of (A.21) is
associated to H0 first. Secondly, by Theorem A.4, the sum h0 + v with a given form v (possibly not arising
from an operator or even not closable) is a densely defined closed sectorial form provided that v is relatively
bounded with respect to h0 with the relative bound less than one. Finally, there is an m-sectorial operator
associated with h0 + v via Theorem A.1 (it is sometimes customary to denote this operator by “H0 + V ”,
although the sum may differ from the operator sum).

Example A.27 (Schrödinger operator with a complex Dirac interaction). The Dirac potential (distribution) δ
cannot be realised as an operator in L2(R). However, the Schrödinger operator “p2+αδ(x)” with α ∈ C can be
defined using the strategy of quadratic forms described above. Indeed, h0[ψ] := ‖ψ′‖2, D(h0) := H1(R), is the
densely defined closed non-negative form associated with the one-dimensional Laplacian p2 (cf Example A.15
and Example A.22). At the same time, the (non-closable) formmδ from Example A.21 is 1

2 -subordinated to h0,
and hence relatively bounded with respect to h0 with the relative bound 0. This follows from the elementary
bounds

‖ψ‖2∞ ≤ 2‖ψ‖‖ψ′‖ ≤ ǫ ‖ψ′‖2 + ǫ−1 ‖ψ‖2 (A.29)

valid for every ψ ∈ H1(R) and any ǫ > 0. Hence, by Theorem A.4, the sum h0+αmδ is a densely defined closed
sectorial form to which there exists an m-sectorial operator Hα due to Theorem A.1. Hα can be understood
as a form-sum version of “p2 + αδ(x)”. Moreover, with some effort, it is possible to deduce from (A.20) that
(Hαψ)(x) = −ψ′′(x) for every x 6= 0 and D(Hα) = {ψ ∈ H1(R) ∩H2(R \ {0}) : ψ′(0+)− ψ′(0−) = αψ(0)}.

Example A.28 (The Robin Laplacian defined by a sectorial form). We show that the Robin Laplacian from
Example A.5 can be introduced as a perturbation of the Neumann Laplacian. (The resemblance with the
preceeding Example A.27 is not accidental.) For simplicity, let us assume that Ω is bounded and of class C2

and the complex-valued function α belongs to C1(∂Ω). Integrating by parts, we easily check

(
ψ,−∆Ω

αψ
)
=

∫

Ω

|∇ψ|2 +
∫

∂Ω

α |ψ|2 =: hα[ψ]

for every ψ ∈ D(−∆Ω
α). However, the right hand side is well defined on a larger space D(hα) := H1(Ω); indeed

the boundary values exist in the sense of the trace embedding H1(Ω) →֒ L2(∂Ω). We write hα = h0 + v,
where h0[ψ] := ‖∇ψ‖2 with D(h0) := H1(Ω) is the form associated with the Neumann Laplacian −∆Ω

N and
vα[ψ] :=

∫
∂Ω
α |ψ|2 with D(vα) := H1(Ω) is its perturbation. By Example A.22, h0 is densely defined, closed

and sectorial. To show that vα is relatively bounded with respect to h0 (actually 1
2 -subordinated), we estimate

the function α by its supremum norm and use the bounds

‖ψ‖2L2(∂Ω) ≤ 2C ‖ψ‖‖∇ψ‖ ≤ ǫ ‖∇ψ‖2 + C2ǫ−1 ‖ψ‖2

for every ψ ∈ H1(Ω) and any ǫ > 0, where the constant C depends on curvatures of ∂Ω. (Here the first
inequality is actually behind a proof of the trace embedding H1(Ω) →֒ L2(∂Ω).) Hence, by Theorem A.4,
the sum hα is a densely defined closed sectorial form to which there exists an m-sectorial operator Hα due
to Theorem A.1. (As a matter of fact, Hα is well defined as an m-sectorial operator for any α ∈ L∞(∂Ω).)
Continuing as in Example A.22 with help of elliptic regularity theory (for which the extra smoothness of α is
needed), one can conclude with Hα = −∆Ω

α .

A.4 Compactness and a spectral life without it

The theory of compact operators in Hilbert spaces is reminiscent of the theory of operators in finite-dimensional
spaces. In this section we recall basic properties of this important class of operators and develop a spectral
theory for non-compact operators.

A.4.1 Compact operators and compact resolvents

An operatorH ∈ B(H) is said to be compact if, for any bounded sequence {ψn} ⊂ H, the sequence {Hψn} con-
tains a convergent subsequence. Since every bounded sequence in a Hilbert space contains a weakly converging
subsequence, the compactness of H means that H maps weakly converging sequences to strongly converging
sequences. We denote by B∞(H) the set of all compact operators of B(H).
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Compact operators H have spectacularly nice spectral properties:

• σ(H) \ {0} = σp(H) \ {0} ,
• σp(H) is at most countable and has no accumulation point except possibly 0 ,

• ∀λ ∈ σp(H) \ {0} , R(H − λ) is closed ∧ ma(λ) < +∞ .

That is, every non-zero point λ in the spectrum of a compact operator H is an isolated eigenvalue of finite
algebraic multiplicity and the range of H − λ is closed. If the Hilbert space H is infinite-dimensional, zero is
always in the spectrum of H , i.e. σ(H) = σp(H) ∪ {0}.

Differential operators in L2(Ω) are unbounded, so they cannot be compact. However, inverses of differential
operators on bounded domains Ω are typically compact. This leads to another important class of operators
which have spectra analogous to the spectra of operators in finite-dimensional spaces. We say that a closed
operator H in H has a compact resolvent if

• ρ(H) 6= ∅ ,

• (H − λ)−1 ∈ B∞(H) for some (and hence all) λ ∈ ρ(H) .

By virtue of the spectral properties of compact operators and the spectral mapping theorem [23, Thm. IX.2.3],
we know that if H has a compact resolvent, then

σ(H) = σdisc(H) ,

where σdisc(H) is the discrete spectrum of H defined (for any closed operator) by

λ ∈ σdisc(H) :⇐⇒





• λ ∈ σp(H) ,

• λ is isolated (as a point in the spectrum) ,

• ma(λ) < +∞ ,

• R(H − λ) is closed .

(A.30)

Example A.29 (Spectrum of the imaginary Airy operator). The operator HAiry from Example A.12 has a
compact resolvent; it follows from Example A.24 and the compactness of the embedding D(HAiry) →֒ L2(R),
where the former space is assumed to be equipped with the graph norm of HAiry. Consequently, the spectrum
of HAiry is purely discrete. If there existed a non-zero ψ ∈ D(HAiry) and λ ∈ C such that HAiryψ = λψ, then,
by shifting τc : x 7→ x + c, the function ψc := ψ ◦ τc would solve HAiryψc = (λ − ic)ψ with any c ∈ C and
we would thus have σ(HAiry) = σp(HAiry) = C, which contradicts the discreteness of the spectrum. Hence,
σ(HAiry) = ∅.

The compact embedding argument shows that the imaginary cubic oscillator from Example A.13 and
the shifted harmonic oscillator from Example A.26 have compact resolvents as well. However, their spectra are
not empty. In fact, all eigenvalues of both the operators are real and there are infinitely many of them. While
the proof of these facts for the latter operator is rather simple (e.g. it follows by solving the spectral problem
in terms of special functions), the proof for the former is non-trivial [21, 55, 30].

Example A.30 (Green’s function of the Laplacian). The Neumann, Dirichlet and Robin Laplacians in L2(Ω)
from Example A.5 have compact resolvents provided that Ω is bounded and smooth and α is smooth; it follows
from the compactness of the Sobolev embedding H1(Ω) →֒ L2(Ω). We have the integral representation

[
(−∆Ω

ι − k2)−1ψ
]
(x) =

∫

Ω

GΩ
ι,k(x, y)ψ(y) dy ,

where ι ∈ {D,N, α} and k2 ∈ ρ(−∆Ω
ι ). The integral kernel GΩ

ι is sometimes referred to as the Green function.
The compactness can be checked by hand for the one-dimensional Laplacians considered in Example A.10,

where we have explicit formulae

G
(−a,a)
D,k (x, y) =

− sin(k(x+ a)) sin(k(y − a))

k sin(2ka)
,

G
(−a,a)
N,k (x, y) =

− cos(k(x + a)) cos(k(y − a))

k sin(2ka)
,

G
(−a,a)
α,k (x, y) =

−
[
k cos(k(x+ a))− iα sin(k(x+ a))

]

(k2 − α2) k sin(2ka)

×
[
k cos(k(y − a))− iα sin(k(y − a))

]
,

for x < y and the role of x, y should be exchanged for x > y.
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The compactness of the resolvent of many operators can be proved using stability results, which are
parallel to the results on the stability of closedness.

Theorem A.5 (Stability of compact resolvent for operators ). Let H0 be an m-accretive operator which has
a compact resolvent. If V is relatively bounded with respect to H0 with the relative bound smaller than 1, then
H0 + V has a compact resolvent.

The assumption on m-accretivity of H0 is not necessary. However, the condition on the relative bound
becomes more complicated otherwise. Namely, the conclusion of the theorem holds if there exists z ∈ ρ(H0)
such that the inequality

a‖H0(H0 − z)−1‖+ b‖(H0 − z)−1‖ < 1

is satisfied, cf [34, Thm.IV.3.17], where a and b are the constants appearing in (A.25).
Theorem A.5 provides an alternative proof of the compactness of the resolvent for the shifted oscillator

from Example A.26.

Theorem A.6 (Stability of compact resolvent for forms ). Let h0 be a densely defined, closed, sectorial form
with ℜh0 ≥ 0 and let the associated m-sectorial operator H0 have a compact resolvent. If v is relatively bounded
with respect to h0 with the relative bound smaller than 1, then the operator associated with h0+v has a compact
resolvent.

Example A.31 (Harmonic oscillator with a Dirac interaction). We find an m-sectorial realisation of “HHO +
αδ(x)” with α ∈ C via the sum of forms. The harmonic oscillator is associated with the form

hHO[ψ] := ‖ψ′‖2 + ‖xψ‖2 , D(hHO) := {ψ ∈ H1(R) : xψ ∈ L2(R)} .

The inequality (A.29) shows that the form αmδ is 1
2 -subordinated to hHO, thus relatively bounded with the

relative bound 0. Therefore, by Theorems A.4 and A.6, the form hHO+αmδ determines an m-sectorial operator
which has a compact resolvent.

A.4.2 Essential spectra

We define the essential spectrum of any closed operator H as the complement of the discrete spectrum defined
in (A.30), i.e.

σess(H) := σ(H) \ σdisc(H) . (A.31)

There is considerable divergence in the literature concerning the definition of the essential spectrum for non-
self-adjoint operators. Our definition is the largest within these and was originally introduced by Browder [13].
It makes the essential spectrum harder to locate, but on the other hand, the remaining discrete eigenvalues
have very pleasant properties.

Following [23, Chap. IX] (see also [32]), let us compare our definition of the essential spectrum with the
others. We assume that H is closed and recall that the resolvent set can be characterised as

ρ(H) = {λ ∈ C :

R(H − λ) is closed ∧ nul(H − λ) = 0 = def(H − λ)} . (A.32)

For k = 0, 1, . . . , 5, we set
σek(H) := C \ ρek(H) ,

where

Goldberg, ρe0(H) := {λ ∈ C : R(H − λ) is closed} ,
Kato, ρe1(H) :=

{
λ ∈ ρe0(H) : nul(H − λ) <∞ ∨ def(H − λ) <∞

}
,

ρe2(H) :=
{
λ ∈ ρe0(H) : nul(H − λ) <∞

}
,

Wolf, ρe3(H) :=
{
λ ∈ ρe0(H) : nul(H − λ) <∞ ∧ def(H − λ) <∞

}
,

Schechter, ρe4(H) :=
{
λ ∈ ρe0(H) : nul(H − λ) = def(H − λ) <∞

}
,

Browder, ρe5(H) := union of all the components of ρe1(H) intersecting ρ(H) .

Clearly,
ρe0(H) ⊃ ρe1(H) ⊃ ρe2(H) ⊃ ρe3(H) ⊃ ρe4(H) ⊃ ρe5(H) ⊃ ρ(H) ,

so σe0(H) is the most restrictive and σe5(H) is the widest. The names refer to people who are usually associated
with the given definition of the essential spectrum. The set σe2(H) is called the “continuous spectrum” in [31].
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The operator H − λ is said to be normally soluble, semi-Fredholm or Fredholm if and only if λ ∈ ρe0(H),
λ ∈ ρe1(H) or λ ∈ ρe3(H), respectively. The operator H is normally soluble if and only if R(H) = N(H∗)⊥, so
the condition φ⊥N(H∗) is both necessary and sufficient for the equation Hψ = φ to have a solution ψ (as in
finite-dimensional spaces).

Let us show that our definition (A.31) indeed coincides with σe5(H).

Proposition A.5. Let H be closed. One has

σe5(H) = σess(H) .

Proof. The statement is equivalent to showing ρe5(H) = ρ(H) ∪ σdisc(H). The set ρe1(H) is an open subset
of the complex plane and it can be written as the union of countably many components (i.e. connected open
sets) that we denote by △n, n ∈ N. Kato [34, Sec. IV.5] shows that λ 7→ nul(H − λ) and λ 7→ def(H − λ) are
constant in each △n, save possibly at some isolated values of λ. Denoting by νn, µn these constant values and
by λjn, j ∈ N, these exceptional points in △n, we have

∀λ ∈ △n \ {λjn}j∈N , nul(H − λ) = νn , def(H − λ) = µn ,

∀j ∈ N , nul(H − λjn) = νn + rjn , def(H − λjn) = µn + rjn ,

where 0 < rjn < ∞. If △n ∩ ρ(H) 6= ∅, then νn = 0 = µn and △n is a subset of ρ(H) except for the λjn
which are isolated eigenvalues of H with finite algebraic multiplicities (rjn are their geometric multiplicities).
Hence, ρe5(H) ⊂ ρ(H)∪σdisc(H). To prove the converse inclusion, we first note that ρ(H) ⊂ ρe5(H) is obvious
due to (A.32). Finally, if λ ∈ σdisc(H), then of course λ ∈ ρe1(H). Since λ is isolated, it must belong to a
component △n with νn = 0 = µn. But such a component is a subset of ρ(H) except for the exceptional points,
λ being one of them; hence, △n ∩ ρ(H) 6= ∅.

If H is self-adjoint, the sets σek(H) with k = 1, . . . , 5 are identical and σdisc(H) consists of isolated eigenval-
ues of finite multiplicity (ma(λ) = mg(λ) and R(H − λ) is automatically closed). If H is complex-self-adjoint,
the sets σek(H) with k = 1, . . . , 4 are identical. In general, however, the inclusion between the sets may be
strict, as the following example shows.

Example A.32 (Shift operator and its compact perturbation). Let L be the left shift in l2(Z) defined in
Example A.18. The operator L is unitary and

σ(L) = σe5(L) = ∂B1 ,

where B1 := {λ ∈ C : |λ| < 1} is an open unit disc. Let V be the compact (in fact of rank 1) operator in l2(Z)
defined by V := −e−1(e0, ·). The sum H := L+V belongs to B(l2(Z)). It is easily shown (cf [23, Ex. IX.2.2])
that

σe5(H) ⊃ B1 , while σe4(H) ⊂ ∂B1 .

Hence, σe5(H) 6= σe4(H) and σe5(L) is not preserved by the compact perturbation V .

Fortunately, there is a simple way how to exclude pathological situations of the type we encountered in
the precedent example.

Proposition A.6. Let H be closed. If each component of ρe1(H) intersects ρ(H), then the sets σek(H) with
k = 1, . . . , 5 are identical. In particular, the conclusion holds if ρe1(H) is connected.

Proof. The result follows at once from the definition of ρe5(H).

As far as we know, σe2 is associated with no name, but it is useful because of the following characterisation.
Although it resembles Weyl’s criterion for self-adjoint operators, its proof is quite different (cf [63]).

Theorem A.7 (Weyl’s criterion). Let H be a closed and densely defined operator in H. Then

λ ∈ σe2(H) ⇐⇒ ∃{ψn}n∈N ⊂ D(H) ,





• ∀n ∈ N , ‖ψn‖ = 1 ,

• ψn
w−−−−→

n→∞
0 ,

• (H − λ)ψn
s−−−−→

n→∞
0 .

The sequence from the theorem is called a singular sequence.
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A.4.3 Stability of the essential spectra

In applications, it often happens that the operator H of interest is obtained from a simpler operator H0 by a
“small” perturbation V , say H = H0+V . If the essential spectrum of H0 is easy to locate for some reason, it is
of great interest to have criteria on the “smallness” of V which ensure that H and H0 have the same essential
spectrum. By a celebrated result of Weyl, it happens if V is compact. More generally, it is enough to assume
that V is “relatively compact” with respect to H0. Instead of introducing the notion of relative compactness,
we state the Weyl’s result in the following form (cf [23, Thm. IX.2.4]).

Theorem A.8 (Weyl’s theorem). Let H1, H2 be closed operators in H such that

∃λ ∈ ρ(H1) ∩ ρ(H2) , (H1 − λ)−1 − (H2 − λ)−1 ∈ B∞(H) . (A.33)

Then
σek(H1) = σek(H2) for k = 1, . . . , 4.

Unfortunately, the theorem does not apply to our definition of essential spectrum (A.31), which coincides
with σe5 by Proposition A.5. In fact, the stability result does not hold for our essential spectrum in general, as
Example A.32 clearly demonstrates. Fortunately, Proposition A.6 enables one to use Theorem A.8 also for σe5
in some situations (e.g. Example A.33 below).

The last result we would like to mention is not related to essential spectra, but it may turn out to be useful
when locating the (essential) spectrum of the “unperturbed” operator H0 from the opening to this subsection.
The following theorem is just [52, Corol. 2 of Thm. XIII.35] translated to the present terminology. Note that the
conclusion represents some sort of “separation of variables”, which is not at all automatic for non-self-adjoint
operators.

Theorem A.9 (Ichinose’s lemma). Let H1, H2 be m-sectorial operators in Hilbert spaces H1,H2. Let H
denotes the closure of H1 ⊗ I + I ⊗H2 on D(H1)⊗ D(H2) ⊂ H1 ⊗H2. Then H is m-sectorial and

σ(H) = σ(H1) + σ(H2) .

Example A.33 (PT-symmetric waveguide). Let Hα0+β := −∆Ω
α be the Robin Laplacian in L2(Ω) from

Example A.5 with Ω := R × (−a, a), a > 0, and α := ±i(α0 + β) on R × {±a}, where α0 is a real number
and β can be identified with a function β : R → R that we suppose to be smooth and compactly supported. It
is shown in [10] that Hα0+β is m-sectorial (the proof is analogous to that given in Example A.28, but notice
that Ω is unbounded now). Moreover, Hα0+β is easily seen to be complex-self-adjoint with respect to T and
PT-symmetric, where T is the complex conjugation (cf Example A.16) and (Pψ)(x1, x2) := ψ(x1,−x2).

The operator Hα0+β can be considered as obtained from Hα0 by a “small” perturbation. More specifically,
the form ofHα0+β−Hα0 is relatively bounded with respect to the sectorial form ofHα0 with the relative bound 0.

The “unperturbed” operator Hα0 admits the decomposition −∆R ⊗ I + I ⊗−∆
(−a,a)
{−iα0,iα0} in L2(Ω) ≃ L2(R)⊗

L2((−a, a)), where the one-dimensional Laplacians have been introduced in Examples A.5 and A.10. Applying
Theorem A.9 (or employing basis properties of the “transverse” Laplacian as in [10]), we get σ(Hα0 ) = [µ2

0,∞),

where µ2
0 := min{α2

0, (π/2a)
2} is the lowest eigenvalue of the operator −∆

(−a,a)
{−iα0,iα0}.

The spectrum of Hα0 is purely essential, because it has no isolated points, i.e., σ(Hα0) = σess(Hα0). It is
proved in [10] that (A.33) holds with the operators H1 = Hα0 and H2 = Hα0+β. Combining thus Theorem A.8
with Proposition A.6, we conclude with the stability result

σess(Hα0+β) = σess(Hα0) = [µ2
0,∞) .

Note that the essential spectrum is purely real, though the operator Hα0+β is not self-adjoint. Sufficient
conditions to guarantee the existence of (real) discrete eigenvalues are also established in [10] (see [43] and [11]
for further studies of the model).

A.5 Similarity to normal operators

In finite-dimensional Hilbert spaces, every linear operator is similar to a block diagonal Jordan matrix, whose
eigenvalues are elementarily computable. Although there is no general replacement of this result in infinite-
dimensional Hilbert spaces, the idea of reducing a given operator to a simpler one by a similarity transformation
might work in concrete examples. There are certainly many situations of this type in applications, but we focus
on conceptually new approach in quantum mechanics that was suggested by physicists in [54]: represent physical
observables by (possibly non-self-adjoint!) operators which are merely similar to self-adjoint ones. In the text
below and notably in the examples, we argue that the similarity transformations should be necessarily bounded
in order to build a consistent quantum mechanics using this unconventional representation.
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A.5.1 Similarity transforms

We say that an operator H1 is similar to another operator H2 (via a transformation A) in the same Hilbert
space H if there exists an injective operator A ∈ B(H) with A−1 ∈ B(H) such that

H2 = AH1A
−1 . (A.34)

This notion is a straightforward generalisation of unitary equivalence with which it shares many important
properties such as the preservation of the spectrum.

Proposition A.7. Let H1 be a closed operator in a Hilbert space H. If H2 is similar to H1, then it is closed
and

σι(H2) = σι(H1) , where ι ∈ { , p, c, r, disc, ess} .
Moreover, if λ is an eigenvalue of H1 of geometric multiplicity mg(λ) and algebraic multiplicity ma(λ), then λ
is an eigenvalue of H2 of the same geometric multiplicity mg(λ) and algebraic multiplicity ma(λ).

Proof. Let A be a similarity transformation establishing (A.34). Since A,A−1 ∈ B(H), A and A−1 are bijective
operators on H and the relation (A.34) yields

D(H2 − λ) = AD(H1 − λ) ,

R(H2 − λ) = AR(H1 − λ) ,

N([H2 − λ]n) = AN([H1 − λ]n) ,

(A.35)

for any λ ∈ C and n ∈ N. The closedness of H2 can be checked by definition by using the first two identities
with λ = 0. The spectral equivalences can be deduced from the last two identities in (A.35); in particular,

nul(H2 − λ) = nul(H1 − λ) , def(H2 − λ) = def(H1 − λ) ,

for any λ ∈ C. We leave the details to the reader.

Similarity is sometimes understood in a weaker sense, e.g. as AH1 = H2A without boundedness and
invertibility assumptions on A or even as AH1ψ = H2Aψ valid for all ψ from a subspace of H only. The
differences in the notions are not always reflected in the terminology. If the assumptions on A are relaxed, many
pathologies may occur, particularly the spectra may not be preserved, as the following example demonstrates.

Example A.34 (Gauged and rotated oscillators). A formal (unbounded) similarity transform of the harmonic
oscillator leads to the gauged (or Swanson’s [5, 59]) oscillator. For φ ∈ C∞

0 (R), we first define the action of the
latter by

Hgaugedφ := (ω a∗a+ αa2 + β (a∗)2 + ω)φ , (A.36)

where α, β and ω are real parameters such that ω 6= α + β, and a∗ and a are the creation and annihilation

operators from Example A.4. Defining A := exp
(

β−α
ω−α−β

x2

2

)
, we can easily check that

AHgaugedA
−1φ =

[
(ω − α− β)p2 +

ω2 − 4αβ

ω − α− β
q2
]
φ =: H̃HOφ (A.37)

for every φ ∈ C∞
0 (R), where the right hand side is just the action of a multiple of the self-adjoint harmonic

oscillator with a frequency depending on ω, α and β. In spite of the fact that A or A−1 are always unbounded as
multiplication operators in L2(R), equality (A.37) can be read as a weak version of the similarity relation (A.34).

Setting parameters to ω = β = 0 and α = −1, we thus get an uninteresting “similarity” relation be-
tween −a2 and p2, which are clearly completely different operators. For instance, recalling Examples A.8
and A.9, σ(−a2) = σp(−a2) = C versus σ(p2) = σc(p

2) = [0,∞). As shown in [49, 41], similar pathologies
appear also in less obvious cases, e.g. ω > 0, −α > ω, β = 0, when Hgauged is “highly non-self-adjoint”, while

H̃HO is still related to the usual harmonic oscillator.
To avoid such pathologies, the parameters need to be restricted by the condition ω− |α+ β| > 0 as pointed

out in [41]. Then Hgauged can be realised as an m-sectorial operator with compact resolvent, for which the
spectral equivalence

σ(Hgauged) = σ(H̃HO) =
{
(2k + 1)

√
ω2 − 4αβ

}∞

k=0

holds. More specifically, Hgauged is defined as the operator in L2(R) associated with the closed sectorial form

hgauged[ψ] := (ω + α+ β)‖ψ′‖2 + (ω − α− β)‖xψ‖2
+ i(α− β) [(pψ, xψ) + (xψ, pψ)] ,

D(hgauged) := {ψ ∈ H1(R) : xψ ∈ L2(R)} .
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As explained in [41] (cf Example A.40 below), the connection between the operators Hgauged and H̃HO

given by (A.37) is very weak, although the operators share the same eigenvalues. Indeed, other important
characteristics ofHgauged, such as the pseudospectrum and basis properties, are not preserved by the unbounded
transformation A. On the other hand, Hgauged is unitarily equivalent (hence similar according to our restrictive
definition) to the rotated (or Davies’ [15]) oscillator

U∗HgaugedU = ζ

(
p2 +

ζ

ζ
q2
)
. (A.38)

Here ζ :=
√
ω2 − (α+ β)2 + i(α− β) and U is a unitary operator with an explicit action (cf [41]).

Other warning examples where eigenvalues or other spectral characteristics are not preserved by un-
bounded similarity transformations can be found in [41]. We do not claim that there are no physical problems
where a weaker (e.g. unbounded) similarity transformation could be useful (in fact, there are!). However, with-
out the assumption A,A−1 ∈ B(H), operators H1 and H2 cannot be viewed as “equivalent”. In particular,
H2 cannot be used as a representation of a self-adjoint observable H1 in quantum mechanics, unless A and A−1

are both bounded.

A.5.2 Quasi-self-adjoint operators

We say that an operator H in a Hilbert space H is quasi-self-adjoint (with respect to Θ) if it is densely defined
and there exists a non-negative operator Θ ∈ B(H) with Θ−1 ∈ B(H) such that

H∗ = ΘHΘ−1 . (A.39)

That is, H∗ is similar to H via the transformation Θ. Self-adjoint operators are quasi-self-adjoint with respect
to the identity operator I. More generally, quasi-self-adjoint operators represent a special class of pseudo-self-
adjoint operators briefly discussed in Section A.2.5.

Any quasi-self-adjoint operator H is automatically closed, which follows from identity (A.39) and the
closedness of the adjoint. In fact, H is self-adjoint with respect to a modified (but topologically equivalent)
inner product (·,Θ ·) in H. For this reason, the operator Θ is sometimes called a metric (it is obviously not
unique).

Equivalently, given any decomposition Θ = A∗A, where necessarily A,A−1 ∈ B(H), H is similar to the
operator

Hsa := AHA−1 , (A.40)

which is self-adjoint with respect to the original inner product (·, ·) in H. Applying identity (A.14) to Hsa, we
get

‖(H − λ)−1‖ ≤ κ

dist
(
λ, σ(H)

) (A.41)

for every λ 6∈ σ(H), where κ := ‖A‖‖A−1‖ is called the condition number .
Let us summarise the properties of quasi-self-adjoint operators in the following proposition.

Proposition A.8. Let H be a densely defined operator in a Hilbert space H. The following statements are
equivalent:

(i) H is quasi-self-adjoint,

(ii) H is similar to a self-adjoint operator.

Any quasi-self-adjoint operator H is closed, σ(H) ⊂ R, σr(H) = ∅ and (A.41) holds with a constant κ ≥ 1.

Quasi-self-adjoint operators can be considered as a non-standard (possibly non-self-adjoint) representation
of physical observables in quantum mechanics. It is possible to introduce a more general class of “quasi-self-
adjoint” operators by relaxing the conditions on the boundedness of Θ and/or Θ−1, cf [20]. However, this
approach usually leads to pathological situations and does not seem to be adequate for applications in quantum
mechanics as argued in [41].

A tool how to prove the quasi-self-adjointness is the following resolvent criterion.

Theorem A.10 ([48, 44, 62]). Let H be a densely defined closed operator in H with real spectrum. The
operator H is similar to a self-adjoint operator if and only if there exists a constant M such that, for every
ψ ∈ H, the two following inequalities

sup
ε>0

ε

∫

R

∥∥(H − (ξ + i ε)
)−1

ψ
∥∥2dξ ≤M‖ψ‖2,

sup
ε>0

ε

∫

R

∥∥(H∗ − (ξ + i ε)
)−1

ψ
∥∥2dξ ≤M‖ψ‖2,



448 Appendix

are satisfied.

The conditions on the resolvent may be very difficult to verify, unless the resolvent is known explicitly. As
an example, let us quote [6], where the conditions are checked for the Laplacian in L2(R) with point interactions
and an explicit formula for the metric is found too. In general, it is not expectable to have closed formulae for
the metric operator and similarity transformations, not mentioning the self-adjoint operator to which a given
quasi-self-adjoint operator is similar. As another exceptional situation, let us now summarise the complete story
about the quasi-self-adjointness of the one-dimensional PT-symmetric Robin Laplacian from Example A.10.

Example A.35 (Quasi-self-adjointness of the complex Robin Laplacian). For the one-dimensional Robin

Laplacian −∆
(−a,a)
{−iα0,iα0} from Example A.10, a metric operator together with the corresponding similarity

transformation and the similar self-adjoint operator are known explicitly due to [39, 38, 42]. If 2aα0/π 6∈ Z\{0},
the metric Θ and the similarity transform from a decomposition Θ = A∗A read

Θ = I +K, A = I + L, A−1 = I +M, (A.42)

where K, L, M are (Hilbert-Schmidt) integral operators with kernels

K(x, y) := α0 e
−iα0(y−x) ( tan(α0a)− i sgn(y − x)

)
,

L(x, y) :=
iα0

2a

(
y − a sgn(y − x)

)
+

1

2a

(
e−iα0(y+a) − 1

)
,

M(x, y) :=
α0 e

iα0(a−x)

sin(2α0a)
− α0

2
e−iα0(x−y)( cot(2α0a)− i sgn(y − x)

)

− α0e
−iα0(x+y)

2 sin(2α0a)
.

Moreover,

A
(
−∆

(−a,a)
{−iα0,iα0}

)
A−1 = −∆

(−a,a)
N + α2

0 χ
N
0 (χN0 , ·) ,

where χN0 (x) := (2a)−1/2 is the first Neumann eigenfunction. The main tool to obtain these formulae is the

functional calculus for self-adjoint operators, employing the fact that the eigenfunctions of −∆
(−a,a)
{−iα0,iα0} can be

written down in terms of eigenfunctions of Dirichlet and Neumann Laplacians. We refer [42] for more details
and other explicit formulae, even in a more general setting.

Taking the tensor products I ⊗Θ and I ⊗A, I ⊗A−1, where I is the identity in L2(R), we obtain a metric
and similarity transformations for the PT-symmetric waveguide Hα0 from Example A.33.

A.5.3 Basis properties of eigensystems

In the case of the operators with compact resolvent, the similarity of H to a normal operator is related to the
basis properties of the eigenvectors of H . Let us recall some notions first.

We say that {ψk}∞k=1 is complete in H if ({ψk}∞k=1)
⊥ = {0} or equivalently span({ψk}∞k=1) is dense in H.

We say that {ψk}∞k=1 is a (Schauder or conditional) basis if every ψ ∈ H has a unique expansion in the vectors
{ψk}, i.e.

∀ψ ∈ H, ∃!{αk}∞k=1, ψ =

∞∑

k=1

αkψk . (A.43)

Finally, we say that {ψk}∞k=1, normalised to 1 in H, forms a Riesz (or unconditional) basis if it forms a basis
and the inequality

∀ψ ∈ H, C−1‖ψ‖2 ≤
∞∑

k=1

|〈ψk, ψ〉|2 ≤ C‖ψ‖2 (A.44)

holds with a positive constant C independent of ψ. Notice that the Riesz bases are a suitable substitute for
orthonormal bases, in which case C = 1 due to the Parseval equality. We clearly have

complete ⊃ basis ⊃ Riesz basis ⊃ orthonormal basis .

A set {ψk}∞k=1 is a Riesz basis if there exists an operator A ∈ B(H) with A−1 ∈ B(H) and an orthonormal
basis {ek}∞k=1 such that ek = Aψk, see [17, Thm. 3.4.5] for other equivalent formulations. The last property
already suggests a relation between the similarity to a normal operator and Riesz basis property, which is
expressed more precisely in the following proposition.
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Proposition A.9. Let H have a compact resolvent. Then H is similar to a normal operator if and only if the
eigenfunctions of H form a Riesz basis. The latter is equivalent to the similarity to a self-adjoint operator if
the spectrum of H is in addition real.

For non-self-adjoint or non-normal operators, the geometric and algebraic multiplicity of eigenvalues may
differ. In that case, the operator cannot be similar to a normal one, nonetheless, the generalised eigensystem,
i.e. the collection of eigenvectors and root vectors, may still contain a Riesz basis. The latter is a suitable
generalisation of the similarity to a normal operator and several perturbation results guaranteeing such a
property are known. To avoid describing how the root vectors are selected and normalised, the following
theorems are expressed with help of spectral projections. We will use the following assumptions and notations
in the sequel.

〈H0〉 Let H0 be a self-adjoint, non-negative operator which has a compact resolvent. We denote its eigenvalues
(sorted in an increasing order) corresponding eigenfunctions and spectral projections as µn, ψn and Pn,
respectively.

Theorem A.11 ([34, Thm. V.4.15a]). Let H0 satisfy 〈H0〉 above. Assume that all eigenvalues µn are simple
and

µn+1 − µn −−−−→
n→∞

∞ .

Let V ∈ B(H) and set H := H0 + V . Then H is closed with compact resolvent, and the eigenvalues and
spectral projections of H can be indexed as {λ0k, λn} and {Q0k, Qn}, respectively, where k = 1, . . . , N < ∞
and n = N + 1, N + 2, . . . in such a way that |µn − λn| = O(1) as n → ∞ and there exists A ∈ B(H) with
A−1 ∈ B(H) such that

N∑

k=1

Q0k = A−1
N∑

k=1

PkA , Qn = A−1PnA .

The claim of this theorem includes the facts that the eigenvalues of the perturbed operator remain simple
for n > N and the eigensystem of H contains a Riesz basis composed of eigenvectors of H and finitely many
root vectors.

Example A.36 (PT-symmetric square well). We consider a perturbation of the Dirichlet Laplacian −∆
(−a,a)
D

from Example A.10 studied in [65, 57], namely

HZ := −∆
(−a,a)
D + iZ sgnx , D(HZ) := H2((−a, a)) ∩H1

0 ((−a, a)) ,

where Z is a real parameter. Both conditions of Theorem A.11 (i.e. the growing gaps of eigenvalues of H0 and
the boundedness of the perturbation) are satisfied, therefore the eigensystem of HZ contains a Riesz basis for
any Z ∈ R. Since HZ is PT-symmetric and its eigenvalues depend continuously on Z, all eigenvalues of HZ

are real and simple for all sufficiently small Z and, in this case, HZ is similar to a self-adjoint operator. When
increasing Z, eigenvalues with the lowest real part collide and create complex conjugate pairs. If all eigenvalues
of HZ are simple (some of them possibly complex), then HZ is similar to a normal operator. For specific values
of Z, when two real eigenvalues collide, the geometric multiplicity is one, but the algebraic multiplicity is two,
therefore the Riesz basis contains a root vector; in this case, operator HZ is similar to an “almost diagonal”
operator, i.e. a two by two Jordan block corresponding to the multiple eigenvalue appears.

Theorem A.11 has many generalisations, using various grow conditions on the eigenvalue gaps and
strength of perturbation; we mention particularly classical results in [22] and works using p-subordination,
cf [64, 45, 4] and references therein. Suitable theorems for perturbations of the harmonic oscillator or similar
ones, i.e. with asymptotically constant eigenvalue gaps, were proved only recently. We present jointly the
operator and form version of the result; further generalisations and related results can be found in [3, 56].

Theorem A.12 ([2, 46]). Let H0 satisfy 〈H0〉 above. Assume that all eigenvalues µn are simple and

∀n ∈ N, µn+1 − µn ≥ δ > 0.

• Operator version: Let an operator V , D(V ) ⊃ D(H), satisfy

‖V ψn‖ −−−−→
n→∞

0 . (A.45)

Then the claim of Theorem A.11 holds for H := H0 + V .
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• Form version: Let a sesquilinear form v, D(v) ⊃ D(h0), satisfy

∀m,n ∈ N, |v(ψm, ψn)| ≤
M

mαnα
, (A.46)

with some M ≥ 0 and α > 0. Then the claim of Theorem A.11 holds for the operator H associated with
the sectorial form h := h0 + v, where h0 is the form associated with H0.

The classes of potential perturbations of the harmonic oscillator satisfying the conditions (A.45) and (A.46)
are studied in [2, 46]; one simple example is the following.

Example A.37 (The eigensystem of the harmonic oscillator with α δ(x)). Let H be the operator defined in
Example A.31. Since the values of Hermite functions ψn, being the eigenfunctions of HHO, at zero are known
explicitly, it is not difficult to show that the condition (A.46) is satisfied with α = 1/4, cf [46]. The latter holds
also for perturbations consisting of finitely many δ interactions.

A.6 Pseudospectra

Highly non-self-adjoint operators have properties very different from self-adjoint or normal operators. The
notion of pseudospectra is a possibility how to describe these differences and the new phenomena occurring in
non-self-adjoint situations. More information on the subject can be found in by now classical monographs by
Trefethen and Embree [60] and Davies [17]. Our exposition is in many respects based on [41].

A.6.1 Definition and basic properties

Given a positive number ε, we define the ε-pseudospectrum (or simply pseudospectrum) of a closed operator H
as

σε(H) :=
{
z ∈ C : ‖(H − z)−1‖ > ε−1

}
, (A.47)

with the convention that ‖(H−z)−1‖ = ∞ for z ∈ σ(H). Some basic and well-known properties of pseudospec-
tra are summarised in the following:

• Topology. For every ε > 0, σε(H) is a non-empty open subset of C and any bounded connected component
of σε(H) has a non-empty intersection with σ(H). (If the spectrum of H is empty, then σε(H) is
unbounded for every ε > 0.)

• Relation to spectra. The pseudospectrum always contains an ε-neighbourhood of the spectrum, and if
Ξ(H) defined in (A.9) is connected and has a non-empty intersection with the resolvent set of H , the
pseudospectrum is in turn contained in an ε-neighbourhood of the numerical range:

{
z ∈ C : dist

(
z, σ(H)

)
< ε
}
⊂ σε(H)

σε(H) ⊂
{
z ∈ C : dist

(
z,Θ(H)

)
< ε
}
.

(A.48)

The first inclusion follows from the bound ‖(H−z)−1‖ ≥ dist
(
z, σ(H)

)−1
, which is valid for any operator.

For normal (and thus self-adjoint) operators this inclusion becomes an equality as a consequence of (A.14);
hence the notion of pseudospectrum is in fact trivial for such operators. The second inclusion in (A.48)
follows from (A.10). If H is “highly non-self-adjoint”, the pseudospectrum σε(H) is typically “much
larger” than the ε-neighbourhood of the spectrum.

• Spectral instability. The following result, sometimes referred to as the Roch-Silberman theorem [53],
relates the pseudospectra to the stability of the spectrum under small perturbations:

σε(H) =
⋃

‖V ‖<ε
σ(H + V ) . (A.49)

This property is of particular importance in applications, for instance in numerical analysis, where small
errors (e.g. rounding) can easily lead to false identifications of computed eigenvalues of H with possibly
very distant eigenvalues of H + V if the pseudospectrum of H is huge.

• Pseudomodes. A complex number z belongs to σε(H) if and only if z ∈ σ(H) or z is a pseudoeigenvalue
(or approximate eigenvalue), i.e.,

‖(H − z)ψ‖ < ε‖ψ‖ for some ψ ∈ D(H) . (A.50)
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Any ψ satisfying (A.50) is called a pseudoeigenvector (or pseudoeigenfunction or pseudomode). Again, for
operators H which are far from self-adjoint, pseudoeigenvalues may not be close to the spectrum of H .
This is particularly striking if we realise that these pseudoeigenvalues can be turned into true eigenvalues
by a very small perturbation, cf (A.49). What is more, for differential operators, we can often construct
very nice (e.g. smooth and with compact support) pseudoeigenfunctions, see Section A.6.2.

• Adjoints. Using the identity (H∗ − z̄)−1 = (H − z)−1 for z ∈ ρ(H), it is easy to see that

λ ∈ σε(H) ⇐⇒ λ ∈ σε(H
∗) . (A.51)

• Antiunitary symmetry. If H has an antiunitary symmetry, cf Section A.2.5, then

λ ∈ σε(H) ⇐⇒ λ ∈ σε(H) . (A.52)

• Similarity. If the similarity relation (A.34) holds, then H1 and H2 have the same spectra, but their
pseudospectra may be very different, unless the condition number κ is fairly close to one since, due to
(A.41),

σε/κ(H2) ⊂ σε(H1) ⊂ σεκ(H2) . (A.53)

As a consequence, if an operator H2 is similar to a normal operator H1, the pseudospectrum of H1 is
contained in the εκ-neighbourhood of σ(H2).

A.6.2 Main tool from microlocal analysis

Pseudospectra of differential operators can be conveniently studied by semiclassical methods, as firstly realised
by Davies [16]. His observation was followed by important generalisations, we refer particularly to [66, 19]. In
this section we state a simple version of these results adapted to the very special case of differential operators
with analytic coefficients in one dimension in a formulation given in [60, Thm. 11.1].

To state the theorem, we need to recall some notions of semiclassical analysis. Let ~ > 0 be a small parameter
(inspired by Planck’s constant in quantum mechanics; we deliberately avoid frequently used notation h for the
small parameter since we reserve this letter for denoting forms) and aj : R → C, with j = 0, . . . , n, are smooth
functions. Define

f(x, ξ) :=

n∑

j=0

aj(x)(−iξ)j , (x, ξ) ∈ R2 .

We say that H~ is a semiclassical differential operator associated with symbol f if

H~ :=

n∑

j=0

aj(x) ~
j dj

dxj
, D(H~) := C∞

0 (R) . (A.54)

The Poisson bracket {·, ·} is defined as

{u, v} :=
∂u

∂ξ

∂v

∂x
− ∂u

∂x

∂v

∂ξ
(A.55)

and the closure of the set

Λ :=
{
f(x, ξ) : (x, ξ) ∈ R2,

1

2i
{f, f̄}(x, ξ) > 0

}
(A.56)

is referred to as the semiclassical pseudospectrum of H~, cf [19]. We remark that in the special case of H~ being
a Schrödinger operator with analytic potential a0 =: V the condition 1

2i{f, f̄}(x, ξ) > 0 reduces to ℑV ′(x) 6= 0
and ξ 6= 0.

Now we are in a position to state the result from [60, Thm. 11.1]; we refer to [41] for a proof in the special
case of Schrödinger operators.

Theorem A.13 (Semiclassical pseudomodes.). Let the functions aj, j = 0, . . . , n, be analytic and let H~ be
the semiclassical differential operator (A.54). Then, for every z ∈ Λ, cf (A.56), there exist C = C(z) > 1,
~0 = ~0(z) > 0 and an ~-dependent family of C∞

0 (R) functions {ψ~}0<~≤~0 with the property that, for all
0 < ~ ≤ ~0,

‖(H~ − z)ψ~‖ < C−1/~ ‖ψ~‖.
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If the coefficients aj are not analytic, but only smooth, a slower rate of growth is obtained, cf [16, 19];
instead of the upper bound of C−1/~‖ψ~‖ one has that, for each N ∈ N, there exists a constant CN > 0 such
that, for all 0 < ~ ≤ ~0,

‖(H~ − z)ψ~‖ <
~N

CN
‖ψ~‖.

Although Theorem A.13 is stated for semiclassical operators, scaling techniques allow its application to
non-semiclassical operators where the spectral parameter tends to infinity. This is based on the principle that
the semiclassical limit is equivalent to the high-energy limit after a change of variables; this principle is made
concrete in the examples below.

Example A.38 (Pseudospectrum of the imaginary Airy operator). We explain how one can apply Theo-
rem A.13 for the (non-semiclassical) operator HAiry from Example A.12. The scaling argument can be adapted
accordingly to the other examples presented below.

We introduce the unitary transform U on L2(R) defined by

(Uψ)(x) := τ1/2ψ(τx) , (A.57)

where τ ∈ R is positive (and typically large in the sequel). Then

UHAiryU
−1 = τH~ with H~ := −~2

d2

dx2
+ ix and ~ := τ−3/2 .

For the symbol f = ξ2 + ix associated with H~, we have {f, f̄} = −4iξ, hence Λ = {z ∈ C : ℜz > 0}. The
same translation argument which shows that the spectrum is empty, cf Example A.29, proves that

‖(HAiry − z)−1‖ = ‖(HAiry −ℜz)−1‖.

Applying the unitary scaling and Theorem A.13, we know that, for all ~ ≤ ~0(1),

‖(HAiry − τ)−1‖ = τ−1‖(H~ − 1)−1‖ > ~2/3C(1)1/~ .

From this we deduce

σε(HAiry) ⊃
{
z ∈ C : ℜz ≥ τ0 ∧ (ℜz)−1C(1)(ℜz)

3/2 ≥ ε−1
}
,

where τ0 := ~0(1)
−2/3. Another version of this inclusion is stated in [41, Sec. 7.1]. A quite precise study of the

norm of (HAiry − z)−1 as ℜz → ∞ can be found in [9, Cor. 1.4].

Example A.39 (Pseudospectrum of the imaginary cubic oscillator). Now we make a pseudospectral analysis of
the paradigmatic PT-symmetric model Hcubic from Example A.13. Recall that Hcubic has a compact resolvent
and that all its eigenvalues are known to be real [21, 55, 30]. On the other hand, its pseudospectrum turns out
to be very different from the pseudospectra of self-adjoint operators.

In view of (A.48) and the accretivity of Hcubic, we a priori know that the pseudospectrum σε(Hcubic) is
contained in {z ∈ C : ℜz ≥ −ε}. As a consequence of PT-symmetry, we also know that σε(Hcubic) is symmetric
with respect to the real axis. The unitary transform (A.57) and an application of Theorem A.13 lead to the
conclusion that, for every z ∈ Λ = {z ∈ C : ℜz > 0 ∧ ℑz 6= 0}, there exists C(z) > 1 such that, for all
~ ≤ ~0(z),

‖(Hcubic − τ3z)−1‖ > ~6/5C(z)1/~, ~ := τ−5/2 . (A.58)

From this we deduce for instance the inclusion

σε(Hcubic) ⊃
{
τ3 + iτ3 ∈ C : τ ≥ τ0 ∧ τ−3C(1 + i)τ

5/2 ≥ ε−1
}
,

where τ0 := ~0(1 + i)−2/5. We see that, for every ε, there are complex points with positive real part, non-zero
imaginary part, and large magnitude that lie in the pseudospectrum σε(H). Consequently, the pseudospectrum
of Hcubic is not contained in a uniform neighbourhood of σ(Hcubic), and therefore Hcubic is not similar to a
self-adjoint operator. From this we also deduce that Hcubic is not quasi-self-adjoint (cf Proposition A.8) and
that its eigenfunctions do not form a Riesz basis (cf Proposition A.9).

The asymptotic behaviour of the pseudospectral lines of Hcubic is studied in [9, Prop. 4.1], while a result
of numerical computations can be found in [60, Fig. 11.4] and [41, Fig. 1], cf Figure A.1 below. As the most
recent result about Hcubic, let us mention [33] where it is shown that the norms of the spectral projections
of Hcubic grow (at exponential rate), therefore the eigenfunctions cannot form even a basis. Nonetheless, it was
proved in [58] that the eigenfunctions are complete.
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Example A.40 (Pseudospectrum of the gauged oscillator). In view of Example A.34, the pseudospectrum of
the gauged oscillator Hgauged (always with ω − |α + β| > 0) coincides with the pseudospectrum of a rotated
oscillator that appears on the right hand side of (A.38). We could again apply the scaling argument (A.57) and
Theorem A.13 to the present situation (see [41, Sec. 7.4]). However, since the pseudospectrum of the rotated
oscillator is well studied (see [17] and references therein), we restrict ourselves to saying that it is again much
larger than a tubular neighbourhood of the real eigenvalues. Consequently, the rotated oscillator and Hgauged

are not quasi-self-adjoint and their eigenfunctions do not form a Riesz basis (unless α = 0 = β). Since it is
also known from [18] that the norms of spectral projections grow exponentially, the eigenfunctions do not form
even a basis (although they are complete). We refer to [41] for more details on both the pseudospectra and
eigenfunctions and for further references.

Let us point out that Hgauged satisfies (A.37), which can be interpreted as some sort of weak similarity to
the self-adjoint harmonic oscillator HHO. The essential difference in the pseudospectra and basis properties
of eigenfunctions of Hgauged and HHO clearly demonstrates that the relation (A.37) actually represents only a
very weak connection between the two operators.

Example A.41 (Pseudospectrum of the shifted oscillator). Let us consider the shifted harmonic oscillator Hα

from Example A.26 with α = i. Recall that Hi has a compact resolvent and that all its eigenvalues are real; they
actually coincide with the eigenvalues of the self-adjoint oscillator HHO from Example A.4, cf Example A.9.
Indeed, Hi is formally similar to HHO via the formal imaginary-shift operator (Aψ)(x) := ψ(x+ i).

The pseudospectrum of Hi is symmetric with respect to the real axis as a consequence of PT-symmetry
of Hi. Applying the unitary transform (A.57) to the shifted harmonic oscillator Hα from Example A.26 with
α = i, we end up with an operator of the form

H̃~ := −~2p2 + q2 + 2i~1/2q − 1 .

Because of the presence of a fractional power of ~, we do not obtain an operator of the semiclassical type (A.54)
and Theorem A.13 is not applicable. Nevertheless, it is still possible to use [16, Thm. 1], which is suitable
for potentials with fractional powers of ~, and thereby obtain polynomial lower bounds to the norm of the
resolvent. The expected exponential bound has been proved only recently in [41, Thm. 2] by adapting the
proof of Theorem A.13 to the present situation. More specifically, we have

σε(Hi) ⊃
{
z ∈ C : ℜz ≥ c−1 ∧ |ℑz| ≤ β

√
ℜz ∧ cec

√
ℜz ≥ ε−1

}
,

where the number β ∈ (0, 2) can be chosen arbitrarily close to 2 and c is a (small) positive constant. Con-
sequently, Hi possesses large complex pseudoeigenvalues in parabolic regions of the complex plane; Hi is not
quasi-self-adjoint (cf Proposition A.8) and its eigenfunctions do not form a Riesz basis (cf Proposition A.9).
Summing up, although Hi is formally similar to HHO and their spectra coincide, we see that pseudospectral
and basis properties exhibit striking differences.

It has been shown recently in [47] that the eigenfunctions of the shifted oscillator Hi are complete, but do
not form a basis since the norms of the spectral projection grow.

Example A.42 (Pseudospectra of the harmonic oscillator with α δ(x)). Since the eigensystem of the opera-
tor H from Example A.31 form a Riesz basis containing only finitely many root vectors, cf Example A.37, H is
similar to an operator of the formD+N , whereD is a diagonal operator having the eigenvalues of H as diagonal
entries and N is a finite rank operator corresponding to the Jordan block structure. Standard arguments show
that, for z in a neighbourhood of an eigenvalue λ0 of H , the resolvent satisfies ‖((D+N)− z)−1‖ ∼ |λ0− z|−n,
where n = 1 if ma(λ0) = mg(λ0) and n > 1 if ma(λ0) > mg(λ0). The pseudospectrum of H is therefore con-
tained in a neighbourhood of the spectrum, but the possible presence of Jordan blocks results in wider peaks
around degenerate eigenvalues with non-equal geometric and algebraic multiplicity.

The same reasoning applies to the PT-symmetric square well from Example A.36.

We refer to [41] for further advocacy of the usage of pseudospectra in non-Hermitian quantum mechanics.
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Figure A.1: Spectrum (red dots) and pseudospectra (enclosed by the green contour lines) of the imaginary
cubic oscillator. (Courtesy of Miloš Tater.)
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Erratum

1. The trace-embedding inequality of Example A.28 should be corrected to

‖ψ‖2L2(∂Ω) ≤ ǫ ‖∇ψ‖2 + Cǫ ‖ψ‖2 ,

where the constant Cǫ depends on ǫ and the geometry of ∂Ω.
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