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Chapter 1

Introduction

This habilitation thesis consists of 12 publications authored or co-authored by
Ondřej Bojar. The publications were selected and organized to highlight the
author’s contribution to the state of the art in machine translation (MT), par-
ticularly translation into morphologically rich languages like Czech.

The thesis is structured as follows. Chapter 2 serves as a very brief overview
of the task of machine translation, highlighting the core problems that have to
be tackled and setting the context for the author’s contributions detailed in the
rest of this text.

Chapter 3 starts with a quick summary of the author’s efforts devoted to the
collection and preparation of training data. What may seem a somewhat boring
product is nevertheless a valuable resource for many researchers and a critical
component necessary to achieve the state of the art in translation quality, as
discussed in the following chapters.

Chapter 4 covers the first of the three main contributions of the author: im-
proving grammaticality, and particularly morphological coherence, in
phrase-based machine translation. While large data are essential for attaining
good performance in machine translation, it is not conceivable to collect cor-
pora large enough to cover all possible word forms and provide sufficiently dense
statistics about their usage in all possible contexts. Targeting languages with
highly productive morphological systems such as Czech thus requires some form
of explicit handling of morphology and this chapter summarizes the author’s
research in this area.

Chapter 5 is focused on the second main contribution, namely employing
deeper linguistic information to improve translation quality. While statis-
tical methods have had a great success in machine translation, the nature of
the handled subject, natural text, belongs to the field of linguistics, and it is
therefore interesting to examine to what extent can statistical approaches to
MT benefit from linguistic knowledge. The chapter explains the problems faced
when trying to organize the statistical models along the linguistic structure of
the sentence and describes the author’s proposed method that circumvents these
problems. The resulting system Chimera outperformed all other MT systems
participating in the English-to-Czech news translation task in the years 2013–
2015, including Google Translate and other commercial and on-line systems. The
setup of Chimera is naturally not limited to translating news text, and adapted
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6 Chapter 1. Introduction

versions of the system served in applied EU projects (QTLeap, HimL) as well as
in commercial collaboration of the author’s department with IBM.

Finally, evaluation is critical in all applied sciences and evaluating machine
translation is particularly intriguing. Chapter 6 is devoted to the third main area
of the author’s contributions, namely to methods of manual and automatic
MT evaluation, explaining why MT evaluation is a difficult discipline, revealing
the reasons of low performance of an established automatic evaluation measure
and proposing modifications to improve the correlation with human judgement.

The last Chapter 7 summarizes the author’s service to the community through
his contribution to the organization of shared tasks related to machine transla-
tion.

The thesis is concluded in Chapter 8. Key papers (co-)authored by Ondřej
Bojar and cited throughout the text are reprinted in Appendix A.



Chapter 2

Problems and Solutions
in Machine Translation

The goal of machine translation is to translate text from one natural language
to another. Machine translation is sometimes dubbed as the “king discipline”
of computational linguistics, because translation easily entails almost all aspect
of natural language and its meaning: from meaning ambiguity and the relation
between the form of an expression and its function in the communication to
complex rules of grammatical correctness.

Despite the complexity of language phenomena involved, machine transla-
tion has been very successfully tackled by statistical methods even in their
relatively simple form.

In statistical machine translation, an approach prevalent since 1990s (Brown
et al., 1990, 1993; Berger et al., 1994), we search for the most likely target

sentence êÎ1 (a sequence of target words ê1, . . . , êÎ) given the source sentence fJ
1 :

êÎ1 = argmax
I,eI1

p(eI1|fJ
1 ) (2.1)

The parameters of the probabilistic distribution p(eI1|fJ
1 ) are estimated auto-

matically from parallel corpora (texts translated previously by humans), subject
to various simplifying assumptions.

One of these assumptions, still mainly followed today and reflected also in
Eq. 2.1, is that sentences are translated individually, ignoring any contextual
information beyond sentence boundaries.

Another critical assumption is that the sentence can be decomposed into a
small finite number of translation units which are then translated more or less in-
dependently of each other. This assumption has been removed only very recently
through the adoption of deep learning methods (neural machine translation, see
Section 2.2.3 below). Since the nature of neural MT is also statistical, we will
use the qualifier “classical” statistical methods to denote approaches that rely
on the decomposition into separate translation units. We will however follow the
common usage of abbreviations and use SMT to denote classical statistical MT
only.

7



8 Chapter 2. Problems and Solutions in Machine Translation

In SMT, additional model components are used to compensate for the in-
dependence assumption of translation units and ensure overall coherence of the
sentence.

The first step in the classical SMT derivation is to use the Bayes’ law and de-
compose the probability into two components, the translation model p(f I

J |eI1)
and the language model p(eI1):

p(eI1|fJ
1 ) =

p(f I
J |eI1)p(eI1)

p(fJ
1 )

(2.2)

Bayes’ law reverses the conditional probability in the translation model, but
this does not pose any problem: translational equivalence is usually understood
as bidirectional and the reversed probability is going to be estimated from the
same type of data, parallel texts, anyway.

Furthermore, the denominator is constant in the maximization, so under
argmax, we can write:

êÎ1 = argmax
I,eI1

p(eI1|fJ
1 ) = argmax

I,eI1

p(f I
J |eI1)p(eI1) (2.3)

Eq. 2.3 is called the noisy channel model (Brown et al., 1990). Since Och
and Ney (2002), the common formal device used in SMT is the more flexible log-
linear model: The conditional probability of eI1 being the translation of fJ

1 is
modelled as a combination of independent feature functions h1(·, ·), . . . , hM(·, ·)
describing the relation of the source and target sentences:

p(eI1|fJ
1 ) =

exp(
∑M

m=1 λmhm(eI1, f
J
1 ))∑

e′I
′

1
exp(

∑M
m=1 λmhm(e′I

′
1 , f

J
1 ))

(2.4)

Similarly to the noisy channel model (which is in fact a special case of the
log-linear model), the denominator in Eq. 2.4 depends on the source sentence
fJ

1 only and does not affect the selection of the maximum, and neither does the
exponential, giving us a simplified formula:

êÎ1 = argmax
I,eI1

p(eI1|fJ
1 ) = argmax

I,eI1

M∑
m=1

λmhm(eI1, f
J
1 ) (2.5)

The assumption of translation units is formally reflected by defining a joint
segmentation sK1 of the source sentence and the target candidate into K trans-
lation units. The majority of features hm(·, ·) are required to decompose along
the segmentation, i.e., to take the form:

hm(eI1, f
J
1 , s

K
1 ) =

K∑
k=1

h̃m(ẽk, f̃k) (2.6)



2.1. Problems of Machine Translation 9

where f̃k represents the source side of the translation unit and ẽk represents its
target side given the segmentation sK1 .

Feature functions that decompose along this joint segmentation are called
local and other feature functions are called non-local. To distinguish them, we
can divide the sum over model components into two parts: ML local and MN

non-local features:

M∑
m=1

λmhm(eI1, f
J
1 ) =

ML∑
mL=1

λmL

K∑
k=1

h̃mL
(ẽk, f̃k) +

MN∑
mN=1

λmN
hmN

(eI1, f
J
1 ) (2.7)

Ideally, the segmentation sK1 should be treated as a hidden parameter and
summed over in the maximization in Eq. 2.1. This would be too complicated
and too expensive, so it practice, we search for the best derivation, i.e., the pair
of segmentation ŝK̂1 and translation êÎ1:

êÎ1, ŝ
K̂
1 = argmax

I,eI1,K,sK1

p(eI1|fJ
1 )

= argmax
I,eI1,K,sK1

ML∑
mL=1

λmL

K∑
k=1

h̃mL
(ẽk, f̃k) +

MN∑
mN=1

λmN
hmN

(eI1, f
J
1 )

= argmax
I,eI1,K,sK1

K∑
k=1

ML∑
mL=1

λmL
h̃mL

(ẽk, f̃k) +

MN∑
mN=1

λmN
hmN

(eI1, f
J
1 )

(2.8)

The component weights λm are most commonly optimized with respect to the
final translation quality measure. Traditionally, this process is called “tuning”
or “model optimization”.

2.1 Problems of Machine Translation

Machine translation is a challenging task for several reasons. Adopting the clas-
sical statistical MT strategy, we have to choose adequate translation units first
and be able to effectively gather them from training data. Then, SMT has to
consider a very large search space of possible outputs. And finally, identifying
which possible outputs are good and which are bad is difficult.

Defining Translation Units As mentioned above, individual sentences of
natural languages are rather complex and up until very recently, they were always
decomposed into some smaller units, translating each of these units more or
less independently. The various definitions of the units gave rise to word-based
(Brown et al., 1990, 1993), phrase-based (PBMT, Koehn et al., 2003) or various
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arts of syntax-based (Yamada and Knight, 2001; Zollmann and Venugopal, 2006;
Chiang, 2010; Bojar and Hajič, 2008) statistical machine translation.

The choice of a translation unit affects the difficulty in obtaining the “trans-
lation dictionary” of these units and the difficulty in decomposing sentences into
these units and putting them back together to form the translated sentence.

Shallow units like individual word forms or short sequences of word forms
(“phrases” in phrase-based MT, see Section 4.1) are easier to obtain but we very
often risk producing a grammatically incorrect output when combining them.
Linguistically more adequate units, e.g., some deep-syntactic nodes or treelets,
rely on tools for sentence analysis and generation and suffer from their errors.

Larger units (e.g., longer phrases in phrase-based MT) can cover the neces-
sary linguistic dependencies within a single unit, thereby preventing errors at
unit combination, but they are obviously much harder to observe in sufficient
numbers.

More coarse-grained units such as base forms (lemmas) of words are less
prone to data sparsity issues but they imply some information loss which can
easily cause a harm to the meaning of the sentence and they are again harder to
use correctly.

Managing Huge Search Space As shown already by Knight (1999), picking
the right word order and covering source multi-word translation units with entries
from translation dictionary are two sub-tasks that render machine translation
NP-complete.

When we work with two languages, we can treat target language words as
the repertoire of possible “meanings” of source words. It is easy to notice the
ambiguity of expressions and its multiplicative effect whenever more occur in a
sentence in striking examples like The plant is next to the bank. (The plant can
be a flower or a factory, the bank can be a financial institution or a river bank.)

In practice, the number of options to choose from is actually much higher for
two main reasons: (1) the input can be often segmented into translation units in
many possible ways, and (2) automatically extracted “translation dictionaries”
offer many more possible translations (as observed in the translated data) than
one would expect. Bojar (2015)1 reviews how various problems of MT get worse
due to morphological richness of languages, including this type of ambiguity:
i.e., the translation system has to choose not only the right word but also its
morphological form to indicate its relationship to other words in the sentence
(e.g., agreement) or to refine its meaning (e.g., plural).

Assessing Translation Quality Given the large space of possible transla-
tions, we would need a reliable method for distinguishing good and bad transla-
tions. This enterprise is called “machine translation evaluation” (if a reference

1(Bojar, 2015) is reprinted as Appendix A.1 on page 66.
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translation is available) or “quality estimation” (if we do not have the reference
translation) and it is as old and as complex as MT itself.

Not very surprisingly, small changes in the sentence can drastically change
its meaning (e.g., reversing the negation). At the same time, a very different
wording can convey the same meaning as the original but we are usually given
just one reference translation.

2.2 Complementary Solutions

The history of SMT, see Bojar (2012) or Koehn (2009) for a summary, has seen
many complementary methods addressing various aspects of the core problems
outlined above. Here we highlight those related our contributions as detailed in
the subsequent chapters.

2.2.1 Using Large Data

The success of statistical MT relies on the access to large training data. In fact,
some of the problems of MT outlined above lose in their severity as the training
data grow. With very large data, we can afford using larger translation units
(e.g., longer and longer phrases in phrase-based translation) when covering the
input and the phrase-independence assumption will have fewer occasions to do
any harm. In the ideal case (which indeed does happen in small and repetitive
domains), the whole sentences will be available for reuse.

Precisely for that reason, we have put considerable efforts into collecting large
Czech-English parallel data, see Chapter 3.

2.2.2 Adding Linguistic Information

Common approaches to SMT often lack sufficient generalization power and vio-
late many linguistic constraints. For instance, pure phrase-based MT can only
produce forms of words as seen in the training data and it has no means to
capture the overall sentence structure.

It is therefore interesting to add linguistic knowledge explicitly to the model.
In our work, we followed the layered formal description of sentences in natural
language defined by the Functional Generative Description (Sgall et al., 1986).
We tried to benefit from both relatively shallow morphological layer (information
relevant for each token in the linear sequence of words in the sentence) as well
as from the syntactic analysis of the sentence.

We were successful in utilizing the token-level information, see Chapter 4
for more details. Our attempts to employ the subsequent layers of linguistic
description (shallow and deep syntax) were less successful, mainly because they
implicitly strengthened the unjustified independence assumption of individual
translation units. The deep-syntactic approach to MT was so far best exploited
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in the transfer-based system TectoMT (Popel and Žabokrtský, 2010) and despite
the system did not perform very well on its own, we managed to incorporate
TectoMT to the standard phrase-based system in a way that set the new state
of the art in English-to-Czech translation, see Chapter 5.

2.2.3 Removing Independence Assumptions

Our work on the core of machine translation has been carried out in the con-
fines of classical statistical MT that deals with individual translation units. We
contributed to attempts at removing this assumption through the supervision of
Aleš Tamchyna’s PhD studies (2012–2017), where Aleš developed a discrimina-
tive model to select translation of phrases considering the whole source-side and
a small target-side context (Tamchyna, 2017; Tamchyna et al., 2016a; Huck et
al., 2017); more details are provided in Section 4.3.3.

A breakthrough in machine translation quality was achieved recently through
deep learning, giving rise to neural machine translation, NMT (Sutskever et al.,
2014; Bahdanau et al., 2014).

NMT replaces the log-linear model with a model directly predicting target
words, one at a time, conditioned on the whole source sentence fJ

1 :

p(eI1|fJ
1 ) = p(e1, e2, . . . eI |fJ

1 )

= p(e1|fJ
1 ) · p(e2|e1, f

J
1 ) · p(e3|e2, e1, f

J
1 ) . . .

=
I∏

i=1

p(ei|ei−1, . . . e1, f
J
1 )

(2.9)

The similarity of NMT to a standard language model should be highlighted.
A language model (see Section 4.1 below) predicts the next word based on the
previous words: p(eI1) =

∏I
i=1 p(ei|e1, . . . ei−1). NMT adds fJ

1 to the antecedent.
While the main steering force in PBMT is the translation model and the

language model “only” caters for target coherence, the main steering force in
NMT is the language model and the source “only” conditions the word choices.
The exact consequences of this major shift are yet to be explored but NMT
generally performs much better in fluency of translation and somewhat better in
adequacy.

2.2.4 Better Evaluation

The outputs of machine translation are evaluated manually and automatically
for a number of reasons. From the end users’ point of view, we need to be able
to select the overall best performing MT system. System developers need to be
able to reliably check progress or, with the help of automatic evaluation methods,
automatically optimize model parameters.
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If our metrics2 of MT quality do not reflect well the problems in output,
we cannot expect any improvements. At the same time, understanding what
is a good and what is a bad translation is an essential component of machine
translation as a field of study.

Our contributions to both the technical and scientific aspects of MT evalua-
tion are summarized in Chapter 6.

2The term “metric” traditionally used in the field of MT evaluation does not imply the
properties of a metric in the mathematical sense.





Chapter 3

Large Data

The collection and preparation of training data may seem a rather mundane task
from the scientific point of view. It is nevertheless undisputably the key prereq-
uisite for statistical methods in NLP in general and MT in particular. We also
take the stance that a high-quality training dataset attracts attention to the task
and languages concerned. We believe that our long-term work on a large Czech-
English parallel corpus CzEng described in this chapter has thus not only allowed
our own research in English-to-Czech MT but also considerably contributed to
the overall focus on this language pair and its adoption as an interesting research
problem. MT into Czech is thus examined to a much deeper extent than what
would correspond for example to the number of speakers of Czech or the amount
of money spent on NLP research by national funding agencies.

Our main contribution in data collection and preparation is the series of
releases of CzEng, summarized in Table 3.1. Every release, aside from including
additional training data was devoted to a particular topic.

Three CzEng releases deserve a special remark. The version 0.9 (Bojar
and Žabokrtský, 2009) was the first major upgrade when we processed both
of the sides of the corpus with the Treex NLP processing platform (Popel and
Žabokrtský, 2010; in 2009, the platform was still called TectoMT). CzEng 0.9
with its 8.0 million sentences posed a significant technical challenge to the toolkit.
Up until then, Treex has been used in various NLP tasks, but processing time
and stability across a wide range of data conditions were never the main focus
of its development. CzEng 0.9 served as a very thorough test case and allowed
to identify many corner cases and minor bugs in the toolkit. Since there was no
time available for any major code rewrites, the goal was achieved through data
parallelization and automatic collection of failures. We then processed the bugs
from the most frequent to the less common ones.

The second major step in CzEng development was achieved in the version 1.0
(Bojar et al., 2012b).1 In that release, we not only almost doubled the corpus size
again, provided the automatic processing (improved in various aspects) but we
also carefully filtered the corpus to avoid low-quality sentence pairs. In CzEng
1.0 for the first time, we exploited the other side of the corpus to enhance the
automatic annotation even monolingually. Specifically, the comparison of the

1(Bojar et al., 2012b) is reprinted as Appendix A.2 on page 91.
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16 Chapter 3. Large Data

Ver. Size Main Focus Details in

0.5 0.9M Sentence alignment, common for-
mat

Bojar and Žabokrtský (2006)

0.7 1.0M Used in WMT06 and WMT07 Bojar et al. (2008)
0.9 8.0M Automatic annotation up to t-

layer
Bojar and Žabokrtský (2009)

– – Sentence-level filtering Bojar et al. (2010b)
1.0 15.0M Improving monolingual annotation

through parallel data
Bojar et al. (2012b)

1.6 62.5M Processing tools dockered Bojar et al. (2016b)

Table 3.1: Summary of CzEng release versions. Size is reported in millions of
sentence pairs.

Czech and English automatic annotation allowed us to (1) improve sentence
segmentation by adding dedicated training data and new focus patterns to our
trainiable tokenizer (Marš́ık and Bojar, 2012) and (2) spot and fix several errors
in the rules construcing “formemes” (Žabokrtský et al., 2008) due to unexpected
formeme mismatches in the aligned sentences.

Finally, the most recent release, CzEng 1.6 (Bojar et al., 2016b) benefited
from our supervision of Jakub Kúdela’s master thesis and publication (Kúdela et
al., 2017): 1.84 billion of web pages of the July 2015 Common Crawl were scanned
for parallel Czech-English texts through sentence embeddings and locality-sensitive
hashing. The goal was to again extend the CzEng parallel data, but as we de-
scribed in Kúdela et al. (2017), Common Crawl was too “sparse”. From each
website, Common Crawl usually gets only a handful of pages. We thus could not
rely directly on Common Crawl data dump and re-crawled the list of websites
with parallel content for CzEng 1.6.

Besides MT, CzEng has been used in research on coreference resolution
(Novák et al., 2013), automatic valency frame selection (Dušek et al., 2014),
in the development of a valency lexicon (Fuč́ıková et al., 2016), a subjectivity
lexicon (Veselovská, 2015), a lexical network (Ševč́ıková et al., 2016), word-level
(Kocmi and Bojar, 2016) and sentence-level (Wieting et al., 2017) embeddings
or a spoken corpus of Czech dialects (Michĺıková, 2013) and in semi-automatic
linking between corpora and lexicons (Bejček, 2015).



Chapter 4

Handling Morphology
in Phrase-Based MT

The common topic that threads through this thesis is the difficulty of targetting
Czech with its rich morphology. Morphological correctness was undoubtedly the
most apparent issue of the PBMT-based systems.

Table 4.1 motivates this research by illustrating the availability of morpho-
logical variants of the Czech word čéška (knee cap) in plural in training corpora
of 50K to 50M sentences. The word is not very frequent, but we are lucky to
see it in the nominative case (line 1) already in 50K training sentences. Other
morphological variants are seen as we use larger corpora. In 50M sentences, we
finally see all morphological variants of the word, although the vocative case (line
5) was actually still not seen and we know the form only thanks to its homonymy
with the nominative.

case surface form 50K 500K 5M 50M

1 čéšky • • • •
2 čéšek – • • •
3 čéškám – – • •
4 čéšky ◦ ◦ • •
5 čéšky ◦ ◦ ◦ ◦
6 čéškách – • • •
7 čéškami – – – •

Table 4.1: The seven Czech cases of the word čéška (knee cap) in plural as
seen in 50K/500K/5M/50M sentences. “•” indicates the word was seen in the
particular case, “◦” indicates that the surface form was seen but in a different
case. Reproduced from Huck et al. (2017).

In order to correctly use words in a morphologically rich language, the SMT
system has to have the capacity to produce them given the English source in
the first place (i.e., to see them in a parallel corpus) and also to select the form
that fits the given context. As indicated by the example in Table 4.1, some
morphological variant of a word may be seen in a relatively small number of
sentence pairs, but we can’t expect to see all forms.

17



18 Chapter 4. Handling Morphology in Phrase-Based MT

Peter left for home .

Peter doleva pro domů .

Petr levá , pro domov .

Petrovi doleva pro domova . “

Petra , opustili k doma

Petr odešel ve domovem

petra odešel v domů ,

nechali domovu .

z̊ustalo pro domáćı

na doma .

hlavńı

domácnosti .

k domovu .

na cestu domů .

Figure 4.1: Translation options considered by PBMT when translating the sen-
tence “Peter left for home.” from English into Czech. Options with a higher
translation probability are listed higher, bold indicates options that could be
used to construct an acceptable, although not very good translation. Figure
simplified from Bojar (2012).

In this chapter, we describe our contributions to producing correct text in
morphologically rich languages. We start with a very brief summary of the
underlying framework of phrase-based MT (Section 4.1), then focus on improved
modelling in situations when the needed target word forms are generally available
in the training data (Section 4.2) and conclude by our contributions to producing
word forms which were not observed in the parallel or even in the monolingual
data (Section 4.3).

4.1 Overview of Phrase-Based MT

Phrase-Based MT (PBMT, Koehn et al., 2003) is one of several classical statisti-
cal approaches to MT. Thanks to the availability of open-source implementation
of a strong PBMT system Moses (Koehn et al., 2007), phrase-based MT has
become the industry standard and remained so until about 2016.

PBMT assumes that the input sentence can be decomposed into contiguous
sequences of words called “phrases” and each of the phrases can be translated
more or less independently. Figure 4.1 illustrates such a decomposition and
possible translation units (called translation options in PBMT) for the English
sentence Peter left for home.

The output sentence is constructed left-to-right, selecting phrase translations
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Word penalty

Peter left for home .

Petr odešel domů .

Bigram log. prob.

1,0 2,0 1,0
Phrase penalty 1,0 1,0 1,0

Phrase log. prob. 0,0 -0,69 -1,39

Total

4,0
3,0

-2,08

-2,50 -3,61 -0,39 -10,59

Weight

-0,5
-1,0
2,0

1,0

Weighted

-2,0
-3,0
-4,16

-10,59

Total -19,75

◁

-4,02

◁

-0,08

Figure 4.2: Local and non-local features scoring one candidate translation. The
solid rectangles indicate individual translation options. Any information avail-
able in each of the rectangle can be used for local features. Non-local features
cross translation options boundaries and as an example, we illustrate the use
of a bigram LM (dotted). The scores are added up for each feature and finally
weighted by the weights of the log-linear model. Reproduced from Bojar (2012).

from the source sentence in any order (subject to reordering costs).
Formally, PBMT is implemented as a log-linear model described in Chapter 2,

where the key local features are:

• phrase translation probabilities (several variants are used simultaneously,
see Koehn, 2009),

• phrase count; its weight is called phrase penalty and moderates if transla-
tions are rather literal (word for word) or not,

• word count; its weight is called word penalty and controls the output length.

The only non-local feature is the language model, so any coherence of the
selected candidate (e.g., short- or long-range agreements) is to be ensured by the
language model. Unfortunately, the language models that were most often used
were n-gram LMs. This helped tractability (it was sufficient to keep the previous
n − 1 output tokens in the search state to allow LM evaluation)1 but it has a
serious detrimental effect on overall sentence grammaticality.

Figure 4.2 illustrates one candidate translation, as constructed from the En-
glish source using three translation options.

The parameters of these model components are generally estimated using
maximum likelihood estimates, usually subject to some form of smoothing or

1LMs of unlimited history became possible thanks to deep learning (Bengio et al., 2003)
and they indeed brought an improvement to PBMT (Schwenk, 2007) but they never became
widely used because the computational costs were too high before the computation was moved
to GPUs (Schwenk et al., 2012).
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Translate and Check (T+C) 2×Translate + Generate (T+T+G)

English Czech
form

lemma
tag

form
lemma

tag

+LM
+LM
+LM

English Czech
form

lemma
tag

form
lemma

tag

+LM
+LM
+LM

Figure 4.3: Two basic factored translation setups.

interpolation (Chen and Goodman, 1996; Foster et al., 2006) from parallel data
(phrase translations) and target-side monolingual data (language models).

As mentioned in Section 2.1, the number of possible translations of a given
sentence is exponential to the sentence length, so the space is explored in an
approximate search, e.g., beam search. Many candidate partial translations
are considered simultaneously, the more promising ones are further expanded by
attaching translation options covering so far untranslated words while the less
promising ones are discarded.

In its pure form, PBMT treats word forms as opaque symbols. This is a great
advantage for language independence of the method but it comes at the cost of
severe data sparsity for morphologically rich languages: the model needs to see
all possible forms of all possible translations of a word to have the capacity to
produce them. And it should also see each of them in a large number of contexts
to be able to select the correct one.

4.2 Factored Setups for Improving Morphological
Choices

The implementation of PBMT in the Moses translation system introduced fac-
tors (Koehn and Hoang, 2007). In short, factors provide additional information
for each input and/or output token, and thereby allow to introduce new score
components and also to generate output factors based on additional data, not
just the parallel corpus.

In Bojar (2007),2 we thoroughly examined the utility of factored PBMT for
targetting Czech.

If we limit ourselves to factors bearing morphological information,3 two setups
immediately come to mind, as illustrated in Figure 4.3 and explored in Bojar
(2007):

• T+C (Translate and Check) translates the source word forms into target

2(Bojar, 2007) is reprinted as Appendix A.3 on page 99.
3Other options are obviously possible and helpful, see e.g., Avramidis and Koehn (2008),

Birch et al. (2007), or Niehues and Waibel (2010).
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word forms, as baseline PBMT would do, but it also produces target-side
morphological tags. This sequence of tags can be then scored with a dedi-
cated language model which operates on a much smaller vocabulary (mor-
phological tags) and therefore can be effectively trained for a much higher
n-gram size (e.g., 7 or 10-grams).

• T+T+G (2×Translate and Generate) translates lemmas and morphologi-
cal tags independently and generates the target word form from the lemma
and morphological tag; again, multiple language models are used. This
setup is linguistically appealing, it correctly strips morphological variance
of words from their lexical values. Figure 4.4 explains the benefit from inde-
pendent learning of translation of lemmas and translation of morphological
tags: evidence can be assembled from different sentences, the co-occurrence
counts are generally higher and probability estimates more reliable.

In later studies, we wanted to build upon these setups. The T+C setup works
very well, as we demonstrated in Bojar (2007) but it is difficult to improve it
further, see Section 4.2.1. The T+T+G setup brings serious complications, as
described in Section 4.2.2. We proposed several techniques to circumvent the
issues, see Section 4.3.

4.2.1 Automatic Exploration of Configurations Infeasible

The content of factors as well as the exact sequence in which they are used on
the source side and constructed on the target side is fully configurable. The
space of possible configurations is thus very large, especially if we consider also
the various meta-parameters such as n-gram size or type of smoothing of each
of the language models, and their effectiveness also depends on the amounts of
available training data.

In a series of experiments, we largely explored this space of possible configu-
rations:

• In Bojar and Tamchyna (2013),4 we developed Eman, an experiment man-
ager. Eman, populated with “seed” scripts relevant for machine translation
(or any other field of study), allows to manually explore large numbers of
configurations, automatically reusing common model parts and rebuilding
only what is necessary.

Eman has been used in the development of almost all our MT experiments
and when building shared task systems as well as commercially applied
MT systems. While Eman was designed for research and flexibility in
experimenting, it also serves as the backbone of a fully automated batch
translation online service that we run for IBM to translate into Czech,
Hungarian, Arabic and experimentally also into Japanese.

4(Bojar and Tamchyna, 2013) is reprinted as Appendix A.4 on page 107.
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Figure 4.4: Linguistically motivated extraction of factored phrases from a parallel
corpus. The corpus, consisting of just two “sentence” pairs: (viděl jsem) starého
pána = (I saw an) old man and (dej to tomu) černému psovi = (give it to the)
black dog, does not allow to directly learn the phrase black dog = černého psa
(the translation of black dog into Czech accusative case). In the factored setup
T+T+G, this translation is licensed by the combination of the separate lemma
(černý pes) and tag (AAMS4 NNMS4) translations, each of which comes from a
different training sentence pair. Reproduced from Bojar (2012).

• In Bojar et al. (2012a), we introduced a simple taxonomy for the more
common factored setups and further examined which setups work best in
various data conditions.

• In Tamchyna and Bojar (2013), Eman served as the underlying engine
in an attempt to explore the space of possible PBMT configurations fully
automatically. While we were able to find a small number of setups that
improved the baseline, the main result of that work is negative:

– The space of possible factored configurations is too large to be ex-
plored automatically, i.a. there are exponentially many setups given
a number of source-side factors.

– Evaluating each configuration is computationally demanding (e.g., a
few days of computing time with large training data).

– The automatic evaluation metric (BLEU in that case, see Chapter 6
for more details) is not sufficiently discerning and reliable, many se-
tups receive too similar scores.
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– Model optimization is non-deterministic and fragile; several optimiza-
tion runs of the same setup often differ in their performance more
than possible alternative setups.

Across all examined setups, we confirmed that a significant improvement
can be expected from essentially only T+C, i.e., a setup that improves target-
side morphological coherence by employing an additional language model over
morphological tags. This setup does not allow the MT system to produce any
word forms that were not seen in both the parallel and monolingual training
data, but it improves the probability estimates of word form sequences.

4.2.2 Morphological Explosion on the Fly

The T+T+G setup illustrated in Figure 4.4 unfortunately works only with ex-
tremely small datasets (at generally low levels of overall performance). As soon
as the parallel corpus becomes reasonably big, T+T+G introduces a loss of es-
sential details and more importantly leads to an explosion of the search space:
too many possible word forms have to be generated and scored. Consider our
setup where all combinations of lemmas and tags have to be produced and eval-
uated. For instance for the Czech word stát (one of the possible translations
of the English word state, both the verb and the noun), this amounts to 347
possible Czech word forms (or 182 word forms when dialects and archaic forms
are excluded) according to Hajič (2004).

Containing this explosion proved impossible given the design of factored
translation models. The models are said to be synchronous, i.e., translation
options have to be fully generated (all target factors filled) before the main search
starts. While we can prune this space by dropping less promising translation op-
tions, the scores available at this early stage are only local, they cannot consider
the context of surrounding words because it will be (gradually) built only later
in the main search. At the same time, many morphological features express the
relation of words to the context. Dropping some “unlikely” case variations of
a noun before the verb is known will inevitably fail because it is the verb that
requests a particular case.

In the following section and also later in Chapter 5, we present techniques
that avoid these problems.

4.3 Producing Unseen Word Forms

Table 4.1 motivated the need to generate Czech word forms on the fly but in
Section 4.2.2, we explained that simply allowing to generate word forms from
combinations of lemmas and tags doesn’t work.

In this section, we summarize three methods we proposed as possible solu-
tions: two-step translation, reverse self-training and an integrated discriminative
model.
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Src after a sharp drop
Mid po+6 ASA1.prudký NSA-.pokles
Gloss after+loc adj+sg...sharp noun+sg...drop
Out po prudkém poklesu

Figure 4.5: An illustration of two-step translation: translating from English to
lemmatized Czech (Mid) and only then inflecting.

4.3.1 Two-Step Translation

In Bojar and Kos (2010),5 we presented the idea of two-step translation to avoid
the explosion of variants of words and the difficulties of pruning them before the
surrounding context is available. In two-step translation, the search is divided
into two consecutive phases, see Figure 4.5 for an illustration:

1. Reordering and lexical choices. The input sentence is translated into an
intermediate “language” that disregards morphological attributes implied
solely by the target language. The desired number of tokens, their posi-
tions and meaning-bearing morphological features (e.g., plural for nouns or
negation) are preserved.6

2. Morphological choices. The intermediate representation is inflected, pre-
serving the number and order of tokens.

The benefit from phasing the search into two independent steps is that the
inflection in Step 2 have full access to the context of surrounding words. Gen-
erating all forms is acceptable because they can be effectively pruned without
risking serious search errors suffered by T+T+G (Section 4.2.2).

Technically, we realized both steps as factored PBMT setups. Step 1 was
trained on parallel data, with standard limits on reordering and target side sim-
plified to lemmas and a hand-picked subset of morphological features.

Step 2 was a monotone word-for-word “translation”: the translation model (a
phrase table with all phrases limited the length of one token) mapped each sim-
plified Czech word to all possible regular word forms and the standard language
model ensured selecting coherent combinations. Since Step 2 was mapping be-
tween simplified Czech and regular Czech, we could train it on (large) Czech-only
texts.

Compared to the T+C baseline (Section 4.2), our results in Bojar and Kos
(2010) were mixed: the two-step translation improved over the baseline in small
data setting but not in large data setting.

5(Bojar and Kos, 2010) is reprinted as Appendix A.5 on page 127.
6Prior work of Minkov et al. (2007), Toutanova et al. (2008), or Fraser (2009) disregarded

all morphological information and also targeted other languages.
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Source English Target Czech
Para a cat chased. . . = kočka honila. . .
126k kočka honit. . . (lem.)

I saw a cat = viděl jsem kočku
vidět být kočka (lem.)

Mono ? četl jsem o kočce
2M č́ıst být o kočka (lem.)

Use reverse translation
I read about a cat ← backed-off by lemmas.

⇒ A new phrase learned: “about a cat” = “o kočce”.

Figure 4.6: The key idea of reverse self-training: The English word cat is present
in the parallel corpus but its Czech counterparts do not cover all morphological
cases of the word, the locative kočce is missing. Translating (based on lemmas)
a sentence with this particular form from the monolingual data adds this form
in its correct context to the translation model.

We continued in exploring two-step setups with our PhD student in Bojar et
al. (2012a) and Jawaid and Bojar (2014) with no significant gains. The area was
also subsequently studied by others, most recently Burlot et al. (2016) who ex-
plored several other technical realizations of step 2, generally confirming smaller
gains as parallel training data grow. At about 1M parallel sentences, there is
little or no benefit from the separation.

4.3.2 Reverse Self-Training

In Bojar and Tamchyna (2011a) and further in Bojar and Tamchyna (2011b),7

we realized that the decision capacity about word forms lies ultimately in the lan-
guage model. If word form combinations (such as an agreeing pair of an adjective
and a noun) are known to the language model, it will promote them. And con-
versely, any unknowns will force the system to fall back to denser statistics, e.g.,
to shorter n-grams or (if linguistically-informed models are available) to lemmas
or tag sequences. Any cleverness in offering word forms in the translation model
is not going to provide any improvement if the language model cannot support
the proposed sequence. In other words, it is the intersection of the translation
and language model capabilities that is capping the performance of the system.

Assuming that we have trained the LMs of the system the best way we could
(used all possible data, used LMs over different linguistic factors), we must en-
sure that the translation model is not adding further limitations and that it is
offering translation candidates that the LM can effectively evaluate. Any further
candidates, coming for example from a morphological generator, are not going

7(Bojar and Tamchyna, 2011b) is reprinted as Appendix A.6 on page 135.
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Figure 4.7: Improvements in BLEU score thanks to reverse self-training when
adding monolingual data to fixed parallel data (500k sentences, left plot) and
when increasing parallel data size with fixed monolingual (5M sentences, right
plot). Reproduced from Bojar and Tamchyna (2011b).

to be used anyway because they are not known to the LM (and LM will thus
score them lower than other options).

We thus proposed reverse self-training as a technique that ensures that
the TM is as capable as the LM in producing word forms. Given that the LM
is trained on generally much larger training data (monolingual texts), we must
somehow incorporate these texts into the training of the TM.

The key idea is to use back-translation to translate the target-side monolin-
gual data to the source language and use this synthetic parallel corpus to train
the forward system. Back-translation was used previously by Bertoldi and Fed-
erico (2009) and became extremely popular recently in neural MT (Sennrich et
al., 2016) but one aspect remains unique to our setup.

As illustrated in Figure 4.6 on the preceding page, we back-off the back-
translation system to translate from lemmas if the exact word form is not known.
If the original source language (English, in our setup) is morphologically less rich,
the translation from lemmas will not cause any harm. The forward system will
then see a good English sentence or phrase translated to a perfect Czech phrase,
containing a word form never seen in the small parallel data. The forward system
thus gets the chance to learn a new form of a known word in its correct context.

Figure 4.7 shows the benefits of reverse self-training for English-to-Czech
translation. It is well known that increasing LM size is always beneficial (Brants
et al., 2007), see the “BLEU of Mono LM” curve in the left plot. Our technique
allows to exploit the given monolingual data much better, see the curve “BLEU
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Figure 4.8: Reverse self-training for more language pairs. Reproduced from Bojar
and Tamchyna (2011b).

of Mono LM and TM” in the left plot. In the right plot, we can see that the gains
diminish as the parallel data grow. The benefit from reverse self-training started
at 4 BLEU points but becomes negligible from about 2M of parallel sentences.

Figure 4.8 documents the effectiveness of the method for several language
pairs, in relation to their morphological richness. All the underlying experiments
used 94–128k parallel sentences and 662–896k monolingual sentences. “Vocabu-
lary size ratio” indicates how many more distinct word forms the target language
had in the parallel corpus compared to the source. The extreme is English-
Finnish with 2.8× more Finnish forms. The tendency is clear: the richer the
target language is compared to the source, the larger the gain. If both languages
are rich, such as German-Czech, the benefit is not necessarily big.

4.3.3 Unseen and Discriminatively Trained

As we know from the previous section, having a parallel corpus of 2M sentences
for languages like Czech may already be sufficient but arguably, many language
pairs suffer from lack of resources much more. Examining methods for particu-
larly low-resource settings is thus interesting.

In the situation when the necessary (target) word forms are not available
even in the monolingual data, we have to rely on morphological analyzers and
generators, and their dictionaries. Since the dictionaries (naturally) do not pro-
vide frequencies or probabilities of the forms in their contexts, we have to rely
on a different scoring mechanism.

One option would be to use standard language models in the factored setup
(Section 4.2), trained over sequences of morphological tags and (separately) over
lemmas. The best form would be selected based on a weighted combination of
these scores.
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Figure 4.9: The improvement in BLEU thanks to including automatically gener-
ated word form variations of translation options (“synthetic (mtu)”) and scoring
them with the discriminative model (“morph-vw”). Reproduced from Huck et
al. (2017).

Aleš Tamchyna’s thesis examined more fine-grained models, namely discrim-
inative models (Tamchyna, 2017). The discriminative model is trained outside
of the translation system and allows to include many more features, including
fully lexicalized ones (e.g., indicators checking for the presence of individual word
forms or lemmas). One of the advantages is that it has the power of learning
valency frames, that is the requirements of verbs for a particular preposition
or case of their arguments.

The integration of such a rich model into the PBMT search is technically
challenging because the model is evaluated before pruning for a very large number
of translation options. Tamchyna et al. (2016a) had to come up with a sequence
of optimization tricks to avoid any duplicated calculation. The benefit of this
optimization was that the discriminative model could use also a limited context
of the target side, i.e., the previous word or two of the current partial hypothesis.

In Huck et al. (2017), the discriminative model was trained excluding the
exact word forms and relying only on individual morphological features and
the lemma. This allowed to reliably score even word forms generated by the
morphological generator; in the case of Czech, Morphodita (Straková et al., 2014)
was used. The method is effective especially with corpus sizes of 50k and 500k
sentences, small gains are however observed also at 5M and 50M sentence pairs.



Chapter 5

Benefiting from Deep Syntax in MT

The methods and experiments described so far were limited to using relatively
shallow linguistic information: lemmatization, tagging, and morphological gen-
eration.

In this chapter, we summarize one of our key contributions of this thesis,
namely the incorporation of deep-syntactic knowledge to phrase-based MT. We
note that we explored this topic already in our PhD thesis (Bojar, 2008), but
the approach taken then was not successful.

As we documented for dependency trees used for translation between English
and Czech in Bojar and Hajič (2008) and further in Bojar and Týnovský (2009)
and as Chiang (2010) described independently for constituency trees for trans-
lation from Chinese or Arabic into English, a statistical transfer-based system
where the minimum translation units are linguistically-adequate treelets has a
considerably harder situation than phrase-based MT or its extension, hierarchical
phrase-based translation (Chiang, 2005).

In Section 5.1, we briefly review the problem. Our technique that allows to
circumvent it is summarized in Section 5.2, the underlying reasons of its effec-
tiveness are further explained in Section 5.3 and empirical results are provided
in Section 5.4.

5.1 Brief Summary of Difficulties with Tree-Based
Transfer

In our PhD thesis, we attempted to improve the grammaticality of MT by im-
plementing a transfer-based MT system. Such systems first analyze the input
sentence into a formal representation reflecting its syntax and/or semantics, then
convert this representation to a corresponding formal representation for the tar-
get language and finally generate the plain text in the target language.

The fact that the target string is produced from a formal representation
would ideally guarantee that the output will be grammatical and the separation
of source linguistic analysis and target generation potentially reduces the need
for (large) bilingual training data, benefiting from the generalizations that can
be observed monolingually or provided in the form of dictionaries.

29
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In practice, the transfer-based approach fails to surpass shallow methods like
phrase-based MT on average, due to especially the following issues (Bojar and
Hajič, 2008):

• Cumulation of errors when preparing the source and target formal rep-
resentations of the parallel data. In our case, a tagger was followed by a
surface-syntactic parser and then a deep-syntactic parser. If any of them
made an error (or if the sentence in the training data was not exactly gram-
matical, according to the rules embodied in the particular tool or matching
the training data behind the tool), the resulting structure contained an er-
ror. Shallow methods, on the other hand, suffer only from errors genuinely
present in the training data.

• Mismatching structures between the source formal representation, the
target representation and their alignments prevent extraction of translation
counterparts. As outlined above, classical SMT assumes that both source
and target can be decomposed into some units, corresponding to one an-
other. If the units follow the syntactic structure of the sentence, as was our
case, the decomposition must conform to the structures of both source and
target. The underlying grammar formalisms and parsers for the two lan-
guages were however built independently and arbitrary decisions as well as
natural divergence between languages (Dorr, 1994; Šindlerová et al., 2014)
render the sub-structures not matching exactly. Commonly, one accepts
only matching sub-structures into the automatically collected “translation
dictionary”. This means a considerable data loss in comparison to PBMT,
where only the word alignment is constraining which pairs of substrings
are learned from the data.

• Increased data sparseness due to fine-grained details of the deep anal-
ysis. As described in Bojar and Týnovský (2009), the core of our approach
was a formalism for tree-to-tree transfer (synchronous tree substitution
grammars, Eisner, 2003), which assumed operating on trees with atomic
nodes. In practice, the nodes of the deep syntactic representation had many
attributes, and their values were indeed necessary in order to be able to
generate the target sentence correctly. If one combined all the attributes
into an atomic unit, the vocabulary size of these units was actually larger
than the vocabulary of word forms because the deep representation made
finer distinctions. The factorization of translating lemmas and morpholog-
ical tags separately as discussed for PBMT in Section 4.2 was therefore
necessary, risking a combinatorial explosion during the translation.

Carefully constructed systems, such as TectoMT (Popel and Žabokrtský,
2010), can to some extent circumvent these shortcomings. For instance, Tec-
toMT still builds upon the assumption that the source and target representa-
tions are isomorphic, reducing the transfer to the search for the best labelling of
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Figure 5.1: Setup of Chimera. Reproduced from Tamchyna and Bojar (2015).

the source-side structure with target-side lemmas and morpho-syntactic labels,
so-called “formemes” (Žabokrtský et al., 2008; Dušek et al., 2012). We aimed
at a more general data-driven method that would be easier to reuse for other
languages, but failed.

While the approach of TectoMT is linguistically appealing and in many cases,
it indeed produced grammatically better output than PBMT, it never surpassed
PBMT on unconstrained input on average.

5.2 Chimera: Deep-Syntactic and PBMT Systems
Combined

In Bojar et al. (2013c)1 and subsequent publications (Tamchyna et al., 2014; Bo-
jar and Tamchyna, 2015; Tamchyna et al., 2016b; Bojar et al., 2017d), we pro-
posed and tested a method that combines the benefits of TectoMT and PBMT.
The resulting system was called “Chimera”, in reference to the three-headed
mythical creature; the third “head” was Depfix (Rosa et al., 2012).

Figure 5.1 schematically illustrates the design of the system combination:
the central component is Moses trained on large parallel data and with the best-
performing setup (the T+C factored system) as described in Section 4.2. This
setup alone is denoted ch in the following.

The transfer-based system TectoMT is included in a rather simple but sur-
prisingly effective fashion: TectoMT translates the source side of both the test

1(Bojar et al., 2013c) is reprinted as Appendix A.7 on page 143.
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I saw two green striped cats .
já pila dva zelený pruhovaný kočky .

pily dvě zelená pruhovaná kočky
. . . dvě zelené pruhované koček

viděl dvou zelené pruhované kočkám
viděla dvěma zeleńı pruhovańı kočkách

. . . dvěmi zeleného pruhovaného kočkami
viděl jsem zelených pruhovaných

viděl jsem zelenými pruhovanými
viděla jsem dvě zelené pruhované kočky

dvě zelené pruhované kočky

Figure 5.2: Translation options available to ch: the majority of options come
from the corpus and some combination of them hopefully leads to a good transla-
tion, underlined. TectoMT provides synthetic options (in bold) that easily match
longer sequences of input.

and the development set, leading to a synthetic parallel corpus. The corpus (of a
size corresponding to the development and test set, i.e., a few thousand sentence
pairs at most) is then processed in the standard “PBMT way”: automatic word
alignment followed by phrase extraction. We obtain a standard phrase table (the
“syntetic ttable” in Figure 5.1) and provide it to Moses, in addition to its stan-
dard corpus-based table. Moses has thus the chance to use phrases constructed
by TectoMT. Finally, the output is processed by Depfix.

For clarity, we denote the stages of this system tmt (TectoMT alone), ch
(Moses alone), ch (Moses with TectoMT) and ch (the full combination). In
this chapter, we focus only on the first two components and their interaction.

5.3 Analysis of the Combination

In Tamchyna and Bojar (2015), we carefully analyzed the behavior of the com-
bined system. Technically, the two phrase tables simply provide translation
options (as discussed in Section 4.1) to a common pool and the standard search
is free to select any of them. Each of the phrase tables comes with its separate
phrase penalty, so the model weights can influence whether translation options
from one of the tables should be used more often on average.

The nature of the phrases from the ch and tmt phrase tables is however
rather different. The ch table was extracted from a large parallel corpus and,
depending of the repetitiveness of the domain and its match with the test data,
the source sentence cannot be generally covered with very long phrases, simply
because the exact wording is not likely to be seen in the training data.

The tmt table, on the other hand, was created from the source sentences and
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all different? reachable? score diff

3003
2665

1741
1601 (<)
140 (>)

924 (unreachable)
338 (identical)

Table 5.1: Forced decoding—an attempt of ch to reach the test set translations
produced by ch. Reproduced from Tamchyna and Bojar (2015).

therefore matches exactly the current source. Much longer phrases can be thus
used, as illustrated in Figure 5.2. The ch phrase table may have contained all
the necessary forms, but they were generally collected from separate sentences.
The options by TectoMT may often contain identical words (thus slightly increas-
ing the issue of spurious ambiguity), but it provides them in a longer sequence.
The gradual expansion of hypotheses has thus the chance to “jump over” all
the combinatorial explosion when searching for a matching combination of word
forms.

The language model is applied as usual, giving the combined system the
capacity to reject strange parts of the translation that TectoMT may have pro-
duced.

Following our discussion on local and non-local features and conflicting struc-
tures, our method relieved the language model from being the only source of
horizontal coherence of the sentence. Phrases from TectoMT reflect grammatical
relations between words locally, within the phrase. The deep-syntactic analysis
in TectoMT was useful for producing such phrases but this different structuring
along the deep-syntactic tree does not interfere with the simple phrase segmen-
tation of PBMT, thanks to our combination method.

Table 5.1 on the current page documents that TectoMT provided also words
not available to ch. We ran ch in the so-called “forced” or “constraint” mode
(Schwartz, 2008), checking if it can produce translations created by ch, i.e., the
model with access to TectoMT translations. Out of the 3003 sentences in the
WMT14 news test set, ch and ch produced identical output in 338 cases. In
about a third (924) of the remaining sentences, ch could not reach the output of
ch, which means that TectoMT either provided a word form never seen in the
parallel training data (52M sentences in this experiment), or not seen enough to
survive the necessary technical thresholds that disqualify infrequent translations
(up to 100 options are considered from each phrase table for each source span).

Figure 5.3 illustrates the complementary benefits of ch and tmt, and the
ability of ch to select the better of each of them. While ch makes better lexical
choices esp. at the beginning of the sentence when translating the expression
living zone, it suffers from bad morphological choices at the end of the sentence.
The combined system ch produces a perfect output for this sentence snippet.
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Src the living zone with the dining room and kitchen section in the household of the young couple .

Ref
obývaćı zóna s j́ıdelńı a kuchyňskou část́ı v domácnosti mladého páru .
living zone with dining and kitchen section in household younggen couplegen .

ch
obývaćı zóna s j́ıdelnou a kuchyńı v sekci domácnosti mladý pár .
living zone with dining room and kitchen in section householdgen youngnom couplenom .

tmt
živá zóna pokoje s j́ıdelnou a s kuchyňským odd́ılem v domácnosti mladého páru .
alive zone roomgen with dining room and with kitchen section in household younggen couplegen .

ch
obývaćı prostor s j́ıdelnou a kuchyńı v domácnosti mladého páru .
living space with dining room and kitchen in household younggen couplegen .

Figure 5.3: Example of translations of Moses (ch) and TectoMT alone and
their phrase-based combination ch. Errors are in bold, glosses are in italics.
Reproduced from Tamchyna and Bojar (2015).

5.4 Empirical Results

We used Chimera in five years of WMT evaluation campaigns, as documented in
Table 5.2. During the years 2013–2015, it scored best and it surpassed Google
MT significantly in the years 2013–2016.

The table also documents the transition towards neural MT. The first NMT
system to join English-to-Czech task was montreal (Jean et al., 2015) and it
ended up third or fourth in manual evaluation in 2015. In 2016 and 2017, NMT
has proved its superiority.

In Sudarikov et al. (2017), we experimented with neural MT but our purely
neural approach did not perform well due to various reasons, including the short-
age of computing resources (large-memory GPU cards). We nevertheless strongly
benefited from NMT outputs by integrating them to our submission in the style
of Chimera, adding them in a separate phrase table. Chimera without NMT
reached BLEU of 18.3 and NMT allowed an increase to 20.5.

Table 5.2 is sorted by BLEU but it should be noted that this automatic
score does not always match human judgements. The most striking difference is
seen in WMT17 where our combination including NMT surpassed Google NMT
setup in both BLEU and TER but considerably lost in manual scoring. We see
this as an indication that humans demand overall sentence coherence. This can
be achieved by NMT thanks to its avoidance of the assumption of translation
units. PBMT, even if provided with well-formed long phrases (from TectoMT or
NMT), lacks the capacity to ensure this coherence, and BLEU lacks the capacity
to evaluate long-range phenomena.

The disparity between manual and automatic evaluation methods leads nat-
urally to the last large topic in our work, MT evaluation, as described in the
next chapter.
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System BLEU TER Manual

W
M

T
13

ch 20.0 0.693 0.664
ch 20.1 0.696 0.637
ch 19.5 0.713 –
Google Translate 18.9 0.720 0.618
cu-tectomt 14.7 0.741 0.455

W
M

T
1
4

ch 21.1 0.670 0.371
uedin-unconstr. 21.6 0.667 0.356
ch 20.9 0.674 0.333
Google Translate 20.2 0.687 0.169
cu-tectomt 15.2 0.716 -0.175

W
M

T
15

ch 18.8 0.715 0.686
ch 18.7 0.717 –
NMT: montreal 18.3 0.719 0.467
ch 17.6 0.730 –
Google Translate 16.4 0.750 0.515
cu-tectomt 13.4 0.763 0.209

W
M

T
16

NMT: uedin-nmt 26.3 0.639 0.59
ch 21.7 0.677 0.30
Google Translate 23.2 0.678 0.19
cu-tectomt 15.2 0.730 -0.03

W
M

T
17

NMT: uedin-nmt 22.8 0.667 0.308
ch incl. NMT 20.5 0.696 0.050
NMT: Google Translate 20.1 0.703 0.240
ch 18.3 0.719 –

Table 5.2: Automatic scores (BLEU and TER) and results of manual ranking
(where available) in WMT13–WMT17. The top other system and Google
Translate reported for reference. Bold indicates the best system in each met-
ric, or more systems, if the difference between their manual scores was not suffi-
ciently large for statistical significance.





Chapter 6

Precise MT Evaluation

This chapter summarizes our contributions to the understanding of how to dis-
tinguish between good and bad translations.

As mentioned above, MT evaluation serves several purposes and each of them
requires a slightly different approach:

• For day-to-day progress check, we need fast and reproducible methods that
reflect well overall translation quality as well as the problems we want to
focus on. Standard automatic evaluation methods may easily neglect our
current research target (e.g., translating pronouns or preserving negation),
because it is not exhibited on a large portion of the output. Custom tar-
geted methods, on the other hand, can easily overfit, i.e., provide a good
score for the aspect their evaluate while ignoring an overall decrease in
translation quality.

• For automatic training (model optimization), similarly fast and repro-
ducible methods are necessary. In addition to this, they need to be suf-
ficiently discerning even for very similar candidates (e.g., members of an
n-best list). Most importantly, the methods need to be able to rule out
poor candidates because otherwise, the optimization could converge to a
bad optimum.

• For the selection of the best MT system from a set of fixed possible systems,
we have to ask what is the planned use of the MT system: will someone
post-edit the translations, or will they be automatically indexed for full-
text search, or will someone read them (with or without access or mild
understanding of the source)? Each of these uses can lead to a different
choice.

In contrast to the previous situations, most of the compared candidates
will be already relatively good machine translations but they can differ
considerably on the surface. Methods that work well for selecting the best
candidate from an n-best list can fail when the hypotheses become less
similar.

In general, both manual and automatic MT output evaluation methods are
used. The main benefit of automatic methods is their reproducibility and low

37
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All sequences of words in the target language

Grammatically
correct sentences

Understandable
translations

Sequences reachable
from the given source sentence

by a given MT system

Top-scoring
candidates

The single
winning candidate

Reference
translations

Post-edited best candidate
All correct translations

Figure 6.1: Space of possible translations. Reproduced from Bojar et al. (2013a).

cost, but they are obviously confined by their inherent assumptions and there-
fore often overestimate the quality of MT systems based on similar assumptions.
Manual evaluation methods are expensive and the main problem is that they are
never exactly reproducible because the annotator is affected by the sentences he
or she has already evaluated. Reproducibility in manual evaluation can be im-
proved by using large samples with many annotators, however it further increases
the cost.

We have contributed to both manual and automatic methods of MT evalua-
tion. In Section 6.1, we explain why MT evaluation is so difficult in general. In
Section 6.2, we evaluate the importance of using more references. In Section 6.3,
we add a complementary style of manual annotation and notice that PBMT
tends to “swallow” words. Finally, Section 6.4 documents that BLEU scores are
even less reliable when they are low, and explains why this is the case.

Furthermore, we have contributed to the development of methods of manual
MT evaluation that operate along a structured representation of the meaning of
the sentence, see Section 6.5.

As a meta-evaluation, automatic MT metrics are evaluated in terms of corre-
lation with human judgements in annual evaluation campaigns, see Section 7.2.

6.1 Why Is MT Evaluation Difficult

It may not be obvious why evaluating MT is so difficult. We contributed to its
understanding in Bojar et al. (2013a).1

1(Bojar et al., 2013a) is reprinted as Appendix A.9 on page 165.
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A ačkoli ho lze považovat za politického veterána, radńı Březina reagoval obdobně.
Ač ho můžeme prohlásit za politického veterána, reakce radńıho Karla Březiny byla velmi
obdobná.
A i přestože je politický matador, radńı Karel Březina odpověděl podobně.
A přestože je to politický veterán, velmi obdobná byla i reakce radńıho K. Březiny.
A radńı K. Březina odpověděl obdobně, jakkoli je politický veterán.
A třebaže ho můžeme považovat za politického veterána, reakce Karla Březiny byla velmi
podobná.
Byť ho lze označit za politického veterána, Karel Březina reagoval podobně.
Byť ho můžeme prohlásit za politického veterána, byla i odpověď K. Březiny velmi podobná.
K. Březina, i když ho lze prohlásit za politického veterána, odpověděl velmi obdobně.
Odpověď Karla Březiny byla podobná, navzdory tomu, že je politickým veteránem.
Radńı Březina odpověděl velmi obdobně, navzdory tomu, že ho lze prohlásit za politického
veterána.
Radńı Karel Březina, navzdory tomu, že ho můžeme označit za politického veterána, reagoval
podobně.
Reakce K. Březiny, třebaže je politický veterán, byla velmi obdobná.
Velmi obdobná byla i odpověď Karla Březiny, ačkoli ho lze prohlásit za politického veterána.

Figure 6.2: Random sample from 71k possible translations of the English sen-
tence: And even though he is a political veteran, the Councilor Karel Brezina
responded similarly. Reproduced from Bojar (2012).

Given a fixed input sentence, it is easy to see that there are extremely many
possible erroneous translations. We can start from any correct translation and
modify it by introducing typing errors, altering morphological properties of words
(e.g., the number or negation), reordering words or inserting or deleting words.
The vast majority of these modifications will damage the translation—and a
good MT system should avoid all these errors.

Starting from the other end, considering the set of all correct translations is
not that straightforward. The situation can be schematically illustrated as in
Figure 6.1 on the facing page.

In Bojar et al. (2013a), we attempted to quantify the number of correct
possible translations from English into Czech. Inspired by the work of Dreyer
and Marcu (2012), we designed a framework fit for morphologically rich languages
and asked several annotators to provide as many good translations of a sentence
as possible.

The results, in line with what Dreyer and Marcu (2012) observed for En-
glish, are rather interesting. An English sentence of 14 words can easily have 70
thousands of correct translations, as illustrated in Figure 6.2.

Each annotator in this exercise was instructed to spend up to two hours per
sentence, using our tool to generate and validate sentences semi-automatically.
The least prolific annotator provided this sentence with 350 possible translations,
the second one created 3192 translations. And the most prolific one reached
67936 translations. Among these, only 8 translations were suggested by all three
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Figure 6.3: Correlation of BLEU and human judgements for varying type and
number of reference translations. Reproduced from Bojar et al. (2013b).

annotators and only 172 translations were suggested by two of the three anno-
tators. The space of possible translations is thus probably much larger.

The translations are not always 100% literal and they obviously differ in many
more or less important aspects, such as register or style, information structure
etc. If used in a coherent text and not as isolated sentences, many of these
translations may not be acceptable at all, but for the current level of MT quality,
all are equally good.

When designing automatic methods of MT evaluation, we thus have to keep
in mind that the candidate translation produced by an MT system can be correct
but superficially very distant from a given reference translation, or that it can
be superficially very similar to the reference translation but suffer from serious
errors.

6.2 More and/or Post-Edited References

The most widespread automatic MT evaluation method, BLEU (Papineni et
al., 2002), works by validating short fragments (1 to 4-grams) of the candidate
translation against a provided reference translation. BLEU has been designed
with the assumption that four independent human reference translations will be
available, to allow for at least some variance in the MT output. However, BLEU
is actually most often used with only one reference.

In Bojar et al. (2013b), we extended the manually-collected data of WMT13
with a substantial number of post-edited sentences. Through that experiment,
we confirmed that BLEU becomes much more reliable with more references, but
also found out that the nature of reference translations affects the correlation
of BLEU and human judgements. The correlations are generally higher if the
reference translations were created by post-editing MT outputs, i.e., if they are
(very likely) more similar to the candidate translations.



6.3. Error Annotations Explain Bad Correlation for BLEU 41

Google Moses-Bojar PC Translator TectoMT Total

Automatic: BLEU 13.59 14.24 9.42 7.29 –
Manual: Sentence ranking 0.66 0.61 0.67 0.48 –
Manual: Error flags 2319 2354 2536 2895 10104

Error flags details:
Words with bad meaning 617 587 800 999 3003
Auxiliary word missing 84 111 96 138 429
Content word missing 72 199 42 108 421
Word form incorrect 783 735 762 713 2993
Superfluous word 381 313 353 394 1441
Non-translated word 51 53 56 97 257

Total serious errors 1988 1998 2109 2449 8544

Bad local word order 117 100 157 155 529
Punctuation error 115 117 150 192 574
. . . . . . . . . . . . . . . . . .
Tokenization error 7 12 10 6 35

Table 6.1: A comparison of two types of manual evaluation (Sentence ranking
and Flagging of errors) and BLEU scores for four English-to-Czech MT systems
from WMT09. Noteworthy best results highlighted in bold, noteworthy worst
results in italics. Adapted from Bojar (2011).

Figure 6.3 documents the situation. The generally lowest performance is ob-
tained in the standard conditions with 1 “official” reference translation. The
error bars reflect the variance due to random subsampling from the full 3k sen-
tences and get narrower as larger and larger portion of the test set is used. With
2k or 3k sentences in the test set, the Spearman’s rank correlation coefficient ρ
reaches levels of 0.9. Using a single reference created by post-editing randomly
selected systems from the set of evaluated systems works clearly better, reaching
correlation of 0.95.

We also see from Figure 6.3 that the size of the test set and the number of
references can somewhat compensate for each other. Specifically, the common
practice of WMT shared translation tasks is to have about 3000 sentences with
a single reference translation. A comparable correlation of BLEU and human
judgements could be also achieved with just 100–200 sentences and 6–7 reference
translations.

6.3 Error Annotations Help to Explain Bad Correlation
for BLEU

In Bojar (2011)2, we experimented with two techniques of detailed error anal-
ysis. One was based on semi-automatic interpreting of post edits of candidate

2(Bojar, 2011) is reprinted as Appendix A.8 on page 151.
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translations and another relied on manual flagging of errors using some error
classification. Here is an example of the error flagging:

Source Sarkozy meets angry fishermen.
Reference Sarkozy jde vstř́ıc rozhněvaným rybář̊um

Moses Sarkozy se missC: setkává missA: s form rozzlobeńı rybáři.

TectoMT Sarkozy disam splňuje missC: vstř́ıc naštvané form rybáře.

Google Sarkozy lex splňuje form zlobit form rybář̊u.

PC Translator Sarkozy se setkává missA: s form rozhněvané form rybáře.

In our annotation, we attached flags to individual tokens in MT output (and
added tokens for missing words). The example illustrates errors in word form
choice ( form ), word meaning (source word disambiguation disam and bad lexical
choice lex ; the last two are difficult to distinguish and have the highest disagree-
ment rate), as well as missing content ( missC ) and auxiliary ( missA ) words.

Both post-editing and error flagging led to similar conclusions about the MT
systems competing in English-to-Czech translation back then: the traditional
commercial system PC Translator was quite bad in lexical choice, TectoMT per-
formed best in picking the right form of the word and phrase-based Google and
our Moses were generally good in lexical choice but suffered from errors in mor-
phology.

The flagging of errors also allowed to explain the bad performance of BLEU
for this set of systems, see Table 6.1. Our Moses scored best according to BLEU
but ended up third in terms of the WMT09 manual sentence ranking. As the
detailed error flags reveal, the winning PC Translator made by far the least
number of errors in the category of “Content word missing”, while our Moses
dropped almost five times more content words.

6.4 Low BLEU Scores Unreliable

In the English-to-Czech evaluation campaigns 2009 and 2010, we saw a strikingly
low correlation between human judgements about translation quality and BLEU
scores, see the left part of Figure 6.4.

While the correlation of BLEU and human judgements for Czech was low,
we found in Bojar et al. (2010a)3 a high correlation between the absolute BLEU
scores and their correlation to human judgements across all language pairs taking
part in WMT09, see the right part of Figure 6.4. Put simply, BLEU scores below
20 are not reliable.

Bojar et al. (2010a) have also explained the reason for this. The situation is
illustrated in Table 6.2 which compares the sets of n-grams in outputs of several
MT systems deemed correct according to (1) the presence of the n-gram in the
reference translation vs. (2) the absence of manual error flags described above.

3(Bojar et al., 2010a) is reprinted as Appendix A.10 on page 175.
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Figure 6.4: Left: Low correlation between BLEU and human judgements. Each
point corresponds to one MT system, different point styles indicate a different test
conditions. We see no correlation between BLEU and manual judgement. Right:
A good correlation between the BLEU scores and their correlation with human
judgements, i.e., higher BLEU scores correlate well with humans and lower BLEU
scores do not. Each cross corresponds to one language pair, showing the average
and standard deviation of BLEU scores and manual judgements across all systems
for that language pair. Simplified from Bojar et al. (2010a).

Two situations are desirable: when the n-gram does not contain errors and
it is confirmed by the reference, and when the n-gram contains errors and the
reference does not confirm it. This happens for 59% of unigrams and 56% of
bigrams, etc. False positives (n-grams confirmed but containing an error) are
luckily rather rare: 6% of unigrams, 2% of bigrams, etc.

The reason for unreliability of BLEU at low scores lies in the fourth case:
error-free n-grams that are nevertheless not available in the reference. BLEU
does not give any credit to them but the systems can quite differ in the quality
of translation in these cases. As seen in Table 6.2, this amounts to more than a
third of unigrams, 43% of bigrams etc.

Post-edited references discussed in the previous section are much closer the
to candidate translations and don’t suffer from this lack of coverage. The un-
confirmed n-grams will be only those where the post-editor needed to rephrase
the sentence to fix some error or disfluency. Any decrease in BLEU will thus
correspond to genuine issues of the candidate translation.

In Bojar et al. (2010a), we proposed to increase the coverage of BLEU by
matching the candidate with the reference at a coarser level of representation,
namely bags of deep-syntactic lemmas (separate for each deep-syntactic part of
speech) instead of the common longer n-grams of exact word forms. For English-
to-Czech, this increased the correlation in that particular experiment from 0.33
to 0.53.
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Confirmed by Ref Contains Errors 1-grams 2-grams 3-grams 4-grams
Yes Yes 6,34 % 1,58 % 0,55 % 0,29 %
Yes No 36,93 % 13,68 % 5,87 % 2,69 %
No Yes 22,33 % 41,83 % 54,64 % 63,88 %
No No 34,40 % 42,91 % 38,94 % 33,14 %
Total n-grams 35 531 33 891 32 251 30 611

Table 6.2: n-grams as confirmed by the reference and/or by containing or free
from errors according to manual error flagging. Lack of coverage of the reference
highlighted in bold. Reproduced from Bojar et al. (2010a).

In Macháček and Bojar (2011), we further elaborated on that, moving back to
the less computationally-demanding shallow but still sufficiently coarse features
of words. We also confirmed the applicability of the proposed method in model
optimization, performing acceptably in the main manual scoring that rewarded
tied results and getting the best score when ties were disfavored (Callison-Burch
et al., 2011). See also Section 7.1 for a discussion the manual evaluation method.

6.5 MT Evaluation Focused on Semantics

With the success of neural MT, the focus of MT evaluation has to be changed as
well. Multiple studies (Bentivogli et al., 2016a; Bojar et al., 2016a; Castilho et al.,
2017b,a) suggest that NMT primarily improves fluency. Adequacy of translations
is improved as well, but to a smaller extent. We would therefore expect that,
on average, misunderstandings due to MT errors will be less frequent, but at
the same time, they will be harder to notice: MT output will be more often
seemingly perfect but including a semantic flaw.

For that reason, we have revived our interest in semantic correspondence
between the candidate translation and the reference. In Bojar and Wu (2012),
we experimented with HMEANT (Lo and Wu, 2011), a manual method of MT
evaluation based on aligning the predicate-argument structures of the candidate
and the reference. Building upon that, we designed a manual method of MT
evaluation that closely follows the semantic structure of the source sentence (and
not the reference, thereby avoiding the need to parse the often garbled MT
output) in a joint work (Birch et al., 2016).
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Shared Tasks

To reliably measure progress of the field of natural language processing and
machine translation in particular, approaches to problems and proposed solutions
have to be regularly compared in a rigorous way. Such a comparison is however
often difficult to achieve due to many interacting conditions and generally large
efforts are needed.

The common practice in NLP resolves this by shared tasks: regularly or
independently organized events where the organizers specify an exact task de-
scription and usually provide training datasets and then collect submissions from
participants to evaluate them in a clear and comparable way.

The history of shared tasks related to machine translation has been sum-
marized in Bojar et al. (2016c)1 for WMT (originally Workshop on Statistical
Machine Translation which became an ACL-sponsored conference in 2016) and
in Bentivogli et al. (2016b) for IWSLT, a workshop focused primarily on the
translation of spoken language.

Over the years, our contribution to the course of WMT shared task has
been twofold: (1) contributing to best practices in MT evaluation, and (2) co-
organizing various tasks. We summarize these contributions in the following
sections.

7.1 Avoiding Bias in WMT News Translation Task

The main shared task at WMT is translation of news text, see Koehn and Monz
(2006) through Bojar et al. (2017a). Thanks to our participation in the EU
project EuroMatrix2 and subsequent EU projects within the 6th and 7th Frame-
work Programmes and in H2020, Czech has been included in this task every year
since 2007. We also participated in the task with our translation systems of
diverse nature.

Up until 2016, the main WMT evaluation measure was derived from anno-
tation screens of up to five systems ranked manually according to the perceived
translation quality. The annotators were presented with the source, the reference
translation and 5 candidate outputs and they indicated the relative quality of

1(Bojar et al., 2016c) is reprinted as Appendix A.12 on page 193.
2http://www.euromatrix.net/
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Figure 7.1: Illustration of an artificial collection of manual rankings as used
in WMT until 2016. The sample annotation consists of 10 annotation screens
in total, in 6 of which the system D wins and in 4 of which it loses. Its four
competitors M1. . .M4 are always on par. Individual annotation screens may be
provided by different people.

Interpretation “≥ Others” “> Others” “Ignore Ties”

Formula wins+ties
wins+ties+losses

wins
wins+ties+losses

wins
wins+losses

Favors “mainstream” “distinct” -

D 6 × 4 = 24/40 24/40 24 / 40 = 6/10
M1 10 × 3 + 4 = 34/40 4/40 4/10

Figure 7.2: Various ways of handling ties in WMT ranking. The calculations are
based on the sample annotation from Figure 7.1. When ties are rewarded (“≥
Others”), the tying systems M1. . .M4 “support” each other and each of them
thus seems to perform better than D (34/40 over 24/40 wins), unduly favouring
similar systems. Penalizing ties (“> Others”) promotes distinct systems like D.
“Ignore Ties” is a fairer option, for which we advocated in Bojar et al. (2011).

these translations; see Figure 7.1 for sample dataset of judgements (the underly-
ing sentences were selected randomly from the test set and were not important
when interpreting the evaluation, we thus omit them in the picture). In practice,
the exact set of 5 ranked systems differed from screen to screen, sub-sampling
five-tuples from all the competing systems.

Observing the performance of our systems in 2010, we noticed that the same
collected judgements can be interpreted in subtly different ways, leading to dif-
ferent results. We thus carefully analyzed the discrepancies and reported them
in Bojar et al. (2011). Here we highlight two of the issues:

Rewarding ties unduly favors similar systems. Figure 7.2 illustrates that
depending on the treatment of cases where more systems receive the same
rank in an annotation screen, the final ordering of the systems can differ.
Specifically, WMT used to rely on a formula that rewards ties (“≥ Others”;
“systems . . . are ranked based on how frequently they were judged to be
better than or equal to any other system”, Callison-Burch et al., 2010).
This choice can be considered particularly problematic since several system
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Figure 7.3: Intra- and inter-annotator agreement in terms of the kappa statis-
tic (left axis) of WMT10 evaluation, including of excluding comparisons with
reference translations. “Histogram of sentence lengths” (right axis) shows the
distribution of sentences in the test set. Adapted from Bojar et al. (2011).

submissions were always based on the Moses translation system, where
similar translation quality can be expected.

Agreement rates decrease with sentence length. The aggreement rates be-
tween different people (inter-) and between annotations of the same person
(intra-) have been reported along with the results since Callison-Burch et
al. (2007), in the form of Cohen’s kappa (Bennett et al., 1954). In Bojar et
al. (2011), we noted that the agreement decreases with sentence length as
illustrated in Figure 7.3. Following indicative ranges for the kappa statis-
tic,3 we see that the inter-annotator agreement when comparing two real
systems (as opposed to one system and the reference translation) gets close
or below what Landis and Koch (1977) suggest as moderate agreement. Im-
portantly, it turns out that the majority of the evaluated sentences are of
this length.

Our discussion sparkled further research and evolution of the method of man-
ual ranking (Lopez, 2012; Koehn, 2012; Hopkins and May, 2013). The current
method called “direct assessment” (Graham et al., 2016) simplifies the task by
evaluating only one candidate at a time and asking the annotator to provide a
score on an effectively continuous absolute scale given only the reference transla-
tion, not the source. Direct assessment became the official method only in 2017
(Bojar et al., 2017a) so we still anticipate further developments in this area in
the coming years.

3However, see the discussion in Komagata (2002).
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’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17

Participating Teams - 6 8 14 9 8 12 12 11 9 8
Evaluated Metrics 11 16 38 26 21 12 16 23 46 16 14
Baseline Metrics 5 6 7 7 7

System-level evaluation methods
Spearman Rank Correlation        #
Pearson Correlation Coefficient #     

Segment-level evaluation methods
Ratio of Concordant Pairs   
Kendall’s τ ¶ ¶ ¶ · ¸ ¸ ¸ H
Pearson Correlation Coefficient # G

Tuning Task    

 main and # secondary score reported for the system-level evaluation.

¶, · and ¸ are slightly different variants regarding ties.

Table 7.1: Summary of metrics and tuning tasks over the years. The vertical bar
indicates since when we started co-organizing the task.

7.2 Organizing Shared Tasks

Since 2013, we have been actively involved in the organization of shared tasks of
various types:

News Translation Tasks attract the largest number of participants each year.
The main goal, translating short news stories, remains unchanged while the
underlying set of languages slightly changes every year. The test sets for
the task are created anew each year, to provide the participants with gen-
uinely novel text. Huge collective effort is spent on manual evaluation and
throughout the years (also due to our analysis presented in Section 7.1
above), the task saw a few modifications to the official method of evalua-
tion.

Our contribution to the organization slightly varied through the years, but
every year, we arranged the selection and fixes to the Czech part of the
test set (without actually looking at it, to avoid any advantage over other
participants in the task), and we organized the evaluation of Czech, relying
on a large pool of our Czech colleagues and other annotators.

We were involved in five such campaigns so far (Bojar et al., 2013b, 2014,
2015, 2016a, 2017a).

Metrics Tasks build upon the large pool of manual translation quality judge-
ments collected in the evaluation of News Translation Task and test the
performance of automatic metrics against human scoring. Since 2008, two
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levels of evaluation are considered: “system-level” (metrics have to pre-
dict the quality of a set of sentences) and “segment-level” (metrics have to
predict the quality of every sentence).

We were co-organizing five metrics tasks (Macháček and Bojar, 2013; Macháček
and Bojar, 2014; Stanojević et al., 2015b; Bojar et al., 2016d, 2017b) and
Table 7.1 provides an overview of the full history of the task.

In 2016, we trialled the use of direct assessment as the golden truth in the
metrics task and in 2017, it became the official method of news task eval-
uation, so we switched to it as well. For some language pairs, the direct
assessment method did not allow to collect sufficient number of manual
judgements and we had to resort to the older style of comparison, as indi-
cated by the symbols G and H.

It used to be the case in the past, that successful metrics from one year
were never submitted again in the subsequent editions of the task simply
because their authors got interested in other topics. To at least partially
avoid this loss, we introduced a set of baseline metrics and regularly include
them in the task. Accumulating the results over the years (i.e., a varied
set of language pairs and evaluated MT systems), we can draw more stable
conclusions about the overall performance of these metrics. A first such
summary was presented in Bojar et al. (2016c).

Tuning Tasks were devoted to the model optimization as mentioned in Sec-
tion 2: a fixed set of model components for a fixed MT system was provided
and task participants had to find the best weight settings. The transla-
tions using these settings (run by the task organizers) were then evaluated
manually among the News task submissions. The point of the tuning tasks
was to assess the applicability of various MT metrics in model optimization
and the performance of various model optimization techniques themselves.

After two rounds of the tuning task (Stanojević et al., 2015a; Jawaid et
al., 2016), we concluded that the variance among the different submis-
sions in large-data setting (Tuning Task 2016) is small. The results have
nevertheless clearly indicated that there was some progress in the opti-
mization algorithms, KBMIRA (Cherry and Foster, 2012) outperforming
the prevalent MERT (Och, 2003), but not in metrics when used for model
optimization: BLEU (Papineni et al., 2002) was still the method that led
to the best-performing systems in terms of final manual evaluation.

Neural MT Training Task (Bojar et al., 2017c) is a new type of task we
proposed in respose to the shift to neural MT. The performance of neural
MT models is affected by several more or less independent aspects: (1) the
model structure, (2) the available training data and their pre-processing
and (3) the technique used to train the model. In the NMT training task,
we fixed (1) and (2), providing task participants with a pre-defined model
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in the Neural Monkey toolkit (Helcl and Libovický, 2017), pre-processed
training data and some suggestions what would be interesting to evaluate.
As with the tuning tasks, participants did not run the translation them-
selves, they only provided the trained models. We applied the models to
the WMT17 news test set and included these outputs in manual evaluation
of WMT17.

The results indicate that statistically-significant differences in translation
quality can be obtained by different training techniques, and the more
successful submissions shared one particular property: they adapted the
training corpus to the news domain by subsampling it or by promoting such
sentence pairs. Domain adaptation is thus a critical step in the training of
neural MT.

Further long-term observations of the news translation task (esp. its manual
evaluation) and the metrics task (a summary of the best performing metrics
across the years) are provided in Bojar et al. (2016c).4

4(Bojar et al., 2016c) is reprinted as Appendix A.12 on page 193.



Chapter 8

Summary

This habilitation thesis summarizes the contributions of Ondřej Bojar in the
area of machine translation and machine translation evaluation focused on the
translation into morphologically rich languages, mainly from English into Czech.

As documented in the attached publications, the author has:

• created a large automatically-annotated corpus CzEng, allowing a wide
audience of researchers to experiment with English-Czech translation and
allowing Czech to become a frequent example language in MT research,

• exploited explicit morphological information to improve translation quality
into Czech, using several different techniques and different settings: word
forms known but less frequent in parallel data, word forms not available in
parallel data but covered in monolingual data and word forms not available
even in the monolingual data,

• experimented with incorporating deep syntactic processing into machine
translation systems, proposing a technique that defined the state of the art
for news translation from English to Czech in years 2013–2015,

• contributed to techniques of MT evaluation by analyzing the space of pos-
sible translations, difficulties of MT evaluation and issues of the most com-
monly used MT evaluation method,

• supported the MT community by co-organizing shared task and also sig-
nificantly contributing to the practices in translation task evaluation.

The original scientific papers detailing these contributions are reproduced in
Appendix A, pages 63–200.
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Roman Sudarikov, and Dušan Varǐs. CzEng 1.6: Enlarged Czech-English Parallel Corpus
with Processing Tools Dockered. In Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel Pala,
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Mareček. Formemes in english-czech deep syntactic MT. In Proceedings of NAACL 2012
Workshop on Machine Translation, pages 267–274, Montréal, Canada, 2012. Association for
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chapter 14
........................................................................................................

MACHINE TRANSLAT ION
........................................................................................................

ondřej bojar

14.1 Introduction
.............................................................................................................................................................................

The goal of machine translation (MT) is easy to define but hard or impossible to
achieve in its entirety: to implement a computer program that takes some text in one
natural language (the source language) and produces the equivalent in another natural
language (the target language). Although MT is a quintessentially linguistic problem,
most current MT systems are fuelled by statistics rather than linguistic rules. Since the
statistics are based on what has been observed in a corpus, morphological productivity
leads to a problem of data sparsity in that many of the word forms will be unobserved
or insufficiently observed even in a very large corpus. The problem is compounded
by divergences between source and target languages. Divergences arise when one lan-
guage has morphological exponence of concepts that are not expressed explicitly in the
other language. Number, for example, is difficult to translate from Chinese to English
because it is not explicitly marked in Chinese. Another type of divergence arises when
meanings are expressed by bound morphemes in one language and by free words in
another.

Hopes for an automatic translation system have been around since the era of John
von Neumann and Alan Turing, see Hutchins (2005) or the very optimistic IBM
press release in 1954.1 A notable drop in MT research activity followed the ALPAC
report (ALPAC 1966; Hutchins 2003), which raised scepticism about the possibility of
automatic translation.

Since the ALPAC report, the field has recovered its reputation mainly by addressing
two shortcomings. First, it was necessary to establish reasonable expectations about
MT output and its uses. Fully automatic translation might still be of low quality, but it
might be useful for gisting large amounts of material. Higher quality might be required

1 <http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html>.
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for the dissemination of technical information such as equipment repair manuals, but
this could be achieved if the semantic domain was limited (Reuther 2003; Muegge
2007) or if human post-editors were involved in the process (Koehn and Haddow 2009;
Plitt and Masselot 2010; Federico et al. 2012). Secondly, if MT were to be commercially
viable and fundable as a research area, it would be necessary to measure progress. Hav-
ing humans judge MT quality proved to be too slow to support rapid research cycles
of evaluation and improvement of MT systems. A giant leap forward was facilitated by
the introduction and wide acceptance of automatic metrics of MT quality (Papineni
et al. 2002). Despite all the shortcomings of such evaluation methods, as we will see
in Section 14.4.5, including a bias towards linguistically superficial statistical methods,
the automatic evaluation methods have facilitated large-scale research in MT.

The Holy Grail of MT is a system that is fully automatic (without human interven-
tion), domain independent (able to translate a variety of text and speech genres), and
high quality. This goal remains elusive. However, many research projects nowadays
focus a range of applications that already have satisfied users:

• free MT services on the Internet: although the output is usually not perfect, it may
be useful for understanding or conveying the gist of a text;

• integration of MT into platforms for computer-assisted translation (CAT), which
may include confidence estimation to automatically identify near-perfect seg-
ments or mark problematic parts of the output;

• integration of MT into applications such as cross-lingual information retrieval.

14.2 Machine Translation and
Rich Morphology

.............................................................................................................................................................................

14.2.1 History of MT with Rich Morphology

Lopez (2008) mentions that a large proportion of MT research deals with translation
into English, with the side effect of obscuring deficiencies of the current approaches
with respect to morphological complexity. To verify this claim, we analysed papers
available in the Association for Computational Linguistics (ACL) Anthology.2 Subject
to optical character recognition (OCR) and other conversion errors, our collection as
of October 2013 contains 27,015 documents. We selected only those published in 1985
or later that have between 2,000 and 9,000 words to avoid short abstracts or whole
workshop proceedings, leaving us with 21,291 papers. About one-quarter of all of these

2 <http://aclweb.org/anthology/>.
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papers mention MT once or more and about 3,500 papers mention MT twice or more
with a clear increase in counts since 2007.

When searching for language names in the 3,500 papers presumably on MT, we
see that 85 per cent of them mention English and about one-quarter of them con-
tains the phrase (in)to English. The second most frequent language is morphologically
poor Chinese (mentioned in about a third of the papers). The remaining most
studied languages, each appearing in a few hundred MT papers, have differing degrees
of morphological complexity (French, German, Czech, Japanese, Spanish, Arabic,
Korean, Italian, Dutch, Hindi, and Russian), representing six genetic or typological
groups, four of which are Indo-European (Romance, Germanic, Slavic, Indo-Iranian,
Japanese/Korean, and Semitic). Many other language families with richer morphology
have little coverage, such as Turkic or Uralic (e.g. Turkish is mentioned in about 100
papers, Hungarian in 70 papers and Finnish in 60 papers), or are almost totally absent
such as Bantu, Austronesian, Dravidian, and Eskimo-Aleut (used in two parliaments:
Canada and Greenland).

14.2.2 Morphological Richness

In the field of MT, morphological richness can be measured by examining the number
of different tokens in a corpus. We will use the term token to denote an occurrence
of a word or punctuation mark in a text. A type of program called tokenizer separates
a text into tokens based on various criteria (depending on whether the language uses
spaces between words). Punctuation marks also get separated from adjacent words or
other punctuation marks, forming tokens on their own. The term vocabulary size
refers to the number of distinct token types (referred to as word forms) seen in a given
text.3 The word forms cat and cats are two different vocabulary items for us. For our
purposes, we define morphological richness only in contrast to another language as
the relative vocabulary size compared to the same text in the other language. We will
also use the broad term morphologically rich language (MRL) to denote a language
richer than English.

Consider the book 1984 by George Orwell in the original English and translated
to ten other languages. Table 14.1 provides statistics of this book as morphologically
annotated in the project MULTEXT-East (Erjavec 2010). Obviously, all the variants
of the book tell the same story and the almost identical number of paragraphs and
sentences validate the statistics. In contrast, the vocabulary sizes greatly vary across lan-
guages, English being one of the least morphologically rich languages and all other ones
having 1.82±0.28 times bigger vocabulary on average. The differences in vocabulary
size become much less pronounced if we move from distinct word forms to lemmas

3 Perhaps somewhat unintuitively, the term ‘word form’ usually does include punctuation marks and
punctuation marks are thus regular entries of the ‘vocabulary’.
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Table 14.1 MULTEXT-East statistics of the book 1984 by decreasing ‘Lemmas’
count

Tokens Vocabulary size in terms of

excl. punct Word forms Lemmas Paragraphs Sents

Slovak 84062 20240 10065 1359 6354
Hungarian 80708 20311 10050 1303 6768
Polish 79772 21051 9451 1401 6666
Czech 79870 19107 9114 1298 6752
Estonian 75431 17836 8724 1266 6478
Bulgarian 86020 16343 8516 1322 6682
Serbian 89829 18082 8392 1293 6677
Slovenian 90792 17861 8303 1288 6689
Romanian 101772 15195 7249 1343 6520
English 104286 9762 7069 1287 6737
Persian 95812 11308 6597 1266 6604

(‘base’ or citation forms of words): other languages have on average 1.22±0.15 times
more distinct lemmas than English.

Morphological richness may be caused by inflection or derivation. However, in MT,
and especially in contemporary statistical MT, we are not aware of any issues specific
to languages rich by inflection as opposed to languages rich by derivation.

What is relevant in MT though, are the differences in morphological richness
between the two languages in question. We see four different cases:

• richer language on the source side (such as Czech→English);
• richer language on the target side (such as English→Czech);
• both sides comparably rich and similar in the system of morphological properties

as well as syntactic patterns (such as Czech-Slovak), which allows translation by
token;

• both sides comparably rich but more distant in the set of explicitly represented
morphological features, word structure, or sentence structure (such as Czech-
Turkish or German-Finnish), so that translation token by token is no longer
linguistically adequate.

Birch et al. (2008) and later Koehn et al. (2009) find, on a large set of European lan-
guages, that the target-side vocabulary size is one of the most important reasons for
the failure of MT systems of the phrase-based variety (see Section 14.3.3). Finnish
was an extreme representative in the experiment, with vocabulary size (in terms of
distinct word forms) more than five times larger than English. On the other hand,
the source-side richness was not identified as critical. There are two possible expla-
nations. First, the observation may be a side effect of automatic evaluation methods
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(Section 14.4.5), which often require an exact match between the output tokens of
the MT system and a human reference translation. With a larger target-side vocabu-
lary, the match is less likely regardless of translation quality. Secondly, MT is actually
harder into languages with a larger vocabulary size, because there are more possible
outputs to choose from. This choice is further complicated by the fact that less frequent
word forms are not adequately observed in a corpus, which negatively affects both the
bilingual ‘translation dictionaries’ (Section 14.4.2) and the target-side language models
(Section 14.4.4).

If both languages are comparably rich and match in the set of morphological prop-
erties overt on the surface (of matching words), the system can very successfully
decompose translation into independent streams of information, the lexical values and
the morphological properties, see also Section 14.5.1.

We are not aware of much MT research devoted to rich and morphologically non-
matching pairs of languages aside from a few preliminary attempts for Arabic and
French (Hasan and Ney 2008) or Italian (Cettolo et al. 2011) and the broad experi-
ment of Koehn et al. (2009) where, for example, Hungarian–Finnish had very poor
results in both directions. Certainly, language pairs excluding English are going to be
the next focus of the field and interesting efforts in this respect have already started
(Megyesi et al. 2010).

On a general note, rich morphology is bound to make the translation harder for
simple combinatorics reasons. Having a sentence of n words requires us in principle to
consider up to n! word permutations. Modelling morphology explicitly would force us
to operate on characters instead of words, considering up to all character permutations
of sentences. For m characters in a sentence of n words, m > n and thus m! ≫ n!.

14.3 Anatomy of a Statistical MT System
.............................................................................................................................................................................

Dorr et al. (1998) provide an excellent survey of approaches to machine translation
(MT), starting with a list of linguistic problems MT has to handle and including a cat-
egorization of rule-based systems depending on the deepest level of linguistic analysis
performed by the system (morphology, syntax, or semantics). At that time, there was
a division of approaches in MT depending on whether the system consisted mainly of
rules written by linguists (rule-based systems) or whether the system consisted mainly
of statistics about correspondences between languages learnt from a bilingual corpus
(corpus-based systems). Early corpus-based systems that focused on probabilities of
translations of individual words did not have the capability to work with linguistic
structures such as parse trees and predicate–argument structures.

In a more recent survey, Lopez (2008) focuses on approaches to MT that can be
called ‘statistical’ (SMT) regardless of the depth of linguistic analysis. The ten years
between the surveys saw a great shift towards data-oriented (including statistical)
approaches in general. The rivalry between rule-based and corpus-based systems has



Machine Translation (Chapter in Oxford Hbk. of Inflection) 71

328 ondřej bojar

been softened in that corpus-based systems are now able to work with statistics about
structures such as parse trees and developers of rule-based systems are more likely to
use a large corpus to discover the necessary rules.

The design of any MT system, whether corpus-based or rule-based must designate
an approach to the following questions:

• What is the smallest unit of translation (e.g. morpheme, word, string of words,
syntactic constituent, or dependency treelet, etc.)?

• How is an input sentence decomposed into such units (including the selection of
some top-scoring subset of all the possible decompositions)?

• How is each of the source units translated (including the selection of the subset
of preferred translations)?

• How is the output string of words generated from the set of target-side units?

Different choices of the unit of translation and the design decisions for the processes
of decomposition, translation of the units, etc. are associated with many different
approaches to MT.

Translation units usually include morphological information but depending on the
system type, the information can be implicit in exact word forms if the system does
not analyse them further (e.g. in phrase-based MT, Section 14.3.3), or it can be rep-
resented formally using various attributes or node properties and thus detached from
the lexical value of the word. Existing systems differ in how far the formalization goes
and how easy it is for the system to access the lexical value when handling the mor-
phological attributes or vice versa. Dealing with translation inputs that have not been
observed during training is a particular problem in languages with very productive
morphology.

As most MT systems are currently corpus-based and statistical, we will briefly review
the components of a statistical MT system, focusing particularly on the most common
type of statistical MT system: a phrase-based system. For other approaches, we just
mention some interesting specifics on handling inflection, see Section 14.5.

14.3.1 Learning from Corpora

Statistical MT systems are learnt from parallel corpora. One side of the parallel corpus
consists of sentences in the source language and the other consists of sentences in the
target language. We can assume for now that the source and target language sentences
in the corpus line up with each other roughly one-to-one. The parallel corpus is used
for learning probabilities, largely by counting things such as how frequently a particu-
lar source language word and a particular target language word occur in corresponding
sentences; or how frequently a particular target language word follows another partic-
ular target language word. During training, probabilities are learnt from the parallel
corpus using complex algorithms capable of dealing with large amounts of data, and
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often requiring much computing time. When the system is used for translation, the
probabilities learnt in training are applied to a new sentence in order to find its most
probable translation.

Regardless how large the training corpus is and how complex translation units were
chosen (words, parts of words or larger units such as sequences of words, or subtrees
in a syntactic representation), we cannot expect to see all possible units in the training
corpus. Even if all of the source–target pairs of units are observed, they will not be
observed in every possible context.

That is, when the system translates a sentence, it is very unlikely that it has seen the
precisely same sentence before (unless it is translating a very restricted genre). All prac-
tical MT systems therefore include some form of generalization in order to be able to
assess the translation equivalence of unseen sentence pairs in the same way as humans
do. Breaking up sentences into smaller units is the first vital step to such generaliza-
tion, but as mentioned, the system will encounter even unseen units. In MRLs, such
unseen units are more likely and in order to adequately handle them, the system should
generalize further.

For statistical systems, the term smoothing is used to refer to this generalization
capacity: some function is applied to the observed occurrence counts to ‘smooth out’
the rough edge between a unit never seen and a unit observed once. Unobserved units
need some non-zero probability.

14.3.2 MT Pipeline

The process of creating an MT system as well as applying it to unseen texts is sometimes
referred to as the ‘MT pipeline’. The pipeline originally comes from statistical phrase-
based systems (see Section 14.3.3) and it applies well to most data-driven paradigms
but at least some of the steps in the pipeline are relevant even for very different MT
paradigms such as rule-based MT.

The full pipeline (Figure 14.1) includes the following steps: word alignment
(i.e. finding corresponding tokens in sentence-parallel training data), extraction
of translation units (i.e. automatic construction of a system-specific ‘translation
dictionary’), estimation of output fluency (the language model), translation of unseen
text, automatic evaluation of MT output, and model optimization (also called tun-
ing; i.e. finding the best internal settings, e.g. weights of individual components of the
system).

There are four main flavours of relevant data: target-side monolingual texts for
language modelling, large parallel texts for extracting translation units and their equiv-
alents, a small held-out parallel text (development set, devset) for model optimization,
and finally the input we want to have translated.

All the textual data undergo a common preprocessing such as tokenization and tag-
ging. While the preprocessing mostly deals with just technical issues, it easily lends
itself to various linguistically motivated tricks, see Section 14.5.2.
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Preprocessing: tokenization, tagging…

Input

fig. 14.1 Typical components of a phrase-based and many other statistical MT systems.

14.3.3 Phrase-based MT (PBMT)

Statistical phrase-based MT (PBMT, Koehn et al. (2003)) superseded word-based sta-
tistical models (Brown et al. 1988) and has dominated the last decade of MT. One
of the reasons is the applicability of the model to any language pair and part of its
success also comes from the availability of the complete open-source toolkit Moses
(Koehn et al. 2007).

The unit of translation in PBMT is a phrase or rather a phrase pair. The term refers
simply to a sequence of tokens, completely disregarding any syntactic structure of the
sentence.

Note that in its basic formulation, PBMT operates with word forms. The phrase
pairs translating, for example, the word cat are thus not related to the phrase pairs for
cats at all. In Section 14.5.2.1, we describe an attempt to relax this limitation.

Without delving into the underlying statistical models, the essence of phrase-based
MT can be illustrated by Figure 14.2. The matrix with solid dots illustrates one sentence
pair from a large parallel corpus. Each dot corresponds to one automatically estimated
point of word alignment. The word alignments serve as the basis for the construction
of the critical data resource of PBMT, namely the phrase table. The phrase table serves
as the ‘translation dictionary’ for PBMT. It is extracted using just a simple heuristic: all
phrases consistent with the word alignment are included. A phrase (pair) is consistent
with the alignment if no word is linked to a word outside of the phrase.

When a new sentence is to be translated, all decompositions of the sentence into
non-overlapping phrases are considered in the search for the best output. Each source
phrase is equipped with all its translations as available in the phrase table. The out-
put is gradually constructed from left to right by picking phrase translations for input
words that have not yet been covered. Many such partial outputs are constructed and
considered in order to select the best output according to a weighted score including
the translation probabilities of individual phrases, the ‘language model’ (a model
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fig. 14.2 Sample word alignment (solid dots) and some of the phrase pairs that are consistent
(solid black rectangles) or inconsistent (the grey dashed rectangle) with the English sentence
This time around, they’re moving even faster and its Czech counterpart Tentokrát zareagovaly
ještě rychleji

approximating output fluency, see Section 14.4.4), the number of phrases used, the
number of words produced and several other criteria. The space of possible transla-
tions is extremely large, so less promising partial outputs are pruned (discarded) early.
Pruning can lead to so-called ‘search errors’, that is, situations where a good transla-
tion becomes inaccessible because its beginning scored too low and was pruned away.
Chang and Collins (2011) show that Moses makes search errors quite frequently but
they do not seem to be detrimental to the (automatically estimated) translation quality.

Across almost all language pairs, PBMT is relatively successful. Humans may find
the output unintelligible or full of errors but it is surprisingly difficult to outperform
the PBMT baseline. The reason for this success lies in the ability of reproducing quite
long sequences verbatim. In repetitive text domains, this greatly reduces the risk of
mishandling known sentences.

14.4 Problems in MT Caused by Rich
Morphology

.............................................................................................................................................................................

Without adhering to any particular framework, we will describe problems of MT
caused by rich morphology in terms of the typical ‘MT pipeline’ as introduced in
Section 14.3.2.

14.4.1 Word Alignment

Given a corpus of parallel sentences, we need to learn the correspondence between
smaller units in the source and target languages. The most apparent units to consider
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are tokens, although more adequate models aligning morphemes are being studied, see
the end of this section.

A very powerful statistical model for word alignment is IBM Model 1 (Brown et al.
1993). The model assumes that every word form in the source language (e.g. cat in
English) has a probability distribution of correct translations in the target language
(e.g. kočka in Czech), or possibly no counterpart: cat is a likely translation of kočka,
while dog is not; the English article the frequently has no Czech counterpart. Given a
sentence pair and some estimate of the word-to-word translation probabilities, IBM
Model 1 finds the alignment of tokens between the source and target that maxi-
mizes the overall translation probability. The Expectation-Maximization algorithm
(Dempster et al. 1977) is used to iteratively improve the estimated word translation
probabilities and alignment probabilities starting from uniform distribution. Because
this is learnt from a corpus with no human intervention, the word translation proba-
bilities (sometimes called lexical translation probabilities) as well as word alignments
frequently contain errors. Fortunately, in large datasets, true translations of words
dominate the distributions.

Rich morphology, and inflection in particular, causes a ‘sparse data’ problem for
the task. If a word in both source and target languages does not undergo any inflection,
all co-occurrences of the word and its translation contribute to the same entry in the
word-to-word dictionary, making the estimate more reliable. Otherwise, for example
in Czech–English translation, the model has to learn independently that the Czech
zelený (masculine singular, ambiguous between nominative, accusative, and vocative),
zeleného (masculine singular, ambiguous between genitive and accusative), zelenou
(feminine singular, ambiguous between accusative and instrumental), etc., are all valid
translations of the English green. The hardest case are language pairs with both lan-
guages rich in inflection: the word-to-word translation lexicon is polluted with up to
the full Cartesian product (all combinations) of word forms, for example the German
grün, grüner, grünem, etc., vs. the forms of the Czech zelený, see Figure 14.3. Note
that the respective morphological features need not be relevant for both languages
(e.g. there is no strong or weak inflection in Czech) and even if they are, their values can
differ across languages. The problem of sparse data simply arises whenever one Czech
word form of a given word corresponds to multiple German word forms and vice versa.

The main trouble is not caused by the larger storage requirements of such a pol-
luted dictionary, but rather by the lack of enough training data to support all the
combinations with observations.

Given for example two sentence pairs such as:

(1) green colorless ideas sleep = bezbarvé zelené myšlenky spí
(2) I like green pears = mám rád zelené hrušky

the model learns that zelené co-occurs with green more often than it co-occurs with
pears (twice vs. once in this tiny corpus). However, a new form of the word makes no
use of this information in a new sentence pair:

(3) I sat under a green tree = seděl jsem pod zeleným stromem
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German Czech Number Gender Case German Inflection

grüner zelený sg m nom strong
grünen zelený sg m acc strong
grünem zelenému sg m dat strong
grünen zelenému sg m dat weak
. . . . . . . . . . . . . . . . . .

fig. 14.3 A snippet of the Cartesian product of German and Czech morphological variants of
the word green

Without further data, the model is completely uncertain whether zeleným means green,
tree, sat or any other of the words in the English sentence.

Word alignments for rare word forms are established thanks to the assumption
that all Czech words map to an English word. If all other Czech words in the sen-
tence are aligned with a high probability, zeleným is likely to align with the remaining
green. In combinatorics, this is called the ‘pigeon-hole’ principle: if p pigeons enter
h holes in a dovecote and p>h, then at least one hole has to be used by at least two
pigeons.

The quality of word alignments can be greatly increased by using more advanced
models (Brown et al. 1993; Vogel et al. 1996; Liu et al. 2010; Setiawan et al. 2010;
V. Graça et al. 2010). Some models have freely available implementations such as
GIZA++ (Och and Ney 2003) or a parallelized version MGIZA (Gao and Vogel 2008).
However, all of these models treat words as indivisible units. One model (Fraser and
Marcu 2007) treats head words and function words differently, allowing only head
words to link across languages. The function words are used only for modelling within
each separate language. This model would give a promising approach to morphol-
ogy if bound morphemes could be separated from word stems and treated as function
words.

The sparse data issue can be mitigated by conflating morphological distinctions in
one language that are not overt in the other language. A very rough approximation
of lemmas can be sufficient (Corston-Oliver and Gamon 2004; Bojar and Prokopová
2006; Hermjakob 2009), such as the reduction of all word forms to just the first four
letters. Such a ‘lemmatizer’ correctly equates tokens like sleep and sleeps under the
label ‘slee’, leaving irregularities like slept unhandled. False positives like collapsing the
English words envious and environment into a single class ‘envi’ do not cause much
harm in the alignment task because the distributional properties of such unrelated
words are different and only very few random sentences containing both envious and
environment could confuse the model.

Bodrumlu et al. (2009) propose a promising model capable of aligning sub-word
segments. The model performs well on a small English–Turkish corpus, despite
the built-in limitation to 1–1 alignments. Naradowsky and Toutanova (2011)
improve alignment quality using source-side linguistic information and automatically
segmenting target-side words to morphemes that best match the alignments. Sub-word
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features (the set of all prefixes and suffixes) in the discriminative alignment model by
Dyer et al. (2011a) also allow rich morphology to be handled. Recently, Eyigöz et al.
(2013) proposed a two-level alignment model where estimated alignments between
words and then between morphemes within words mutually inform each other. Rare
words are reported to be aligned more reliably than in other models thanks to their
frequent morphemes where the correspondence is stronger.

14.4.2 Extraction of Translation Units

The critical component of most MT systems is some dictionary of translation units. If
the dictionary is extracted from data, inflection causes the sparse data problem again,
as illustrated in Figure 14.3 with the comparison of Czech and German.

In statistical systems, entries in the translation dictionary have to be equipped with
a probability estimated, for example, as the fractional co-occurrence count (maximum
likelihood estimate, MLE):

(4) p(kočka|cat)= occ(kočka,cat)

occ(cat)

If the dataset were large and repetitive enough, the counts would be relatively high
numbers and the fractions would be reliable estimates of the probability. In real-
world datasets, such as the proceedings of the European Parliament (Koehn 2005),
we will be lucky to see cat co-occurring (and correctly aligned) with kočka just a
few times.

The key problem in the extraction of translation units and estimating their proba-
bilities is in interpreting low co-occurrence counts. If we have seen cat just twice and
aligned to koťátko (kitten) just once, should we trust it? If the denominator is reason-
ably high, we can assume a low numerator to be caused by random alignment errors.
A low denominator means trouble: the probability of observed translation equivalents
is often overestimated, for example the cat being translated as kitten in 50 per cent
of cases, while there are salient translations that were not observed and thus have the
probability of zero. This is another instance of the sparse data issue and the necessity
to smooth the observed counts (Foster et al. 2006; Kuhn et al. 2010).

14.4.3 Translation of Unseen Texts

Translation of unseen texts is the heart of MT. The need for generalization capacity
concerns all text units down to word forms: the systems need to accept unseen forms
and generate novel forms of known words as required by context.

Dorr et al. (1998) more or less restrict the issues of target-side generation to cases
where the information is not overt in the source language. This affects both the lexical
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value (e.g. the translation of the German können as either know or be able to) as well as
morphological properties (e.g. the tense in Chinese-to-English translation).

To date, it seems that richer morphology poses problems for MT even in cases
where the information is available, simply because the extent of possible choices is
too complex to be correctly and fully captured by linguistic rules and/or well covered
in available training data.

Languages with rich inflection suffer a great deal from a lack of generalization at
the word level. Specifically, most SMT systems are completely unable to produce novel
word forms or handle unseen words aside from copying them verbatim to the output
(which is a reasonable default for proper names in languages with the same script). It
is very common, even for very large training data, that a particular form of a word is
never seen in the training data.

If this ‘out-of-vocabulary’ issue happens on the source side, the system can in prin-
ciple resort to translating, for example, the lemma instead of the form. Risking an error
in, for example, morphological number for nouns, the system increases the chance of
having seen the translation unit (now the more general lemma) in the training data
and thus producing an acceptable translation; see also the study on error perception by
Kirchhoff et al. (2012). Naturally, the generalization capacity is still in the system: it has
merely been shifted from the MT engine to the pre-processing step of morphological
analysis and/or tagging.

If the out-of-vocabulary issue happens on the target side (i.e. the lemma of the target
word needed is known, but the required word form is not available), typical SMT
systems struggle between producing the most likely translation, that is, the word in an
inappropriate form (even though the language model will not give it a high score) and
choosing a less salient translation that is available in the form needed by the context of
closely neighbouring words.

14.4.4 Language Modelling

A very influential component of MT systems is the language model (LM) that is used
to select fluent sentences among the many possible candidates. Formally, the language
model defines the probability of the sentence being treated as a sequence of tokens.
The standard method is called an n-gram language model, because it decomposes the
sentence into all (overlapping) sequences of n consecutive tokens, always predicting the
last token of this n-gram given the previous n−1 tokens.

While many other sentence decompositions are known to work better, for example
those that follow the dependency structure of the sentence (see Chelba and Jelinek
1998; Fox 2002; Popel and Mareček 2010 and the cited works), they are harder to
integrate into PBMT (Schwartz et al. 2011).

MRLs make the estimation of n-gram LM parameters considerably harder: unless a
given n-gram of words is seen in each considered inflection, the model cannot confirm
its correctness. Stating that an unseen n-gram is impossible would be too harsh, so
LMs are smoothed using one of many proposed methods (Chen and Goodman 1996).
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The standard technique is to consider a shorter n-gram. So if a particular sentence
cannot be confirmed using triples of tokens, only pairs of neighbouring tokens or even
individual tokens are checked. Factored LMs (Bilmes and Kirchhoff 2003) allow a lin-
guistically more motivated smoothing path to be specified, for example to preserve
the length of the n-gram but consider only, for example, the morphological proper-
ties of words ignoring their lexical values or vice versa. So if the sequence big black
cats was never seen, hopefully the sequence adj adj noun was. For morphologically
rich languages, the reduced model could ensure, for example, agreement in case even
for n-grams not seen in the training data, provided that the MT system can actually
propose them. The improvement based on this linguistically motivated smoothing in
PBMT has so far been unfortunately rather small (Yang and Kirchhoff 2006). Recently,
success has been reported in a small data setting with advanced smoothing techniques
based on stochastic processes (Okita and Way 2010, 2011) and some of these mod-
els are even character-based, allowing them to handle morphemes (Mochihashi et al.
2009).

While attempts to model the probability of sentences in a clever way help rather
marginally, the brute force of more training data and the standard n-gram LMs is
successful and hard to surpass (Brants et al. 2007).

14.4.5 MT Evaluation

MT evaluation can serve multiple purposes. If MT is used as a component in a larger
process, it can be evaluated extrinsically, using a method relevant for that particular
application, for example Krings and Koby (2001) and O’Brien (2011) focus on manual
post-editing efforts while Parton and McKeown (2010) aim at cross-lingual question
answering.

Kirchhoff et al. (2012) offer a rather unusual perspective, evaluating the intuitive
perception of MT errors. Using Google translate from English to Spanish followed by
manual correction of MT errors, Kirchhoff et al. find that errors in morphology are
very common but perceived as far less serious than less frequent errors in word order.
Bojar (2011), however, observes for Czech, that errors in word form (including the
negation prefix, reversing the meaning of the sentence) can be difficult to spot if the
user is presented only with the system output.

The more common goal in the MT research community is to measure translation
quality during system development in order to check progress or even improve the
system automatically (Section 14.4.6). The most useful in this respect are automatic
MT evaluation methods. Automatic evaluations are obviously just an approximation
of human preferences and do not always match them but they are much faster, cheaper,
and also reproducible because they do not depend on an annotator’s subjective criteria
and capabilities.

The prominence of MT evaluation as such is highlighted by the series of
WMT workshops, documented in the works of Koehn and Monz (2006) through
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Source The earnings on its 10-year bonds are 28.45%.
Reference Výnos na jejích 10letých dluhopisech je na 28,45%.
System 1 Příjmy na své desetileté dluhopisy jsou 28,45%.
System 2 Příjmy na jeho 10-letých poutech jsou 28.45%.
Another Reference Zisk z jejích 10-letých dluhopisů je 28,45%.

fig. 14.4 Exact match of tokens is too rigid for MT evaluation. In this English-to-Czech exam-
ple, both candidates suffer problems (underlined). Příjmy corresponds to a slightly different
meaning of earnings than that used in the original sentence. System 1 selected a wrong case for
the translation of on its 10-year bonds, resulting in an ungrammatical but understandable sen-
tence. On the other hand, the lexical choice for bonds by System 2 is completely wrong, the word
poutech means handcuffs. In BLEU and other simple evaluation methods, System 1 and System
2 score almost equally. System 1 has preserved the meaning of bonds but due to the different
case, the word form is not confirmed by the Reference. As the last line with another human
translation illustrates, BLEU would equally penalize a different but correct lexical choice (zisk
vs. výnos) and a different morphological variant (dluhopisů), although it is correct and required
by the different preposition (z vs. na).

Callison-Burch et al. (2012) and Bojar et al. (2013b), which regularly include a shared
task on automatic MT evaluation and have led to notable improvements. Starting with
Callison-Burch et al. (2012), one of the tasks is to automatically predict post-editing
effort.

The automatic evaluation is usually based on the (monolingual) alignment between
the evaluated MT output (also known as the hypothesis) and one or more reference
translations.

If the target language is rich in inflection, it can happen that the hypothesis and the
reference share the content words but, due to a different grammatical relation being
chosen, they do not match in form. Simple exact token match as implemented in the
most widely used metric BLEU (Papineni et al. 2002) is unable to align such forms
and penalizes a significant portion of the hypothesis just as much as it would penalize
completely garbage words, see Figure 14.4 for an example. Bojar et al. (2010) report
that about one-third of output tokens of English-to-Czech MT systems are not scored
by BLEU (because they are not confirmed by the reference) and still do not contain any
error based on manual flagging of errors.

Having more references helps to mitigate the issue, because they are more likely
to confirm the particular forms chosen in the hypothesis. Dreyer and Marcu (2012)
propose a technique that captures ‘all’ possible reference translations in a compact
data structure and observe that naturally occurring English sentences have billions of
meaning-equivalent variations. Bojar et al. (2013a) adapt the technique for languages
with richer morphology and morphological agreements that would be cumbersome
to ensure in the framework by Dreyer and Marcu. The observations are similar: hun-
dreds of thousands of correct Czech translations can be produced for a single input
sentence and having access to them significantly improves the correlation of BLEU



Machine Translation (Chapter in Oxford Hbk. of Inflection) 81

338 ondřej bojar

with human judgements. However, in their initial stages of development, the tech-
niques are extremely expensive, needing about two hours of manual annotation work
per sentence.

The task of monolingual word alignment between the reference and the hypothesis
has not been studied as much as the bilingual alignment described in Section 14.4.1
(see an open-source implementation by Yao et al. (2013) for some references), but
many MT metrics strive to overcome the limitations of exact match. For instance,
Tantuǧ et al. (2008) propose a variant of BLEU that considers morphemes and also
uses Wordnet similarity to validate root words.

The most elaborate handling of the monolingual alignment is implemented in
the metric called METEOR (Banerjee and Lavie 2005; Denkowski and Lavie 2010),
with several stages: if word forms cannot be matched, lemmas or even Wordnet
synonyms or automatic phrase paraphrases (Bannard and Callison-Burch 2005) are
considered.

Kauchak and Barzilay (2006) transform the problem of alignment for MT evaluation
into automatic paraphrasing of the whole reference sentence to better match the output
of the system, easing the situation for simple MT metrics. However, neither Kauchak
and Barzilay nor Madnani and Dorr (2010) in their survey of paraphrasing methods
consider morphologically rich languages.

For agglutinative and fusional languages, the issue may also to some extent be solved
using letter-BLEU (Yang et al. 2008), a variant of BLEU that is applied on sequences
of characters instead of words. Words with matching stems but different affixes would
still get at least partial credits.

14.4.6 Model Optimization (Tuning)

Current MT system engines always consist of a number of independent components,
each associated with a weight. The weights are set automatically in a process called
model optimization or tuning to achieve best performance on a heldout set of sen-
tences, the ‘devset’. From a machine learning point of view, this is the actual training
of the system.

The heldout set of sentences is repeatedly translated and the hypotheses compared
to the reference translation using an automatic evaluation metric. As above, in lan-
guages rich in inflection, a mismatch in the exact word form is more likely, making the
automatic evaluation less reliable.

Another issue is that the system should find a balance between a focus on errors in
lexical choice and errors in form choice. We are not aware of any study of this balance
so far. For the widely used BLEU, this means that both types of errors are considered
equally severe, which goes against the findings of Kirchhoff et al. (2012). On the other
hand, several studies so far indicate that it is surprisingly hard to come up with a metric
that would perform significantly better in model optimization than BLEU (Callison-
Burch et al. 2011; Cer et al. 2010).
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Madnani (2010) reports improvements in tuning by adding automatic paraphrases
to the reference translation, reducing the sparsity issue. Instead of taking an automatic
paraphraser, Dyer et al. (2011b) exploit the fact that their devset was available in mul-
tiple languages and report an improvement in the tuning of a German–English system
by adding a ‘reference’ as produced by a Spanish–English MT system. Tamchyna et al.
(2012) achieve an improvement when tuning English-to-Czech translation on multi-
ple manually created reference translations and Koehn and Haddow (2012b) report
better results simply by taking a larger tuning set which also has the positive effect of
smoothing out unjustified mismatches with the reference.

14.5 Explicit Handling of
Morphology in MT

.............................................................................................................................................................................

In Section 14.4, we described in detail how each and every processing step of the gen-
eral MT pipeline (Section 14.3.2) struggles with rich morphology. In this section, we
survey old and contemporary MT systems that do not always quite follow the MT
pipeline and, more importantly, include specific modules or procedures to handle
morphology.

14.5.1 Shallow Approaches for Closely Related Languages

Very close languages such as Czech-Slovak or Spanish-Catalan often differ primarily
at the morphological level of representation and share syntactic properties. This lends
such language pairs to shallow and direct MT approaches. Word order can be almost
preserved and sometimes even the morphological systems are very similar: the same
morphological features are overt on the surface and their values can be directly mapped
to the other language.

An MT system can thus be limited to only performing morphological analysis,
including tagging, replacing lemmas and morphological tags in the sequence of tokens,
and generating the target-language word form. Depending on the vocabularies of
the two languages, the translation of the lemma may need some word-sense dis-
ambiguation module, but the morphological properties are often mapped to the
target language deterministically. Successful examples of such shallow systems include
Apertium (Corbí-Bellot et al. 2005)4 originally developed for the Romance languages
of Spain but gradually extended to cover also less related languages, and Česílko (Hric
et al. 2000; Homola et al. 2009).

Figure 14.5 illustrates the shallow translation by Česílko from Czech to Slovak
including two errors in named entities. Given the nearly one-to-one mapping of

4 <http://www.apertium.org/>.
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Source Barack Obama dostane jako čtvrtý americký prezident Nobelovu cenu míru
Gloss Barack Obama will-get as the-fourth American president Nobel prize of-peace

S. Lemmas Barack Ob dostat jako-2 čtvrtý americký prezident Nobelův cena mír
S. Tags X@— NNIP7 VB-S- Db— CrMS1 AAMS1 NNMS1 AUFS4 NNFS4 NNIS2

Output Barack Ob dostane ako štvrtý americký prezident Nobelův cenu mieru
Corrected Barack Obama dostane ako štvrtý americký prezident Nobelovu cenu mieru

fig. 14.5 Sample input and output of Česílko, including intermediate Czech lemmas and tags
(simplified). There are two errors in the output (underlined) and both are caused by insuf-
ficient coverage of the morphological dictionary. The name Obama is mis-interpreted as the
instrumental (case 7) of the river Ob while the possessive form of Nobel, Nobelův is not covered
by the target-side dictionary.

morphological properties, inflection does not pose any unexpected challenge except
for unknown words and names in particular.

14.5.2 Morphology in Phrase-based MT

This section reviews a range of modifications of the phrase-based model
(Section 14.3.3) that treat the input and output in a more adequate way than just
atomic word forms.

14.5.2.1 Factored phrase-based MT

Koehn and Hoang (2007) introduce an extension of the phrase-based model aimed at
explicit handling of morphology (or other features of languages) called the factored
phrase-based model. A phrase is no longer a sequence of atomic tokens but rather a
sequence of vectors, or ‘factored tokens’. One of the factors is usually the surface form
of the word while other factors can represent any information the author of the system
deems relevant.

The configuration specifies the order in which factors are considered and filled, see
Figure 14.6 for an example. The whole preparation of the factored output tokens called
‘translation options’ is performed in an initial phase with no access to neighbouring
words. The standard PBMT search follows to pick the best combination of these now
richer translation options. It is just the language model that helps to select coherent
combinations.

Improving target-side morphological coherence is rather easy in factored PBMT
models. It is sufficient to introduce additional language models over a subset of out-
put factors, for example part-of-speech or morphological tags (Bojar 2007; Koehn
and Hoang 2007; Koehn et al. 2010). This computationally inexpensive benefit, how-
ever, concerns primarily the selection of word forms as seen in the parallel training
data. Constructing unseen word forms is much more difficult, if we want to avoid a
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malé|malý|A-pl-acc

domy|dům|N-pl-acc

?|klein|?

?|gering|?

?|Haus|?

?|Gebäude|?

?|klein|A-pl-acc-str

?|gering|A-pl-acc-str

?|Haus|N-pl-acc

?|Gebäude|N-pl-acc

?|klein|A-pl-acc-wk

?|gering|A-pl-acc-wk

?|Haus|N-pl-dat

?|Gebäude|N-pl-dat

kleine|klein|A-pl-acc-str

geringe|gering|A-pl-acc-str

Häuser|Haus|N-pl-acc

Gebäude|Gebäude|N-pl-acc

kleinen|klein|A-pl-acc-wk

geringen|gering|A-pl-acc-wk

Häusern|Haus|N-pl-dat

Gebäuden|Gebäude|N-pl-dat

fig. 14.6 Sample sequence of factored translation of the phrase small houses from Czech (malé
domy, ambiguous in case but marked as accusative in the example) to German (kleine Häuser
and several other variants). The setup is linguistically motivated: first, Czech lemmas are trans-
lated to German lemmas, then Czech morphology is translated to German tags and finally, a
German word form is constructed from the lemma and the tag. Later, the best combination of
the phrases is selected.

combinatorial explosion of all possible forms; see Section 14.5.2.4 for some promising
approaches.

Depending on the language pair, data, and exact configuration, factored setups
may perform better or run into new problems such as the combinatorial explosion
of translation options compared to PBMT (Bojar et al. 2012).

14.5.2.2 Reducing rich source side

When the morphologically richer language is on the source side, the translation quality
can be increased by stripping the unnecessary details or decomposing complex word
forms into separate tokens.

Goldwater and McClosky (2005) extend some of the ideas by Yaser et al. (1999) and
provide a brief survey of such morphology-stripping methods and evaluate a collec-
tion of preprocessing techniques of Czech input when translating to English using a
(non-factored) PBMT system. Aside from just reducing Czech word forms to lemmas
(optionally equipped with features like number), both Yaser et al. and Goldwater and
McClosky also introduce pseudo-words, that is, placeholders that will get translated to
English auxiliary words.

A minor extension of factored PBMT called ‘alternative decoding paths’ or ‘inter-
polated back-off’ (Birch et al. 2007; Bojar and Kos 2010; Koehn and Haddow 2012a)
allows us to consider both the original rich forms as well as the reduced variants of
tokens, taking whichever is easier to use in the given context. The reduced variant is
then usually used only as a fallback for unknown forms. Similar results can be achieved
with custom models, for example Nießen and Ney (2001, 2004), who introduce a
hierarchical translation lexicon where the source word is searched for using gradually
less and less specific morphological constraints, or MT techniques capable of handling
ambiguous input like confusion networks (Dyer 2007) or lattices (Wuebker and Ney
2012), see Figure 14.7. Nakov and Ng (2011) suggest one more technique to relax the
match between the ‘translation dictionary’ as extracted from the training corpus and
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a0

ton
a1 band a2

tonband
tonbandaufnahme

aufnahme

auf
nahme

a4 b0 b1
domy

dům

b2
malé

malý
a3

fig. 14.7 A sample lattice from Dyer (2009) encoding several segmentation possibilities of the
German word Tonbandaufnahme (audio recording) and a sample confusion network encoding
lemmatization of the Czech words malé domy (small houses). The original input is displayed as
thick edges, the alternative paths serve as fall-back options. Confusion networks are a special
case of lattices where all paths reconnect after every edge.

the input. Instead of relying on morphological tools for the source language to pro-
duce alternative source tokens, they use automatic paraphrases of words or phrases
(Bannard and Callison-Burch 2005). The added benefit is that some divergence in
lexical choice can also be accommodated.

For agglutinative and compounding languages, the reduction in source-side rich-
ness is better achieved by segmenting of complex words. A range of works confirm that
such decomposition (or ‘decompounding’ as used in the MT community) is useful
for German (Koehn and Knight 2003; Alfonseca et al. 2008; Stymne 2008; Dyer 2009;
Hardmeier et al. 2010). The work of de Gispert et al. (2009) decomposes Arabic and
Finnish input in many ways, including the unsupervised morphology of Morfessor
(Creutz and Lagus 2007) and automatically selects the decomposition that works
best for a particular sentence. Nguyen et al. (2010) use a rather different underlying
model to achieve the same effect for translating from Arabic and Chinese to English.
Virpioja et al. (2010) continue the experiments with German and Czech as source lan-
guages; the improvements in translation quality are, however, obtained only when the
final outputs are constructed by combining hypotheses from multiple segmentation
options.

14.5.2.3 Augmenting poor source side

Avramidis and Koehn (2008) enrich English tokens with artificial case markers for
nouns and accompanying parts of speech (adjectives, articles, and determiners) and
artificial person markers for verbs based on the parse tree. The increase in data sparse-
ness of the source side (due to the richness of the morphology) does not cause much
harm, because it is in line with the target language properties (Greek and Czech), where
such agreement is required. The underlying SMT model is factored phrase-based using
alternative decoding paths to prefer the augmented English tokens but resort to plain
tokens if necessary.

Yeniterzi and Oflazer (2010) use linguistically motivated rules for pre-processing
English when translating to Turkish and gain significant improvements with a small
training corpus. They join English tokens to mimic the morphological properties of
Turkish, for example concatenating the conjunction if with the verb in the clause or
appending the preposition to the head noun of a noun phrase. Assuming that the
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underlying parser does its job well, the features can come from quite distant aux-
iliary words, effectively allowing some ‘gaps’ in phrases and handling, for example
‘in their . . . economic relations’ as one translation unit (see also Section 14.5.3). A side
effect of this transformation is that the number of input tokens drops by 30 per cent,
making the number of tokens on both sides similar. Interestingly, a different set of rules
aimed at constituent reordering (as opposed to just attaching English auxiliary words
to the corresponding content words) did not bring any improvement.

Again, the underlying model is factored phrase-based. This time, an additional
target-side factor with Turkish morphological tags is used to allow for an additional
language model. Yeniterzi and Oflazer also use the alternative decoding paths to
resort to the original English source token if the augmented one was not seen in the
training data.

Ramanathan et al. (2009) improve English–Hindi factored translation in a small
data setting by reordering English in a pre-processing step to better match the Hindi
SOV word order and replacing English word forms with separate streams of lemmas,
suffixes, and automatic semantic relations. English lemmas are translated to Hindi
lemmas while English suffixes, and semantic relations are mapped to Hindi suffix or
case markers. The final generation step combines Hindi lemma and marker streams
to the stream of Hindi word forms. No alternative decoding path (e.g. to ignore the
English suffix and relation if their combination is not known) is allowed but the model
still outperforms the baseline given the very small training data.

14.5.2.4 Improving generative capacity on the target side

Some attempts have been made to increase the capacity for generating new forms.
These experiments so far focus on language pairs with only the target side morpho-
logically richer.

A rule-based generation component is used by de Gispert et al. (2005) to produce
unobserved conjugations of Spanish verbs.

Oflazer and El-Kahlout (2007) describe a set of preprocessing techniques for
English-to-Turkish translation. Word forms in the target side of the training data
are split into morphemes, pseudo-words are added for features such as verb tense
(e.g. ‘+vvn’ to indicate passive) and novel word forms are constructed using a sepa-
rate component from the concatenated stems and pseudowords prior to final scoring.
Figure 14.8 illustrates the modified English’ and Turkish’. Producing the final output
tokens in the agglutinative language would be very difficult for the standard PBMT,
while the split Turkish (e.g. ‘kat +hl +ma’ that deterministically maps to ‘katılma’)
allows the simple PBMT model to translate ‘accession’ into the stem ‘kat’ and add
the necessary morphemes based on the English auxiliary words. For example, the ver-
bal noun indicator ‘+ma’ probably often co-occurs with the English definite article of
deverbal nouns and the model thus learns to translate ‘the’ into ‘+ma’. Note that this
can already be seen as a simple variant of the so-called ‘analysis–transfer–synthesis’
approach, see Section 14.5.4.
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Input the implementation of the accession partnership will be monitored in the
framework of the association agreement .

English’ the implementation1 of the accession2 partnership3 will be monitor4 +vvn in
the framework5 of the association6 agreement7 .

Turkish’ kat2 +hl +ma ortaklık3 +sh +nhn uygula1 +hn +ma +sh , ortaklık6 anlaşma7

+sh çerçeve5 +sh +nda izle4 +hn +yacak +dhr .

Output katılma ortaklıǧının uygulanması , ortaklık anlaşması çerçevesinde izlenecektir .
Gloss accession partnership’s application , partnership agreement in-framework will-

be-followed.

fig. 14.8 Pre-processed English and Turkish (Oflazer and El-Kahlout 2007). For the expla-
nation, content words are boldfaced and the English–Turkish counterparts are co-indexed.
A standard PBMT model operates on the modified English’ and Turkish’ representations
(without the boldfacing and subscripts).

Several works (Toutanova et al. 2008; Fraser 2009; Bojar and Kos 2010; Fraser
et al. 2012) use an intermediate ‘language’ with the target-language word order and
lexicon but reduced morphological richness. This artificial language (including the
necessary training data) is created by reducing target-side morphological features to
a bare minimum. The first step of the translation, performed using a standard phrase-
based system, is responsible for most of the transfer and requires parallel data to
train. The second step handles the necessary inflection and it can be trained on much
larger monolingual data. While successful on small datasets, the benefit of the method
diminishes with large datasets. Fraser et al. (2012) use separate models for predicting
individual morphological features (case, number, gender, and weak or strong inflec-
tion) and are the first to show gains even in a large data setting. Related experiments
for the hierarchical model are reported by Weller et al. (2013), see Section 14.5.3
below. Clifton and Sarkar (2011) apply the two-step approach for English-to-Finnish,
combining it with ‘segmented translation’ as Oflazer and El-Kahlout (2007), that is,
operating the PBMT model on artificial tokens that correspond to (unsupervised)
morphemes instead of words.

Somewhat related to segmented translation are systems that produce unseen com-
pounds in Germanic languages (Stymne and Cancedda 2011; Fraser et al. 2012).

The simplest methods that boast ‘more powerful’ target-side generation use just
additional target-side only texts. Sometimes dubbed reverse self-training (Bertoldi
and Federico 2009; Bojar and Tamchyna 2011; Lambert et al. 2011), the approach
uses an auxiliary MT system trained in the reverse direction (from the morpholog-
ically richer language) to translate large monolingual data to the source language.
This synthetic parallel corpus is used to train an improved MT system. With some
back-off in the reverse translation (e.g. if the form is not known, translate using
the lemma), this approach learns to generate word forms never seen in the original
parallel data.
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14.5.3 Hierarchical and Surface-Syntactic MT

Presented as an extension of the phrase-based model, the hierarchical phrase-based
model (Chiang 2005, 2007) correctly handles the hierarchical structure of sentences.
Phrases (in the non-linguistic sense of token sequences) can now contain gaps where
other phrases fit. In the hierarchical model, this composition is not restricted by
the type of the phrase in any way; in a (surface) syntactic model, phrases and gaps
are labelled with non-terminals that have to match, formally making a synchronous
context-free grammar (Chiang and Knight 2006). If the non-terminal labels and the
recursive structure come from a treebank, we have a truly syntax-based translation.
The motivation for such a model from the linguistic point of view is obvious and
includes, for example the chance to capture long distance dependencies between words
(e.g. agreement in some morphological feature). The non-terminals in hierarchical
model can be used to encode not only syntax but any other latent feature (information
not overt on the surface of source or target languages), for example Baker et al. (2012)
use this for better handling of modality and negation.

The additional constraint requiring non-terminals to match has to be introduced
with great caution. An option to resort to non-matching phrase has to be allowed
in order to preserve the performance of the plain hierarchical model. Otherwise,
the rigid syntactic model effectively reduces the available training data by disabling
non-matching phrases (Bojar and Hajič 2008; Chiang 2010).

Across language pairs, hierarchical translation has not quite outperformed PBMT.
The added complexity and constraints of the structure do not always pay off. Since
the search for a robust hierarchical model is still in progress, relatively few people have
tried to focus specifically on morphology in this model.

Williams and Koehn (2011) are probably the only ones who attempt to formally cap-
ture agreement constraints in the hierarchical model using proper unification instead
of simple identity of non-terminals. Weller et al. (2013) use the hierarchical model as
the basis for their two-step approach (Section 14.5.2.4) and report gains when predict-
ing case for German noun phrases using a range of features up to subcategorization
frames.

14.5.4 Systems Following Analysis–Transfer–Synthesis
Sequence

Approaches to MT that follow the analysis–transfer–synthesis sequence (Vauquois
1975; Vauquois and Boitet 1985) include separate components for handling morphol-
ogy. The lemma and the various morphological features of words are separated during
the analysis phase. The transfer can thus handle morphological and lexical divergence
separately. Finally, a fully-fledged morphological synthesis can produce forms never
seen in the training data. The exact specification of the morphological component and
the set of observed features is system-dependent.
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Unfortunately, not many such systems have made it up to the ‘production’ state.
We are aware of two commercial systems: MT-MSR (Richardson et al. 2001), later
discontinued, and Lucy Technologies (Wolf et al. 2010), originally based on the
METAL system (Bennett and Slocum 1985), and a few research systems.

A moderately-sized MT system for the translation from Norwegian to English was
achieved in the LOGON project (Bond et al. 2005; Oepen et al. 2007; Bond et al.
2011) using an interesting combination of Norwegian analysis in Lexical Functional
Grammar (LFG, Bresnan 2001), transfer in Minimal Recursion Semantics (Copestake
et al. 1995), and English generation using Head-driven Phrase Structure Grammar
(HPSG, Pollard and Sag 1994).

Meaning-Text Theory (MTT, Mel’čuk 1988; Kahane 2003), is exploited in the MT
system ETAP-3 (Apresjan et al. 2003; Boguslavsky et al. 2004).5 The transfer happens
at a normalized syntactic representation (NormS), slightly above surface syntax.

TectoMT (Žabokrtský et al. 2008; Dušek et al. 2012)6 is based on the
tectogrammatical layer (t-layer) of linguistic representation (Sgall et al. 1986) also
known from Prague dependency treebanks (Hajič et al. 2006; Hajič et al. 2012) and
translates only from English to Czech. Compared to MTT, the t-layer is less semantic
and stops at the level of lemmas and morphosyntactic realizations of relations between
words (e.g. capturing preposition and case instead of some deep syntactic or semantic
role type). Transfer at the t-layer thus has to handle context-dependent choices in case
markers and other morphosyntactic markers. TectoMT uses a statistical model for this
(Žabokrtský et al. 2010), circumventing the need to manually encode lexical functions
or grammatical rules.

Bojar and Hajič (2008) and Bojar and Týnovský (2009) document the additional
problems that such a complex processing pipeline creates compared to shallow or direct
approaches. This explains to some extent why deep approaches have not surpassed
the performance of simpler models yet, despite the obvious improvement in linguistic
adequacy. TectoMT remains probably the only such deep system that performs
reasonably well in the broad domain of news (Callison-Burch et al. 2010).

14.5.5 System Combination and Corrective Approaches

So-called ‘system combination’ techniques can be used to benefit from the strengths
of diverse types of MT systems such as lexical choice of large-data PBMT and bet-
ter grammar and unseen word forms produced by more syntactic and/or rule-based
systems. The seminal work on MT system combination (Matusov et al. 2008) follows
the idea originally introduced for automatic speech recognition (Fiscus 1997). This one
and subsequent variations, for example Heafield and Lavie (2010), are generally based

5 <http://cl.iitp.ru/etap>.
6 <http://ufal.mff.cuni.cz/tectomt/>.
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on some voting for individual tokens: if many baseline systems produce a particular
word form, then it should probably appear in the combined output.

None of the system combination techniques addresses inflection explicitly, all rely on
the standard n-gram LMs (Section 14.4.4). It is thus again only the size of the dataset
that is supposed to bring some guarantee of grammaticality.

Rosa et al. (2012) take a different approach and implement Depfix, a rule-based
system that fixes (primarily morphological) errors in a baseline MT output given auto-
matic syntactic analyses of both the source and the hypothesis. A complex ensemble
of the deep syntactic TectoMT (Section 14.5.4), the phrase-based Moses in a fac-
tored setup (Section 14.5.2.1) and Depfix for final correction was the best performing
English-to-Czech system in WMT13 shared task (Bojar et al. 2013c). Aside from
various changes in verb conjugation, the most reliable automatic correction was the
re-introduction of lost negation.

14.6 Summary
.............................................................................................................................................................................

The inflection and morphological richness of source and/or target languages intro-
duce extra complexity to almost every processing step of machine translation systems,
starting from the alignment of words in parallel texts up to MT system evaluation.

In the history of machine translation, the relatively morphologically poor English
has long been the most common target language. Specific handling of inflection and
rich morphology has thus received proper attention only rather recently. The currently
prevailing data-driven approaches still have a long way to go until they adequately cap-
ture and apply the necessary morphological generalizations. The former opponents,
rule-based vs. statistical methods, have grown very close to each other and we expect
even further convergence on this journey to correct generalizations.

It is primarily the underlying material that forms the interest and focus of research.
We therefore expect many influential discoveries to arise from the study of machine
translation between morphologically rich but divergent languages, a sector where the
explorations have barely started.

While the quantity of parallel and monolingual texts suitable for the training of MT
systems is growing every minute, fine-grained models of inflection (and word forma-
tion) remain a needed component of general-purpose MT systems, because new word
forms are constantly being created. Sooner or later such models will be designed and
become a part of the standard MT pipeline.
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Abstract
CzEng 1.0 is an updated release of our Czech-English parallel corpus, freely available for non-commercial research or educational
purposes. In this release, we approximately doubled the corpus size, reaching 15 million sentence pairs (about 200 million tokens per
language). More importantly, we carefully filtered the data to reduce the amount of non-matching sentence pairs.
CzEng 1.0 is automatically aligned at the level of sentences as well as words. We provide not only the plain text representation, but also
automatic morphological tags, surface syntactic as well as deep syntactic dependency parse trees and automatic co-reference links in
both English and Czech.
This paper describes key properties of the released resource including the distribution of text domains, the corpus data formats, and a
toolkit to handle the provided rich annotation. We also summarize the procedure of the rich annotation (incl. co-reference resolution)
and of the automatic filtering. Finally, we provide some suggestions on exploiting such an automatically annotated sentence-parallel
corpus.

Keywords: Czech-English parallel corpus, automatic parallel treebank, training data for machine translation

1. Introduction
We present the new release of a Czech-English parallel cor-
pus with rich automatic annotation, CzEng 1.0.1

CzEng 1.0 is a replacement for CzEng 0.9 (Bojar et al.,
2010) which was successfully used in various NLP exper-
iments including the machine translation evaluation cam-
paigns of 2010 and 2011 (Callison-Burch et al., 2010;
Callison-Burch et al., 2011).2 Both the old and the new
release are freely available for research purposes; restricted
versions of CzEng 0.9 have also their commercial applica-
tions. With 8 million parallel sentences, CzEng 0.9 moved
Czech out of the “low resource” rank of languages. While
we did not primarily focus on increasing the overall size
of the corpus, CzEng 1.0 nevertheless doubled the size of
parallel Czech-English data available for research. More
details are available in Section 2.
In CzEng 1.0, our main aim was to improve the quality of
the resource. We focused on:

• User access to the rich annotation (Section 3.),

• Improved rich annotation, including automatic co-
reference (Section 4.),

• Filtering of the sentence pairs to increase the precision
of the corpus (Section 5.).

We believe this large and richly annotated resource will be
of interest not only to the machine translation community
but also to many other NLP researchers. Our first examples
utilizing the parallelism (aside from the obvious applica-
tions in machine translation) are given in Section 6.

1http://ufal.mff.cuni.cz/czeng/
2http://www.statmt.org/wmt10,

http://www.statmt.org/wmt11

2. Core CzEng 1.0 Properties
This section is devoted to basic statistics of the released
resource, data sectioning and file formats.

2.1. CzEng 1.0 Data Sizes
Table 1 lists the total number of parallel sentences and
Czech and English surface tokens per source. Please note
that the number of tokens includes punctuation marks and
other symbols.
In Table 1, we also list the number of nodes in the deep
syntactic layer of representation (see Section 4.), which
roughly correspond to content words in the sentences. We
can see that English uses about 12% more surface tokens
than Czech. The numbers of deep nodes in Czech and En-
glish are much closer. The higher number of deep nodes
observed for Czech can be attributed to the fact that the
procedure of adding artificial nodes for dropped pronouns
and similar phenomena is more elaborated in our annota-
tion pipeline than the similar procedure for English.

2.2. CzEng 1.0 Data Structure
CzEng 1.0 is shuffled at the level of “blocks”, sequences of
not more than 15 consecutive sentences from one source.
The original documents thus cannot be reconstructed but
some information about cross-sentence phenomena is pre-
served. Specifically, CzEng includes Czech and English
grammatical and textual co-reference links that do span
sentence boundaries (see Section 4.2.).
Each “block” comes from one of the text domains (EU Leg-
islation, etc., see Table 1) and the domain is indicated in the
sentence ID.
Individual text “blocks”, shuffled, are combined to num-
bered files; each file holds about 200 sentence pairs.
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Surface Tokens (“Words+Punct.”) Deep Nodes (“Content Words”)
Source Domain Parallel Sentences Czech English Czech English
Fiction 4,335 k 57,177 k 64,264 k 41,142 k 38,690 k
EU Legislation 3,993 k 78,022 k 87,489 k 56,446 k 52,718 k
Movie Subtitles 3,077 k 19,572 k 23,354 k 14,615 k 14,918 k
Parallel Web Pages 1,884 k 30,892 k 35,455 k 23,141 k 22,057 k
Technical Documentation 1,613 k 16,015 k 16,836 k 11,942 k 11,207 k
News 201 k 4,280 k 4,737 k 3,208 k 2,963 k
Project Navajo 33 k 484 k 557 k 363 k 344 k
Total 15,136 k 206,442 k 232,691 k 150,857 k 142,897 k

Table 1: Sources in CzEng 1.0, including data sizes in thousands.

The files are further organized into 100 similarly-sized sec-
tions, the last two of which are designated for develop-
ment and testing purposes: 00train, . . . , 97train,
98dtest, 99etest. Users of CzEng 1.0 are kindly
asked to avoid training on these last 2% of the data.

2.3. CzEng 1.0 File Formats
CzEng 1.0 is available in three data formats: rich Treex
XML format, “export format”, and parallel plain text.

2.3.1. Treex Format
The primary data format of CzEng 1.0 is the Treex XML, a
successor to the TectoMT TMT format used in CzEng 0.9.
Treex XML can be processed using the Treex platform or
manually browsed in the TrEd tree editor, see Section 3. for
details. Users are encouraged to use the Treex toolkit and
access the data programmatically using Treex API rather
than directly parsing the XML.

2.3.2. Export Format
To facilitate the access to most of the automatic rich anno-
tation of CzEng 1.0 without any XML hassle, we provide
the data also in a simple “factored” line-oriented export for-
mat. Note that e.g. named entities or co-reference links are
not available in the export format at all.
An example and the meaning of all the tab-delimited
columns of the export format is given in Table 5 at the end
of the paper.

2.3.3. Plaintext Format
The plaintext format is very simple, consisting of just four
tab-delimited columns: sentence pair ID, filter score, Czech
sentence, and English sentence.
The plain text preserves the original tokenization (i.e. no
tokenization) of the source data.

2.4. Brief Summary of the Automatic Annotation
The processing pipeline of CzEng 1.0 was in essence very
similar to the the pipeline used in CzEng 0.9, although we
replaced some of the tools with their updated versions.

1. The original texts were segmented into sentences us-
ing TrTok, see Section 6.1. (preserving the original to-
kenization).

2. Sentence alignment was obtained using Hunalign
(Varga et al., 2005), where we tokenized, lowercased

and chopped each token to at most 4 characters to re-
duce the sparseness of esp. Czech vocabulary. Hu-
nalign was run on each document pair separately and
without any shared translation dictionary.

3. All sentences were morphologically tagged and lem-
matized with the tools available in the Treex platform
(the Morce tagger (Spoustová et al., 2007) and a rule-
based lemmatizer for English).

4. We applied GIZA++3 (Och and Ney, 2000) to obtain
alignment between surface tokens. To reduce the data
sparseness, GIZA++ was run on Czech and English
lemmas, not fully inflected word forms. We aligned
all the data in one large process, which needed about
2 days of CPU time to finish. As common in statisti-
cal machine translation, GIZA++ was applied in both
translation directions and the two unidirectional align-
ments were symmetrized. We provide outputs of sev-
eral symmetrization techniques.

5. The word alignment was loaded into the Treex format
and all subsequent steps of analysis were carried out
within the Treex framework. MST parser (McDonald
et al., 2005) was used for surface syntax dependency
parsing.

2.4.1. A Note on Node Alignment
Besides the word alignment, CzEng 1.0 is provided with
automatic alignment on the tectogrammatical layer as well.
Unlike in CzEng 0.9, where the tectogrammatical align-
ment was created by the trainable TAlign tool (Mareček,
2009), the alignment links in CzEng 1.0 are simply pro-
jected from GIZA++ intersection word alignment to the
corresponding tectogrammatical trees. The number of links
produced by this simple projection is higher, which causes
higher recall but lower precision.

3. Treex Framework for CzEng 1.0
As mentioned above, all the automatic annotation of CzEng
1.0 was carried out using the Treex multi-purpose NLP
framework (Popel and Žabokrtský, 2010).4 The core mod-
ules of the framework are freely available and can be in-

3http://http://code.google.com/p/giza-pp/
4http://ufal.mff.cuni.cz/treex
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# Convert treex.gz to CoNLL format
treex Write::CoNLLX language=en to=f00001en.conll \

Write::CoNLLX language=cs to=f00001cs.conll \
-- data.treex-format/00train/f00001.treex.gz

# See the most frequent translations
treex -Lcs Util::Eval tnode='my ($en)=$tnode->get_aligned_nodes_of_type("int");

say $tnode->t_lemma . "\t" . $en->t_lemma if $en' \
-- data.treex-format/00train/f0000?.treex.gz \

| sort | uniq -c | sort -rn | head -n 20
# prints:
# 593 a and
# 291 #PersPron #PersPron
# 222 být be

# Open a file in the TrEd editor (via a wrapper to support Treex file format)
ttred data.treex-format/00train/f00001.treex.gz

Figure 1: Examples of using the Treex command-line interface.

stalled from CPAN.5 There are a number of NLP tools in-
tegrated in Treex, such as morphological taggers, lemma-
tizers, named entity recognizers, dependency parsers, con-
stituency parsers, and various kinds of dictionaries.
For users of CzEng 1.0, the Treex platform offers a ver-
satile API, a more appropriate way of accessing the Treex
XML files than generic XML parsers can offer. Aside from
custom export procedures, one can use ready-made writers
available in Treex. Figure 1 shows how to convert the sur-
face dependency trees to CoNLLX format or emit the most
frequent pairs of tectogrammatical lemmas.
The Treex platform also provides a simple wrapper for
TrEd,6 a tree editor which can read Treex XML using a
designated plug-in module. TrEd offers the best option for
manual inspection of CzEng data.
Figure 2 shows a sample sentence pair (English and
Czech) annotated on both analytical (surface syntax, a-
tree) and tectogrammatical (deep syntax, t-tree) layers. The
morphological annotation is stored together with the analyt-
ical annotation.

4. Rich Annotation
CzEng 1.0 is automatically annotated in the same theoreti-
cal framework as the Prague Dependency Treebank (PDT)
2.0 (Hajič, 2004). Many small updates of various annota-
tion steps have happened since CzEng 0.9. Here we focus
on the two more complex ones at the deep syntactic layer
(also called tectogrammatical or t-layer): formemes (Sec-
tion 4.1.) and automatic co-reference (Section 4.2.).

4.1. Formemes
In addition to the PDT 2.0 annotation style attributes, each
node at the t-layer is assigned a formeme (Ptáček and
Žabokrtský, 2006; Žabokrtský et al., 2008) describing its
morphosyntactic form, including e.g. prepositions, subor-

5http://search.cpan.org/search?query=
treex

6http://ufal.mff.cuni.cz/tred/

dinate conjunctions, or morphological case. The set of pos-
sible formemes contains values such as:

• n:subj—an English noun in subject position,

• v:to+inf—an English infinitive clause with the
particle to,

• adj:attr—attributive adjectives in both languages,
or

• n:k+3—a Czech noun in dative (third) case with the
preposition k.

Figure 3 gives an example of other formemes in a sentence.
The values are filled in using rule-based modules operating
on both t-trees and the corresponding a-trees.
The formeme annotation had already been present in the
previous versions of CzEng and had been successfully em-
ployed in structural MT (Žabokrtský et al., 2008) and Nat-
ural Language Generation (Ptáček and Žabokrtský, 2006)
tasks. We use a version improved (mostly on the Czech
side) to depict various linguistic phenomena more accu-
rately and to maintain a greater consistency across the two
languages (see Section 6.2. for a cross-lingual evaluation).
Our modifications involve e.g. treating nominal usages of
adjectives as nouns, distinguishing nominal and adjectival
numerals, marking case in Czech adjectival complements
of verbs, or allowing prepositions with most English verb
forms, plus several fixes for erroneous marking of the pre-
vious versions.

4.2. Co-Reference Links
In one of the last stages of automatic annotation, the co-
reference resolution is performed on both language parts of
the corpus. The range of co-reference types annotated in
CzEng corresponds to the types present in PDT 2.0 and on
the English side of PCEDT 2.0. Namely, it captures the
so-called grammatical co-reference and pronominal textual
co-reference.
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Figure 2: Visualization of one sentence pair in TrEd (Tree Editor). Czech a-tree, English a-tree, Czech t-tree, and English
t-tree are presented (left to right). Other attributes which are not shown (e.g. grammatemes) can be inspected after clicking
the nodes.

There is no asbestos in our products now . ”
be no asbestos #PersPron product now

v:fin n:attr n:obj n:poss n:in+X adv

Figure 3: An example sentence with tectogrammatical lemmas and formemes

Grammatical co-reference comprises several subtypes of
relations, which mainly differ in the nature of referring ex-
pressions (e.g. relative pronoun, reflexive pronoun). How-
ever, all of them have in common that they appear as a con-
sequence of language-dependent grammatical rules. This
fact allows us to resolve them with a relatively high success
rate, using the rule-based system proposed by Nguy (2006).
For instance, given a relative pronoun that introduces a rel-
ative clause, the parent of the clause head is marked as an
antecedent of the pronoun.
On the other hand, the arguments of textual co-reference
are not realized by grammatical means alone, but also via
context (Mikulová et al., 2006), which makes the resolu-
tion far more difficult. To indentify textual co-reference re-
lations with a personal pronoun as the referring expression,
we incorporated the perceptron ranking system of Nguy et
al. (2009). On the Czech side, we employed the original

feature set and trained the system on the PDT data. We
used the English side of PCEDT to train the English sys-
tem, for which we had to limit and modify several features
to comply with a somewhat different annotation style.
Table 2 shows the values of pairwise precision, recall and
F-score of co-reference resolution on the evaluation part of
PDT and PCEDT for Czech and English, respectively. On
Czech gold standard trees, the scores are close to those re-
ported by Nguy et al. (2009). Since CzEng annotation is
completely automatic, it is necessary to measure the suc-
cess rate on automatically analyzed trees, so that we can
reliably assess the quality of co-reference annotation in
CzEng. Unfortunately, one can observe a substantial drop
for automatic trees. The reason is twofold.
First, Czech is a pro-drop language, thus the pronouns must
be reconstructed on the tectogrammatical layer. Nonethe-
less, the number of personal pronouns reconstructed incor-
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Gold Standard Features Automatic Features Oracle Gender and Number
Language P R F P R F P R F
Czech 77.06 77.58 77.32 55.23 46.14 50.28 65.70 54.89 59.81
English 45.52 58.69 51.27 44.53 57.32 50.12 – – –

Table 2: Results of the co-reference resolution evaluation. The precision, recall and F-score were measured on both
languages using the features coming either from the gold standard or the automatic annotation. In the last three columns,
the features were automatic except for the manual gender and number.

rectly or not at all accounts for 25% of all pronouns elided
on the surface layer (and 15% of all personal pronouns).
Second, gender and number of some pronouns cannot
be disambiguated without the knowledge of co-reference
links. At the same time, gender and number information
is one of the most valuable features in our co-reference re-
solver. While all attributes are disambiguated in manually
annotated trees, they are left ambiguous in automatically
analyzed data, which certainly decreases the quality of co-
reference resolution. This claim is confirmed by our oracle
experiment: when we replaced the automatic gender and
number with the manually assigned values, the F-score im-
proved by almost 10% absolute (see the last three columns
of Table 2).
As regards the co-reference resolution in English, the dif-
ference between its quality using manual and automatic
trees is not as dramatic as in Czech. This further confirms
the above-mentioned reasons for the success rate drop in
Czech since both of the issues (pro-drop recovery and gen-
der and number disambiguation) are marginal in English.
We would like to emphasize that the presented experiments
on co-reference resolution are to our knowledge the first for
Czech using no gold standard features and one of a few for
English employing the deep syntactic layer.

5. Filtering Sentence Pairs
The amount of data included in CzEng along with the vary-
ing reliability of its sources (such as volunteer-submitted
movie subtitles) demand an automatic method for recog-
nizing and filtering out bad sentence pairs.
Simple filters have been used in previous editions of CzEng.
Details about their evaluation and suggestions for improve-
ments can be found in Bojar et al. (2010). We extend the
previous work by adding several new filters and introducing
a robust method for their combination.
Filtering features for CzEng 1.0 exploit all layers of auto-
matic annotation and include:

• indication of Czech and English sentences’ identity,

• lengths of sentences and the words contained in them,

• no Czech (English) word on the Czech (English) side,

• various checks for remains of meta-information, such
as HTML tags or file paths,

• use of a translation dictionary to determine the cover-
age of English words by the Czech side,

• score of symmetrized automatic word alignment ob-
tained by GIZA++,

Filter score:
MaxEnt
Random baseline
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Figure 4: Precision and recall of CzEng filters.

• matching part-of-speech tags,

• matching grammatical number, verb tense or presence
of comparative/superlative modifiers.

Wherever possible, we try to model the feature as a ratio or
score and empirically find interval bounds for its quantiza-
tion.
The features are combined to form a single score using a
classifier trained to distinguish between correct and wrong
sentence pairs. We evaluated the performance of decision
trees, naive Bayes classifier, and maximum entropy clas-
sifier. We found the maximum entropy classifier to be best
suited for this setting. Figure 4 shows the trade-off between
precision and recall for all threshold settings. Note that
the random baseline stays at roughly 13% regardless of the
threshold—our evaluation data consists of 1000 manually
annotated sentence pairs, out of which 124 were marked as
wrong.

5.1. Precision-Size Trade-off for CzEng Users

Since our filter combination is still not reliable, we include
all sentences that pass the threshold of 0.3 in CzEng 1.0,
favoring precision of the filtration over recall. We also pro-
vide the score assigned by our filters to each sentence pair
so that users can create a cleaner, more strictly filtered sub-
set of CzEng 1.0.
Moreover, 2330 input documents containing 60% or more
sentences with scores below the threshold were discarded
entirely.
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Figure 5: Distribution of sentence filter scores in a random
1000-sentence sample.

5.2. Evaluation of Data Quality
The distribution of filter scores in sentence pairs as shown
in Figure 5 suggests that most of the corpus is clean, con-
taining correct sentence pairs.
We also evaluated the quality of CzEng 1.0 extrinsically
by conducting a small machine translation experiment.
We trained contrastive phrase-based Moses SMT systems
(Koehn et al., 2007)—the first one on 1 million sentence
pairs from CzEng 0.9, the other on the same amount of data
from CzEng 1.0. Another contrastive pair of MT systems
was based on small in-domain data only: 100k sentences
from the news sections of CzEng 0.9 and 1.0, respectively.
For each setting, we extracted the random sentence pairs
5 times to avoid drawing conclusions from possibly biased
data selection.
For tuning and evaluation, test sentences from WMT 2010
and 2011 were used, respectively. These sets are from the
news domain. We used the News Crawl Corpus 2011 data
to train the language model.
We measure the translation quality using the standard SMT
metric BLEU (Papineni et al., 2002). Table 3 shows the
mean BLEU score and standard deviation for each data set.
In the setting with 1 million random sentence pairs, us-
ing data from CzEng 1.0 is noticeably beneficial for MT
quality—the absolute BLEU gain is roughly 0.4 points.
This improvement stems from the overall quality of the
data, the distribution of domains in CzEng 1.0 is also likely
to play a certain role.
On the other hand, using only the news data reverses the
situation—CzEng 1.0 data lead to a system with slightly
worse performance. We verified our results using Welch
two-sample t-test and found that in both cases the difference
is statistically significant on 99% confidence level.
An explanation is suggested by the last two columns. The
filtering has probably caused a loss in vocabulary size (dis-
tinct token types) for both English and Czech in the news
domain but not across domains.

6. The Joy of Parallelism
Here we mention several steps in CzEng automatic annota-
tion that make use of the parallel data for improved output

Vocab. [k]
Corpus and Domain Sents BLEU En Cs
CzEng 0.9 all 1M 14.77±0.12 187 360
CzEng 1.0 15.23±0.18 221 396
CzEng 0.9 news 100k 14.34±0.05 53 125
CzEng 1.0 14.01±0.13 47 113

Table 3: Results of MT evaluation.

Formeme Detection on
Automatic Trees Manual Trees

Baseline 1.5981 1.6680
Improved 1.6873 1.7092

Table 4: The impact of an improved design of formemes
on mutual information (in bits) of Czech and English
formemes of aligned t-tree nodes.

quality.7

6.1. Tokenizer
CzEng 1.0 uses TrTok, a fast re-implementation of the
trainable tokenizer (Klyueva and Bojar, 2008) for sentence
segmentation. Its main advantage is the fact that different
data sources may need different segmentation patterns (e.g.
legislation texts need segment breaks after commas) and
TrTok can be guided to follow the patterns by providing
enough sample data in the desired form.
By examining segments that were aligned to 1-2 and 2-1
clusters, we often find them to be a consequence of a mis-
match in segmentation rules for Czech and English. Such
snippets of parallel data can thus directly serve as additional
training data for TrTok.

6.2. Formemes
Table 4 compares the mutual information (MI) of Czech
and English formemes of t-tree nodes aligned one-to-one
for the baseline set of formemes and the improved set of
formemes measured on the Prague Czech-English Depen-
dency Treebank 2.0 (PCEDT 2.0, (Bojar et al., 2012)).8 The
higher the MI, the easier the transfer phase in structual ma-
chine translation (Žabokrtský et al., 2008) is expected. We
measure the MI in two setups—we either utilize the manual
trees provided in PCEDT 2.0 directly,9 or take just the sen-
tences from PCEDT 2.0 and apply to them the automatic
annotation pipeline which we use for the whole CzEng 1.0
corpus.
Our initial measurements showed a slight MI drop on the
automatic trees, which led us to the discovery of several
bugs in both formeme detection rules and conversion of
a-trees to t-trees (e.g. problems with infinitive and passive
verb forms detection or coordinated modal verbs).

7We leave aside the joy of parallel processing of the data, very
useful i.a. in debugging on large datasets.

8http://ufal.mff.cuni.cz/pcedt2.0
9The used t-trees were manual for both languages; however,

only automatic a-trees are available on the Czech part in the
PCEDT 2.0.
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The corrected analysis pipeline and formeme detection
show an MI increase for both manual and automatic trees
(see Table 4), which indicates that the new set of formemes
is likely to improve the MT transfer phase. Again, we used
here the parallel view to fine-tune a monolingual processing
step.

6.3. Co-Reference—Future Work
The automatic co-reference annotation for one of the lan-
guages in the parallel corpus could be improved if we em-
ployed the information from the other language side.
English is considered to be lacking grammatical gender (ex-
cept for pronouns) and the majority of nouns in English are
referred to by a pronoun in neuter gender. On the other
hand, Czech distinguishes between four grammatical gen-
ders whose distribution among nouns is rather balanced
and, moreover, personal pronouns usually agree in gender
with a noun they co-refer with.
Thus, we suggest to incorporate the results of Czech co-
reference resolution into the English resolver, which might
limit the number of antecedent candidates that are in con-
sideration. Conversely, Czech is a pro-drop language,
which allows us to utilize the English side to potentially
project some of the pronouns that are elided in Czech.

7. Conclusion
We presented CzEng 1.0, the new release of a large Czech-
English parallel corpus with rich automatic annotation. The
corpus is freely available for non-commercial research and
educational purposes at our web site:

http://ufal.mff.cuni.cz/czeng

CzEng 1.0 can serve as large training data for linguistically
uninformed approaches, e.g. to machine translation, but
it can also be directly used in experimenting with cutting-
edge NLP tasks such as co-reference resolution validated
across languages. We have also provided two examples of
exploiting the parallelism of the data to improve monolin-
gual processing: sentence segmentation and formeme defi-
nition.
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Jan Hajič. 2004. Complex Corpus Annotation: The Prague
Dependency Treebank. In Insight into Slovak and Czech
Corpus Linguistics, Bratislava, Slovakia. Jazykovedný
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Col. Sample Explanation
1 subtitles-b2-00train-f00001-s8 ID specifying the domain, block number, train/dev/test section, file

number and sentence within the file.
2 0.99261036 Filter score indicating the quality of the sentence pair. The score of 1

is perfect pair, pairs below 0.3 are removed.
Czech

3 Zachránil|zachránit_:W|VpYS---XR-AA---|1|0|Pred
mi|já|PH-S3--1-------|2|1|Obj můj|můj|PSYS1-S1-------|3|5|Atr
milovaný|milovaný_ˆ(*2t)|AAIS1----1A----|4|5|Atr
krk|krk|NNIS1-----A----|5|1|Obj .|.|Z:----...

Czech a-layer (surface-syntactic tree) in factored form: word-
form|lemma|morphological-tag|index-in-sentence|index-of-
governor|syntactic-function.

4 zachránit|PRED|1|0|complex|v:fin|v|-|neg0|ant|ind|decl|-|...
#PersPron|ADDR|2|1|complex|n:3|n.pron.def.pers|sg|-|-|...

Czech t-layer (tectogrammatical tree): t-lemma|functor|index-
in-tree|index-of-governor|nodetype|formeme|semantic-part-of-
speech|... and many detailed t-layer attributes.

5 0-0 1-1 2-2 3-3 4-4 Correspondence between Czech a-layer and t-layer for content words.
Indexed from 0.

6 Correspondence between Czech a-layer and t-layer for auxiliary
words. Indexed from 0.

English
7 He|he|PRP|1|2|Sb saved|save|VBD|2|0|Pred my|my|PRP$|3|4|Atr

ever-lovin|ever-lovin|NN|4|6|Atr '|'|''|5|6|AuxG
neck|neck|NN|6|2|Obj .|.|.|7|0|AuxK

English a-layer (surface-syntactic tree) in factored form: word-
form|lemma|tag|index-in-sentence|index-of-governor|syntactic-
function.

8 #PersPron|ACT|1|2|complex|n:subj|n.pron.def.pers|sg|-|-|...
save|PRED|2|0|complex|v:fin|v|-|neg0|ant|ind|decl|-|-|...
#PersPron|APP|3|4|complex|n:poss|n.pron...

English t-layer (tectogrammatical tree): t-lemma|functor|index-
in-tree|index-of-governor|nodetype|formeme|semantic-part-of-
speech|... and many detailed t-layer attributes.

9 0-0 1-1 2-2 3-3 5-4 Correspondence between English a-layer and t-layer for content
words. Indexed from 0.

10 4-4 Correspondence between English a-layer and t-layer for auxiliary
words. Indexed from 0.

Cross-Language Alignments Between Surface Czech and English
Always indexed from 0, Czech-English.

11 0-1 1-2 2-2 3-3 4-5 5-6 GIZA++ alignments “there” for cs2en.
12 0-0 0-1 2-2 3-3 3-4 4-5 5-6 GIZA++ alignments “back” for cs2en.
13 0-0 0-1 1-2 2-2 3-3 3-4 4-5 5-6 GIZA++ alignments symmetrized using grow-diag-final-and for

cs2en.
14 0-0 0-1 1-2 2-2 3-3 3-4 4-5 5-6 GIZA++ alignments symmetrized using grow-diag-final-and for en2cs

(not the inverse of column 13).
Cross-Language Alignments Between T-Layer Czech and English

Always indexed from 0, Czech-English.
15 0-1 1-2 2-2 3-3 4-4 T-alignment “there” for cs2en.
16 0-0 0-1 2-2 3-3 4-4 T-alignment “back” for cs2en.
17 Additional rule-based t-alignment linking esp. generated nodes like

#Perspron;.

Table 5: An example and explanation of the “export format” of CzEng 1.0. Each row in the table corresponds to one
tab-delimited column of the line-oriented text files.
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analýzu anafor v českém jazyce. Master’s thesis, MFF
UK, Prague, Czech Republic. In Czech.

Franz Josef Och and Hermann Ney. 2000. A Compari-
son of Alignment Models for Statistical Machine Trans-
lation. In Proceedings of the 17th conference on Com-
putational linguistics, pages 1086–1090. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: a Method for Automatic Evaluation
of Machine Translation. In ACL 2002, Proceedings of
the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia, Penn-
sylvania.
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Abstract

This paper describes experiments with
English-to-Czech phrase-based machine
translation. Additional annotation of input
and output tokens (multiple factors) is used
to explicitly model morphology. We vary
the translation scenario (the setup of multi-
ple factors) and the amount of information
in the morphological tags. Experimental
results demonstrate significant improvement
of translation quality in terms of BLEU.

1 Introduction

Statistical phrase-based machine translation (SMT)
systems currently achieve top performing results.1

Known limitations of phrase-based SMT include
worse quality when translating to morphologically
rich languages as opposed to translating from them
(Koehn, 2005). One of the teams at the 2006 sum-
mer engineering workshop at Johns Hopkins Uni-
versity2 attempted to tackle these problems by in-
troducing separateFACTORS in SMT input and/or
output to allow explicit modelling of the underlying
language structure. The support for factored transla-
tion models was incorporated into the Moses open-
source SMT system3.

In this paper, we report on experiments with
English-to-Czech multi-factor translation. After a
brief overview of factored SMT and our data (Sec-
tions 2 and 3), we summarize some possible trans-
lating scenarios in Section 4. Section 5 studies the

1http://www.nist.gov/speech/tests/mt/
2http://www.clsp.jhu.edu/ws2006/
3http://www.statmt.org/moses/

level of detail useful for morphological representa-
tion and Section 6 compares the results to a setting
with more data available, albeit out of domain. The
second part (Section 7) is devoted to a brief analysis
of MT output errors.

1.1 Motivation for Improving Morphology

Czech is a Slavic language with very rich morphol-
ogy and relatively free word order. The Czech mor-
phological system (Hajič, 2004) defines 4,000 tags
in theory and 2,000 were actually seen in a big
tagged corpus. (For comparison, the English Penn
Treebank tagset contains just about 50 tags.) In our
parallel corpus (see Section 3 below), the English
vocabulary size is 35k distinct token types but more
than twice as big in Czech, 83k distinct token types.

To further emphasize the importance of morphol-
ogy in MT to Czech, we compare the standard
BLEU (Papineni et al., 2002) of a baseline phrase-
based translation with BLEU which disregards word
forms (lemmatized MT output is compared to lem-
matized reference translation). The theoretical mar-
gin for improving MT quality is about 9 BLEU
points: the same MT output scores 12 points in stan-
dard BLEU and 21 points in lemmatized BLEU.

2 Overview of Factored SMT

In statistical MT, the goal is to translate a source
(foreign) language sentencefJ

1 = f1 . . . fj . . . fJ

into a target language (Czech) sentencecI
1 =

c1 . . . cj . . . cI . In phrase-based SMT, the assump-
tion is made that the target sentence can be con-
structed by segmenting source sentence into phrases,
translating each phrase and finally composing the
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target sentence from phrase translations,sK
1 de-

notes the segmentation of the input sentence into
K phrases. Among all possible target language
sentences, we choose the sentence with the highest
probability,

êÎ
1 = argmax

I,cI

1
,K,sK

1

{Pr(cI
1|f

J
1 , sK

1 )} (1)

In a log-linear model, the conditional probability
of cI

1 being the translation offJ
1 under the segmenta-

tion sK
1 is modelled as a combination of independent

feature functionsh1(·, ·, ·) . . . hM (·, ·, ·) describing
the relation of the source and target sentences:

Pr(cI
1|f

J
1 , sK

1 ) =

exp(
∑M

m=1 λmhm(cI
1, f

J
1 , sK

1 ))
∑

c′I
′

1

exp(
∑M

m=1 λmhm(c′I
′

1 , fJ
1 , sK

1 ))
(2)

The denominator in 2 is used as a normalization
factor that depends on the source sentencefJ

1 and
segmentationsK

1 only and is omitted during maxi-
mization. The model scaling factorsλM

1 are trained
either to the maximum entropy principle or opti-
mized with respect to the final translation quality
measure.

Most of our features are phrase-based and we re-
quire all such features to operate synchronously on
the segmentationsK

1 and independently of neigh-
bouring segments. In other words, we restrict the
form of phrase-based features to:

hm(cI
1, f

J
1 , sK

1 ) =

K∑

k=1

h̃m(c̃k, f̃k) (3)

wheref̃k represents the source phrase andc̃ repre-
sents the target phrasek given the segmentationsK

1 .

2.1 Decoding Steps

In factored SMT, source and target wordsf andc are
represented as tuples ofF andC FACTORS, resp.,
each describing a different aspect of the word, e.g.
its word form, lemma, morphological tag, role in a
verbal frame. The process of translation consists of
DECODING steps of two types:MAPPING steps and
GENERATION steps. If more steps contribute to the
same output factor, they have to agree on the out-
come, i.e. partial hypotheses where two decoding

steps produce conflicting values in an output factor
are discarded.

A MAPPING step from a subset of source fac-
tors S ⊆ {1 . . . F} to a subset of target factors
T ⊆ {1 . . . C} is the standard phrase-based model
(see e.g. (Koehn, 2004a)) and introduces a feature
in the following form:

h̃map:S→T
m (c̃k, f̃k) = log p(f̃S

k |c̃
T
k ) (4)

The conditional probability of̃fS
k , i.e. the phrase

f̃k restricted to factorsS, given c̃T
k , i.e. the phrase

c̃k restricted to factorsT is estimated from relative
frequencies:p(f̃S

k |c̃
T
k ) = N(f̃S, c̃T )/N(c̃T ) where

N(f̃S, c̃T ) denotes the number of co-occurrences of
a phrase pair(f̃S, c̃T ) that are consistent with the
word alignment. The marginal countN(c̃T ) is the
number of occurrences of the target phrasec̃T in the
training corpus.

For each mapping step, the model is included in
the log-linear combination in source-to-target and
target-to-source directions:p(f̃T |c̃S) andp(c̃S |f̃T ).
In addition, statistical single word based lexica are
used in both directions. They are included to smooth
the relative frequencies used as estimates of the
phrase probabilities.

A GENERATION step maps a subset of target fac-
tors T1 to a disjoint subset of target factorsT2,
T1,2 ⊂ {1 . . . C}. In the current implementation
of Moses, generation steps are restricted to word-
to-word correspondences:

h̃gen:T1→T2

m (c̃k, f̃k) = log

length(c̃k)∏

i=1

p(c̃T1

k,i|c̃
T2

k,i) (5)

wherec̃T
k,i is thei-th words in thek-th target phrase

restricted to factorsT . We estimate the conditional
probabilityp(c̃T2

k,i|c̃
T1

k,i) by counting over words in the
target-side corpus. Again, the conditional probabil-
ity is included in the log-linear combination in both
directions.

In addition to features for decoding steps, we in-
clude arbitrary number of target language models
over subsets of target factors,T ⊆ {1 . . . C}. Typi-
cally, we use the standardn-gram language model:
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hT
LMn

(fJ
1 , cI

1) = log
I∏

i=1

p(cT
i |c

T
i−1 . . . cT

i−n+1) (6)

While generation steps are used to enforce “verti-
cal” coherence between “hidden properties” of out-
put words, language models are used to enforce se-
quential coherence of the output.

Operationally, Moses performs a stack-based
beam search very similar to Pharaoh (Koehn,
2004a). Thanks to the synchronous-phrases assump-
tion, all the decoding steps can be performed during
a preparatory phase. For each span in the input sen-
tence, all possible translation options are constructed
using the mapping and generation steps in a user-
specified order. Low-scoring options are pruned al-
ready during this phase. Once all translation options
are constructed, Moses picks source phrases (all out-
put factors already filled in) in arbitrary order, sub-
ject to a reordering limit, producing output in left-to-
right fashion and scoring it using the specified lan-
guage models exactly as Pharaoh does.

3 Data Used

The experiments reported in this paper were car-
ried out with the News Commentary (NC) corpus as
made available for the SMT workshop4 of the ACL
2007 conference.5

The Czech part of the corpus was tagged and lem-
matized using the tool by Hajič and Hladká (1998),
the English part was tagged MXPOST (Ratnaparkhi,
1996) and lemmatized using the Morpha tool (Min-
nen et al., 2001). After some final cleanup, the
corpus consists of 55,676 pairs of sentences (1.1M
Czech tokens and 1.2M English tokens). We use the
designated additional tuning and evaluation sections
consisting of 1023, resp. 964 sentences.

In all experiments, word alignment was obtained
using the grow-diag-final heuristic for symmetriz-
ing GIZA++ (Och and Ney, 2003) alignments. To
reduce data sparseness, the English text was lower-
cased and Czech was lemmatized for alignment es-
timation. Language models are based on the target

4http://www.statmt.org/wmt07/
5Our preliminary experiments with the Prague Czech-

English Dependency Treebank, PCEDT v.1.0 (Čmejrek et al.,
2004), 20k sentences, gave similar results, although with a
lower level of significance due to a smaller evaluation set.

side of the parallel corpus only, unless stated other-
wise.

3.1 Evaluation Measure and MERT

We evaluate our experiments using the (lowercase,
tokenized) BLEU metric and estimate the empiri-
cal confidence using the bootstrapping method de-
scribed in Koehn (2004b).6 We report the scores
obtained on the test section with model parameters
tuned using the tuning section for minimum error
rate training (MERT, (Och, 2003)).

4 Scenarios of Factored Translation
English→Czech

We experimented with the following factored trans-
lation scenarios.

The baseline scenario (labelled T for translation)
is single-factored: input (English) lowercase word
forms are directly translated to target (Czech) low-
ercase forms. A 3-gram language model (or more
models based on various corpora) checks the stream
of output word forms. The baseline scenario thus
corresponds to a plain phrase-based SMT system:

English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology

In order to check the output not only for word-
level coherence but also for morphological coher-
ence, we add a single generation step: input word
forms are first translated to output word forms and
each output word form then generates its morpho-
logical tag.

Two types of language models can be used simul-
taneously: a (3-gram) LM over word forms and a
(7-gram) LM over morphological tags.

We used tags with various levels of detail, see sec-
tion 5. We call this the “T+C” (translate and check)
scenario:

6Given a test set of sentences, we perform 1,000 random se-
lections with repetitions to estimate 1,000 BLEU scores on test
sets of the same size. The empirical 90%-confidence upper and
lower bounds are obtained after removing top and bottom 5% of
scores. For conciseness, we report the average of the distance
between to standard BLEU value and the empirical upper and
lower bound after the “±” symbol.
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English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology +LM

As a refinement of T+C, we also used T+T+C
scenario, where the morphological output stream is
constructed based on both output word forms and in-
put morphology. This setting should reinforce cor-
rect translation of morphological features such as
number of source noun phrases. To reduce the risk
of early pruning, the generation step operationally
precedes the morphology mapping step. Again,
two types of language models can be used in this
“T+T+C” scenario:

English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology +LM

The most complex scenario we used is linguis-
tically appealing: output lemmas (base forms) and
morphological tags are generated from input in two
independent translation steps and combined in a sin-
gle generation step to produce output word forms.
The input English text was not lemmatized so we
used English word forms as the source for produc-
ing Czech lemmas.

The “T+T+G” setting allows us to use three types
of language models. Trigram models are used for
word forms and lemmas and 7-gram language mod-
els are used over tags:

English Czech
lowercase lowercase +LM

lemma lemma +LM
morphology morphology +LM

4.1 Experimental Results: Improved over T

Table 1 summarizes estimated translation quality of
the various scenarios. In all cases, a 3-gram LM is
used for word forms or lemmas and a 7-gram LM
for morphological tags.

The good news is that multi-factored models al-
ways outperform the baseline T.

Unfortunately, the more complex multi-factored
scenarios do not bring any significant improvement
over T+C. Our belief is that this effect is caused by
search errors: with multi-factored models, more hy-
potheses get similar scores and future costs of partial

BLEU
T+T+G 13.9±0.7
T+T+C 13.9±0.6
T+C 13.6±0.6
Baseline: T 12.9±0.6

Table 1: BLEU scores of various translation scenar-
ios.

hypotheses might be estimated less reliably. With
the limited stack size (not more than 200 hypothe-
ses of the same number of covered input words), the
decoder may more often find sub-optimal solutions.
Moreover, the more steps are used, the more model
weights have to be tuned in the minimum error rate
training. Considerably more tuning data might be
necessary to tune the weights reliably.

5 Granularity of Czech Part-of-Speech

As stated above, the Czech morphological tag sys-
tem is very complex: in theory up to 4,000 different
tags are possible. In our T+T+C scenario, we exper-
iment with various simplifications of the system to
find the best balance between richness and robust-
ness of the statistics available in our corpus. (The
more information is retained in the tags, the more
severe data sparseness is.)

Full tags (1200 unique seen in the 56k corpus):
Full Czech positional tags are used. A tag
consists of 15 positions, each holding the value
of a morphological property (e.g. number, case
or gender).7

POS+case (184 unique seen):We simplify the tag
to include only part and subpart of speech (dis-
tinguishes also partially e.g. verb tenses). For
nouns, pronouns, adjectives and prepositions8,
also the case is included.

CNG01 (621 unique seen):CNG01 refines POS.
For nouns, pronouns and adjectives we include
not only the case but also number and gender.

7In principle, each of the 15 positions could be used as a
separate factor. The set of necessary generation steps to encode
relevant dependencies would have to be carefully determined.

8Some Czech prepositions select for a particular case, some
are ambiguous. Although the case is never shown on surface of
the preposition, the tagset includes this information and Czech
taggers are able to infer the case.
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CNG02 (791 unique seen):Tag for punctuation is
refined: the lemma of the punctuation symbol
is taken into account; previous models disre-
garded e.g. the distributional differences be-
tween a comma and a question mark. Case,
number and gender added to nouns, pronouns,
adjectives, prepositions, but also to verbs and
numerals (where applicable).

CNG03 (1017 unique seen):Optimized tagset:

• Tags for nouns, adjectives, pronouns and
numerals describe the case, number and
gender; the Czech reflexive pronounseor
si is highlighted by a special flag.

• Tag for verbs describes subpart of speech,
number, gender, tense and aspect; the tag
includes a special flag if the verb was the
auxiliary verb být (to be) in any of its
forms.

• Tag for prepositions includes the case and
also the lemma of the preposition.

• Lemma included for punctuation, parti-
cles and interjections.

• Tag for numbers describes the “shape” of
the number (all digits are replaced by the
digit 5 but number-internal punctuation is
kept intact). The tag thus distinguishes be-
tween 4- or 5-digit numbers or the preci-
sion of floating point numbers.

• Part of speech and subpart of speech for
all other words.

5.1 Experimental Results: CNG03 Best

Table 2 summarizes the results of T+T+C scenario
with varying detail in morphological tag.

BLEU
Baseline: T (single-factor) 12.9±0.6
T+T+C, POS+case 13.2±0.6
T+T+C, CNG01 13.4±0.6
T+T+C, CNG02 13.5±0.7
T+T+C, full tags 13.9±0.6
T+T+C, CNG03 14.2±0.7

Table 2: BLEU scores of various granularities of
morphological tags in T+T+C scenario.

NC NC CzEng
mix

weighted = αNC + βmix

Scenario Phrases from LMs BLEU
T NC NC 12.9±0.6
T mix mix 11.8±0.6
T mix weighted 11.8±0.6
T+C CNG03 NC NC 13.7±0.7
T+C CNG03 mix mix 13.1±0.7
T+C CNG03 mix weighted 13.7±0.7
T+C full tags NC NC 13.6±0.6
T+C full tags mix mix 13.1±0.7
T+C full tags mix weighted 13.8±0.7

Figure 1: The effect of additional data in T and T+C
scenarios.

Our results confirm improvement over the single-
factored baseline. Detailed knowledge of the mor-
phological system also proves its utility: by choos-
ing the most relevant features of tags and lemmas
but avoiding sparseness, we can improve on BLEU
score by about 0.3 absolute over T+T+C with full
tags.

6 More Out-of-Domain Data in T and T+C
Scenarios

In order to check if the method scales up with
more parallel data available, we extend our train-
ing data using the CzEng parallel corpus (Bojar
and Žabokrtský, 2006). CzEng contains sentence-
aligned texts from the European Parliament (about
75%), e-books and stories (15%) and open source
documentation. By “Baseline” corpus we denote
NC corpus only, by “Large” we denote the combi-
nation of training sentences from NC and CzEng
(1070k sentences, 13.9M Czech and 15.5 English
tokens) where in-domain NC data amounts only to
5.2% sentences.

Figure 1 gives full details of our experiments with
the additional data. We varied the scenario (T or
T+C), the level of detail in the T+C scenario (full
tags vs. CNG03) and the size of the training corpus.
We extract phrases from either the in-domain corpus
only (NC) or the mixed corpus (mix). We use either
one LM per output factor, varying the corpus size
(NC or mix), or two LMs per output factors with
weights trained independently in the MERT proce-

236



104 Appendix A.3: Bojar, O.

dure (weighted). Independent weights allow us to
take domain difference into account, but we exploit
this in the target LM only, not the phrases.

The only significant difference is caused by the
scenario: T+C outperforms the baseline T, regard-
less of corpus size. Other results (insignificantly)
indicate the following observations:

• Ignoring the domain difference and using only
the mixed domain LM in general performs
worse than allowing MERT to optimize LM
weights for in-domain and generic data sepa-
rately.9

• CNG03 outperforms full tags only in small data
setting, with large data (treating the domain dif-
ference properly), full tags perform better.

7 Untreated Morphological Errors

The previous sections described improvements
gained on small data sets when checking morpho-
logical agreement using T+T+C scenario (BLEU
raised from 12.9% to 13.9% or up to 14.2% with
manually tuned tagset, CNG03). However, the best
result achieved is still far below the margin of lem-
matized BLEU (21%), as mentioned in Section 1.1.

When we searched for the unexploited morpho-
logical errors, visual inspection of MT output sug-
gested that local agreement (within 3-word span) is
relatively correct but Verb-Modifier relations are of-
ten malformed causing e.g. a bad case for the Mod-
ifier. To quantify this observation we performed a
micro-study of our best MT output using an intu-
itive metric. We checked whether Verb-Modifier re-
lations are properly preserved during the translation
of 15 sample sentences.

Thesourcetext of the sample sentences contained
77 Verb-Modifier pairs. Table 3 lists our observa-
tions on the two members in each Verb-Modifier
pair. We see that only 56% of verbs are translated
correctly and 79% of nouns are translated correctly.
The system tends to skip verbs quite often (27% of
cases).

9In our previous experiments with PCEDT as the domain-
specific data, the difference was more apparent because the cor-
pus domains were more distant. In the T scenario reported here,
the weighted LMs did not bring any improvement over “mix”
and even performed worse than the baseline NC. We attribute
this effect to some randomness in the MERT procedure.

Translation of Verb Modifier
. . . preserves meaning 56% 79%
. . . is disrupted 14% 12%
. . . is missing 27% 1%
. . . is unknown (not translated) 0% 5%

Table 3: Analysis of 77 Verb-Modifier pairs in 15
sample sentences.

More importantly, our analysis has shown that
even in cases where both the Verb and the Modi-
fier are lexically correct, the relation between them
in Czech is either non-grammatical or meaning-
disrupted in 56% of these cases. Commented sam-
ples of such errors are given in Figure 2 below. The
first sample shows that a strong language model can
lead to the choice of a grammatical relation that nev-
ertheless does not convey the original meaning. The
second sample illustrates a situation where two cor-
rect options are available but the system chooses
an inappropriate relation, most probably because of
backing off to a generic pattern verb-nounaccusative

plural .
This pattern is quite common for expressing the ob-
ject role of many verbs (such asvydat, see Cor-
rect option 2 in Figure 2), but does not fit well
with the verb vyb̌ehnout. While the target-side
data may be rich enough to learn the generalization
vyběhnout–s–instr, no such generalization is possi-
ble with language models over word forms or mor-
phological tags only. The target side data will be
hardly ever rich enough to learn this particular struc-
ture in all correct morphological and lexical variants:
vyb̌ehl–s–reklamou, vyběhla–s–reklamami, vyběhl–
s–prohĺašeńım, vyb̌ehli–s–ozńameńım, . . .. We
would need a mixed model that combines verb lem-
mas, prepositions and case information to properly
capture the relations.

Unfortunately, our preliminary experiments that
made use of automatic Czech dependency parse
trees to construct a factor explicitly highlighting the
Verb (lexicalized) its Modifiers (case and the lemma
of the preposition, if present) and boundary sym-
bols such as punctuation or conjunctions and using
a dummy token for all other words did not bring any
improvement over the baseline. A possible reason is
that we employed only a standard 7-gram language
model to this factor. A more appropriate treatment
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is to disregard the dummy tokens in the language
model at all and use an n-gram language model that
looks at lastn− 1 non-dummy items.

8 Related Research

Class-based LMs (Brown et al., 1992) or factored
LMs (Bilmes and Kirchhoff, 2003) are very similar
to our T+C scenario. Given the small differences
in all T+. . . scenarios’ performance, class-based LM
might bring equivalent improvement. Yang and
Kirchhoff (2006) have recently documented minor
BLEU improvement using factored LMs in single-
factored SMT to English. The multi-factored ap-
proach to SMT of Moses is however more general.

Many researchers have tried to employ mor-
phology in improving word alignment techniques
(e.g. (Popović and Ney, 2004)) or machine trans-
lation quality (Nießen and Ney (2001), Koehn and
Knight (2003), Zollmann et al. (2006), among oth-
ers, for various languages; Goldwater and McClosky
(2005), Bojar et al. (2006) and Talbot and Osborne
(2006) for Czech), however, they focus on translat-
ing from the highly inflectional language.

Durgar El-Kahlout and Oflazer (2006) report pre-
liminary experiments in English to Turkish single-
factored phrase-based translation, gaining signifi-
cant improvements by splitting root words and their
morphemes into a sequence of tokens. In might be
interesting to explore multi-factored scenarios for
different Turkish morphology representation sug-
gested the paper.

de Gispert et al. (2005) generalize over verb forms
and generate phrase translations even for unseen tar-
get verb forms. The T+T+G scenario allows a sim-
ilar extension if the described generation step is re-
placed by a (probabilistic) morphological generator.

Nguyen and Shimazu (2006) translate from En-
glish to Vietnamese but the morphological richness
of Vietnamese is comparable to English. In fact the
Vietnamese vocabulary size is even smaller than En-
glish vocabulary size in one of their corpora. The
observed improvement due to explicit modelling of
morphology might not scale up beyond small-data
setting.

As an alternative option to our verb-modifier
experiments, structured language models (Chelba
and Jelinek, 1998) might be considered to improve

clause coherence, until full-featured syntax-based
MT models (Yamada and Knight (2002), Eisner
(2003), Chiang (2005) among many others) are
tested when translating to morphologically rich lan-
guages.

9 Conclusion

We experimented with multi-factored phrase-based
translation aimed at improving morphological co-
herence in MT output. We varied the setup of ad-
ditional factors (translation scenario) and the level
of detail in morphological tags. Our results on
English-to-Czech translation demonstrate signifi-
cant improvement in BLEU scores by explicit mod-
elling of morphology and using a separate morpho-
logical language model to ensure the coherence. To
our knowledge, this is one of the first experiments
showing the advantages of using multiple factors in
MT.

Verb-modifier errors have been studied and a fac-
tor capturing verb-modifier dependencies has been
proposed. Unfortunately, this factor has yet to bring
any improvement.
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Abstract
We present eman, a tool for managing large numbers of computational experiments. Over

the years of our research in machine translation (MT), we have collected a couple of ideas for
efficient experimenting. We believe these ideas are generally applicable in (computational)
research of any field. We incorporated them into eman in order to make them available in a
command-line Unix environment.

The aim of this article is to highlight the core of the many ideas. We hope the text can serve
as a collection of experiment management tips and tricks for anyone, regardless their field of
study or computer platform they use. The specific examples we provide in eman’s current syntax
are less important but they allow us to use concrete terms. The article thus also fills the gap in
eman documentation by providing some high-level overview.

1. Introduction

Computational sciences including computational linguistics and computer science
require broad experimenting to support theories and evaluate various techniques or
methods. Very often, even the authors of some novel idea cannot guess the best possi-
ble method parameters and some form of search for them is desirable. This becomes
more apparent if the method combines several independent modules or processing
steps, each of which may or may not have been evaluated independently of the overall
goal.

Another common aspect of natural sciences is the overarching strive for repro-
ducibility. A novel method is never completely trusted until validated by a few inde-
pendent laboratories, a program has to be tested and evaluated on a range of inputs
and so on.

We pinpoint these two aspects of science by noting that: research = reproducible search.

© 2013 PBML. All rights reserved. Corresponding author: bojar@ufal.mff.cuni.cz
Cite as: Ondřej Bojar, Aleš Tamchyna. The Design of Eman, an Experiment Manager. The Prague Bulletin of
Mathematical Linguistics No. 99, 2013, pp. 39–58. doi: 10.2478/pralin-2013-0003.



108 Appendix A.4: Bojar, O. and Tamchyna, A.

PBML 99 APRIL 2013

In this article, we describe a very general tool that facilitates both reproducibil-
ity and search for the best configuration and parameters of complex experimental
pipelines. Our eman also supports the collaboration of several people on the experi-
ment.

Eman is open-source software, freely available for both non-commercial and com-
mercial use.1 The most recent version of the tool as well as other documentation is
accessible at:

http://ufal.mff.cuni.cz/eman
The article is structured as follows: in Section 2, we explain what we perceive as the

state-of-the-art techniques in efficient experimenting, highlighting the design goals of
our new tool. Section 3 introduces our terminology and the basic building blocks of
experiments in eman’s terms. Section 4 summarizes the first area of eman’s utility:
navigation in the space of steps and experiments. Section 5 is devoted to the idea
of cloning experiments and Section 6 describes the third key contribution: a general
technique for collecting and interpreting the results. We conclude by introducing
eman’s support for teamwork (Section 7), related tools (Section 8) and our future plans
(Section 9).

While we show some calls of eman commands in their exact syntax, the main goal
of this article is to describe the underlying general ideas, not to serve as a reference
guide for the tool. For this, the user is advised to the manual page of eman which can
be obtained by running:

eman --man

2. Design Objectives

The design of eman builds on our experience that the following features of experi-
mentation environment are essential:
Reuse of results. In order to save both computation time and disk space, we need to

reuse as many intermediate results as possible.
Encapsulation. Scientific experiments usually consist of complex sequences of pro-

cessing steps, each carried out using a different tool that itself often needs some
analysis, debugging, tweaking or optimization. To simplify switching and keep-
ing focus, eman promotes encapsulation of each logical step into a separate di-
rectory. This directory should be as self-contained as reasonable, so when the
researcher later inspects it, all the inputs and outputs are in one place.

Detailed records. Detailed logging of program outputs as well as of commands is-
sued is essential for ensuring reproducibility, debugging and analysis of errors
and comparison of results. We extend this to recording also the exact versions
of (third-party) tools used in the experiment and also the procedure needed to

1Eman is licensed under the Creative Commons Attribution-ShareAlike License 3.0 (CC-BY-SA).
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obtain and install the tools. This is achieved by treating the (source) code of the
tools as input data of the experiment and including the compilation of the tools
in the pipeline of the experiment. The reuse of intermediate results ensures the
code is compiled only once.

Immutability. To simplify the record keeping, we opt for immutability of all data
that is created in the experiment. Whenever some intermediate result is created
based on some settings, eman never changes it. Modifications of the run are of
course possible, but they always obtain a new identifier and reside in a new
directory.

Hacking welcome. Admittedly, research prototype software is often quickly patched
and far from anything that could be called a stable release. Furthermore, and
this is a more important issue, research software does not always fit the purpose
in new experiments. It is thus common that the tools have to be adapted or that
a manual intervention is necessary after a random unexpected failure. Eman
introduces a great deal of flexibility of experiment design – experiments are
composed of individual steps which are further split into several lifetime stages
– to allow for such an intervention.

Cloning. Research partially comprises of examining a range of minor modifications
of a setup. In eman’s view, as it will be described below, experiments are defined
by arbitrary variables and such setup modifications usually amount to setting
these variables differently. Section 5 provides examples of one-line commands
that take an existing experiment and apply a given set of modifications to it (such
as setting a parameter differently or reversing the source and target language in
an MT experiment). Finally, the necessary minimum of new processing steps
are created and launched, reusing the steps common to both setups.
Cloning is in fact such a powerful idea that the relatively simple implementation
of it in eman (regular expressions applied to experiment configuration files) al-
lowed to create the tool Prospector, an automatic researcher (Tamchyna and Bo-
jar, 2013). Prospector automatically searches the “space of possible MT systems”
by evaluating various settings specified by its configuration file. The search can
be guided by any metric, e.g. the well-known BLEU (Papineni et al., 2002) as cal-
culated in the final evaluation step. Several search algorithms are implemented
(greedy, exhaustive, genetic, random).
Prospector allows researches to avoid the tedious work of e.g. finding optimal
parameters or meta-parameters for the MT decoder (beam size etc.) or any other
experimental settings. It is freely available and distributed along with eman.

Parallelism. The parallelizations common in contemporary computer science (multi-
ple processor cores, clusters of computers) allow for parallel execution of exper-
iments. This is highly desirable because each individual experiment often takes
a long time. Carrying out experiments in a strictly serial order would waste
researchers’ time and not fully exploit the available computational resources.
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On the other hand, the researcher can easily lose track and focus when running
many experiments in parallel.
Eman naturally allows to submit individual processing steps to a computer clus-
ter, but more importantly, eman is designed to simplify the orientation in the
large number of experiments already performed or in execution (see Section 4)
and to some extent also the foreseen ones (see Section 6.3). The design also al-
lows to derive (clone) new experiments from old ones even before the old ones
complete.

Collaboration. The most recent feature of eman is the support for distributed exper-
imenting. Currently we require a common filesystem (such as NFS), but that
is reasonably easy to set up even across large distances. Individual processing
steps can be launched by different researchers at different sites. The simple com-
mand “eman add-remote” issued once allows to include all the partial results of
a remote site in the local environment. Circular inclusion is permitted allow-
ing multiple researchers to “work at a common desk”, reusing other people’s
processing steps (not just the programs but also the outputs of their particular
runs), or to reinterpret their results (e.g. by creating new tabular views).
The same mechanism can be beneficial even for a single researcher as it allows
to strictly separate some core source data (such as multiple training sets that
nevertheless needed some preparation) from different branches of experiments.

Succinct notation. Shortcuts and abbreviations are very useful for improving the effi-
ciency of the operating researcher. Eman provides shortcuts at several occasions,
which is very useful e.g. for checking the status of the experiments over SSH in
the cell phone.

3. Seeds, Steps, Experiments

Each experiment consists of atomic tasks called steps. In the context of MT, steps
correspond e.g. to training a language model, translating a test set or running tuning.
The individual steps depend on each other – the experiment is then a DAG (directed
acyclic graph) of steps.

Each step has a type such as tm (translation model) or translate. The code which
is executed when the step is run is generated by the corresponding seed. In the ter-
minology of object-oriented programming (OOP), seeds can be viewed as classes and
steps as their instances. Unlike in OOP, eman’s positive stance to hacking allows dif-
ferent steps (instances) of the same type (class) run code customized arbitrarily, not
just using proper subclassing.

In our particular implementation of eman, each step is simply a directory named us-
ing the pattern “s.steptype.abcHASH.20121215-1234” where the date and the hash
value make the name unique. Seeds are then simply programs (in any language of the
researcher’s choice) which interpret some Unix environment variables and generate
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+- s.compress.370c2483.20121108-1216
| | CMD=bzip2
| | CMDARGS=
| | DATASTEP=s.data.aaf8c8b1.20121108-1149
| +- s.data.aaf8c8b1.20121108-1149
| | | CMD="cat ../binary.test"
| | | SIZE=10000
| | | TYPE=binary

Figure 1. Example of an eman traceback.

executable code (again, in any language). The code is stored in the step directory and
later run (once all predecessors are ready and the step is started).

Eman is used in a directory called playground – all steps are created there, based on
seeds in the subdirectory eman.seeds. The “eman add-remote” allows to link remote
playgrounds to the current one. By adding a remote playground, the directory struc-
ture is not changed but eman suddenly knows about steps coming from the remote
playgrounds, it can show their properties and include them in local experiments.

3.1. A Sample Experiment

For illustration, we implemented a “compression playground” which provides an
environment for evaluating compression algorithms. This sample playground con-
tains two seeds:
data Imports data into the playground – the data can be generated by any command

(specified by the variable CMD) and the user can limit the amount of data using
the variable SIZE.

compress Given some data, compress it using the command given in the variable CMD
with some optional CMDARGS and calculate the compression rate.

Figure 1 shows an example of an experiment in this playground in eman’s format.
This traceback is a full definition of the experiment. The seeds were “instantiated”
to steps with some variable values (e.g. the compression command is bzip2) and
connected to form a DAG – note that the dependency is explicitly captured in the
variable DATASTEP.

3.2. Lifetime of a Step

Figure 2 depicts the lifetime of a step.
New steps are created using “eman init STEPTYPE”. Eman creates a new directory

in the current playground and copies the corresponding seed into it. Then the seed
is executed – at this stage, the seed only performs basic sanity checks to determine
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seed INITED PREPARED

RUNNING

PREPFAILED

DONE

FAILED

OUTDATED

Figure 2. The lifetime of a processing step in eman

whether all required variables are defined etc. If everything succeeds, the step is reg-
istered in eman and receives the status INITED.

The seed is executed once more when the user runs “eman prepare SPEC”. At this
point, the seed creates an executable file eman.command which contains the step code.
Eman checks whether the file was created and sets the step status to PREPARED.

Finally, the user runs “eman start SPEC” and the step is started. Its status changes
to RUNNING. Once the step terminates, its status is either DONE or FAILED.

Steps at any stage, including the FAILED ones, can still serve as a basis for creating
new steps with the same or similar variables, see below. For the purposes of marking
that the user has already handled a failure, one more state, OUTDATED, was introduced.
Upon request (“--outdate”) eman not only creates a new instance of a failed step but
also moves the failed one to the outdated state.

There are many shortcuts for user convenience – “eman start” on an INITED step
automatically runs “eman prepare”. The whole process of creating and running a step
can even be done in one command (and it often is): “eman init --start”.

The acyclicity of the lifetime diagram (no directed loops) is in line with the design
objectives of immutability and detailed records. One should want to keep the logs of
a failure and redo the job in a fresh instance of the step. (Indeed, this is what the com-
mand “eman redo” does, see Section 5.2.) In practice, a step can be very costly and fail
at some late stage of execution. It would be wasteful to rerun it from scratch. The fact
that each step includes its code (the file “eman.command”, cf. the encapsulation objec-
tive) allows to manually fix this code and to jump to a recorded point shortly before
the failure. After these manual changes in “eman.command”, calling “eman continue”
puts the failed step back to the RUNNING state and submits it to the cluster again (or
runs it locally, depending on the user’s environment).

3.3. Motivation for the Three Stages

What are the benefits of breaking the execution of a single processing step into the
stages of initialization, preparation and the run itself?
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The initialization is vital, it turns a blank directory into a valid eman step with vari-
ables defined. From this point on, the step can be incorporated into complex experi-
ments and it can be used as a basis for cloning. There is thus no need to wait until the
step finishes, we can plan ahead (and even submit for execution) other steps that will
build on the future outputs.

After the initialization, the user has a chance to tweak the seed (and thus influence
the actual command that will be performed). This is the point where we depart the
OOP by allowing different instances run customized code.

The init phase should be very quick, it is run interactively and often repeated for
many steps when cloning whole experiments.

The preparation phase is thus meant to get all input data in place, so that the user can
check them before the actual computation, e.g. submitting the step to the cluster. In
our MT experiments, the preparation phase was originally responsible for things like
cutting a given subsection or subset of annotation features from the training data. As
our training data grew, running these filters during the (still interactive) preparatory
phase became inconvenient, so we changed our seeds and shifted even the obtaining
of input data into the actual run. For eman, this makes no difference. The choice what
happens at what phase is entirely up to the user; any of the phases can be even empty.

3.4. From Steps to Experiments

Steps are combined to form experiments. There is no pre-defined interface for
communication between steps. Each step has access to its (direct) predecessors via
variables – it can extract whatever files the previous step has created from its directory.
The same step can thus serve several purposes at once, it just needs to produce outputs
relevant to the respective successors.

The initial setup of experiments is somewhat tedious, the user has to run a se-
quence of commands like:

SOURCEDATASTEP=s.mydata.12345678.20121215-1234 eman init myproces-
sor

The user has to manually set the variable SOURCEDATASTEP to the name of the pre-
viously initialized mydata step. Once the full cascade of steps, i.e. an experiment, is
set up, it is easier to derive variations of it using cloning, see Section 5.

3.5. Referring to Steps vs. Experiments

Note that the pointer to a step directory “s.steptype.123” can mean either just
the single step that was carried out in the directory, or the whole experiment, i.e.
the directed acyclic structure of steps that culminates with the given step. These two
notions should not be confused.

It is the particular eman command that resolves the ambiguity between a step and
an experiment. So for instance, “eman prepare” prepares an individual step regard-
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less the status of its predecessors. Depending on what a particular step requires, the
preparation may fail because the predecessors are still in the INITED state only and
do not provide relevant data. The command “eman start” is more useful as it oper-
ates on the whole experiment. In other words, it ensures that the whole DAG of steps
is first PREPARED and then submits all steps that were not finished yet to the cluster,
introducing any necessary job dependencies.

4. Navigation in the Playground of Steps and Experiments

As the user creates experiments or derives clones of them (Section 5), the play-
ground becomes quickly filled with step directories of unhelpful names like "s.tm.1a53fg63.20121202".
Finding a particular step can then be difficult and time-consuming. This section briefly
summarizes the four main techniques emanprovides to ease the navigation in the play-
ground: listing details of individual steps, finding (selecting) steps with given prop-
erties, examining the structure of experiments, i.e. how steps depend on one another,
and manually tagging steps.

One more aspect of playground structure remains to be harnessed in a future ver-
sion of eman: the history how steps were derived from other steps. Currently, eman
only records the immediate origin of a derived step in the file “eman.derived_from”.

4.1. Listing Steps and Their Details

The command “eman ls” prints steps in the current playground. The user can
filter the listing based on the step type and request additional information – most
importantly step variables, status and tags (see Section 4.4) – using command-line
options. The following example query returns all steps of the type “align” and prints
their variables, status and disk usage:

eman ls align --vars --stat --dus

Some shortcuts are again provided by means of commands eman vars, stat and
tags that print the required information about all steps, or a particular step:

eman vars s.tm.1a5

Note that it is not necessary to specify the full step name, any part of it (not neces-
sarily the beginning) long enough to make it unique within the playground is suffi-
cient.

4.2. Finding Existing Steps

The command “eman select” (optionally abbreviated to “sel”) provides a flexible
means for finding steps with specified properties. The following few examples are
just a brief demonstration of the query language.

• Steps which were created today and failed:
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eman sel today f
• Last (most recent) five steps of the type “align”:

eman sel t align l 5
• Language model steps (i.e. steps of the type “lm”) trained on word lemmas (vre

stands for “a variable matches regular expression”):
eman sel t lm vre lemma

• Language models of order other than three (note the word not):
eman sel t lm not vre ORDER=3

• MERT (Och, 2003) steps with a (possibly indirect) predecessor of the type align
whose variables match the expression “lemma” (presumably a word alignment
step done on word lemmas; br stands for backward recursion and matches prop-
erties in preceding steps):

eman sel t mert br t align vre lemma
• Translation model (“tm”) steps which were evaluated on a given test set (fr

means forward recursion):
eman sel t tm fr vre TESTCORP=wmt12

The syntax is very succinct which allows to write complex queries with very little
effort. Users of eman frequently log in to their cluster using cell-phone SSH and type
simply “eman sel f” to see if any experiments need their attention.

4.3. Dependencies and Users of Steps

Eman provides commands to list predecessors and successors of steps. Direct pre-
decessors (dependencies) can be obtained using the command “eman deps” while
“eman traceback” or “eman tb” prints the full traceback (i.e. DAG) of steps.

Eman assumes that an experiment is defined by the structure of dependencies and
the values of their variables; this implies that the command “eman tb --vars FINAL-
STEP” outputs a full, unambiguous specification of the whole experiment.

An example of a traceback with variables was already given in Figure 1.
Analogously to the predecessors, direct and indirect successors can be listed using

the commands “eman users” and “eman tf” (traceforward), respectively.

4.4. Tagging of Steps

Steps that are somehow special or often referred to, e.g. because they were manu-
ally tweaked before submission or because they represent the baseline or the current
best result, can be “tagged”. Tags are simple labels associated with a particular step.

Tags are assigned to steps using the command “eman add-tag”:

eman add-tag BASELINE s.evaluator.123456
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Later, tags can be used as step identifiers as long as they are unambiguous. So we
can e.g. double check what was our baseline configuration:

eman tb --vars BASELINE

The tags are stored in the step directory in the file eman.tags. Upon re-tagging
(“eman retag”), the labels are recursively propagated to the step successors (however
their eman.tags files do not change, the propagation is done in eman’s internal index
only). While this is useful for organizing results, see Section 6, it makes tags refer to
more steps and thus no longer usable as step specifiers. In future versions of eman, we
may thus remove or somehow restrict the tag propagation feature.

5. Cloning of Experiments

The previous sections described techniques for reusing intermediate results across
experiments. Now we describe eman commands that allow to reuse the configurations
of individual steps and whole experiments. The added twist is that when an existing
experiment is “cloned”, the variables may be arbitrarily changed.

5.1. Replicating Individual Steps

Cloning of an existing step means creating a new instance of the same step type,
reusing most of the variable values. For instance, we may want to create somewhat
larger test case for our compression experiment, and we already have the data step
“s.data.aaf8” ready, as illustrated in Figure 1. The following command will create
a new instance using the data seed and run it right away:

SIZE=500000 eman clone s.data.aaf8 --start

The above command works as an abbreviation of “eman init data” where all the
variables would have to be specified:

SIZE=500000 CMD="cat ../binary.test" TYPE=binary eman init data
--start

The cloning will work even without changing any of the variables. In general, it is
better to avoid multiple runs of the same configuration, but some computations are
non-deterministic and running several copies allows to estimate confidence intervals
of the result (Clark et al., 2011). In MT, the prototypical example is the minimum
error-rate training, MERT. Creating four more replications of a MERT run is trivial:

for i in 2 3 4 5; do eman clone --start s.mert.123; done

Replicating a step with identical variables is also useful when a step fails. The com-
mand “eman clone” as described so far operates on individual steps, so any (failed)
dependencies will not get recreated. A better option is described in the following
section.
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5.2. Redoing Experiments

When an experiment fails, “eman redo” can be used to re-create the necessary steps
in the whole experiment pipeline. Redo will check the whole traceback of the given
experiment and replicate any steps that are failed or outdated. When doing this, the
correct links between dependencies are honored, so whenever a step gets redone, its
successors will get redone as well.

With large-scale experiments, various technical problems often come into play,
making the redo command very useful in day-to-day experimenting. A particular
common reason for a failure is a full local temporary disk or memory limits set too
low for the given input data, which leads to jobs being killed by the cluster. Eman, in
cooperation with the scheduling environment, can set the requirements on available
memory and disk, so the following usage pattern is quite common:

eman redo s.myFailedExp.123 --mem 30g --disk 80g --start --outdate

Note that “eman redo” walks only the traceback, not the traceforward of the given
experiment. It is thus important to ask for a redo of the final steps of failed experi-
ments.

5.3. Deriving Whole Experiments

By mixing the idea of modifying variables and redoing whole experiments, we
arrive at the full power of experiment cloning.

We have already mentioned, that the traceback with variables (i.e. the output of
“eman tb --vars FINALSTEP”) is the complete description of an experiment. The user
can modify some variables in the textual form of the traceback and clone it:

eman clone < traceback.modified

When constructing steps from such a textual traceback, eman automatically dis-
covers steps which can be re-used and only creates the parts of the experiment which
are really needed. Experienced eman users often create the traceback, substitute some
values and create the modified experiment on one line:

eman tb -s /oldvalue/newvalue/ | eman clone --dry-run

The parameter -s defines a substitution which is applied on the whole traceback
and supports full Perl regular expressions. The “--dry-run” is useful for a quick
check before creating the many step directories or “--start”ing the new experiment.

We have found cloning of experiments to be extremely useful and versatile in prac-
tice. Multiple settings of an MT system can be created and evaluated easily by defining
the base experiment and cloning it several times with modified variable values.

With cloning, e.g. reversing the translation direction of an experiment is a trivial
change. Similarly, one can easily repeat an experiment for multiple language pairs,
change datasets, adjust language model order or modify factors for word alignment.

49



118 Appendix A.4: Bojar, O. and Tamchyna, A.

PBML 99 APRIL 2013

data var /SIZE=(.*)/SIZE$1B/ /000B\$/kB/
data var /TYPE=(.*)/TYPE$1/
compress var /CMD=(.*)/CMD$1/
compress var /CMDARGS=(.*)/ARGS$1/
compress var /CMDARGS=.*?-([0-9]).*/LEVEL$1/

Figure 3. Sample “eman.autotags” configuration.

6. Making Sense of Results

By a result, we mean a small token, usually a number, that was observed or mea-
sured during the run of an experiment. In eman’s view, results are small bits of infor-
mation available somewhere in the output files of a step.

Eman provides a set of tools for collecting and interpreting results.

6.1. Autotagging (Tags Based on Variables)

We have already introduced manual tags (Section 4.4) that can be later used to
identify e.g. results based on a particular dataset or using a particular version of a
program. In addition to tags, eman provides “autotags” that are created automatically
from variables of steps using regular expressions and substitutions. The main pur-
pose of automatic tags is to select relevant information from the variables and make
it available for the interpretation of results, see below.

The user configures automatic tagging by writing rules into the file “eman.autotags”.
Each rule consists of the type of steps to which it applies, a regular expression that is
matched against the step variables and optionally a regular-expression substitution
to be applied on the match – to beautify it in a way.

The tagging rules implemented for our compression example are shown in Fig-
ure 3. Each line defines one rule – on the first line, we tell eman to match variables
of data steps and look for the pattern “SIZE=.*”. We extract the size and prefix it
with the word “SIZE”. We also perform a simple substitution to shorten the value –
we replace “000B” with “kB”. The data step shown in Figure 1 is assigned the tag
“SIZE10kB” according to this rule.

6.2. Collecting Results

The first task when working with results is to collect them from all the many steps
in the playground to a single place. This is achieved using the command “eman col-
lect”: all results will appear in the file “eman.results” in the playground directory.
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s.compress.ba3c96ac.20121217-1415 DONE ratio .47770000000000000000 ARGS-5 CMDbzip2 LEVEL5 SIZE10kB TYPEhexrand
s.compress.bb9c7f1e.20121217-2145 DONE ratio .52478125000000000000 ARGS"-5 --rsyncable" CMDgzip LEVEL5 SIZE512kB TYPEhexrand
s.compress.c45a5afd.20121217-1414 DONE ratio .53680000000000000000 ARGS-9 CMDgzip LEVEL9 SIZE10kB TYPEhexrand
s.compress.99ab03f6.20121217-1436 DONE ratio .43619140625000000000 ARGS-5 CMDbzip2 LEVEL5 SIZE512kB TYPEhexrand
s.compress.02a5f93f.20121217-1436 DONE time 0.042 ARGS-5 CMDgzip LEVEL5 SIZE512kB TYPEhexrand
s.compress.0545633f.20121217-1413 DONE time 0.002 ARGS-4 CMDgzip LEVEL4 SIZE10kB TYPEhexrand
s.compress.07151d39.20121217-0116 DONE time 0.003 ARGS CMDgzip SIZE10kB TYPEhexrand
s.compress.c45a5afd.20121217-1414 DONE TAG ARGS-9 CMDgzip LEVEL9 SIZE10kB TYPEhexrand
s.compress.7694fe26.20121217-1436 DONE TAG ARGS CMDbzip2 SIZE512kB TYPEhexrand

Figure 4. A few random sample lines from the file “eman.results”. Each line contains
the step name, its status, the name of the result and its value and finally all the tags

and autotags assigned to this step.

The specification, what exactly should eman extract from a step directory, is pro-
vided by the user in the file “eman.results.conf”. For instance, the configuration
line:

ratio → s.compress.*/ratio → CMD: cat

specifies that steps of the type “compress” measure a particular property, namely the
compression ratio that they achieved on some give data. The value can appear any-
where in a file in the step directory as long as a Unix one-line command can extract
it. Here, the file “ratio” contains just the value of interest, so simply catting it does
the job.

The possibility to run a custom “result extractor” makes collecting of results very
flexible: anything can be made important. One can easily introduce new properties
to observe at any later time, as long as they were recorded somewhere. Together with
remote playgrounds (Section 7), one can re-interpret other people’s experiments.

The file “eman.results” is useful on its own already. For instance, the user can
quickly check if the top-scoring setup is still the same, e.g.:

grep ratio eman.results | sort -rn -k4 | head -n 1

For the purposes of the following section, we provide a snippet of the results file
in Figure 4.

6.3. Tabulation of Results

Lonesome numbers do not have any meaning. In order to be able to interpret
the observations and discuss them, individual results have to be compared and con-
trasted to other results. One practical issue is that a set of results can be dissected and
contrasted in an endless number of ways.

Eman provides a succinct but extremely powerful tool for “putting relevant num-
bers next to each other”. The technique is based on the “eman.results” file and one
more user configuration file, “eman.tabulate”. Running “eman tabulate” reorga-
nizes the results based on the configuration and produces “eman.niceresults”.
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=== Compression ratios of different algorithms ===
(512k of random hex data)

TABLE
required: compress ratio
required: SIZE512
forbidden: OUTDATED LEVEL[2-46-8]
cols: CMD([^\s]*)
rows: LEVEL([0-9]) rsyncable
rowsort: CMDgzip
ENDTABLE

Figure 5. Sample “eman.tabulate” configuration.

6.3.1. Prose with Automatic Tables

The file “eman.tabulate” is a regular text file. Any comments, observations or
discussion can be simply written there. Eman copies everything verbatim, except for
sections surrounded by lines saying “TABLE” and “ENDTABLE”. These sections will get
expanded to tables of results. The number of tables in the file is not limited and each
table can provide a different view of the results.

One can in principle use “eman.tabulate” as the LATEX source of a scientific paper
where tables are constructed automatically from the available results.

In the following sections, we describe how eman processes the configuration given
in Figure 5 to obtain the table in Figure 6.

6.3.2. Selecting Results to Show

The first stage of tabulation is the selection of lines from “eman.results” that
should be listed in the table. This filtering allows to provide different views on the
playground.

The filtering is achieved by two sets of regular expressions. Only the lines that
contain all the “required” expressions and do not contain any of the “forbidden”
expressions make it to the table.

Technically, the regular expressions are delimited by space in the “eman.tabulate”
config, so a single “required:” line can specify several requirements. To match a
space, one can use e.g. “\s”.

As each line of the results file contains a lot of details (see Figure 4), the filtering
is quite powerful: we can even match e.g. the date in the step name to require steps
inited during a particular day. In our example in Figure 5, we are interested in the
“ratio” results of any “s.compression.*” step. The autotags provide the information
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=== Compression ratios of different algorithms ===
(512k of random hex data)

Common properties: compress ratio SIZE512
Forbidden properties: OUTDATED LEVEL[2-46-8]

CMDbzip2 CMDgzip
LEVEL1 .46033593750000000000 .55463281250000000000
LEVEL5 rsyncable - .52478125000000000000
LEVEL5 .43619140625000000000 .51907031250000000000

.43503125000000000000 .51825585937500000000
LEVEL9 - .51824414062500000000

Figure 6. Sample results of the tabulation.

about the file size that was used in the experiments and we require the 512kB tests.
Finally, we avoid all steps in the OUTDATED state and we also exclude some compression
levels (“forbidden: LEVEL[2-46-8]”) to make the table shorter.

6.3.3. Constructing Row and Column Label for a Result

Each result (i.e. a single line from the results file) that survives the filtering is exam-
ined in order to construct its “row” and “col”umn label. The same regexp mechanism
as above is used here, except now the successfully matched regexp is appended to the
respective label.

In our example, the columns are simply the compression algorithms – these are
found in the autotag starting with “CMD”. Rows are a little bit more interesting. In
general, we want to see the compression level (“LEVEL([0-9])”), but in a few exper-
iments, we also used the gzip flag “--rsyncable”, so we need to distinguish these
runs. Adding a second regex “rsyncable” that may or may not be found in the result
line makes the distinction.

The round brackets in the regexes express important parts of the match. The re-
spective portion of the regex will be replaced by the actual string matched. So the
“level” regex appears as a few distinct tokens like “LEVEL1”, or “LEVEL9” in the final
table, see Figure 6. Without the round brackets (“LEVEL[0-9]”), we would get the
same token for all lines, namely “LEVEL[0-9]”. This can be useful to skipping unim-
portant differences, i.e. specifying a “gappy pattern”.

The order of the regexes is also important, because labels are constructed left-to-
right. So regexes that construct the beginning of row or column label need to appear
in the configuration first.
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Not all result lines match all row/column regexes. That is fine, the label is then
simply shorter. As an example, we see the default run of the two compression algo-
rithms where the row label is empty – no level was specified at all.

Not all settings are meaningful or used across all experiments. This is also fine, the
cells will then contain just a dash. In our example, it is the “rsyncable” option, which
is not available in bzip2, and the level-9 bzip2 experiment which we forgot to run for
the purposes of Section 6.3.6.

There are a few other minor tricks for handling cases like multiple matches of the
same regex, but these are beyond the scope of this article.

6.3.4. Putting the Table Together, Solving Conflicts

Having established the row and column labels for each value, it is trivial to con-
struct the table. Values sharing the column label will appear in the same column, val-
ues sharing the row label will appear in the same row. This gives us a two-dimensional
view on the results.

If two or more distinct values share the same row and column label, eman reports
a conflict and the user has two options. If such a conflict is not desirable then some
regex (and perhaps also some tag or autotag) should be added to filter out unwanted
values or put the conflicting values on different rows or columns. There are however
cases where we have deliberately run the very same experiment several times and
some randomness or outside condition leads to different results. In this case, one
adds the following line to the table specification:

collectdelim:,

This switch instructs eman to indeed show all the results in a single cell, delimited
by the given string (a comma in our example).

6.3.5. Sorting Rows and Columns

Finally, the user can specify the full label of the column that should be used to sort
the rows (“rowsort”) and/or the full label of the row that should be used to sort the
columns (“colsort”).

Note that adding regexes that construct row and column labels can easily change
the labels so sorting fails to find the given criterion.

6.3.6. Back to Experimenting

Eman consults the file “eman.results” when resolving step specifiers. This neat
trick allows to go directly back from the (tabulated) results to experimenting.

We can ask questions like: what exact configuration did I use to produce the com-
pression ratio 0.5368:

eman tb --vars 5368
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It is wise to double-check that the numbers we contrasted by putting them on the
same line or column actually differ only in the properties we are mentioning. In bash,
this amounts to inspecting the diff of the two tracebacks, e.g. in the editor vim:

vimdiff <(eman tb --vars 4361) <(eman tb --vars 5190)

It is also easy to use the cloning mechanism (Section 5.3) to start experiments whose
results will fill missing cells. We pick an existing result from the given row (or column,
whichever is more convenient) and apply the necessary change to it. We exemplify it
by filling the level-9 compression experiment by bzip2 that was missing in Figure 6.
The bzip2 run is derived from the corresponding gzip experiment:

eman tb 518244 -s /gzip/bzip2/ | eman clone --start

7. Team Experimenting

The command “eman add-remote” is implemented in a very light-weight fashion.
The user provides the path to the remote playground and an alias – eman then simply
creates a symbolic link to the directory in the local playground and registers the link
in the file eman.subdirs.

Remote steps then become equivalent to steps in the local playground – they can be
used in experiments, cloned and even modified (e.g. started, outdated) if the file sys-
tem permissions allow it (otherwise, eman automatically switches to read-only mode).

Eman does not search the remote playground recursively (i.e. it does not explore
its remote playgrounds), which makes this feature quite flexible; even circular depen-
dencies are possible, although they do create a soft-link loop in the filesystem.

Commands such as “eman ls” or “eman select” list only local steps by default. To
consider remote playgrounds, the option “--remote” has to be used. Eman can also
display the playground of each step in the listing if “--dir” is given.

Finally, since step directories are no longer local subdirs of the playground, the
command “eman path” is useful to get the full pathname of a step.

8. Related Tools

Two similar tools come from the MT environment: Ducttape and EMS. Ducttape
(formerly LoonyBin; https://github.com/jhclark/ducttape; Clark et al., 2010) is
functionally similar to the combination of eman and Prospector (included in emanpack-
age). The user specifies “hyperworkflows”, packed sets of experiments, where a num-
ber of variables has a number of requested values. Hyperworkflows are actually more
flexible than that, separate hyperworkflow branches can have different step structure.
Given a hyperworkflow, Ducttape runs either the full Cartesian product of variable
values or a subset of it based on some “realization plan”. Implemented in Java, it orig-
inally provided only a graphical user interface but now there is also a command-line
interface and a minimal web-interface available.
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Experiment Management System (EMS; Koehn, 2010), is distributed with the Moses
translation system (Koehn et al., 2007) and it is primarily intended for it. Its general
management capabilities are again centered around distinct runs of the complete ex-
periment. Data reuse is achieved by noticing that some partial output from a previous
run is still valid. This is against our encapsulation objective.

Taverna (http://www.taverna.org.uk/) is a widely used complex workflow man-
agement tool. It introduces the Taverna language to describe workflows, provides a
graphical user interface including an editor of workflows and various servers and
clients for running workflows or providing services that can be used as processing
blocks in workflows remotely. The remote processing is perhaps the biggest advan-
tage: research institutes provide web-based services directly usable in user’s work-
flows. Compared to eman’s 4k lines of Perl, Taverna’s command-line tool is 151 MB.
Taverna originated in bioinformatics but it is being used in many other fields of re-
search. The only Taverna application in NLP so far are probably the PANACEA tools
(http://www.panacea-lr.eu/) for compiling various linguistic resources from texts.

Cluster or grid computing environments, e.g. Pegasus (http://pegasus.isi.edu/),
also have workflow managers like DAGMan (Couvares et al., 2007). These allow to ex-
press dependencies between jobs but focus on automatic recovery from job failures in
an unreliable cluster environment, not on experiment variation or any interpretation
of results.

9. Open Issues and Future Development

There are certainly limitations of the current version of eman. The most serious
issue from the practical point of view is that the indexing of steps walks many direc-
tories and files.2 With a larger number of steps, this becomes inconveniently slow.
A principled solution would use clever incremental updates of only the bits that got
invalid due to some change. Unfortunately, this is rather tricky: e.g. changing the
autotag configuration would require to propagate new tags to existing steps etc. but
eman does not get automatically called when the user edits the file “eman.autotags”.

We have also mentioned, that some inspection and reuse of the derivation history
for steps is desirable. This would allow further shortcuts in experimenting and new
types of observations, e.g. why does the foobar switch make the baseline experiment
faster but it slows down our improved setup?

Finally, eman has no visual output, but it would be quite easy to display the vari-
ous dependencies between steps using e.g. the graphviz library (Gansner and North,
2000).

2 eman accumulates an index of steps during regular operations. Full reindexing is required only oc-
casionally and done upon request (“eman reindex” for the core index of steps and their variables, “eman
retag” for autotag application and propagation and “eman collect” for the collection of results).
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10. Conclusion

We presented eman, an open-source experiment manager for command-line Unix
environment.

Hopefully, we highlighted and explained a couple of ideas that are generally useful
for speed up and a better guidance of experimenting. We feel the following features
are the most important ones: keeping detailed records, reusing intermediate results
and reusing whole experiments by cloning new variants of them. We also provided a
couple of suggestions for organizing and examining obtained results.

For readers interested in eman specifically, this article should provide a high-level
overview spiced with example calls and commands.
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Abstract

The paper describes our experiments with
English-Czech machine translation for
WMT101 in 2010. Focusing primarily
on the translation to Czech, our additions
to the standard Moses phrase-based MT
pipeline include two-step translation to
overcome target-side data sparseness and
optimization towards SemPOS, a metric
better suited for evaluating Czech. Unfor-
tunately, none of the approaches bring a
significant improvement over our standard
setup.

1 Introduction

Czech is a flective language with very rich mor-
phological system. Translation between Czech
and English poses different challenges for each of
the directions.

When translating from Czech, the word order
usually needs only minor changes (despite the is-
sue of non-projectivity, a phenomenon occurring
at 2% of words but in 23% of Czech sentences,
see Hajičová et al. (2004) and Holan (2003)). A
much more severe issue is caused by the Czech vo-
cabulary size. Fortunately, this can be to a certain
extent mitigated by backing-off to Czech lemmas
if the exact forms are not available.

We are primarily interested in the harder task of
translating to Czech and most of the paper deals
with this direction. After a brief specification of
data sets, pre-processing and evaluation method
in this section, we provide details on the issue
of Czech vocabulary size (Section 2). We de-
scribe our current attempts at generating Czech

∗The work on this project was supported by the grants
EuroMatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic), GAČR P406/10/P259, and
MSM 0021620838. Thanks to David Kolovratnı́k for the help
with manual evaluation.

1http://www.statmt.org/wmt10/

word forms in Section 3. Partly due to the large
vocabulary size of Czech, BLEU score (Papineni
et al., 2002) correlates rather poorly with human
judgments. We summarize our efforts to use a bet-
ter metric in the model optimization in Section 4.
The final Section 5 lists the exact configurations
of our English↔Czech primary submissions for
WMT10, including the back-off to lemmas we use
for Czech-to-English.

1.1 Data and Pre-Processing Pipeline

Throughout the paper, we use CzEng 0.9 (Bojar
andŽabokrtský, 2009)2 as our main parallel cor-
pus. Following CzEng authors’ request, we did
not use sections 8* and 9* reserved for evaluation
purposes.

As the baseline training dataset (“Small” in the
following) only the news domain of CzEng (126k
parallel sentences) is used. For large-scale ex-
periments (“Large” in the following) and our pri-
mary WMT10 submissions, we use all CzEng do-
mains exceptnavajo and add the EMEA corpus
(Tiedemann, 2009)3,4 of 7.5M parallel sententes.

As our monolingual data we use by default only
the target side of the parallel corpus. For experi-
ments reported here, we also use the monolingual
data provided by WMT10 organizers for Czech.
Our primary WMT10 submission includes further
monolingual data, see Section 5.1.

We use a slightly modified tokenization rules
compared to CzEng export format. Most notably,
we normalize English abbreviated negation and
auxiliary verbs (“couldn’t”→ “could not”) and
attempt at normalizing quotation marks to distin-
guish between the opening and closing one follow-

2http://ufal.mff.cuni.cz/czeng
3http://urd.let.rug.nl/tiedeman/OPUS
4Unfortunately, the EMEA corpus is badly tokenized on

the Czech side. Most frequently, fractional numbers are split
into several tokens (e.g. “3, 14”). We attempted to reconstruct
the original detokenized form using a small set of regular ex-
pressions.
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Large Small Dev
Sents 7.5M 126.1k 2.5k
Czech Tokens 79.2M 2.6M 55.8k
English Tokens 89.1M 2.9M 49.9k
Czech Vocabulary 923.1k 138.7k 15.4k
English Vocabulary 646.3k 64.7k 9.4k
Czech Lemmas 553.5k 60.3k 9.5k
English Lemmas 611.4k 53.8k 7.7k

Table 1: Corpus and vocabulary sizes.

ing proper typesetting rules.
The rest of our pre-processing pipeline matches

the processing employed in CzEng (Bojar and
Žabokrtský, 2009).5 We use “supervised truecas-
ing”, meaning that we cast the case of the lemma
to the form, relying on our morphological analyz-
ers and taggers to identify proper names, all other
words are lowercased.

The differences in relations between Czech and
English Large and Small datasets can be attributed
either to domain differences or possibly due to
noise in CzEng.

1.2 Evaluation

We use WMT10 development sets for tuning
(news-test2008) and evaluation (news-test2009).
The official scores on news-test2010 are given
only in the main WMT10 paper and not here.

The BLEU scores reported in this paper are
based on truecased word forms in the original to-
kenization as provided by the decoder. Therefore
they are likely to differ from figures reported else-
where.

The± value given with each BLEU score is the
average of the distances to the lower and upper
empirical 95% confidence bounds estimated using
bootstrapping (Koehn, 2004).

2 Issues of Czech Vocabulary Size

Table 1 summarizes the differences of Czech and
English vocabulary sizes in our parallel corpora.
We see that the vocabulary size of Czech forms
(truecased) is more than double compared to En-
glish in the Small dataset and significantly larger
in the Large dataset as well. On the other hand,
the number of distinct Czech and English lemmas
is nearly identical.

5Due to the subsequent processing, incl. parsing, the tok-
enization of English follows PennTreebenk style. The rather
unfortunate convention of treating hyphenated words as sin-
gle tokens increases our out-of-vocabulary rate. Next time,
we will surely post-tokenize the parsed text.

Distortion Limit
TOpts 3 6 10 30 40

1 0.2 0.3 0.3 0.3 0.3
5 0.8 0.9 1.0 1.0 1.0

10 1.1 1.3 1.5 1.5 1.5
20 1.2 1.5 1.7 1.7 1.7
50 1.2 1.5 1.7 1.7 1.7

100 1.2 1.5 1.7 1.7 1.7

Table 3: Percentage of sentences reachable in
Czech-to-English small setting with various dis-
tortion limits and translation options per coverage
(TOpts) (BLEU score 14.76±0.44).

2.1 Out-of-Vocabulary Rates

Table 2 lists out-of-vocabulary (OOV) rates of our
Small and Large data setting given the develop-
ment corpus. We calculate the rates for both the
complete corpus and the restricted set of phrases
extracted from the corpus. (Note that higher-order
n-gram rates are estimated using phrases as inde-
pendent units, no combination of phrases is per-
formed.) We also list the effective OOV rate for
English-to-Czech translation where all (English)
words from each source sentence can be also pro-
duced in the hypothesis.

We see that in the small setting, the OOV rate
is almost double for Czech than for English. The
OOV is significantly decreased by enlarging the
corpus or lemmatizing the word forms.

If we consider only the words available in the
phrase tables, the issue of Czech with limited data
is striking: 10–12% of devset tokens are not avail-
able in the training data.

2.2 Reachability of Training and Reference
Translations

Schwartz (2008) extended Moses to support “con-
straint decoding”, that is to perform an exhaustive
search through the space of hypotheses in order to
reach the reference translation (and get its score).

The current implementation of the exhaustive
search in Moses is in fact subject to several con-
figuration parameters, most importantly the num-
ber of translation options considered for each span
(-max-trans-opt-per-coverage) and the
distortion limit (-distortion-limit).

Given his aim, Schwartz (2008) uses the output
of four MT systems translating from different lan-
guages to English as the references and notes that
only around 10% of the reference translations are
reachable by an independent Swedish-English MT
system.
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n-grams Out of Corpus Voc. n-grams Out of Phrase-Table Voc.
Dataset Language 1 2 3 4 1 2 3 4
Large Czech 2.2% 30.5% 70.2% 90.3% 3.9% 44.1% 82.2% 95.6%
Large English 1.5% 13.7% 47.3% 78.8% 2.1% 22.4% 63.5% 89.1%
Large Czech + English input sent 1.5% 29.4% 69.6% 90.1%3.1% 42.8% 81.5% 95.3%
Small Czech 6.7% 48.1% 83.0% 95.5%12.5% 65.4% 91.9% 98.6%
Small English 3.6% 28.1% 68.3% 90.9% 6.3% 45.4% 84.3% 97.0%
Small Czech + English input sent 5.2% 46.6% 82.4% 95.2%10.6% 63.7% 91.2% 98.3%
Small Czech lemmas 4.1% 36.3% 75.8% 92.8%5.8% 52.6% 87.7% 97.4%
Small English lemmas 3.4% 24.6% 64.6% 89.4%6.9% 53.2% 87.9% 97.5%
Small Czech + English input sent lemmas 3.1% 35.7% 75.6% 92.8% 5.1% 38.1% 80.8% 96.2%

Table 2: Out-of-vocabulary rates.

Distortion Limit
TOpts 3 6 10 30 40

1 0.4 0.4 0.4 0.4 0.4
5 1.5 1.9 2.0 2.0 2.0

10 2.5 3.2 3.5 3.5 3.5
20 3.7 5.0 5.5 5.6 5.6
50 4.9 6.7 8.0 8.6 8.6

100 5.3 7.6 9.1 9.4 9.4

Table 4: Percentage of sentences reachable in
Czech-to-English large setting, two alternative de-
coding paths to translate from Czech lemma if
the form is not available in the translation table
(BLEU score 18.70±0.46).

We observe that reaching man-made reference
translations in Czech-to-English translation is far
harder. Table 3 provides the figures for small data
setting (and no phrase table filtering). The best
reachability we can hope for is given in Table 4
where we allow to use source word lemmas if the
exact form is not available. We see that the default
limits (50 translation options per span and distor-
tion limit of 6) leave us with only 6.7% sentences
reachable.

While not directly important for your training,
the figures still underpin the issue of sparse data in
Czech-English translation.

3 Targetting Czech Word Forms

Bojar (2007) experimented with several transla-
tion scenarios, including what we will call Mor-
phG, i.e. the independent translation of lemma to
lemma and tag to tag followed by a generation step
to produce target-side word form. With the small
training set available then, the MorphG model per-
formed equally well as a simpler direct translation
followed by target-side tagging and an additional
n-gram model over morphological tags. Koehn
and Hoang (2007) reports even a large loss with
MorphG for German-to-English if the alternative

of direct form-to-form translation is not available.
Bojar et al. (2009b) applied the two alternative

decoding paths (direct form-to-form and MorphG,
labelled “T+C+C&T+T+G”) to English-Czech but
they were able to use only 84k sentences. For
the full training set of 2.2M sentences, the model
was too big to fit in reasonable disk limits. More
importantly, already in the small data setting, the
complex model suffered from little stability due
to abundance of features (5 features per phrase-
table plus tree features for three LMs), so nearly
the same performance on the development set gave
largely varying quality on the independent test set.

The most important issue of the MorphG setup,
however, is the explosion of translation options.
Due to the “synchronous factors” approach of
Moses (Koehn and Hoang, 2007), all translation
options have to be fully constructed before the
main search begins. The MorphG model how-
ever licenses too many possible combinations of
lemmas, tags and final word forms, so the prun-
ing of translation options strikes hard, causing
search errors. For more details, see Bojar et al.
(2009a) where a similar issue occurs for treelet-
based translation.

3.1 Two-Step Translation

In order to avoid the explosion of the translation
options6, we experimented with two-step transla-
tion.

The first step translates from English to lemma-
tized Czech augmented to preserve important se-
mantic properties known from the source phrase.
The second step is a monotone translation from
the lemmas to fully inflected Czech. The idea be-
hind the delimitation is that all the morphological
properties of Czech words that can be established

6and also motivated when we noticed that reading MT
output tolemmatizedCzech is sometimes more pleasant and
informative than regular phrase-based output
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Data Size Simple Two-Step
Parallel Mono BLEU SemPOS BLEU SemPOS
Small Small 10.28±0.40 29.92 10.38±0.38 30.01
Small Large 12.50±0.44 31.01 12.29±0.47 31.40
Large Large 14.17±0.51 33.07 14.06±0.49 32.57

Table 5: Performance of direct (Simple) and two-step factored translation in small and large data setting.

regardless the English source should not cause par-
allel data sparseness and clutter the search. In-
stead, they should be decided based on context in
the second phase only.

Specifically, the intermediate Czech represents
most words as tuples containing only: lemma,
negation, grade (of adjectives and adverbs), num-
ber (of nouns, adjectives, verbs) and detailed part
of speech (constraining also e.g. verb tense of
Czech verbs). Some words are handled separately:

• Pronouns, punctuation and the verbs “být” (to
be) and “mı́t” (to have) are represented using
their lowecased full forms because they are very
frequent, often auxiliary to other words and
their exact form best captures the available and
necessary detail of many morphological and
syntactic properties.

• Prepositions are represented using their lemmas
and case because the case of a noun phrase is
actually introduced by the governing word (e.g.
the verb that subcategorized for the noun phrase
or the preposition for prepositional phrases).

Table 5 compares the scores of the simple
phrase-based and the two-step translation via aug-
mented Czech lemmas as described above. The
small and large parallel data denote the datasets
described in Section 1.1. The small monolingual
set means just the news domain of CzEng, while
the large monolingual set means WMT10 mono-
lingual Czech texts (and no CzEng data). Note
that the monolingual data serve three purposes in
the two-step approach: the language model for the
first phase, the translation model in the second
phase (monotone and restricted to phrase-length
of 1; longer phrases did not bring significant im-
provement either), and the language model of the
second phase. Ignoring the opportunity to use the
monolingual set as the language model in the first
phase already hurts the performance.

We see that the results as evaluated both by
BLEU and SemPOS (see Section 4 below) are
rather mixed but not that surprising. There is a
negligible gain in the Small-Small setting, a mixed
outcome in the Small-Large and a little loss in the

Two- Both Both
-Step Fine Wrong Simple Total

Two-Step 23 4 8 - 35
Both Fine 7 14 17 5 43
Both Wrong 8 1 28 2 39
Simple - 3 7 23 33
Total 38 22 60 30 150

Table 6: Manual micro-evaluation of Simple
(12.50±0.44) vs. Two-step (12.29±0.47) model
in the Small-Large setting.

Large-Large setting.
The most interesting result is the Small-Large

setting: BLEU (insignificantly) prefers the simple
and SemPOS the two-step model. It thus seems
that a large target-side LM is sufficient to improve
the BLEU score, despite the untackled issue of
bilingual data sparseness.

We carried out a quick manual evaluation of
150 sentences by two annotators (one of the au-
thors and a third person; systems anonymized):
for each input segment, either one of the outputs
is distinguishably better or both are equally wrong
or equally acceptable. As listed in the confusion
matrix in Table 6, each annotator independently
marginally prefers the two-step approach but the
intersection does not confirm that.7 One good
thingis that the annotators do not completely con-
tradict each other’s preference.

Ultimately, we did not use the two-step ap-
proach in our primary submission, but we feel
there is still some unexploited potential in this
phrase-based approximation of the technique sep-
arating properties of words handled in the transla-
tion phase from properties implied by the target-
side (grammatical) context only. Certainly, the
representation of the intermediate language can

7Of the 23 sentences improved by the two-step setup,
about three quarters indeed had an improvement in lexical
coverage or better morphological choice of a word. Of the
23 sentences where the two-step model hurts, about a half
suffered from errors related to superfluous auxiliary wordsin
Czech that seem to be introduced by a bias towards word-
for-word translation. This bias is not inherent to the model,
only the (normalized) phrase penalty weight happened to get
nearly three times bigger than in the simple model.
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be still improved, and more importantly, the sec-
ond phase of monotone decoding could be handled
by a more appropriate model capable of including
more additional (source) context features.8

4 Optimizing towards SemPOS

In our setup, we use minimum error-rate training
(MERT, Och (2003)) to optimize weights of model
components. In the standard implementation in
Moses, BLEU (Papineni et al., 2002) is used as
the objective function, despite its rather disputable
correlation with human judgments of MT quality.

Kos and Bojar (2009) introduced SemPOS, a
metric that performs much better in terms of cor-
relation to human judgments when translating to
Czech. Naturally, we wanted to optimize towards
SemPOS.

SemPOS computes the overlapping of autose-
mantic (content-bearing) word lemmas in the can-
didate and reference translations given a fine-
grained semantic part of speech (sempos9), as de-
fined in Hajič et al. (2006), and outputs average
overlapping score over all sempos types.

The SemPOS metric outperformed common
metrics as BLEU, TER (Snover et al., 2006) or an
adaptation of Meteor (Lavie and Agarwal, 2007)
for Czech on test sets from WMT08 (Callison-
Burch et al., 2008).

4.1 Integrating SemPOS to MERT

In our experiments we used Z-MERT (Zaidan,
2009), a recent implementation of the MERT al-
gorithm, to optimize model parameters.

The SemPOS metric requires to remove all aux-
iliary words and to identify the (deep-syntactic)
lemmas and semantic part of speech for autose-
mantic words. When employed in MERT train-
ing, the wholen-best list of candidates has to pro-
cessed like this at each iteration.

We use the TectoMT platform (Žabokrtský and
Bojar, 2008)10 for the linguistic processing. Tec-
toMT follows the complete pipeline of tagging,
surface-syntactic analysis and deep-syntactic anal-
ysis, which is the best but rather costly way to ob-
tain the required information.

Therefore, we use two different ways of obtain-
ing lemmas and semantic parts of speech in the

8We are grateful to Trevor Cohn for the suggestion.
9In the following text we will use SemPOS to denote the

SemPOS metric. When speaking about the semantic part of
speech, we will write sempos type or sempos tag.

10http://ufal.mff.cuni.cz/tectomt/

BLEU SemPOS Iters Time
TectoMT 10.11±0.40 29.69 20 2d12.0h

in MERT 9.53±0.39 29.69 10 1d12.0h
Factored 9.46±0.37 29.36 10 2.4h

translation 8.20±0.37 29.68 - -
6.96±0.33 27.79 9 1.7h

Table 7: Five independent MERT runs optimizing
towards SemPOS with semantic parts of speech
and lemmas provided either by TectoMT on the
fly or by Moses factored translation.

MERT loop:
• indeed apply TectoMT processing to then-best

list at each iteration (parallelized to 15 CPUs),
• apply TectoMT to thetraining data, express the

(deep) lemma and sempos as additional factors
using a blank value for auxiliary words, and us-
ing Moses factored translation to translate from
English forms to triplets of Czech form, deep
lemma and sempos.
Table 7 lists several ZMERT runs when opti-

mizing a simple form→form phrase-based model
(small data setting) towards SemPOS. One obser-
vation is that using TectoMT in the MERT loop
is unbearably costly and we avoided it in the sub-
sequent experiments. More importantly, from the
huge differences in the final BLEU as well as Sem-
POS scores (evaluated on the independent test set),
we see how unstable the search is.

SemPOS, while good at comparing different
MT systems, is very bad at comparing candidates
from a single system in ann-best list. This can be
easily explained by its low sensitivity to precision:
SemPOS disregards word forms as well as all aux-
iliary words. This is a good thing to compare very
different candidates (where each of the systems al-
ready struggled to produce a coherent output) but
is of very little help when comparing candidates of
a single system, because these candidates tend to
differ rather in forms than in lexical choice.

4.2 Combination of SemPOS and BLEU

To compensate for some of the shortcomings of
SemPOS, we also attempted to optimize towards
a linear combination of SemPOS and BLEU.
This should increase the suitability of the metric
for MERT optimization because BLEU will take
correct word forms into account while SemPOS
should promote better lexical choice (possibly not
confirmed by BLEU due to a different word form
than in the reference).

Table 8 provides the results of various weight
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W. BLEU SemPOS W. BLEU SemPOS
1:0 10.42±0.38 29.91 3:1 10.30±0.39 30.03
1:1 10.15±0.39 29.81 10:1 10.17±0.40 29.58
1:1 9.42±0.37 29.30 1:2 10.11±0.38 29.80
2:1 10.37±0.38 29.95 1:10 9.44±0.40 29.74

Table 8: Optimizing towards a linear combina-
tion of BLEU and SemPOS (weights in this order),
small data setting.

BLEU SemPOS
BLEU alone 14.08±0.50 32.44
SemPOS-BLEU (1:1) 13.79±0.55 33.17

Table 9: Optimizing towards BLEU and/or Sem-
POS in large data setting.

settings, including the optimization towards
BLEU alone using ZMERT implementation. We
see that the stability is much better, only few runs
suffered a minor loss (including 1:1 in one case).
Unfortunately, the differences in final BLEU and
SemPOS scores are all within confidence intervals
when trained on the small dataset.

Table 9 documents that in our large data set-
ting, MERT indeed achieves slightly higher Sem-
POS (and lower BLEU) when optimizing towards
it. This corresponds with the intuition that with
more variance in lexical choices available in the
phrase tables, SemPOS can help to balance model
features. The current set of weights is rather lim-
ited, so our future experiments should focus on ac-
tually providing means to e.g. domain adaptation
by using features indicating the applicability of a
phrase in a specific domain.

5 Our Primary Submissions to WMT10

5.1 English-to-Czech Translation

Given the little or no improvements achieved by
the many configurations we tried, our English-to-
Czech primary submission is rather simple:
• Standard GIZA++ word alignment based on both source

and target lemmas.
• Two alternative decoding paths; forms always truecased:

form+tag→form & form→form.
The first path is more specific and helps to preserve core
syntactic elements in the sentence. Without the tag, am-
biguous English words could often all translate as e.g.
nouns, leading to no verb in the Czech sentence. The de-
fault path serves as a back-off.

• Significance filtering of the phrase tables (Johnson et al.,
2007) implemented for Moses by Chris Dyer; default set-
tings of filter valuea+e and the cut-off 30.

• Two separate 5-gram Czech LMs of truecased forms each
of which interpolates models trained on the following
datasets; the interpolation weights were set automatically
using SRILM (Stolcke, 2002) based on the target side of

Large Small
Backed-off by source lemmas 18.95±0.45 14.95±0.48
form→form only 18.41±0.44 14.73±0.47

Table 10: Translation from Czech better when
backed-off by source lemmas.

the development set:11

– Interpolated CzEng domains: news, web, fiction. The
rationale behind the selection of the domains is that we
prefer prose-like texts for LM estimation (and not e.g.
technical documentation) while we want as much paral-
lel data as possible.

– Interpolated monolingual corpora: WMT09
monolingual, WMT10 monolingual, Czech
National Corpus (Kocek et al., 2000) sections
SYN2000+2005+2006PUB.

• Lexicalized reordering (or-bi-fe) based on forms.
• Standard Moses MERT towards BLEU.

5.2 Czech-to-English Translation

For Czech-to-English translation we experimented
with far fewer configuration options. Our primary
submission is configured as follows:
• Two alternative decoding paths; forms always truecased:

form→form & lemma→form.
• Significance filtering as in Section 5.1.
• 5-gram English LM based on CzEng English side only.12

• Lexicalized reordering (or-bi-fe) based on forms.
• Standard Moses MERT towards BLEU.

Table 10 documents the utility of the additional
decoding path from Czech lemmas in both small
and large setting, surprisingly less significant in
the small setting. Later experiments with system
combination by Kenneth Heafield indicated that
while our system is not among the top three, it
brings an advantage to the combination.

6 Conclusion

We provided an extensive documentation of Czech
data sparseness issue for machine translation. We
attempted to tackle the problem of constructing
the target-side form by a two-step translation setup
and the problem of unreliable automatic evalua-
tion by employing a new metric in MERT loop,
neither with much success so far. Both of the at-
tempts however deserve further exploration. Ad-
ditionally, we provide the exact configurations of
our WMT10 primary submissions.

11The subsequent MERT training using the same develop-
ment test may suffer from overestimating the language model
weights, but we did not observe the issue, possibly due to
only moderate overlap of the datasets.

12We attempted to use a second LM trained on English Gi-
gaword by Chris Callison-Burch, but we observed a drop in
BLEU score from 18.95±0.45 to 18.03±0.44 probably due
to different tokenization guidelines applied.
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Tomáš Holan. 2003. K syntaktické analýze českých(!)
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Abstract

We use target-side monolingual data to ex-
tend the vocabulary of the translation model
in statistical machine translation. This method
called “reverse self-training” improves the de-
coder’s ability to produce grammatically cor-
rect translations into languages with morphol-
ogy richer than the source language esp. in
small-data setting. We empirically evalu-
ate the gains for several pairs of European
languages and discuss some approaches of
the underlying back-off techniques needed to
translate unseen forms of known words. We
also provide a description of the systems we
submitted to WMT11 Shared Task.

1 Introduction

Like any other statistical NLP task, SMT relies on
sizable language data for training. However the par-
allel data required for MT are a very scarce resource,
making it difficult to train MT systems of decent
quality. On the other hand, it is usually possible to
obtain large amounts of monolingual data.

In this paper, we attempt to make use of the
monolingual data to reduce the sparseness of surface
forms, an issue typical for morphologically rich lan-
guages. When MT systems translate into such lan-
guages, the limited size of parallel data often causes
the situation where the output should include a word
form never observed in the training data. Even
though the parallel data do contain the desired word

∗ This work has been supported by the grants EuroMatrix-
Plus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of the
Czech Republic), P406/10/P259, and MSM 0021620838.

in other forms, a standard phrase-based decoder has
no way of using it to generate the correct translation.

Reverse self-training addresses this problem by
incorporating the available monolingual data in the
translation model. This paper builds upon the idea
outlined in Bojar and Tamchyna (2011), describing
how this technique was incorporated in the WMT
Shared Task and extending the experimental evalu-
ation of reverse self-training in several directions –
the examined language pairs (Section 4.2), data size
(Section 4.3) and back-off techniques (Section 4.4).

2 Related Work

The idea of using monolingual data for improving
the translation model has been explored in several
previous works. Bertoldi and Federico (2009) used
monolingual data for adapting existing translation
models to translation of data from different domains.
In their experiments, the most effective approach
was to train a new translation model from “fake”
parallel data consisting of target-side monolingual
data and their machine translation into the source
language by a baseline system.

Ueffing et al. (2007) used a boot-strapping tech-
nique to extend translation models using mono-
lingual data. They gradually translated additional
source-side sentences and selectively incorporated
them and their translations in the model.

Our technique also bears a similarity to de Gis-
pert et al. (2005), in that we try to use a back-off
for surface forms to generalize our model and pro-
duce translations with word forms never seen in the
original parallel data. However, instead of a rule-
based approach, we take advantage of the available
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Source English Target Czech Czech Lemmatized
Parallel (small) a cat chased. . . = kočka honila. . . kočka honit. . .

I saw a cat = viděl jsemkočku vidět b́yt kǒcka
I read about a dog = četl jsem o psovi č́ıst b́yt o pes

Monolingual (large) ? četl jsem okočce č́ıst b́yt o kǒcka
I read about a cat ← Use reverse translation backed-off by lemmas.

Figure 1: The essence of reverse self-training: a new phrasepair (“about a cat” = “okočce”) is learned based on a
small parallel corpus and large target-side monolingual texts.

data and learn these forms statistically. We are there-
fore not limited to verbs, but our system is only able
to generate surface forms observed in the target-side
monolingual data.

3 Reverse Self-Training

Figure 1 illustrates the core of the method. Using
available parallel data, we first train an MT system
to translate from the target to the source language.
Since we want to gather new word forms from the
monolingual data, this reverse model needs the abil-
ity to translate them. For that purpose we use a fac-
tored translation model (Koehn and Hoang, 2007)
with two alternative decoding paths: form→form
and back-off→form. We experimented with several
options for the back-off (simple stemming by trun-
cation or full lemmatization), see Section 4.4. The
decoder can thus use a less sparse representation of
words if their exact forms are not available in the
parallel data.

We use this reverse model to translate (much
larger) target-side monolingual data into the source
language. We preserve the word alignments of the
phrases as used in the decoding so we directly ob-
tain the word alignment in the new “parallel” cor-
pus. This gives us enough information to proceed
with the standard MT system training – we extract
and score the phrases consistent with the constructed
word alignment and create the phrase table.

We combine this enlarged translation model with
a model trained on the true parallel data and use
Minimum Error Rate Training (Och, 2003) to find
the balance between the two models. The final
model has four separate components – two language
models (one trained on parallel and one on monolin-
gual data) and the two translation models.

We do not expect the translation quality to im-

prove simply because more data is included in train-
ing – by adding translations generated using known
data, the model could gain only new combinations
of known words. However, by using a back-off
to less sparse units (e.g. lemmas) in the factored
target→source translation, we enable the decoder
to produce previously unseen surface forms. These
translations are then included in the model, reducing
the data sparseness of the target-side surface forms.

4 Experiments

We used common tools for phrase-based translation
– Moses (Koehn et al., 2007) decoder and tools,
SRILM (Stolcke, 2002) and KenLM (Heafield,
2011) for language modelling and GIZA++ (Och
and Ney, 2000) for word alignments.

For reverse self-training, we needed Moses to also
output word alignments between source sentences
and their translations. As we were not able to make
the existing version of this feature work, we added a
new option and re-implemented this funcionality.

We rely on automatic translation quality eval-
uation throughout our paper, namely the well-
established BLEU metric (Papineni et al., 2002). We
estimate 95% confidence bounds for the scores as
described in Koehn (2004). We evaluated our trans-
lations on lower-cased sentences.

4.1 Data Sources

Aside from the WMT 2011 Translation Task data,
we also used several additional data sources for the
experiments aimed at evaluating various aspects of
reverse self-training.

JRC-Acquis

We used the JRC-Acquis 3.0 corpus (Steinberger
et al., 2006) mainly because of the number of avail-
able languages. This corpus contains a large amount
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Source Target Corpus Size (k sents) Vocabulary Size Ratio Baseline +Mono LM +Mono TM
Para Mono

English Czech 94 662 1.67 40.9±1.9 43.5±2.0 *44.3±2.0
English Finnish 123 863 2.81 27.0±1.9 27.6±1.8 28.3±1.7
English German 127 889 1.83 34.8±1.8 36.4±1.8 37.6±1.8
English Slovak 109 763 2.03 35.3±1.6 37.3±1.7 37.7±1.8
French Czech 95 665 1.43 39.9±1.9 42.5±1.8 43.1±1.8
French Finnish 125 875 2.45 26.7±1.8 27.8±1.7 28.3±1.8
French German 128 896 1.58 38.5±1.8 40.2±1.8 *40.5±1.8
German Czech 95 665 0.91 35.2±1.8 37.0±1.9 *37.3±1.9

Table 1: BLEU scores of European language pairs on JRC data. Asterisks in the last column mark experiments for
which MERT had to be re-run.

of legislative texts of the European Union. The fact
that all data in the corpus come from a single, very
narrow domain has two effects – models trained on
this corpus perform mostly very well in that domain
(as documented e.g. in Koehn et al. (2009)), but fail
when translating ordinary texts such as news or fic-
tion. Sentences in this corpus also tend to be rather
long (e.g. 30 words on average for English).

CzEng

CzEng 0.9 (Bojar anďZabokrtský, 2009) is a par-
allel richly annotated Czech-English corpus. It con-
tains roughly 8 million parallel sentences from a
variety of domains, including European regulations
(about 34% of tokens), fiction (15%), news (3%),
technical texts (10%) and unofficial movie subtitles
(27%). We do not make much use of the rich anno-
tation in this paper, however we did experiment with
using Czech lemmas (included in the annotation) as
the back-off factor for reverse self-training.

4.2 Comparison Across Languages

In order to determine how successful our approach
is across languages, we experimented with Czech,
Finnish, German and Slovak as target languages. All
of them have a rich morphology in some sense. We
limited our selection of source languages to English,
French and German because our method focuses on
the target language anyway. We did however com-
bine the languages with respect to the richness of
their vocabulary – the source language has less word
forms in almost all cases.

Czech and Slovak are very close languages, shar-
ing a large portion of vocabulary and having a very
similar grammar. There are many inflectional rules

for verbs, nouns, adjectives, pronouns and numerals.
Sentence structure is exhibited by various agreement
rules which often apply over long distance. Most of
the issues commonly associated with rich morphol-
ogy are clearly observable in these languages.

German also has some inflection, albeit much less
complex. The main source of German vocabulary
size are the compound words. Finnish serves as an
example of agglutinative languages well-known for
the abundance of word forms.

Table 1 contains the summary of our experimen-
tal results. Here, only the JRC-Acquis corpus was
used for training, development and evaluation. For
every language pair, we extracted the first 10 per-
cent of the parallel corpus and used them as the par-
allel data. The last 70 percent of the same corpus
were our “monolingual” data. We used a separate
set of 1000 sentences for the development and an-
other 1000 for testing.

Sentence counts of the corpora are shown in the
columns Corpus Size Para and Mono. The table
also shows the ratio between observed vocabulary
size of the target and source language. Except for
the German→Czech language pair, the ratios are
higher than 1. The Baseline column contains the
BLEU score of a system trained solely on the paral-
lel data (i.e. the first 10 percent). A 5-gram language
model was used. The “+Mono LM” scores were
achieved by adding a 5-gram language model trained
on the monolingual data as a separate component
(its weight was determined by MERT). The last col-
umn contains the scores after adding the translation
model self-trained on target monolingual data. This
model was also added as another component and the
weights associated with it were found by MERT.
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For the back-off in the reverse self-training, we
used a simple suffix-trimming heuristic suitable for
fusional languages: cut off the last three characters
of each word always keeping at least the first three
characters. This heuristic reduces the vocabulary
size to a half for Czech and Slovak but it is much
less effective for Finish and German (Table 2), as
can be expected from their linguistic properties.

Language Vocabulary reduced to (%)
Czech 52
Finnish 64
German 73
Slovak 51

Table 2: Reduction of vocabulary size by suffix trimming

We did not use any linguistic tools, such as mor-
phological analyzers, in this set of experiments. We
see the main point of this section in illustrating the
applicability of our technique on a wide range of lan-
guages, including languages for which such tools are
not available.

We encountered problems when using MERT to
balance the weights of the four model components.
Our model consisted of 14 features – one for each
language model, five for each translation model
(phrase probability and lexical weight for both di-
rections and phrase penalty), word penalty and dis-
tortion penalty. The extra 5 weights of the reversely
trained translation model caused MERT to diverge in
some cases. Since we used themert-moses.pl
script for tuning and kept the default parameters,
MERT ran for 25 iterations and stopped. As a result,
even though our method seemed to improve trans-
lation performance in most language pairs, several
experiments contradicted this observation. We sim-
ply reran the final tuning procedure in these cases
and were able to achieve an improvement in BLEU
as well. These language pairs are marked with a ’*’
sign in Table 1.

A possible explanation for this behaviour of
MERT is that the alternative decoding paths add a
lot of possible derivations that generate the same
string. To validate our hypothesis we examined a
diverging run of MERT for English→Czech transla-
tion with two translation models. Our n-best lists
contained the best 100 derivations for each trans-

Figure 2: Vocabulary ratio and BLEU score
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lated sentence from the development data. On av-
erage (over all 1000 sentences and over all runs), the
n-best list only contained 6.13 different translations
of a sentence. The result of the same calculation
applied on the baseline run of MERT (which con-
verged in 9 iterations) was 34.85 hypotheses. This
clear disproportion shows that MERT had much less
information when optimizing our model.

Overall, reverse self-training seems helpful for
translating into morphologically rich languages. We
achieved promising gains in BLEU, even over the
baseline including a language model trained on the
monolingual data. The improvement ranges from
roughly 0.3 (e.g. German→Czech) to over 1 point
(English→German) absolute. This result also indi-
cates that suffix trimming is a quite robust heuristic,
useful for a variety of language types.

Figure 2 illustrates the relationship between vo-
cabulary size ratio of the language pair and the
improvement in translation quality. Although the
points are distributed quite irregularly, a certain ten-
dency towards higher gains with higher ratios is ob-
servable. We assume that reverse self-training is
most useful in cases where a single word form in the
source language can be translated as several forms in
the target language. A higher ratio between vocab-
ulary sizes suggests that these cases happen more
often, thus providing more space for improvement
using our method.
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4.3 Data Sizes

We conducted a series of English-to-Czech experi-
ments with fixed parallel data and a varying size of
monolingual data. We used the CzEng corpus, 500
thousand parallel sentences and from 500 thousand
up to 5 million monolingual sentences. We used
two separate sets of 1000 sentences from CzEng for
development and evaluation. Our results are sum-
marized in Figure 3. The gains in BLEU become
more significant as the size of included monolingual
data increases. The highest improvement can be ob-
served when the data are largest – over 3 points ab-
solute. Figure 4 shows an example of the impact on
translation quality – the “Mono” data are 5 million
sentences.

When evaluated from this point of view, our
method can also be seen as a way of considerably
improving translation quality for languages with lit-
tle available parallel data.

We also experimented with varying size of paral-
lel data (500 thousand to 5 million sentences) and its
effect on reverse self-training contribution. The size
of monolingual data was always 5 million sentences.
We first measured the percentage of test data word
forms covered by the training data. We calculated
the value for parallel data and for the combination of
parallel and monolingual data. For word forms that
appeared only in the monolingual data, a different
form of the word had to be contained in the parallel
data (so that the model can learn it through the back-
off heuristic) in order to be counted in. The differ-
ence between the first and second value can simply
be thought of as the upper-bound estimation of re-
verse self-training contribution. Figure 5 shows the
results along with BLEU scores achieved in transla-
tion experiments following this scenario.

Our technique has much greater effect for small
parallel data sizes; the amount of newly learned
word forms declines rapidly as the size grows.
Similarly, improvement in BLEU score decreases
quickly and becomes negligible around 2 million
parallel sentences.

4.4 Back-off Techniques

We experimented with several options for the back-
off factor in English→Czech translation. Data from
training section of CzEng were used, 1 million par-

Figure 3: Relation between monolingual data size and
gains in BLEU score
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Figure 5: Varying parallel data size, surface form cov-
erage (“Parallel”, “Parallel and Mono”) and BLEU score
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allel sentences and another 5 million sentences as
target-side monolingual data. As in the previous
section, the sizes of our development and evaluation
sets were a thousand sentences.

CzEng annotation contains lexically disam-
biguated word lemmas, an appealing option for our
purposes. We also tried trimming the last 3 charac-
ters of each word, keeping at least the first 3 charac-
ters intact. Stemming of each word to four charac-
ters was also evaluated (Stem-4).

Table 3 summarizes our results. The last column
shows the vocabulary size compared to original vo-
cabulary size, estimated on lower-cased words.

We are not surprised by stemming performing the
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System Translation Gloss
Baseline Jsi tak zrcadla? Are youSG so mirrors? (ungrammatical)
+Mono LM Jsi neobjednávejte zrcadla? Did youSG don’t orderPL mirrors? (ungrammatical)
+Mono TM Už sis objednal zrcadla? Have youSG orderedSG the mirrors (for yourself) yet?

Figure 4: Translation of the sentence “Did you order the mirrors?” by baseline systems and a reversely-trained system.
Only the last one is able to generate the correct form of the word “order”.

worst – the equivalence classes generated by this
simple heuristic are too broad. Using lemmas seems
optimal from the linguistic point of view, however
suffix trimming outperformed this approach in our
experiments. We feel that finding well-performing
back-off techniques for other languages merits fur-
ther research.

Back-off BLEU Vocabulary Size (%)
Baseline 31.82±3.24 100
Stem-4 32.73±3.19 19
Lemma 33.05±3.40 54
Trimmed Suffix 33.28±3.32 47

Table 3: Back-off BLEU scores comparison

4.5 WMT Systems

We submitted systems that used reverse self-
training (cu-tamchyna) for English→Czech and
English→German language pairs.

Our parallel data for German were constrained to
the provided set (1.9 million sentences). For Czech,
we used the training sections of CzEng and the sup-
plied WMT11 News Commentary data (7.3 million
sentences in total).

In case of German, we only used the supplied
monolingual data, for Czech we used a large col-
lection of texts for language modelling (i.e. uncon-
strained). The reverse self-training used only the
constrained data – 2.3 million sentences in German
and 2.2 in Czech. In case of Czech, we only used
the News monolingual data from 2010 and 2011 for
reverse self-training – we expected that recent data
from the same domain as the test set would improve
translation performance the most.

We achieved mixed results with these systems –
for translation into German, reverse self-training did
not improve translation performance. For Czech,
we were able to achieve a small gain, even though
the reversely translated data contained less sentences

than the parallel data. Our BLEU scores were also
affected by submitting translation outputs without
normalized punctuation and with a slightly different
tokenization.

In this scenario, a lot of parallel data were avail-
able and we did not manage to prepare a reversely
trained model from larger monolingual data. Both
of these factors contributed to the inconclusive re-
sults.

Table 4 shows case-insensitive BLEU scores as
calculated in the official evaluation.

Target Language Mono LM +Mono TM
German 14.8 14.8
Czech 15.7 15.9

Table 4: Case-insensitive BLEU of WMT systems

5 Conclusion

We introduced a technique for exploiting monolin-
gual data to improve the quality of translation into
morphologically rich languages.

We carried out experiments showing improve-
ments in BLEU when using our method for trans-
lating into Czech, Finnish, German and Slovak with
small parallel data. We discussed the issues of in-
cluding similar translation models as separate com-
ponents in MERT.

We showed that gains in BLEU score increase
with growing size of monolingual data. On the other
hand, growing parallel data size diminishes the ef-
fect of our method quite rapidly. We also docu-
mented our experiments with several back-off tech-
niques for English to Czech translation.

Finally, we described our primary submissions to
the WMT 2011 Shared Translation Task.
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Abstract

This paper describes our WMT submis-
sions CU-BOJAR and CU-DEPFIX, the lat-
ter dubbed “CHIMERA” because it com-
bines on three diverse approaches: Tec-
toMT, a system with transfer at the deep
syntactic level of representation, factored
phrase-based translation using Moses, and
finally automatic rule-based correction of
frequent grammatical and meaning errors.
We do not use any off-the-shelf system-
combination method.

1 Introduction

Targeting Czech in statistical machine transla-
tion (SMT) is notoriously difficult due to the
large number of possible word forms and com-
plex agreement rules. Previous attempts to resolve
these issues include specific probabilistic models
(Subotin, 2011) or leaving the morphological gen-
eration to a separate processing step (Fraser et al.,
2012; Mareček et al., 2011).

TectoMT (CU-TECTOMT, Galuščáková et al.
(2013)) is a hybrid (rule-based and statistical) MT
system that closely follows the analysis-transfer-
synthesis pipeline. As such, it suffers from many
issues but generating word forms in proper agree-
ments with their neighbourhood as well as the
translation of some diverging syntactic structures
are handled well. Overall, TectoMT sometimes
even ties with a highly tuned Moses configuration
in manual evaluations, see Bojar et al. (2011).

Finally, Rosa et al. (2012) describes Depfix, a
rule-based system for post-processing (S)MT out-
put that corrects some morphological, syntactic
and even semantic mistakes. Depfix was able to
significantly improve Google output in WMT12,
so now we applied it on an open-source system.

Our WMT13 system is thus a three-headed
creature where, hopefully: (1) TectoMT provides

missing word forms and safely handles some non-
parallel syntactic constructions, (2) Moses ex-
ploits very large parallel and monolingual data,
and boosts better lexical choice, (3) Depfix at-
tempts to fix severe flaws in Moses output.

2 System Description

TectoMT

Moses

cu-tectomt

Depfix

cu-bojar

cu-depfix = Chimera

Input

Figure 1: CHIMERA: three systems combined.

CHIMERA is a sequential combination of three
diverse MT systems as depicted in Figure 1. Each
of the intermediate stages of processing has been
submitted as a separate primary system for the
WMT manual evalution, allowing for a more thor-
ough analysis.

Instead of an off-the-shelf system combination
technique, we use TectoMT output as synthetic
training data for Moses as described in Section 2.1
and finally we process its output using rule-based
corrections of Depfix (Section 2.2). All steps di-
rectly use the source sentence.

2.1 Moses Setup for CU-BOJAR

We ran a couple of probes with reduced training
data around the setup of Moses that proved suc-
cessful in previous years (Bojar et al., 2012a).

2.1.1 Pre-processing
We use a stable pre-processing pipeline that in-
cludes normalization of quotation marks,1 tok-
enization, tagging and lemmatization with tools

1We do not simply convert them to unpaired ASCII quotes
but rather balance them and use other heuristics to convert
most cases to the typographically correct form.
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Case recaser lc→form utc stc
BLEU 9.05 9.13 9.70 9.81

Table 1: Letter Casing

included in the Treex platform (Popel and
Žabokrtský, 2010).

This year, we evaluated the end-to-end effect of
truecasing. Ideally, English-Czech SMT should be
trained on data where only names are uppercased
(and neither the beginnings of sentences, nor all-
caps headlines or exclamations etc). For these ex-
periments, we trained a simple baseline system on
1 million sentence pairs from CzEng 1.0.

Table 1 summarizes the final (case-sensitive!)
BLEU scores for four setups. The standard ap-
proach is to train SMT lowercase and apply a re-
caser, e.g. the Moses one, on the output. Another
option (denoted “lc→form”) is to lowercase only
the source side of the parallel data. This more
or less makes the translation model responsible
for identifying names and the language model for
identifying beginnings of sentences.

The final two approaches attempt at “truecas-
ing” the data, i.e. the ideal lowercasing of ev-
erything except names. Our simple unsupervised
truecaser (“utc”) uses a model trained on monolin-
gual data (1 million sentences in this case, same
as the parallel training data used in this experi-
ment) to identify the most frequent “casing shape”
of each token type when it appears within a sen-
tence and then converts its occurrences at the be-
ginnings of sentences to this shape. Our super-
vised truecaser (“stc”) casts the case of the lemma
on the form, because our lemmatizers for English
and Czech produce case-sensitive lemmas to indi-
cate names. After the translation, only determinis-
tic uppercasing of sentence beginnings is needed.

We confirm that “stc” as we have been using it
for a couple of years is indeed the best option, de-
spite its unpleasingly frequent omissions of names
(incl. “Spojené státy”, “the United States”). One
of the rules in Depfix tries to cast the case from
the source to the MT output but due to alignment
errors, it is not perfect in fixing these mistakes.

Surprisingly, the standard recasing worked
worse than “lc→form”, suggesting that two Moses
runs in a row are worse than one joint search.

We consider using a full-fledged named entity
recognizer in the future.

Tokens [M]
Corpus Sents [M] English Czech
CzEng 1.0 14.83 235.67 205.17
Europarl 0.65 17.61 15.00
Common Crawl 0.16 4.08 3.63

Table 2: Basic Statistics of Parallel Data.

2.1.2 Factored Translation for Morphological
Coherence

We use a quite standard factored configuration of
Moses. We translate from “stc” to two factors:
“stc” and “tag” (full Czech positional morpholog-
ical tag). Even though tags on the target side make
the data somewhat sparser (a single Czech word
form typically represents several cases, numbers
or genders), we do not use any back-off or alterna-
tive decoding path. A high-order language model
on tags is used to promote grammatically correct
and coherent output. Our system is thus less prone
to errors in local morphological agreement.

2.1.3 Large Parallel Data
The main source of our parallel data was CzEng
1.0 (Bojar et al., 2012b). We also used Europarl
(Koehn, 2005) as made available by WMT13 orga-
nizers.2 The English-Czech part of the new Com-
mon Crawl corpus was quite small and very noisy,
so we did not include it in our training data. Ta-
ble 2 provides basic statistics of the data.

Processing large parallel data can be challeng-
ing in terms of time and computational resources
required. The main bottlenecks are word align-
ment and phrase extraction.

GIZA++ (Och and Ney, 2000) has been the
standard tool for computing word alignment in
phrase-based MT. A multi-threaded version exists
(Gao and Vogel, 2008), which also supports incre-
mental extensions of parallel data by applying a
saved model on a new sentence pair. We evaluated
these tools and measured their wall-clock time3 as
well as the final BLEU score of a full MT system.

Surprisingly, single-threaded GIZA++ was con-
siderably faster than single-threaded MGIZA. Us-
ing 12 threads, MGIZA outperformed GIZA++
but the difference was smaller than we expected.

Table 3 summarizes the results. We checked the
difference in BLEU using the procedure by Clark
et al. (2011) and GIZA++ alignments were indeed

2http://www.statmt.org/wmt13/
translation-task.html

3Time measurements are only indicative, they were af-
fected by the current load in our cluster.
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Alignment Wallclock Time BLEU
GIZA++ 71 15.5
MGIZA 1 thread 114 15.4
MGIZA 12 threads 51 15.4

Table 3: Rough wallclock time [hours] of word
alignment and the resulting BLEU scores.

Corpus Sents [M] Tokens [M]
CzEng 1.0 14.83 205.17
CWC Articles 36.72 626.86
CNC News 28.08 483.88
CNA 47.00 830.32
Newspapers 64.39 1040.80
News Crawl 24.91 444.84
Total 215.93 3631.87

Table 4: Basic Statistics of Monolingual Data.

little but significantly better than MGIZA in three
MERT runs.

We thus use the standard GIZA++ aligner.

2.1.4 Large Language Models
We were able to collect a very large amount of
monolingual data for Czech: almost 216 million
sentences, 3.6 billion tokens. Table 4 lists the
corpora we used. CWC Articles is a section of
the Czech Web Corpus (Spoustová and Spousta,
2012). CNC News refers to a subset of the Czech
National Corpus4 from the news domain. CNA
is a corpus of Czech News Agency stories from
1998 to 2012. Newspapers is a collection of ar-
ticles from various Czech newspapers from years
1998 to 2002. Finally, News Crawl is the mono-
lingual corpus made available by the organizers of
WMT13.

We created an in-domain language model from
all the corpora except for CzEng (where we only
used the news section). We were able to train a 4-
gram language model using KenLM (Heafield et
al., 2013). Unfortunately, we did not manage to
use a model of higher order. The model file (even
in the binarized trie format with probability quan-
tization) was so large that we ran out of memory
in decoding.5 We also tried pruning these larger
models but we did not have enough RAM.

To cater for a longer-range coherence, we
trained a 7-gram language model only on the News
Crawl corpus (concatenation of all years). In this
case, we used SRILM (Stolcke, 2002) and pruned
n-grams so that (training set) model perplexity

4http://korpus.cz/
5Due to our cluster configuration, we need to pre-load lan-

guage models.

Token Order Sents Tokens ARPA.gz Trie
[M] [M] [GB] [GB]

stc 4 201.31 3430.92 28.2 11.8
stc 7 24.91 444.84 13.1 8.1
tag 10 14.83 205.17 7.2 3.0

Table 5: LMs used in CU-BOJAR.

does not increase more than 10−14. The data for
this LM exactly match the domain of WMT test
sets.

Finally, we model sequences of morphological
tags on the target side using a 10-gram LM es-
timated from CzEng. Individual sections of the
corpus (news, fiction, subtitles, EU legislation,
web pages, technical documentation and Navajo
project) were interpolated to match WMT test sets
from 2007 to 2011 best. This allows even out-of-
domain data to contribute to modeling of overall
sentence structure. We filtered the model using the
same threshold 10−14.

Table 5 summarizes the resulting LM files as
used in CU-BOJAR and CHIMERA.

2.1.5 Bigger Tuning Sets
Koehn and Haddow (2012) report benefits from
tuning on a larger set of sentences. We experi-
mented with a down-scaled MT system to com-
pare a couple of options for our tuning set: the
default 3003 sentences of newstest2011, the de-
fault and three more Czech references that were
created by translating from German, the default
and two more references that were created by post-
editing a variant of our last year’s Moses system
and also a larger single-reference set consisting
of several newstest years. The preliminary re-
sults were highly inconclusive: negligibly higher
BLEU scores obtained lower manual scores. Un-
able to pick the best configuration, we picked the
largest. We tune our systems on “bigref”, as spec-
ified in Table 6. The dataset consists of 11583
source sentences, 3003 of which have 4 reference
translations and a subset (1997 sents.) of which
has 2 reference translations constructed by post-
editing. The dataset does not include 2010 data as
a heldout for other foreseen experiments.

2.1.6 Synthetic Parallel Data
Galuščáková et al. (2013) describe several possi-
bilities of combining TectoMT and phrase-based
approaches. Our CU-BOJAR uses one of the sim-
pler but effective ones: adding TectoMT output on
the test set to our training data. As a contrast to
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English Czech # Refs # Snts
newstest2011 official + 3 more from German 4 3003
newstest2011 2 post-edits of a system 2 1997

similar to (Bojar et al., 2012a)
newstest2009 official 1 2525
newstest2008 official 1 2051
newstest2007 official 1 2007
Total 4 11583

Table 6: Our big tuning set (bigref).

CU-BOJAR, we also examine PLAIN Moses setup
which is identical but lacks the additional syn-
thetic phrase table by TectoMT.

In order to select the best balance between
phrases suggested by TectoMT and our parallel
data, we provide these data as two separate phrase
tables. Each phrase table brings in its own five-
tuple of scores, one of which, the phrase-penalty
functions as an indicator how many phrases come
from which of the phrase tables. The standard
MERT is then used to optimize the weights.6,7

We use one more trick compared to
Galuščáková et al. (2013): we deliberately
overlap our training and tuning datasets. When
preparing the synthetic parallel data, we use the
English side of newstests 08 and 10–13. The
Czech side is always produced by TectoMT. We
tune on bigref (see Table 6), so the years 08, 11
and 12 overlap. (We could have overlapped also
years 07, 09 and 10 but we had them originally
reserved for other purposes.) Table 7 summarizes
the situation and highlights that our setup is fair:
we never use the target side of our final evaluation
set newstest2013. Some test sets are denoted
“could have” as including them would still be
correct.

The overlap allows MERT to estimate how use-
ful are TectoMT phrases compared to the standard
phrase table not just in general but on the spe-
cific foreseen test set. This deliberate overfitting
to newstest 08, 11 and 12 then helps in translating
newstest13.

This combination technique in its current state
is rather expensive as a new phrase table is re-
quired for every new input document. However,
if we fix the weights for the TectoMT phrase ta-

6Using K-best batch MIRA (Cherry and Foster, 2012) did
not work any better in our setup.

7We are aware of the fact that Moses alternative decoding
paths (Birch and Osborne, 2007) with similar phrase tables
clutter n-best lists with identical items, making MERT less
stable (Eisele et al., 2008; Bojar and Tamchyna, 2011). The
issue was not severe in our case, CU-BOJAR needed 10 itera-
tions compared to 3 iterations needed for PLAIN.

Used in
Test Set Training Tuning Final Eval
newstest07 could have en+cs –
newstest08 en+TectoMT en+cs –
newstest09 could have en+cs –
newstest10 en+TectoMT could have –
newstest11 en+TectoMT en+cs –
newstest12 en+TectoMT en+cs –
newstest13 en+TectoMT – en+cs

Table 7: Summary of test sets usage. “en” and
“cs” denote the official English and Czech sides,
resp. “TectoMT” denotes the synthetic Czech.

ble, we can avoid re-tuning the system (whether
this would degrade translation quality needs to be
empirically evaluated). Moreover, if we use a dy-
namic phrase table, we could update it with Tec-
toMT outputs on the fly, thus bypassing the need
to retrain the translation model.

2.2 Depfix

Depfix is an automatic post-editing tool for cor-
recting errors in English-to-Czech SMT. It is ap-
plied as a post-processing step to CU-BOJAR, re-
sulting in the CHIMERA system. Depfix 2013 is an
improvement of Depfix 2012 (Rosa et al., 2012).

Depfix focuses on three major types of language
phenomena that can be captured by employing lin-
guistic knowledge but are often hard for SMT sys-
tems to get right:
• morphological agreement, such as:

– an adjective and the noun it modifies have to
share the same morphological gender, num-
ber and case

– the subject and the predicate have to agree in
morphological gender, number and person, if
applicable

• transfer of meaning in cases where the same
meaning is expressed by different grammatical
means in English and in Czech, such as:
– a subject in English is marked by being a left

modifier of the predicate, while in Czech a
subject is marked by the nominative morpho-
logical case

– English marks possessiveness by the preposi-
tion ’of’, while Czech uses the genitive mor-
phological case

– negation can be marked in various ways in
English and Czech

• verb-noun and noun-noun valency—see (Rosa
et al., 2013)
Depfix first performs a complex lingustic anal-
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System BLEU TER WMT Ranking
Appraise MTurk

CU-TECTOMT 14.7 0.741 0.455 0.491
CU-BOJAR 20.1 0.696 0.637 0.555
CU-DEPFIX 20.0 0.693 0.664 0.542
PLAIN Moses 19.5 0.713 – –
GOOGLE TR. – – 0.618 0.526

Table 8: Overall results.

ysis of both the source English sentence and its
translation to Czech by CU-BOJAR. The anal-
ysis includes tagging, word-alignment, and de-
pendency parsing both to shallow-syntax (“analyt-
ical”) and deep-syntax (“tectogrammatical”) de-
pendency trees. Detection and correction of errors
is performed by rule-based components (the va-
lency corrections use a simple statistical valency
model). For example, if the adjective-noun agree-
ment is found to be violated, it is corrected by
projecting the morphological categories from the
noun to the adjective, which is realized by chang-
ing their values in the Czech morphological tag
and generating the appropriate word form from the
lemma-tag pair using the rule-based generator of
Hajič (2004).

Rosa (2013) provides details of the current ver-
sion of Depfix. The main additions since 2012 are
valency corrections and lost negation recovery.

3 Overall Results

Table 8 reports the scores on the WMT13 test
set. BLEU and TER are taken from the evalu-
ation web site8 for the normalized outputs, case
insensitive. The normalization affects typeset-
ting of punctuation only and greatly increases
automatic scores. “WMT ranking” lists results
from judgments from Appraise and Mechanical
Turk. Except CU-TECTOMT, the manual evalua-
tion used non-normalized MT outputs. The fig-
ure is the WMT12 standard interpretation as sug-
gested by Bojar et al. (2011) and says how often
the given system was ranked better than its com-
petitor across all 18.6k non-tying pairwise com-
parisons extracted from the annotations.

We see a giant leap from CU-TECTOMT to CU-
BOJAR, confirming the utility of large data. How-
ever, CU-TECTOMT had something to offer since it
improved over PLAIN, a very competitive baseline,
by 0.6 BLEU absolute. Depfix seems to slightly
worsen BLEU score but slightly improve TER; the

8http://matrix.statmt.org/

System # Tokens % Tokens
All 22920 76.44
Moses 3864 12.89
TectoMT 2323 7.75
Other 877 2.92

Table 9: CHIMERA components that contribute
“confirmed” tokens.

System # Tokens % Tokens
None 21633 79.93
Moses 2093 7.73
TectoMT 2585 9.55
Both 385 1.42
CU-BOJAR 370 1.37

Table 10: Tokens missing in CHIMERA output.

manual evaluation is similarly indecisive.

4 Combination Analysis

We now closely analyze the contributions of
the individual engines to the performance of
CHIMERA. We look at translations of the new-
stest2013 sets produced by the individual systems
(PLAIN, CU-TECTOMT, CU-BOJAR, CHIMERA).

We divide the newstest2013 reference tokens
into two classes: those successfully produced by
CHIMERA (Table 9) and those missed (Table 10).
The analysis can suffer from false positives as well
as false negatives, a “confirmed” token can violate
some grammatical constraints in MT output and
an “unconfirmed” token can be a very good trans-
lation. If we had access to more references, the
issue of false negatives would decrease.

Table 9 indicates that more than 3/4 of to-
kens confirmed by the reference were available
in all CHIMERA components: PLAIN Moses, CU-
TECTOMT alone but also in the subsequent combi-
nations CU-BOJAR and the final CU-DEPFIX.

PLAIN Moses produced 13% tokens that Tec-
toMT did not provide and TectoMT output
roughly 8% tokens unknown to Moses. However,
note that it is difficult to distinguish the effect of
different model weights: PLAIN might have pro-
duced some of those tokens as well if its weights
were different. The row “Other” includes cases
where e.g. Depfix introduced a confirmed token
that none of the previous systems had.

Table 10 analyses the potential of CHIMERA

components. These tokens from the reference
were not produced by CHIMERA. In almost 80%
of cases, the token was not available in any 1-best
output; it may have been available in Moses phrase
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tables or the input sentence.
TectoMT offered almost 10% of missed tokens,

but these were not selected in the subsequent com-
bination. The potential of Moses is somewhat
lower (about 8%) because our phrase-based com-
bination is likely to select wordings that score well
in a phrase-based model. 385 tokens were sug-
gested by both TectoMT and Moses alone, but the
combination in CU-BOJAR did not select them, and
finally 370 tokens were produced by the combina-
tion while they were not present in 1-best output of
neither TectoMT nor Moses. Remember, all these
tokens eventually did not get to CHIMERA output,
so Depfix must have changed them.

4.1 Depfix analysis
Table 11 analyzes the performance of the individ-
ual components of Depfix. Each evaluated sen-
tence was either modified by a Depfix component,
or not. If it was modified, its quality could have
been evaluated as better (improved), worse (wors-
ened), or the same (equal) as before. Thus, we can
evaluate the performance of the individual compo-
nents by the following measures:9

precision = #improved
#improved+#worsened (1)

impact = #modified
#evaluated (2)

useless = #equal
#modified (3)

Please note that we make an assumption that if
a sentence was modified by multiple Depfix com-
ponents, they all have the same effect on its qual-
ity. While this is clearly incorrect, it is impossible
to accurately determine the effect of each individ-
ual component with the evaluation data at hand.
This probably skews especially the reported per-
formance of “high-impact” components, which of-
ten operate in combination with other components.

The evaluation is computed on 871 hits in which
CU-BOJAR and CHIMERA were compared.

The results show that the two newest compo-
nents – Lost negation recovery and Valency model
– both modify a large number of sentences. Va-
lency model seems to have a slightly negative ef-
fect on the translation quality. As this is the only
statistical component of Depfix, we believe that
this is caused by the fact that its parameters were
not tuned on the final CU-BOJAR system, as the

9We use the term precision for our primary measure for
convenience, even though the way we define it does not match
exactly its usual definition.

Depfix component Prc. Imp. Usl.
Aux ’be’ agr. – 1.4% 100%
No prep. without children – 0.5% 100%
Sentence-initial capitalization 0% 0.1% 0%
Prepositional morph. case 0% 2.1% 83%
Preposition - noun agr. 40% 3.8% 70%
Noun number projection 41% 7.2% 65%
Valency model 48% 10.6% 66%
Subject - nominal pred. agr. 50% 3.8% 76%
Noun - adjective agr. 55% 17.8% 75%
Subject morph. case 56% 8.5% 57%
Tokenization projection 56% 3.0% 38%
Verb tense projection 58% 5.2% 47%
Passive actor with ’by’ 60% 1.0% 44%
Possessive nouns 67% 0.9% 25%
Source-aware truecasing 67% 2.8% 50%
Subject - predicate agr. 68% 5.1% 57%
Pro-drop in subject 73% 3.4% 63%
Subject - past participle agr. 75% 6.3% 42%
Passive - aux ’be’ agr. 77% 4.8% 69%
Possessive with ’of’ 78% 1.5% 31%
Present continuous 78% 1.5% 31%
Missing reflexive verbs 80% 1.6% 64%
Subject categories projection 83% 3.7% 62%
Rehang children of aux verbs 83% 5.5% 62%
Lost negation recovery 90% 7.2% 38%

Table 11: Depfix components performance analy-
sis on 871 sentences from WMT13 test set.

tuning has to be done semi-manually and the fi-
nal system was not available in advance. On the
other hand, Lost negation recovery seems to have
a highly positive effect on translation quality. This
is to be expected, as a lost negation often leads to
the translation bearing an opposite meaning to the
original one, which is probably one of the most
serious errors that an MT system can make.

5 Conclusion

We have reached our chimera to beat Google
Translate. We combined all we have: a deep-
syntactic transfer-based system TectoMT, very
large parallel and monolingual data, factored setup
to ensure morphological coherence, and finally
Depfix, a rule-based automatic post-editing sys-
tem that corrects grammaticality (agreement and
valency) of the output as well as some features vi-
tal for adequacy, namely lost negation.
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Abstract
This paper examines two techniques of manual evaluation that can be used to identify error

types of individual machine translation systems. The first technique of “blind post-editing” is
being used in WMT evaluation campaigns since 2009 and manually constructed data of this
type are available for various language pairs. The second technique of explicit marking of errors
has been used in the past as well.

We propose a method for interpreting blind post-editing data at a finer level and compare
the results with explicit marking of errors. While the human annotation of either of the tech-
niques is not exactly reproducible (relatively low agreement), both techniques lead to similar
observations of differences of the systems. Specifically, we are able to suggest which errors in
MT output are easy and hard to correct with no access to the source, a situation experienced by
users who do not understand the source language.

1. Introduction

The Workshop on Statistical Machine Translation (WMT)1 is a yearly open compe-
tition in machine translation (MT) among a few languages. Regularly, system outputs
are manually judged using various techniques with the side-effect of establishing a
trustworthy set of manual and automatic metrics (Callison-Burch et al., 2008, 2009).
The manual evaluation methods tested so far are rather black-box, allowing to rank
systems but revealing little or nothing about the types of errors in state-of-the-art MT.

A ranked list of error types of a system would be an invaluable resource for the
developers of the system. In this paper, we use the WMT09 manual evaluation data

1http://www.statmt.org/wmt06 to wmt10
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and our manual evaluation to identify error types in outputs of four English-to-Czech
MT systems. Both techniques lead to similar results and we observe expectable but
interesting differences in errors the systems make.

1.1. Techniques of Manual MT Evaluation

Traditionally, MT output has been manually judged by ranking of sentences in
terms of adequacy and fluency. In WMT, the two axes of ranking were joined to a
single one in 2008 due to a low inter-annotator agreement (Callison-Burch et al., 2008).
Since 2009, WMT extends the sentence ranking with so-called “blind post-editing”.
The blind post-editing is performed by two separate persons in a row: the first one
(the “editor”) gets only the system output and is asked to produce a fluent sentence
conveying the same message, the second one (the “judge”) gets the edited sentence
along with the source and the reference translation to confirm whether it is still an
acceptable translation.

While the sentence ranking is hard to use for analysis of errors of individual sys-
tems, the blind post-editing provides a better chance. In Section 3, we design a simple
technique for searching for MT errors given post-edits and apply it to four systems
translating from English to Czech.

To support the observations, we also carry out an additional manual analysis: flag-
ging of errors in MT output, see Section 4. This is a finer variant of post-editing and
allows us to identify clear differences between types of MT systems in terms of errors
they make. By linking the two types of manual evaluation, we are even able to ob-
serve that the systems differ in the possibility to correct particular error types in the
blind post-editing task. Errors hard to fix in this setting are the most risky when the
system is used by a user who does not understand the source language.

2. Brief Overview of Systems Examined

In the paper, we consider only a small subset of WMT09 systems. Still, they rep-
resent a wide range of technologies:

Google is a commercial statistical MT system trained on unspecified amounts and
sources of parallel and monolingual texts.

PC Translator is a traditional commercial MT system tuned for years primarily for
English-to-Czech translation.

TectoMT is an experimental system following the traditional analysis-transfer-syn-
thesis scenario with the transfer implemented at the deep syntactic layer of lan-
guage representation, based on the theory of Functional Generative Description
(Sgall et al., 1986) as implemented in the Prague Dependency Treebank (Hajič
et al., 2006). For the purposes of TectoMT, the tectogrammatical layer was fur-
ther simplified (Žabokrtský et al., 2008; Bojar et al., 2009).

64



Analyzing Error Types in English-Czech Machine Translation 153

Ondřej Bojar Analyzing Error Types in English-Czech Machine Translation (63–76)

System PC Translator Google CU-Bojar TectoMT
Ranked ≥ others 67% 66% 61% 48%
Edits deemed acceptable 32% 32% 21% 19%
BLEU .14 .14 .14 .07
NIST 4.34 4.96 5.18 4.17

Table 1. Manual and automatic scores of the four MT systems examined. Best results
in bold.

CU-Bojar is an experimental phrase-based system the core of which is the Moses2

decoder (Koehn et al., 2007). Considerable effort has been invested in tuning
the system for English-to-Czech translation (Bojar et al., 2009).

Table 1 compares these systems on the WMT09 dataset using some of WMT09
evaluation metrics as reported in Callison-Burch et al. (2009). We see that TectoMT
was distinctly worse than the other systems and that the two commercial systems
perform better than the research ones. The traditional automatic metrics BLEU and
NIST partially fail to predict this.

3. Exploiting Blind Post-Edits

As outlined above, the “blind post-editing” WMT dataset consists of source sen-
tences, MT system outputs (also called hypotheses), edited outputs (also called edits)
and yes/no acceptability judgments. Naturally, there is also the reference translation
but its relation to the MT output is rather loose. Most of the relations in the dataset
are one-to-many: There are always more MT systems for a single input sentence (each
system provides a single best candidate), there are usually several manual edits of a
given hypothesis and several judgment of a given edit.

The dataset is blind in several ways: the editor knows only the text of the hypoth-
esis and neither the system, source text nor the reference translation. The annotator
does not know the system or the editor either.

The edits are completely unrestricted and not formalized. All we have are two
strings: the hypothesis and the edit. Editors are allowed to rewrite the sentence from
scratch (but they usually don’t have the capacity to do so because they don’t know
more than what is in the sentence).

3.1. Basic Statistics of the Dataset

The dataset consists of 100 source sentences. For the four systems in question, 29
unique editors provided the total of 1198 edits out of which only 708 (59%) contain a

2http://www.statmt.org/moses
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new string.3 Others were left unedited either because they were not comprehensible
at all or because they were deemed correct. We are aware of the possible bias in our
error analysis caused by ignoring esp. the incomprehensible sentences. The method
discussed here is unfortunately not applicable to such cases, however the flagging of
errors as described in Section 4 covers all the 100 sentences. In the sequel, we focus
solely on the 708 edits.

The 708 edits were judged by 20 annotators, leading to the total of 2762 items (41%
of which are marked as acceptable). In the sequel, we fully multiply the dataset so that
an input sentence is duplicated as many times as any edit of any of the outputs was
judged. This corresponds to micro-averaging all the observations over the dataset.

The average sentence length of a hypothesis is 21.4±9.8 words and the average
sentence length of an edit is 20.6±9.3 words.

3.2. Generalizing Edits

In order to learn types of errors frequently done by individual MT systems, we
need to somehow generalize the actual modifications performed in the edits. We use
the following simple procedure:

1. Tokenize and morphologically analyze both the hypothesis and the edit.
2. Find differences between the two sequences of tokens. Various techniques can

be applied here, we use the longest common subsequence algorithm (LCS, Hunt
and McIlroy (1976)) as implemented in the Perl module Algorithm::Diff and
the Unix diff tool. In future we would like to model block movements in the
alignment as e.g. TER (Snover et al., 2009) or CDER (Leusch and Ney, 2008) do.

3. Synchronously traverse the tokens as aligned by the diff algorithm. Each step
in the traversal is called a “hunk” and corresponds to an atomic edit.

4. Collect frequencies of seen types of hunks.
Figure 1 illustrates a hypothesis and an edit. There are four basic types of hunks,

with the total frequencies given in Table 2: about 40k hunks link two identical tokens
(Match)4, 7k tokens were deleted from the hypothesis (Delete) and 5k were inserted
(Insert). For about 12k tokens the LCS algorithms found sufficient context to mark
them as being a substitute for each other (Modify). As we see in Table 2, individual
edits vary a lot in terms of the number of these coarse hunk types. The edits that
were approved in the second stage contain somewhat fewer matched tokens but the
average sentence length for these edits is also slightly lower: 20.1±9.1. We would like
to attribute this to a negative correlation between a hypothesis length and the accept-
ability of its edits (the percentage of judges who accepted the edit) but the correlation
is rather weak: Pearson correlation coefficient of -0.13.

3One of the sentences had only the uninformative edits so we were left with 99 sentences.
4Actually, 1396 of these hunks have the same form but the morphological analyzer tagged them differ-

ently. We still count them as Match.
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Hunk Hypothesis Gloss Edit Gloss
1 Globální Global Globální
2 finanční finance finanční
3 krize crisis.fem krize
4 je is je
5 významně notably významně
6 Modify ovlivňoval influenced.masc ovlivňovala influenced.fem
7 na at na
8 akciových stock akciových
9 trzích markets trzích

10 , , ,
11 které that které
12 Modify se aux-refl prudce quickly
13 Modify pouštějí send out padají fall
14 Delete ostře sharply — —
15 . . .

Figure 1. Sample hypothesis and an edit, aligned using the LCS algorithm. Most of the
hunks are “Match”.

Match Delete Insert Modify
Total 39604 7176 4847 12261
Avg. per approved edit 13.4±6.6 2.5±2.6 1.8±1.9 4.2±3.2
Avg. per disapproved edit 15.0±7.0 2.6±2.9 1.7±2.0 4.6±3.3

Table 2. Coarse hunk types in the dataset of 99 input sentences with a valid edit.

3.3. Interpreting Hunks

As illustrated in Figure 1, the coarse hunk types do not always correspond to the
change performed. The hunk 6 is an excellent example and we can directly derive the
change from it. On the other hand, the hunks 12 to 14 are misaligned for our purposes.
What actually happened was that the superfluous reflexive particle se got deleted, the
lexical value of the verb got changed and the order of the adverb and the verb got
swapped. For the purposes of this evaluation, we re-interpret only the Modify hunks
handling the reflexive particle as a pair of Insert and Delete hunks.

Table 3 indicates how often a specific hunk class occurred in edits of an MT system
output. We group hunks to the following classes:

Word matched if the form of the word is left unchanged (regardless a possible change
in the automatically produced lemma or morphological tag).
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Count PC
Hunk Class % Approved CU-Bojar TectoMT Google Translator
Word matched 39604 9781 7158 11176 11489

38.5 33.3 30.5 48.0 38.6
Fix morphology only 2545 693 538 638 676

33.6 37.4 26.4 33.1 35.8
Fix lexical choice, loose 1828 203 556 445 624

39.5 29.1 34.7 44.3 43.8
Delete POS: N 1694 382 413 464 435

39.1 29.6 39.0 50.0 36.1
Insert POS: N 1352 279 373 305 395

41.8 36.6 37.3 55.1 39.5
Delete POS: V 1293 190 303 289 511

40.8 32.6 33.7 58.5 38.0
Fix lexical choice, strict 1152 211 357 181 403

37.8 27.5 28.0 46.4 48.1
Insert POS: V 990 199 179 212 400

40.1 38.2 33.5 51.9 37.8
…
Delete reflexive particle 437 97 132 110 98

35.0 23.7 17.4 61.8 39.8
…
Insert reflexive particle 385 41 67 99 178

40.8 24.4 29.9 52.5 42.1
…
Fix capitalization only 102 43 11 3 45

31.4 34.9 27.3 0.0 31.1

Table 3. Most frequent hunk classes per system.

Fix capitalization only if the only difference between the word in the edit and the
hypothesis is letter case.

Fix morphology only if the lemma of word is preserved but there is a change in the
word form.

Fix lexical choice if the morphological tag is preserved but the lemma changes. We
distinguish two subclasses: strict fix requires the exact same morphological tag5

while loose fix requires only the identity of the part of speech.
Insert or delete reflexive particle if the Czech auxiliary particle se or si gets inserted

or deleted. The particle is interesting because it is rather important for correct
sense discrimination of some verbs but it is often placed at the second position
in the sentence, possibly far away from the verb. In statistical MT systems, this

5This is an underestimate because the tagset sometimes uses a special value of a category indicating one
of several possible simple values. The proper handling would thus be to unify the tags, not check them for
identity.

68



Analyzing Error Types in English-Czech Machine Translation 157

Ondřej Bojar Analyzing Error Types in English-Czech Machine Translation (63–76)

particle gets often mis-aligned to some English auxiliary, e.g. is, and is spuri-
ously produced in MT output.

Insert or delete words of various parts of speech, e.g. nouns (N) or verbs (V).

As we see in Table 3, the most frequent fix is related to pure change of morphology.
This is a natural results because Czech has a very rich morphology and choosing the
correct word form is the hardest part of English-to-Czech MT. In 33.6% of edits that
included this type of fix, the second annotator approved the edit as a valid translation.
Individual MT systems differ in the frequency this type of fix was applied: CU-Bojar
and PC Translator needed a fix of the morphology most often. Google (thanks to its
large n-gram language model) performed better in terms of necessary fixes but poorer
in terms of acceptability of sentences with such a fix.

The fewest fixes of morphology were needed for TectoMT, a system that generates
the target word forms using a deterministic morphological generator.

PC Translator seems to have the worst lexical choice (both strict and loose) followed
by TectoMT. We are not surprised to see that CU-Bojar and Google need far fewer fixes
of lexical choice as n-gram language models and longer phrases handle at least local
lexical coherence well.

The acceptability judgments of edits with the following hunk classes are also note-
worthy: fixing morphology in Google output is harder (leads to fewer edits accepted)
than fixing lexical choice while quite the opposite holds for CU-Bojar. Again, we tend
to attribute the difference to the language model size where it failed to guide CU-Bojar
to the correct form and it misled Google to producing sequences output of bad words.

The reflexive particle was superfluously produced by TectoMT most often. Sen-
tences with the superfluous particle were hard to correct (low acceptability rate) for
TectoMT, where the sentence structure was probably distorted altogether, and easy
to correct for Google, where the se was probably inserted as a mis-translation of an
English auxiliary word.

Another frequent type of fixes is the insertion and deletion of nouns and verbs. We
assume that a significant portion of these cases are word movements. Finally, we see
that pure capitalization fixes are rare.

4. Flagging of Errors

To complement the manual judgments of WMT09, we carried out an additional
manual evaluation of the four systems by marking errors in their output. We used an
error classification inspired by Vilar et al. (2006), see Figure 2. Note that our annotators
do not provide us with the full text of a corrected version of the hypothesis. Given
our current experience, we believe that each of the annotators implicitly uses some
“target acceptable output” and marks the changes necessary to reach it. Unlike in e.g.
HTER (Snover et al., 2009), we have not recorded these target acceptable outputs in
this exercise.
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punct::Bad Punctuation

extra::Extra Word

form::Bad Word Form

untr::Not Translated

missC::Content Word missA::Auxiliary Word

lex::Wrong Lexical Choice

disam::Bad Disambiguation

ows::Short Range

ops::Short Range

owl::Long Range

opl::Long Range

Error

Missing Word

Word Order

Incorrect Words

Word Level

Phrase Level

Bad Word Sense

Figure 2. Error classification for manual flagging of errors. Boxes indicate the error
flags used in our annotation.

Words appearing in the hypotheses can be marked as wrong for several reasons:
they may not be translated despite they should be (untr), they may convey wrong
meaning (Bad Word Sense; see below for details), they may be expressed in a bad mor-
phological form (form) or they may be simply superfluous (extra). The annotators can
add words that should have been in the hypothesis but they are missing (missC and
missA). The set of allowed flags also covers some less important errors like punctua-
tion or various types of word order issues. Short-range flags indicate that swapping
a single unit with the next one would fix the problem, long-range flags indicate that
the unit should be moved somewhere further away. If the misplaced words form a
contiguous sequence (“phrase”), only one flag for the whole sequence should be used.

We used 200 sentences in total and 100 of them were the same sentences as an-
notated in the blind post-editing task. The annotation was carried out by 18 native
Czech speakers to share the workload. Most of the sentences were annotated twice,
14% were annotated three times and 9% only once.

The instruction was to annotate as few errors as necessary to change the hypothesis
to an acceptable output. An example of the annotation is given in Figure 3.6 Unlike
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Source Perhaps there are better times ahead.
Reference Možná se tedy blýská na lepší časy.
Gloss Perhaps it is flashing for better times.

Možná, že extra::tam jsou lepší disam::krát lex::dopředu.
Perhaps, that there are better multiply to-front.

Možná extra::tam jsou příhodnější časy vpředu.
Perhaps there are favorable times in-front.

missC::v_budoucnu Možná form::je lepší časy.
missC::in-future Perhaps is better times.

Možná jsou lepší časy lex::vpřed.
Perhaps are better times to-front.

Figure 3. Flagging errors in outputs of four MT systems. English glosses are provided
only for illustration purposes.

in the WMT09 blind post-editing, our annotators had access to the source and the
reference. The identity of the MT system was hidden.

4.1. Agreement When Flagging Errors

The agreement when flagging tokens is relatively low. Excluding sentences with a
single annotation, there were 5905 tokens flagged by at least one annotator. 43.6% of
these tokens were flagged by all (two or three) annotators, regardless the number or
type of error flags.

We attribute the low agreement to the fact that the annotators often diverge in the
target acceptable output as well as in the set of marked corrections that lead to the
target output. The agreement also drops if one of the annotators is willing to accept
even slightly distorted output or forgets to mark some errors.

Table 4 provides the agreement for individual flag types on sentences with exactly
two annotations. The highest agreement is achieved when labeling words not trans-
lated by the system but it is still surprisingly low. The flag neg was used by some
annotators as a refinement of a bad form. We merge it with form annotations in other
evaluations but we see that the agreement about negation is reasonable. The very low
agreement in case, opl and ops is caused by only few annotators marking errors of
this type.

We expected the disam and lex categories to be hard to distinguish. Disambigua-
tion errors mean that the system has “misunderstood” the source word and picked a

6 To avoid any systematic distortion of systems’ outputs, our annotators were required to preserve the
original space-delimited tokens. Several flags could have been assigned to a single token and this was
often the case of tokens containing inappropriate punctuation, e.g. “I punct::form::doesn’t, sleep.” Some
annotators also added special error marks for other minor errors such as letter case and bad tokenization.
A few judgments also indicated that the sentence is totally wrong and not word marking individual errors
(1 for PC Translator, 4 for Google and 6 for CU-Bojar and TectoMT).
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Flagged by Flagged by
Flag Type One Two Agreement Flag Type One Two Agreement
untr 61 72 54.1 tok 24 4 14.3
neg 8 7 46.7 owl 116 17 12.8
extra 461 345 42.8 lex 559 63 10.1
form 1009 625 38.2 case 73 4 5.2
disam 912 310 25.4 opl 23 0 0
punct 304 98 24.4 ops 57 0 0
ows 258 69 21.1 Any 2614 2323 47.0

For each flag type we count tokens annotated by only one of two annotators and by
both of them. Agreement = Two/(One + Two)

Table 4. Tokens flagged by one or two annotators.

clearly distinct wrong sense. All other (unexplained) bad lexical choices were marked
lex. As we see, the agreement for lex is indeed very low. If we treat lex and disam
as a single category, the agreement rises to 39.7%, more than the flag for erroneous
word form.

In the following, we use all items that were flagged by any annotator. If a word is
marked with the same flag by two annotators, we count it as two items.

4.2. Error Types by Individual MT Systems

Table 5 documents an important difference in error types made by individual sys-
tems. While CU-Bojar produced the fewest words with a bad sense (587), it missed by
far the most content words (199). This is in line with the high score of the system in
terms of NIST or BLEU and lower manual scores (see Table 1). Given the underlying
technology, it also suggests a certain overfitting in the tuning of the underlying log-
linear model, e.g. the penalty for producing a word set too high. On the other end
of the scale is PC Translator which had the fewest content words missing (42) but did
not score particularly well in terms of lexical choice (800). Google seems to choose a
good balance (72 missed content words, 670 wrong lexical choices).

We also see that systems with n-gram LMs perform better for some less serious
phenomena like local word order (ows) and punctuation (punct).

Finally note that the overall number of errors or serious errors marked by hu-
mans does not correlate with other manual evaluations (Table 1). The number of
errors marked in PC Translator’s output, the best ranked system, was higher than
e.g. Google. Admittedly, the set of flagged sentences is not the same but still it comes
from exactly the same test set of WMT09 and covers the blind post-editing subset.
This again indicates, how difficult the evaluation of MT is even for humans.
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Google CU-Bojar PC Translator TectoMT Total
disam 406 379 569 659 2013
lex 211 208 231 340 990

Total bad word sense 617 587 800 999 3003
missA 84 111 96 138 429
missC 72 199 42 108 421

Total missed words 156 310 138 246 850
form 783 735 762 713 2993
extra 381 313 353 394 1441
untr 51 53 56 97 257

Total serious errors 1988 1998 2109 2449 8544
ows 117 100 157 155 529
punct 115 117 150 192 574
owl 43 57 50 44 194
ops 26 14 25 15 80
letter case 13 45 24 21 103
opl 10 11 11 13 45
tokenization 7 12 10 6 35
Total errors 2319 2354 2536 2895 10104

Table 5. Flagged errors by type and system.

4.3. Errors Easy and Hard to Fix in Blind Post-Editing

Table 6 indicates which errors of a particular system are easy to fix in blind post-
editing and which are particularly hard. The higher the number, the easier to fix errors
of that kind. We obtained the scores as the difference in error distributions in top
and bottom 25% of sentences when sorted by the average acceptability of post-edits
of the sentence.7 For instance, 30.30% of errors made by Google in 25% most easily
post-editable sentences were errors in form. The percentage of errors in form rises to
32.90% if we look at 25% sentences that were hardest to post-edit. Table 6 shows the
difference of these figures, indicating that errors in form by Google are relatively hard
to fix (-2.60) in blind post-editing.

This kind of evaluation confirms our expectations about similarities and differ-
ences of the examined MT systems and it is in accordance with the post-edits alone,
see Section 3.3: lexical choice is a problem hard to fix for every system. Although
the “lex” category is very similar to “disam”, they were probably easy to distinguish
in the output of TectoMT: we know that TectoMT’s dictionary is not clean and often

7As we know from previous section, each edit was judged by several judges. We denote the percentage
of approvals as the “acceptability” of an edit and average those numbers over all edits of a hypothesis. Note
that the order of sentences by the average acceptability of its post-edits is different for each system.
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System Easy to Fix Hard to Fix
CU-Bojar form (11.0), tok (3.3), punct (2.9) disam (-4.0), extra (-4.9), lex (-5.8)
TectoMT missA (4.4), disam (4.2), ows (2.2) untr (-1.6), missC (-2.3), lex (-7.3)
Google missA (6.6), punct (6.1), ows (3.5) form (-2.6), missC (-2.9), lex (-8.3)
PC Translator ows (7.3), punct (5.3), missA (2.1) disam (-2.7), extra (-7.7), lex (-7.9)

Table 6. Errors easy and hard to fix in blind post-editing.

suggests a rather weird lexical choice, no language model is applied to disambiguate
better. This is confirmed in our table: such clear disambiguation flaws were easy to fix
even without access to the source sentence because most post-editors speak English
and could guess what the original word was.

The interesting difference between Google and CU-Bojar, both using phrase-based
translation and n-gram language model, mentioned in Section 3.3 is more pronounced
here. While errors in form in CU-Bojar’s output are easy to fix (11.0), they are rather
hard to fix in Google’s output (-2.6). We attribute the difference to the strength of
Google’s language model: errors in form include errors in negation and the overall
more or less fluent output can easily mislead post-editors. CU-Bojar uses a smaller
language model and the errors in form probably cause output more incoherent than
deceiving. Similarly, errors in form are not among the most serious problems in
PC Translator output. While other systems confuse post-editors by missing content
words (missC), PC Translator tends to confuse them by additional words (extra).

5. Conclusion

This paper attempted to reveal and quantify differences between error types vari-
ous MT systems make when translating from English to Czech. The first dataset used
consisted of the WMT09 blind post-edits. To complement this type of evaluation, we
manually marked errors in the same set of system outputs.

Both types of manual evaluation can be used to reveal more about individual MT
systems. While the reproducibility of each of the evaluations is relatively low (anno-
tators diverge in errors they mark or post-edit), the overall picture provided by both
evaluation types is rather similar: Statistical systems were somewhat better in lexi-
cal choice (probably thanks to the language model) while the fewest morphological
errors can be achieved either by a large language model or a deterministic morpholog-
ical generator. The drawback of a powerful language model is the risk of misleading:
a fluent output is not a good translation of the source text.

We have suggested a method for detailed analysis of blind post-editing data. Given
the availability of this manually created resource for various language pairs at WMT
evaluation campaigns, we hope researchers will be able to focus on most serious errors
of their specific MT systems.
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Tackling Sparse Data Issue in Machine Translation Evaluation ∗
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Abstract

We illustrate and explain problems of
n-grams-based machine translation (MT)
metrics (e.g. BLEU) when applied to
morphologically rich languages such as
Czech. A novel metric SemPOS based
on the deep-syntactic representation of the
sentence tackles the issue and retains the
performance for translation to English as
well.

1 Introduction

Automatic metrics of machine translation (MT)
quality are vital for research progress at a fast
pace. Many automatic metrics of MT quality have
been proposed and evaluated in terms of correla-
tion with human judgments while various tech-
niques of manual judging are being examined as
well, see e.g. MetricsMATR08 (Przybocki et al.,
2008)1, WMT08 and WMT09 (Callison-Burch et
al., 2008; Callison-Burch et al., 2009)2.

The contribution of this paper is twofold. Sec-
tion 2 illustrates and explains severe problems of a
widely used BLEU metric (Papineni et al., 2002)
when applied to Czech as a representative of lan-
guages with rich morphology. We see this as an
instance of the sparse data problem well known
for MT itself: too much detail in the formal repre-
sentation leading to low coverage of e.g. a transla-
tion dictionary. In MT evaluation, too much detail
leads to the lack of comparable parts of the hy-
pothesis and the reference.

∗ This work has been supported by the grants EuroMa-
trixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003
of the Czech Republic), FP7-ICT-2009-4-247762 (Faust),
GA201/09/H057, GAUK 1163/2010, and MSM 0021620838.
We are grateful to the anonymous reviewers for further re-
search suggestions.

1http://nist.gov/speech/tests
/metricsmatr/2008/results/

2http://www.statmt.org/wmt08 and wmt09
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Figure 1: BLEU and human ranks of systems par-
ticipating in the English-to-Czech WMT09 shared
task.

Section 3 introduces and evaluates some new
variations of SemPOS (Kos and Bojar, 2009), a
metric based on the deep syntactic representation
of the sentence performing very well for Czech as
the target language. Aside from including depen-
dency and n-gram relations in the scoring, we also
apply and evaluate SemPOS for English.

2 Problems of BLEU

BLEU (Papineni et al., 2002) is an established
language-independent MT metric. Its correlation
to human judgments was originally deemed high
(for English) but better correlating metrics (esp.
for other languages) were found later, usually em-
ploying language-specific tools, see e.g. Przy-
bocki et al. (2008) or Callison-Burch et al. (2009).
The unbeaten advantage of BLEU is its simplicity.

Figure 1 illustrates a very low correlation to hu-
man judgments when translating to Czech. We
plot the official BLEU score against the rank es-
tablished as the percentage of sentences where a
system ranked no worse than all its competitors
(Callison-Burch et al., 2009). The systems devel-
oped at Charles University (cu-) are described in
Bojar et al. (2009), uedin is a vanilla configuration
of Moses (Koehn et al., 2007) and the remaining
ones are commercial MT systems.

In a manual analysis, we identified the reasons
for the low correlation: BLEU is overly sensitive
to sequences and forms in the hypothesis matching
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Con- Error
firmed Flags 1-grams 2-grams 3-grams 4-grams
Yes Yes 6.34% 1.58% 0.55% 0.29%
Yes No 36.93% 13.68% 5.87% 2.69%
No Yes 22.33% 41.83% 54.64% 63.88%
No No 34.40% 42.91% 38.94% 33.14%
Total n-grams 35,531 33,891 32,251 30,611

Table 1: n-grams confirmed by the reference and
containing error flags.

the reference translation. This focus goes directly
against the properties of Czech: relatively free
word order allows many permutations of words
and rich morphology renders many valid word
forms not confirmed by the reference.3 These
problems are to some extent mitigated if several
reference translations are available, but this is of-
ten not the case.

Figure 2 illustrates the problem of “sparse data”
in the reference. Due to the lexical and morpho-
logical variance of Czech, only a single word in
each hypothesis matches a word in the reference.
In the case of pctrans, the match is even a false
positive, “do” (to) is a preposition that should be
used for the “minus” phrase and not for the “end
of the day” phrase. In terms of BLEU, both hy-
potheses are equally poor but 90% of their tokens
were not evaluated.

Table 1 estimates the overall magnitude of this
issue: For 1-grams to 4-grams in 1640 instances
(different MT outputs and different annotators) of
200 sentences with manually flagged errors4, we
count how often the n-gram is confirmed by the
reference and how often it contains an error flag.
The suspicious cases are n-grams confirmed by
the reference but still containing a flag (false posi-
tives) and n-grams not confirmed despite contain-
ing no error flag (false negatives).

Fortunately, there are relatively few false posi-
tives in n-gram based metrics: 6.3% of unigrams
and far fewer higher n-grams.

The issue of false negatives is more serious and
confirms the problem of sparse data if only one
reference is available. 30 to 40% of n-grams do
not contain any error and yet they are not con-

3Condon et al. (2009) identify similar issues when eval-
uating translation to Arabic and employ rule-based normal-
ization of MT output to improve the correlation. It is beyond
the scope of this paper to describe the rather different nature
of morphological richness in Czech, Arabic and also other
languages, e.g. German or Finnish.

4The dataset with manually flagged errors is available at
http://ufal.mff.cuni.cz/euromatrixplus/

firmed by the reference. This amounts to 34% of
running unigrams, giving enough space to differ in
human judgments and still remain unscored.

Figure 3 documents the issue across languages:
the lower the BLEU score itself (i.e. fewer con-
firmed n-grams), the lower the correlation to hu-
man judgments regardless of the target language
(WMT09 shared task, 2025 sentences per lan-
guage).

Figure 4 illustrates the overestimation of scores
caused by too much attention to sequences of to-
kens. A phrase-based system like Moses (cu-
bojar) can sometimes produce a long sequence of
tokens exactly as required by the reference, lead-
ing to a high BLEU score. The framed words
in the illustration are not confirmed by the refer-
ence, but the actual error in these words is very
severe for comprehension: nouns were used twice
instead of finite verbs, and a misleading transla-
tion of a preposition was chosen. The output by
pctrans preserves the meaning much better despite
not scoring in either of the finite verbs and produc-
ing far shorter confirmed sequences.

3 Extensions of SemPOS

SemPOS (Kos and Bojar, 2009) is inspired by met-
rics based on overlapping of linguistic features in
the reference and in the translation (Giménez and
Márquez, 2007). It operates on so-called “tec-
togrammatical” (deep syntactic) representation of
the sentence (Sgall et al., 1986; Hajič et al., 2006),
formally a dependency tree that includes only au-
tosemantic (content-bearing) words.5 SemPOS as
defined in Kos and Bojar (2009) disregards the
syntactic structure and uses the semantic part of
speech of the words (noun, verb, etc.). There are
19 fine-grained parts of speech. For each semantic
part of speech t, the overlapping O(t) is set to zero
if the part of speech does not occur in the reference
or the candidate set and otherwise it is computed
as given in Equation 1 below.

5We use TectoMT (Žabokrtský and Bojar, 2008),
http://ufal.mff.cuni.cz/tectomt/, for the lin-
guistic pre-processing. While both our implementation of
SemPOS as well as TectoMT are in principle freely avail-
able, a stable public version has yet to be released. Our plans
include experiments with approximating the deep syntactic
analysis with a simple tagger, which would also decrease the
installation burden and computation costs, at the expense of
accuracy.
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SRC Prague Stock Market falls to minus by the end of the trading day
REF pražská burza se ke konci obchodovánı́ propadla do minusu
cu-bojar praha stock market klesne k minus na konci obchodnı́ho dne
pctrans praha trh cenných papı́rů padá minus do konce obchodnı́ho dne

Figure 2: Sparse data in BLEU evaluation: Large chunks of hypotheses are not compared at all. Only a
single unigram in each hypothesis is confirmed in the reference.
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Figure 3: BLEU correlates with its correlation to human judgments. BLEU scores around 0.1 predict
little about translation quality.

O(t) =

∑
i∈I

∑
w∈ri∩ci

min(cnt(w, t, ri), cnt(w, t, ci))∑
i∈I

∑
w∈ri∪ci

max(cnt(w, t, ri), cnt(w, t, ci))

(1)
The semantic part of speech is denoted t; ci

and ri are the candidate and reference translations
of sentence i, and cnt(w, t, rc) is the number of
wordsw with type t in rc (the reference or the can-
didate). The matching is performed on the level of
lemmas, i.e. no morphological information is pre-
served in ws. See Figure 5 for an example; the
sentence is the same as in Figure 4.

The final SemPOS score is obtained by macro-
averaging over all parts of speech:

SemPOS =
1
|T |

∑
t∈T

O(t) (2)

where T is the set of all possible semantic parts
of speech types. (The degenerate case of blank
candidate and reference has SemPOS zero.)

3.1 Variations of SemPOS
This section describes our modifications of Sem-
POS. All methods are evaluated in Section 3.2.

Different Classification of Autosemantic
Words. SemPOS uses semantic parts of speech
to classify autosemantic words. The tectogram-
matical layer offers also a feature called Functor
describing the relation of a word to its governor

similarly as semantic roles do. There are 67
functor types in total.

Using Functor instead of SemPOS increases the
number of word classes that independently require
a high overlap. For a contrast we also completely
remove the classification and use only one global
class (Void).

Deep Syntactic Relations in SemPOS. In
SemPOS, an autosemantic word of a class is con-
firmed if its lemma matches the reference. We uti-
lize the dependency relations at the tectogrammat-
ical layer to validate valence by refining the over-
lap and requiring also the lemma of 1) the parent
(denoted “par”), or 2) all the children regardless of
their order (denoted “sons”) to match.

Combining BLEU and SemPOS. One of the
major drawbacks of SemPOS is that it completely
ignores word order. This is too coarse even for
languages with relatively free word order like
Czech. Another issue is that it operates on lemmas
and it completely disregards correct word forms.
Thus, a weighted linear combination of SemPOS
and BLEU (computed on the surface representa-
tion of the sentence) should compensate for this.
For the purposes of the combination, we compute
BLEU only on unigrams up to fourgrams (denoted
BLEU1, . . . , BLEU4) but including the brevity
penalty as usual. Here we try only a few weight
settings in the linear combination but given a held-
out dataset, one could optimize the weights for the
best performance.
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SRC Congress yields: US government can pump 700 billion dollars into banks
REF kongres ustoupil : vláda usa může do bank napumpovat 700 miliard dolarů

cu-bojar kongres výnosy : vláda usa může čerpadlo 700 miliard dolarů v bankách
pctrans kongres vynášı́ : us vláda může čerpat 700 miliardu dolarů do bank

Figure 4: Too much focus on sequences in BLEU: pctrans’ output is better but does not score well.
BLEU gave credit to cu-bojar for 1, 3, 5 and 8 fourgrams, trigrams, bigrams and unigrams, resp., but
only for 0, 0, 1 and 8 n-grams produced by pctrans. Confirmed sequences of tokens are underlined and
important errors (not considered by BLEU) are framed.

REF kongres/n ustoupit/v :/n vláda/n usa/n banka/n napumpovat/v 700/n miliarda/n dolar/n
cu-bojar kongres/n výnos/n :/n vláda/n usa/n moci/v čerpadlo/n 700/n miliarda/n dolar/n banka/n
pctrans kongres/n vynášet/v :/n us/n vláda/n čerpat/v 700/n miliarda/n dolar/n banka/n

Figure 5: SemPOS evaluates the overlap of lemmas of autosemantic words given their semantic part of
speech (n, v, . . . ). Underlined words are confirmed by the reference.

SemPOS for English. The tectogrammatical
layer is being adapted for English (Cinková et al.,
2004; Hajič et al., 2009) and we are able to use the
available tools to obtain all SemPOS features for
English sentences as well.

3.2 Evaluation of SemPOS and Friends

We measured the metric performance on data used
in MetricsMATR08, WMT09 and WMT08. For
the evaluation of metric correlation with human
judgments at the system level, we used the Pearson
correlation coefficient ρ applied to ranks. In case
of a tie, the systems were assigned the average po-
sition. For example if three systems achieved the
same highest score (thus occupying the positions
1, 2 and 3 when sorted by score), each of them
would obtain the average rank of 2 = 1+2+3

3 .
When correlating ranks (instead of exact scores)
and with this handling of ties, the Pearson coeffi-
cient is equivalent to Spearman’s rank correlation
coefficient.

The MetricsMATR08 human judgments include
preferences for pairs of MT systems saying which
one of the two systems is better, while the WMT08
and WMT09 data contain system scores (for up to
5 systems) on the scale 1 to 5 for a given sentence.
We assigned a human ranking to the systems based
on the percent of time that their translations were
judged to be better than or equal to the translations
of any other system in the manual evaluation. We
converted automatic metric scores to ranks.

Metrics’ performance for translation to English
and Czech was measured on the following test-
sets (the number of human judgments for a given
source language in brackets):

To English: MetricsMATR08 (cn+ar: 1652),
WMT08 News Articles (de: 199, fr: 251),
WMT08 Europarl (es: 190, fr: 183), WMT09
(cz: 320, de: 749, es: 484, fr: 786, hu: 287)

To Czech: WMT08 News Articles (en: 267),
WMT08 Commentary (en: 243), WMT09
(en: 1425)

The MetricsMATR08 testset contained 4 refer-
ence translations for each sentence whereas the re-
maining testsets only one reference.

Correlation coefficients for English are shown
in Table 2. The best metric is Voidpar closely fol-
lowed by Voidsons. The explanation is that Void
compared to SemPOS or Functor does not lose
points by an erroneous assignment of the POS or
the functor, and that Voidpar profits from check-
ing the dependency relations between autoseman-
tic words. The combination of BLEU and Sem-
POS6 outperforms both individual metrics, but in
case of SemPOS only by a minimal difference.
Additionally, we confirm that 4-grams alone have
little discriminative power both when used as a
metric of their own (BLEU4) as well as in a lin-
ear combination with SemPOS.

The best metric for Czech (see Table 3) is a lin-
ear combination of SemPOS and 4-gram BLEU
closely followed by other SemPOS and BLEUn

combinations. We assume this is because BLEU4
can capture correctly translated fixed phrases,
which is positively reflected in human judgments.
Including BLEU1 in the combination favors trans-
lations with word forms as expected by the refer-

6For each n ∈ {1, 2, 3, 4}, we show only the best weight
setting for SemPOS and BLEUn.
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Metric Avg Best Worst
Voidpar 0.75 0.89 0.60
Voidsons 0.75 0.90 0.54
Void 0.72 0.91 0.59
Functorsons 0.72 1.00 0.43
GTM 0.71 0.90 0.54
4·SemPOS+1·BLEU2 0.70 0.93 0.43
SemPOSpar 0.70 0.93 0.30
1·SemPOS+4·BLEU3 0.70 0.91 0.26
4·SemPOS+1·BLEU1 0.69 0.93 0.43
NIST 0.69 0.90 0.53
SemPOSsons 0.69 0.94 0.40
SemPOS 0.69 0.95 0.30
2·SemPOS+1·BLEU4 0.68 0.91 0.09
BLEU1 0.68 0.87 0.43
BLEU2 0.68 0.90 0.26
BLEU3 0.66 0.90 0.14
BLEU 0.66 0.91 0.20
TER 0.63 0.87 0.29
PER 0.63 0.88 0.32
BLEU4 0.61 0.90 -0.31
Functorpar 0.57 0.83 -0.03
Functor 0.55 0.82 -0.09

Table 2: Average, best and worst system-level cor-
relation coefficients for translation to English from
various source languages evaluated on 10 different
testsets.

ence, thus allowing to spot bad word forms. In
all cases, the linear combination puts more weight
on SemPOS. Given the negligible difference be-
tween SemPOS alone and the linear combinations,
we see that word forms are not the major issue for
humans interpreting the translation—most likely
because the systems so far often make more im-
portant errors. This is also confirmed by the obser-
vation that using BLEU alone is rather unreliable
for Czech and BLEU-1 (which judges unigrams
only) is even worse. Surprisingly BLEU-2 per-
formed better than any other n-grams for reasons
that have yet to be examined. The error metrics
PER and TER showed the lowest correlation with
human judgments for translation to Czech.

4 Conclusion

This paper documented problems of single-
reference BLEU when applied to morphologically
rich languages such as Czech. BLEU suffers from
a sparse data problem, unable to judge the quality
of tokens not confirmed by the reference. This is
confirmed for other languages as well: the lower
the BLEU score the lower the correlation to hu-
man judgments.

We introduced a refinement of SemPOS, an
automatic metric of MT quality based on deep-
syntactic representation of the sentence tackling

Metric Avg Best Worst
3·SemPOS+1·BLEU4 0.55 0.83 0.14
2·SemPOS+1·BLEU2 0.55 0.83 0.14
2·SemPOS+1·BLEU1 0.53 0.83 0.09
4·SemPOS+1·BLEU3 0.53 0.83 0.09
SemPOS 0.53 0.83 0.09
BLEU2 0.43 0.83 0.09
SemPOSpar 0.37 0.53 0.14
Functorsons 0.36 0.53 0.14
GTM 0.35 0.53 0.14
BLEU4 0.33 0.53 0.09
Void 0.33 0.53 0.09
NIST 0.33 0.53 0.09
Voidsons 0.33 0.53 0.09
BLEU 0.33 0.53 0.09
BLEU3 0.33 0.53 0.09
BLEU1 0.29 0.53 -0.03
SemPOSsons 0.28 0.42 0.03
Functorpar 0.23 0.40 0.14
Functor 0.21 0.40 0.09
Voidpar 0.16 0.53 -0.08
PER 0.12 0.53 -0.09
TER 0.07 0.53 -0.23

Table 3: System-level correlation coefficients for
English-to-Czech translation evaluated on 3 differ-
ent testsets.

the sparse data issue. SemPOS was evaluated on
translation to Czech and to English, scoring better
than or comparable to many established metrics.
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Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In ACL 2007, Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguis-
tics Companion Volume Proceedings of the Demo
and Poster Sessions, pages 177–180, Prague, Czech
Republic, June. Association for Computational Lin-
guistics.
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Abstract

The Workshop on Statistical Machine
Translation (WMT) has become one of
ACL’s flagship workshops, held annually
since 2006. In addition to soliciting pa-
pers from the research community, WMT
also features a shared translation task for
evaluating MT systems. This shared task
is notable for having manual evaluation as
its cornerstone. The Workshop’s overview
paper, playing a descriptive and adminis-
trative role, reports the main results of the
evaluation without delving deep into ana-
lyzing those results. The aim of this paper
is to investigate and explain some interest-
ing idiosyncrasies in the reported results,
which only become apparent when per-
forming a more thorough analysis of the
collected annotations. Our analysis sheds
some light on how the reported results
should (and should not) be interpreted, and
also gives rise to some helpful recommen-
dation for the organizers of WMT.

1 Introduction

The Workshop on Statistical Machine Translation
(WMT) has become an annual feast for MT re-
searchers. Of particular interest is WMT’s shared
translation task, featuring a component for man-
ual evaluation of MT systems. The friendly com-
petition is a source of inspiration for participating
teams, and the yearly overview paper (Callison-
Burch et al., 2010) provides a concise report of the
state of the art. However, the amount of interest-
ing data collected every year (the system outputs

∗ This work has been supported by the grants EuroMa-
trixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of
the Czech Republic), P406/10/P259, MSM 0021620838, and
DARPA GALE program under Contract No. HR0011-06-2-
0001. We are grateful to our students, colleagues, and the
three reviewers for various observations and suggestions.

and, most importantly, the annotator judgments)
is quite large, exceeding what the WMT overview
paper can afford to analyze with much depth.

In this paper, we take a closer look at the data
collected in last year’s workshop, WMT101, and
delve a bit deeper into analyzing the manual judg-
ments. We focus mainly on the English-to-Czech
task, as it included a diverse portfolio of MT sys-
tems, was a heavily judged language pair, and also
illustrates interesting “contradictions” in the re-
sults. We try to explain such points of interest,
and analyze what we believe to be the positive and
negative aspects of the currently established eval-
uation procedure of WMT.

Section 2 examines the primary style of man-
ual evaluation: system ranking. We discuss how
the interpretation of collected judgments, the com-
putation of annotator agreement, and document
that annotators’ individual preferences may render
two systems effectively incomparable. Section 3
is devoted to the impact of embedding reference
translations, while Section 4 and Section 5 discuss
some idiosyncrasies of other WMT shared tasks
and manual evaluation in general.

2 The System Ranking Task

At the core of the WMT manual evaluation is the
system ranking task. In this task, the annotator
is presented with a source sentence, a reference
translation, and the outputs of five systems over
that source sentence. The instructions are kept
minimal: the annotator is to rank the presented
translations from best to worst. Ties are allowed,
but the scale provides five rank labels, allowing the
annotator to give a total order if desired.

The five assigned rank labels are submitted at
once, making the 5-tuple a unit of annotation. In
the following, we will call this unit a block. The
blocks differ from each other in the choice of the

1http://www.statmt.org/wmt10

1
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Language Pair Systems Blocks Labels Comparisons Ref ≥ others Intra-annot. κ Inter-annot. κ
German-English 26 1,050 5,231 10,424 0.965 0.607 0.492
English-German 19 1,407 6,866 13,694 0.976 0.560 0.512
Spanish-English 15 1,140 5,665 11,307 0.989 0.693 0.508
English-Spanish 17 519 2,591 5,174 0.935 0.696 0.594
French-English 25 837 4,156 8,294 0.981 0.722 0.452
English-French 20 801 3,993 7,962 0.917 0.636 0.449
Czech-English 13 543 2,691 5,375 0.976 0.700 0.504
English-Czech 18 1,395 6,803 13,538 0.959 0.620 0.444
Average 19 962 4,750 9,471 0.962 0.654 0.494

Table 1: Statistics on the collected rankings, quality of references and kappas across language pairs. In
general, a block yields a set of five rank labels, which yields a set of

(
5
2

)
= 10 pairwise comparisons.

Due to occasional omitted labels, the Comparisons/Blocks ratio is not exactly 10.

source sentence and the choice of the five systems
being compared. A couple of tricks are introduced
in the sampling of the source sentences, to en-
sure that a large enough number of judgments is
repeated across different screens for meaningful
computation of inter- and intra-annotator agree-
ment. As for the sampling of systems, it is done
uniformly – no effort is made to oversample or un-
dersample a particular system (or a particular pair
of systems together) at any point in time.

In terms of the interface, the evaluation utilizes
the infrastructure of Amazon’s Mechanical Turk
(MTurk)2, with each MTurk HIT3 containing three
blocks, corresponding to three consecutive source
sentences.

Table 1 provides a brief comparison of the vari-
ous language pairs in terms of number of MT sys-
tems compared (including the reference), number
of blocks ranked, the number of pairwise com-
parisons extracted from the rankings (one block
with 5 systems ranked gives 10 pairwise compar-
isons, but occasional unranked systems are ex-
cluded), the quality of the reference (the percent-
age of comparisons where the reference was better
or equal than another system), and the κ statistic,
which is a measure of agreement (see Section 2.2
for more details).4

We see that English-to-Czech, the language pair
on which we focus, is not far from the average in
all those characteristics except for the number of
collected comparisons (and blocks), making it the
second most evaluated language pair.

2http://www.mturk.com/
3“HIT” is an acronym for human intelligence task, which

is the MTurk term for a single screen presented to the anno-
tator.

4We only use the “expert” annotations of WMT10, ignor-
ing the data collected from paid annotators on MTurk, since
they were not part of the official evaluation.

2.1 Interpreting the Rank Labels

The description in the WMT overview paper says:
“Relative ranking is our official evaluation met-
ric. [Systems] are ranked based on how frequently
they were judged to be better than or equal to
any other system.” (Emphasis added.) The WMT
overview paper refers to this measure as “≥ oth-
ers”, with a variant of it called “> others” that does
not reward ties.

We first note that this description is somewhat
ambiguous, and an uninformed reader might in-
terpret it in one of two different ways. For some
system A, each block in which A appears includes
four implicit pairwise comparisons (against the
other presented systems). How is A’s score com-
puted from those comparisons?

The correct interpretation is that A is re-
warded once for each of the four comparisons in
which A wins (or ties).5 In other words, A’s score
is the number of pairwise comparisons in which
A wins (or ties), divided by the total number of
pairwise comparisons involving A. We will use
“≥ others” (resp. “> others”) to refer to this inter-
pretation, in keeping with the terminology of the
overview paper.

The other interpretation is that A is rewarded
only if A wins (or ties) all four comparisons. In
other words, A’s score is the number of blocks in
whichA wins (or ties) all comparisons, divided by
the number of blocks in which A appears. We will
use “≥ all in block” (resp. “> all in block”) to
refer to this interpretation.6

5Personal communication with WMT organizers.
6There is yet a third interpretation, due to a literal read-

ing of the description, where A is rewarded at most once per
block if it wins (or ties) any one of its four comparisons. This
is probably less useful: it might be good at identifying the
bottom tier of systems, but would fail to distinguish between
all other systems.

2
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≥ others 95.9 65.6 60.1 54.0 70.4 62.1 62.2
> others 90.5 45.0 44.1 39.3 49.1 49.4 39.6
≥ all in block 93.1 32.3 30.7 23.4 37.5 32.5 28.1
> all in block 81.3 13.6 19.0 13.3 15.6 18.7 10.6

Table 2: Sentence-level ranking scores for the
WMT10 English-Czech language pair. The “≥
others” and “> others” scores reproduced here
exactly match numbers published in the WMT10
overview paper. A boldfaced score marks the best
system in a given row (besides the reference).

For quality control purposes, the WMT organiz-
ers embed the reference translations as a ‘system’
alongside the actual entries (the idea being that an
annotator clicking randomly would be easy to de-
tect, since they would not consistently rank the
reference ‘system’ highly). This means that the
reference is as likely as any other system to ap-
pear in a block, and when the score for a system A
is computed, pairwise comparisons with the refer-
ence are included.

We use the publicly released human judgments7

to compute the scores of systems participating in
the English-Czech subtask, under both interpreta-
tions. Table 2 reports the scores, with our “≥ oth-
ers” (resp. “> others”) scores reproduced exactly
matching those reported in Table 21 of the WMT
overview paper. (For clarity, Table 2 is abbreviated
to include only the top six systems of twelve.)

Our first suggestion is that both measures could
be reported in future evaluations, since each tells
us something different. The first interpretation
gives partial credit for an MT system, hence distin-
guishing systems from each other at a finer level.
This is especially important for a language pair
with relatively few annotations, since “≥ others”
would produce a larger number of data points (four
per system per block) than “≥ all in block” (one
per system per block). Another advantage of the
official “≥ others” is greater robustness towards
various factors like the number of systems in the
competition, the number of systems in one block
or the presence of the reference in the block (how-
ever, see Section 3).

As for the second interpretation, it helps iden-
tify whether or not a single system (or a small
group of systems) is strongly dominant over the
other systems. For the systems listed in Table 2,

7http://statmt.org/wmt10/results.html
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Figure 1: “≥ all in block” and “≥ others” provide
very similar ordering of systems.

“> all in block” suggests its potential in the con-
text of system combination: CU-TECTO and PC-
TRANS win almost one fifth of the blocks in which
they appear, despite the fact that either a refer-
ence translation or a combination system already
appears alongside them. (See also Table 4 below.)

Also, note that if the ranking task were designed
specifically to cater to the “≥ all in block” inter-
pretation, it would only have two ‘rank’ labels (ba-
sically, “top” and “non-top”). In that case, an-
notators would spend considerably less time per
block than they do now, since all they need to do
is identify the top system(s) per block, without dis-
tinguishing non-top systems from each other.

Even for those interested in distinguishing non-
state-of-the-art systems from each other, we point
out that the “≥ all in block” interpretation ulti-
mately gives a system ordering that is very simi-
lar to that of the official “≥ others” interpretation,
even for the lower-tier systems (Figure 1).

2.2 Annotator Agreement
The WMT10 overview paper reports inter- and
intra-annotator agreement over the pairwise com-
parisons, to show the validity of the evaluation
setup and the “≥ others” metric. Agreement is
quantified using the following formula:

κ =
P (A)− P (E)

1− P (E)
(1)

where P (A) is the proportion of times two anno-
tators are observed to agree, and P (E) is the ex-
pected proportion of times two annotators would
agree by chance. Note that κ has a value of at most
1, with higher κ values indicating higher rates of
agreement. The κ measure is more meaningful

3
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Figure 2: Intra-/inter-annotator agreement
with/without references, across various source
sentence lengths (lengths of n and n + 1 are used
to plot the point at x = n). This figure is based on
all language pairs.

than reporting P (A) as is, since it takes into ac-
count, via P (E), how ‘surprising’ it is for annota-
tors to agree in the first place.

In the context of pairwise comparisons, an
agreement between two annotators occurs when
they compare the same pair of systems (S1,S2),
and both agree on their relative ranking: either
S1 > S2, S1 = S2, or S1 < S2. P (E) is then:

P (E) = P 2(S1>S2)+P 2(S1=S2)+P 2(S1<S2) (2)

In the WMT overview paper, all three cate-
gories are assumed equally likely, giving P (E) =
1
9 + 1

9 + 1
9 = 1

3 . For consistency with the WMT
overview paper, and unless otherwise noted, we
also use P (E) = 1

3 whenever a κ value is re-
ported. (Though see Section 2.2.2 for a discussion
about P (E).)

2.2.1 Observed Agreement for Different
Sentence Lengths

In Figure 2 we plot the κ values across different
source sentence lengths. We see that the inter-
annotator agreement (when excluding references)
is reasonably high only for sentences up to 10
words in length – according to Landis and Koch
(1977), and as cited by the WMT overview paper,
not even ‘moderate’ agreement can be assumed if
κ is less than 0.4. Another popular (and controver-
sial) rule of thumb (Krippendorff, 1980) is more
strict and says that κ < 0.67 is not suitable even
for tentative conclusions.

For this reason, and given that a majority of sen-
tences are indeed more than 10 words in length
(the median is 20 words), we suggest that future
evaluations either include fewer outputs per block,
or divide longer sentences into shorter segments
(e.g. on clause boundaries), so these segments are
more easily and reliably comparable. The latter
suggestions assumes word alignment as a prepro-
cessing and presenting the annotators the context
of the judged segment.

2.2.2 Estimating P (E), the Expected
Agreement by Chance

Several agreement measures (usually called kap-
pas) were designed based on the Equation 1 (see
Artstein and Poesio (2008) and Eugenio and Glass
(2004) for an overview and a discussion). Those
measures differ from each other in how to de-
fine the individual components of Equation 2, and
hence differ in what the expected agreement by
chance (P (E)) would be:8

• The S measure (Bennett et al., 1954) assumes
a uniform distribution over the categories.

• Scott’s π (Scott, 1955) estimates the distribu-
tion empirically from actual annotation.

• Cohen’s κ (Cohen, 1960) estimates the dis-
tribution empirically as well, and further as-
sumes a separate distribution for each anno-
tator.

Given that the WMT10 overview paper assumes
that the three categories (S1 > S2, S1 = S2, and
S1 < S2) are equally likely, it is using the S mea-
sure version of Equation 1, though it does not ex-
plicitly say so – it simply calls it “the kappa coef-
ficient” (K).

Regardless of what the measure should be
called, we believe that the uniform distribution it-
self is not appropriate, even though it seems to
model a “random clicker” adequately. In partic-
ular, and given the design of the ranking inter-
face, 1

3 is an overestimate of P (S1 = S2) for
a random clicker, and should in fact be 1

5 : each
system receives one of five rank labels, and for
two systems to receive the same rank label, there
are only five (out of 25) label pairs that satisfy
S1 = S2. Therefore, with P (S1 = S2) = 1

5 ,
8These three measures were later generalized to more than

two annotators (Fleiss, 1971; Bartko and Carpenter, 1976),
Thus, without loss of generality, our examples involve two
annotators.

4
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“≥ Others” S π

Inter incl. ref. 0.487 0.454
excl. ref. 0.439 0.403

Intra incl. ref. 0.633 0.609
excl. ref. 0.601 0.575

Table 3: Summary of two variants of kappa: S
(or K as it is reported in the WMT10 paper) and
our proposed Scott’s π. We report inter- vs. intra-
annotator agreement and collected from all com-
parisons (“incl. ref.”) vs. collected only from
comparisons without the reference (“excl. ref.”)
because it is generally easier to agree that the ref-
erence is better than the other systems. This table
is based on all language pairs.

we have P (S1 > S2) = P (S1 < S2) = 2
5 , and

therefore P (E) = 0.36 rather than 0.333.
Taking the discussion a step further, we actually

advocate following the idea of Scott’s π, whereby
the distribution of each category is estimated em-
pirically from the actual annotation, rather than
assuming a random annotator – these frequencies
are easy to compute, and reflect a more meaning-
ful P (E).9

Under this interpretation, P (S1 = S2) is cal-
culated to be 0.168, reflecting the fraction of pair-
wise comparisons that correspond to a tie. (Note
that this further supports the claim that setting
P (S1 = S2) = 1

3 for a random clicker, as used
in the WMT overview paper, is an overestimate.)
This results in P (E) = 0.374, yielding, for in-
stance, π = 0.454 for “≥ others” inter-annotator
agreement, somewhat lower than κ = 0.487 (re-
ported in Table 3).

We do note that the difference is rather small,
and that our aim is to be mathematically sound
above all. Carefully defining P (E) would be im-
portant when comparing kappas across different
tasks with different P (E), or when attempting
to satisfy certain thresholds (as the cited 0.4 and
0.67). Furthermore, if one is interested in mea-
suring agreement for individual annotators, such
as identifying those who have unacceptably low
intra-annotator agreement, the question of P (E) is
quite important, since annotation behavior varies
noticeably from one annotator to another. A ‘con-
servative’ annotator who prefers to rank systems
as being tied most of the time would have a high

9We believe that P (E) should not reflect the chance that
two random annotators would agree, but the chance that two
actual annotators would agree randomly. The two sound sub-
tly related but are actually quite different.

P (E), whereas an annotator using ties moderately
would have a low P (E). Hence, two annotators
with equal agreement rates (P (A)) are not neces-
sarily equally proficient, since their P (E) might
differ considerably.10

2.3 The ≥ variant vs. the > variant

Even within the same interpretation of how sys-
tems could be scored, there is a question of
whether or not to reward ties. The overview paper
reports both variants of its measure, but does not
note that there are non-trivial differences between
the two orderings. Compare for example the “≥
others” ordering vs. the “> others” ordering of
CU-BOJAR and PC-TRANS (Table 2), showing an
unexpected swing of 7.9%:

≥ others > others
CU-BOJAR 65.6 45.0
PC-TRANS 62.1 49.4

CU-BOJAR seems better under the≥ variant, but
loses out when only strict wins are rewarded. The-
oretically, this could be purely due to chance, but
the total number of pairwise comparisons in “≥
others” is relatively large (about 1,500 pairwise
comparisons for each system), and ought to can-
cel such effects.

A similar pattern could be seen under the “all in
block” interpretation as well (e.g. for CU-TECTO

and ONLINEB). Table 4 documents this effect by
looking at how often a system is the sole winner
of a block. Comparing PC-TRANS and CU-BOJAR

again, we see that PC-TRANS is up there with CU-
TECTO and DCU-COMBO as the most frequent sole
winners, winning 71 blocks, whereas CU-BOJAR

is the sole winner of only 53 blocks. This is in
spite of the fact that PC-TRANS actually appeared
in slightly fewer blocks than CU-BOJAR (385 vs.
401).

One possible explanation is that the two vari-
ants (“≥” and “>”) measure two subtly different
things about MT systems. Digging deeper into Ta-
ble 2’s values, we find that CU-BOJAR is tied with
another system 65.6 − 45.0 = 20.4% of the time,
while PC-TRANS is tied with another system only
62.1− 49.4 = 12.7% of the time. So it seems that
PC-TRANS’s output is noticeably different from
another system more frequently than CU-BOJAR,
which reduces the number of times that annotators

10Who’s more impressive: a psychic who correctly pre-
dicts the result of a coin toss 50% of the time, or a psychic
who correctly predicts the result of a die roll 50% of the time?

5
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Blocks Sole Winner
305 Reference

73 CU-TECTO
71 PC-TRANS
70 DCU-COMBO
57 RWTH-COMBO
54 ONLINEB
53 CU-BOJAR
46 EUROTRANS
41 UEDIN
41 UPV-COMBO

175 One of eight other systems
409 No sole winner

1395 Total English-to-Czech Blocks

Table 4: A breakdown of the 1,395 blocks for the
English-Czech task, according to which system (if
any) is the sole winner. On average, a system ap-
pears in 388 blocks.

mark PC-TRANS as tied with another system.11 In
that sense, the “≥” ranking is hurting PC-TRANS,
since it does not benefit from its small number of
ties. On the other hand, the “>” variant would not
reward CU-BOJAR for its large number of ties.

The “≥ others” score may be artificially boosted
if several very similar systems (and therefore
likely to be “tied”) take part in the evaluation.12

One possible solution is to completely disregard
ties and calculate the final score as wins

wins+losses . We
recommend to use this score instead of “≥ others”
( wins+ties

wins+ties+losses ) which is biased toward often tied
systems, and “> others” ( wins

wins+ties+losses ) which is
biased toward systems with few ties.

2.4 Surprise? Does the Number of
Evaluations Affect a System’s Score?

When examining the system scores for the
English-Czech task, we noticed a surprising pat-
tern: it seemed that the more times a system is
sampled to be judged, the lower its “≥ others”
score (“≥ all in block” behaving similarly). A
scatter plot of a system’s score vs. the number of
blocks in which it appears (Figure 3) makes the
pattern obvious.

We immediately wondered if the pattern holds
in other language pairs. We measured Pearson’s
correlation coefficient within each language pair,
reported in Table 5. As it turns out, English-

11Indeed, PC-TRANS is a commercial system (manually)
tuned over a long period of time and based on resources very
different from what other participants in WMT use.

12In the preliminary WMT11 results, this seems to hap-
pen to four Moses-like systems (UEDIN, CU-BOJAR, CU-
MARECEK and CU-TAMCHYNA) which have better “≥ oth-
ers” score but worse “> others” score than CU-TECTO.

Correlation of Block Count
Source Target vs. “≥ Others”
English Czech -0.558
English Spanish -0.434
Czech English -0.290
Spanish English -0.240
English French -0.227
English German -0.161
French English -0.024
German English 0.146
Overall -0.092

Table 5: Pearson’s correlation between the num-
ber of blocks where a system was ranked and the
system’s “≥ others” score. (The reference itself is
not included among the considered systems).
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Figure 3: A plot of “≥ others” system score vs.
times judged, for English-Czech.

Czech happened to be the one language pair where
the ‘correlation’ is strongest, with only English-
Spanish also having a somewhat strong correla-
tion. Overall, though, there is a consistent trend
that can be seen across the language pairs. Could
it really be the case that the more often a system is
judged, the worse its score gets?

Examining plots for the other language pairs
makes things a bit clearer. Consider for example
the plot for English-Spanish (Figure 4). As one
would hope, the data points actually come together
to form a cloud, indicating a lack of correlation.
The reason that a hint of a correlation exists is the
presence of two outliers in the bottom right cor-
ner. In other words, the very worst systems are,
indeed, the ones judged quite often. We observed
this pattern in several other language pairs as well.

The correlation naturally does not imply cau-
sation. We are still not sure how to explain the
artifact. A subtle possibility lies in the MTurk
interface: annotators have the choice to accept a
HIT or skip it before actually providing their la-

6
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Figure 4: A plot of “≥ others” system score vs.
times judged, for English-Spanish.

bels. It might be the case that some annotators are
more willing to accept HITs when there is an ob-
viously poor system (since that would make their
task somewhat easier), and who are more prone
to skipping HITs where the systems seem hard to
distinguish from each other. So there might be a
causation effect after all, but in the reverse order:
a system gets judged more often if it is a bad sys-
tem.13 A suggestion from the reviewers is to run a
pilot annotation with deliberate inclusion of a poor
system among the ranked ones.

2.5 Issues of Pairwise Judgments

The WMT overview paper also provides pairwise
system comparisons: each cell in Table 6 indicates
the percentage of pairwise comparisons between
the two systems where the system in the column
was ranked better (>) than the system in the row.
For instance, there are 81 ranking responses where
both CU-TECTO and CU-BOJAR were present and
indeed ranked14 among the 5 systems in the block.
In 37 (45.7%) of the cases, CU-TECTO was ranked
better, in 29 (35.8%), CU-BOJAR was ranked better
and there was a tie in the remaining 15 (18.5%)
cases. The ties are not explicitly shown in Table 6
but they are implied by the total of 100%. The cell
is in bold where there was a win in the pairwise
comparison, so 45.7 is bold in our example.

An interesting “discrepancy” in Table 6 is that
CU-TECTO wins pairwise comparisons with CU-
BOJAR and UEDIN but it scores worse than them
in the official “≥ others”, cf. Table 2. Simi-
larly, UEDIN outperformed ONLINEB in the pair-

13No pun intended!
14The users sometimes did not fill any rank for a system.

Such cases are ignored.
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REF - 4.3 4.3 5.1 3.8 3.6 2.3
CU-BOJAR 87.1 - 45.7 28.3 44.4 39.5 41.1
CU-TECTO 88.2 35.8 - 38.0 55.8 44.0 36.0
EUROTRANS 88.5 60.9 46.8 - 50.7 53.8 48.6
ONLINEB 91.2 31.1 29.1 32.8 - 43.8 39.3
PC-TRANS 88.0 45.3 42.9 28.6 49.3 - 36.6
UEDIN 94.3 39.3 44.2 31.9 32.1 49.5 -

Table 6: Pairwise comparisons extracted from
sentence-level rankings of the WMT10 English-
Czech News Task. Re-evaluated to reproduce the
numbers published in WMT10 overview paper.
Bold in column A and row B means that system
A is pairwise better than system B.

wise comparisons but it was ranked worse in both
> and ≥ official comparison.

In the following, we focus on the CU-BOJAR

(B) and CU-TECTO (T) pair because they are in-
teresting competitors on their own. They both use
the same parallel corpus for lexical mapping but
operate very differently: CU-BOJAR is based on
Moses while CU-TECTO transfers at a deep syn-
tactic layer and generates target text which is more
or less grammatically correct but suffers in lexical
choice.

2.5.1 Different Set of Sentences
The mismatch in the outcomes of “≥ others” and
pairwise comparisons could be caused by different
set of sentences. The pairwise ranking is collected
from the set of blocks where both CU-BOJAR and
CU-TECTO appeared (and were indeed ranked).
Each of the systems however competes in other
blocks as well, which contributes to the official “≥
others”.

The set of sentences underlying the comparison
is very different and more importantly that the ba-
sis for pairwise comparisons is much smaller than
the basis of the official “≥ others” interpretation.
The outcome of the official interpretation however
depends on the random set of systems your system
was compared to. In our case, it is impossible to
distinguish, whether CU-TECTO had just bad luck
on sentences and systems it was compared to when
CU-BOJAR was not in the block and/or whether the
81 blocks do not provide a reliable picture.

2.5.2 Pairwise Judgments Unreliable
To complement WMT10 rankings for the two sys-
tems and avoid the possible lower reliability due
to 5-fold ranking instead of a targeted compari-

7
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Author of B says:
both both

B>T T>B fine wrong Total

T
sa

ys
:

B>T 9 - 1 1 11
T>B 2 13 - 3 18
both fine 2 - 2 3 7
both wrong 10 5 1 11 27
Total 23 18 4 18 63

Table 7: Additional annotation of 63 CU-BOJAR

(B) vs. CU-TECTO (T) sentences by two annota-
tors.

Better Both
Annotator B T fine wrong
A 24 23 5 11
C 10 12 5 36
D 32 20 2 9
M 11 18 7 27
O 23 18 4 18
Z 25 27 2 9
Total 125 118 25 110

Table 8: Blurry picture of pairwise rankings of
CU-BOJAR vs. CU-TECTO. Wins in bold.

son, we asked the main authors of both CU-BOJAR

and CU-TECTO to carry out a blind pairwise com-
parison on the exact set of 63 sentences appearing
across the 81 blocks in which both systems were
ranked. As the totals in Table 7 would suggest,
each author unwittingly recognized his system and
slightly preferred it. The details however reveal a
subtler reason for the low agreement: one of the
annotators was less picky about MT quality and
accepted 10+5 sentences completely rejected by
the other annotator. In total, these two annotators
agreed on 9 + 13 + 2 + 11 = 35 (56%) of cases
and their pairwise κ is 0.387.

A further annotation of these 63 sentences by
four more people completes the blurry picture:
the pairwise κ for each pair of our five annota-
tors ranges from 0.242 to 0.615 with the aver-
age 0.407±0.106. The multi-annotator κ (Fleiss,
1971) is 0.394 and all six annotators agree on a
single label only in 24% of cases. The agree-
ment is not better even if we merge the categories
“Both fine” and “Both wrong” into a single one:
The pairwise κ ranges from 0.212 to 0.620 with
the average 0.405±0.116, the multi-annotator κ is
0.391. Individual annotations are given in Table 8.

Naturally, the set of these 63 sentences is not a
representative sample. Even if one of the systems

SRC It’s not completely ideal.
REF Nenı́ to úplně ideálnı́. Ranks
PC-TRANS To nenı́ úplně ideálnı́. 2 5
CU-BOJAR To nenı́ úplně ideálnı́. 5 4

Table 9: Two rankings by the same annotator.

SRC FCC awarded a tunnel in Slovenia for 64 million
REF FCC byl přidělen tunel ve Slovinsku za 64 milionů
Gloss FCC was awarded a tunnel in Slovenia for 64 million

HYP1 FCC přidělil tunel ve Slovinsku za 64 miliónů
HYP2 FCC přidělila tunel ve Slovinsku za 64 milionů
Gloss FCC awardedmasc

/fem a tunnel in Slovenia for 64 million

Figure 5: A poor reference translation confuses
human judges. The SRC and REF differ in the ac-
tive/passive form, attributing completely different
roles to “FCC”.

actually won, such an observation could not have
been generalized to other test sets. The purpose
of the exercise was to check whether we are at all
able to agree which of the systems translates this
specific set of sentences better. As it turns out,
even a simple pairwise ranking can fail to pro-
vide an answer because different annotators sim-
ply have different preferences.

Finally, Table 9 illustrates how poor the
WMT10 rankings can be. The exact same string
produced by two systems was ranked differently
each time – by the same annotator. (The hypothe-
sis is a plausible translation, only the information
structure of the sentence is slightly distorted so the
translation may not fit well it the surrounding con-
text.)

3 The Impact of the Reference
Translation

3.1 Bad Reference Translations

Figure 5 illustrates the impact of poor reference
translation on manual ranking as carried out in
Section 2.5.2. Of our six independent annotations,
three annotators marked the hypotheses as “both
fine” given the match with the source and three
annotators marked them as “both wrong” due to
the mismatch with the reference. Given the con-
struction of the WMT test set, this particular sen-
tence comes from a Spanish original and it was
most likely translated directly to both English and
Czech.

8
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Correlation of
Source Target Reference vs. “≥ others”
Spanish English 0.341
English French 0.164
French English 0.098
German English 0.088
Czech English -0.041
English Czech -0.145
English Spanish -0.411
English German -0.433
Overall -0.107

Table 10: Pearson’s correlation of the relative per-
centage of blocks where the reference was in-
cluded in the ranking and the final “≥ others”
of the system (the reference itself is not included
among the considered systems).
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Figure 6: Correlation of the presence of the ref-
erence and the official “≥ others” for English-
German evaluation.

3.2 Reference Can Skew Pairwise
Comparisons

The exact set of competing systems in each 5-fold
ranking in WMT10 evaluation is random. The “≥
others” however is affected by this: a system may
suffer more losses if often compared to the refer-
ence, and similarly it may benefit from being com-
pared to a poor competitor.

To check this, we calculate the correlation be-
tween the relative presence of the reference among
the blocks where a system was judged and the
system’s official “≥ others” score. Across lan-
guage, there is almost no correlation (Pearson’s
coefficient: −0.107). However, for some language
pairs, the correlation is apparent, as listed in Ta-
ble 10. Negative correlation means: the more of-
ten the system was compared along with the refer-
ence, the worse the score of the system.

Figure 6 plots the extreme case of English-
German evaluation.

Source Target Min Avg±StdDev Max
English Czech 40 65±19 115
English French 40 66±17 110
English German 10 40±16 80
English Spanish 30 54±15 85
Czech English 5 38±13 60
French English 5 37±15 70
German English 10 32±12 65
Spanish English 35 56±11 70

Table 11: The number of post-edits per system for
each language pair to complement Figure 3 (page
12) of the WMT10 overview paper.

4 Other WMT10 Tasks

4.1 Blind Post-Editing Unreliable
WMT often carries out one more type of manual
evaluation: “Editing the output of systems without
displaying the source or a reference translation,
and then later judging whether edited translations
were correct.” (Callison-Burch et al., 2010). We
call the evaluation “blind post-editing” for short.

We feel that blind post-editing is more infor-
mative than system ranking. First, it constitutes
a unique comprehensibility test, and after all, MT
should aim at comprehensible output in the first
place. Second, blind post-editing can be further
analyzed to search for specific errors in system
output, see Bojar (2011) for a preliminary study.

Unfortunately, the amount of post-edits col-
lected in WMT10 varied a lot across systems and
language pairs. Table 11 provides the minimum,
average and maximum number of post-edits of
outputs of a particular MT system. We see that
e.g. while English-to-Czech has many judgments
of this kind per system, Czech-to-English is one of
the worst supported directions.

It is not surprising that conclusions based on 5
observations can be extremely deceiving. For in-
stance CU-BOJAR seems to produce 60% of out-
puts comprehensible (and thus wins in Figure 3 on
page 12 in the WMT overview paper), far better
than CMU. This is not in line with the ranking re-
sults where both rank equally (Table 5 on page 10
in the WMT overview paper). In fact, CU-BOJAR

was post-edited 5 times and 3 of these post-edits
were acceptable while CMU was post-edited 30
times and 5 of these post-edits were acceptable.

4.2 A Remark on System Combination Task
One results of WMT10 not observed in previous
years was that system combinations indeed per-
formed better than individual systems. Previous

9
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Dev Set Test Set
Sententes 455 2034 Diff
GOOGLE 17.32±1.25 16.76±0.60 ↘
BOJAR 16.00±1.15 16.90±0.61 ↗
TECTOMT 11.48±1.04 13.19±0.58 ↗
PC-TRANS 10.24±0.92 10.84±0.46 ↗
EUROTRAN 9.64±0.92 11.04±0.48 ↗

Table 12: BLEU scores of sample five systems in
English-to-Czech combination task.

years failed to show this clearly, because Google
Translate used to be included among the combined
systems, making it hard to improve. In WMT10,
Google Translate was excluded from system com-
bination task (except for translations involving
Czech, where it was accidentally included).

Our Table 12 provides an additional explanation
why the presence of Google among combined sys-
tems leads to inconclusive results. While the test
set was easier (based on BLEU) than the develop-
ment set for most systems, it was much harder for
Google. All system combinations were thus likely
to overfit and select Google n-grams most often.
Without access to Google powerful language mod-
els, the combination systems were likely to under-
perform Google in final fluency of the output.

5 Further Issues of Manual Evaluation

We have already seen that the comprehensibility
test by blind post-editing provides a different pic-
ture of the systems than the official ranking. Berka
et al. (2011) introduced a third “quiz-based evalu-
ation”. The quiz-like evaluation used the English-
to-Czech WMT10 systems, applied to different
texts: short text snippets were translated and an-
notators were asked to answer three yes/no ques-
tions complementing each snippet. The order of
the systems was rather different from the official
WMT10 results: CU-TECTO won the quiz-based
evaluation despite being the fourth in WMT10.

Because the texts were different in WMT10 and
the quiz-based evaluation, we asked a small group
of annotators to apply the ranking technique on the
text snippets. While not exactly comparable to the
WMT10 ranking, the WMT10 ranking was con-
firmed: CU-TECTO was again among the lowest-
scoring systems and Google won the ranking.

Bojar (2011) applies the error-flagging manual
evaluation by Vilar et al. (2006) to four systems
of WMT09 English-to-Czech task. Again, the
overall order of the systems is somewhat differ-
ent when ranked by the number of errors flagged.

Mireia Farrús and Fonollosa (2010) use a coarser
but linguistically motivated error classification for
Catalan-Spanish and suggest that differences in
ranking are caused by annotators treating some
types of errors as more serious.

In short, different types of manual evaluations
lead to different results even when identical sys-
tems and texts are evaluated.

6 Conclusion

We took a deeper look at the results of the WMT10
manual evaluation, and based on our observations,
we have some recommendations for future evalu-
ations:

• We propose to use a score which ignores
ties instead of the official “≥ others” metric
which rewards ties and “> others” which pe-
nalizes ties. Another score, “≥ all in block”,
could help identify which systems are more
dominant.

• Inter-annotator agreement decreases dramat-
ically with sentence length; we recommend
including fewer sentences per block, at least
for longer sentences.

• We suggest agreement be measured based on
an empirical estimate of P (E), or at least us-
ing a more correct random clicking P (E) =
0.36.

• There is evidence of a negative correlation
between the number of times a system is
judged and its score; we recommend a deeper
analysis of this issue.

• We recommend the reference be sampled at
a lower rate than other systems, so as to play
a smaller role in the evaluation. We also rec-
ommend better quality control over the pro-
duction of the references.

And to the readers of the WMT overview paper,
we point out:

• Pairwise comparisons derived from 5-fold
rankings are sometimes unreliable. Even a
targeted pairwise comparison of two systems
can shed little light as to which is superior.

• The acceptability of post-edits is sometimes
very unreliable due to the low number of ob-
servations.
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Abstract
The WMT evaluation campaign (http://www.statmt.org/wmt16) has been run annually since 2006. It is a collection of shared
tasks related to machine translation, in which researchers compare their techniques against those of others in the field. The longest
running task in the campaign is the translation task, where participants translate a common test set with their MT systems. In addition
to the translation task, we have also included shared tasks on evaluation: both on automatic metrics (since 2008), which compare the
reference to the MT system output, and on quality estimation (since 2012), where system output is evaluated without a reference. An
important component of WMT has always been the manual evaluation, wherein human annotators are used to produce the official ranking
of the systems in each translation task. This reflects the belief of the WMT organizers that human judgement should be the ultimate arbiter
of MT quality. Over the years, we have experimented with different methods of improving the reliability, efficiency and discriminatory
power of these judgements. In this paper we report on our experiences in running this evaluation campaign, the current state of the art in
MT evaluation (both human and automatic), and our plans for future editions of WMT.
Keywords: Machine Translation, Evaluation, Shared Tasks

1. Introduction
The First Workshop in Statistical Machine Translation was
held in 2006, and it has been held annually since then, be-
coming the First WMT Conference in Machine Translation
(WMT 2016) this year. In the first year of WMT there was a
shared translation task which attracted 12 task description
papers. In 2015 there were 5 different tasks and 46 task
description papers, whilst in 2016 there will be 10 differ-
ent tasks, covering translation of text and images, handling
of pronouns in translation, MT evaluation, system tuning,
automatic post-editing and document alignment.
The core component of WMT has been the main transla-
tion task (which in most years is the only translation task).
The first translation task used Europarl (Koehn, 2005) for
the test set; since then, we have constructed the test set
from news text, with the complex structure and broad topic
coverage providing a significant challenge to MT systems.
Since 2009 the news test sets have been created specifi-
cally for the shared task, by crawling news articles in vari-
ous languages and translating to the other task languages,
providing the MT research community with valuable re-
sources for future research. We have also varied the lan-
guage pairs from year to year to present different challenges
to researchers, although there has always been an empha-
sis on European languages. The language pairs included in
each year’s evaluation are shown in Table 1.
A central theme in the WMT shared tasks has been the eval-
uation of MT. We have explored this extensively, focusing
on both human and automatic evaluation. The main trans-
lation task has always employed large-scale human evalu-
ation to determine the quality and ranking of the systems;
how precisely this is done has varied over the years (Sec-
tion 2.). The human ranking has enabled the development
of automatic metrics by providing a gold standard against
which metrics can be compared. Since 2008, the metrics
task has asked participants to develop tools to evaluate MT
output against one or more references (Section 3.). In 2012,
we introduced the quality estimation task, which takes met-

rics a step further, attempting to evaluate the quality of MT
output without use of a reference (Section 4.).

2. Manual Evaluation
Since the very beginning, WMT organizers have taken the
position that machine translation performance should be
evaluated from time to time against human opinion:

While automatic measures are an invaluable tool
for the day-to-day development of machine trans-
lation systems, they are only a imperfect substi-
tute for human assessment of translation quality
. . . (Koehn and Monz, 2006)

This is not to disparage automatic metrics, which have
played a crucial role in the progress of the field and the
improvement of MT quality over time. It is only to say that
they are at best a proxy for what we really care about, and
must be regularly anchored to human opinion. The WMT
therefore produces an annual human ranking of systems for
each task, from best to worst. In addition to helping direct
researchers to the systems whose features they might wish
to copy, this gold-standard system ranking is used to evalu-
ate automatic metrics (a metric metric).
Of course, the question of which system is the best or worst
is a fraught one. There are any number of answers, and sub-
sequent questions. The first is best for what purpose? For
a person trying to understand a foreign-language news arti-
cle, an MT system that can convey the gist of an article is
necessary, but quality might need to be sacrificed for speed.
On the other hand, a student trying to learn how to translate
an article may require a system that can also correctly gen-
erate grammatical and natural-sounding sentences. Evalu-
ations are often broken down along these concepts of ade-
quacy and fluency.
In fact, in the first two editions of the WMT shared trans-
lation task we used adequacy/fluency judgements on a 5-
point scale as our main evaluation measure. Not satis-
fied with the results though, we started experimenting with
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Language Pair ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16
Czech$ English • • • • • • • • • •
Finnish$ English • •
French$ English • • • • • • • • • •
German$ English • • • • • • • • • • •
German$ Spanish •
Haitian Creole! English •
Hindi$ English •
Hungarian$ English • •
Romanian$ English •
Russian$ English • • • •
Spanish$ English • • • • • • • •
Turkish$ English •

Table 1: Language pairs in the main translation task.

Metric ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16
Adequacy / Fluency • •
Sentence Ranking • • • • • • • • • •
Constituent Ranking • •
Constituent Judgement (Y/N) •
Sentence Comprehension • • �
Direct Assessment •
Used MTurk • • • •

Table 2: Metrics used in the human evaluation over the years for all languages pair (•) or only English! Czech (�).

other methods and over the years, WMT has tried several
different ones, encoded in different evaluations, summa-
rized in Table 2. Brief explanations of the approaches fol-
low:

• Fluency / Adequacy. Annotators were presented with
a sentence, and were asked to rank it separately for
both fluency and adequacy, on five-point scales.

• Sentence Ranking. Annotators are presented with the
outputs of multiple systems, along with the source and
reference sentence, and asked to rank them, from best
to worst.

• Constituent Ranking. Annotators were asked to
rank the quality of the translations of automatically-
identified constituents, instead of the complete sen-
tences.

• Constituent Judgement (Y/N). Annotators were asked
to provide a binary judgement on the suitability of the
translation of a constituent.

• Sentence Comprehension. Annotators were asked to
edit MT output for fluency (without providing the ref-
erence), and then (separately) to determine via binary
judgement whether those edits resulted in good trans-
lations.

• Direct Assessment (DA). Annotators are asked to pro-
vide a direct assessment of the quality of a single MT
output compared to a single reference, using an analog
scale.

The adequacy/fluency judgements were abandoned as the
5-point measurements proved to be quite inconsistent and

hard to normalize, and they were not popular with the an-
notators. Viewing the distributions of scores provided by
individual annotators showed them to be very different in
shape, often skewed in different directions, so there was no
clear way to combine judgements from multiple annotators.
There was also complaints from annotators about the ex-
treme difficulty in annotating long sentences of, frequently
scrambled, MT output.

Two early measures of quality focused only on noun phrase
constituents that were automatically identified in the refer-
ence and then extracted from system outputs via projections
across automatic alignments. Constituent ranking (2007–
2008) asked annotators to compare and rank these con-
stituents, while binary constituent judgements (2008) asked
them only whether a constituent (provided in context and
approximately highlighted) were “acceptable” compared to
the reference. An advantage of these binary judgements
was very high annotator agreement rates; this is likely due
in part to their relatively short length.

Another means of directly assessing output quality (and
thereby inferring a system ranking) is Sentence Compre-
hension, used in 2009 and 2010. In this task, one set of
judges was asked to edit a sentence’s fluency (without ac-
cess to the source or reference); these edited sentences were
then later evaluated to see whether they “represent[ed] fully
fluent and meaning-equivalent alternatives to the reference
sentence”. This mode of evaluation did not correlate well
with relative ranking, however, and was abandoned in 2011
in order to focus annotators’ efforts on that method.

In an effort to find a better evaluation method, we intro-
duced Sentence Ranking in 2007. One big advantage of
Sentence Ranking is that it is conceptually very simple: of-
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fer the annotator two samples of MT output (and a refer-
ence) and ask them which they prefer. In practice, in order
to gather judgements more efficiently, we present the an-
notator with 5 different MT outputs at a time, which then
yields ten pairwise comparisons. We have experimented
with presenting more or fewer sentences at a time, but 5
seems to be a good compromise between efficiency and re-
liability. We have also experimented with collecting judge-
ments on Amazon’s Mechanical Turk (2012 and 2013), in
an effort to reduce the effort required from researchers.
While relatively effective, the effort required to ensure that
the work was completed faithfully, and the even lower an-
notator agreement rates, caused us to abandon it.
Since 2011, Sentence Ranking has been the only method
of human evaluation we have used, but during that time the
details have evolved in response to criticism. In particular,
Bojar et al. (2011) pointed out various problems with the
way the comparisons were collected and interpreted which
led to changes in the procedure. A particular problem with
Sentence Ranking is that the method involves collecting rel-
ative judgements of MT performance, but attempts to com-
bine these to give an absolute measure of translation per-
formance. Unless a sufficient number of carefully chosen
comparisons are made, then systems can be treated unfairly
by being compared too often to a very bad, or very good
system (or the reference, which may be in there for con-
trol). Furthermore, systems were getting credit for ties, so
systems which were very similar to others were doing bet-
ter than they should. Finally, Bojar et al. (2011) showed
that the agreement on the Sentence Ranking task falls off
rapidly as sentence length increased.
Further analysis of the Sentence Ranking approach was
provided by Lopez (2012) who pointed out the difficul-
ties in obtaining a reliable total ordering of systems from
the pairwise judgements. Further work (Koehn, 2012) sug-
gested that we really needed to collect more judgements
in order to display significant differences between the sys-
tems, and also established a means of clustering systems
into equivalence classes of mutually indistinguishable sys-
tems, based on bootstrap resampling. Thus, since 2013, the
system rankings have been presented as a partial ordering
over systems, instead of a total ordering, where systems in
the same group are considered to be tied. (However, the
total ordering is still used when evaluating metrics).
One important point has not been addressed. Over the
years, WMT has experimented with many different means
of producing a system ranking. These rankings are then
used as a gold standard for metrics tasks, and are also pub-
lished as an official ranking, which researchers make use of
in determining which system description papers to plumb
for ideas to improve their own systems. Each year, differ-
ent methods have been evaluated and then kept or discarded
according to a number of criteria, such as annotator agree-
ment numbers, or time spent. However, how can we really
know which of these is the best? This point was raised by
Hopkins and May (2013), who then provided a Bayesian
model formulation of the human ranking problem, which
allowed them to use perplexity to compare different system
rankings. Influenced by this idea, in 2014, we compared
the ability of three different models trained on a large set of

pairwise rankings, using accuracy on held-out comparisons
instead of perplexity. The method that won was a new ap-
proach that based on the TrueSkill algorithm (Sakaguchi et
al., 2014). This has been in use since.
To conclude, the WMT manual evaluation has engaged in
a deep and extensive experimentation over the years. The
Sentence Ranking task has formed the core of our evalua-
tion approach, and has seen many variations from year to
year. We have made progress on many of the problems
with evaluation. However, many problems remain: the rel-
atively low annotator agreement rates, the immense amount
of annotator time required, and the difficulty of scaling the
sentence ranking task to many systems. In 2016, we plan
to run a pilot investigation based on Direct Assessment of
machine translation quality, which we hope will further al-
leviate some of these issues.

3. Automatic Evaluation
Since the second year of the WMT campaigns, targeted ef-
fort was also devoted to evaluation of automatic metrics1 of
MT quality, or metrics task for short. This meta-evaluation
is an important complement to the shared translation task,
because automatic metrics are used throughout the devel-
opment of MT systems and also in automatic system opti-
mization (Neubig and Watanabe, 2016). The utility of some
of the metrics in system optimization has been tested in the
sister tuning task in 2011 and 2015 and also planned for
2016.
Metrics of MT quality are evaluated at two levels:
System-level evaluation tests, how well a metric can repli-

cate the human judgement about the overall quality of
MT systems on the given complete set of test set sen-
tences.

Segment-level evaluation tests how well a metric can pre-
dict the human judgement for each input sentence.

In both cases, participants of the metrics task are given in-
put sentences, outputs of MT systems and one reference
translation. Note that the reliance on a single reference is
not ideal. It is well known that the reliability of automatic
MT evaluation methods is limited if only one reference is
available (see the WMT 2013 overview paper for an empir-
ical evaluation of BLEU with up to 12 references for trans-
lation into Czech). The quality estimation task (Section 4.)
focuses on the setup where no reference is available at all.
Table 3 summarizes the participation and methods used to
evaluate the system-level and segment-level parts of the
task. The task had always received a good number of par-
ticipating teams. The number of evaluated metrics varies
considerably across the years, because in some years, mul-
tiple variations of some metrics were evaluated.
Starting from 2013, we distinguish “baseline metrics”.
These metrics are run by the organizer in addition to the
submitted ones. Baseline metrics include the mteval
scoring script and all the metrics available in Moses. We
report the exact configuration flags for them, so they should
be reliably reproducible.
Throughout the years, the metrics task has always relied
on the manual evaluation (Section 2.), so the gold standard

1Despite the term “metrics”, none of the measures or methods
is a metric in the mathematical sense.

O. Bojar, C. Federmann, B. Haddow, P. Koehn, M. Post, L. Specia: Ten Years of WMT 29

Proceedings of the LREC 2016 Workshop “Translation Evaluation – From Fragmented Tools
and Data Sets to an Integrated Ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)



196 Appendix A.12: Bojar, O., et al.

’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16
Participating Teams - 6 8 14 9 8 12 12 11
Evaluated Metrics 11 16 38 26 21 12 16 23 46
Baseline Metrics 5 6 7
System-level evaluation methods

Spearman Rank Correlation • • • • • • • �
Pearson Correlation Coefficient � • • •

Segment-level evaluation methods
Ratio of Concordant Pairs • •
Kendall’s ⌧ • • • ⇤ ? ? ?

Tuning Task • • •
• main and � secondary score reported for the system-level evaluation.

•, ⇤ and ? are slightly different variants regarding ties.

Table 3: Summary of metrics tasks over the years.

human judgements do come from different styles of evalu-
ation. A major move from Sentence Ranking to Direct As-
sessment is considered in 2016, which would particularly
affect the segment-level metric evaluation. In Direct As-
sessment, the judgements have to be sampled differently
from the system-level and segment-level evaluation, and
there is a concern whether we will be able to find enough
distinct speakers for each of the language pairs. Prelimi-
nary experiments are now under way.

3.1. How Metrics are Evaluated
As indicated in Table 3, the metrics task has seen a few
changes of the exact evaluation method.

Evaluating System-Level Evaluation System-level
methods were first evaluated using Spearman rank cor-
relation, comparing the list of systems for a particular
language pair as ordered by the metric (given the test set
of sentences are reference translations) and as ordered
by humans (on the sample of sentences from the test set
that actually receive some human judgements). Spearman
rank correlation was selected in the first year, because it
is applicable also to the ordinal scales of adequacy and
fluency which were used in 2006 and 2007. Since 2007,
Pearson correlation coefficient could have been also used
(as the system scores were on continuous scales), but the
switch happened only in 2013. The benefit of Pearson over
Spearman is that it considers the distances between the
systems, so it should be more stable for systems of similar
quality.

Evaluating Segment-Level Evaluation Segment-level
evaluation has so far relied on pairwise judgements of trans-
lation quality. Given two candidate translations of an input
sentence, the segment-level metric gets a credit if it agrees
with the human judgement, i.e. the two pairwise judge-
ments are “concordant”. The exact calculation of the fi-
nal score changed throughout the years: in 2008 and 2009,
a simple ratio ranging from 0 to 1 was used: the number
of concordant pairs out of the total number of pairs eval-
uated. Starting from 2010, the score was modified to pe-
nalize discordant pairs, falling under the general definition
of Kendall rank correlation coefficient, or Kendall’s ⌧ for
short, with [�1, 1] as the range of possible values:

⌧ =
|Concordant| � |Discordant|
|Concordant| + |Discordant| (1)

There has always been a question of how to handle tied
comparisons, either the humans or the metric (or both) as-
signing the same rank/score to the two candidates. Each
type of tied pairs can be included in the denominator and if
it is, it may be also included in the numerator (bonified or
penalized). After the discussion available in Macháček and
Bojar (2013) and Macháček and Bojar (2014), the current
method:

• ignores pairs where humans tied altogether,
• does not give any credit or bonus to pairs where the

metric predicted a tie,
• but includes these metric-tied pairs in the denominator.

Moving to the Direct Assessment or some other absolute
scale in the human evaluation would allow use to use Pear-
son correlation coefficient instead of Kendall’s ⌧ .

Significance From the beginning, it was not quite clear
how to establish significance of the observed differences in
metric evaluation, especially at the system level where the
number of participating systems is less than 20, providing
a low sample size.
Starting from 2013, system-level scores for each given lan-
guage pair were reported with empirical confidence bounds
constructed by resampling the “golden truth”: given the
complete set of human judgements, 1000 variations are
constructed by resampling with repetition, leading to 1000
different scorings of the systems.2 Each participating met-
ric provides a single scoring of the systems and this scoring
is correlated with the 1000 golden truths, giving us 1000 re-
sults reflecting the variance due to the set of sentences and
annotators included in the golden truth.
As noticed by Graham and Liu (2016), confidence intervals
obtained from this sampling cannot be used to infer whether
one metric significantly outperforms another one, because
the number of “significant” pairs would be overestimated.
Instead, Graham and Liu (2016) proposes a novel method,
artificially generating a large number of MT systems (by

2Many of these scorings share the same order of the systems.
Unlike Spearman rank correlation, the Pearson correlation coeffi-
cient used since 2013 however appreciates also differences in the
scores.
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mixing the outputs of the real MT systems participating in
the translation task) and asking metrics task participants to
score e.g. not 5 but 10000 MT systems on the given test
set. We will try to adopt this approach in 2016, testing in
practice, how many metrics task participants can cope with
these enlarged sets of MT systems.

3.2. Observations in Metrics Task
While metrics tasks across the years cannot be directly
compared because a whole range of conditions keeps
changing, the overall setting remains stable and some gen-
eral observations can be made:

• BLEU has been surpassed by far by many diverse met-
rics. On the other hand, we acknowledge that it re-
mains the most widely used and also scores on average
well among the baseline metrics, with CDER (Leusch
and Ney, 2008) being a competitor.

• The level of 0.9 of system-level correlation into En-
glish was reached by the best metrics in 2009, rising
up to 0.98 in 2011. These levels were achieved by
aggregate or combination metrics that include many
features and standard metrics; sometimes the com-
bination is trained on a past dataset. IQmt-ULCh,
SVMrank (2010) and MTeRater-Plus (2011) are the
early examples, followed by a row of other combina-
tion metrics in recent years (e.g. BEER, DPMFcomb,
RATATOUILLE in 2014 or 2015). MTeRater is an in-
teresting outlier in that its main component is based on
many features from automatic essay scoring (preposi-
tion choice, collocations typical for native use, inflec-
tion errors, article errors).

• Benefits were confirmed many times from including
paraphrases or synonyms incl. Wordnet (e.g. Me-
teor, Tesla in 2010 and 2011), refining the metric to
consider the coverage of individual parts of speech
(e.g. PosBLEU 2008, SemPOS 2009, 2012), focus-
ing on content words (Tesla, SemPOS), dependency
relations (already 2008) or semantic roles (already
2007), evaluating at the level of character sequences
(i-letter-BLEU 2010, chrF 2015, BEER).

• In 2012, we saw a drop in into-English evaluation
mainly due to a different set of participating metrics.
Such a “loss of wisdom” is unfortunate and the base-
line metrics run by the organizers are one of possi-
ble means to avoiding it. In an ideal world, the au-
thors of the top performing metrics every year would
incorporate their metrics to Moses, to ensure that the
metric gets evaluated in the coming years. Achieving
this state is obviously complicated by the reliance of
some of the metrics on diverse language-dependent re-
sources which are not always publicly available. Me-
teor remains the only such maintained metric through-
out the years. Hopefully, some of the trivial but well-
performing metrics based on characters (chrF, i-letter-
BLEU) will join the baselines soon.

4. Quality Estimation
Quality Estimation (QE) offers an alternative way of assess-
ing translation quality. QE metrics are fully automated and,
unlike common evaluation metrics (Section 3.), do not rely

on comparisons against human translations. QE metrics
aim to provide predictions on translation quality for MT
systems in use, for any number of unseen translations. They
are trained metrics, built using supervised machine learning
algorithms with examples of translations labelled for qual-
ity (ideally, by humans). Predictions can be provided at dif-
ferent granularity levels: word, phrase, sentence, paragraph
or document. Different levels require different features, la-
bel types and algorithms to build prediction models.
While work on QE started back in the early 2000’s (Blatz et
al., 2004), the use of MT was substantially less widespread
back then, and thus the need for this type of metric was less
evident. A new surge of interest appeared later (Specia et
al., 2009; Soricut and Echihabi, 2010), particularly moti-
vated by the popularisation of MT in commercial settings.
QE was first organised as a shared task (and a track at
WMT) in 2012 (Callison-Burch et al., 2012). The main
goals were to provide a baseline approach, devise evalua-
tion metrics, benchmark existing approaches (features and
algorithms), and establish the state-of-the-art performance
in the area. The task focused on quality prediction at sen-
tence level. Only one dataset was provided, for a single lan-
guage pair (English-Spanish), on the News domain, trans-
lated by one MT system. For training and evaluation, trans-
lations were manually annotated by professional translators
for quality in terms of “perceived” post-editing effort (1-5
scores) . A system to extract baseline QE features and re-
sources to extract additional features were also provided.
The baseline system used a Support Vector Machine regres-
sion algorithm trained on the features provided. This was
found to be a strong baseline (both features and algorithm)
and has been used in all subsequent editions of the task.
As we continued running the task in subsequent years (Bo-
jar et al., 2013; Bojar et al., 2014; Bojar et al., 2015), our
main goals have been to provide, each year, new subtasks
(while keeping the popular ones), additional language pairs,
and larger and more reliably labelled datasets. For most
subtasks, the evaluation metrics have also been redefined
over the years. Table 4 summarises the main components
of the shared task over the years.
More specifically, we introduced variants of post-editing
effort prediction – edit distance (a.k.a. HTER) and post-
editing time – for sentence level (2013), and other subtasks
at new granularity levels: (i) a system selection subtask to
learn how to rank alternative MTs for the same source sen-
tence, precisely the same goal as the metrics task (Section
3.), but without reference translations (2013); (ii) a word-
level subtask concerned with predicting a binary (good/bad)
or 3-way (keep, delete, replace) tag for each word in a tar-
get sentence (2013), as well as more fine-grained error cat-
egories annotated by humans (omission, word order, word
form, etc., in 2014); (iii) a paragraph-level subtask to pre-
dict a Meteor score for an entire paragraph (2015); (iv)
a document-level subtask to predict a task-based human-
targeted score for the entire document (2016); and (v) a
phrase-level subtask, where binary labels (good/bad) are to
be predicted for entire “phrases”, as segmented by the MT
system (2016). Baseline systems and resources were pro-
vided for all these subtasks.
The main language pair has remained English-Spanish
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(en!es), the only constant language over all editions for
the sentence and word-level subtasks. This was mostly due
to the availability of (labelled) data for this pair. How-
ever, other language pairs have been explored over the years
for most subtasks. English-German (en!de) was used on
various occasions, including all subtasks in 2014 and the
paragraph-level subtask in 2015. German-English (de!en)
was also used in the latter subtask, in all subtask in 2014,
and in the MT system selection task in 2013.
The sizes of the datasets varies over the years. A good in-
dicator is the sentence-level subtask. The figures in the last
row of Table 4 refer to the largest number of sentences for
any score prediction subtask in a given year.
The number of participating teams has remained consider-
ably stable over the years (10–14), but teams tend to submit
systems for various subtasks, as well as for the same sub-
task when multiple languages are available. The submis-
sion figures in Table 4 include only submissions for differ-
ent subtasks and language pairs.
The evaluation of participating systems varies across sub-
tasks. For sentence, paragraph and document levels, sys-
tems can be submitted for two variants of each task: scor-
ing (for various labels, e.g. 1-5, 1-3, HTER, time, Meteor)
and ranking, where only a relative ranking of test instances
is required. Scoring is evaluated using standard error met-
rics (e.g. Mean Absolute Error) against the true scores and,
since 2015, using Pearson’s correlation. Ranking is evalu-
ated using Spearman’s correlation, as well as a ranking met-
ric proposed for the task in 2012: DeltaAvg, which com-
pares the ranking of instances given by the system against
the human ranking for different quality quantiles of the test
set. For the word and phrase-level tasks, per-class preci-
sion, recall and F-measure metrics are computed, with F-
measure for the “bad” class used as main metric in the bi-
nary variant.
Overall, the shared tasks have led to many findings and
highlighted various open problems in the field of QE. Here
we summarise the most important ones:

• Training data: The size of the training data is im-
portant for all prediction levels, but is even more crit-
ical for word and phrase levels. For sentence level, it
does not seem to be the case that having more than
2K sentences makes a significant difference in perfor-
mance. The quality of the data has proved a more im-
portant concern. The dataset used for the sentence and
word level subtasks in 2015, for example, although
large, was of questionable quality (spurious or miss-
ing post-editings) and had a very skewed label distri-
bution, which made model learning harder.

• Algorithms: There is no consensus on the best algo-
rithm for each subtask. Various popular regression
algorithms have ranked best for sentence (and para-
graph) level in different years, including SVM, Mul-
tilayer Perceptron, and Gaussian Process. For word
(and phrase) level, sequence labelling algorithms such
as Conditional Random Fields perform best.

• Tuning: Feature selection and hyperparameter opti-
misation proved essential. The winning submissions

in most years performed careful (or even exhaustive)
search for both features and hyperparameter values.

• Features: While a range of features has been used
over the years, shallow, often language-independent
features, tend to contribute the most. The majority
of submissions built on the set of baseline features
provided. Recently, word embeddings and other neu-
ral inspired features have been sucessfully explored.
While features for sentence and word/phrase-level
prediction are clearly very distinct from one another,
for paragraph level, most systems used virtually sen-
tence level features. We hope that more interesting
discourse features will be exploited in 2016 given the
much longer documents provided as instances. A crit-
ically important feature for all levels is the pseudo-
reference score, i.e., comparisons between the MT
system output and a translation produced by another
MT system for the same input sentence.

• Labels: Prediction of objective scores, such as post-
editing distance and time, has led to better models (in
terms of improvements over the baseline system and
correlation with human scores) than prediction of sub-
jective scores such as 1-5 labels. Post-editing time
seems to be the most effective label. However, given
the natural variance across post-editors, this is only the
case when data is collected by and a model is built for
a single post-editor.

• Granularity: The word-level subtask has proved
much more challenging than the sentence-level one,
often obtaining very marginal improvements over
naive baselines. In the tasks we have run so far, this
could have been due to: little training data, limited
number of examples of words with errors (class unbal-
ance), and potentially noisy automatic word labelling.
We attempted to solve some of these limitations by
providing data annotated manually for errors (2014),
but for cost reasons the largest dataset we could collect
has just over 2K segments. A larger dataset (14K seg-
ments) was collected based on post-editions in 2015,
but the post-editing, and hence the labelling generated
from it, are of questionable quality. In 2016, we are
providing an even larger dataset (15K segments) post-
edited by professional translators. The new phrase-
level subtask in 2016 should also help overcome some
of the limitations of the word-level one, by providing
more natural ways in which to segment the text for
errors. The paragraph-level subtask in 2015 did not
attract much attention, perhaps due to the use of an
automatic metric as quality label (Meteor). In 2016
we provide actual (much longer) documents labelled
by humans.

• Progress over time: As with any other shared task,
measuring progress over time is a challenge since we
have new datasets (and often new training sets) every
year. Progress in the QE task can however be spec-
ulated in relative terms, more specifically, with re-
spect to the improvement of submitted systems over
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’12 ’13 ’14 ’15 ’16
Participating Teams 11 14 10 10 -
Evaluated QE Systems 20 55 57 34 -
Subtasks 1 4
Sentence Level • • • • •
Word Level • • • •
Paragraph Level •
Document Level •
Phrase Level •
Language Pairs en!es en!es, de!en en$de, en$es en!es, en$de en!es
Largest Dataset (snt) 2,254 2,754 4,416 14,088 15,000

Table 4: Details on different editions of the QE task over the years.

the baseline system. This is possible for the sentence-
level subtask, since the language pair and baseline sys-
tem have remained constant over the years. We have
observed, year after year, that more systems are able
to beat the baseline, and by a larger margin.

5. Plans for Future Editions
In recent years, we have used Sentence Ranking as the sole
method of automatic evaluation (refining it according to
certain criticisms (Bojar et al., 2011; Lopez, 2012; Koehn,
2012)), but ongoing problems with reliability, interpretabil-
ity and poor scalability with increasing numbers of systems
have driven the search for alternatives. In 2016, we will
pilot a new technique for manual evaluation of MT out-
put. This is based on recent work demonstrating an effec-
tive means for collecting adequacy and fluency judgements
using crowd-sourcing (Graham et al., 2016). This Direct
Assessment of machine translation quality is similar to our
early attempts to judge quality with adequacy and fluency
judgements (Koehn and Monz, 2006; Callison-Burch et al.,
2007), but improves upon it in critical ways. Crucially, an
analog scale is presented to the user in the form of a slider
bar, which underneath maps to a 100-point scale, instead of
the 5-point Lickert scale we used in the past, which gave
us inconsistent results that were difficult to interpret. An-
notators are required to do large batches of assessments in
a single sitting, which allows their scores to be normalized
more reliably. By embedding deformed outputs and com-
paring their scores to those of their uncorrupted counter-
part, inconsistent, unreliable, and untrustworthy annotators
can be identified, and their outputs discarded.
The potential advantages of Direct Assessment are:

• It offers good reliability, as measured by inter-
annotator agreement;

• the cost of assessment scales linearly in the number
of systems assessed (instead of quadratically, as with
Sentence Ranking);

• it provides absolute measures which can be compared
year-over-year; and

• the concepts of adequacy and fluency are readily in-
terpretable, in a way that the scores derived from Sen-
tence Ranking are not.

Sentence Ranking will remain our primary evaluation for
this year, but the results of this evaluation will be compared
to those of the DA evaluation in order to help is assess its

suitability for future evaluations.
One of the big issues we face in MT evaluation is the ques-
tion of for what purpose? In other words, the way we eval-
uate our MT system may depend quite strongly on what we
want to use it for, whether for gisting, post-editing, direct
publication, language learning, automated information ex-
traction, or something else. The Sentence Ranking method
is particularly weak in this regard, since we do not give the
raters any guidance as to how they should judge the transla-
tions. In some sense, we have punted on the difficult ques-
tion of purpose, allowing each annotator to be guided by
his or her own intuitions. This likely explains some of the
low annotator agreement rates. Using adequacy and fluency
separately is an improvement as the terms have meaningful
interpretation, although they are still intrinsic rather than
extrinsic measures. In the end, we believe that the work
of the WMT manual evaluation has improved our knowl-
edge for how to assess human quality of MT, providing a
rich well from which to draw for those wishing to focus on
more targeted and specific applications.
For QE, after the 2016 edition we will have covered all
possible granularity levels. The plan is to keep the most
popular and the most challenging ones, with a particular
emphasis on word and phrase-level prediction. Instead of
more language pairs, we will prioritise larger and better
datasets for fewer language pairs. Another direction we
aim to pursue is better integration with other WMT eval-
uation tasks, e.g. using the test sets and system translations
from the translation task, and reusing the manual evalua-
tions as training data. In the past this has proved difficult
logistically because of the tasks’ timeframe or unsuccess-
ful because the manual evaluations (esp. rankings) were
not adequate for QE. The planned changes in the manual
evaluation procedure should make this integration possible.

6. Conclusions
The WMT shared tasks have given us a platform to explore
all forms of Machine Translation (MT) evaluation; human
evaluation, automatic evaluation with a reference, and qual-
ity estimation. Not only that, but WMT has helped to drive
research in MT evaluation, firstly by having high profile
shared tasks to engage the community; and secondly by the
extensive data sets that we provide. Each year, we prepare
new translation test sets, and annotated data sets for qual-
ity estimation. During the tasks, we collect and release all
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translation system submissions, all the human judgements,
all the submissions to metrics, and all the quality estimation
data. These are made available from the WMT website (for
this year it is www.statmt.org/wmt16) and are used
frequently in subsequent research.
MT evaluation is a hard problem, and is capable of gen-
erating significant controversy in the MT community, as
we have observed when evaluation results were presented.
This difficulty is indicated by the number of changes, ex-
periments, and refinements we have introduced over the
years. This year, with the piloting of Direct Assessment, we
return to a direct measure of the quality of a system output
that we abandoned a number of years ago, and are hopeful
that the reformulation of the problem will make DA more
successful than our earlier experiments. If so, one option
for the QE task in subsequent years is for it to model the
prediction of DA scores.
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Macháček, M. and Bojar, O. (2014). Results of the
WMT14 Metrics Shared Task. In Proc. of the Ninth
Workshop on Statistical Machine Translation, pages
293–301, Baltimore, MD, USA.
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