
Charles University in Prague
Faculty of Mathematics and Physics

Habilitation Thesis

Drawings of Graphs

RNDr. Vít Jelínek, Ph.D.

Computer Science Institute
Prague, April 1, 2016





Contents

Preface 5

1 The Topic of this Thesis 7

2 Constrained Planar Drawings 9
2.1 Partially Embedded Planarity . . . . . . . . . . . . . . . . . . . . 10
2.2 Clustered Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Minimizing Face Size . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Geometric Graphs 17
3.1 Hamilton Paths in Geometric Graphs . . . . . . . . . . . . . . . 17
3.2 Monochromatic Triangles in the Plane . . . . . . . . . . . . . . . 19
3.3 Drawings with Few Slopes . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Visibility and Convexity . . . . . . . . . . . . . . . . . . . . . . . 21

A Non-crossing Hamiltonian Paths 28

B Embedded Clustered Graphs with Two-Component Clusters 39

C Clusters with Few Outgoing Edges 52

D Monochromatic Triangles in Two-Colored Plane 65

E Slope Number of Planar Partial 3-Trees 86

F Kuratowski-Type Theorem for Planarity of PEGs 112

G Planar Embeddings with Small and Uniform Faces 140

H Planarity of Partially Embedded Graphs 154

I On the Beer Index of Convexity and its Variants 197

3





Preface

This habilitation thesis is a commented collection of nine research papers that
I authored in the years 2007–2015 with various groups of collaborators. The
papers are listed below in chronological order, together with a citation that
points to the version of each paper that was included in the thesis. Apart from
the papers themselves, the thesis includes three introductory chapters, which
provide a brief overview of the area of graph drawings, and outline the main
results obtained in the papers.

Papers published in conference proceedings need to conform to strict page
limits, and therefore they often omit some parts of the results or proofs. This
is the case of papers number 2, 7 and 9 below. In those cases, the citation
also includes a reference to a longer preprint version of the same paper, where
the interested reader may find the parts of the text that were omitted from the
proceedings (and hence also from this thesis).

1. J. Černý, Z. Dvořák, V. Jelínek, and J. Kára: Noncrossing Hamiltonian
paths in geometric graphs. Discrete Applied Mathematics, 155(9):1096–
1105, 2007. See Appendix A.

2. V. Jelínek, E. Jelínková, J. Kratochvíl, and B. Lidický: Clustered pla-
narity: Embedded clustered graphs with two-component clusters. In Pro-
ceedings of 16th International Symposium on Graph Drawing, Lecture
Notes in Computer Science 5417, 121–132, 2009. See Appendix B. Full
version: http://iuuk.mff.cuni.cz/~jelinek/pubs/TwoComponent.pdf.

3. V. Jelínek, O. Suchý, M. Tesař, and T. Vyskočil: Clustered planarity:
Clusters with few outgoing edges. In Proceedings of 16th International
Symposium on Graph Drawing, Lecture Notes in Computer Science 5417,
102–113, 2009. See Appendix C.

4. V. Jelínek, J. Kynčl, R. Stolař, and T. Valla: Monochromatic triangles in
two-colored plane. Combinatorica, 29(6):699–718, 2009. See Appendix D.

5. V. Jelínek, E. Jelínková, J. Kratochvíl, B. Lidický, M. Tesař, and T. Vysko-
čil: The planar slope number of planar partial 3-trees of bounded degree.
Graphs and Combinatorics, 29(4):981–1005, 2013. See Appendix E.

6. V. Jelínek, J. Kratochvíl, and I. Rutter: A Kuratowski-type theorem
for planarity of partially embedded graphs. Computational Geometry,
46(4):466–492, 2013. See Appendix F.

5



7. G. Da Lozzo, V. Jelínek, J. Kratochvíl, and I. Rutter: Planar embed-
dings with small and uniform faces. In Proceedings of 25th Interna-
tional Symposium on Algorithms and Computation, Lecture Notes in
Computer Science 8889, 633–645, 2014. See Appendix G. Full version:
http://arxiv.org/abs/1409.4299.

8. P. Angelini, G. Di Battista, F. Frati, V. Jelínek, J. Kratochvíl, M. Pa-
trignani, and I. Rutter: Testing planarity of partially embedded graphs.
ACM Transactions on Algorithms, 11(4), Article No. 32, 42 pages, 2015.
See Appendix H.

9. M. Balko, V. Jelínek, P. Valtr, and B. Walczak: On the Beer index
of convexity and its variants. In Proceedings of the 31st International
Symposium on Computational Geometry, Leibniz International Proceed-
ings in Informatics 34, 406–420, 2015. See Appendix I. Full version:
http://arxiv.org/abs/1412.1769.

6



Chapter 1

The Topic of this Thesis

In discrete mathematics, a graph is defined as an ordered pair G = (V,E),
where V is an arbitrary set, whose elements are called vertices, and E is a set
of 2-element subsets of E, called edges. This definition, while convenient in
its generality, is rather abstract, while human intuition needs a more concrete
visualization of a graph. The most common way of visualizing a graph is to
draw its vertices as points in a plane and its edges as curves connecting the
corresponding vertices.

Formally speaking, a drawing of a graph G = (V,E) is a mapping that
associates to a every vertex x ∈ V a distinct point px in the plane, and to every
edge e = {x, y} ∈ E a continuous curve ce with endpoints px and py, and such
that for any other vertex z ∈ V \ {x, y} the point pz does not belong to ce. By
a slight abuse of terminology, we will refer to the points px as vertices of the
drawing, and to the curves ce as edges of the drawing.

In some circumstances, it is convenient to assume further non-degeneracy
properties in a drawing, e.g., that any two distinct edges ce, cf share at most
finitely many points, that no three edge share an internal point, or that no edge
crosses itself.

An important special case of graph drawings are planar drawings, in which
no two edge-curves cross or touch. Graphs admitting such drawings are known
as planar graphs. The face of a planar drawing is a maximal subset of the plane
disjoint from all the vertices and edges of the drawing.

Graph drawings are not just a helpful tool in reasoning about graphs, but
also also an object of mathematical study in their own right. Various aspects of
graph drawings are studied from the point of view of computational complexity,
extremal combinatorics, topology, Ramsey theory or discrete geometry.

This thesis is a collection of nine research papers related to the study of
graph drawings. The papers included in this thesis can be classified into two
groups. The first group, which will be introduced in more detail in Chapter 2,
deals exclusively with planar drawings. More specifically, it includes five papers
on the topic of algorithmic and structural aspects of planar drawings satisfying
certain additional constraints.

The second group, to be introduced in Chapter 3, is focused on the so-
called geometric drawings, which are drawings (not necessarily planar) where
every edge is represented by a straight-line segment. The second group covers
a broader range of topics than the first one. The four papers included in this

7



group deal not only with algorithmic aspects of graph drawings, but also with
problems related to extremal graph theory, Ramsey theory, and geometry.

8



Chapter 2

Constrained Planar Drawings

The research of planar graphs has a long history. In 1930, Kuratowski [43]
proved that a graph is planar if and only it does not contain a subdivision of
K5 or K3,3 as subgraphs. An analogous characterization in terms of forbidden
minors was later given by Wagner [58]. Both these characterizations imply
that the problem of determining whether a graph is planar can be solved in
polynomial time, by using the general results of Robertson and Seymour [49].
However, an algorithm based on this approach would be impractical and non-
constructive.

The first linear-time algorithm for planarity testing was given by Hopcroft
and Tarjan [33]. Later, other linear-time planarity tests were published by Booth
and Lueker [12], Boyer and Myrvold [13], or de Fraysseix et al. [18], among
others. These algorithms are constructive, in the sense that they compute, for
a given graph G, an explicit planar drawing if it exists. Thus, from algorithmic
point of view, planarity testing is a solved problem.

In many practical situations, our task is to find for a given graph G a planar
drawing satisfying certain additional restrictions. For instance, we may wish
for some groups of vertices to be drawn ‘close to each other’ to reflect some
underlying structure of the vertex set. Or we may insist that the drawing
satisfies some aesthetic criteria, e.g., that its faces have approximately the same
length.

In this chapter, we will consider several such constraints and we will look
at the complexity issues and structural obstacles related to the existence of the
corresponding constrained planar drawings.

Since a given planar graph G = (V,E) has infinitely many possible planar
drawings, the algorithms dealing with planarity-related problems cannot work
with drawings directly. Instead, they must represent the drawings by an ap-
propriate combinatorial description. Often, the combinatorial description of a
drawing consists of the so-called rotation scheme, which assigns to every vertex
x ∈ V a cyclic order of the edges incident to x, specifying the clockwise circular
order in which the edges will appear around the point representing the vertex x.

For a connected planar graph G, a rotation scheme determines the planar
drawing of G uniquely up to the choice of the outer face and a continuous
deformation of the plane. To avoid the ambiguity in the choice of the outer
face, we may select two consecutive edges in a rotation scheme of a vertex, and
specify that the common face adjacent to these two edges is the outer face.

9



Alternatively, we may work with drawings on the surface of the sphere rather
than in the plane, avoiding the issue of outer face entirely.

For a disconnected graph G, the rotation scheme may not be sufficient to
describe a drawing, since it does not specify the mutual position of the connected
components of the graph. A possible approach is then to specify, apart from the
rotation scheme, the incidence relation between edges and faces of the drawing.

In the high-level overview presented in this chapter, we always omit the tech-
nical details of the particular combinatorial representation of the drawing used
in a given algorithm. We also make the convention that the term ‘drawing’ may
refer either to a drawing itself or to its combinatorial representation, depending
on context.

Although the problems tackled in the area of constrained planarity are quite
diverse, there are certain methods and tools that appear to be useful in many
different contexts. One such useful tool is the so-called SPQR-tree, introduced
by Di Battista and Tamassia [20]. The SPQR-tree of a biconnected planar graph
G is a tree-like data structure, which can be computed in linear time [32], and
which represents in a compact way all possible planar drawings of G. The defini-
tion of the SPQR-tree is somewhat technical, and can be found in Appendix H,
Section 2.3.

Another general approach, which has received a lot of attention recently, is
based on the Hanani–Tutte theorem [55]. The theorem states that if a graph
G has a drawing in which any pair of vertex-disjoint edges is represented by
curves that cross an even number of times, then G also has a planar drawing.
Several authors [28,29,47,51,52] have recently discovered generalizations of this
result applicable to various constrained types of planar drawings. This approach
seems to offer a promising area of further research.

2.1 Partially Embedded Planarity
One of the most natural questions we may ask in the context of constrained
planarity testing is the following: suppose that we are given a graph G, and
suppose that a planar drawing has been prescribed for a subgraph H of G; is it
possible to complete the drawing of H into a planar drawing of G?

To state the question more precisely, we introduce the following concepts: a
partially embedded graph (or Peg) is a triple (G,H,H), where G is a graph, H
is a subgraph of G, and H is a planar drawing of H. A Peg is said to be planar
if there is a planar drawing of G that extends the given drawing H of H.

The problem of deciding whether a given Peg is planar is known as partially
embedded planarity (or Pep). The first and most obvious question that has
been asked in connection with Pep was whether the problem admits an efficient
algorithmic solution.

It is clear that for a Peg (G,H,H) to be planar, it is necessary for G itself
to be a planar graph. However, this condition is far from sufficient, as can be
seen on simple examples of non-planar Pegs with planar underlying graphs (see
Figure 2.1).

Moreover, while there are several polynomial algorithms for testing planarity
of graphs, there is no known way to adapt any of them into an efficient approach
to test partially embedded planarity. For an illustration of the difference be-
tween planarity testing and Pep-testing, notice that a Peg (G,H,H) may be

10



Figure 2.1: Two examples of a non-planar Peg whose underlying graph is planar.
The solid lines represent the edges of the embedded part, while the dashed curves
indicate the non-embedded edges.

non-planar even when every connected component of G induces a planar Peg,
as demonstrated by the example in the right part of Figure 2.1.

In a joint paper with Angelini, Di Battista, Frati, Kratochvíl, Patrignani and
Rutter, titled ‘Testing planarity of partially embedded graphs’ [4, see also
Appendix H], we have proved that Pep can be solved in polynomial time.

Our construction of a polynomial-time test for Pep proceeds in several steps.
First, we argue that testing planarity of a general Peg (G,H,H) can be effi-
ciently reduced to the situation when the graph G is 2-connected. The gen-
eral idea here is to test planarity of each biconnected component of (G,H,H)
separately, and then verify certain technical but efficiently testable properties
of (G,H,H) that characterize whether the drawings of individual biconnected
components can be glued together into a drawing of the whole Peg.

To test planarity of a Peg (G,H,H) with G biconnected, we construct the
SPQR tree of G, and use it to characterize planar Pegs. Vaguely speaking, our
characterization says that a Peg (G,H,H) with biconnected underlying graph
G is planar if and only if each skeleton in the SPQR tree of G admits a planar
drawing that is ‘compatible’ with the partial drawing H. Here again, the precise
meaning of being ‘compatible’ is too technical to be described precisely, but the
important fact is that the existence of a compatible drawing may be tested in
polynomial time, yielding a polynomial algorithm for Pep. The algorithm is
constructive, i.e., it constructs a planar drawing of G extending H, if such a
drawing exists.

In our paper, we further refine our approach to obtain a Pep-testing algo-
rithm that runs in linear time. The algorithm itself, as well as the analysis of
its time complexity, are rather nontrivial.

A different aspect of partially embedded planarity is studied in the paper ‘A
Kuratowski-type theorem for planarity of partially embedded graphs’
[34, see Appendix F], which is a joint work with Kratochvíl and Rutter. Our goal
in this paper is to characterize planar Pegs by minimal forbidden substructures,
in analogy to the classical theorems of Kuratowski and Wagner.

To obtain such a characterization for partially embedded planarity, we first
introduce a suitable partial order relation on the set of Pegs that is analogous
to the graph minor relation. In particular, this Peg-minor relation is be chosen
in such a way that every Peg-minor of a planar Peg is again planar.

In our paper, we actually consider two possible versions of the Peg-minor
relation. The first one is a straightforward adaptation of the graph minor re-
lation. As our main result, we are able to describe all the minimal non-planar

11



Pegs with respect to this relation. Unfortunately, it turns out that there are
infinitely many such minimal non-planar Pegs. To reduce the set of minimal
non-planar Pegs even further, we then introduce a stronger Peg-minor rela-
tion, which is defined using a larger set of planarity-preserving operations, and
which only admits a finite number of minimal non-planar Pegs.

We remark that our characterization of partially embedded planarity via
minimal forbidden obstructions has been subsequently used by Schaefer [51] to
prove an analogue of the Hanani–Tutte theorem for this version of planarity.

We also note that Patrignani [48] has considered an analogue of partially
embedded planarity in the setting of geometric planar graphs, i.e., of planar
drawings whose every edge is drawn as a straight-line segment. In contrast to our
results, he showed that for a given Peg (G,H,H) where H is a geometric planar
graph, it is NP-hard to decide whether H can be extended into a geometric
planar drawing of G.

2.2 Clustered Planarity
Let G = (V,E) be graph. A cluster hierarchy is a set C of subsets of V , called
clusters, with the property that any two clusters in C are either disjoint or one
is a subset of the other. A clustered graph is a graph G together with its cluster
hierarchy C.

Given a clustered graph (G,C), our goal is to find a planar drawing of G in
which the vertices of each cluster are ‘grouped together’ to display the cluster
hierarchy. This is formalized by the concept of clustered-planar drawing (or c-
planar drawing, for short). A c-planar drawing of (G,C) is a planar drawing of
G together with a function γ which associates with every cluster X ∈ C a simply
connected compact region γX satisfying these properties (see Figure 2.2):

• If X and Y are disjoint clusters, then γX and γY are disjoint as well, and
if X ⊆ Y then γX ⊆ γY .

• For every cluster X ∈ C, all the vertices of X are drawn in the interior of
γX , while all the vertices of V \X are drawn outside of γX .

• For every edge e = uv and every cluster X, the drawing of uv intersects
the boundary of γX at most once, and in such case the intersection is a
proper crossing. In particular, this means that if both u and v belong to
X, then the edge e is drawn entirely inside γX , while if neither u nor v
belongs to X, then the drawing of e is disjoint from γX .

The key problem related to c-planarity is to decide whether a given clustered
graph has a c-planar drawing. There are in fact two versions of the corresponding
decision problem. In the first version, which is the so-called non-embedded c-
planarity, we are given a clustered graph (G,C) and the task is to decide whether
(G,C) has a c-planar drawing. In the other version, known as embedded c-
planarity, we are given a clustered graph (G,C) and a planar drawing of G, and
the task is to decide whether the given drawing of G can be extended into a
c-planar drawing by a suitable choice of cluster regions.

It is not hard to show that both versions of c-planarity lie in the complexity
class NP. It is, however, a major open problem to determine whether these
problems can be solved in polynomial time.

12



a

b e

d

c

a

b e

d

c

Figure 2.2: Left: a c-planar drawing of a clustered graph with cluster hierarchy
C = {{a, b}, {c, d, e}}. The shaded regions represent the two clusters. Right:
the same graph with the cluster hierarchy C = {{b, c, d}, {a, e}} is no longer
c-planar. Note that the right part of the figure is not a valid c-planar drawing,
since the edge {b, d} crosses twice the boundary of the region representing the
cluster {a, e}.

Various authors have found polynomial algorithms solving special cases of
c-planarity, in both embedded and non-embedded setting. For instance, non-
embedded c-planarity can be solved in polynomial time for instances having
only two clusters (Biedl [9]), instances where each cluster induces a connected
subgraph (Lengauer [44], and independently Feng et al. [27]), or instances whose
underlying graph is a cycle and each cluster has size at most three (Jelínková
et al. [39]). Despite these partial results, the complexity of c-planarity testing
remains open even for seemingly simple special cases, e.g., when the underlying
graph is a cycle, or when the instance only has three clusters.

For embedded c-planarity testing, the situation is similar. Again, there are
polynomial algorithms known for special instances. For example, Di Battista et
al. [19] have found an algorithm for embedded c-planarity for instances whose
underlying graph has at most five vertices per face and all clusters are disjoint.
Another partial result, due to Chimani et al. [15], gives a polynomial algorithm
for instances in which any two clusters are disjoint and each face is incident to
at most two vertices from each cluster.

This thesis includes two papers on the topic of c-planarity testing. The first
one is titled ‘Clustered planarity: Clusters with few outgoing edges’ [38,
see also Appendix C], and is a joint work with Suchý, Tesař and Vyskočil. In
the paper, we consider the complexity of non-embedded clustered planarity in
the situation when each cluster C has a bounded number of out-going edges,
which are edges connecting a vertex of C with a vertex outside of C. Our main
result is a linear time algorithm for instances where each cluster has at most
four out-going edges.

Let us sketch the basic idea of our approach. Suppose that (G,C) is a
clustered graph with at most four out-going edges per cluster, and suppose that
C ∈ C is a minimal cluster, i.e., a cluster that has no proper subcluster in C.
Let GC be the subgraph of G induced by the vertices in C.

To construct a c-planar drawing of (G,C), we may first find a planar drawing
of GC in which the vertices incident with the out-going edges of C are drawn
on the outer face, and then extend this drawing to a c-planar drawing of G.
There can of course be many drawings of GC ; however, when extending a given
drawing of GC into a c-planar drawing of G, the only information about the

13



drawing of GC we need to take into account is the cyclic order in which the
out-going edges of C can be attached around the outer face of GC .

Thus, for the graph GC , we first compute the set of all possible cyclic or-
ders of the out-going edges that may arise from planar drawings of GC . This
computation can be done efficiently using standard techniques from the theory
of planarity testing. We next remove the cluster C from the cluster hierarchy,
and replace GC with a connected gadget of constant size that imposes the same
restrictions on the possible ordering of outgoing edges as GC . This yields an
equivalent instance of c-planarity with fewer clusters (and usually with fewer
vertices as well). Iterating this procedure, we eventually reduce the original
c-planarity instance to an equivalent planarity instance.

Our simple approach does not generalize to instances with five or more out-
going edges per cluster, since there are disconnected graphs GC whose restric-
tions on out-going edges cannot be simulated by connected gadgets. However,
Bläsius and Rutter [11] have recently shown that c-planarity is tractable even
with at most five out-going edges per cluster. Their approach uses non-trivial
previous results on the so-called simultaneous PQ-orderings [10]. The complex-
ity status of c-planarity with at most six out-going edges is still open.

The other paper on c-planarity included in this thesis is called ‘Clustered
Planarity: Embedded Clustered Graphs with Two-Component Clus-
ters’ [35, see Appendix B], and is a joint work with Jelínková, Kratochvíl and
Lidický. In this paper, we give a polynomial algorithm for embedded c-planarity
of instances in which each cluster induces a subgraph with at most two connected
components.

Even prior to this work, it was well understood in the research community
that connectivity assumptions may help in dealing with c-planarity. One of
the earliest results on c-planarity, due to Feng et al. [27], is a c-planarity test-
ing algorithm (in both embedded and non-embedded settings) for instances in
which each cluster induces a connected subgraph. Subsequently, several authors
have investigated possibilities for relaxing the connectivity assumption. Thus,
Gutwenger et al. [31] have shown that c-planarity is polynomial when all the
disconnected clusters belong to a single path in the cluster hierarchy, and also
when each disconnected cluster has a connected parent and siblings in the clus-
ter hierarchy, while Goodrich et al. [30] gave an algorithm for instances where
each disconnected cluster has a connected parent, and moreover, each compo-
nent of a disconnected cluster is connected by an edge to a vertex not belonging
to the parent cluster.

Our approach to solve embedded c-planarity for instances (G,C) with clus-
ters having at most two components is based on the following idea: we transform
(G,C) into an equivalent instance (G+,C) which has all clusters connected. This
is achieved by drawing new edges into G without violating planarity, in such a
way that every new edge connects vertices from two distinct components of a
disconnected cluster. It can be shown, under some technical assumptions, that
such a set of new edges exists if and only if the original clustered graph was
c-planar. However, the algorithm to find such new edges is highly nontrivial,
even for instances where all clusters are disjoint.

Despite the partial results outlined above, the complexity of c-planarity test-
ing remains one of the main open problems in the area of graph drawing.

14



2.3 Minimizing Face Size
As we mentioned before, the problem of finding a planar drawing of a given
planar graph can be solved in linear time by several well-known approaches [12,
13, 18, 33]. However, a graph may admit many different planar drawings, and
in many real-life situations different drawings are not all equally suitable. It is
then desirable to optimize over the space of all planar drawings according to a
predefined ‘quality measure’.

Several such measures are related to the lengths of faces, where the length of
a face f is defined as the number of edges incident to f . For aesthetic reasons,
it is natural to try to avoid drawings having large internal faces, or drawings
with faces sizes of varying lengths. A very general formalization of this problem
was introduced by Mutzel and Weiskircher [45]: in their setting, we are given a
graph G and a function assigning costs to the cycles of the graph, and the goal
is to find a drawing of G minimizing the total cost of face cycles. Mutzel and
Weiskircher have shown that this problem can be transformed into an integer
linear programming problem which can in many practical instances be tackled
by existing ILP solvers. Their approach is based on dynamic programming and
SPQR-trees.

On the other hand, Woeginger [59] has shown that for any k ≥ 4, it is NP-
hard to find a drawing of a given graph that minimizes the number of faces of
length at least k. This means, in particular, that the above-mentioned general
problem of Mutzel and Weiskircher is NP-hard even when all the cycles have
cost 0 or 1.

In a joint paper with Da Lozzo, Kratochvíl and Rutter, titled ‘Planar Em-
beddings with Small and Uniform Faces’ [17, see Appendix G], we con-
sider the complexity of two closely related decision problems: for a fixed inte-
ger k ≥ 3, the problem k-MinMaxFaces asks to determine whether a given
graph has a drawing in which all faces have size at most k, and the problem
k-UniformFaces asks whether a given graph has a drawing whose faces all
have size exactly k.

In the study of these two decision problems, we restrict ourselves to instances
when G is biconnected. This ensures that in any drawing of G, all the face
boundaries are simple cycles, avoiding an ambiguity in defining the size of non-
biconnected face boundaries.

Observe that for a given k, k-UniformFaces can be easily reduced to k-
MinMaxFaces. This is because for a given graph G = (V,E), all the drawings
of G have the same average face size, namely 2|E|/(|E| − |V | + 2), as can be
easily deduced from Euler’s formula. It follows that G has a drawing with all
faces of size exactly k if and only if its average face size is k and there is a
drawing with maximum face size k.

In our paper, we were able to determine the complexity of k-MinMaxFaces
completely as a function of k, while for k-UniformFaces we determine the
complexity for all k except for the two cases k = 5 and k = 8, which are left
open. The results are summarized in Table 2.1.

While the results we obtained for the complexity of k-MinMaxFaces cor-
respond to the intuitively plausible idea that the problem becomes harder as
k grows, the corresponding results for k-UniformFaces may seem surprising
at first sight. This is due to the fact that for k even, a graph may only have
a drawing with all faces of size k if it is bipartite. Due to this aspect, it is

15



k-MinMaxFaces k-UniformFaces
k = 3 Polynomial Polynomial
k = 4 Polynomial Polynomial
k = 5 NP-complete Unknown
k = 6 NP-complete Polynomial
k = 7 NP-complete NP-complete
k = 8 NP-complete Unknown
k ≥ 9 NP-complete NP-complete

Table 2.1: The complexity of k-MinMaxFaces and k-UniformFaces for var-
ious values of k.

easier to design polynomial algorithms (and harder to obtain hardness proofs)
for k-UniformFaces when k is even then when k is odd.

Apart from the decision problems, our paper also addresses the optimiza-
tion version of MinMaxFaces, i.e., for a given graph G, we want to find a
drawing which minimizes the size of the largest face. We design a polynomial
approximation algorithm which has an approximation ratio of 6, i.e., it finds
a drawing whose largest face is at most six times larger than the largest face
in the optimal solution. The algorithm, as well as our polynomial algorithms
for k-MinMaxFaces and k-UniformFaces we have designed, are based on
dynamic programming and SPQR-trees.

16



Chapter 3

Geometric Graphs

In this chapter, we focus on the so-called geometric graphs, which are (possibly
non-planar) drawings of graphs in which every edge is represented by a straight-
line segment.

Each of the four papers presented in this chapter approaches the area of
geometric graphs from a different perspective, often only loosely related to graph
theory; in fact, two of the papers do not make any explicit use of graph-theoretic
concepts. Nevertheless, in this chapter, we take care to point out the underlying
graph intuition of our results, to emphasize the versatility and usefulness of the
concept of geometric graphs.

3.1 Hamilton Paths in Geometric Graphs
An important area in the study of geometric graphs is concerned with extremal
problems, that is, with problems to determine, for a given number of vertices
n, the largest possible number m(n) of edges in a geometric graph on n vertices
that avoids a given configuration of edges. The function m(n) is called the
extremal function of the configuration.

For instance, Pach and Törőcsik [46] have shown that for any fixed k, a
geometric graph on n vertices with no noncrossing matching of size k has at most
O(n) edges. Here, we say that a matching (or more generally, any subgraph) in
a geometric graph is noncrossing if no two of its edges cross each other.

Another important extremal problem is to determine the maximum number
of edges in a geometric graph on n vertices with no k pairwise crossing edges.
It is conjectured that for any constant k, such a graph can have at most O(n)
edges, but this has so far only been proven for k = 3 (Agarwal et al. [2]) and
k = 4 (Ackerman [1]). For general k, Valtr [56] gave an upper bound of order
O(n log n).

Several authors have also considered the extremal function of noncrossing
configurations whose size depends on the number of vertices of the graph. In
these situations, the extremal function m(n) tends to be close to

(
n
2

)
, and it is

therefore more natural to estimate the difference
(
n
2

)
−m(n) rather thanm(n) it-

self. In other words, the problem is to find the smallest possible number of edges
in the complement of a geometric graph that avoids the given configuration.

For example, Károlyi et al. [40] have shown that for any geometric graph G,

17



Figure 3.1: Two examples of geometric graphs with n vertices and dn2 e edges
whose complement has no noncrossing Hamilton path.

either G or its complement has a noncrossing spanning tree. This implies that
every geometric graph whose complement has at most n − 2 edges has a non-
crossing spanning tree, and this is easily seen to be best possible.

The paper ‘Non-Crossing Hamiltonian Paths in Geometric Graphs’
[16, see Appendix A] (joint work with Černý, Dvořák and Kára) deals with the
following extremal problem, originally asked by Perles: what is the smallest
possible number h(n) of edges in the complement of a geometric graph on n
vertices that has no noncrossing Hamilton path? A Hamilton path in a graph
is a path that contains all the graph’s vertices.

It is easy to see that every complete geometric graph has a noncrossing
Hamilton path; one may obtain such a path, e.g., by traversing the vertices in
the left-to-right order. We can push this idea a little further: for n ≥ 3, every
graph on n vertices obtained from the complete graph by the removal of one
edge has a noncrossing Hamilton path — we simply rotate the graph in such
a way that the two non-adjacent vertices do not appear consecutively in the
left-to-right order. This observation shows that h(n) is at least 2 for n ≥ 3. On
the other hand, it is clear that h(n) ≤ n − 1, since a graph whose complement
contains n−1 edges incident to a single vertex has no Hamilton path. This upper
bound can be improved to h(n) ≤ dn2 e, by a straightforward generalization of
the examples depicted on Figure 3.1.

Perles has asked whether the function h(n) is unbounded, and if so, what is
its order of growth. In our above-mentioned paper [16], we proved that h(n) is
indeed unbounded, as a corollary to the following result.

Theorem 1. Let G = (V,E) be a complete geometric graph with n vertices in
general position, and let X be a subset of its vertices of size at most 1√

2

√
n.

Then G has a noncrossing Hamilton path in which no two vertices of X appear
consecutively.

An immediate consequence of this result is the estimate h(n) > 1
2
√

2

√
n. To

see this, suppose that G is a complete geometric graph with n vertices in general
position, and suppose we remove 1

2
√

2

√
n edges from G. We can then take X to

be the set of vertices incident to at least one removed edge. By Theorem 1, G
has a noncrossing Hamilton path in which no two vertices of X are consecutive,
and in particular, the path avoids all the removed edges.

We have also shown that the bound 1√
2

√
n in Theorem 1 is best possible up

to a constant factor, by presenting an example of a complete geometric graph
G on n vertices in general position (actually, in strictly convex position) and a

18



subset X of its vertices of size 3
√
n, such that each noncrossing Hamilton path

in G has two consecutive vertices of X.
The bounds 1

2
√

2

√
n < h(n) ≤ dn2 e still remain the best known estimates

on h(n). Subsequently to our work, the extremal functions of several other types
of large noncrossing configurations were considered. In particular, Aichholzer et
al. [3] have shown that for any n even, any graph on n vertices whose complement
has fewer than n

2 edges contains a noncrossing perfect matching, and this bound
is best possible. Moreover, Aichholzer et al. have shown that for any k ≥ 2,
a geometric graph on n vertices whose complement has fewer than dkn2 e edges
contains a noncrossing tree on n−k+ 1 vertices, and this is again best possible.

3.2 Monochromatic Triangles in the Plane
Another area of geometric graph theory is the study of (typically infinite) graphs
whose vertices are points in the plane (or in a more general metric space) and
edges are defined by a condition depending on the distance of the two vertices.
Perhaps the most famous problem in this area is the so-called Hadwiger–Nelson
problem, which asks to determine the smallest number of colors needed to color
the points in the plane in such a way that no points at distance one from each
other are colored by the same color. Assuming the axiom of choice, the problem
can be rephrased in the following equivalent form: what is the largest chromatic
number of a finite geometric graph whose every edge is a segment of length one?

It is easy to find examples of unit-distance graphs of chromatic number 4, and
it is also not too hard to describe a coloring of the plane by 7 colors with every
two points at distance 1 receiving distinct colors. However, despite considerable
interest in this problem, these simple bounds have not been improved yet.

The Hadwiger–Nelson problem is the simplest special case of the following
general question: suppose we are given a (typically finite) set P of points in the
plane; what is the smallest number of colors needed to color the plane in such
a way that no rotated and translated copy of P is monochromatic? This type
of questions, and its obvious generalization to higher dimensions, is studied in
the area known as Euclidean Ramsey theory.

We say that a coloring of the plane contains the set P if there is a monochro-
matic translated and rotated copy of P , otherwise we say that the coloring
avoids P . The Hadwiger–Nelson problem then asks to find the smallest number
of colors in a coloring that avoids the configuration P consisting of two points
at distance 1 apart.

What can we say about the avoidance of three-point configurations? Let us
use the term (a, b, c)-triangle to refer to a configuration of three points forming
the vertex set of a triangle with edges of length a, b and c. Ramsey properties of
triangles were first studied by Erdős et al. [23–25], who focused on colorings by
two colors. They have shown that for any triple of edge-lengths a, b, c satisfying
the (possibly degenerate) triangle inequality, a two-coloring of the plane contains
an (a, b, c)-triangle if and only if it contains an (a, a, a)-triangle or a (b, b, b)-
triangle or a (c, c, c)-triangle. This implies, in particular, that a two-coloring
contains a given triangle if and only if it contains its mirror image. It also
implies that any two-coloring that avoids at least one triangle must avoid at
least one equilateral triangle, and any two-coloring that avoids at least one
non-equilateral triangle must avoid equilateral triangles of at least two different

19



edge-lengths.
Erdős et al. [23] have also pointed out that the (1, 1, 1)-triangle is avoided

by the two-coloring consisting of parallel half-open strips of width
√

3/2 colored
by alternating colors; formally, we color a point (x, y) black if b

√
3x/2c is odd

and white otherwise. They then made the following two conjectures.

Conjecture 2. [25] Each two-coloring of the plane contains each non-equilateral
triangle. Equivalently, each two-coloring of the plane avoids at most one equi-
lateral triangle.

Conjecture 3. [25] The coloring consisting of alternating strips of width
√

3/2
is the only two-coloring of the plane that avoids the (1, 1, 1)-triangle, up to a
possible rotation, translation and modification of the colors of the points on the
boundaries of the strips.

Observe that Conjecture 3 is a strengthening of Conjecture 2, since the
colorings described in Conjecture 3 contain all equilateral triangles except for
the (1, 1, 1)-triangle.

These conjectures have motivated a joint paper with Kynčl, Stolař and Valla,
‘Monochromatic Triangles in Two-Colored Plane’ [37, see Appendix D].
In this paper, our aim was to verify the above conjectures of Erdős et al. for
special types of colorings. As our first result, we have shown that any two-
coloring of the plane in which one of the colors forms a topologically closed
subset of the plane (and hence the other color is open) contains all triangles,
verifying Conjecture 2 for such colorings.

Next, we have considered the so-called polygonal colorings, which are col-
orings of the plane by black and white colors in which the common boundary
of the two colors consists of a union of straight-line segments. In this class of
colorings, we have found counterexamples to Conjecture 3. More precisely, we
defined a family of so-called zebra-like colorings, which generalize the colorings
described in Conjecture 3 by considering strips which are not bounded by two
parallel lines, but rather by a pair of periodic piecewise linear curves satisfying
certain constraints.

We also proved that among polygonal colorings, the zebra-like colorings are
the only counterexamples to Conjecture 3. In particular, we verified Conjec-
ture 2 for polygonal colorings.

Despite some partial results verifying Conjecture 2 for specific types of tri-
angles (see e.g. [25, 53]), the conjecture remains open to this day.

3.3 Drawings with Few Slopes
A classical result, proven independently by Wagner [57] and Fáry [26], states
that every planar graph has a planar geometric drawing. For aesthetic purposes,
it is natural to look for a geometric drawing whose edges form as few distinct
slopes as possible.

Clearly, if a graph contains a vertex of degree ∆, then its edges must form
at least d∆/2e distinct slopes in any geometric drawing. This lower bound is in
general not tight, as shown, e.g., by the example of the graph K4, whose every
planar geometric drawing requires six distinct slopes.

Dujmović et al. [21, 22] have asked whether there is a function f such that
any planar graph of maximum degree ∆ has a planar geometric drawing whose

20



edges determine at most f(∆) slopes. They proved that every tree has such a
drawing with at most d∆/2e slopes, and that every cubic 3-connected planar
graph has such a drawing with at most 6 slopes.

In the paper ‘The Planar Slope Number of Planar Partial 3-Trees of
Bounded Degree’ [36, see Appendix E] (joint work with Jelínková, Kratochvíl,
Lidický, Tesař, and Vyskočil), we obtain analogous results for another class of
graphs, namely planar partial 3-trees, i.e., the planar graphs of tree-width at
most 3. Specifically, we proved the next theorem.

Theorem 4. Every planar partial 3-tree of maximum degree ∆ has a geometric
planar drawing whose edges determine O(∆5) slopes.

Subsequently, Keszegh et al. [41] have answered the open problem of Duj-
mović et al. in full generality, by showing that every planar graph of maximum
degree ∆ has a planar geometric drawing with 2O(∆) slopes. It is an open
problem whether the exponential dependency on ∆ can be improved. The best
known lower bound is also due to Keszegh et al. [41], who showed that for any
∆, there is a planar graph G∆ that requires at least 3∆−6 slopes in any planar
geometric drawing. The gap between the upper bound and the lower bound is
thus quite large.

For more restricted classes of graphs, tight results are available. For instance,
Knauer et al. [42] have shown that every outerplanar graph of maximum degree
∆ ≥ 4 has an outerplanar straight-line drawing with at most ∆− 1 slopes, and
this is best possible, in the sense that for every ∆ ≥ 4 there is an outerplanar
graph of maximum degree ∆ whose every outerplanar straight line drawing
requires ∆− 1 slopes.

3.4 Visibility and Convexity
Suppose that A is a set in a Euclidean space Rd, and let λ(A) denote the
(Lebesgue) measure of A. We define the visibility graph GA of the set A to be
the (typically infinite) geometric graph whose vertices are the points of A, and
two points x, y ∈ A are connected by an edge if and only if the segment xy is
contained in A. Notice that GA is a clique if and only if the set A is convex.

We may define certain properties of the graph GA which indicate that the set
A is in some sense ‘close’ to being convex. Suppose, for the rest of this chapter,
that the set A ⊆ Rd is measurable, with finite positive measure, and suppose
that the set Seg(A) = {(x, y) ∈ A × A; xy is an edge of GA} is measurable as
well. Let us consider the following two quantities:

• The convexity ratio of A, denoted by c(A), is defined by

c(A) = sup
K⊆A

K convex

λ(K)

λ(A)
.

• The Beer index of A, denoted by b(A), is defined by

b(A) =
λ(Seg(A))

λ(A)2
.

21



Note that both b(A) and c(A) take values from the interval [0, 1], and if A
is convex, then b(A) = c(A) = 1. Thus, b(A) and c(A) can both be seen as
indicators of how close a set is to being convex.

In graph theoretic terms, b(A) can be interpreted as the edge-density of
the graph GA, while c(A) is the relative size of the largest clique in A. We
may also view b(A) as the probability that for two points x, y chosen uniformly
independently in A, the segment xy is contained in A.

The Beer index was introduced and studied by Beer [6–8], who called it ‘the
index of convexity’. Later, it was rediscovered by Stern [54], who described a
Monte Carlo algorithm to approximate the Beer index of a polygon. Rote [50]
then gave an exact algorithm to compute the Beer index of a polygon.

What can we say about the relationship between b(A) and c(A)? On one
hand, it is easy to see that the Beer index of a set A is at least c(A)2, and this
cannot be improved, as demonstrated, for instance, by a set A constructed as a
disjoint union of a compact convex set of measure c and a set of measure 1− c
with Beer index 0.

A more interesting question is to determine whether there is a lower bound
on c(A) in terms of b(A), or in graph theoretic terms, whether a given constant
edge-density of the visibility graph of A implies the graph has a clique forming
a constant fraction of A.

Without any further assumptions on A, we cannot get any nontrivial bound
of this form, as shown by the set A = [0, 1]2 \Q2, obtained from a unit square
by removing all the points that have both coordinates rational. One may easily
check that b(A) = 1 while c(A) = 0.

The situation changes, however, when we impose additional restrictions
on A. In particular, Cabello et al. [14] have shown that there is a constant α > 0
such that every polygon P satisfies b(P ) ≤ α · c(P ) (1− log c(P )). They conjec-
tured that this can be further strengthened to a linear bound b(P ) ≤ α · c(P ),
and verified the conjecture for star-shaped polygons, i.e., for polygons containing
a point which is adjacent to all the other points in the visibility graph.

In the paper ‘On the Beer index of convexity and its variants’ [5, see
Appendix I], which is a joint work with Balko, Valtr and Walczak, we confirm
and generalize this conjecture. Specifically, we obtain the following result.

Theorem 5. There is a constant α > 0 such that every simply connected set
A ⊆ R2 satisfies b(A) ≤ α · c(A).

Note that up to the value of α, the bound in the previous theorem is optimal,
as shown by the example of a set A consisting of n internally disjoint triangles
of equal area, sharing a common vertex x, and positioned in such a way that x is
on the boundary of the convex hull of A. We then see that b(A) = c(A) = 1/n.

We also consider analogues of these results in higher dimensions, i.e., in
the situation when A is a subset of Rd. To state these generalizations, it is
convenient to introduce higher-order generalizations of the Beer index. For a
set A ⊆ Rd, and k ≤ d an integer, we let bk(A) denote the probability that
for a (k + 1)-tuple of points (x0, x1, . . . , xk) chosen uniformly independently at
random in A, the convex hull of x0, . . . , xk is a subset of A. Note that with
this notation, b1(A) is the Beer index b(A) of A. Note also that we have the
inequalities b1(A) ≥ b2(A) ≥ · · · ≥ bd(A), provided all the bk(A) are well
defined.

We then obtain the following lower bound for c(A) in terms of bd(A).

22



Theorem 6. For every d ≥ 2 there is a constant β = β(d) > 0 such that every
set A ⊆ Rd whose bd(A) is well defined satisfies bd(A) ≤ β · c(A).

Compared to Theorem 5, in Theorem 6 we do not require any special proper-
ties of A, beyond the assumption that bd(A) is well defined. On the other hand,
for d = 2, Theorem 6 only gives a lower bound for c(A) in terms of b2(A), while
Theorem 5 gives a bound in terms of b(A) = b1(A). Thus, the two theorems
are incomparable in terms of strength.

We do not know whether the linear bound of Theorem 6 is best possible,
even for d = 2. However, we have a construction showing that the bound is
tight up to a logarithmic factor.

Theorem 7. For every d ≥ 2 there is a constant γ = γ(d) > 0 such that for each
ε ∈ (0, 1] there is a set A ⊆ Rd with c(A) ≤ ε satisfying bd(A) ≥ γ c(A)

log(1/ c(A)) .

It is an open problem to close the gap between the bounds of Theorem 6
and Theorem 7. It is also an open problem to generalize Theorem 5 to higher
dimension, e.g., by giving a lower bound on c(A) in terms of bd−1(A) for sets
A ⊆ Rd satisfying some suitable topological restrictions.

23



Bibliography

[1] E. Ackerman: On the maximum number of edges in topological graphs with no
four pairwise crossing edges. Discrete & Computational Geometry, 41(3):365–375,
2009.

[2] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir: Quasi-planar
graphs have a linear number of edges. Combinatorica, 17(1):1–9, 1997.

[3] O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl,
C. Huemer, F. Hurtado, and D. Wood: Edge-removal and non-crossing con-
figurations in geometric graphs. Discrete Mathematics and Theoretical Computer
Science, 12(1), 2010.

[4] P. Angelini, G. Di Battista, F. Frati, V. Jelínek, J. Kratochvíl, M. Patrignani, and
I. Rutter: Testing planarity of partially embedded graphs. ACM Transactions
on Algorithms, 11(4):32:1–32:42, 2015.

[5] M. Balko, V. Jelínek, P. Valtr, and B. Walczak: On the Beer index of convex-
ity and its variants. In L. Arge and J. Pach, editors, International Symposium
on Computational Geometry, volume 34 of Leibniz International Proceedings in
Informatics, pages 406–420, 2015.

[6] G. Beer: Continuity properties of the visibility function. Michigan Mathematical
Journal, 20:297–302, 1973.

[7] G. Beer: The index of convexity and the visibility function. Pacific Journal of
Mathematics, 44(1):59–67, 1973.

[8] G. Beer: The index of convexity and parallel bodies. Pacific Journal of Mathe-
matics, 53(2):337–345, 1974.

[9] T. Biedl, M. Kaufmann, and P. Mutzel: Drawing planar partitions II: HH-
drawings. In J. Hromkovič and O. Sýkora, editors, Graph-Theoretic Concepts
in Computer Science, volume 1517 of Lecture Notes in Computer Science, pages
124–136, 1998.

[10] T. Bläsius and I. Rutter: Simultaneous PQ-ordering with applications to con-
strained embedding problems. In Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 1030–1043, 2013.

[11] T. Bläsius and I. Rutter: A new perspective on clustered planarity as a com-
binatorial embedding problem. In C. Duncan and A. Symvonis, editors, Graph
Drawing, volume 8871 of Lecture Notes in Computer Science, pages 440–451,
2014.

[12] K. S. Booth and G. S. Lueker: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences, 13(3):335 – 379, 1976.

[13] J. M. Boyer and W. J. Myrvold: On the cutting edge: Simplified O(n) planarity
by edge addition. Journal of Graph Algorithms and Applications, 8(3):241–273,
2004.

24



[14] S. Cabello, J. Cibulka, J. Kynčl, M. Saumell, and P. Valtr: Peeling potatoes
near-optimally in near-linear time. In Symposium on Computational Geometry,
SOCG’14, pages 224–231. ACM, 2014.

[15] M. Chimani, G. Di Battista, F. Frati, and K. Klein: Advances on testing c-
planarity of embedded flat clustered graphs. In C. Duncan and A. Symvonis,
editors, Graph Drawing, volume 8871 of Lecture Notes in Computer Science, pages
416–427, 2014.

[16] J. Černý, Z. Dvořák, V. Jelínek, and J. Kára: Noncrossing Hamiltonian paths in
geometric graphs. Discrete Applied Mathematics, 155(9):1096–1105, 2007.

[17] G. Da Lozzo, V. Jelínek, J. Kratochvíl, and I. Rutter: Planar embeddings with
small and uniform faces. In H.-K. Ahn and C.-S. Shin, editors, Algorithms and
Computation, volume 8889 of Lecture Notes in Computer Science, pages 633–645,
2014.

[18] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl: Trémaux trees and pla-
narity. International Journal of Foundations of Computer Science, 17(05):1017–
1029, 2006.

[19] G. Di Battista and F. Frati: Efficient c-planarity testing for embedded flat clus-
tered graphs with small faces. In S.-H. Hong, T. Nishizeki, and W. Quan, editors,
Graph Drawing, volume 4875 of Lecture Notes in Computer Science, pages 291–
302, 2008.

[20] G. Di Battista and R. Tamassia: Incremental planarity testing. In 30th Annual
Symposium on Foundations of Computer Science, pages 436–441, 1989.

[21] V. Dujmović, D. Eppstein, M. Suderman, and D. R. Wood: Drawings of planar
graphs with few slopes and segments. Computational Geometry, 38(3):194 – 212,
2007.

[22] V. Dujmović, M. Suderman, and D. R. Wood: Really straight graph drawings.
In J. Pach, editor, Graph Drawing, volume 3383 of Lecture Notes in Computer
Science, pages 122–132, 2005.

[23] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G.
Straus: Euclidean Ramsey theorems I. Journal of Combinatorial Theory, Series
A, 14(3):341–363, 1973.

[24] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G.
Straus: Euclidean Ramsey theorems II. In Infinite and Finite Sets Colloq.,
Keszthely, volume 10 of Colloq. Math. Soc. János Bolyai, pages 529–557, 1973.

[25] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G.
Straus: Euclidean Ramsey theorems III. In Infinite and Finite Sets Colloq.,
Keszthely, volume 10 of Colloq. Math. Soc. János Bolyai, pages 559–583, 1973.

[26] I. Fáry: On straight-line representation of planar graphs. Acta Sci. Math.
(Szeged), 11, 1948.

[27] Q.-W. Feng, R. F. Cohen, and P. Eades: Planarity for clustered graphs. In P. Spi-
rakis, editor, Algorithms — ESA ’95, volume 979 of Lecture Notes in Computer
Science, pages 213–226, 1995.

[28] R. Fulek: Towards the Hanani-Tutte theorem for clustered graphs. In D. Kratsch
and I. Todinca, editors, Graph-Theoretic Concepts in Computer Science, pages
176–188, 2014.

[29] R. Fulek, J. Kynčl, I. Malinović, and D. Pálvölgyi: Clustered planarity testing
revisited. In C. Duncan and A. Symvonis, editors, Graph Drawing, pages 428–439,
2014.

25



[30] M. T. Goodrich, G. S. Lueker, and J. Z. Sun: C-planarity of extrovert clustered
graphs. In P. Healy and N. S. Nikolov, editors, Graph Drawing, volume 3843 of
Lecture Notes in Computer Science, pages 211–222, 2006.

[31] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher:
Advances in c-planarity testing of clustered graphs. In M. T. Goodrich and S. G.
Kobourov, editors, Graph Drawing, volume 2528 of Lecture Notes in Computer
Science, pages 220–236, 2002.

[32] C. Gutwenger and P. Mutzel: A linear time implementation of SPQR-trees. In
J. Marks, editor, Graph Drawing, volume 1984 of LNCS, pages 77–90, 2000.

[33] J. Hopcroft and R. Tarjan: Efficient planarity testing. Journal of the ACM,
21(4):549–568, 1974.

[34] V. Jelínek, J. Kratochvíl, and I. Rutter: A Kuratowski-type theorem for planarity
of partially embedded graphs. Computational Geometry, 46(4):466–492, 2013.

[35] V. Jelínek, E. Jelínková, J. Kratochvíl, and B. Lidický: Clustered planarity:
Embedded clustered graphs with two-component clusters. In I. G. Tollis and
M. Patrignani, editors, Graph Drawing, volume 5417 of Lecture Notes in Computer
Science, pages 121–132, 2009.

[36] V. Jelínek, E. Jelínková, J. Kratochvíl, B. Lidický, M. Tesař, and T. Vyskočil:
The planar slope number of planar partial 3-trees of bounded degree. Graphs and
Combinatorics, 29(4):981–1005, 2013.

[37] V. Jelínek, J. Kynčl, R. Stolař, and T. Valla: Monochromatic triangles in two-
colored plane. Combinatorica, 29(6):699–718, 2009.

[38] V. Jelínek, O. Suchý, M. Tesař, and T. Vyskočil: Clustered planarity: Clusters
with few outgoing edges. In I. G. Tollis and M. Patrignani, editors, Graph Draw-
ing, volume 5417 of Lecture Notes in Computer Science, pages 102–113, 2009.

[39] E. Jelínková, J. Kára, J. Kratochvíl, M. Pergel, O. Suchý, and T. Vyskočil: Clus-
tered planarity: Small clusters in cycles and Eulerian graphs. Journal of Graph
Algorithms and Applications, 13(3):379–422, 2009.

[40] G. Károlyi, J. Pach, and G. Tóth: Ramsey-type results for geometric graphs, I.
Discrete & Computational Geometry, 18(3):247–255, 1997.

[41] B. Keszegh, J. Pach, and D. Pálvölgyi: Drawing planar graphs of bounded degree
with few slopes. In U. Brandes and S. Cornelsen, editors, Graph Drawing, vol-
ume 6502 of Lecture Notes in Computer Science, pages 293–304. Springer Berlin
Heidelberg, 2011.

[42] K. Knauer, P. Micek, and B. Walczak: Outerplanar graph drawings with few
slopes. Computational Geometry: Theory and Applications, 47(5):614–624, 2014.

[43] K. Kuratowski: Sur le problème des courbes gauches en topologie. Fund. Math.,
15:271–283, 1930.

[44] T. Lengauer: Hierarchical planarity testing algorithms. Journal of the ACM,
36(3):474–509, July 1989.

[45] P. Mutzel and R. Weiskircher: Optimizing over all combinatorial embeddings of a
planar graph. In Integer Programming and Combinatorial Optimization, volume
1610 of Lecture Notes in Computer Science, pages 361–376, 1999.

[46] J. Pach and J. Törőcsik: Some geometric applications of Dilworth’s theorem.
Discrete & Computational Geometry, 12(1):1–7, 1994.

[47] J. Pach and G. Tóth: Monotone drawings of planar graphs. Journal of Graph
Theory, 46(1):39–47, 2004.

[48] M. Patrignani: On extending a partial straight-line drawing. International Jour-
nal of Foundations of Computer Science, 17(05):1061–1069, 2006.

26



[49] N. Robertson and P.D. Seymour: Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65 – 110, 1995.

[50] G. Rote: The degree of convexity. In Abstracts of the 29th European Workshop
on Computational Geometry, pages 69–72, 2013.

[51] M. Schaefer: Toward a theory of planarity: Hanani-Tutte and planarity variants.
Journal of Graph Algorithms and Applications, 17(4):367–440, 2013.

[52] M. Schaefer: Picking planar edges; or, drawing a graph with a planar subgraph.
In C. Duncan and A. Symvonis, editors, Graph Drawing, volume 8871 of Lecture
Notes in Computer Science pages 13–24, 2014.

[53] L. E. Shader: All right triangles are Ramsey in E2! Journal of Combinatorial
Theory, Series A, 20(3):385–389, 1976.

[54] H. I. Stern: Polygonal entropy: a convexity measure for polygons. Pattern
Recognition Letters, 10(4):229–235, 1989.

[55] W.T. Tutte: Toward a theory of crossing numbers. Journal of Combinatorial
Theory, 8(1):45 – 53, 1970.

[56] P. Valtr: On geometric graphs with no k pairwise parallel edges. Discrete &
Computational Geometry, 19(3):461–469, 1998.

[57] K. Wagner: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 36:26–32, 1936.

[58] K. Wagner: Über eine Eigenschaft der ebenen Komplexe. Mathematische An-
nalen, 114(1):570–590, 1937.

[59] G. J. Woeginger: Embeddings of planar graphs that minimize the number of
long-face cycles. Operations Research Letters, 30(3):167–168, 2002.

27



Appendix A

Non-crossing Hamiltonian
Paths

28



Discrete Applied Mathematics 155 (2007) 1096 – 1105
www.elsevier.com/locate/dam

Noncrossing Hamiltonian paths in geometric graphs

Jakub Černý, Zdeněk Dvořák, Vít Jelínek, Jan Kára
Department of Applied Mathematics, Charles University, Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

Received 8 January 2004; received in revised form 23 December 2004; accepted 22 December 2005
Available online 2 January 2007

Abstract

A geometric graph is a graph embedded in the plane in such a way that vertices correspond to points in general position and edges
correspond to segments connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian
path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: determine the
largest number h(n) such that when we remove any set of h(n) edges from any complete geometric graph on n vertices, the resulting
graph still has a noncrossing Hamiltonian path. We prove that h(n)�(1/2

√
2)

√
n. We also establish several results related to special

classes of geometric graphs. Let h1(n) denote the largest number such that when we remove edges of an arbitrary complete subgraph
of size at most h1(n) from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path.
We prove that 1√

2

√
n < h1(n) < 3

√
n. Let h2(n) denote the largest number such that when we remove an arbitrary star with at most

h2(n) edges from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We show
that h2(n) = �n/2� − 1. Further we prove that when we remove any matching from a complete geometric graph the resulting graph
will have a noncrossing Hamiltonian path.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Geometric graph; Hamiltonian path

1. Introduction

A geometric graph is a graph drawn in the plane so that its vertices are represented by points in general position
(i.e., there are no three collinear points) and its edges are straight-line segments connecting the corresponding vertices.

Lately geometric graphs have been intensively studied. There are many papers studying the smallest number of edges
needed to guarantee the occurrence of some fixed subconfiguration in any geometric graph (the best known result of
this type following from Euler’s polyhedral formula is that any geometric graph with at least 3n − 5 edges must have
two edges which intersect). Interesting results of this sort may be found in [2,4,7–10] to name a few or in the surveys
on geometric graphs [5,6].

In our paper we study the existence of a noncrossing Hamiltonian path (i.e. Hamiltonian path which does not cross
itself) in a given geometric graph. In particular we concentrate on a problem presented by Micha Perles on DIMACS
Workshop on Geometric Graph Theory in 2002, which asks to determine the largest possible number h(n) such that
every geometric graph on n vertices with at least (

n
2 ) − h(n) edges has a noncrossing Hamiltonian path. The same

E-mail addresses: kuba@kam.mff.cuni.cz (J. Černý), rakdver@kam.mff.cuni.cz (Z. Dvořák), jelinek@kam.mff.cuni.cz (V. Jelínek),
kara@kam.mff.cuni.cz (J. Kára).

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.12.010



J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105 1097

question for noncrossing Hamiltonian cycle is uninteresting. If the points are in convex position and we delete an
edge on the boundary then there is no noncrossing Hamiltonian cycle anymore. Perles himself has shown the upper
bound h(n) < n/2 and the lower bound h(n)�2. Apart from improving the lower bound of h(n), we also focus on
the restriction of the problem to some classes of geometric graphs. Let h1(n) denote the largest number such that
when we remove the edges of an arbitrary complete subgraph of size at most h1(n) from a complete geometric graph
on n vertices, the resulting graph always has a noncrossing Hamiltonian path. We prove that 1√

2

√
n < h1(n) < 3

√
n

(Theorems 1 and 3). Let h2(n) denote the largest number such that when we remove an arbitrary star with at most
h2(n) edges from a complete geometric graph on n vertices, the resulting graph still has a noncrossing Hamiltonian
path. In Theorem 6 we show that h2(n) = �n/2� − 1. We also prove that h3(n) = �n/2� − 1, where h3(n) is the largest
number such that when we remove at most h3(n) arbitrary edges from the complete geometric graph on n vertices in
convex position, then the graph still has a noncrossing Hamiltonian path (Theorems 4 and 5). The previous equality
also follows from an unpublished result of Micha Perles, which has been proved independently to our research. Further
we prove that when we remove any matching from acomplete geometric graph, the resulting graph has a noncrossing
Hamiltonian path (Theorem 2).

The paper is organized as follows: In Section 2 we introduce basic definitions and notation. In Sections 3 and 4 we
study complete geometric graphs with removed complete subgraph and we prove the asymptotically tight bounds on
the size of complete subgraph removed. In Section 5 we prove the tight bounds on the number of edges removed from
convex geometric graph and in Section 6 we prove the tight bounds on the size of a star removed from a complete
geometric graph.

The paper is based on the paper from Graph Drawing 2003 [3]. We added Section 7 with open problems.

2. Definitions and notation

In this section we introduce basic definitions and notation used throughout this paper. A geometric graph G is an
ordered pair (V , E) where V is a set of points in general position in the plane (called vertices of G) and E is a set
of straight–line segments connecting two vertices (called edges of G). A Hamiltonian path in a graph G is a path
contained in G which visits all the vertices of G. A noncrossing Hamiltonian path in a geometric graph G = (V , E) is
a Hamiltonian path which does not intersect itself. A convex hull of a set of points X ⊂ R2, X = {x1, . . . , xn} is a set
of points H = {h ∈ R2 : ∃a1, . . . an such that ∀i ∈ {1, . . . , n} ai ∈ R, ai �0,

∑n
i=1ai = 1 and h = ∑n

i=1aixi}. We
say that a point p lies below a line l (line l must not be parallel to y-axis) if it lies in the half-plane defined by l which
contains −∞ on the y axis. Similarly we use the term above a line. A point u lies to the left of v if the x-coordinate of
u is less than or equal to the x-coordinate of v. Similarly we define that u is to the right of v. Let s be a segment in R2

defined by two endpoints u, v ∈ R2, where u is to the left of v. We say that a point p ∈ R2 lies below the segment s
if it lies below a line defined by u and v, to the right of u and to the left of v. Let Z ⊂ R2, Z = {z1, . . . , zn} be a set
of points in the plane. An x-monotone order of Z is an ordering of Z in which the x-coordinates of the points form a
monotone sequence. Analogously we define a y-monotone order of Z. A point z ∈ Z is called an extremal point of Z if
it belongs to the boundary of the convex hull of Z. A segment uv, with u and v in Z, is called an extremal segment of Z
if it is a subset of the boundary of the convex hull of Z.

3. The lower bound for complements of cliques

In the following two sections we consider a particular class C of geometric graphs—the complements of complete
subgraphs. A geometric graph G = (V , E) is in C iff there exist X, Y ⊆ V such that V = X ∪ Y , X ∩ Y = ∅ and E is
the set of all the possible edges with at least one enpoint in Y (i.e. G is obtained from a complete graph by removing
the edges of a complete subgraph). We prove that any geometric graph G ∈ C with |X|� 1√

2

√|V | has a noncrossing
Hamiltonian path.

Lemma 1. Let G = (V , E) be a geometric graph, G ∈ C. If there exists a line l such that all the vertices of X are in
one half-plane defined by l and at least |X| vertices of Y are in the other half-plane, then there exists a noncrossing
Hamiltonian path in G.

Proof. We may WLOG assume that the line l is parallel to the y-axis and that all the vertices of the set X are in the left
half-plane. The algorithm for producing a noncrossing Hamiltonian path in this configuration is shown on Fig. 1. We



1098 J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105

Fig. 1. An algorithm for finding a noncrossing Hamiltonian path. Function CrossSegment returns the extremal segment of the given set which
intersects l (actually there are two such segments so the function returns the one which intersects l at position with bigger y coordinate—we suppose
l is parallel to y axis). Functions Leftmost and Rightmost return, respectively, the leftmost and the rightmost point of the given set.

iterate the procedure described below to find a noncrossing Hamiltonian path in G. The procedure is a generalization
of an algorithm developed by Abellanas et al. [1]. In each step, the procedure adds a new vertex to the path that it has
constructed in the previous steps, according to the following rules: first, we take the upper extremal segment of the
vertices not yet added to the path (the whole set V in the beginning) which crosses l (see Fig. 2 on the left). If the last
vertex added to the path or the left endpoint of the extremal segment is from Y, then the left endpoint of the segment is
added to the path (Fig. 2 on the right), otherwise we add the right endpoint (Fig. 3 on the left). If no vertices were added
yet, we may add either of the endpoints. If l does not cross the convex hull, then we simply add the remaining vertices
to the path in an x-monotone order. See Fig. 3 on the right for an example of the path produced by this algorithm.

It is clear that the algorithm finishes when it adds all the vertices to the path. It is also easy to see that there are no two
consecutive vertices of X on the constructed path and hence it is indeed a path in G. The only place in the algorithm,
where two vertices of X might be added consecutively to the path, is when the convex hull of the vertices not yet on
the path no longer intersects l, all these remaining vertices lie to the left of l, and the algorithm is adding them in an
x-monotone order. But at that time there is at most one vertex of X not on the path: the other vertices of X were added in
the previous steps because there are at least |X| vertices of Y in the right half-plane, and each of them has been added
to the path immediately after a vertex of Y, with the possible exception of the first vertex of the path.



J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105 1099

P0

P1
P2

P0

P1

P2

Fig. 2. The left figure shows the first step of the algorithm. The right figure shows the second step of the algorithm—add left end of the segment to
the path.

P0

P1

P2

P0

P1

P2

Fig. 3. On the left there is the third step of the algorithm—add right end of the segment to the path. On the right there is the whole noncrossing
Hamiltonian path.

P0

P1

Fig. 4. If the segment to new vertex intersected the convex hull of the remaining vertices the previous vertex on the path would have to lie in the
lower half-plane.

It remains to prove that the path is noncrossing. We check that after each step of the algorithm, the path does not
intersect the convex hull of the remaining vertices including the vertex just added to the path. From this it is obvious
that the path does not intersect itself (at each vertex each of the following edges of the path must lie in the convex hull
and the previous edges lie outside of it). When the path contains only one vertex, the claim is obviously true. When we
add a new vertex to the path, the edge connecting the new vertex to the previous vertex on the path cannot intersect
the convex hull of the remaining vertices—if the edge intersected the convex hull, then the previous vertex on the path
would have to lie in the lower half-plane defined by the upper extremal segment of the remaining vertices intersecting
l (see Fig. 4). But then we get contradiction with the choice of the vertex in the previous step of the algorithm (the
vertex cannot be an endpoint of the upper extremal segment intersecting l). From the induction we know that no other



1100 J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105

z

l1

l2

Fig. 5. Partitioning of the plane into the strips and choice of the vertices to which Lemma 1 should be applied.

z

l1

Fig. 6. There are no vertices lying above the first segment of the path and below the line l1.

edge of the path can intersect the convex hull of the remaining vertices and so we have proven that the path does not
intersect itself. �

Now we prove a similar result for a general choice of the sets X and Y:

Theorem 1. Let G = (V , E) be a geometric graph, G ∈ C. If |Y |�2|X|(|X| + 1) then there exists a noncrossing
Hamiltonian path in G.

Proof. Assume WLOG that all vertices of X have different x coordinates. Partition the plane into |X|+1 vertical strips
separated by vertical lines passing through the points of X (see Fig. 5). It follows from the pigeonhole principle that
there is a strip S with at least 2 · |X| vertices of Y in it. Let xl denote the number of vertices of X to the left of S (including
the vertex on the left boundary of S). Similarly let xr denote the number of vertices of X to the right of S. Now we can
certainly choose a vertex z of S such that there are at least 2xl vertices in S to the left from z and at least 2xr vertices
in S to the right from z. The vertical line passing through z splits S into two strips, denoted Sl (the left one) and Sr (the
right one).

We now describe a procedure to find a noncrossing path starting in z and containing all vertices to the left of z. We
find lines l1, l2 such that z ∈ l1 ∩ l2, both l1 and l2 contain some vertex lying to the left from Sl and there is no vertex
lying to the left from Sl which would lie above l1 or below l2 (see Fig. 5). It is clear that in Sl there are either at least xl
vertices below l1 or at least xl vertices above l2. Assume WLOG that there are at least xl vertices below l1. Let Z denote
the set of vertices lying to the left from z and below l1, including the two vertices on the line l1. Now we can apply
Lemma 1 to the set Z (line l from the statement of the lemma is the left boundary of the strip S). From the lemma we get
a noncrossing path starting in z containing all the vertices of Z (note that z is an endpoint of the upper extremal segment
of Z intersecting l). Because there are no vertices of Z above the first segment of the path (all the vertices must lie below
a line defined by the extremal segment from the second step of the procedure from Lemma 1 and the whole area above
the first segment of the path lies above this line—see Fig. 6), we can replace the first segment of the path by the path
going through all the vertices in Sl above the line l1 in an x-monotone order (see Fig. 7). By the replacing we got a



J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105 1101

z

Fig. 7. Replacing the first segment of the path with an x-monotone path.

noncrossing path starting in z and using all the vertices of V to the left of z. Similarly we can get a path starting from z
and containing all the vertices of V to the right of z, then join these two paths in z and get a noncrossing Hamiltonian
path for G.

It remains to count the constant:

n = |X| + |Y |� |X| + 2|X|(|X| + 1)�2|X|2

So we get |X|� 1√
2

√
n. �

Now using Theorem 1 we can prove the following corollary:

Corollary 1. Let G = (V , E) be a geometric graph and let k =
(( |V |

2

)
− |E|

)
(i.e., k is the number of edges not

present in G). If 8k2 + 6k� |V | then there exists a noncrossing Hamiltonian path in G.

Proof. The idea of the proof is easy. We apply Theorem 1 for the original graph where X is the set of all vertices of the
missing edges.

More formally, let X be the set of all vertices of V with degree less than |V | − 1. The size of X is clearly less than
or equal to 2k. Let Y = V \X. From the statement of the corollary we know that |Y |�2|X|(|X| + 1) and hence the
assumptions from the statement of Theorem 1 are satisfied and we can conclude that G has a noncrossing Hamiltonian
path. This gives a lower bound h(n)�(1/2

√
2)

√
n defined in the introduction. �

Using the algorithm with a similar idea as the algorithm in Lemma 1 we can also prove the following result for the
complements of matchings:

Theorem 2. Let G = (V , E) be a geometric graph which is a complement of a matching (i.e. a graph with minimum
degree |V | − 2) and |V |�3. Then G has a noncrossing Hamiltonian path.

Proof. The case when |V | = 3 is trivial so we can assume |V |�4. We use the following algorithm for a construction
of a noncrossing Hamiltonian path: first take any extremal point of V to be the first vertex of the path. Let x be the last
vertex on the path constructed so far. Then at each step we choose a vertex y which is an extremal point of the remaining
vertices such that {x, y} is an edge in G which does not intersect the convex hull of the remaining points, and we add
y to the path. The vertex y with the desired properties always exists if there are at least two remaining vertices. Let H ′
denote the set of points outside the path in the previous step of the algorithm and H the set of points outside the path in
the current step. In the previous step, x was an extremal vertex of H ′ and so in the current situation there must be some
segment y1y2 which is an extremal segment of H, such that neither of segments xy1 and xy2 do intersect the convex
hull of H. Because at least one of these segments must be an edge in G (its complement was a matching) we have just
proven the existence of y.

If there is only one remaining vertex and it is not connected by an edge to the last point on the path, we cannot
finish the path. Let y1 be the last remaining vertex and y2, y3, and y4 be the last vertices on the path in the reverse
order (remember that |V |�4). In this situation we remove the vertices y2 and y3 from the path to get the situation from



1102 J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105

y
1

y
2

y
3

y
4

Fig. 8. The situation when we cannot add the last point to the noncrossing path.

Fig. 8. Because y1 and y2 are not connected by an edge of G, we know that y4 must be connected by an edge to both
y1 and y2 and one of these edges does not intersect the convex hull of the remaining points. So we can WLOG add y1
to the path and then finish the path by adding y3 and y2. �

4. The upper bound

In this section we prove that there exist geometric graphs in C such that the size of X is O(
√|V |) and the graphs

do not have a noncrossing Hamiltonian path. By proving this we get two asymptotically tight bounds on the function
h1(n) defined in the introduction.

Definition 1. Let V be a set of points in convex position. We say that a point u ∈ V is next to a point v ∈ V , if the
segment uv is an extremal segment of V.

Lemma 2. Let G = (V , E) be a geometric graph such that all the vertices of V are in convex position. Let P =
(p1, . . . , pn) be a noncrossing Hamiltonian path in G. Then for any j ∈ {2, . . . , n} the vertex pj is next to a vertex
pk for some k < j . In particular, for any j ∈ {1, . . . , n − 2} it holds that among the three vertices pj , pj+1, pj+2
at least two are next to each other.

Proof. Assume that the statement does not hold. Let pj be the first vertex among p2, p3, . . . , pn that is not next to any of
the previous vertices of P. Let pr and ps be the two vertices next to pj , where j < r < s. The path Q=(pj , pj+1, . . . , pn)

contains both pr and ps , hence Q intersects the edge pj−1pj . However, P contains the edge pj−1pj as well as all the
edges of Q, so P is not a noncrossing path, contrary to our assumptions. �

Theorem 3. For each n0 ∈ N there exists n ∈ N, n0�n such that there is a geometric graph G = (V , E), G ∈ C,

|V | = n satisfying |X| < 3
√

n without a noncrossing Hamiltonian path.

Proof. Fix some n0. Let n be the smallest natural number greater than n0 which is the square of some natural number.
Now we describe a geometric graph on n vertices with the desired properties. We place n vertices of the graph on a
circle. Then we split the vertices into

√
n groups (each of size

√
n) in such a way that each group forms a contiguous

sequence on the circle. Now we define the partitioning of V into X and Y (and by this we determine the edges of the
graph). We choose arbitrarily one group (let us call it g) and put all its vertices to X. In the other groups put the first and
last vertices to X and the remaining points to Y (see Fig. 9). Clearly |X| = (

√
n − 1)2 + √

n < 3
√

n, so it only remains
to prove that the graph does not have a noncrossing Hamiltonian path.

Consider the first vertex u in g. Because u ∈ X, it must be connected to some vertex v of Y by an edge of the path.
We write g′ for the group containing the vertex v. Because both neighbors of u on the convex hull are also from X, v

cannot be a neighbor of u. From this we can also trivially conclude that neither u nor v can be the endpoints of the
Hamiltonian path. Now we focus our attention on the part of the path which should contain all the remaining vertices



J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105 1103

Fig. 9. Construction of a graph on n vertices with |X| = O(
√

n) without a noncrossing Hamiltonian path.

of g. From Lemma 2 we know that the path must go from v either to some other vertex of g′ or to the neighbor of u in
g. From any vertex of g the path must return back to g′ to the neighbor of the vertex last used in g. From this we get
that on the noncrossing Hamiltonian path there must be an alternation of vertices from g and from g′ in such a way that
between any two vertices from g there must be a vertex from g′ ∩ Y . But we have

√
n vertices from g and only

√
n − 2

vertices from g′ ∩ Y and so this is impossible. �

5. Vertices in convex position

In the following section we consider a class D of convex geometric graphs. A geometric graph G= (V , E) is in D iff
the vertices of G are in a convex position. We show that if we remove �|V |/2� − 1 edges from the complete geometric
graph then the noncrossing Hamiltonian path still exists (Theorem 4) but if we remove �|V |/2� edges it need not exist
(Theorem 5). Note that the bounds are tight.

Theorem 4. Let G = (V , E) be a geometric graph, G ∈ D, n = |V |. Let G = (V , F ) be the complement of G. If
|F |��n/2� − 1 then there exists a noncrossing Hamiltonian path in G.

Proof. Let v0, v1, ..., vn−1 be the vertices of G in clockwise order, starting with an arbitrary one. Consider the complete
geometric graph G′ = (V , E ∪ F). Let Pi be the path vi, vi+1, vi−1, vi+2, vi−2, . . . (counting the indices modulo n)
in G′. We observe that the paths P1, . . . , P�n/2� are pairwise disjoint noncrossing Hamiltonian paths in G′. Since
|F |��n/2�−1 we are done for n even—at least one of the paths must avoid F and hence it is a noncrossing Hamiltonian
path in G. If n is odd we observe that there are �n/2� edges {v0, vn−1}, {v1, vn−2}, . . . , {v�n/2�−1, v�n/2�+1} which are
not in any Pi . Let A denote this set of edges. WLOG the set V forms the vertex set of a regular convex n-gon. Observe
that every edge of G′ can be mapped to an edge of A by rotating G′ along its centre of rotational symmetry. So we
can WLOG assume that at least one of the edges of F is in A (and hence it is not in any of the paths Pi). Now we can
conclude using the same argument as for n even that one of the Pis is a noncrossing Hamiltonian path in G. �

Theorem 5. For each n, n�2 there exists a geometric graph Gn = (Vn, En) such that Gn ∈ D, |Vn|=n, |En|=
(

n
2

)−
�n/2� and Gn does not have a noncrossing Hamiltonian path.

Proof. Let v0, v1, . . . , vn−1 be the vertices of Gn in clockwise order, starting with an arbitrary one. First we make
an easy observation: the first (and the last) edge of a noncrossing Hamiltonian path P is an extremal segment of V.
Consequently, if vivj is an edge of such a path but not an extremal segment, then P contains at least one extremal
segment from each of the intervals vi . . . vj and vj . . . vi .

Let k = �n/2�. We choose Fn = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} and En as the complement of Fn. Let B =
{v0, . . . , vk}. Suppose there exists a noncrossing Hamiltonian path P avoiding Fn. No edge in P may join two points
of B, as then by the observation above it would have to contain an edge of Fn. Therefore, B is an independent set of P,
which is impossible as the largest independent set of P is of size k. �



1104 J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105

Fig. 10. Construction of a noncrossing Hamiltonian path. There are either two uncovered vertices in one of the cones (on the left) or every cone
contains exactly one uncovered vertex (on the right).

Fig. 11. Complement of a star without a noncrossing Hamiltonian path.

6. Complement of star

In this section we consider a class of geometric graphs S. A geometric graph G = (V , E) is in S iff E is a
complement of F, where F is the edge set of a star K1,k . We prove that for k��|V |/2� − 1 there always exists a
noncrossing Hamiltonian path but for k��|V |/2� it need not exist.

Theorem 6. For any geometric graph G = (V , E) on n vertices, G ∈ S such that |F |��n/2� − 1 there exists a
noncrossing Hamiltonian path in G. For any n, n�2 there exists a geometric graph on n vertices Gn, Gn ∈ S with
|Fn| = �n/2� such that there is no noncrossing Hamiltonian path in Gn.

Proof. Let C be the center of a star F, where F has at most �n/2� − 1 edges. We partition the plane into cones by
extending the edges of F into rays starting in C. If there is a cone that contains at least two vertices that are not covered
by F, we use the construction from Fig. 10 (left). Otherwise there must be exactly one vertex in each of the cones. At
most one of the cones spans an angle greater than straight, let x be the vertex inside this cone if such a cone exists,
otherwise let x be an arbitrary vertex not covered by F. The half-line starting in C passing through x splits its cone into
two, so at least one of them spans an angle smaller than straight. Now we use the construction from Fig. 10 (right).

We proceed to prove the second claim of the theorem. Let Vn and Fn look as in Fig. 11. Note that the boundary of
the convex hull of Vn contains the vertex C, two edges of Fn, and all the vertices not covered by Fn. Moreover, every
cone defined by the rays extending the edges of Fn contains at most one vertex not covered by Fn.

Suppose there is a noncrossing Hamiltonian path P. If C is the first vertex of P, then the second vertex of P is one
of the uncovered ones, the third one belongs to one of the half-planes determined by the first edge and P cannot get to
the other half-plane without intersecting its first edge, so the path cannot be Hamiltonian. Similarly, if C is an interior
vertex of P, the edges of P adjacent to it split the remaining vertices into three nonempty parts, and P cannot cover
more than two of them without intersecting itself. �

7. Conclusion and open problems

In the previous sections we have shown the bounds h(n) = �(
√

n) and h(n) = O(n) for the function h defined in the
introduction. We have also shown linear lower bounds for the restrictions of h on some particular classes of geometric
graphs. This leads us to conjecture that the linear upper bound of h is asymptotically tight, i.e. we have h(n) = �(n).



J. Černý et al. / Discrete Applied Mathematics 155 (2007) 1096– 1105 1105

The conjecture above is related to the following open problem: determine the values of the function f (n) defined
as the maximum number f such that every complete geometric graph on n vertices contains a collection of f pairwise
edge-disjoint noncrossing Hamiltonian paths. Clearly f (n)�h(n)+1. Moreover, we can observe that the two functions
are related by means of integer programming duality. Define P(G) = {P ⊆ E(G); P is the edge set of a noncrossing
Hamiltonian path in G}.

Let G be a given complete geometric graph. Consider the following integer programming problem, with integer-
valued variables xe; e ∈ E(G):

H(G) = min
∑

e∈E(G)

xe

s.t. ∀e ∈ E(G), xe�0,

∀P ∈ P(G),
∑
e∈P

xe�1.

In other words, H(G) is the smallest cardinality of a set R ⊆ E(G) such that the graph G′=(V , E\R) has no noncrossing
Hamiltonian path. It follows that h(n)+1=min{H(G); G is a complete geometric graph on n vertices}. If we consider
the dual of the problem above, we obtain the following problem, with integer-valued variables yP ; P ∈ P:

F(G) = max
∑

P∈P(G)

yP

s.t. ∀P ∈ P(G), yP �0,

∀e ∈ E(G),
∑

P : e∈P

yP �1.

Observe that F(G) is the maximum size of a collection of pairwise edge-disjoint noncrossing Hamiltonian paths in G,
so we have f (n) = min{F(G); G is a complete geometric graph on n vertices}.

It is clear that F(G)�H(G) for every complete geometric graph G and it is also clear that f (n)�h(n)+1. However,
it is an open problem to establish the exact behavior of f and h, or to decide whether these inequalities are asymptotically
tight.

Acknowledgments

We would like to thank Jan Kratochvíl and Pavel Valtr who brought the problem to our attention, discussed it with
us and helped us with the preparation of this paper. We would also like to thank János Pach for pointing out relevant
references.

References

[1] M. Abellanas, J. García, G. Hernández, M. Noy, P. Ramos, Bipartite embeddings of trees in the plane, Discrete Appl. Math. 93 (1999)
141–148.

[2] P.K. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1997) 1–9.
[3] J. Černý, Z. Dvořák, V. Jelínek, J. Kára, Noncrossing Hamiltonian paths in geometric graphs, Graph Drawing 2003 (Perugia), Lecture Notes in

Computer Science, vol. 2912, 2004, pp. 86–97.
[4] A. Marcus, G. Tardos, On topological graphs without self-intersecting 4-cycles, in preparation.
[5] J. Pach, Geometric graph theory, Surveys in combinatorics, Canterbury, 1999, pp. 167–200, London Mathematical Society Lecture Note Series,

vol. 267, Cambridge University Press, Cambridge, 1999.
[6] J. Pach, P.K. Agarwal, Combinatorial Geometry, Wiley Interscience, New York, 1995.
[7] J. Pach, R. Radoičić, G. Tardos, G. Tóth, Geometric graphs with no self–intersecting path of length three, Graph Drawing, Lecture Notes in

Computer Science, vol. 2528, Springer, Berlin, 2002, pp. 295–311.
[8] R. Pinchasi, R. Radoičić, On the number of edges in geometric graphs with no selfintersecting cycle of length 4, Proceedings of the 19th Annual

Symposium on Computational Geometry, 2003, pp. 98–103.
[9] G. Tardos, On the number of edges in a geometric graph with no short self-intersecting paths, in preparation.

[10] P. Valtr, Graph drawings with no k pairwise crossing edges, Graph Drawing (Rome), Lecture Notes in Computer Science, vol. 1353, 1997,
pp. 205–218.



Appendix B

Embedded Clustered Graphs
with Two-Component
Clusters

39



Clustered Planarity: Embedded Clustered

Graphs with Two-Component Clusters

(Extended Abstract)

Vı́t Jeĺınek1,�, Eva Jeĺınková1, Jan Kratochv́ıl1,2, and Bernard Lidický1

1 Department of Applied Mathematics��

2 Institute for Theoretical Computer Science���

Charles University
Malostranské nám. 25, 118 00 Praha, Czech Republic
{jelinek,eva,honza,bernard}@kam.mff.cuni.cz

Abstract. We present a polynomial-time algorithm for c-planarity test-
ing of clustered graphs with fixed plane embedding and such that every
cluster induces a subgraph with at most two connected components.

1 Introduction

Clustered planarity (or shortly, c-planarity) has recently become an intensively
studied topic in the area of graph and network visualization. In many situations
one needs to visualize a complicated inner structure of graphs and networks.
Clustered graphs provide a possible model of such a visualization, and as such
they find applications in many practical problems, e.g., management information
systems, social networks or VLSI design tools [5]. However, from the theoretical
point of view, the computational complexity of deciding c-planarity is still an
open problem and it is regarded as one of the challenges of contemporary graph
drawing.

A clustered graph is a pair (G, C), where G = (V, E) is a graph and C is a
family of subsets of V (called clusters), with the property that each two clusters
are either disjoint or in inclusion. We always assume that the vertex set V is
in C, and we call it the root cluster. We say that a clustered graph (G, C) is
clustered-planar (or shortly c-planar), if the graph G has a planar drawing such
that we may assign to every cluster X ∈ C a compact simply connected region of
the plane which contains precisely the vertices of X and whose boundary crosses
every edge of G at most once (see Sect. 2 for the precise definition).

It is well known that planar graphs can be recognized in polynomial (even
linear) time. For c-planarity, determining the time-complexity of the decision
problem remains open; only partial results are known. If every cluster of (G, C)
induces a connected subgraph of G, then the c-planarity of (G, C) can be tested in

� Supported by the grant 201/05/H014 of the Czech Science Foundation.
�� Supported by project MSM0021620838 of the Czech Ministry of Education.

��� Supported by grant 1M0545 of the Czech Ministry of Education.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 121–132, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



122 V. Jeĺınek et al.

linear time by an algorithm of Dahlhaus [3], which improves upon a polynomial
algorithm of Feng et al. [5]. Several generalizations of this result are known:
c-planarity testing is polynomial for clustered graphs in which all disconnected
clusters form a single chain in the cluster hierarchy [7], for clustered graphs
in which for every disconnected cluster X , the parent cluster and all the sibling
clusters of X are connected [7], and for clustered graphs where every disconnected
cluster X has connected parent cluster, with the additional assumption that each
component of X is adjacent to a vertex not belonging to the parent of X [6].

Another approach to c-planarity testing is to consider flat clustered graphs,
which are clustered graphs in which all non-root clusters are disjoint. Even in
this restricted setting, the complexity of c-planarity testing is unknown. However,
polynomial-time algorithms exist for special types of flat clustered graphs, e.g.,
if the underlying graph is a cycle and the clusters are arranged in a cycle [2], if
the underlying graph is a cycle and the clusters are arranged into an embedded
plane graph [1], or if the underlying graph is a cycle and the clusters contain at
most three vertices [9]. Even for these very restricted settings, the algorithms
are quite non-trivial.

Suppose an embedding of the underlying graph is fixed. Does the c-planarity
testing become easier? This question was already addressed in [4], who provide a
linear algorithm for flat clustered graphs with a prescribed embedding in which
all faces have size at most five.

In this paper, we also deal with clustered graphs (G, C), for which the em-
bedding of G is fixed. In this setting, we obtain a polynomial algorithm for
c-planarity of clustered graphs in which each cluster induces a subgraph with at
most two connected components.

Theorem 1. There is a polynomial time algorithm for deciding c-planarity of a
clustered graph (G, C), where G is a plane graph and every cluster of C induces
a subgraph of G with at most two connected components.

In this extended abstract, we present a simplified version of the algorithm which
assumes that the cluster hierarchy is flat. We also omit some of the proofs.

2 Preliminaries

We follow standard terminology on finite simple loopless plane graphs. A plane
graph is an ordered pair G = (V, E), where V is a finite set of points in the plane
(called vertices) and E is a set of Jordan arcs (called edges), such that every
edge connects two distinct vertices of G and avoids any other vertex, every pair
of vertices is connected by at most one edge, and no two edges intersect, except
in a possible common endpoint.

If G = (V, E) is a plane graph and X ⊆ V is a set of vertices, we let X denote
the set V \ X and we let G[X ] denote the subgraph of G induced by X .

Two plane graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if there is
a continuous bijection f of the plane with continuous inverse such that V ′ =
{f(v) : v ∈ V } and E′ = {f [e] : e ∈ E} (where f [e] is the set {f(x) : x ∈ e}).



Clustered Planarity 123

The algorithm we will present in this paper expects a representation of a
plane graph as part of its input. Since the algorithm does not need to make a
distinction between isomorphic plane graphs, we may represent a plane graph
G by a data structure which identifies G uniquely up to isomorphism. We may
identify the isomorphism class of G by specifying, for every vertex of G, the
cyclic order of edges and faces incident to v, and by specifying the outer face of
G. The isomorphism class of a plane graph can be thus represented by a data
structure whose size is polynomial in |V |.

Let G = (V, E) be a plane graph. A cluster set on G is a set C ⊆ P(V (G))
such that for all X, Y ∈ C, either X and Y are disjoint or they are in inclusion;
the pair (G, C) is called a plane clustered graph. The elements of C are called
clusters. We assume that the set V (G) is always in C, and we call it the root
cluster. A cluster that does not contain any other cluster as a subset is called
minimal.

Clusters are naturally ordered by inclusion. The set V (G) is the maximum
of this ordering. A cluster is called connected if it induces in G a connected
subgraph and disconnected otherwise. A component of a cluster X ∈ C is a
maximal set X1 ⊆ X such that G[X1] is a connected subgraph of G[X ].

We say that a plane clustered graph (G, C) is connected (or 2-connected, or
disconnected) if the graph G is connected (or 2-connected, or disconnected). Let
us remark that some earlier papers use the term ‘connected clustered graph’ to
denote a clustered graph in which every cluster is connected; we break with this
convention for the sake of consistency of our definitions.

In this paper, we consider clustered graphs (G, C) in which every disconnected
cluster in C has exactly two components. We will call such a pair (G, C) a 2-
component clustered graph.

For a plane clustered graph (G, C), a clustered planar embedding is a mapping
embc that assigns to every cluster X ∈ C a compact simply connected planar
region embc(X) (called the cluster region of X) whose boundary γ(X) is a closed
Jordan curve (called the cluster boundary of X), such that

– for each vertex v ∈ V and each cluster X ∈ C, v is in embc(X) if and only if
v ∈ X ,

– for each cluster X ∈ C, the cluster boundary γ(X) does not contain any
vertex from V ,

– for every two clusters X and Y , the regions embc(X) and embc(Y ) are dis-
joint (in inclusion) if and only if X and Y are disjoint (in inclusion, respec-
tively), and

– for every edge e ∈ E and every cluster X ∈ C, the edge e crosses the cluster
boundary of X at most once.

A plane clustered graph is called clustered planar (shortly c-planar) if it allows
a clustered planar embedding.

When testing c-planarity, we adopt the approach first used in [5] of adding
extra edges to the underlying graph in order to make each cluster connected.



124 V. Jeĺınek et al.

Definition 1. Let (G, C) be a plane clustered graph. Let c be a cycle in G whose
vertices all belong to a cluster X ∈ C. We say that c is a hole of the cluster X,
if the interior region of c contains a vertex not belonging to X.

Clearly, a plane clustered graph with a hole is not c-planar. On the other hand,
it is known [5] that a plane clustered graph without holes whose clusters are all
connected is c-planar. For a given plane clustered graph (G, C) the existence of
a hole can be determined in polynomial time [5].

Definition 2. Let G be a plane graph. A candidate edge of G is a simple curve
e �∈ E such that (V, E ∪ {e}) is a plane graph. A candidate set is a set S of
candidate edges of G such that (V, E ∪ S) is a plane graph. We use the notation
G ∪ e and G ∪ S as a shorthand for (V, E ∪ {e}) and (V, E ∪ S) respectively.

We say that two candidate edges e and e′ are isomorphic if G ∪ e and G ∪ e′

are isomorphic plane graphs.

Note that a pair of vertices u, v of a plane graph G may be connected by two
distinct non-isomorphic candidate edges. On the other hand, it is not hard to see
that a plane graph on n vertices has at most O(n2) non-isomorphic candidate
edges.

The following theorem reduces c-planarity testing to searching for a specific
set of candidate edges. It was proved in an equivalent version by Feng et al. [5].

Theorem 2. A plane clustered graph (G, C) is c-planar if and only if there exists
a candidate set S with the following properties:

1. (G ∪ S, C) has no hole,
2. every cluster X of C induces a connected subgraph in G ∪ S.

A set S of candidate edges satisfying the above conditions is called a satura-
tor1. A set S that satisfies the first condition will be called a partial saturator.
We say that a candidate edge e saturates a cluster X , if e connects a pair of
vertices belonging to different components of X . A saturator S is minimal if no
proper subset of S is a saturator. Note that every candidate edge from a mini-
mal saturator S saturates a cluster from C. Moreover, if X is a cluster with two
components that does not contain any disconnected subcluster, then a minimal
saturator S has exactly one candidate edge saturating X .

Definition 3. If e is a candidate edge of a plane clustered graph (G, C) such that
(G, C) is c-planar if and only if (G ∪ e, C) is c-planar, then the edge e is called
harmless. Similarly, a candidate set S is harmless provided (G, C) is c-planar if
and only if (G ∪ S, C) is c-planar.

Note that if (G, C) is a c-planar clustered graph, then a candidate set is harmless
if and only if it is a subset of a saturator of (G, C). On the other hand, if (G, C)
is not c-planar, then any candidate set is harmless.

Let us now present several simple but useful lemmas, whose proofs are omitted
due to space constraints.

1 Note that this definition of saturator differs slightly from that of some other papers—
here, candidate edges are already embedded.



Clustered Planarity 125

Lemma 1. Let (G, C) be a plane clustered graph without holes, let X ∈ C be a
cluster which is minimal and connected. Then (G, C) is c-planar if and only if
(G, C \ {X}) is c-planar.

The next lemma shows that c-planarity testing of 2-component graphs can be
reduced to c-planarity testing of 2-component connected plane clustered graphs.

Lemma 2. If there is a polynomial time algorithm for deciding c-planarity for
connected 2-component plane clustered graphs, then there is a polynomial time al-
gorithm for deciding c-planarity for arbitrary 2-component plane clustered graphs.

The following lemma allows us to reduce c-planarity testing of a connected
graph to an equivalent instance of c-planarity where the underlying graph is
2-connected.

Lemma 3. Let (G, C) be a connected plane clustered graph with at least three
vertices which is not 2-connected. There is a polynomial-time transformation
which constructs a plane clustered graph (G′, C′) such that G′ is connected, G′

has fewer components of 2-connectivity than G, (G′, C′) is c-planar if and only
if (G, C) is c-planar, and there is a bijection f between C and C′ such that for
every cluster X ∈ C, the graph G[X ] has the same number of components as the
graph G′[f(X)].

Thanks to Lemma 3, a connected 2-component plane c-planarity instance (G, C)
can be polynomially transformed into an equivalent 2-connected 2-component
instance (G′, C′). To achieve this, we simply perform repeatedly the transforma-
tion described in Lemma 3, until the resulting graph has only one 2-connected
component.

Combining Lemma 2 and Lemma 3, we see that to decide the c-planarity of
2-component plane graphs, it is sufficient to provide an algorithm that decides
c-planarity of 2-connected 2-component plane graph. This is an important tech-
nical simplification, because in a 2-connected plane graph, the boundary of every
face is a cycle, and a candidate edge in every inner face is uniquely determined
(up to isomorphism) by its end-vertices and the face where it should be drawn.

Unfortunately, if F is the outer face of G, a pair of vertices of F may still be
connected by two non-isomorphic candidate edges belonging to F (see Fig. 1).
To avoid this technical nuisance, we will restrict the set of candidate edges. Let
(G, C) be a 2-connected plane clustered graph, let f ∈ E(G) be an edge which
connects a pair of vertices u, v ∈ V (G), with the following properties:

– f appears on the boundary of the outer face of G,
– every non-root cluster contains at most one of the two vertices u, v.

Such an edge f exists, otherwise the boundary of the outer face would be a hole
of a non-root cluster. We say that a candidate edge e of G is properly drawn if f
is on the boundary of the outer face of G ∪ e. Note that every candidate edge in
an inner face of G is properly drawn, while a pair of non-adjacent vertices on the
boundary of the outer face may be connected by two non-isomorphic candidate



126 V. Jeĺınek et al.

u
v

this candidate edge
is properly drawn

this candidate edge
is not properly drawn

Fig. 1. Two candidate edges connecting the same pair of vertices in the outer face

edges, exactly one of which is properly drawn. Thus, a properly drawn candidate
edge is uniquely determined (up to isomorphism) by its pair of endpoints and
the face where it should be embedded.

It can be shown that if a 2-connected plane clustered graph is c-planar, then
it has a saturator that only contains properly drawn candidate edges.

3 The Algorithm

In this section, we present our algorithm deciding the c-planarity of 2-component
plane clustered graphs. As mentioned in the introduction, we will only deal with
the restricted setting of flat clustered graph, i.e., the clustered graphs where all
the non-root clusters are minimal.

Our aim is to find a polynomial algorithm deciding the c-planarity of plane
2-connected 2-component flat clustered graph (G, C).

To achieve this, we will present a polynomial-time procedure FIND-EDGE
which, when presented with a 2-component 2-connected hole-free plane clustered
graph (G, C) as an input, will either determine that (G, C) is not c-planar, or it
will output a harmless candidate edge e that saturates a cluster X ∈ C. Observe
that such a candidate edge e cannot create a hole in G ∪ e, because both its
endpoints belong to different components of X by assumption, and there is
no other non-root cluster containing the endpoints of e. This is the main reason
why the flat clustered graphs are much easier to deal with than general clustered
graphs.

If the procedure FIND-EDGE outputs a harmless candidate edge e, it does
not necessarily mean that (G, C) is c-planar. However, since e is harmless, we
know that (G, C) is c-planar if and only if (G ∪ e, C) is c-planar. We may then
call FIND-EDGE again on the input (G∪e, C), to determine that (G∪e, C) (and
hence also (G, C) ) is not c-planar, or to find another harmless edge. Since every
candidate edge output by the FIND-EDGE procedure saturates a cluster from
C, after at most |C| invocations of FIND-EDGE we will either obtain a saturator
of (G, C) or determine that (G, C) is not c-planar.

The FIND-EDGE algorithm maintains a set P of permitted edges. In the
beginning, the set P is initialized to contain all the properly drawn candidate
edges that saturate a cluster from C. In the first phase of the algorithm, called the



Clustered Planarity 127

pruning phase, the algorithm iteratively removes some candidate edges from P ,
using a set of pruning rules, which will be described in Subsection 3.1. The
pruning rules guarantee that if (G, C) has a saturator, then it also has a saturator
which is a subset of P .

When the set P cannot be further pruned, the algorithm performs the follow-
ing triviality checks, described in detail in Subsection 3.2:

– if there a disconnected cluster that cannot be saturated by any of the per-
mitted edges, then (G, C) is not c-planar,

– if there is a disconnected cluster saturated by a unique permitted edge e ∈ P ,
then e is harmless,

– if there is a permitted edge e that does not cross any other permitted edge,
then e is harmless.

If any of the above conditions is satisfied, the algorithm outputs the correspond-
ing solution and stops. Otherwise, it distinguishes two cases:

1. If there is a disconnected cluster X ∈ C and a face F of G such that every
permitted edge saturating X appears in the face F , then the algorithm
performs a subroutine LOCATE-IN-FACE, which will output a harmless
permitted edge inside F and stop. This subroutine, together with a brief
sketch of its proof, is presented in Subsection 3.3.

2. If the previous case does not apply, it can be shown that any permitted edge
is harmless. The algorithm then performs a subroutine called OUTPUT-
ANYTHING which outputs an arbitrary permitted edge and stops. The
proof of its correctness is sketched in Subsection 3.4.

Before we describe the main parts of the algorithm in greater detail, we need
some more terminology.

Let G be a 2-connected plane graph. Let a, b, c, d be a quadruple of distinct
vertices on the boundary of a face F of G. We say that the pair ab crosses the
pair cd in F , if the four vertices appear on the boundary of F in the cyclic order
acbd. If e and f are two candidate edges of a 2-connected clustered graph (G, C),
we say that e crosses f if the two candidate edges belong to the same face F of
G and the endpoints of e cross with the endpoints of f . For two sets of vertices
X and Y , we say that X crosses Y in face F , if there are vertices a, b ∈ X and
c, d ∈ Y such that ab crosses cd in the face F .

Most of our arguments rely on the following basic properties of connected
subgraphs of 2-connected plane graphs:

– If G is a 2-connected plane graph, and X and Y are disjoint sets of vertices
such that G[X ] and G[Y ] are both connected, then X and Y do not cross in
any face of G.

– Let G be a 2-connected plane graph. Let X , Y and Z be disjoint sets of
vertices, each of them inducing a connected subgraph of G. Then G has at
most two faces that contain vertices of all the three sets on their boundary.

The proof of these properties are omitted from this extended abstract.



128 V. Jeĺınek et al.

3.1 The Pruning Phase

In the pruning phase, the algorithm FIND-EDGE iteratively restricts the set
P of permitted candidate edges. In the beginning of the pruning phase, the set
P is initialized to contain all the properly drawn candidate edges that saturate
at least one cluster. Note that every permitted edge e ∈ P saturates a unique
cluster X ∈ C, since we assume that C is flat. A permitted edge that saturates
X will be called an X-edge.

If X is a minimal cluster, and if e and e′ are two X-edges, we say that e and
e′ are equivalent, if for every permitted edge f ∈ P that is not an X-edge, the
edge f crosses e if and only if it crosses e′.

Throughout the pruning phase, the set P will satisfy the following three in-
variants.

– For each cluster X and each face F , all the X-edges that belong to F form a
vertex-disjoint union of complete bipartite subgraphs; these complete bipar-
tite subgraphs will be called X-bundles (or just bundles, if X is clear from
the context). Two X-edges from different bundles do not cross (see Fig. 2).

– If X and Y are distinct clusters, then if an X-edge e crosses two Y -edges f
and f ′, then f and f ′ belong to the same bundle.

– If (G, C) is c-planar, then it has a saturator that is a subset of P .

In the beginning, when P contains all the properly drawn candidate edges that
saturate some cluster from C, the three invariants above are satisfied. In fact, if
F is a face that contains at least one X-edge, then all the X-edges in F form a
complete bipartite graph. Thus, each face has at most one X-bundle.

To prune the set P , we apply the following two rules.

– If, for a cluster X , there is a permitted edge that crosses all the X-edges,
then remove from P each edge that crosses all the X-edges.

– Let e = uv and e′ = u′v be two X-edges that belong to the same face F and
that share a common vertex v. If e and e′ are equivalent, remove from P all
the X-edges in F incident to u′.

It can be proven that an arbitrary application of one of the rules above preserves
all the invariants. The algorithm applies the pruning rules in arbitrary order,
reducing the number of permitted edges in each step, until it reaches the situation
when none of the rules is applicable. Let us remark that in the general (i.e., non-
flat) situation, the pruning is slightly more complicated: there are four pruning
rules instead of two, and the rules have assigned priorities which are taken into
account when the algorithm selects which rule to apply.

F

X

Fig. 2. A face F with two bundles of X-edges



Clustered Planarity 129

3.2 Triviality Checks

When there is no rule applicable to the set P of permitted edges, the prun-
ing phase ends. The FIND-EDGE algorithm then proceeds with three types of
triviality checks, described below.

First, the algorithm checks whether there is a cluster X that is not saturated
by any permitted edge. If this is the case, the algorithm concludes that the
clustered graph (G, C) is not c-planar and stops. This is a correct conclusion,
since if (G, C) were c-planar, then by the last invariant there would have to be a
saturator made of permitted edges, which is clearly impossible.

As the next triviality check, the algorithm tries to find a cluster X , such that
the set P contains a single X-edge e. If such a cluster X is found, the algorithm
outputs e as a harmless edge and stops. This is again a correct output, since by
the last invariant, if G is c-planar, then it has a saturator S which is a subset
of P . Necessarily, S contains the edge e. This implies that e is harmless.

In the last type of triviality check, the algorithm looks for a permitted edge e
that does not cross any permitted edge belonging to a different cluster. If such
an edge e is found, the algorithm outputs e as a harmless edge and stops. This
is again easily seen to be a correct output.

If none of the triviality checks succeeds, the algorithm counts, for each clus-
ter X , the number of faces of G that contain at least one X-edge. We will say
that a cluster X is one-faced if all the X-edges belong to a single face of G, X
is two-faced if all the X-edges appear in the union of two distinct faces, and X
is many-faced otherwise.

If there is a one-faced cluster X whose permitted edges belong to a face F ,
then the algorithm performs a subroutine LOCATE-IN-FACE to find a harmless
permitted edge in F . This subroutine is described in the next subsection.

If there is no one-faced cluster, it can be shown that all the clusters are two-
faced, and that any permitted edge is harmless. The algorithm then outputs an
arbitrary permitted edge and stops. The main arguments involved in proving
the correctness of this step are sketched in Subsection 3.4.

3.3 LOCATE-IN-FACE

Assume that we are given a set P of permitted edges satisfying all the invariants
described in Subsection 3.1. Assume furthermore than none of the pruning rules
is applicable to P , and none of the triviality checks has succeeded.

For a face F , we say that a cluster X is an F -cluster, if all the X-edges belong
to F . We say that a vertex of X is active, if it is incident to at least one X-edge.

Assume that F is a face with at least one F -cluster. Using our assumptions
about P , we are able to deduce the following facts:

– If X is an F -cluster, and Y is a cluster that has a permitted edge which
crosses a permitted edge of X , then Y is also an F -cluster.

– If X is an F -cluster with two components X1 and X2, then each component
Xi has at most two active vertices. It follows that X has either four permitted



130 V. Jeĺınek et al.

X1

X2

X1

X2

X1

X2

Fig. 3. Possible configurations of permitted edges of an F -cluster X

Fig. 4. Mutual positions of permitted edges of two crossing F -clusters

edges which all belong to a single bundle, or X has exactly two permitted
edges (see Fig. 3; recall that due to the triviality checks, each cluster has at
least two permitted edges).

Let X be an arbitrary F -cluster, let X1 and X2 be its two components. From
the triviality checks, we know that every X-edge is crossed by a permitted edge
of another cluster. Let Y �= X be a cluster whose permitted edge crosses an X-
edge, and let Y1 and Y2 be its two components. Note that a set Yi may not cross
with the set Xj on the boundary of F , because these two sets induce connected
subgraphs of G. Recall also, that no Y -edge may intersect all the X-edges (and
vice versa), because it would have been pruned.

Putting all these facts together, we conclude that the mutual position of the
X-edges and Y -edges corresponds to one of the situations depicted on Fig. 4.

Note that all the configurations of Fig. 4 exhibit a ‘mirror symmetry’. To make
this observation rigorous, we define a ‘symmetry mapping’ σ on the set of all the
F -active vertices as follows: let X be an arbitrary F -cluster, with components
X1 and X2. If a component Xi contains two active vertices x and x′, then we
define σ(x) = x′ and σ(x′) = x. If Xi contains only one active vertex x, then we
put σ(x) = x. We then extend the mapping σ to the set of X-edges in a natural
way: for an X-edge e with endpoints x and y, we define σ(e) to be the X-edge
with endpoints σ(x) and σ(y).

The mapping σ has the following properties:

– For an F -cluster X and an X-edge e, σ(e) is an X-edge different from e.



Clustered Planarity 131

– If X and Y are F -clusters, an X-edge e crosses a Y -edge f if an only if σ(e)
crosses σ(f).

– An X-edge e is harmless if and only if σ(e) is harmless.

From these properties, it can be easily deduced that if an F -cluster X has only
two permitted edges, then both these edges are harmless.

Furthermore, it is possible to show that if there is at least one F -cluster in a
face F , then there is also an F -cluster that has only two permitted edges.

The procedure LOCATE-IN-FACE is then easy to describe: as an input, the
procedure expects a face F for which there is at least one F -cluster. The proce-
dure then finds an F -cluster X that has only two permitted edges, and outputs
any X-edge as a harmless edge.

3.4 OUTPUT-ANYTHING

If, after the end of the pruning phase, each cluster has permitted edges in at
least two distinct faces, and if none of the triviality checks is applicable, we can
show that the set P of permitted edges has the following properties:

– For each cluster X , there are exactly two faces of G that contain the X-edges.
– All the X-edges that appear in the same face are equivalent.
– If X and Y are distinct clusters, and if an X-edge crosses a Y -edge, then all

the X-edges and all the Y -edges appear in the same pair of faces, and every
Y -edge crosses all the X-edges in its face.

– Let S ⊆ P be a minimal saturator of permitted edges. For each edge e ∈ S
find an arbitrary permitted edge e that saturates the same cluster as e and
appears in a different face than e. The set S = {e : e ∈ S} is another minimal
saturator of permitted edges.

From these properties, we may deduce that every permitted edge e ∈ P is
harmless. The procedure OUTPUT-ANYTHING simply outputs an arbitrary
permitted edge and stops.

This completes the description of the simplified version of the FIND-EDGE
algorithm. It is clear that the algorithm runs in polynomial time.

4 Concluding Remarks

We have shown that c-planarity of 2-component plane clustered graphs can be
determined in polynomial time. This result raises several related open problems.

Problem 1. What is the complexity of the c-planarity problem for 2-component
graphs (G, C) if the embedding of G is not prescribed?

Problem 2. What is the complexity of deciding the c-planarity of clustered graphs
with O(1) components per cluster?

Problem 3. What if we relax the 2-component assumption by allowing the graph
G to have arbitrarily many components, and only restricting the number of
components of the non-root clusters?



132 V. Jeĺınek et al.

References

1. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle
in a plane graph. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp.
49–60. Springer, Heidelberg (2006)

2. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into
cycles of clusters. Journal of Graph Algorithms and Applications 9(3), 391–413
(2005); special issue In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 100–110.
Springer, Heidelberg (2005)

3. Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and its
parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 239–248. Springer, Heidelberg (1998)

4. Di Battista, G., Frati, F.: Efficient C-planarity testing for embedded flat clustered
graphs with small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007.
LNCS, vol. 4875, pp. 291–302. Springer, Heidelberg (2008)

5. Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis,
P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

6. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs.
In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer,
Heidelberg (2006)

7. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.:
Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)

8. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.:
Subgraph induced planar connectivity augmentation. In: Bodlaender, H.L. (ed.)
WG 2003. LNCS, vol. 2880, pp. 261–272. Springer, Heidelberg (2003)

9. Jeĺınková, E., Kára, J., Kratochv́ıl, J., Pergel, M., Suchý, O., Vyskočil, T.: Clustered
planarity: Small clusters in eulerian graphs. In: Hong, S.-H., Nishizeki, T., Quan,
W. (eds.) GD 2007. LNCS, vol. 4875, pp. 303–314. Springer, Heidelberg (2008)



Appendix C

Clusters with Few Outgoing
Edges

52



Clustered Planarity: Clusters with

Few Outgoing Edges

Vı́t Jeĺınek�, Ondřej Suchý�, Marek Tesař, and Tomáš Vyskočil�

Department of Applied Mathematics
Charles University

Malostranské nám. 25, 118 00 Praha, Czech Republic
{jelinek,suchy,tesulo,tiger}@kam.mff.cuni.cz

Abstract. We present a linear algorithm for c-planarity testing of clus-
tered graphs, in which every cluster has at most four outgoing edges.

1 Introduction

Clustered planarity is one of the challenges of contemporary Graph Drawing.
It arises naturally when we want to draw the graph with further constraints
on embedding of the vertices. This includes for example visualizing a computer
network with the computers of the same department, faculty and institution
being grouped together. Another application is in designing an integrated circuit
with the connectors of each components being close to each other and the logical
parts of the circuit being grouped together. There are many other applications
including visualizations of process interaction, social networks etc.

The concept of the clustered graph—a graph equipped with a system of sub-
sets of vertices (called clusters), that can be recursive— was first introduced
by Feng et al. in [7]. In the same paper they also proved that clustered pla-
narity (shortly c-planarity) can be tested in polynomial time for c-connected
clustered graphs (where each cluster induces a connected subgraph of the un-
derlying graph). This was later improved by Dahlhaus [4] to a linear time al-
gorithm. The paper [7] also contains a useful characterization of the c-planar
graphs: Graph is c-planar if and only if there is a set of edges (usually called
a saturator) that can be added to this graph to obtain a c-connected c-planar
clustered graph.

Since then many algorithms for testing the c-planarity were based on searching
for a saturator. These include an O(n2)-time algorithm for ”almost” c-connected
clustered graphs by Gutwenger et al. in [9,10]. An efficient algorithm for clusters
with cyclic structure on a cycle was developed in [3]. The case of disjoint clusters
on an embedded graph with small faces was recently addressed in [5]. Very similar
result was at the same time independently published by Jeĺınková et al. [12].
The paper [12] also contains an O(n3)-time algorithm for clusters of size at most
three on a rib-Eulerian graph. This is an Eulerian graph that is obtained from
a constant size 3-connected graph by multiplying and then subdividing edges.

� Supported by grant 201/05/H014 of the Czech Science Foundation.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 102–113, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Clustered Planarity: Clusters with Few Outgoing Edges 103

Another approach is to mimic the original proof of Feng et al. [7] where the
behavior of the connected clusters is described by special trees. In this way a
slight generalization to extrovert clustered graphs was given by Goodrich et al.
[8]. In an extrovert clustered graph the parent cluster of any disconnected cluster
is connected and every component of any disconnected cluster is incident to an
edge which leads outside of its parent cluster.

We should also mention that every c-planar graph can be drawn by straight
lines with clusters represented by convex polygons [6]. Another interesting con-
tribution is the characterization of completely connected clustered graphs (where
each subgraph induced by a cluster and its complement are connected) [1]: A
completely connected clustered graph is c-planar if and only if the underlying
graph is planar. More results on c-planarity can be found in [2]. Despite the
number of results the complexity of testing the c-planarity for general instances
remains open.

In this paper we focus on the situation where the number of outgoing edges of
each cluster is small. We notice that in this case the behavior of the clusters can
be simulated by special graphs, no matter whether the subgraph induced by the
cluster is connected or not. We use these ideas to develop a linear time algorithm
to test such graphs for c-planarity. As far as we know this is the first algorithm
that can be used in the cases where the underlying graph is not connected at all
or has very few edges in total. In particular we prove the following theorem:

Theorem 1. Clustered planarity can be decided in linear time for instances,
where each cluster has at most 4 outgoing edges.

Section 2 is devoted to the basic definitions. We also show there that if there is a
cluster with no outgoing edges, then the instance could be split into an instance
formed by the subclusters of the cluster and one formed by the rest. In Section 3
we show how to replace the clusters by special graphs with the same behavior
and prove that this does not affect the c-planarity. The algorithm is described
in Section 4, together with the proofs of the correctness and the running time.
In Section 5 we show that the approach cannot be generalized this way to the
case of five or more outgoing edges.

2 Preliminaries

Let Sr denote the set of all permutations of the set {1, 2, . . . , r}. A permutation
π ∈ Sr is represented by r-tuple (π(1) . . . π(r)).

Regarding the graph notations, we follow the standard notation on finite loop-
less graphs. A graph is an ordered pair G = (V, E), where V is the set of vertices
and E is the set of edges i.e. pairs of vertices. We simply write uv instead of {u, v}
for edges. If U ⊆ V , then G[U ] is the induced subgraph of G on vertices U and
G \ U = G[V \ U ]. Let n denote the number of vertices |V | of the graph G.

A cluster set on the graph G = (V, E) is a set C ⊆ P(V (G)) such that for all
C, D ∈ C, either C and D are disjoint or they are in inclusion; the pair (G, C)
is called a clustered graph. The elements of C are called clusters. A clustered



104 V. Jeĺınek et al.

planar embedding of (G, C) is a planar embedding emb of G together with a
mapping embc that assigns to every cluster C ∈ C a planar region embc(C)
whose boundary is a closed Jordan curve and such that

– for each vertex v ∈ V and every cluster C ∈ C, it holds that emb(v) ∈
embc(C) if and only if v ∈ C,

– for every two clusters C and D, the regions embc(C) and embc(D) are disjoint
(in inclusion) if and only if C and D are disjoint (in inclusion, respectively),
and

– for every edge e ∈ E and every cluster C ∈ C the curve emb(e) crosses the
boundary of embc(C) at most once.

A clustered graph is called clustered planar (shortly c-planar) if it allows a
clustered planar embedding.

The following observation is a trivial consequence of the definition:

Remark 1. A pair (G, ∅) is c-planar if and only if the graph G is planar.

We say that C ∈ C is a cluster of the bottom-most level if there is no C′ ∈ C
such that C′ ⊂ C.

An edge e = uv is an outgoing edge of a cluster C if u ∈ C, v ∈ V \ C or vice
versa.1 Let r(C) = |{e = uv|e ∈ E, u ∈ C, v ∈ V \ C}| denote the number of
outgoing edges of a cluster C. If the cluster is clear from context we will just use
notation r instead of r(C).

Lemma 1. If C has no outgoing edges then (G, C) is c-planar if and only if
(G \ C, C1) and (G[C], C2) are c-planar, where C1 = {A \ C|A ∈ C, A �= C, A ⊃
C} ∪ {A|A ∈ C, A ∩ C = ∅} and C2 = {B|B ∈ C, B �= C, B ⊂ C}.

Proof. The direction from left to right is easy, we just omit from the embedding
the parts that are no longer necessary.

So suppose that we have a c-planar embedding emb1 of (G \ C, C1) and a
c-planar embedding emb2 of (G[C], C2). Take an arbitrary point x in the plane,
such that for all clusters A ∈ C1 the following holds: x lies inside the region
(emb1)c(A) if and only if C ⊆ A. Suppose that there is neither vertex nor edge
of G\C nor border of a cluster of C1 in distance less than ε from x in emb1. Now
shrink the embedding emb2 so that it fits into the ε

2 -disc centered in x. Then
take this disc as the embedding of C.

It is easy to check that we obtain a c-planar embedding of (G, C), since the
embeddings emb1 and emb2 cross neither each other nor the embedding of C,
the inclusions of the clusters are preserved and the embedding of the cluster
C contains exactly the embedding of the vertices, edges and clusters it should
contain. 
�

1 Such an edge is called edge incident with C in [1,3,7,9] and extrovert edge in [8].



Clustered Planarity: Clusters with Few Outgoing Edges 105

u1 u2

u3u4

u0

vπ(3)

vπ(2)
vπ(1)

vπ(4)

u1 u2

u3u4

u0

Fig. 1. The test graph T and the graph T π
C from Definition 1

3 Replacement of Clusters by Graphs

Through this section we suppose, that we have some fixed cluster C ∈ C of
bottom-most level, that has at most 4 outgoing edges. Having Lemma 1 in hand
we assume that 1 ≤ r = r(C) ≤ 4.

We denote the outgoing edges by {e1, . . . , er}. We also suppose that ei = viwi

for all i, where vi ∈ C and wi ∈ V \ C (maybe wi = wj or vi = vj for some
i �= j).

We denote by T the following test graph T = ({u0, u1, u2, u3, u4}, {u0u1, u0u2,
u0u3, u0u4, u1u2, u2u3, u3u4, u4u1}) (see Fig. 1).

Definition 1. We say that the cluster C admits a permutation π ∈ Sr if and
only if the graph T π

C created from T ∪ G[C] by adding edges uivπ(i), 1 ≤ i ≤ r is
planar.

Lemma 2. If the cluster C admits the permutation π ∈ Sr then there exists
a planar embedding of the graph T π

C such that the vertices of C are embedded
inside and the vertex u0 outside the cycle u1, . . . , u4, u1 of T . Moreover we can
prescribe this cycle to be oriented clockwise in the embedding.

Proof. First we take some planar embedding of the graph T π
C . Now we take

the edges incident with u0 in the clockwise order u0ui1 , u0ui2 , u0ui3 , u0ui4 . For
every u0ui and u0uj two consecutive of them (either {i, j} = {ik, ik+1} for some
k = 1, 2 or 3 or {i, j} = {i1, i4}) we can draw a new curve from ui to uj along
the curve uiu0 and then u0uj so that it does not cross any other edge and area
surrounded by the curves uiu0, u0uj and the new curve contains no vertex (see
Fig. 2).

Suppose for a contradiction that some of the newly drawn curves connects
two non-adjacent vertices, for example u1 and u3 (the case of u2 and u4 being
similar). Since the new curves connect u1 to at most one of the vertices u2 and
u4 and we drew two curves from each ui, we also connected u2 and u4. But
this means that the newly drawn curves together with the original edges form



106 V. Jeĺınek et al.

u0

u2u1

u4 u3

u2u1

u4 u3

u0

Fig. 2. Situation from the proof of Lemma 2

a planar embedding of K5, which is a contradiction. So we know that all the
curves that we drew newly connect two already adjacent vertices of the cycle.

Now we take these newly drawn curves as the embedding of the edges of the
cycle. Then there is just u0 inside the cycle and it remains to change the outer
face to one of the newly obtained empty triangles, such that the vertex u0 will
be on the boundary of the outer face.

If the cycle is embedded in wrong direction, then we take the axis symmetry
of the embedding. 
�

Lemma 3. If (G, C) is c-planar, then C admits some permutation.

Proof. We suppose that (G, C) is c-planar and we fix a planar embedding emb.
Let f be the boundary of embC(C) (so f is a closed Jordan curve). Now we can
start in an arbitrary point of this curve and move along this curve in the clock-
wise direction and we cross the edges e1, e2, . . . , er in some order ei1 , ei2 , . . . , eir .
Denote the crossing points as P1, P2, . . . , Pr (in the same order). If r < 4 then
we can choose new points Pr+1, . . . , P4 in such a way, that we meet the points
P1, . . . , P4 in this order when we move along the curve f in the clockwise direc-
tion and all these points are distinct.

Now we consider the planar embedding emb′ of G[C] which corresponds to
the embedding emb of the graph G, place new vertices u1, . . . , u4 to the points
P1, . . . , P4 and a vertex u0 outside of the region bounded by the curve f . Clearly
we can add edges (u1, vi1), . . . , (ur, vir ) and embed these edges on curves which
corresponded to edges e1, . . . , er inside of the region embC(C) and we can also
add edges (u1, u2), (u2, u3), (u3, u4) and (u4, u1) and embed them on the curve
f in such a way that these edges may intersect only in vertices u1, u2, u3 or u4.
It is clear that we can add edges (u0, u1), . . . , (u0, u4) and embed them in such a
way that these edges will be outside of the region bounded by f and every two
edges will cross only in the vertex u0.

This way we obtain a planar embedding of the graph T π
C where π=(ai1 . . . air ).

Thus C admits the permutation π. 
�

Lemma 4. If the cluster C admits a permutation π = (a1a2 . . . ar) then it also
admits permutations (ara1 . . . ar−1) and (arar−1 . . . a1).



Clustered Planarity: Clusters with Few Outgoing Edges 107

Proof. We obtain the planar embedding of T δ
C , δ = (ara1 . . . ar−1) from the

planar embedding of T π
C simply by relabeling the vertices such that u1 becomes

u2, u2 becomes u3, u3 becomes u4 and u4 becomes u1 and if r < 4 then it is
necessary to replace the edge varur+1 by a new edge varu1 which goes along the
edges varur+1, ur+1ur+2, . . . , u4u1 such that it doesn’t cross any other edge.

For r ≥ 3 the second part can be done similarly – it is enough to relabel such
that u1 becomes u3 and u3 becomes u1 and if r = 4 then we use the first part
to achieve permutation (arar−1 . . . a1). For r < 3 the first part also proves the
second part. 
�

We can now define a relation ∼′ on the permutations from the set
Sr by (a1a2 . . . ar) ∼′ (ara1 . . . ar−1) and (a1a2 . . . ar) ∼′ (arar−1 . . . a1). If we
take ∼ to be the transitive closure of ∼′, then it is easy to show that ∼ is also
reflexive and symetric. Thus ∼ is an equivalence. We will sometimes call the
equivalence classes of this equivalence circular permutations The sets S1, S2, S3

have just one equivalence class under ∼ while the set S4 is partitioned into fol-
lowing three equivalence classes (they can be distinguished by the number that
is ”opposite” to the number 1):

S2
4 = {(1324), (3241), (2413), (4132), (4231), (1423), (3142), (2314)},

S3
4 = {(1234), (2341), (3412), (4123), (4321), (1432), (2143), (3214)},

S4
4 = {(1243), (2431), (4312), (3124), (3421), (1342), (2134), (4213)}.

Definition 2. We define the corresponding graph for cluster C as follows (see
Fig 3).

1. If r ≤ 3 and C admits some permutation, then the corresponding graph for
C is Rr.

2. If there is a labeling of the outgoing edges such that C admits permutations
from S2

4 , S3
4 , S4

4 then the corresponding graph for C with this labeling is R234
4 .

3. If there is a labeling of the outgoing edges such that C admits a permutation
from S2

4 and from S3
4 , but no permutation from S4

4 then the corresponding
graph for C with this labeling is R23

4 .
4. If there is a labeling of the outgoing edges such that C admits a permutation

from S2
4 , but no permutation from S3

4 ∪ S4
4 then the corresponding graph for

C with this labeling is R2
4.

Clearly, if r ≤ 3 then the cluster C has unique corresponding graph. Since the
sets S2

4 , S3
4 , and S4

4 form a decomposition of S4, from Lemma 4 we know that
the cluster C admits all permutations from some non-empty combination of sets
S2

4 , S3
4 , and S4

4 .
If the cluster C admits just permutations from the set Si

4 then by relabeling
of edge e2 by ei and incident vertices v2 by vi and w2 by wi (if i = 2 we don’t
need to do it) we get labeling of the cluster C which admits only permutations
from the set S2

4 . So the cluster C has unique corresponding graph.



108 V. Jeĺınek et al.

s1 s1s1

s1 s1 s1s2

s2

s2

s2

s2

s3

s3

s3

s3 s4 s4s4

R1 R2 R3

R2,3,4
4 R2,3

4 R2
4

Fig. 3. The graphs R1, R2, R3, R
234
4 , R23

4 and R2
4

If the cluster C admits just permutations from two distinct sets Si
4 and Sj

4

then we make similar relabeling of outgoing edges and incident vertices such that
resulting relabeling makes the cluster C admit just permutations from the sets
S2

4 and S3
4 and the cluster C has unique corresponding graph.

As a consequence we get the following corollary.

Corollary 1. If C admits a permutation then there is a labeling of outgoing
edges of C such that C has a corresponding graph with this labeling.

For the rest of the paper we will use this new labeling.

Definition 3. Let C be a cluster of the bottom-most level with outgoing edges
e1, . . . , er where 1 ≤ r ≤ 4, ei = viwi for all i, where vi ∈ C and wi ∈ V \C. Let R
be a corresponding graph to the cluster C in this labeling. Then a replacement of
cluster C by a corresponding graph R in (G, C) is a clustered graph (G′, C′) such
that G′ is created from (G \ C) ∪ R by unification of w1, . . . , wr with s1, . . . , sr

(respectively) and C′ is created from C \ {C} by replacing every C′ ⊇ C by
(C′ \ C) ∪ (V (R) \ {s1, . . . , sr}).

Proposition 1. Let (G′, C′) be the replacement of cluster C by a corresponding
graph R. Then (G, C) is c-planar if and only if (G′, C′) is c-planar.

Proof. (”⇒”:) We suppose that (G, C) is c-planar and we fix some planar em-
bedding emb. Without loss of generality we can suppose that embC(C) is a
disc (because this region is homeomorphic to a disc). Suppose that the edges
e1, . . . , er cross the boundary of embC(C) in (clockwise) order ei1 , . . . , eir and
without loss of generality i1 = 1.

If r < 4 then we simply remove cluster C with edges e1, . . . , er and draw the
graph Rr corresponding to C in a such way, that we identify vertex si with wi

for all i ∈ {1, . . . , r} and all other vertices of Rr draw inside embC(C) in such
a way, that edges of Rr don’t cross any other edge of original graph nor other
edge of Rr. This is clearly possible, it is enough to draw the edges outside the



Clustered Planarity: Clusters with Few Outgoing Edges 109

Oe

s0

s1

s4

s2

s3

Fig. 4. Situation from the proof of Proposition 1(part ”⇐”)

disc embC(C) along the deleted edges e1, . . . , er and inside embC(C) we can draw
edges (or parts of edges) as noncrossing segments. This embedding of G′ shows
that (G′, C′) is c-planar.

If the corresponding graph for C is R234
4 then we can construct a c-planar

embedding of C′ in the same way as for r < 4.
If the corresponding graph for C is R2

4 then the ordered set (i1, i2, i3, i4) must
be equal to (1, 3, 2, 4) or (1, 4, 2, 3) because C admits only permutations from S2

4

(otherwise we could find a permutation π /∈ S2
4 such that T π

C is planar which is
a contradiction). Now we delete the cluster C and add the graph R2

4 in such a
way that all the vertices of R2

4 will be inside the disc embC(C) and we identify
vertices si with wi for all i ∈ {1, . . . , 4} and any edge of R2

4 will not cross any
original edge nor any new edge of R2

4. This is also clearly possible, it is enough
to draw the edges outside the disc embC(C) along the deleted edges e1, . . . , e4

and inside embC(C) we can draw the edges (or parts of the edges) as noncrossing
segments. This embedding of G′ shows that (G′, C′) is c-planar.

If the corresponding graph for cluster C is R23
4 then we continue similarly as

in the previous cases. The ordered set (i1, i2, i3, i4) must be equal to (1, 3, 2, 4),
(1, 4, 2, 3), (1, 2, 3, 4) or (1, 4, 3, 2) so again it is easy to replace the vertices and
the edges of C by the graph R23

4 by identifying the vertices si with wi for all
i ∈ {1, . . . , 4} which proves that (G′, C′) is c-planar again.

(”⇐”:) Suppose we have a c-planar embedding of (G′, C′). Moreover suppose
that in the case R = R2

4 there is nothing embedded in any interior face of R.
This can be easily achieved in a similar way as in the proof of Lemma 2. We take
an arbitrary spanning tree of the graph R and let s0 denote its arbitrary vertex
different from s1, . . . , sr. Now draw the r curves connecting s0 to s1, s2, . . . , sr

along the unique paths connecting the vertices in the tree, so that they do not
cross each other nor anything in the embedding, except possibly for the edges
of R. Then remove the original edges of R.

Now take some ε such that there are no edges, vertices nor clusters embedded
in distance less than ε from s0, except for the curves incident with s0. Denote



110 V. Jeĺınek et al.

by Oε the circle of radius ε with center s0. Suppose Pi is the last intersection of
the curve s0si with Oε. We can assume, that ε is so small, that if we label these
curves clockwise s0si1 , s0si2 , . . . , s0sir as they leave s0, then Pi1 , Pi2 , . . . , Pir are
the points Pi in the clockwise order along Oε. (We can assume, that each curve
in the embedding is formed by finitely many straight line segments and circular
arcs.)

By case analysis we show, that C admits the permutation π = (i1i2 . . . ir).
This is clear if R = R1, R2, R3 or R234

4 . The graph R2
4\{s1, . . . , s4} is 3-connected

so the order of the edges is given in this case (up to the equivalence ∼) and
the permutation π is in S2

4 . If R = R23
4 and π ∈ S4

4 , then by connecting the
neigbouring edges we obtain a planar embedding of K3,3 — a contradiction.

So we take the planar embedding of T π
C guaranteed by Lemma 2 and remove

the vertex u0. We can take a homeomorphic copy of this embedding of T π
C \

{u0}, in which the cycle u1, u2, u3, u4, u1 coincides with a circle Oε and the
vertices u1, u2, . . . , ur are embedded at the points Pi1 , Pi2 , . . . , Pir , respectively.
We replace the interior of Oε by such an embedding.

We are ready to describe an embedding of (G, C). For every i the concate-
nation of the curve vπ(i)ui = Pπ(i) and Pπ(i)sπ(i) forms an embedding of the
edge vπ(i)wπ(i) that crosses no other edge of G′ or G[C]. Moreover, it crosses the
boundary of each cluster of C′ at most once, since there were no cluster bound-
aries inside Oε, curve Pπ(i)sπ(i) was drawn along some edges of R and among
them only the one incident with sπ(i) could cross some cluster boundary and
also at most once, because we started with a c-planar embedding of (G′, C′). It
remains to take Oε as the boundary of the cluster C. It only crosses the edges
wivi. Furthermore, since curve siPi (recall that si = wi) lies completely outside
Oε (except for Pi), while Pivi lies completely inside Oε (except for Pi), Oε crosses
the edge wivi exactly once (in the point Pi). There are no other crossings, since
they would have to be in the original c-planar embedding of (G′, C′) too. 
�

4 The Algorithm

The algorithm is described in Fig. 5.

Proposition 2. The algorithm correctly decides c-planarity for instances, where
each cluster has at most 4 outgoing edges.

Proof. We first prove by the mathematical induction that for every 0 ≤ i ≤ |C|,
the pair (Gi, Ci) is defined and c-planar if and only if (G, C) is c-planar. This is
certainly true for i = 0. Now suppose that this is true for every i′ < i and let us
prove it for i.

In the case r(C) = 0 we have two possibilities. Either Gi−1[C] is not planar,
then also G is not planar and (Gi−1, Ci−1) is definitely not c-planar. Then the
algorithm correctly rejects (and Gj , Cj is not defined for j ≥ i). Or Gi−1[C] is
planar and by Lemma 1 and Remark 1 pair (Gi−1, Ci−1) is c-planar if and only



Clustered Planarity: Clusters with Few Outgoing Edges 111

Input: Graph G and cluster set C, where each cluster has at most 4 outgoing edges.
Task: Accept (G, C) if and only if (G, C) is clustered planar.

1. Set G0 := G, C0 := C.
2. For i := 1 to |C| do:

(a) Let C be some cluster on the bottom-most level in Ci−1.
(b) If r(C) = 0 then

i. If Gi−1[C] is planar then set
Gi := Gi−1 \ C
Ci := {A \ C|A ∈ Ci−1 \ {C}, A ⊇ C} ∪ {A|A ∈ Ci−1, A �⊇ C }

ii. else REJECT.
(c) else

i. For each permutation π ∈ Sr(C) test whether C admits π (whether T π
C

is planar)
ii. If C admits no permutation, then REJECT.
iii. Let (Gi, Ci) be the replacement of cluster C by the corresponding graph

in (Gi−1, Ci−1).
3. If G|C| is planar then ACCEPT, otherwise REJECT (C|C| = ∅).

Fig. 5. An overview of the algorithm

if (Gi, Ci) is, since {B|B ∈ C \ {C}, B ⊆ C} is empty (C is on the bottom-most
level).

Now consider the case 1 ≤ r(C) ≤ 4. If C admits no permutation, then by
Lemma 3 the pair (Gi−1, Ci−1) is not c-planar and the algorithm correctly rejects
(and does not define Gj , Cj for j ≥ i). Otherwise C has a corresponding graph
by Corollary 1 and from the Proposition 1 we know that (Gi−1, Ci−1) is c-planar
if and only if (Gi, Ci) is c-planar.

Since |Ci| = |Ci−1| − 1 whenever defined, we have |C|C|| = 0 and thus C|C| = ∅
if C|C| is defined. But then (G|C|, C|C|) = (G|C|, ∅) is c-planar if and only if G|C|
is planar due to Remark 1, which completes the proof. 
�

Proposition 3. The algorithm works in time O(n).

Proof. The cycle is executed at most |C| times, in each time we delete one cluster
or reject. When we omit a planarity testing, complexity of each step of cycle in
the algorithm is bounded by constant. We add constant number of vertices and
if we have a suitable representation of clusters (for example tree representation)
we can find cluster on the bottom-most level in constant time too. And then
for these operations we need |C| in complexity time. The algorithm touches each
vertex at most three times, when we add, test, and remove it. For vertices which
we added later we paid before, by constant in each iteration. And for the original
vertices we need extra n for planarity testing. Each vertex from the original graph
we touch only once, because if we touch it we remove it or reject whole graph.
Since |C| is bounded by O(n), the complexity of our algorithm is O(n). 
�



112 V. Jeĺınek et al.

D2D1

Fig. 6. Two clusters with 5 outgoing edges that cannot be represented by any connected
graph

5 The Limits of the Approach

Let us consider clusters with more than 4 outgoing edges. Definition 1, Lemmas
2 and 4 easily generalize to this case as well as Lemma 3. The problem with
the generalization is that there are disconnected clusters with 5 outgoing edges
that admit a combination of permutations which cannot be represented by a
connected graph. In particular it can be shown that the two clusters from Fig. 6
have this property.

Let us try to formalize the result. Consider a graph R that is supposed to
be corresponding to some cluster C. Hence it has some distinguished vertices
s1, . . . , sr of degree 1 that are supposed to be identified with the vertices of G\C
when the cluster C is replaced by R in a graph G. Let R′ = V (R) \ {s1, . . . , sr}.
We say that the graph R admits a permutation π, if the cluster R′ of the clustered
graph (R, {R′}) admits a permutation π.

Proposition 4. There is no connected graph that admits the same number of
permutations as the cluster D1 from Fig. 6.

Proof. We will count the circular permutations. In total there are 12 circular per-
mutations on 5 elements, each representing 10 (standard) permutations. Observe
first that D1 admits 8 circular permutations. Now assume for a contradiction
that there is a connected graph R (with distinguished vertices s1, . . . , s5) that
admits also 8 circular permutations.

We observe that whenever we take a subgraph Q of the graph R, s1, . . . , s5 ∈
V (Q), then the graph Q admits at least the same number of permutations, since
we can just ommit the unnecessary parts from the appropriate embedding. Now
consider a subtree T of R with leaves of T being exactly the vertices s1, . . . , s5.
It is clear that R has such a subgraph since R is connected.

Since T has 5 leaves, it has at most 3 vertices of degree at least 3 — either
it has 3 vertices of degree 3, or one of degree 3 and one of degree 4, or just one
of degree 5. It is not hard to check that in the first two cases T admits 4 and 6
circular permutations, respectively. Thus in this cases R cannot admit 8 circular
permutations. The tree with just one vertex of degree 5 (among the vertices of
degree at least 3) admits all 12 circular permutations. Thus we know that T
must be some subdivision of K1,5.



Clustered Planarity: Clusters with Few Outgoing Edges 113

If R contains no path connecting two different branches of T , then clearly R
admits the same permutations as T i.e. all 12 circular permutations. On the other
hand, if R contains a path between two branches of T , then there is another tree
T ′, subgraph of R, that has one vertex of degree 4 and one vertex of degree 3.
But this means that R admits at most 6 permutations — a contradiction. 
�

References

1. Cornelsen, S., Wagner, D.: Completely connected clustered graphs. Journal of Dis-
crete Algorithms 4(2), 313–323 (2006)

2. Cortese, P.F., Di Battista, G.: Clustered planarity. In: ACM SoCG 2005, pp. 32–34
(2005)

3. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into
cycles of clusters. Journal of Graph Algorithms and Applications 9(3), 391–413
(2005); In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 391–413. Springer, Hei-
delberg (2005)

4. Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and
its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS,
vol. 1380, pp. 239–248. Springer, Heidelberg (1998)

5. Di Battista, G., Frati, F.: Efficient C-planarity testing for embedded flat clustered
graphs with small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007.
LNCS, vol. 4875, pp. 291–302. Springer, Heidelberg (2008)

6. Eades, P., Feng, Q.W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms
for hierarchical graphs and clustered Graphs. Algorithmica 44, 1–32 (2006)

7. Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis,
P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

8. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs.
In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer,
Heidelberg (2006)

9. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.:
Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)

10. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.:
Subgraph induced planar connectivity augmentation. In: Bodlaender, H.L. (ed.)
WG 2003. LNCS, vol. 2880, pp. 261–272. Springer, Heidelberg (2003)

11. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974)

12. Jeĺınková, E., Kára, J., Kratochv́ıl, J., Pergel, M., Suchý, O., Vyskočil, T.: Clus-
tered planarity: Small clusters in eulerian graphs. In: Hong, S.-H., Nishizeki, T.,
Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 303–314. Springer, Heidelberg
(2008)



Appendix D

Monochromatic Triangles in
Two-Colored Plane

65



COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/109/$6.00 c©2009 János Bolyai Mathematical Society and Springer-Verlag

Combinatorica 29 (6) (2009) 699–718
DOI: 10.1007/s00493-009-2291-y

MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE

VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

Received March 27, 2006

We prove that for any partition of the plane into a closed set C and an open set O and for
any configuration T of three points, there is a translated and rotated copy of T contained
in C or in O.

Apart from that, we consider partitions of the plane into two sets whose common
boundary is a union of piecewise linear curves. We show that for any such partition and
any configuration T which is a vertex set of a non-equilateral triangle there is a copy of T
contained in the interior of one of the two partition classes. Furthermore, we characterize
the “polygonal” partitions that avoid copies of a given equilateral triple.

These results support a conjecture of Erdős, Graham, Montgomery, Rothschild,
Spencer and Straus, which states that every two-coloring of the plane contains a monochro-
matic copy of any nonequilateral triple of points; on the other hand, we disprove a stronger
conjecture by the same authors, by providing non-trivial examples of two-colorings that
avoid a given equilateral triple.

1. Introduction

Euclidean Ramsey theory addresses the problems of the following kind: as-
sume that a finite configuration X of points is given; for what values of c
and d is it true that every coloring of the d-dimensional Euclidean space
by c colors contains a monochromatic congruent copy of X? The first sys-
tematic treatise on this theory appears in 1973 in a series of papers [2–4] by
Erdős, Graham, Montgomery, Rothschild, Spencer and Straus. Since then,
many strong results have been obtained in this field, often related to high-

Mathematics Subject Classification (2000): 05D10, 52C10



700 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

dimensional configurations (see, e.g., [5,7–9] or the survey [6]); however,
there are basic “low-dimensional” problems that remain open.

In this paper, we study the configurations of three points in the Euclidean
plane colored by two colors. We use the term triangle to refer to any set of
three points, including collinear triples of points, which we call degenerate
triangles. An (a,b,c)-triangle is a triangle whose edges, in anti-clockwise
order, have respective lengths a, b and c. A (1,1,1)-triangle is also called a
unit triangle.

We say that a set of points X ⊆R2 is a copy of a set of points Y ⊆R2, if X
can be obtained from Y by translations and rotations in the plane. A coloring
is a partition of R2 into two sets B and W. The elements of B and W are
called black points and white points, respectively. The term boundary of χ,
denoted by ∆(χ), refers to the common boundary of the sets B and W.
Given a coloring χ = (B,W), we say that a set X is monochromatic, if
X ⊆B or X ⊆W.

We say that a coloring χ contains a triangle T , if there exists a mono-
chromatic set T ′ which is a copy of T ; otherwise, we say that χ avoids T .

A coloring that avoids the unit triangle is easy to obtain: consider a color-

ing χ∗ that partitions the plane into alternating half-open strips of width
√

3
2 ;

formally, a point (x,y) is black if and only if n
√

3<y ≤ (n+ 1
2)

√
3 for some

integer n. It can be easily checked that χ∗ avoids the unit triangle. We can
even change the color of some of the points on the boundary of χ∗ with-
out creating any monochromatic unit triangle. Erdős et al. [4, Conjecture 1]
conjectured that this is essentially the only example of colorings avoiding a
given triangle:

Conjecture 1.1 ([4]). For every triangle T and every coloring χ, if χ
avoids T , then T is an equilateral (l, l, l)-triangle and χ is equal to an l-times
scaled copy of the coloring χ∗ defined above, up to possible modifications of
the colors of the points on the boundary of the strips.

In Section 3, we disprove this conjecture, and define a more general class
of colorings that avoid the unit triangle. On the other hand, the following
conjecture by Erdős et al. [4, Conjecture 3] remains open:

Conjecture 1.2 ([4]). Every coloring contains every nonequilateral trian-
gle.

In the past, it has been shown that Conjecture 1.2 holds for special
types of triangles T (see, e.g., [4,6,10]). Our approach is different: we prove
that the conjecture is valid for a restricted class of colorings χ and arbi-
trary T . In Section 2, we show that every coloring that partitions R2 into a



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 701

Fig. 1. The illustration of the proof of Lemma 1.3

closed set and an open set contains every triangle T . Then, in Section 3, we
consider polygonal colorings, whose boundary is a union of piecewise linear
curves (see page 704 for the precise definition). We show that Conjecture 1.2
holds for polygonal colorings, but there are polygonal counterexamples to
the stronger Conjecture 1.1. In fact, we are able to characterize all these
polygonal counterexamples.

The following lemma from [4] offers a useful insight into the topic of
monochromatic triangles in two-colored plane:

Lemma 1.3 ([4]). Let χ be a coloring of the plane. The following holds:

(i) If χ contains an (a,a,a)-triangle for some a > 0, then χ contains an
(a,b,c)-triangle for every b,c > 0 such that a,b,c satisfy the (possibly
degenerate) triangle inequality.

(ii) If χ contains an (a,b,c)-triangle, then χ contains an (x,x,x)-triangle for
some x∈{a,b,c}.

(iii) χ contains every triangle if and only if χ contains every equilateral
triangle.

(iv) χ contains every non-equilateral triangle if and only if there is an a0 >0
such that χ contains the equilateral (a,a,a)-triangle for all values of a>0
different from a0.

(v) χ contains an (a,b,c)-triangle if and only if χ contains a (b,a,c)-triangle.

Proof. The essence of the proof is the configuration in Fig. 1. The con-
figuration consists of two (a,a,a)-triangles ABC and A′B′C ′, two (b,b,b)-
triangles ADB′ and A′D′B and two (c,c,c)-triangles BDC ′ and B′D′C. To
prove part (i), assume for a given χ, that there is a monochromatic (a,a,a)-
triangle ABC, and extend this triangle into the eight-point configuration of



702 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

Fig. 1. It is easy to check that any coloring of the remaining five points of
the configuration yields a monochromatic (a,b,c)-triangle. Part (ii) of the
lemma is proved by an analogous argument, using the same configuration of
points. Parts (iii), (iv) and (v) of the lemma are direct consequences of the
first two parts.

2. Colorings by closed and open sets

The aim of this section is to prove the following result:

Theorem 2.1. If χ=(B,W) is a coloring such that B is closed and W is
open, then χ contains every triangle T .

By Lemma 1.3, it suffices to prove Theorem 2.1 for the case when T
is an arbitrary equilateral triangle. Moreover, since scaling does not affect
the topological properties of B and W, we may assume that T is the unit
triangle. Before stating the proof, we introduce a definition and prove an
auxiliary result.

Definition 2.2. Let ε > 0. An (a,b,c)-triangle whose edge-lengths satisfy
1−ε≤a,b,c≤1+ε is called an ε-almost unit triangle.

Suppose that an orthogonal coordinate system is given in the plane. For
a > 0, let Q(a) be the closed square with vertices (a,a), (−a,a), (−a,−a),
and (a,−a).

Proposition 2.3. Let Q(2)=B∪W be a partition of the square Q(2) into
two disjoint sets such that there is no monochromatic unit triangle in Q(2).
Then for every ε>0 both B and W contain an ε-almost unit triangle.

Proof. Assume that we are given a positive ε and a partition B ∪ W =
Q(2) such that Q(2) does not contain any monochromatic unit triangle. For
contradiction, assume that one of the classes, wlog the class B, does not
contain any ε-almost unit triangle.

There is a white point W and a black point B in Q(1) such that |W−B|<
ε (otherwise the whole square Q(1) would be monochromatic). Let C be
the unit circle centered at W . For every α ∈ R, let K(α) denote the point
of C with coordinates (xW + cos(α),yW + sin(α)), where (xW ,yW ) are the
coordinates of W .

Note that the distance between B and any point on C is in the interval
(1− ε,1+ ε); thus, for every α, the points K(α) and K(α+ π

3 ) must have



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 703

Fig. 2. Illustration of the proof of Proposition 2.3

different colors, otherwise they would form a monochromatic white unit
triangle with W or a monochromatic black ε-almost unit triangle with B.

Let K(α0) be a white point, then K(α0 + π
3 ) is black (see Fig. 2). Note

that for every α∈(α0 −ε,α0 +ε) the distance between K(α) and K(α0+ π
3 )

is in the interval (1−ε,1+ε), so the whole arc {K(α);α ∈ (α0 −ε,α0 +ε)}
is white. Let A = {K(α);α ∈ (β1,β2)} be the maximal open white arc of C

containing the point K(α0). Then the whole arc {K(α);α∈(β1 + π
3 ,β2+ π

3 )}
is black. By definition of A, there exists β ∈ (β2,β2 + ε

2) such that K(β) is
black. There also exists γ∈(β2 + π

3 − ε
2 ,β2+ π

3 ) such that K(γ) is black. But
then (γ−β)∈(π

3 −ε, π
3 ), so the distance between the black points K(β) and

K(γ) is in the interval (1−ε,1), and the three points B,K(β),K(γ) form a
black ε-almost unit triangle – a contradiction.

We are now ready to prove the main result of this section.

Proof of Theorem 2.1. Let χ = (B,W) be a coloring, with B closed.
By the remark under Theorem 2.1, we only need to show that χ contains
the unit triangle. Assume that this is not the case. Let B0 = Q(2) ∩ B
and W0 = Q(2) ∩ W. Neither B0 nor W0 contain the unit triangle, so by
Proposition 2.3, both these sets contain ε-almost unit triangles for every
ε > 0. In particular, the set B0 contains, for every n ∈ N, a 1

n -almost unit
triangle XnYnZn.

Since B0 is a compact set, the set B3
0 =B0×B0×B0 is compact as well.

The sequence {(Xn,Yn,Zn);n∈N} is an infinite sequence of points in B3
0, so

it has a convergent subsequence {(Xnk
,Ynk

,Znk
);k∈N}. Let (X,Y,Z)∈B3

0

be its limit. Then X,Y,Z ∈ B are limits of the sequences {Xnk
;k ∈ N},

{Ynk
;k ∈ N}, and {Znk

;k ∈ N}, respectively. The Euclidean distance is a
continuous function of two variables, so |X −Y | = limk→∞ |Xnk

−Ynk
| = 1,



704 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

similarly |Y −Z|= |Z−X|=1. Thus, {X,Y,Z} is a black unit triangle in Q(2),
which is a contradiction.

3. Polygonal colorings

Throughout this section, C(A) denotes the unit circle with center A, and
D(A) denotes the closed unit disc with center A.

In this section, we consider polygonal colorings, defined as follows:

Definition 3.1. A coloring χ=(B,W) is said to be polygonal, if it satisfies
the following conditions:

• The boundary of χ is a union of Jordan curves. Each of these curves is
either closed or two-way unbounded. Furthermore, each of these curves
is piecewise linear, i.e., it is a union of (possibly unbounded) linear seg-
ments. We will call these segments boundary segments. Two boundary
segments may only intersect in their common endpoint. The endpoints
of the boundary segments will be called boundary vertices. We assume
that if exactly two boundary segments meet at a boundary vertex, then
the two segments do not form a straight angle, because otherwise we
could replace them with a single boundary segment.

• The arrangement of boundary segments is locally finite, i.e., every
bounded region of the plane is intersected by only finitely many boundary
segments (which implies that every bounded region contains only finitely
many boundary vertices).

• The union of all the boundary segments partitions the plane into cells
whose interiors are monochromatic. Each two cells that share a common
boundary segment have different colors (it is not difficult to see that
such a two-coloring of the cells exists for any collection of boundary
curves satisfying the conditions above). We make no assumptions about
the colors of the points on the boundary.

We say that a coloring χ′ is a twin of a coloring χ if ∆(χ)=∆(χ′) and the
two colorings assign the same colors to the points outside their boundary.

The main aim of this section is to prove that each polygonal coloring con-
tains each nonequilateral triangle, and to characterize the polygonal color-
ings that avoid an equilateral triangle. To achieve this, we need the following
definition:

Definition 3.2. A coloring χ = (B,W) is called zebra-like if ∆(χ) is a
disjoint union of infinitely many Jordan curves Li; i ∈ Z with the following
properties (see Fig. 3):



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 705

(a) There is a unit vector �x such that for every i∈Z, Li +�x=Li. In other
words, each Li is invariant upon a translation of length 1.

(b) There is a unit vector �y which forms an angle of size π
3 with �x, such

that for every i ∈ Z, the curve Li+1 is a translated copy of Li, and the
translation is given by the vector �y. In other words, if X ∈ Li, then
X +�x∈Li and X +�y∈Li+1. Note that the points X,X +�x,X +�y form a
unit triangle.

(c) For every i∈Z, the interior of the region delimited by Li∪Li+1 is colored
with a different color than the interior of the region delimited by Li−1∪Li.

(d) Let A∈Li be an arbitrary point of ∆(χ). Let B1 =A−�x+�y, B2 =A+�y,
C1 =A−�y and C2 =A+�x−�y (note that B1,B2 ∈Li+1 and C1,C2 ∈Li−1

by the previous conditions, and that all these four points are at a unit
distance from A). Under these assumptions, the portion of Li+1 between
B1 and B2 and the portion of Li−1 between C1 and C2 are both contained
in the closed unit disk D(A), and no other point of Li+1 ∪Li−1 belongs
to D(A).
This last condition can also be stated in the following equivalent form:
for two points A and B, let θAB denote the size of the acute angle formed
by the segment AB and the vector �x. For every i∈Z and every two points
A∈Li and B∈Li+1, the inequality ‖AB‖>1 holds if and only if θAB < π

3 .

We stress that a zebra-like coloring is not necessarily polygonal.

Fig. 3. Boundary of a zebra-like coloring

3.1. The main result

The following theorem is the main result of this section:



706 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

Theorem 3.3. For a polygonal coloring χ, these conditions are equivalent:

(C1) The coloring χ is zebra-like.
(C2) The coloring χ has a twin that avoids the unit triangle.
(C3) For every monochromatic unit triangle ABC, at least one of the three

points A,B and C belongs to the boundary of χ.

Clearly, condition (C2) of Theorem 3.3 implies condition (C3), so we only
need to prove that (C1) implies (C2) and that (C3) implies (C1).

The proof is organized as follows: we first prove that (C3)⇒(C1). This
part of the proof proceeds in several steps: first of all, we use condition (C3)
to describe the set ∆(χ)∩C(A), where A is a boundary point. Then we apply
a continuity argument to extend this information into a global description
of χ.

Next, in Theorem 3.19, we prove that every (not necessarily polygonal)
zebra-like coloring has a twin that avoids the unit triangle, which shows that
(C1)⇒(C2), completing the proof of Theorem 3.3.

In the last part of this section, we show that Theorem 3.3 implies that
every polygonal coloring contains a monochromatic copy T of a given non-
equilateral triangle, with the vertices of T avoiding the boundary.

3.2. Proof of the main result

We begin with an auxiliary lemma:

Lemma 3.4. Let q1,q2,q3 be (not necessarily distinct) lines in the plane,
not all three parallel. Exactly one of the following possibilities holds:

1. The lines q1,q2,q3 intersect at a common point and every two of them
form an angle π

3 .
2. There exist only finitely many unit triangles ABC such that A∈q1, B∈q2

and C ∈q3.

Proof. It can be easily checked that the two conditions cannot hold simul-
taneously: in fact, if the three lines satisfy the first condition, then for every
point A∈ q1 whose distance from the other two lines is at most 1 there are
points B ∈ q2 and C ∈ q3 such that ABC is a unit triangle. We now show
that at least one of the two conditions holds.

We may assume that neither q1 nor q2 is parallel to q3. Consider a Carte-
sian coordinate system whose y-axis is q3. There are real numbers a1,a2, b1, b2

such that for i∈{1,2} we have qi ={(x,y)∈R2;y=aix+bi}. Let ABC be a
unit triangle with A=(x1,y1)∈ q1, B =(x2,y2)∈ q2 and C ∈ q3, and assume



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 707

that A,B,C are in the counter-clockwise order (the other case is symmet-

ric). Then C = (x1+x2
2 , y1+y2

2 )+
√

3
2 (y1 − y2,x2 −x1). Since C lies on q3, we

have

(1)
x1 + x2

2
+

√
3(y1 − y2)

2
= 0,

and since A and B are at distance 1, we get

(2) (x1 − x2)
2 + (y1 − y2)

2 = 1.

By combining (1) and (2), eliminating y1,y2, and simplifying, we obtain

(3) x2
1 + x2

2 − x1x2 =
3

4
.

Substituting y1 =a1x1 +b1 and y2 =a2x2 +b2 into (1) gives

(4)
1 +

√
3a1

2
x1 +

1 −
√

3a2

2
x2 +

√
3

2
(b1 − b2) = 0.

If both 1+
√

3a1
2 and 1−

√
3a2

2 are equal to zero, we get a1 =− 1√
3
, a2 = 1√

3
and

b1 =b2, and the first case of the statement holds.

In the other case, suppose (wlog) that 1+
√

3a1
2 	= 0. From (4) we obtain

that x1 = cx2 + d for some reals c,d. Substituting this into (3) yields a
quadratic equation for the variable x2 whose leading coefficient is equal to
c2 − c+1=(c− 1

2)2 + 3
4 > 0, so there are at most two possible values for x2,

thus at most two possible locations of B and at most four possible unit
triangles ABC.

Throughout the rest of this section, we assume that χ is a fixed polyg-
onal coloring satisfying condition (C3) of Theorem 3.3, let ∆ = ∆(χ) be
its boundary. A boundary segment is as a common edge of two (possibly
unbounded) polygonal regions, one of which is white and the other black.
We choose an orientation of the boundary segments in the following way: a
boundary segment with endpoints A and B is directed from A to B if the
white region adjacent to this segment is on the left hand side from the point
of view of an observer walking from A to B.

Definition 3.5. A boundary point A is called feasible, if A is not a bound-
ary vertex, and the unit circle C(A) does not contain any boundary vertex.
An infeasible point is a point on ∆ that is not feasible.



708 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

We may easily see that every bounded subset of the plane contains only
finitely many infeasible points.

The first step in the proof of the main result is the description of the set
of all boundary points at unit distance from a given feasible point A.

Let A be a fixed feasible point, let s be the boundary segment contain-
ing A. The set ∆ ∩ C(A) is finite, by the definition of polygonal coloring;
on the other hand, this set is nonempty, otherwise we could find two points
B,C of C(A) such that ABC is a unit triangle, with B and C in the in-
terior of the same color class. By shifting the triangle ABC slightly in a
suitable direction, we would obtain a monochromatic unit triangle avoiding
the boundary, which is forbidden by condition (C3).

In the following arguments, we will use a Cartesian coordinate system
whose origin is the point A, and whose x-axis is parallel to s and has the
same orientation. We shall assume that the x-axis and the segment s is
directed left-to-right and the y-axis is directed bottom-to-top. Assuming
this coordinate system, we let P (α,A) denote the point of C(A) with co-
ordinates (cos(α),sin(α)). If no ambiguity arises, we write P (α) instead
of P (α,A).

Lemma 3.6. Let B = P (α) be an arbitrary element of ∆∩C(A), let t be
the boundary segment containing B (t is determined uniquely, because A is
a feasible point). Then the segments s and t are parallel.

Proof. Assume that s and t are not parallel, let σ ∈ (0,π) be the angular
slope of t with respect to the coordinate system established above, i.e., σ is
the angle formed by the lines containing s and t.

First of all, note that point C =P (α+π
3 ) lies on ∆; otherwise, a sufficiently

small translation of the unit triangle ABC in a suitable direction would yield
a counterexample to condition (C3) (here we use the assumption that s and
t are not parallel). Let u be the boundary segment containing C, and let τ
be the angular slope of u.

Secondly, we deduce that {σ,τ} = {π
3 , 2π

3 }, and the three lines contain-
ing s, t and u all meet at one point. If this were not the case, then by
Lemma 3.4 there would be only finitely many unit triangles with vertices
belonging to the three segments s, t and u. Thus, we could find a unit tri-
angle A′B′C ′ with A′ ∈ s, B′ ∈ t and C ′ 	∈ ∆, which is impossible, by the
argument from the previous paragraph. By repeating this argument with
{α+ iπ

3 ; i=1, . . . ,5} in place of α, we obtain the following conclusions:

• The six points {P (α+ iπ
3 ); i=1, . . . ,6} all belong to ∆.

• The lines passing through the boundary segments containing these six
points all meet at one point.



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 709

• The boundary segments containing P (α), P (α+ 2π
3 ) and P (α+ 4π

3 ) all
have the same slope.

This is a contradiction, because three parallel segments intersecting a circle
in three distinct points cannot belong to a single line, and two parallel lines
do not intersect.

Lemma 3.7. P (π
2 ) 	∈∆, P (−π

2 ) 	∈∆.

Proof. For contradiction, assume that B =P (π
2 )∈∆ (the case of P (−π

2 ) is
symmetric), let t denote the boundary segment containing B. Let C =P (π

6 ).
We distinguish the following cases:

• Segment t has the same orientation as segment s. In this case, by applying
a rotation around the center C and then, if C ∈∆, a suitable translation,
we transform the triple ABC into a monochromatic triple with vertices
avoiding the boundary, contradicting (C3).

• Segments s and t have opposite orientations (i.e., t is oriented right-to-
left, which means that there is a white region touching t from below);
furthermore, either C ∈ ∆ or C is in the interior of the white color. In
such case, we may rotate the configuration ABC around the center of the
segment AB to obtain a unit triangle in the interior of the white color.

• Segments s and t have opposite orientations and the point C is in the
interior of the black color (see Fig. 4). Let θ be the maximal angle with
the properties that for every α∈(π

2 , π
2+θ) the point P (α) is in the interior

of the white color and for every α ∈ (π
6 , π

6 + θ) the point P (α) is in the
interior of the black color. The value of θ is well defined, and by the
previous assumptions, 0<θ< π

3 . Let B′ =P (π
2 +θ) and C ′ =P (π

6 +θ). By
the maximality of θ, at least one of the two points lies on the boundary,
and the boundary segment passing through this point is directed left-to-
right. As in the first case of this proof, we may rotate and translate the
configuration AB′C ′ to get a contradiction.

The lemma follows.
The previous two lemmas imply that if A is a feasible point, then no

boundary segment is tangent to C(A).

Lemma 3.8. Let B = P (α) ∈ ∆ be a point on the boundary, let t be the
boundary segment containing B. If α∈(π

6 , 5π
6 )∪(7π

6 , 11π
6 ), then s and t have

opposite orientation, while if |α| < π
6 or |α−π| < π

6 , then s and t have the
same orientation.

Proof. We first consider the case α∈(π
6 , 5π

6 )∪(7π
6 , 11π

6 ). The proof is analo-
gous to the proof of the first part of Lemma 3.7: if t had the same orientation



710 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

Fig. 4. Illustration of the proof of Lemma 3.7 (left) and Lemma 3.9 (right)

as s, we could take C =P (π
3 +α) and then by rotating and translating the

unit triangle ABC we would get a contradiction. Note that the condition
α∈ (π

6 , 5π
6 )∪(7π

6 , 11π
6 ) guarantees that C is either the leftmost or the right-

most point of the triangle ABC, so whenever we start rotating the trian-
gle ABC around C, the two points A,B move into the interior of the same
color.

The case |α|< π
6 or |α−π|< π

6 can be proven analogously.

Lemma 3.9. P (α)∈∆ if and only if P (α+ π
3 )∈∆.

Proof. We only prove one implication, the other case is symmetric. Assume
that for some α we have P (α) ∈ ∆ and P (π

3 + α) 	∈ ∆. Let B = P (α),
C =P (π

3 +α), and let t be the boundary segment containing B. We consider
the following cases:

• If s and t have opposite orientation, we rotate ABC around the center of
AB to obtain a monochromatic unit triangle in the interior of one color
(see Fig. 4). We use the fact that α 	= π

2 , which follows from Lemma 3.7.
• If s and t have the same orientation, a small translation in a suitable

direction transforms ABC into a monochromatic unit triangle.

In both cases we get a contradiction.

Lemma 3.10. For every θ there is exactly one value of α ∈ [θ,θ + π
3 ) such

that P (α)∈∆.

Proof. By Lemma 3.9, if the statement holds for some value of θ, it holds
for all other values of θ as well. Thus, it is enough to prove the lemma for
θ= π

2 .

Clearly, there is at least one α ∈ [π2 , 5π
6 ) such that P (α) ∈ ∆; otherwise,

the set C(A)∩∆ would be empty, which is impossible.
Assume that there are α and α′ such that π

2 ≤α<α′ < 5π
6 with P (α)∈∆

and P (α′) ∈ ∆. Fix α and α′ as small as possible. Let t and t′ be the



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 711

boundary segments containing P (α) and P (α′). The circle C(A) consists of
alternating black and white arcs and one of these arcs has P (α) and P (α′) for
endpoints. It follows that one of the segments t, t′ has the same orientation
as the segment s, contradicting Lemma 3.8.

Before we proceed with the proof of the main result, we summarize the
lemmas proved so far (and introduce some related notation) in the following
claim (see Fig. 5):

Fig. 5. Illustration of Claim 3.11

Claim 3.11. Let A∈∆ be an arbitrary feasible point. The circle C(A) in-
tersects the boundary ∆ at exactly six points, which form the vertex set of a
regular hexagon. These six points will be denoted by P0(A), . . . ,P5(A), where
Pi(A)=P (α+ iπ

3 ,A) with α∈(−π
6 , π

6 ) (this determines Pi(A) uniquely). The
boundary segments containing the six points Pi(A) are all parallel to the
boundary segment s containing the point A. The boundary segments con-
taining the points P0(A) and P3(A) have the same orientation as s, whereas
the boundary segments containing P1(A), P2(A), P4(A) and P5(A) have op-
posite orientation.

Now we use Claim 3.11 to obtain global information about the boundary.

Lemma 3.12. Let u1 and u2 be two boundary segments with a common
endpoint X. The size of the convex angle formed by the two segments is
greater than 2π

3 .



712 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

Proof. For contradiction, assume that for some u1, u2 and X, the statement
of the lemma does not hold (see Fig. 6). We may assume that the convex
angle determined by u1 and u2 does not contain any other boundary seg-
ment with endpoint X. Furthermore, we may assume that the segment u1

is directed from X to the other endpoint.
For 0 < t < |u1|, let A(t) ∈ u1 denote the point with |A(t)−X| = t and

let A′(t) = P4(A(t)). There is an ε > 0 such that for all 0 < t < ε the points
A(t) are feasible, the points A′(t) are feasible as well and lie on a common
boundary segment. By our assumption, the convex angles between the ray
A(t)A′(t) and the segments u1,u2 directed from X are both greater than π

2 .
It follows that if t is sufficiently small, the tangent line to the circle C(A′(t))
at A(t) intersects both segments u1, u2 and so does the circle C(A′(t)),
contradicting Claim 3.11.

Lemma 3.12 shows that no three boundary segments share a common
endpoint. Thus, each connected component of the boundary is a piecewise
linear curve (either open or closed). We will call these curves boundary com-
ponents.

Fig. 6. Illustration of the proof of Lemma 3.12 (left) and Lemma 3.14 (right)

Definition 3.13. Let A ∈ ∆. For t ∈ R, let A(t) denote the point of the
same boundary component as A, such that the directed length of the part of
the boundary starting at A and ending at A(t) is equal to t. A(t) is clearly
a continuous function of t. If A(t) is a feasible point, we let pi(t)=Pi(A(t)),
for i=0, . . . ,5.

It is easy to see that the functions pi are continuous on a sufficiently
small neighborhood of every value of t for which A(t) is a feasible point. Our
next aim is to show that these functions can be extended into continuous
functions by suitably defining the values of pi(t) when A(t) is not feasible.
It is not obvious that the functions pi can be extended in this way: the



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 713

definition of Pi(A(t)) uses the Cartesian system whose x-axis is parallel with
the boundary segment containing A(t). Hence, if A1 and A2 are two feasible
points belonging to two distinct boundary segments of the same boundary
component, it might not be immediately clear that Pi(A1) belongs to the
same boundary component as Pi(A2). The next lemma shows that these
technical difficulties can be overcome.

Lemma 3.14. Let A(t0) be an infeasible point. For every i=0, . . . ,5, there
is a point Pi ∈∆ such that lim

t→t0−
pi(t)=Pi = lim

t→t0+
pi(t).

This means that if we define pi(t0)=Pi, then pi is continuous at t0.

Proof. It is sufficient to prove the lemma for i=0, because pi(t) is a contin-
uous function of A(t) and p0(t). Since every boundary segment contains only
finitely many infeasible points, we may choose an ε>0, such that for every t
from the open interval (t0−ε,t0) the points A(t) are feasible and they all be-
long to a single boundary segment u1, and similarly, for every t′ ∈(t0, t0+ε)
the points A(t′) are feasible, and belong to a single boundary segment u2. If
the segments u1 and u2 are distinct, then A(t0) is their common endpoint.
Note that for t ∈ (t0 − ε,t0), the points p0(t) belong to a single boundary
segment v1, otherwise some of the A(t) would be infeasible. By Claim 3.11,
the segment v1 is parallel and consistently oriented with u1. Similarly, for
t′ ∈ (t0, t0 + ε) the points p0(t

′) belong to a single boundary segment v2,
parallel and consistently oriented with u2. We do not know yet whether v1

and v2 appear consecutively on the same component of the boundary.
Let B=limt→t0− p0(t). See Fig. 6.
For t ∈ (t0 − ε,t0), fix α ∈ (−π

6 , π
6 ) such that p0(t) = P (α,A(t)), i.e.,

α is the (signed) measure of the angle between the segment u1 and the
segment A(t)p0(t). Note that α does not depend on the choice of t. The circle
C(A(t0)) intersects ∆ at B. Let w be the boundary segment starting at B and
directed away from B. By Lemma 3.12, the convex angles determined by v1

and w and by u1 and u2 have size at least 2π
3 , which implies that the convex

angle α′ between u2 and BA(t0) is acute and the convex angle between
w and BA(t0) is obtuse. Thus, for t′ ∈ (t0, t0 + ε) the circle C(A′) (where
A′ =A(t′)) intersects the segment w at a point B′ =pi(t

′). From Claim 3.11
it follows that w is parallel to u2. Also, the segment A′B′ is parallel to the
segment A(t0)B, which is in turn parallel to any of the segments A(t)p0(t),
for t∈(t0 −ε,t0).

To finish the proof, we need to show that B′ = p0(t
′) (as opposed to

B′=pi(t
′) for some i 	=0), i.e., we need to prove that the angle α′ determined

by the segment u2 and the segment A′B′ falls into the range (−π
6 , π

6 ). We
have observed that α′ ∈ (−π

2 , π
2 ). This leaves us with the following three



714 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

possibilities: either B′ = p5(t
′), or B′ = p1(t

′), or B′ = p0(t
′). However, the

former two possibilities are ruled out by the fact that the segment w is
oriented consistently with the segment u2. This concludes the proof.

Lemma 3.15. Let i∈{0, . . . ,5}, let A∈∆ be an arbitrary boundary point.
All the unit segments of the form A(t)pi(t) have the same slope, indepen-
dently of the choice of t.

Proof. The slope of A(t)pi(t) (as a function of t) is constant in a neighbor-
hood of every t for which A(t) is feasible. Moreover, this slope is a continuous
function of t, which follows from Lemma 3.14. Hence the function is constant
on the whole range.

Lemma 3.15 shows that every translation that maps a feasible point A
to the point Pi(A) also maps the boundary component containing A onto
the boundary component containing Pi(A) (which may be the same compo-
nent). Composing such translations (or their inverses) we conclude that the
translations that send Pi(A) to Pj(A) have the same component-preserving
property.

For the proof of Lemma 3.17, we will need a slight extension of Claim 3.11
to infeasible points:

Claim 3.16. Let A∈∆ be an arbitrary infeasible point.

(i) At each of the six points P0(A),P1(A), . . . ,P5(A) the circle C(A) prop-
erly crosses the corresponding boundary component, i.e., in a sufficiently
small neighborhood of such point, the circle C(A) separates the boundary
component into two portions, one lying inside C(A) and the other one
lying outside C(A).

(ii) There are no more proper crossings of C(A) with boundary components.
(However, C(A) may touch the boundary at some other points.)

(iii) The boundary components containing the points P0(A) and P3(A) have
the same orientation as the component containing A, while the boundary
components containing P1(A), P2(A), P4(A) and P5(A) have opposite
orientation.

Proof. The first two statements follow from the fact that C(A) has the same
number of proper crossings with the boundary as the circle C(A(t)), where
A(t) is a feasible point sufficiently close to A. The third statement follows
from Claim 3.11 applied to point A(t).

Lemma 3.17. Let A ∈ ∆ be an arbitrary boundary point. For simplicity,
write Pi,C and D instead of Pi(A),C(A) and D(A), respectively. The point



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 715

P1 belongs to the same boundary component as P2, the point P0 belongs to
the same boundary component as A and P3, and the point P4 belongs to the
same boundary component as P5. The four portions of the boundary that
connect P1 with P2, P0 with A, A with P3, and P4 with P5 are all translated
copies of a single piecewise linear curve. These four portions of the boundary
are all contained in D.

Proof. We show that the boundary component that enters inside D at P1

leaves D at P2. The rest of the statement follows from Lemma 3.15.
Let L be the boundary component that contains P1. Let us follow L from

P1 in the direction of its orientation, i.e., into the interior of the unit disc D,
and let X be the first point where L leaves C. We observe the following:

• X is neither P3 nor P5, because in these points, the boundary is oriented
into the interior of the disc D.

• X is not the point P0: if X =P0, then the translation P0 
→A would map
the section of the boundary between P1 and P0 onto a section directed
from P2 to A. Similarly, the translation P1 
→ A would map the section
P1P0 onto a section directed from P5 to A. This is impossible, because
two different boundary sections of equal length cannot both end at A.

• X is not P4: if X were equal to P4, we would consider the boundary
component that enters into the interior of C at P3. Since this boundary
component cannot intersect the boundary section between P1 and P4, it
must leave the interior of C at the point P2. However, this is symmetric
to the previous case.

• Having excluded all other possibilities, we know that X =P2.

Let U denote the section of L between P1 and P2. By definition, this section
properly crosses C only at its endpoints. Applying a symmetric argument,
we find that the boundary section from P5 to P4 (which is a translated copy
of U) properly crosses C only at its endpoints. Translating U appropriately,
we obtain the boundary sections connecting P3 with A and A with P0.

From the previous lemmas, we readily obtain the following claim.

Claim 3.18. Condition (C3) of Theorem 3.3 implies condition (C1).

Proof. We check that χ satisfies the conditions of Definition 3.2. Let �x

denote the unit vector
−−→
AP0 and let �y be the unit vector

−−→
AP1. As we know

from Claim 3.11 and Lemma 3.15, the two vectors �x and �y form an angle π
3 .

By Lemma 3.17, every component of ∆ is a piecewise linear �x-periodic
curve, and if L is a component of ∆, then any other component is a translate
of L by an integral multiple of the vector �y. Let Li = L0 + i�y, i ∈ Z, where



716 VÍT JELÍNEK, JAN KYNČL, RUDOLF STOLAŘ, TOMÁŠ VALLA

L0 is a boundary component chosen arbitrarily. We have ∆=
⋃

i∈Z Li. Con-
dition (d) of Definition 3.2 follows from Lemma 3.17.

It remains to show that condition (C1) implies (C2). In fact, we prove a
more general claim:

Theorem 3.19. Each zebra-like coloring has a twin that avoids the unit
triangle.

Proof. Let χ be a zebra-like coloring, let Li, �x and �y be as in Definition 3.2.
Let χ′ be the twin coloring of χ such that the points of Li are black in χ′ if
i is even and white if i is odd.

Observe that by the definition of the coloring, the color of a point P is
equal to the color of P +�x and different from the color of P +�y. Now assume
that ABC is a monochromatic unit triangle, wlog the three points are black.
By the previous observation, no edge of the triangle forms an angle of size π

3

(or 2π
3 ) with the vector �x. It follows that exactly one of the three edges (wlog

the edge AB) forms with �x an angle whose size falls into the range (π
3 , 2π

3 ).
We claim that the three points A,B,C all belong to a single connected

component of the black color: otherwise one of the two edges AC and BC
would have to intersect (at least) two curves Li and Li+1. By the definition
of the coloring, the distance between the two points of intersection is greater
than 1, contradicting the fact that ABC is a unit triangle.

We now show that ‖AB‖<1: let � be the line containing the segment AB.
Note that the line �, as well as any other line not parallel with �x, intersects
all the curves Li. Let A′B′ be the segment obtained as the convex hull of
the intersection of � with the closure of the black component containing A
and B. By the definition of χ′, ‖A′B′‖≤1. Since the two points A′ and B′

belong to two adjacent boundary curves Li and Li+1, they have different
colors. Thus, the segment AB is a proper subset of A′B′, and ‖AB‖ < 1,
which is a contradiction.

This completes the proof of Theorem 3.3.

3.3. Nonequilateral triangles

The following result is a direct consequence of Theorem 3.3, by an easy
modification of the proof of Lemma 1.3.

Theorem 3.20. Let XY Z be a nonequilateral triangle, let χ be a polygonal
coloring. There is a monochromatic copy X ′Y ′Z ′ of the triangle XY Z, such
that none of the points X ′,Y ′ and Z ′ belongs to the boundary of χ.



MONOCHROMATIC TRIANGLES IN TWO-COLORED PLANE 717

Proof. Let a,b and c be the lengths of the three edges of XY Z, assume
that a 	=b. By Theorem 3.3, no polygonal coloring can simultaneously avoid
copies of equilateral triangles of two different sizes. Hence, we may assume
that χ contains a monochromatic equilateral (a,a,a)-triangle ABC whose
vertices avoid ∆(χ). Assume that the three points A, B and C are black.
Consider the configuration of eight points on Fig. 1. As mentioned in the
proof of the first part of Lemma 1.3, every coloring of the five points D, A′,
B′, C ′ and D′ yields a monochromatic (a,b,c)-triangle. Furthermore, we may
assume that the eight points all avoid ∆(χ), otherwise we might shift the
configuration slightly to move the points away from the boundary, without
changing the color of ABC (recall that A, B and C belong to the interior
of the black color). This concludes the proof.

4. Concluding remarks

The Conjecture 1.2 remains open, despite the indirect support from our re-
sults, as well as from earlier research. The validity of this conjecture might
depend on the particular choice of set-theoretical axioms. Such issues do not
arise in this paper, since our proof techniques are very elementary. Unfortu-
nately, these elementary techniques do not offer much hope for broad gen-
eralizations. It might nevertheless be possible to extend our results about
polygonal colorings to a broader class of colorings, e.g., the colorings by
monochromatic regions bounded by arbitrary Jordan curves. Such colorings
have already been studied in the context of the related problem of the chro-
matic number of the plane (see [11]).

The zebra-like colorings provide a hitherto unknown example of colorings
that avoid an equilateral triangle. We are not aware of any other examples of
colorings avoiding a given triangle, but we do not dare to make any conjec-
tures about the uniqueness of our construction, because our understanding
of non-polygonal colorings is rather limited.

Acknowledgments

We appreciate the useful discussions with Zdeněk Dvořák, Jan Kratochv́ıl,
Martin Tancer, Pavel Valtr and Tomáš Vyskočil.

References

[1] M. Bóna and G. Tóth: A Ramsey-type problem on right-angled triangles in space,
Discrete Math. 250 (1996), 61–67.



718 JELÍNEK, KYNČL, STOLAŘ, VALLA: MONOCHROMATIC TRIANGLES. . .

[2] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer and
E. G. Straus: Euclidean Ramsey Theorems I, Journal of Comb. Theory (A) 14
(1973), 341–363.

[3] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer and
E. G. Straus: Euclidean Ramsey Theorems II, Infinite and Finite Sets 10 (1973),
529–557.

[4] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer and
E. G. Straus: Euclidean Ramsey Theorems III, Infinite and Finite Sets 10 (1973),
559–583.

[5] P. Frankl and V. Rödl: A Partition Property of simplices in Euclidean space,
Journal of the Amer. Math. Soc. 3(1) (1990), 1–7.

[6] R. L. Graham: Recent trends in Euclidean Ramsey theory, Discrete Math. 136
(1994), 119–127.

[7] I. Kř́ıž: Permutation groups in Euclidean Ramsey theory, Proc. Amer. Math. Soc.
112 (1991), 899–907.

[8] I. Kř́ıž: All trapezoids are Ramsey, Discrete Math. 108 (1992), 59–62.
[9] J. Matoušek and V. Rödl: On Ramsey Sets in Spheres, Journal of Comb. The-

ory (A) 70 (1995), 30–44.
[10] L. E. Shader: All right triangles are Ramsey in E2!, Journal of Comb. Theory (A)

20 (1979), 385–389.
[11] D. R. Woodall: Distances realized by sets covering the plane, Journal of Comb.

Theory (A) 14 (1973), 187–200.

Vı́t Jeĺınek

Institute for Theoretical Computer

Science (ITI)*

and Department of Applied

Mathematics (KAM)†

Charles University

Faculty of Mathematics and Physics

Malostranské nám. 2/25

118 00, Prague

Czech Republic

jelinek@kam.mff.cuni.cz

Jan Kynčl, Rudolf Stolař, Tomáš Valla

Department of Applied Mathematics (KAM)†

Charles University

Faculty of Mathematics and Physics

Malostranské nám. 2/25

118 00, Prague

Czech Republic

jankyncl@centrum.cz, ruda@kam.mff.cuni.cz,

valla@kam.mff.cuni.cz

* ITI is supported by project 1M0021620808 of the Czech Ministry of Education.
† KAM is supported by project MSM0021620838 of the Czech Ministry of Education.



Appendix E

Slope Number of Planar
Partial 3-Trees

86



Graphs and Combinatorics (2013) 29:981–1005
DOI 10.1007/s00373-012-1157-z

ORIGINAL PAPER

The Planar Slope Number of Planar Partial 3-Trees
of Bounded Degree

Vít Jelínek · Eva Jelínková · Jan Kratochvíl ·
Bernard Lidický · Marek Tesař · Tomáš Vyskočil

Received: 18 October 2010 / Revised: 29 February 2012 / Published online: 21 March 2012
© Springer 2012

Abstract It is known that every planar graph has a planar embedding where edges
are represented by non-crossing straight-line segments. We study the planar slope
number, i.e., the minimum number of distinct edge-slopes in such a drawing of a pla-
nar graph with maximum degree Δ. We show that the planar slope number of every
planar partial 3-tree and also every plane partial 3-tree is at most O(Δ5). In particu-
lar, we answer the question of Dujmović et al. (Comput Geom 38(3):194–212, 2007)
whether there is a function f such that plane maximal outerplanar graphs can be drawn
using at most f (Δ) slopes.

Supported by GraDR EUROGIGA project GIG/11/E023, by project 1M0021620838 of the Czech
Ministry of Education, and by Grant 1M0545 of the Czech Ministry of Education.

V. Jelínek (B) · E. Jelínková · J. Kratochvíl · B. Lidický · M. Tesař · T. Vyskočil
Department of Applied Mathematics, Charles University, Malostranské náměstí 25, Prague,
Czech Republic
e-mail: jelinek@kam.mff.cuni.cz

E. Jelínková
e-mail: eva@kam.mff.cuni.cz

B. Lidický
e-mail: bernard@kam.mff.cuni.cz

M. Tesař
e-mail: tesulo@kam.mff.cuni.cz

J. Kratochvíl · T. Vyskočil
Institute for Theoretical Computer Science, Charles University, Malostranské náměstí 25,
Prague, Czech Republic
e-mail: honza@kam.mff.cuni.cz

T. Vyskočil
e-mail: whisky@kam.mff.cuni.cz

123



982 Graphs and Combinatorics (2013) 29:981–1005

Keywords Graph drawing · Planar graphs · Slopes · Planar slope number

Mathematics Subject Classification 68R10 · 05C10 · 05C62

1 Introduction

The slope number of a graph G was introduced by Wade and Chu [13]. It is defined
as the minimum number of distinct edge-slopes in a straight-line drawing of G.
Clearly, the slope number of G is at most the number of edges of G, and it is at
least half of the maximum degree Δ of G.

Dujmović et al. [2] asked whether there was a function f such that each graph with
maximum degree Δ could be drawn using at most f (Δ) slopes. In general, the answer
is no due to a result of Barát et al. [1]. Later, Pach and Pálvölgyi [12] and Dujmović
et al. [3] proved that for every Δ ≥ 5, there are graphs of maximum degree Δ that
need an arbitrarily large number of slopes.

On the other hand, Keszegh et al. [7] proved that every graph of maximum degree
three can be drawn using at most five slopes, and if we additionally assume that the
graph is connected and has at least one vertex of degree less than three then four slopes
suffice. Mukkamala and Szegedy [10] have shown that four slopes also suffice for every
connected cubic graph. It was further strengthened by Mukkamala and Pálvölgyi [11]
by showing that four basic slopes {0, π/4, π/2, 3π/4} suffice for every cubic graph.
Dujmović et al. [3] give a number of bounds in terms of the maximum degree: for
interval graphs, cocomparability graphs, or AT-free graphs. All the results mentioned
so far are related to straight-line drawings which are not necessarily non-crossing.

It is known that every planar graph G can be drawn so that edges of G are represented
by non-crossing segments [6]. We call such a planar drawing a straight-line embed-
ding of G. In this paper, we examine the minimum number of slopes in a straight-line
embedding of a planar graph.

In this paper, we make the (standard) distinction between planar graphs, which are
graphs that admit a plane embedding, and plane graphs, which are graphs accompa-
nied with a fixed prescribed combinatorial embedding, i.e., a prescribed face structure,
including a prescribed outer face. Accordingly, we distinguish between the planar
slope number of a planar graph G, which is the smallest number of slopes needed to
construct any straight-line embedding of G, as opposed to the plane slope number of a
plane graph G, which is the smallest number of slopes needed to realize the prescribed
combinatorial embedding of G as a straight-line embedding.

The research of slope parameters related to plane embedding was initiated by
Dujmović et al. [2]. In [4], there are numerous results for the plane slope number
of various classes of graphs. For instance, it is proved that every plane 3-tree can be
drawn using at most 2n slopes, where n is its number of vertices. It is also shown that
every 3-connected plane cubic graph can be drawn using three slopes, except three
edges on the outer face.

Recently, Keszegh, Pach and Pálvölgyi [8] have shown that any plane graph of
maximum degree Δ can be drawn with 2O(Δ) slopes. Their argument is based on a
representation of planar graphs by touching disks.

123



Graphs and Combinatorics (2013) 29:981–1005 983

In this paper, we study both the plane slope number and the planar slope number.
The lower bounds of [1,3,12] for bounded-degree graphs do not apply to our case,
because the constructed graphs with large slope numbers are not planar. Moreover, the
upper bounds of [7,10] give drawings that contain crossings even for planar graphs.

For a fixed k ∈ N, a k-tree is defined recursively as follows. A complete graph on k
vertices is a k-tree. If G is a k-tree and K is a k-clique of G, then the graph formed by
adding a new vertex to G and making it adjacent to all vertices of K is also a k-tree.
A subgraph of a k-tree is called a partial k-tree.

We present several upper bounds on the plane and planar slope number in terms of
the maximum degree Δ. The most general result of this paper is the following theorem,
which deals with plane partial 3-trees.

Theorem 1.1 The plane slope number of any plane partial 3-tree with maximum
degree Δ is at most O(Δ5).

Note that the above theorem implies that the planar slope number of any planar
partial 3-tree is also at most O(Δ5).

Since every outerplanar graph is also a partial 3-tree, the result above answers a
question of Dujmović et al. [4], who asked whether a plane maximal outerplanar graph
can be drawn using at most f (Δ) slopes.

Unlike the results of Keszegh, Pach and Pálvölgyi [8], our arguments are only appli-
cable to a restricted class of planar graphs. On the other hand, our bound is polynomial
in Δ rather than exponential, and moreover, our proof is constructive.

A weaker version of our results has been announced in an extended abstract that
was presented at Graph Drawing 2009 [5].

2 Preliminaries

Let us introduce some basic terminology and notation that will be used throughout
this paper.

Let s be a segment in the plane. The smallest angle α ∈ [0, π) such that s can be
made horizontal by a clockwise rotation by α, is called the slope of s. The directed
slope of a directed segment is an angle α′ ∈ [0, 2π) defined analogously.

A plane graph is called a near triangulation if all its faces, except possibly the outer
face, are triangles.

3 Plane Partial 3-Trees

In this section we present the proof of Theorem 1.1. We start with some observations
about the structure of plane 3-trees. Throughout this section, we assume that Δ is a
fixed integer.

It is known that any plane 3-tree can be generated from a triangle by a sequence of
vertex-insertions into inner faces. Here, a vertex-insertion is an operation that consists
of creating a new vertex in the interior of a face, and then connecting the new vertex

123



984 Graphs and Combinatorics (2013) 29:981–1005

to all the three vertices of the surrounding face, thus subdividing the face into three
new faces.

For a plane partial 3-tree G we define the level of a vertex v as the smallest integer
k such that there is a set V0 of k vertices of G with the property that v is on the outer
face of the plane graph G − V0. Let G be a plane partial 3-tree. An edge of G is
called balanced if it connects two vertices of the same level of G. An edge that is not
balanced is called tilted. Similarly, a face of G whose all vertices belong to the same
level is called balanced, and any other face is called tilted. In a plane 3-tree, the level
of a vertex v can also be equivalently defined as the length of the shortest path from v

to a vertex on the outer face. However, this definition cannot be used for plane partial
3-trees.

Note that whenever we insert a new vertex v into an inner face of a 3-tree, the level
of v is one higher than the minimum level of its three neighbors; note also that the
level of all the remaining vertices of the 3-tree is not affected by the insertion of a new
vertex.

Let u, v be a pair of vertices forming an edge. A bubble over uv is an outerplanar
plane near triangulation that contains the edge uv on the boundary of the outer face.
The edge uv is called the root of the bubble. A trivial bubble is a bubble that has no
other edge apart from the root edge. A double bubble over uv is a union of two bubbles
over uv which have only u and v in common and are attached to uv from its opposite
sides. A leg is a graph L created from a path P by adding a double bubble over every
edge of P . The path P is called the spine of L and the endpoints of P are also referred
to as the endpoints of the leg. Note that a single vertex is also considered to form a
leg.

A tripod is a union of three legs which share a common endpoint. A spine of a
tripod is the union of the spines of its legs. Observe that a tripod is an outerplanar
graph. The vertex that is shared by all the three legs of a tripod is called the central
vertex.

Let G be a near triangulation, let Φ be an inner face of G. Let T be a tripod with
three legs X, Y, Z and a central vertex c. An insertion of tripod T into the face Φ is
the operation performed as follows. First, insert the central vertex c into the interior
of Φ and connect it by edges to the three vertices of Φ. This subdivides Φ into three
subfaces. Extend c into an embedding of the whole tripod T , by embedding a single
leg of the tripod into the interior of each of the three subfaces. Next, connect every
non-central vertex of the spine of the tripod to the two vertices of Φ that share a face
with the corresponding leg. Finally, connect each non-spine vertex v of the tripod to
the single vertex of Φ that shares a face with v. See Fig. 1. Observe that the graph
obtained by a tripod insertion into Φ is again a near triangulation.

Lemma 3.1 Let G be a graph. The following statements are equivalent:

1. G is a plane 3-tree, i.e., G can be created from a triangle by a sequence of vertex
insertions into inner faces.

2. G can be created from a triangle by a sequence of tripod insertions into inner
faces.

3. G can be created from a triangle by a sequence of tripod insertions into balanced
inner faces.

123



Graphs and Combinatorics (2013) 29:981–1005 985

Fig. 1 An example of a tripod consisting of vertices of level 1 in a plane 3-tree

Proof Clearly, (3) implies (2).
To observe that (2) implies (1), it suffices to notice that a tripod insertion into a face

Φ can be simulated by a sequence of vertex insertions: first insert the central vertex
of a tripod into Φ, then insert the vertices of the spine into the resulting subfaces, and
then create each bubble by inserting vertices into the face that contains the root of the
bubble and its subsequent subfaces.

To show that (1) implies (3), proceed by induction on the number of levels in G. If
G only has vertices of level 0, then it consists of a single triangle and there is nothing to
prove. Assume now that G is a graph that contains vertices of k > 0 distinct levels, and
assume that any 3-tree with fewer levels can be generated by a sequence of balanced
tripod insertions by induction.

We will show that the vertices of level k induce in G a subgraph whose every con-
nected component is a tripod, and that each of these tripods is inserted inside a triangle
whose vertices have level k − 1.

Let C be a connected component of the subgraph induced in G by the vertices
of level k. Let v1, v2, . . . , vm be the vertices of C , in the order in which they were
inserted when G was created by a sequence of vertex insertions. Let Φ be the triangle
into which the vertex v1 was inserted, and let x, y and z be the vertices of Φ. Neces-
sarily, all three of these vertices have level k −1. Each of the vertices v2, . . . , vm must
have been inserted into the interior of Φ, and each of them must have been inserted
into a face that contained at least one of the three vertices of Φ.

Note that at each point after the insertion of v1, there are exactly three faces inside
Φ that contain a pair of vertices of Φ; each of these three faces is incident to an edge of
Φ. Whenever a vertex vi is inserted into such a face, the subgraph induced by vertices
of level k grows by a single edge. These edges form a union of three paths that share
the vertex v1 as their common endpoint.

On the other hand, when a vertex vi is inserted into a face formed by a single ver-
tex of Φ and a pair of previously inserted vertices v j , v�, then the graph induced by
vertices of level k grows by two new edges viv j and viv�, as well as a new triangular
face with vertices vi , v j , v�.

With these observations, it is easy to check (e.g., by induction on i) that for every
i ≥ 1, the subgraph of G induced by the vertices v1, . . . , vi is a tripod inserted into Φ.

123



986 Graphs and Combinatorics (2013) 29:981–1005

From this fact, it follows that the whole graph G may have been created by a sequence
of tripod insertions into balanced faces. ��

Note that when we insert a tripod into a balanced face, all the vertices of the tripod
will have the same level (which will be one higher than the level of the face into which
we insert the tripod). In particular, each balanced face we create by this insertion is an
inner face of the inserted tripod.

Recall that a plane partial 3-tree is a plane graph that is a subgraph of a 3-tree.
Kratochvíl and Vaner [9] have shown that every plane partial 3-tree G is in fact a
subgraph of a plane 3-tree. Furthermore, if a plane partial 3-tree G has at least three
vertices, it is in fact a spanning subgraph of a plane 3-tree, i.e., it can be extended into
a plane 3-tree by only adding edges.

Unfortunately, the plane 3-tree that contains a plane partial 3-tree G may in general
require arbitrarily large vertex-degrees, even if the maximum degree of G is bounded.
Thus, the result of Kratochvíl and Vaner does not allow us to directly simplify the
problem to drawing plane 3-trees.

To overcome this difficulty, we introduce the notion of ‘plane semi-partial 3-tree’,
which can be seen as an intermediate concept between plane 3-trees and plane partial
3-trees.

Definition 3.1 A graph G is called a plane semi-partial 3-tree if G is obtained from
a plane 3-tree H by erasing some of the tilted edges of H .

Our goal is to prove that every plane partial 3-tree of maximum degree Δ can be
drawn with at most O(Δ5) slopes. We obtain this result as a direct consequence of
two main propositions, stated below.

Proposition 3.1 Any connected plane partial 3-tree of maximum degree Δ is a sub-
graph of a plane semi-partial 3-tree of maximum degree at most 37Δ.

Proposition 3.2 For every Δ there is a set S of at most O(Δ5) slopes with the property
that any plane semi-partial 3-tree of maximum degree Δ has a straight-line embedding
whose edge-slopes all belong to S.

We begin by proving Proposition 3.1.

3.1 Proof of Proposition 3.1

We begin by a simple lemma, which shows that the deletion of tilted edges from a
plane 3-tree does not affect the level of vertices.

Lemma 3.2 Let H = (V, E) be a plane 3-tree, let T be a set of tilted edges of H, let
G = (V, E \ T ) be a semi-partial 3-tree. Let v be a vertex of level k with respect to
H. Then v has level k in G as well.

Proof Fix a vertex v of level k in H . Of course, the deletion of an edge may only
decrease the level of a vertex, so v has level at most k in G. On the other hand, it
follows from Lemma 3.1 that every vertex of level k in H is separated from the outer

123



Graphs and Combinatorics (2013) 29:981–1005 987

face by k nested triangles C0, C1, . . . Ck−1, where Ci is a triangle formed by balanced
edges that belong to level i . Since every balanced edge of H belongs to G as well, we
know that all the triangles C0, C1, . . . Ck−1 belong to G, showing that v has level at
least k. It follows that the level of v is preserved by the deletion of tilted edges. ��

Let G = (V, E) be a plane semi-partial 3-tree obtained from a plane 3-tree H =
(V, E ′) by the deletion of several tilted edges. As a consequence of the previous
lemma, we see that an edge e ∈ E is tilted in G if and only if it is tilted in H .

Assume now that F is a connected plane partial 3-tree with maximum degree Δ ≥ 1
and at least three vertices. Our goal is to show that there is a plane semi-partial 3-tree
G with maximum degree at most 37Δ that contains F as a spanning subgraph. The
following definition introduces the key notion of our proof.

Definition 3.2 Let F be a connected plane partial 3-tree with maximum degree Δ,
and let k be an integer. We say that a 3-tree H correctly covers F up to level k, if the
following conditions are satisfied:

– F is a spanning subgraph of H .
– Let V ≤k denote the set of vertices that have level at most k in H . For every vertex

v ∈ V ≤k there are at most 36Δ balanced edges of H that are incident to v.

Furthermore, we say that H correctly covers F at all levels if, for any k, H correctly
covers F up to level k.

As mentioned before, Kratochvíl and Vaner [9] have shown that every plane partial
3-tree F is a spanning subgraph of a plane 3-tree H . Note that such a 3-tree H cor-
rectly covers F up to level 0, because every vertex at level 0 is adjacent to two balanced
edges.

Our proof of Proposition 3.1 is based on the following lemma.

Lemma 3.3 For every connected partial 3-tree F there is a 3-tree H that correctly
covers F at all levels.

Before we prove the lemma, let us show how it implies Proposition 3.1.

Proof of Proposition 3.1 from Lemma 3.3 Let F be a plane partial 3-tree of maximum
degree Δ, and let H be the 3-tree that correctly covers F at all levels. Define a semi-
partial 3-tree G which is obtained from H by erasing all the tilted edges of H that
do not belong to F . By construction, G is a semi-partial 3-tree that contains F as a
subgraph. Moreover, every vertex of G is adjacent to at most Δ tilted edges and at
most 36Δ balanced edges, so G has maximum degree at most 37Δ. ��

Let us now turn to the proof of Lemma 3.3.

Proof Let F be a partial 3-tree with maximum degree Δ, and assume for contradiction
that there is no graph H that would correctly cover F . Let k be the largest integer such
that there is a graph H that correctly covers F up to level k. We have seen that k ≥ 0.
On the other hand, we clearly have k < |V (F)|. Thus, k is well defined.

123



988 Graphs and Combinatorics (2013) 29:981–1005

Fix a graph H correctly covering F up to level k. By our assumption, H has vertices
of level greater than k. We will now define a 3-tree H ′ that correctly covers F up to
level k + 1, which contradicts the maximality of k.

Note that it is sufficient to ensure that H ′ is constructed by a sequence of balanced
tripod insertions in which all the tripods inserted at level at most k + 1 have degrees
bounded by 36Δ.

We construct H ′ in such a way that it coincides with H on vertices of level at most
k; more precisely, if u and v are two vertices of level at most k in H , then u and v are
connected by an edge of H ′ if and only if they are connected by an edge of H . Notice
that this property guarantees that the vertices at level at most k in H are at the same
level in H ′ as in H . Let H≤k be the subgraph of H induced by the vertices of level at
most k. H≤k is a 3-tree.

Let Φ be a balanced face of H≤k formed by vertices at level k which contains at
least one vertex of H at level k + 1 in its interior. Note that at least one such face
exists, since we assumed that at least one vertex has level greater than k in H . For any
such face Φ, we will modify the sequence of tripod-insertions performed inside Φ,
such that the tripod inserted into this face has maximum degree at most 36Δ, while the
modified graph will still contain F as a subgraph. By doing this modification inside
every nonempty balanced face at level k, we will eventually obtain a graph H ′ that
correctly covers F up to level k + 1.

Fix Φ to be a balanced face at level k with nonempty interior. Let T ⊂ H be the
tripod that has been inserted into Φ during the construction of H . Let VT and ET be
the vertices and the edges of T . We will now define a modified tripod T ′ on the vertex
set VT , satisfying the required degree bound. We will then show that the sequence of
tripod insertions that have been performed inside T during the construction of H can
be transformed into a sequence of tripod insertions inside T ′, where the new sequence
of insertions yields a graph H ′ that contains F as a subgraph.

We define T ′ by the following rules.

1. All the edges of T that belong to F are also in T ′.
2. All the edges of T that belong to the boundary of the outer face of T also belong

to T ′. These edges form the boundary of the outer face of T ′.
3. All the edges that form the spine of T also belong to T ′ and they form its spine.
4. Let Ψ be an internal face of the tripod T . Let u, v and w be the three vertices of

Ψ . Assume that both u and v are connected by an edge of F to a vertex in the
interior of Ψ (not necessarily both of them to the same vertex). In such case, add
the edge uv to T ′.

5. Let T ′
0 be the graph formed by all the edges added to T ′ by the previous four

rules. Note that T ′
0 is an outerplanar graph with the same outer face as T . How-

ever, not all the inner faces of T ′
0 are necessarily triangles, so T ′

0 is not necessarily
a tripod. Assume that T ′

0 has an inner face with more than three vertices, and that
v0, v1, . . . , vr are the vertices of this face, listed in cyclic order. We form the path
v1, vr , v2, vr−1, v3, vr−2, . . . whose edges triangulate the face of T ′

0. We add all
the edges of this path into T ′. We do this for every internal face of T ′

0 that has
more than three vertices. The resulting graph T ′ is clearly a tripod.

123



Graphs and Combinatorics (2013) 29:981–1005 989

Let us now argue that the tripod T ′ has maximum degree at most 36Δ. Let v ∈ VT

be any vertex of this tripod. Let us estimate degT ′(v), by counting the edges adjacent
to v that were added to T ′ by the rules above. Clearly, there are at most Δ such edges
that were added by the first rule, and at most nine such edges that were added by the
second and third rule.

We claim that there are at most 2Δ edges incident with v added by the fourth rule.
To see this, notice that if e = uv is an edge added by this rule, then at least one of the
two faces of T that are incident to e must contain in its interior an edge e′ of F that is
incident to v. In such situation, we say that e′ is responsible for the insertion of e into
T ′. Clearly, an edge of F may be responsible for the insertion of at most two edges
incident with v. Since v has degree at most Δ in F , this shows that at most 2Δ edges
incident with v are added to T ′

0 by the fourth rule. Consequently, T ′
0 has maximum

degree at most 3Δ + 9.
To estimate the number of edges added to T ′ by the fifth rule, it is sufficient to

observe that in every internal face of T ′
0 whose boundary contains v there are at most

two edges of T ′ incident to v added by the fifth rule. Thus, Δ(T ′) ≤ 3Δ(T ′0) ≤
9Δ + 27 ≤ 36Δ, as claimed.

Having thus defined the tripod T ′, we modify the graph H as follows. We remove
all the vertices appearing in the interior of the face Φ of H≤k ; that is, we remove the
tripod T as well as all the vertices inserted inside T . Instead, as a first step towards
the construction of H ′, we insert T ′ inside Φ.

To finish the construction of H ′, we need to insert the vertices of level greater than
k + 1 into the faces of T ′, so that the resulting graph contains F as a subgraph. We
perform this insertion separately inside every face of T ′

0. Note that T ′
0 is a subgraph of

T as well as a subgraph of T ′, and that each internal face of T ′
0 is a union of several

faces of T ′. Let Ψ be a face of T ′
0. If Ψ is a triangle, then Ψ is in fact a face of T ′ as

well as a face of T . If T contains a subgraph HΨ inside Ψ , we define H ′ to contain the
same subgraph inside Ψ as well. Since HΨ has been created by a sequence of tripod
insertions inside Ψ , we can perform the same sequence of tripod insertion again inside
the same face during the construction of H ′.

Assume now that Ψ is not a triangle. In the graph H , the face Ψ is subdivided into a
collection of triangular faces Ψ1, Ψ2, . . . , Ψk . Let Hi be the subgraph of H appearing
inside the face Ψi in H . We know that each Hi is a result of a sequence of tripod
insertions.

Let us use the following terminology: if there is an edge of F that connects a vertex
of Hi to a vertex v on the boundary of Ψ , we say that Hi is adjacent to v. Since the
graph F is connected, each nonempty graph Hi must be adjacent to at least one vertex
on the boundary of Ψ . Observe that if Hi is adjacent to two distinct vertices u and v

on the boundary of Ψ , then the edge that connects u and v must belong to T ′
0 by the

fourth rule in the construction of T ′. In particular, u and v appear consecutively on the
boundary of Ψ . This also shows that Hi cannot be adjacent to three distinct vertices
of Ψ , since we assumed that Ψ is not a triangle.

Consider now the tripod T ′. In this tripod, the face Ψ is triangulated into a col-
lection of faces Ψ ′

1, Ψ
′
2, . . . , Ψ

′
k . Each of these triangular faces has at least one edge

of T ′
0 on its boundary. We will insert the graphs H1, H2, . . . , Hk into these faces, by

123



990 Graphs and Combinatorics (2013) 29:981–1005

performing for each Hi a sequence of tripod insertions which generates Hi inside one
of the faces Ψ ′

1, Ψ
′
2, . . . , Ψ

′
k .

To ensure that the resulting graph will contain F as a subgraph, it suffices to guar-
antee that whenever Hi is adjacent to a vertex v ∈ Ψ , it will be inserted into a face Ψ ′

j
that contains v on its boundary. Such a face always exists, since each Hi is adjacent
to at most two vertices of Ψ , and if it is adjacent to two vertices u, v, then the two
vertices must be connected by an edge on the boundary of Ψ , which implies that there
is a face Ψ ′

j that contains both u and v on its boundary.
It may happen that two distinct graphs Hi and Hj need to be inserted into the same

face Ψ ′
�. In such case, the first graph is inserted directly into Ψ ′

�, thus partitioning it
into several smaller triangular subfaces, while all subsequent graphs that need to be
inserted into Ψ ′

� are inserted into an appropriately chosen subface of Ψ ′
�. This subface

need not be balanced. We choose this subface in such a way that we preserve the cyclic
order of edges of F around every vertex v on the boundary of Ψ .

After we perform the construction above inside every face Ψ of T ′
0, we obtain a

plane 3-tree H ′ that correctly covers F up to level k + 1. This completes the proof of
the lemma. ��

3.2 Proof of Proposition 3.2

To complete the proof of our main result, it remains to show that every plane semi-
partial 3-tree of bounded maximum degree has a straight-line embedding with a
bounded number of slopes.

We start with a brief overview of the construction. We will use the fact that a plane
semi-partial 3-tree G can be decomposed into tripods formed by vertices of the same
level, with each tripod T of level k ≥ 1 being inserted into a triangle Φ formed by
vertices of level k − 1. The triangle Φ is itself an inner face of a tripod of level k − 1.

The tripods appearing in this decomposition of G may be arbitrarily large. How-
ever, a tripod T of level k ≥ 1 has only a bounded number of vertices that are adjacent
to a vertex of the triangle Φ of level k − 1. These vertices of T will be called relevant
vertices.

Given a tripod T in the decomposition of G, we will construct an embedding of
T that only uses edge-slopes from a set of slopes S′ and moreover, all the relevant
vertices of T are embedded on points from a set of points P ′, where the sets S′ and
P ′ are independent of T and their size is polynomial in Δ.

We will then show that these embeddings of tripods (after a suitable scaling) can
be nested into each other to provide the embedding of the whole graph G. We will
argue that the number of edge-slopes in this embedding of G is bounded. This will
follow from the fact that the balanced edges of G belong to a tripod and their slope
belongs to S′, while the slopes of the tilted edges only depend on the positions of
the relevant vertices of a tripod T and on the shape of the triangle Φ surrounding
T . Since the relevant vertices can only have a bounded number of positions, and the
triangle Φ is formed by balanced edges and hence may have only a bounded number of
shapes, we will conclude that the tilted edges may only determine a bounded number
of slopes.

123



Graphs and Combinatorics (2013) 29:981–1005 991

Let us now describe the construction in detail. We recall that Δ is a fixed constant
throughout this section, and we let ST(Δ) denote the set of plane semi-partial 3-trees
of maximum degree at most Δ. Any graph G ∈ ST(Δ) can be created by a sequence of
partial tripod insertions into balanced faces, where a partial tripod insertion is defined
in the same way as an ordinary tripod insertion, except that some of the tilted edges
are omitted when the new tripod is inserted.

Choose a graph G ∈ ST(Δ), and assume that T is a tripod that is used in the con-
struction of G by a sequence of partial tripod insertions. Let {x, y, z} be the triangle
in G into which the tripod T has been inserted. We say that a vertex v of T is relevant
if v is connected by an edge of G to at least one of the vertices x, y or z. Since each
of the three vertices x , y and z has degree at most Δ, the tripod T has at most 3Δ

relevant vertices. Let us further say that a bubble of T is relevant if it contains at least
one relevant vertex. Since every vertex of T is contained in at most six bubbles, we
see that T has at most 18Δ relevant bubbles.

We will use the term labelled tripod of degree Δ to denote a tripod T with maximum
degree at most Δ, together with an associated set of at most 3Δ relevant vertices of
T . Let Tr(Δ) be the (infinite) set of all the labelled tripods of degree Δ. Similarly,
a labelled bubble of degree Δ is a bubble of maximum degree at most Δ, together
with a prescribed set of at most 3Δ relevant vertices. B(Δ) denotes the set of all such
labelled bubbles.

Let ET be an embedding of a tripod in the plane, and let v be a vertex of ET . Let
α ∈ 〈0, 2π) be a directed slope. We say that the vertex v has visibility in direction
α, if the ray starting in v and having direction α does not intersect ET in any point
except v.

Throughout the rest of this section, let ε denote the value π/100 (any sufficiently
small integral fraction of π is suitable here).

Our proof of Proposition 3.2 is based on the following key lemma.

Lemma 3.4 (Tripod Drawing Lemma) For every Δ there is a set of slopes S of size
O(Δ3), a set of points P of size O(Δ2), and a set of triangles R of size O(Δ3),
such that every labelled tripod T ∈ Tr(Δ) has a straight-line embedding ET with the
following properties:

1. The slope of any edge in the embedding ET belongs to S.
2. Each relevant vertex of ET is embedded on a point from P.
3. Each internal face of ET is homothetic to a triangle from R.
4. The central vertex of ET is embedded in the origin of the plane.
5. Any vertex of ET is embedded at a distance at most 1 from the origin.
6. Each spine of T is embedded on a single ray starting from the origin. The three

rays containing the spines have directed slopes 0, 2π/3 and 4π/3. Let these three
rays be denoted by r1, r2 and r3, respectively.

7. Let r̂i r j denote the closed convex region whose boundary is formed by the rays ri

and r j . Any relevant vertex of ET embedded in the region r̂1r2 (or r̂2r3, or r̂1r3)
has visibility in any direction from the set 〈ε, 2π/3−ε〉 (or 〈2π/3+ε, 4π/3−ε〉,
or 〈4π/3 + ε, 2π − ε〉, respectively).
Note that the three regions r̂1r2, r̂2r3 and r̂1r3 are not disjoint. For instance, if a
relevant vertex of T is embedded on the ray r1, it belongs to both r̂1r2 and r̂1r3,

123



992 Graphs and Combinatorics (2013) 29:981–1005

Fig. 2 Illustration of the proof of Proposition 3.2

and hence it must have visibility in any direction from the set 〈ε, 2π/3 − ε〉 ∪
〈4π/3 + ε, 2π − ε〉.

Before we prove Lemma 3.4, we show how the lemma implies Proposition 3.2.

Proof of Proposition 3.2 from Lemma 3.4 Let S be the set of slopes, P be the set of
points and R be the set of triangles from Lemma 3.4. Let S′ be the set of all the slopes
that differ from a slope in S by an integer multiple of ε. Note that |S′| ≤ π

ε
|S|. Let P ′

be the (finite) set of points that can be obtained by rotating a point in P around the
origin by an integral multiple of ε. Let R′ be the (finite) set of triangles that is obtained
by rotating the triangles in R by an integral multiple of ε.

We will show that any graph G ∈ ST(Δ) has a straight-line embedding where the
slopes of balanced edges belong to S′ and the slopes of tilted edges also belong to a
finite set which is independent of G.

Let T be a labelled tripod used in the construction of the graph G. Assume that T is
inserted into a triangle formed by three vertices x, y, z (see Fig. 2). Let τ be the triangle
formed by the three points x, y, z. Assume that the three vertices are embedded in the
plane. Without loss of generality, assume that the triangle τ has acute angles by the
vertices y and z, and the three vertices xyz appear in counterclockwise order around
the boundary of τ . Thus the altitude of τ from the vertex x intersects the segment
yz on a point p which is in the interior of the segment yz. Let η be the slope of the
(directed) segment yz.

We can find a point c in the interior of the triangle τ , and a positive real number
r = r(τ ), such that for any point v at a distance at most r from c, the following holds:

1. v is in the interior of τ

2. the slope of the segment vx differs from the slope of the segment px (which is
equal to η + π/2) by less than ε

3. the slope of the segment vy differs from the slope of the segment py (which is
equal to −η) by less than ε

4. the slope of the segment vz differs from the slope of the segment pz (which is
equal to η) by less than ε

Indeed, it suffices to choose c sufficiently close to the point p and set r sufficiently
small, and all the above conditions will be satisfied.

Consider now the embedding ET of T . Place the center of the tripod on the point
c, and scale the whole embedding by the factor r , so that it fits inside the triangle τ .

123



Graphs and Combinatorics (2013) 29:981–1005 993

In view of the four conditions above, and in view of the seventh part of Lemma 3.4,
it is not difficult to observe that we may rotate the (scaled) embedding of T around
the point c by an integral multiple of ε in such a way that every relevant vertex v ∈ T
has visibility towards all its neighbors among the three vertices x, y, z. Thus, we are
able to embed all the necessary tilted edges of G between xyz and T as straight line
segments.

Note that in our embedding, all the balanced edges of T have slopes from the set S′,
and all its internal faces are homothetic to the triangles from the set R′. Furthermore,
any tilted edge has one endpoint in the set {x, y, z} and another endpoint in the set
c + r P ′ (the set P ′ scaled r -fold and translated in such a way that the origin is moved
to c). Hence any labelled tripod T ∈ Tr(Δ) can be inserted inside the triangle xyz
in such a way that the slopes of the edges always belong to the same finite set which
depends on the triangle xyz but not on the tripod T . Note that the triangle xyz may be
arbitrarily thin, in particular it can have inner angles smaller than ε.

Let us now show how the above construction yields an embedding of the whole
graph G. For every such triangle τ ∈ R′, fix the point c = c(τ ) and the radius r = r(τ )

from the above construction. Any scaled and translated copy of τ will have the values
of c and r scaled and translated accordingly.

We now embed the graph G recursively, by embedding the outer face as an arbitrary
triangle from R′, and then recursively embedding each tripod into the appropriate face
by the procedure described above. Since we only insert tripods into balanced faces, it
is easily seen that every tripod is being embedded inside a triangle of R′.

Overall, the construction uses at most |S′| = O(Δ3) distinct slopes for the balanced
edges, and at most |R′||P ′| = O(Δ5) distinct slopes for the tilted edges. The total
number of slopes is then O(Δ5), as claimed. ��

In the rest of this section, we prove the Tripod Drawing Lemma. Let T be a labelled
tripod and let B be a bubble of T . Recall that the root edge of B is the edge that belongs
to a spine of T . Note that the same root edge is shared by two bubbles of T . Recall
also that a bubble is called trivial if it only has two vertices.

We now introduce some terminology that will be convenient for our description of
the structure of a given bubble.

Definition 3.3 Let B be a nontrivial bubble in a tripod T . The unique internal face
of B adjacent to its root edge will be called the root face of B. The dual of a bubble
B is the rooted binary tree B̂ whose nodes correspond bijectively to the internal faces
of B, and two nodes are adjacent if and only if the corresponding faces of B share an
edge. The root of the tree B̂ is the node that represents the root face of B.

When dealing with the internal faces of B, we will employ the usual terminology of
rooted trees; for instance, we say that a face Φ is the parent (or child) of a face Ψ if the
node representing Φ in B̂ is the parent (or child) of the node representing Ψ . For every
internal face Φ of B, the three edges that form the boundary of Φ will be called the
top edge, the left edge and the right edge, where the top edge is the edge that Φ shares
with its parent face (or the root edge, if Φ is the root face), while left and right edges
are defined in such a way that the top, left, and right edge form a counterclockwise
sequence on the boundary of Φ. With this convention, we may speak of a left child
face or right child face of Φ without any ambiguity. Our terminology is motivated

123



994 Graphs and Combinatorics (2013) 29:981–1005

by the usual convention of embedding rooted binary trees with their root on the top,
and the parent, the left child and the right child appearing in counterclockwise order
around every node of the tree. Furthermore, for a given face Φ, the bottom vertex of
Φ is the common vertex of the left edge and right edge of Φ.

Let us explicitly state the following simple fact which directly follows from our
definitions.

Observation 3.1 Let Φ1, Φ2, . . . , Φk be a sequence of internal faces of a bubble B,
such that for any j < k, Φ j+1 is the left child of Φ j . Then all the faces Φ1, . . . , Φk

share a common vertex. In particular, if B has maximum degree Δ, then k < Δ. An
analogous observation holds for right children as well.

We now describe an approach that allows us to embed an arbitrary bubble with
maximum degree Δ inside a bounded area using a bounded number of slopes.

Lemma 3.5 Let xyz be an equilateral triangle with vertex coordinates x =
(0, 0), y = (1, 0) and z = (1/2,−√

3/2). Fix two sequences of slopes α1, α2, . . . ,

αΔ−1 and β1, β2, . . . , βΔ−1, with 0 > α1 > α2 > · · · b > αΔ−1 > −π/3 and
0 < β1 < β2 < · · · b < βΔ−1 < π/3. Let S be the set of 2Δ − 1 slopes
{0}∪{α1, α2, . . . , αΔ−1}∪{β1, β2, . . . , βΔ−1}. Let B be a bubble of maximum degree
Δ. Then B has a straight line embedding EB inside xyz that only uses the slopes
from the set S, the root edge of EB corresponds to the segment xy, and moreover
the triangular faces of EB form at most 2Δ − 3 distinct triangles up to homothetic
equivalence.

Proof Proceed by induction on the size of B. If B is trivial, the statement holds.
Assume now that B is a nontrivial bubble. Let Φ0 be the root edge ofB. See Fig. 3.

Define the maximal sequence of faces Φ1, Φ2, . . . , Φ� in such a way that Φi+1 is
the left child of Φi , with Φ1 being the left child of the root edge Φ0. The maximality
of the sequence means that Φ� has no left child. Symmetrically, define a maximal
sequence of faces Ψ1, . . . , Ψr such that Ψ1 is the right child of Φ0, and Ψi+1 is the
right child of Ψi . By Observation 3.1, we know that � < Δ − 1 and r < Δ − 1.

Let (p, α) denote the ray starting at a point p and heading in direction α.
Let B be an arbitrary bubble. Let v1 be the intersection of the rays (x, α1) and

(y, β1). The root face Φ0 will be embedded as the triangle xyv1. Define the points
v2, . . . , v�+1 by specifying vi as the intersection of (x, αi ) and (v1, π). The face Φi is
then embedded as the triangle xvivi+1. Similarly, define points w2, . . . , wr+1 where
wi is the intersection of (y, βi ) with (v1, 0). Then Ψ1 is embedded as the triangle
yv1w2, while for k > 1 we embed Ψk as the triangle ywkwk+1.

Note that when we remove the two vertices incident to the root edge from the bubble
B, the remaining edges and vertices form a union of � + r bubbles B1 ∪ · · · ∪ B� ∪
B ′

1 ∪· · ·∪ B ′
�, where Bi is a bubble whose root edge is the right edge of Φi while B ′

j is
rooted at the left edge of Ψ j . Using induction, we know that each Bi has a straight line
embedding inside the equilateral triangle whose top edge is the horizontal segment
vivi+1 (and symmetrically for B ′

j ).
This completes the proof. ��

123



Graphs and Combinatorics (2013) 29:981–1005 995

Fig. 3 Illustration of the proof of Lemma 3.5

Corollary 3.1 Let xyz be an arbitrary triangle and B a bubble of maximum degree
Δ. There are sets S of 2Δ − 1 slopes and R of 2Δ − 3 triangles that depend on xyz
but not on B, such that B can be embedded inside xyz using only slopes from S and
triangles from R for triangular faces, in such a way that the root edge of B coincides
with the segment xy.

Proof This follows from Lemma 3.5, using the fact that for any triangle there is
an affine transform that maps it to an equilateral triangle, and that affine transforms
preserve the number of distinct slopes used in a straight-line embedding. ��

The construction from Lemma 3.5 can be applied to embed all the irrelevant bub-
bles of a given labelled tripod T . Unfortunately, the construction of Lemma 3.5 is not
suitable for the embedding of relevant bubbles, because it provides no control about
the position of the relevant vertices. Indeed, inside the triangle xyz of the previous
lemma, there are infinitely many points where a vertex may be embedded by the con-
struction described in the proof of the lemma. Thus, we can give no upper bound on
the number of potential embeddings of relevant vertices.

For this reason, we now describe a more complicated embedding procedure, which
allows us to control the position of the relevant vertices. We first need some auxiliary
definitions.

Definition 3.4 An adder A is a bubble with a root edge h and another edge t = h,
such that the dual tree of A is a path, and the edge t is an external edge adjacent to
the single leaf face of A. See Fig. 4. The edges h and t are called head and tail of the

123



996 Graphs and Combinatorics (2013) 29:981–1005

Fig. 4 An adder. The bold edges form the zigzag path

adder. It is easy to see that every adder contains a unique path Z whose first edge is
h, its last edge is t and no other edge of Z belongs to the outer face of A. The path Z
will be called the zigzag path of the adder A. The length of the adder is defined to be
the number of edges of its zigzag path. By definition, each adder has length at least 2.
An adder of length 2 will be called degenerate.

We will now show that adders of bounded degree can be embedded inside a pre-
scribed quadrilateral using a bounded number of slopes and triangles.

Lemma 3.6 For every convex quadrilateral Q = abcd and for every Δ there is a set
S of O(Δ) slopes, a set S0 ⊆ S of O(1) slopes, and a set R of O(Δ) triangles such
that any nondegenerate adder A of maximum degree Δ has a straight line embedding
EA with the following properties:

1. All the edge-slopes of EA belong to the set S.
2. All the edges on the outer face of EA have slopes from the set S0.
3. Each internal face of EA is homothetic to a triangle from R.
4. The head of A coincides the edge ab of Q and the tail of A coincides with cd.
5. The embedding EA is contained in the convex hull of abcd.

Proof Note that the lemma is clearly true when restricted to adders of length at most
four (or any other bounded length). In the rest of the proof, we assume that A is an
adder of length at least five.

We first deal with the case when the edges ab and cd are parallel (i.e., Q is a trape-
zoid), and the adder A has odd length � = 2k + 1. Without loss of generality, assume
that the segments ab and cd are horizontal and that the line containing cd is above the
line containing ab. Let α be the slope of the diagonal ac and β the slope of the diagonal
bd, with 0 < α < β < π . Let e be the point where the two diagonals intersect. Notice
that the two triangles abe and cde are homothetic. Let r = ‖ab‖/‖cd‖ = ‖ae‖/‖ce‖
be the dilation factor of the homothecy.

Let Z be the zigzag path of A. Let us identify the head of A with the segment ab
and the tail of A with cd, in such a way that the cyclic order of the four points abcd on
the boundary of Q is the same as the cyclic order in which the corresponding vertices
appear on the outer face of A.

Since A has odd length, the endpoints of its zigzag path are diagonally opposite in Q,
see Fig. 5. We lose no generality by assuming that a and c are the endpoints of the zigzag
path. Let v0, v1, v2, . . . , vk, wk, wk−1, wk2 , . . . , w1, w0 be the sequence of the verti-
ces of Z , in the order in which they appear on the path Z , with v0 = a, v1 = b, w0 = c,

123



Graphs and Combinatorics (2013) 29:981–1005 997

Fig. 5 Embedding an adder with prescribed head and tail. These figures illustrates the embedding of the
adder of odd length 2k + 1. The two figures correspond to the two cases depending on the parity of k

and w1 = d. Fix an arbitrary slope γ such that β < γ < π . All the vertices of Z will
be embedded on the two diagonals ac and bd. Since the first two and last two vertices
have already been embedded, let us proceed by induction, separately in each half of
Z . If, for some i ≥ 0, the vertex vi has already been embedded on the diagonal ac,
then we embed vi+1 on bd in such a way that the segment vivi+1 is horizontal. If vi

has been embedded on the diagonal bd, then vi+1 is embedded on ac and the slope of
vivi+1 is equal to γ .

We proceed similarly with the vertices wi : if wi is on ac then wi+1 is on bd and
the segment wiwi+1 has slope γ ; otherwise wi is on bd and wi+1 is on ac and the
corresponding segment is horizontal.

We may easily show by induction that for any i , the triangles evivi+1 and ewiwi+1
are similar, all of them with the same ratio r = ‖evi‖/‖ewi‖. Furthermore, we see
that evivi+1 is similar to evi+2vi+3, with a ratio q that is independent of i . From these
facts, we see that all the segments of the form viwi+1 have at most two distinct slopes
(depending on the parity of i), and similarly for the segments of the form wivi+1.

Let us consider all the triangles formed by triples of vertices xyz where x, y and
z are three consecutive vertices of the path Z . Note that these triangles are internally
disjoint, and their edges form at most six distinct slopes, namely 0, α, β, γ , the slope
of the segment vkwk−1 and the slope of the segment vk−1wk . Furthermore, the latter
two slopes belong to a set of at most four slopes that are independent of k, and hence
independent of the adder A. The union of the above-described triangles will form the
outer boundary of our embedding of A. It remains to place the vertices of A that do
not belong to Z to this boundary.

Let us fix Δ − 2 additional slopes γ1 < γ2 < · · · b < γΔ−2 which are all greater
than γ but smaller than π . Note than any vertex u of A that does not belong to Z is
incident to exactly one edge that does not belong to the outer face of A, and this edge
connects u to a vertex of Z . Thus, to complete the description of the embedding of
A, it suffices to specify, for every vertex v of Z , the slopes of all the edges that do
not belong to the outer face of A and that connect v to a vertex not belonging to Z .
Thus, let us fix an arbitrary vertex v of Z . Let us assume that v has been embedded

123



998 Graphs and Combinatorics (2013) 29:981–1005

on the diagonal ac and that v = vi for some i ≤ k (the cases when v belongs to bd or
v = wi are analogous). Let u1, . . . , u� be the vertices not belonging to Z and adjacent
to v by an internal edge of A. Note that if v has at least one such neighbor ui , then
v = v0, because v0 is not incident to any edge not belonging to the outer face. Let v+
be the vertex that follows after v on Z (typically, v+ = vi+1, unless v = vk , when
v+ = wk). Assume that the vertices u1, . . . u� are listed in their counterclockwise
order with respect to the neighborhood of v. Let us place each ui at the intersection
of the line vi−1v

+ and the ray (v, π + γi ). This choice guarantees that the edge vui

has slope γi .
We have thus found a straight line embedding of A that has all the required proper-

ties and uses at most Δ+O(1) slopes. This completes the case when A is an odd-length
adder and Q is a trapezoid.

Assume now that A is an arbitrary nondegenerate adder of length � ≥ 5, and Q
is an arbitrary convex quadrilateral. Our goal is to reduce this situation to the cases
solved above. Note that the adder A can be written as a union of two non-degenerate
sub-adders A1 and A2, where A1 has odd length, A2 has length three or four, A1 has
the same head as A, A2 has the same tail as A, the tail of A1 is the head of A2, and
the adders A1 and A2 are otherwise disjoint. Accordingly, the convex quadrilateral
Q = abcd can be decomposed into a union of two internally disjoint quadrilaterals
Q1 = abc′d ′ and Q2 = d ′c′cd, where Q1 is a trapezoid. We may now use our previ-
ous arguments to construct an embedding of A1 inside Q1, and an embedding of A2
inside Q2, and combine the two embeddings into an embedding of Q satisfying the
conditions of the lemma. ��

We will use adders as basic building blocks in a procedure that embeds any given
bubble with prescribed relevant vertices in such a way that the embedding of all the
relevant vertices is chosen from a finite set of points. The following technical lemma
summarizes all the key properties of the bubble embedding that we are about to con-
struct.

Lemma 3.7 Let T = abc be an isosceles triangle with base ab, and with internal
angles ε/2, ε/2 and π − ε. Assume that the line ab is horizontal and the point c is
below the line ab. For every Δ > 0 there is a set S of O(Δ3) slopes, a set P of O(Δ)

points, and a set R of O(Δ3) triangles, such that every labelled bubble B ∈ B(Δ)

has an embedding EB with the following properties.

1. All the edge-slopes of EB belong to S.
2. Any relevant vertex of B is embedded at a point from P.
3. Every internal face of EB is homothetic to a triangle from R.
4. The root edge of B coincides with the segment ab.
5. The whole embedding EB is inside the triangle T .
6. Any relevant vertex of EB has visibility in any direction from the set 〈π+ε, 2π−ε〉.

Proof Let us first introduce some terminology (see Fig. 6). Let B ∈ B(Δ) be a
labelled bubble. Recall from Definition 3.3 that the dual of B, denoted by B̂, is a
rooted binary tree whose root corresponds to the root face of B. For an internal face
Φ of B, we let Φ̂ denote the corresponding node of B̂. We distinguish several types

123



Graphs and Combinatorics (2013) 29:981–1005 999

Fig. 6 An example of a labelled bubble B with its dual tree B̂. Relevant vertices are represented by large
black disks. The large gray disks of the bottom figure represent the non-relevant priority vertices

of nodes in B̂. A node Φ̂ is called relevantnode, if the bottom vertex of the face
Φ is a relevant vertex ofB. A node Φ̂ of B̂ is called peripheral if the subtree of B̂
rooted at Φ̂ does not contain any relevant node, in other words, neither Φ̂ nor any
descendant of Φ̂ is relevant. A node is central if it is not peripheral. Note that the
central nodes induce a subtree of B̂; we let B̂ ′ denote this subtree. By construction,
all the leaves of B̂ ′ are relevant nodes (but there may be relevant nodes that are not
leaves).

A node Φ̂ of B̂ ′ is a branching node if both its children belong to B̂ ′ as well. A
node of B̂ ′ is a connecting node if it is neither relevant nor branching. By definition,
each connecting node has a unique child in B̂ ′, and the connecting nodes induce in B̂ ′
a disjoint union of paths. We call these paths the connections.

We say that a face Φ of B is a relevant face if the corresponding node Φ̂ is a relevant
node. Peripheral faces, branching faces and connecting faces are defined analogously.
Let B ′ be the subgraph of B whose dual is B̂ ′. If B̂ ′ is empty, define B ′ to be the trivial
bubble consisting of the root edge of B. In any case, B ′ is a subbubble of B and has
the same root edge as B.

Note that since every leaf of B̂ ′ is a relevant node, and since B has at most 3Δ

relevant vertices by definition of B(Δ), the tree B̂ ′ has at most O(Δ) leaves and
consequently at most O(Δ) branching nodes.

123



1000 Graphs and Combinatorics (2013) 29:981–1005

Let us now describe the basic idea of the proof. We begin by specifying the set P
of points. The points of P will form a convex cup inside the triangle T . For a given
bubble B ∈ B(Δ), we construct the embedding EB in three steps. In the first step,
we take all the vertices of B that belong to relevant faces and branching faces, and
embed them to the points of P . In the second step, we embed all the connecting faces.
Each connection in B̂ ′ corresponds to a (possibly degenerate) adder contained in B ′,
whose head and tail have been embedded in the first step. Using the construction from
Lemma 3.6, we insert these adders into the embedding. Thus, in the first two steps,
we construct an embedding of B ′. In the third step, we extend this embedding into an
embedding of B by adding the peripheral faces. These faces form a disjoint union of
subbubbles, each of them rooted at an edge belonging to the outer face of B ′. We use
Corollary 3.1 to embed each of these subbubbles into a thin triangle above a given
root edge.

Let us describe the individual steps in detail. Set D = 18Δ. Recall that T is an
isosceles triangle with base ab. Let C be any circular arc with endpoints a and b,
drawn inside T . Choose a sequence p1, p2, . . . , pD of distinct points of C , in such
a way that p1 = a, pD = b, and the remaining points are chosen arbitrarily on C in
order to form a left-to-right sequence. Let P be the set {p1, . . . , pD}.

Let us say that a vertex v of B is a priority vertex if it either belongs to a relevant
face, or it belongs to a branching face, or it belongs to the root edge of B. Note that
all priority vertices actually belong to B ′, and that each relevant vertex is a priority
vertex as well. Let � be the number of priority vertices. We know that B has at most
3Δ relevant faces. Since every leaf of B̂ ′ represents a relevant face, we see that B ′ has
at most 3Δ − 1 branching faces. This implies that � < D = 18Δ.

Let v1, v2, . . . , v� be the sequence of all the priority vertices of B, listed in counter-
clockwise order of their appearance on the outer face of B, in such a way that v1 and
v� are the vertices of the root edge of B. For each i ∈ {1, . . . , � − 1}, we embed the
vertex vi on the point pi , while the vertex v� is embedded on the point vD = b. Note
that this embedding guarantees that the root edge of B coincides with the segment
ab = p1 pD . Moreover, since this embedding preserves the cyclic order of the vertices
on the boundary of the outer face, we know that the edges induced by the priority
vertices do not cross. This completes the first step of the embedding.

In the second step, we describe the embedding of the connecting faces of B. Let
Φ1, Φ2, . . . , Φk be a sequence of faces of B corresponding to a connection in B̂, where
we assume that for each i < k, the node Φ̂i is the parent of Φ̂i+1 in B̂. See Fig. 7.
Let x be the left vertex of Φ1 and let y be the right vertex of Φ1. The vertices x and y
either form the root edge of B, or they belong to the parent face of Φ1, which is either
a relevant face or a branching face. In either case, both x and y are priority vertices. In
particular, x corresponds to a point pm ∈ P , and y corresponds to pn ∈ P , for some
m < n.

Consider now the face Φk . Since it is neither relevant nor branching, it has a unique
child face Φ ′ in B ′. The face Φ ′ is relevant or branching, so all its vertices are priority
vertices. Let u be the left vertex of Φ ′ and let v be its right vertex. The edge uv is
the intersection of Φ ′ and Φk . Let A be the adder formed by the union of the faces
Φ1, . . . , Φk , with head xy and tail uv. Note that this adder does not contain any other
priority vertices apart from x, y, u and v. In particular, the vertex u is either equal to x ,

123



Graphs and Combinatorics (2013) 29:981–1005 1001

Fig. 7 An adder representing a connection in B̂

Fig. 8 The auxiliary points from the set Q

or it corresponds to pm+1. For the vertex v, we have three possibilities: either v = y,
or v = pn−1, or v = p�−1 and y = pD .

Let us first deal with the case when the adder A is degenerate, i.e., either x = u
or y = v. We first define a set Q of auxiliary points (see Fig. 8). For every i < D,
consider the segment pi pi+1, and subdivide this segment with Δ − 2 new points
qi

1, qi
2, . . . , qi

Δ−2. Next, for i < D −1, consider also the segment pi pD and subdivide
it with Δ − 2 points q̃i

1, q̃i
2, . . . , q̃i

Δ−2. Let Q be the set of all the points qi
j and q̃i

j , for
all i and j .

Assume now that A is a degenerate adder with x = u (the case when y = v is
analogous). Recall that A has k internal faces Φ1, . . . , Φk . All these faces share the
vertex x , and in particular, x has degree k + 1 in A. This shows that k < Δ, and
consequently there are at most Δ − 2 non-priority vertices in A, all of them on a path
from v to y. See Fig. 9. If v = pn−1, we embed these non-priority vertices on the
points qn−1

1 , . . . , qn−1
k−1 . On the other hand, if v = p�−1 and y = pD , we embed the

non-priority vertices of A on the points q̃�−1
1 , . . . , q̃�−1

k−1. This determines the embed-
ding of A.

Consider now the case when A is non-degenerate. The four vertices x, y, u and
v form a convex quadrilateral, and we embed A inside this quadrilateral, using the
construction of Lemma 3.6. This again determines the embedding of A.

123



1002 Graphs and Combinatorics (2013) 29:981–1005

Fig. 9 The embedding of a degenerate connection adder

Using the constructions described above, we embed all the adders representing
connections in B̂. Note that each adder is embedded inside the convex hull of its head
and tail. Moreover, if A and A′ are adders representing two different connections, the
convex hull of the head and tail of A is disjoint from the convex hull of the head and
tail of A′, except for at most one vertex shared by the two adders. This shows that the
embedding is indeed a plane embedding of the graph B ′, completing the second step
of the construction.

Before we describe the last step, let us estimate the number of vertices, edge-slopes
and internal faces that may arise in the first two steps. Clearly, any relevant vertex is
embedded on a point from the set P , which has size O(Δ) and does not depend on
the bubble B.

Any edge e embedded in the first two steps may have one of the following forms.

– The edge e connects two points from P . Such edges can take at most O(Δ2) slopes.
– The edge e connects a vertex from P to a vertex from Q. This yields O(Δ3)

possible slopes.
– The edge e connects two vertices of Q. This is only possible when both vertices of

e belong to a segment determined by a pair of points in P . The slope of e is then
equal to a slope determined by two points from P .

– The edge e belongs to a non-degenerate adder A representing a connection in B.
In the embedding from Lemma 3.6, the edges of a given adder A determine at
most O(Δ) slopes, and these slopes only depend on the four vertices forming the
head and tail of A. This fourtuple of vertices has the form {pi , pi+1, p j−1, p j } or
{pi , pi+1, p j−1, pD}. There are O(Δ2) such fourtuples and hence O(Δ3) possible
slopes for the edges of this type.

Overall, there is a set of O(Δ3) slopes, independent of B, such that any edge embedded
in the first two steps has one of these slopes.

Next, we count homothecy types of internal faces. Any internal face Φ embedded
in the first two steps has one of the following types.

– All the vertices of Φ belong to P . There are O(Δ3) such faces.
– Φ has two vertices from P and one vertex from Q. In such case the triple of verti-

ces of Φ must be of one of these forms, for some values of i, j and k : {pi , p j , q j
1 },

or {pi , p j , q j−1
k }, or {pi , pD, q̃ j

k }. There are O(Δ3) such triples.
– Φ has two vertices from Q and one vertex from P . In such case the three vertices

are of the form {qi
j , qi

j+1, pk} or {q̃i
j , q̃i

j+1, pk} for some i, j and k. This again

gives O(Δ3) possibilities for Φ.

123



Graphs and Combinatorics (2013) 29:981–1005 1003

– Φ is an internal face of a non-degenerate adder, embedded by Lemma 3.6. By
Lemma 3.6, the internal faces of such an adder form O(Δ) homothecy types
depending only on the position of head and tail. Since there are O(Δ2) positions
for head and tail, this gives O(Δ3) triangle types up to homothecy.

We conclude that each internal face of B ′ is homothetic to one of O(Δ3) triangles,
and these triangles do not depend onB ′.

As we will need it later, we now estimate the number of slopes formed by edges on
the outer face of B ′. For e on the outer face of B ′ there are two possibilities.

– If both endpoints of e are priority vertices, or if e belongs to a connection repre-
sented by a degenerate adder, then the line determined by the segment e passes
through two points of P . In particular, such a segment e must have one of O(Δ2)

slopes determined by P .
– Suppose e belongs to the outer face of a non-degenerate adder A. By Lemma 3.6,

the edges of the outer face of A have O(1) distinct slopes, depending on the head
and tail of A. Overall, such edges have at most O(Δ2) slopes.

This shows that the slopes of the edges of the outer face of B ′ all belong to a set of
O(Δ2) slopes.

To finish the proof, it remains to perform the third step of the construction, where
we embed the peripheral faces. Fix an angle δ > 0 such that δ < ε/2 and any two
distinct edge-slopes used in the first two steps of the construction differ by more than
2δ. Let e be an edge of the outer face of B ′. Let Te be an isosceles triangle whose base
is the edge e, whose internal angles have size δ, δ, and π − 2δ, and which lies in the
outer face of B ′. It is easy to check that our choice of δ guarantees that for any two
edges e and f on the outer face of B ′, the triangles Te and T f are disjoint, except for
a possible common vertex of e and f .

Let B̂0 be a maximal subtree of B̂ formed entirely by peripheral nodes, and let B0
be the dual of B̂0. Note that B0 is a subbubble of B rooted at an edge of the outer face
of B ′. Let e be the root edge of B0. Using Corollary 3.1, we embed B0 inside Te, in
such a way that the root edge of B0 coincides with e. This embedding of B0 uses O(Δ)

edge-slopes and O(Δ) triangle types for its internal faces, and these edge-slopes and
triangle types only depend on the slope of e.

Since the edges on the outer face of B ′ may have at most O(Δ2) edge-slopes, we
may embed all the peripheral faces of B, while using only O(Δ3) edge-slopes and
O(Δ3) triangle types in addition to the edge-slopes and triangle types used in the first
two steps of the construction.

This completes the last step of the construction. It is easy to check that in the
obtained embedding of B, any relevant vertex has visibility in any direction from the
set 〈π +ε, 2π −ε〉, and the remaining claims of the lemma have already been verified.

��
We are finally ready to give the proof of the Tripod Drawing Lemma from page 991.

Proof of Lemma 3.4 Fix a tripod T ∈ Tr(Δ). Let X, Y , and Z be the three legs of the
tripod T . The center c of the tripod will coincide with the origin of the coordinate
system, and the spines of the three legs will be embedded onto three rays with slopes

123



1004 Graphs and Combinatorics (2013) 29:981–1005

0, 2π/3 and 4π/3 starting at the origin. We will now describe how to embed the leg
X onto the horizontal ray (c, 0). The embeddings of the remaining two legs are then
built by an analogous procedure, rotated by 2π/3 and 4π/3.

Let X be a fixed leg of the tripod, represented as a sequence D1, D2, . . . , Dk of
double bubbles, ordered from the center outwards. Recall that a bubble is called rel-
evant if it contains at least one relevant vertex. We will also say that a double bubble
is relevant if at least one of its two parts is relevant.

Define a parameter D by D = 13Δ. The leg X can have at most 6Δ relevant
double bubbles. A maximal consecutive sequence of the form Di , Di+1, . . . , D j in
which each element is an irrelevant double bubble will be called an irrelevant run.
We partition X into a sequence of parts P1, P2, . . . , P�, where a part is either a sin-
gle relevant double bubble, or a nonempty irrelevant run. Since by definition no two
irrelevant runs are consecutive, we see that X has at most 12Δ + 1 < D parts.

Let Tε be an isosceles triangle with internal angles of size ε/2, ε/2 and π − ε

whose base edge is horizontal. From Lemma 3.7, we know that there is a set of points
Pε ⊂ Tε of size O(Δ), a set of slopes Sε of size O(Δ3) and set of triangles Rε of size
O(Δ3) such that any bubble of B ∈ B(Δ) can be embedded inside Tε using slopes
from Sε in such a way that each relevant vertex of B coincides with a point from the
set Pε and the internal faces of the embedding are homothetic to triangles in R. Let
EB denote this embedding.

We will combine these embeddings to obtain an embedding of the whole leg X . To
each of the at most D parts of X we will assign a segment of length L = 1

D on the
horizontal ray (c, 0).

Assume first that Pi is a part of X consisting of a single relevant double bubble,
formed by a pair of bubbles B and C . We will embed Pi in such a way that the com-
mon root edge of B and C coincides with a horizontal segment ei of length L , whose
endpoints have horizontal coordinates (i − 1)L and i L . The two bubbles B and C are
then embedded inside two scaled and translated copies of Tε that share a common base
ei , using the embeddings EB and EC , possibly reflected along the horizontal axis.

Now assume that Pi is a part of X that consists of an irrelevant run of k irrele-
vant double bubbles D j , D j+1, . . . , Di+k−1. We embed the root edge of each double
bubble onto a segment of length L/k, and embed the rest of the double bubble into a
scaled and translated copy of Tε. We then concatenate these embeddings to obtain an
embedding of the whole irrelevant run, which will occupy a segment of length exactly
L on the spine of X .

Overall, since the leg has at most D parts, the whole leg will be embedded at dis-
tance at most 1 from the origin. It is easy to see that the embedding of X uses at
most 2|Sε| slopes and 2|Rε| triangles for faces (up to scaling). The embedding of the
whole tripod will then require at most 6|Sε| = O(Δ3) slopes and 6|Rε| = O(Δ3)

non-homothetic triangles.
Let us estimate the number of possible points where a relevant vertex may be embed-

ded. For every relevant double bubble, there are at most D possibilities where its root
edge may be embedded within the embedding of X . Since a bubble may be either
above or below the spine, each relevant bubble has at most 2D possibilities where it
may appear within X , and at most 6D possibilities within the whole tripod. As soon
as we fix the embedding of the root edge and the relative position of the bubble with

123



Graphs and Combinatorics (2013) 29:981–1005 1005

respect to its spine, we are left with at most |Pε| possibilities where a relevant vertex
may be embedded. There are overall at most 6D|Pε| = O(Δ2) possible embeddings
of relevant vertices.

Using Lemma 3.7, it is straightforward to check that the embedding satisfies the
required visibility properties. Lemma 3.4 (and hence also Proposition 3.2 and Theo-
rem 1.1) is now proved. ��

4 Conclusion and Open Problems

We have presented an upper bound of O(Δ5) for the planar slope number of planar
partial 3-trees of maximum degree Δ. It is not obvious to us if the used methods can be
generalized to a larger class of graphs, such as planar partial k-trees of bounded degree.
Since a partial k-tree is a graph of tree-width at most k, it would mean generalizing
our result to graphs of a larger, yet constant, tree-width.

In view of the results of Keszegh et al. [7] and Mukkamala and Szegedy [10] for
the slope number of (sub)cubic planar graphs, it would also be interesting to find
analogous bounds for the planar slope number.

This paper does not address lower bounds for the planar slope number in terms of
Δ; this might be another direction worth pursuing.

References

1. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thick-
ness. Electron. J. Combin. 13, R3 (2006)

2. Dujmović, V., Suderman, M., Wood, D.R.: Really straight graph drawings. In: Graph Drawings 2004.
LNCS, vol. 3383, pp. 122–132 (2004)

3. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38, 181–
193 (2007)

4. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes
and segments. Comput. Geom. 38, 194–212 (2007)

5. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesař, M., Vyskočil, T.: The planar slope number
of planar partial 3-trees of bounded degree. In: Graph Drawing 2009. LNCS, vol. 5849, pp. 304–314
(2010)

6. Fáry, I.: On straight-line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–
233 (1948)

7. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. In: Graph
Drawing 2006. LNCS, vol. 4372, pp. 114–125 (2007)

8. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes.
In: Graph Drawing 2010. LNCS, vol. 6502, pp. 293–304 (2011)

9. Kratochvíl, J., Vaner, M.: Planar and projective planar embeddings of partial 3-trees (2012, in prepa-
ration)

10. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions. Comput.
Geom. 42, 842–851 (2009)

11. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: Graph Drawing
2011. LNCS, vol. 7034, pp. 254–265 (2012)

12. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electr.
J. Combin. 13, N1 (2006)

13. Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set. Comput. J. 37, 139–
142 (1994)

123



Appendix F

Kuratowski-Type Theorem
for Planarity of PEGs

112



Computational Geometry 46 (2013) 466–492

Contents lists available at SciVerse ScienceDirect

Computational Geometry: Theory and
Applications

www.elsevier.com/locate/comgeo

A Kuratowski-type theorem for planarity of partially embedded graphs✩

Vít Jelínek a, Jan Kratochvíl b, Ignaz Rutter c,∗
a Computer Science Institute, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
b Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
c Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Box 6980, D-76128 Karlsruhe, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 July 2011
Received in revised form 13 April 2012
Accepted 25 July 2012
Available online 2 November 2012
Communicated by F. Hurtado and
M. van Kreveld

Keywords:
Planar graphs
Partially embedded graphs
Kuratowski theorem

A partially embedded graph (or Peg) is a triple (G, H,H), where G is a graph, H is a
subgraph of G , and H is a planar embedding of H . We say that a Peg (G, H,H) is planar
if the graph G has a planar embedding that extends the embedding H.
We introduce a containment relation of Pegs analogous to graph minor containment, and
characterize the minimal non-planar Pegs with respect to this relation. We show that all
the minimal non-planar Pegs except for finitely many belong to a single easily recognizable
and explicitly described infinite family. We also describe a more complicated containment
relation which only has a finite number of minimal non-planar Pegs.
Furthermore, by extending an existing planarity test for Pegs, we obtain a polynomial-
time algorithm which, for a given Peg, either produces a planar embedding or identifies an
obstruction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A partially embedded graph (Peg) is a triple (G, H,H), where G is a graph, H is a subgraph of G , and H is a planar
embedding of H . The problem PartiallyEmbeddedPlanarity (Pep) asks whether a Peg (G, H,H) admits a planar (non-
crossing) embedding of G whose restriction to H is H. In this case we say that the Peg (G, H,H) is planar. Despite of this
being a very natural generalization of planarity, this approach has been considered only recently [1]. It should be mentioned
that all previous planarity testing algorithms have been of little use for Pep, as they all allow flipping of already drawn parts
of the graph, and thus are not suitable for preserving an embedding of a given subgraph.

It is shown in [1] that planarity of Pegs can be tested in linear time. In this paper we complement the algorithm in [1]
by a study of the combinatorial aspects of this question. In particular, we provide a complete characterization of planar Pegs
via a small set of forbidden substructures, similarly to the celebrated Kuratowski theorem [12], which characterizes planarity
via the forbidden subdivisions of K5 and K3,3, and the closely related theorem of Wagner [14], which characterizes planarity
via forbidden K5 and K3,3 minors. Our characterization can then be used to modify the existing planarity test for partially
embedded graphs into a certifying algorithm that either finds a solution or finds a certificate, i.e., a forbidden substructure,
that shows that the instance is not planar.

Understanding the forbidden substructures may be particularly beneficial in studying the problem simultaneous embedding
with fixed edges, or SEFE for short, which asks whether two graphs G1 and G2 on the same vertex set V admit two drawings
Γ1 and Γ2 of G1 and G2, respectively, such that (i) all vertices are mapped to the same point in Γ1 and Γ2, (ii) each drawing
Γi is a planar drawing of Gi for i = 1,2, and (iii) edges common to G1 and G2 are represented by the same Jordan curve

✩ Supported by the GraDR–EuroGIGA project No. GIG/11/E023.

* Corresponding author.
E-mail addresses: jelinek@iuuk.mff.cuni.cz (V. Jelínek), honza@kam.mff.cuni.cz (J. Kratochvíl), rutter@kit.edu (I. Rutter).

0925-7721/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comgeo.2012.07.005



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 467

Fig. 1. The obstructions not equal to the k-fold alternating chains for k� 4. The black solid edges belong to H , the light dashed edges to G , but not to H .
All the vertices belong to both G and H , except for K5 and K3,3, where H is empty.

in Γ1 and Γ2. Jünger and Schulz [8] show that two graphs admit a SEFE if and only if they admit planar embeddings that
coincide on the intersection graph. In this sense, our obstructions give an understanding of which configurations should be
avoided when looking for an embedding of the intersection graph.

For the purposes of our characterization, we introduce a set of operations, called Peg-minor operations, that preserve the
planarity of Pegs. Note that it is not possible to use the usual minor operations, as sometimes, when contracting an edge of
G not belonging to H , it is not clear how to modify the embedding of H . Our minor-like operations are defined in Section 2.

Our goal is to identify all minimal non-planar Pegs in the minor-like order determined by our operations; such Pegs are
referred to as obstructions. Our main theorem says that all obstructions are depicted in Fig. 1 or belong to a well described
infinite class of so-called alternating chains (the somewhat technical definition is postponed to Section 2). It can be verified
that each of them is indeed an obstruction, i.e., it is not planar, but applying any of the Peg-minor operations results in a
planar Peg.

We say that a Peg avoids a Peg X if it does not contain X as a Peg-minor. Furthermore, we say that a Peg is obstruction-
free if it avoids all Pegs of Fig. 1 and all alternating chains of lengths k � 4. Then our main theorem can be expressed as
follows.

Theorem 1. A Peg is planar if and only if it is obstruction-free.

Since our Peg-minor operations preserve planarity, and since all the listed obstructions are non-planar, any planar Peg is
obstruction-free. The main task is to prove that an obstruction-free Peg is planar.

Having identified the obstructions, a natural question is if the Peg-planarity testing algorithm of [1] can be extended so
that it provides an obstruction if the input is non-planar. It is indeed so.



468 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Theorem 2. There is a polynomial-time algorithm that for an input Peg (G, H,H) either constructs a planar embedding of G extend-
ing H, or provides a certificate of non-planarity, i.e., identifies an obstruction present in (G, H,H) as a Peg-minor.

The paper is organized as follows. In Section 2, we first recall some basic definitions and results on Pegs and their
planarity, and then define the Peg-minor order and the alternating chain obstructions. In Section 3, we show that the main
theorem holds for instances where G is biconnected. We extend the main theorem to general (not necessarily biconnected)
Pegs in Section 4. In Section 5, we present possible strengthening of our Peg-minor relations, and show that when more
complicated reduction rules are allowed, the modified Peg-minor order has only finitely many non-planar Pegs. In Section 6
we briefly provide an argument for Theorem 2 and then conclude with some open problems.

2. Preliminaries and notation

2.1. Embeddings

A drawing of a graph is a mapping of each vertex to a distinct point in the plane and of each edge to a simple Jordan
curve that connects its endpoints. A drawing is planar if the curves representing the edges intersect only in common
endpoints. A graph is planar if it admits a planar drawing. Such a planar drawing determines a subdivision of the plane into
connected regions, called faces, and a circular ordering of the edges incident to each vertex, called rotation scheme. Traversing
the border of a face F in such a way that the face is to the left yields a set of circular lists of vertices, the boundary of F .
Note that the boundary of a face is not necessarily connected if the graph is not connected and that vertices can be visited
several times if the graph is not biconnected. The boundary of a face F can be uniquely decomposed into a set of simple
edge-disjoint cycles, bridges (i.e., edges that are not part of a cycle) and isolated vertices. We orient these cycles so that F
is to their left to obtain the facial cycles of F .

Two drawings are topologically equivalent if they have the same rotation scheme and, for each facial cycle, the vertices
to its left are the same in both drawings. A planar embedding is an equivalence class of planar drawings. Let G be a planar
embedding of G and let H be a subgraph of G . The restriction of G to H is the embedding of H that is obtained from G
by considering only the vertices and the edges of H . We say that G is an extension of a planar embedding H of H if the
restriction of G to H is H.

2.2. Connectivity and SPQR-trees

A graph is connected if any pair of its vertices is connected by a path. A maximal connected subgraph of a graph G is a
connected component of G . A cut-vertex is a vertex x ∈ V (G) such that G−x has more components than G . A connected graph
with at least three vertices is 2-connected (or biconnected) if it has no cut-vertex. In a biconnected graph G , a separating
pair is a pair of vertices {x, y} such that G − x − y has more components than G . A biconnected graph with at least four
vertices is 3-connected if it has no separating pair. We say that a Peg (G, H,H) is connected, biconnected and 3-connected if
G is connected, biconnected and 3-connected, respectively. An edge of a graph G is sometimes referred to as a G-edge, and
a path in G is a G-path.

A connected graph can be decomposed into its maximal biconnected subgraphs, called blocks. Each edge of a graph
belongs to exactly one block, only cut-vertices are shared between different blocks. This gives rise to the block-cutvertex
tree of a connected graph G , whose nodes are the blocks and cut-vertices of G , and whose edges connect cut-vertices to
blocks they belong to.

The planar embeddings of a 2-connected graph can be represented by the SPQR-tree, which is a data structure introduced
by Di Battista and Tamassia [3,4]. A more detailed description of the SPQR-tree can be found in the literature [3–5,13]. Here
we just give a sketch and some notation.

The SPQR-tree T of a 2-connected graph G is an unrooted tree that has four different types of nodes, namely S-, P-,
Q- and R-nodes. The Q-nodes are the leaves of T , and they correspond to edges of G . Each internal node μ of T has an
associated biconnected multigraph S, its skeleton, which can be seen as a simplified version of the graph G . The subtrees
of μ in T when T is rooted at μ determine a decomposition of G into edge-disjoint subgraphs G1, . . . ,Gk , each of which
is connected and shares exactly two vertices ui, vi with the rest of the graph G . Each Gi is represented in the skeleton of μ
by an edge ei connecting ui and vi . We say that Gi is the pertinent graph of the edge ei . We also say that the skeleton edge
ei contains a vertex v or an edge e of G , or that v and e project into ei , if v or e belong to the pertinent graph Gi of ei . For
a subgraph G � of G , we say that G � intersects a skeleton edge ei , if at least one edge of G � belongs to Gi .

The skeleton of an S-node is a cycle of length k � 3, the skeleton of a P-node consists of k � 3 parallel edges, and the
skeleton of an R-node is a 3-connected planar graph. The SPQR-tree of a planar 2-connected graph G represents all planar
embeddings of G in the sense that choosing planar embeddings for all skeletons of T corresponds to choosing a planar
embedding of G and vice versa.

Suppose that e = uv is an edge of the skeleton of a node μ of an SPQR-tree of a biconnected graph G , and let Ge be
the pertinent graph of e. The graph Ge satisfies some additional restrictions depending on the type of μ: if μ is an S-node,
then Ge is biconnected, and if μ is a P-node, then either Ge is a single edge uv or Ge − {u, v} is connected. Regardless of
the type of μ, every cut-vertex in Ge separates u from v , otherwise G would not be biconnected.



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 469

Fig. 2. An example of a planar Peg (left) in which a contraction of a G-edge may result in two distinct Pegs, one of which is non-planar.

2.3. Peg-minor operations

We first introduce a set of operations that preserve planarity when applied to a Peg I = (G, H,H). The set of operations
is chosen so that the resulting instance I � = (G �, H �,H�) is again a Peg (i.e., H � is a subgraph of G � and H� is a planar
embedding of H �). It is not possible to use the usual minor operations, as sometimes, when contracting an edge of G − H ,
the embedding of the modified graph H is not unique and some of the possible embeddings lead to planar Pegs, while
some do not. This happens, e.g., when a contraction of a G-edge creates a new cycle of H-edges, in which case it is not
clear on which side of this cycle the remaining components of H should be embedded (see Fig. 2).

We will consider seven minor-like operations, of which the first five are straightforward.

1. Vertex removal: Remove from G and H a vertex v ∈ V (G) with all its incident edges.
2. Edge removal: Remove from G and H an edge e ∈ E(G).
3. Vertex relaxation: For a vertex v ∈ H remove v and all its incident edges from H , but keep them in G . In other words,

vertex v no longer has a prescribed embedding.
4. Edge relaxation: Remove an edge e ∈ E(H) from H , but keep it in G .
5. H-edge contraction: Contract an edge e ∈ E(H) in both G and H , update H accordingly.

The contraction of G-edges is tricky, as we have to care about two things. First, we have to take care that the modified
subgraph H � remains planar and second, even if it remains planar, we do not want to create a new cycle C in H as in this
case the relative positions of the connected components of H with respect to this cycle may not be uniquely determined.
We therefore have special requirements for the G-edges that may be contracted and we distinguish two types, one of which
trivially ensures the above two conditions and one that explicitly ensures them.

6. Simple G-edge contraction: Assume that e = uv is an edge of G , such that at least one of the two vertices u and v does
not belong to H . Contract e in G , and leave H and H unchanged.

7. Complicated G-edge contraction: Assume that e = uv is an edge of G , such that u and v belong to distinct components
of H , but share a common face of H. Assume further that both u and v have degree at most 1 in H . This implies that
we may uniquely extend H to an embedding H+ of the graph H+ that is obtained from H by adding the edge uv .
Afterwards we perform an H-edge contraction of the edge uv to obtain the new Peg.

If a contraction produces multiple edges, we only preserve a single edge from each such set of multiple edges, so that G
and H remain simple. Note that the resulting embedding H may depend on which edge we decide to preserve.

Let (G, H,H) be a Peg and let (G �, H �,H�) be the result of one of the above operations on (G, H,H). The extra condi-
tions on G-edge contractions ensure that the embedding H� is uniquely determined from the embedding of H after such
contraction. The conditions on vertex degrees in H ensure that the rotation scheme of the H �-edges around the vertex
created by the contraction is unique. In the complicated G-edge contraction, the requirement that the endpoints need to lie
in distinct connected components of H that share a face ensures that the contraction does not create a new cycle in H � and
that H � has a unique planar embedding induced by H.

It is not hard to see that an embedding G of G that extends H can be transformed into an embedding G� of G � that
extends H� . Therefore, all the above operations preserve planarity of Pegs. If a Peg A can be obtained from a Peg B by
applying a sequence of the above operations, we say that A is a Peg-minor of B or that B contains A as a Peg-minor.

2.4. Alternating chains

Apart from the obstructions in Fig. 1, there is an infinite family of obstructions, which we call the alternating chains. To
describe them, we need some terminology. Let C be a cycle of length at least four, and let u, v , x and y be four distinct
vertices of C . We say that the pair of vertices {u, v} alternates with the pair {x, y} on C , if u and v belong to distinct
components of C − x− y.

Intuitively, an alternating chain consists of a cycle C of H and a sequence of internally disjoint paths P1, . . . , Pk of which
only the endpoints belong to C , such that for each i = 1, . . . ,k − 1, the endpoints of Pi alternate with the endpoints of
Pi+1 on C , and no other pair of paths has alternating endpoints. Now assume that P1 contains a vertex that is prescribed
inside C . Due to the fact that the endpoints of consecutive paths alternate this implies that all Pi with i odd must be
embedded inside C , while all Pi with i even must be embedded outside. A k-fold alternating chain is such that the last
path Pk is prescribed in a way that contradicts this, i.e., it is prescribed inside C if k is even and outside, if k is odd.



470 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 3. Two non-isomorphic 5-fold alternating chains.

Generally it is sufficient to have paths of length 1 for P2, . . . , Pk−1 and to have a single vertex (for the prescription) in each
of P1 and Pk . We now give a precise definition.

Let k� 3 be an integer. A k-fold alternating chain is a Peg (G, H,H) of the following form:

• The graph H consists of a cycle C of length k + 1 and two isolated vertices u and v . If k is odd, then u and v are
embedded on opposite sides of C in H, otherwise they are embedded on the same side.

• The graph G has the same vertex set as H , and the edges of G that do not belong to H form k edge-disjoint paths
P1, . . . , Pk , whose endpoints belong to C . The path P1 has two edges and contains u as its middle vertex, the path Pk
has two edges and contains v as its middle vertex, and all the other paths have only one edge.

• The endpoints of the path Pi alternate with the endpoints of the path P j on C if and only if j = i + 1 or i = j + 1.
• All the vertices of C have degree 4 in G (i.e., each of them is a common endpoint of two of the paths Pi), with the

exception of two vertices of C that have degree three. One of these two vertices is an endpoint of P2, and the other is
an endpoint of Pk−1.

Let Achk denote the set of k-fold alternating chains. It can be checked that for each k � 4, the elements of Achk are
obstructions; see Lemma 19. Obstruction 4 from Fig. 1 is actually the unique member of Ach3, and is an obstruction as well.
However, we prefer to present it separately as an ‘exceptional’ obstruction, because we often need to refer to it explicitly.
Note that for k� 5 we may have more than one non-isomorphic k-fold chain; see Fig. 3.

3. Biconnected pegs

In this section we prove Theorem 1 for biconnected Pegs. We first recall a characterization of biconnected planar Pegs
via SPQR-trees.

Definition 3. Let (G, H,H) be a biconnected Peg.
A planar embedding of the skeleton of a node of the SPQR-tree of G is edge-compatible with H if, for every vertex x of the

skeleton and for every three edges of H incident to x that project to different edges of the skeleton, their order determined
by the embedding of the skeleton is the same as their order around x in H.

A planar embedding of the skeleton S of a node μ of the SPQR-tree of G is cycle-compatible with H if, for every facial
cycle �C of H whose edges project to a simple cycle �C � in S, all the vertices of S that lie to the left of �C and all the skeleton
edges not belonging to �C that contain vertices that lie to the left of �C in H are embedded to the left of �C �; and analogously
for the vertices to the right of �C .

A planar embedding of a skeleton of a node of the SPQR-tree of G is compatible if it is both edge- and cycle-compatible.

Angelini et al. showed that a biconnected Peg is planar if and only if the skeleton of each node admits a compatible
embedding [1, Theorem 3.1]. We use this characterization and show that any skeleton of a biconnected Peg that avoids all
obstructions admits a compatible embedding. Since skeletons of S-nodes have only one embedding, and their embedding is
always compatible, we consider P- and R-nodes only. The two types of nodes are handled separately in Sections 3.1 and 3.2,
respectively.

The following lemma will be useful in several parts of the proof.

Lemma 4. Let (G, H,H) be a Peg, let u be a vertex of a skeleton S of a node μ of the SPQR-tree of G, and let e be an edge of S with
endpoints u and v. Let F ⊆ E(H) be the set of edges of H that are incident to u and project into e. If the edges of F do not form an
interval in the rotation scheme of u in H then (G, H,H) contains obstruction 2.

Proof. If F is not an interval in the rotation scheme, then there exist edges f , f � ∈ F and g, g� ∈ E(H) \ F , all incident to u,
and appearing in the cyclic order f , g , f � , g� around u in H. Let x and x� be the endpoints of f and f � different from u
and let y and y� be the endpoints of g and g� different from u. For any skeleton edge f , we denote with G f the pertinent
graph of f .

If μ is an S-node, then g and g� project to the same skeleton edge uw with v �= w . Note that Guv and Guw share only
the vertex u and moreover, they are both connected even after removing u. Therefore, there exist disjoint paths P in Guv



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 471

and Q in Guw connecting x to x� and y to y� , respectively. We may relax all internal vertices and all edges of P and Q ,
and then perform simple edge contractions to replace each of the two paths with a single edge. This yields obstruction 2.

If μ is an R-node, then Guv − u is connected, and hence it contains a path P from x to x� . Moreover, since G − Guv is
connected, it has a path Q from y to y� . As in the previous case, contraction of P and Q yields obstruction 2.

If μ is a P-node, then Ge −{u, v} is connected, and therefore there is a path P connecting x to x� in Ge −{u, v}. Analogous
to the previous cases, a path Q from y to y� exists that avoids u and P . Again their contraction yields obstruction 2. ✷

In the following, we assume that the H-edges around each vertex of a skeleton that project to the same skeleton edge
form an interval in the rotation scheme of this vertex.

3.1. P-nodes

Throughout this section, we assume that (G, H,H) is a biconnected obstruction-free Peg. We fix a P-node μ of the
SPQR-tree of G , and we let P be its skeleton. Let u and v be the two vertices of P, and let e1, . . . , ek be its edges. Let Gi
be the pertinent graph of ei . Recall that Gi is either a single edge connecting u and v , or it does not contain the edge uv
and Gi − {u, v} is connected.

The goal of this section is to prove that P admits a compatible embedding. We first deal with edge-compatibility.

Lemma 5. Let (G, H,H) be a biconnected obstruction-free Peg. Then every P-skeleton P has an edge-compatible embedding.

Proof. If P has no edge-compatible embedding, then the rotation scheme around u conflicts with the rotation scheme
around v . This implies that there is a triplet of skeleton edges ea , eb , ec , for which the rotation scheme around u imposes a
different cyclic order than the rotation scheme around v . We distinguish two cases.

Case 1. The graph H has a cycle C whose edges intersect two of the three skeleton edges, say ea and eb . Then the edge ec
must contain a vertex x whose prescribed embedding is to the left of C , as well as a vertex y whose prescribed embedding
is to the right of C . Since x and y are connected by a path in Gc − {u, v}, we obtain obstruction 1.

Case 2. The graph H has no cycle that intersects two of the three P-edges ea , eb , ec . Each of the three P-edges contains
an edge of H adjacent to u as well as an edge of H adjacent to v . Since Gi − {u, v} is connected for each i, it follows that
each of the three skeleton edges contains a path from u to v , such that the first and the last edge of the path belong to H .
Fix such paths Pa , Pb and Pc , projecting into ea , eb and ec , respectively.

At least two of these paths (Pa and Pb , say) also contain an edge not belonging to H , otherwise they would form a
cycle of H intersecting two skeleton edges. By relaxations and simple contractions, we may reduce Pa to a path of length
three, whose first and last edge belong to E(H) and the middle edge belongs to E(G) \ E(H). The same reduction can be
performed with Pb . The path Pc can then be contracted to a single vertex, to obtain obstruction 2. ✷

Next, we consider cycle-compatibility. Assume that H has at least one facial cycle whose edges intersect two distinct
skeleton edges. It follows that u and v belong to the same connected component of H ; denote this component by Huv . We
call a uv-cycle any facial cycle of H that contains both u and v . Note that any uv-cycle is also a facial cycle of Huv , and
a facial cycle of Huv that contains both u and v is a uv-cycle. Following the conventions of [1], we assume that all facial
cycles are oriented in such a way that a face is to the left of its facial cycles. The next lemma shows that the vertices of
Huv cannot violate any cycle-compatibility constraints without violating edge-compatibility as well.

Lemma 6. Assume that C is a uv-cycle that intersects two distinct P-edges ea and eb, and that x is a vertex of Huv not belonging to C .
In any edge-compatible embedding of P, the vertex x does not violate cycle-compatibility with respect to C .

Proof. The vertex x belongs to a skeleton edge ex different from ea and eb , otherwise it cannot violate cycle-compatibility.
Note that since x is in Huv , ex must contain a path P of H that connects x to one of the poles u and v . In the graph H ,
all the vertices of P must be embedded on the same side of C as the vertex x. The last edge of P may not violate edge-
compatibility, which forces the whole edge ex , and thus x, to be embedded on the correct side of the projection of C , as
claimed. ✷

The next lemma shows that for an obstruction-free Peg, all vertices of H projecting to the same P-edge impose the
same cycle-compatibility constraints for the placement of this edge.

Lemma 7. Let x and y be two vertices of H, both distinct from u and v. Suppose that x and y project to the same P-edge ea. Let C be
a cycle of H that is edge-disjoint from Ga. Then x and y are embedded on the same side of C in H.

Proof. Since Ga − {u, v} is a connected subgraph of G , there is a path P in G that connects x to y and avoids u and v .
Since C is edge-disjoint from Ga , the path P avoids all the vertices of C . If x and y were not embedded on the same side
of C in H, we would obtain obstruction 1 by contracting C and P . ✷



472 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 4. Illustration of Case 1 in the proof of Proposition 8. The shaded regions represent the edges of P.

Fig. 5. Illustration of Case 2.a in the proof of Proposition 8. The shaded regions represent the edges of P.

We now prove the main result of this subsection.

Proposition 8. Let (G, H,H) be a biconnected obstruction-free Peg. Then every P-skeleton P of the SPQR-tree of G admits a compat-
ible embedding.

Proof. Fix an edge-compatible embedding that minimizes the number of violated cycle-compatibility constraints; more
precisely, fix an embedding of P that minimizes the number of pairs (C, x) where C is a facial cycle of H projecting to a
cycle C � of P, x is a vertex of H − {u, v} projecting into a skeleton edge ex not belonging to C � , and the relative position
of C � and ex in the embedding of P is different from the relative position of C and x in H. We claim that the chosen
embedding of P is compatible.

For contradiction, assume that there is at least one pair (C, x) that violates cycle-compatibility in the sense described
above. Let ex be the P-edge containing x. Note that ex does not contain any edge of H adjacent to u or v . If it contained
such an edge, it would contain a vertex y from the component Huv , and this would contradict Lemma 6 or Lemma 7. Thus,
the edge ex does not participate in any edge-compatibility constraints.

It follows that x does not belong to the component Huv . That means that in H, the vertex x is embedded in the interior
of a unique face F of Huv . We distinguish two cases, depending on whether the boundary of F contains both poles u and
v of P or not.

Case 1. The boundary of F contains at most one of the two poles u and v; see Fig. 4. Without loss of generality, the
boundary of F does not contain u. Thus, F has a facial cycle D that separates u from x. The pertinent graph Gx of ex
contains a path P from x to u that avoids v . The path P does not contain any vertex of Huv except u, and in particular, it
does not contain any vertex of D . Contracting D to a triangle and P to an edge yields obstruction 1, which is a contradiction.

Case 2. The boundary of F contains both poles u and v of the skeleton. In this case, since u and v belong to the same
block of H , the face F has a unique facial cycle D that contains both u and v . The cycle D is the only uv-cycle that has x
to its left (i.e., inside its corresponding face).

The cycle D may be expressed as a union of two paths P and Q connecting u and v , where P is directed from u to v
and Q is directed from v to u. We distinguish two subcases, depending on whether the paths P and Q project to different
P-edges.

Case 2.a. Both P and Q project to the same skeleton edge eD . This case is depicted in Fig. 5. Each of the two paths P and
Q has at least one internal vertex. Since all these internal vertices are inside a single skeleton edge, there must be a path
R in G connecting an internal vertex of P to an internal vertex of Q and avoiding both u and v . By choosing R as short
as possible, we may assume that no internal vertex of R belongs to D . Furthermore, since P by hypothesis has at least one
violated cycle-compatibility constraint, it must contain at least two edges that contain an H-path from u to v . In particular,
there must exist a P-edge eS different from eD that contains an H-path S from u to v .

Necessarily, the path S is embedded outside the face F , i.e., the right of D . And finally, the edge ex must contain a
G-path T from u to v that contains x. Note that ex is different from eD and eS , because ex has no H-edge incident to u
or v . Thus, the paths P , Q , S , T are all internally disjoint. The five paths P , Q , R , S , and T can then be contracted to form
obstruction 3.

Case 2.b. The two paths P and Q belong to distinct skeleton edges eP and eQ . That means that the facial cycle D projects
to a cycle D � of the skeleton, formed by the two edges. Modify the embedding of the skeleton by moving ex so that it is to
the left of D � . This change does not violate edge-compatibility, because ex has no H-edge adjacent to u or v .

We claim that in the new skeleton embedding, x does not participate in any violated cycle-compatibility constraint. To
see this, we need to check that x is embedded to the right of any facial cycle B �= D of Huv that projects to a cycle in the
skeleton. Choose such a cycle B and let B � be its projection; see Fig. 6. Let e+ or e− denote the edges of D incident to
u with e+ being oriented towards u and e− out of u. Similarly, let f + and f − be the incoming and outgoing edges of B



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 473

Fig. 6. Illustration of Case 2.b in the proof of Proposition 8. The left part represents the embedding of P after ex has been moved to the left of D � .
Edge-compatibility guarantees that x is now on the correct side of every facial cycle in P.

adjacent to u. In H, the four edges must visit u in the clockwise order (e+, e−, f +, f −), with the possibility that e− = f +
and e+ = f − .

Since the embedding of the skeleton is edge-compatible, this means that any skeleton edge embedded to the left of
D � is also to the right of B � , as needed. We conclude that in the new embedding of P, the vertex x does not violate
any cycle-compatibility constraint, and by Lemma 7, the same is true for all the other H-vertices in ex . Moreover, the
change of embedding of ex does not affect cycle-compatibility of vertices not belonging to ex , so the new embedding
violates fewer cycle-compatibility constraints than the old one, which is a contradiction. This proves that P has a compatible
embedding. ✷

Let us remark that there are only finitely many obstructions that may arise from a P -skeleton that lacks a compatible
embedding. In fact, if (G, H,H) is a non-planar Peg and if G is a biconnected graph with no K4-minor (implying that
the SPQR-tree of G has no R-nodes), then we may conclude that (G, H,H) contains obstruction 1 or 2, since all the other
obstructions contain K4 as (ordinary) minor.

3.2. R-nodes

Let us now turn to the analysis of R-nodes. As in the case of P-nodes, our goal is to show that if a skeleton R of an
R-node in the SPQR-tree of G has no compatible embedding, then the corresponding Peg (G, H,H) contains an obstruction.
The skeletons of R-nodes have more complicated structure than the skeletons of P-nodes, and accordingly, our analysis is
more complicated as well. Similar to the case of P-nodes, we will first show that an R-node of an obstruction-free Peg
must have an edge-compatible embedding, and as a second step show that in fact it must also have an edge-compatible
embedding that is cycle-compatible.

The skeleton of an R-node is a 3-connected graph. We therefore start with some preliminary observations about 3-con-
nected graphs, which will be used throughout this section. Let R be a 3-connected graph with a planar embedding R+ , let
x be a vertex of R. A vertex y of R is visible from x if x �= y and there is a face of R+ containing x and y on its boundary.
An edge e is visible from x if e is not incident with x and there is a face containing both x and e on its boundary. The
vertices and edges visible from x form a cycle in R. To see this, note that these vertices and edges form a face boundary in
R+ − x, and every face boundary in an embedding of a 2-connected graph is a cycle. We call this cycle the horizon of x.

In the following, we will consider a fixed skeleton R of an R-node. Since R is 3-connected, it has only two planar
embeddings, denoted by R+ and R− [15]. Suppose that neither of the two embeddings is compatible. The constraints on
the embeddings either stem from a vertex whose incident H-edges project to distinct edges of R or from a cycle of R
that is a projection of an H-cycle whose cycle-compatibility constraints demand exactly one of the two embeddings. Since
neither R+ nor R− are compatible, there must be at least two such structures, one requiring embedding R+ , and the
other one requiring R− . If these structures are far apart in R, for example, if no vertex of the first structure belongs to the
horizon of a vertex of the second structure, it is usually not too difficult to find one of the obstructions. However, if they are
close together, a lot of special cases can occur. A significant part of the proof therefore consists in controlling the distance
of objects and showing that either an obstruction is present or close objects cannot require different embeddings.

As before, we distinguish two main cases: first, we deal with the situation in which both embeddings of R violate
edge-compatibility. Next, we consider the situation in which R has at least one edge-compatible embedding, but no edge-
compatible embedding is cycle-compatible.

3.2.1. R has no edge-compatible embedding
Let u be vertex of R that violates the edge-compatibility of R+ , and let v be a vertex violating edge-compatibility of

R− . If u = v , i.e., if a single vertex violates edge-compatibility in both embeddings, the following lemma shows that we can
find an occurrence of obstruction 2 in (G, H,H).

Lemma 9. Assume that an R-node skeleton R has a vertex u that violates edge-compatibility in both embeddings of R. Then (G, H,H)

contains obstruction 2.

Proof. Let e�
1, . . . , e

�
m be the R-edges incident to u that contain at least one H-edge incident to u. Assume that these edges

are listed in their clockwise order around u in the embedding R+ . Let ei be an H-edge incident to u projecting into e�
i .



474 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 7. An example of a minimal wrung Peg that is not a minimal planarity obstruction (it contains obstruction 2).

By Lemma 4, if a triple of edges e�
i , e

�
j , e

�
k violates edge-compatibility in R+ , then this violation is demonstrated by the

edges ei , e j , ek , i.e., the cyclic order of ei , e j and ek in H is different from the cyclic order of e�
i , e

�
j and e�

k in R+ .
Choose a largest set I ⊆ {1, . . . ,m} such that the edges {ei, i ∈ I} do not contain any violation of edge-compatibility when

embedded according to R+ . Clearly, 3 � |I| because if each triple violated edge-compatibility in R+ , then R− would be
edge-compatible with u. Also |I| <m, otherwise R+ would be edge-compatible with u.

Choose an index i ∈ {1, . . . ,m} not belonging to I . By maximality of I , there are j,k,� ∈ I such that, w.l.o.g., (ei, e j, ek, e�)

appear clockwise in R+ and (e j, ei, ek, e�) appear clockwise in H (recall that (e j, ek, e�) have the same order in R+ and H,
by the definition of I).

For a ∈ {1, . . . ,m} let xa be the endpoint of the skeleton edge e�
a different from u. The horizon of u in R+ contains two

disjoint paths P and Q joining xi with x� and x j with xk . By obvious contractions we obtain obstruction 2. ✷

Let us concentrate on the more difficult case when u and v are distinct. To handle this case, we introduce the concept
of ‘wrung Pegs’. A wrung Peg is a Peg (G, H,H) with the following properties.

• G is a subdivision of a 3-connected planar graph, therefore it has two planar embeddings G+ , G− .
• H has two distinct vertices u and v of degree 3. Any other vertex of H is adjacent to u or v , and any edge of H is

incident to u or to v . Hence, H has five or six edges, and at most eight vertices.
• H is not isomorphic to K2,3 or to K−

4 (i.e., K4 with an edge removed). Equivalently, H has at least one vertex of
degree 1.

• The embedding H of H is such that its rotation scheme around u is consistent with G+ and its rotation scheme around
v is consistent with G− . Note that such an embedding exists due to the previous condition.

Clearly, a wrung Peg is not planar, because neither G+ nor G− is an extension of H. A minimal wrung Peg is a wrung Peg
that does not contain a smaller wrung Peg as a Peg-minor. A minimal wrung Peg is not necessarily a planarity obstruction—
it may contain a smaller non-planar Peg that is not wrung (see Fig. 7). However, it turns out that minimal wrung Pegs are
close to being planarity obstructions. The key idea in using wrung Pegs is that they are characterized by being subdivisions
of 3-connected graphs, a property that is much easier to control than non-embeddability of Pegs.

The following proposition summarizes the key property of wrung Pegs. In particular, it implies that there are only finitely
many minimal wrung Pegs.

Proposition 10. If (G, H,H) is a minimal wrung Peg, then every vertex of G also belongs to H and the graph H is connected.

Proof. Let G� be the 3-connected graph whose subdivision is G . A subdivision vertex is a vertex of G of degree 2. A subdivided
edge is a path in G of length at least two whose every internal vertex is a subdividing vertex and whose endpoints are not
subdividing vertices. Therefore, each edge of G� either represents an edge of G or a subdivided edge of G .

The proof of the proposition is based on several claims.

Claim 1. Every subdividing vertex of G is a vertex of H. Every subdivided edge of G contains at most one vertex adjacent to u and at
most one vertex adjacent to v. If H is disconnected then G has at most one subdivided edge, which (if it exists) connects u and v and
is subdivided by a single vertex.

If G had a subdividing vertex x not belonging to H , we could contract an edge of G incident to x to get a smaller Peg,
which is still wrung.

To see the second part of the claim, note that two vertices adjacent to u in the same subdivided edge would imply the
existence of a loop or a multiple edge in G� .

For the last part of the claim, note that if H is disconnected, then every vertex of H except for u and v has degree 1
in H . If a subdividing vertex adjacent to u were also adjacent to an H-neighbor of v , then the edge between them could be
contracted. This proves the claim.

A fundamental tool in the analysis of minimal wrung Pegs is the concept of contractible edges. An edge e in a 3-con-
nected graph F is contractible if F .e is also 3-connected, where F .e is the graph obtained from F by contracting e. Note that
an edge e = xy in a 3-connected graph F is contractible if and only if F − {x, y} is biconnected.

The notion of contractible edges has been intensely studied [10,11], and we are able to use powerful structural theorems
that guarantee that any ‘sufficiently large’ wrung Pegs must contain an edge that can be contracted to yield a smaller



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 475

wrung Peg. The next fact is a special case of a theorem by Kriesell [10], see also [11, Theorem 3]. We present this result
here without proof.

Fact 1. If F is a 3-connected graph and w a vertex of F that is not incident with any contractible edge and such that F − w is not a
cycle, then w is adjacent to four vertices x1 , x2 , y1 , y2 , all having degree 3 in F , which induce two disjoint edges x1 y1 and x2 y2 of F ,
and both these edges are contractible.

We are now ready to show that every vertex of G also belongs to H . Suppose for a contradiction that G has a vertex w
not belonging to H . By Claim 1, w is not a subdivision vertex, so w is also a vertex of G� . If w were incident to a contractible
edge of G� , we could contract this edge to obtain a smaller wrung Peg. Hence, w is not incident to any contractible edge
of G� . Fix now the four vertices from Fact 1, and let e1 = x1 y1 and e2 = x2 y2 be the two contractible edges. Necessarily
all the four endpoints of e1 and e2 belong to H , otherwise we could contract one of them to get a smaller wrung Peg.
Moreover, the edges e1 and e2 cannot contain u or v , because their endpoints have degree three and are adjacent to the
vertex w not belonging to H . Therefore, each endpoint of e1 and e2 is adjacent to either u or v in G� (and also in G and
in H).

Assume without loss of generality that x1 is adjacent to u. Then y1 cannot be adjacent to u, because then u and w
would form a separating pair in G� , hence y1 is adjacent to v . Analogously, we may assume that x2 is adjacent to u and
y2 is adjacent to v . The graph H must be connected, otherwise we could contract e1 or e2. This means that H , together
with e1 and e2 and the two edges wx1 and wx2 form a subdivision of K4, and therefore they form a wrung Peg properly
contained in (G, H,H). Therefore any vertex of G also belongs to H .

It remains to prove that H is connected. For this we need another concept for dealing with subdivisions of 3-connected
graphs. Let F be a 3-connected graph and let e = xy be an edge of F . The cancellation of e in F is the operation that
proceeds in the three steps: (1) Remove e from F , to obtain F − e. (2) If the vertex x has degree 2 in F − e, then replace
the subdivided edge containing x by a single edge. Do the same for y as well. (3) Simplify the graph obtained from step 2
by removing multiple edges.

Let F � e denote the result of the cancellation of e in F . Note that F � e may contain vertices of degree 2 if they arise
in step 3 of the above construction. An edge e is cancellable if F � e is 3-connected. It is called properly cancellable if it is
cancellable, and moreover, the first two steps in the above definition produce a graph without multiple edges.

Claim 2. A cancellable edge e in a 3-connected graph F is either properly cancellable or contractible.

Suppose that e = xy is cancellable, but not properly cancellable. We show that it is contractible. Since e is not properly
cancellable, one of its endpoints, say x, has degree 3 in F and its two neighbors x� and x�� besides y are connected by
an edge. We show that between any pair of vertices a and b of F − {x, y} there are two vertex-disjoint paths. In F there
exist three vertex-disjoint a− b-paths P1, P2 and P3. If two of them avoid x and y then they are also present in F − {x, y}.
Therefore, we may assume that P1 contains x and P2 contains y. Then P1 contains the subpath x�xx�� which can be replaced
by the single edge x�x�� . Again at most one of the paths contains vertices of {x, y} and therefore we again find two vertex-
disjoint a–b-paths in F − {x, y}. This shows that F − {x, y} is biconnected and therefore e = xy is contractible. This concludes
the proof of the claim.

Moreover, we need the following result by Holton et al. [6], which we present without proof.

Fact 2. If F is a 3-connected graph with at least five vertices, then every triangle in F has at least two cancellable edges.

We proceed with the proof of Proposition 10, and show that H is connected. Suppose for contradiction that H is discon-
nected, and let Hu and Hv be its two components containing u and v . Let x1, x2 and x3 be the three neighbors of u in H ,
and y1, y2 and y3 the three neighbors of v . Recall from Claim 1 that G has at most one subdividing vertex, and that the
possible subdivided edge connects u and v .

Since G� is 3-connected, it has three disjoint edges e1, e2 and e3, each of them connecting a vertex of Hu to a vertex
of Hv . At least one of them avoids both u and v . Assume without loss of generality that e1 = x1 y1 is such an edge. If e1
were a contractible edge of G� , we would get a smaller wrung Peg. Therefore the graph G� − {x1, y1} has a cut-vertex w .
Note that w is either u or v . Otherwise, Hu − {x1, y1, w} would be connected, and Hv − {x1, y1, w} would be connected as
well. However, since (by disjointness) at least one of the edges e2, e3 avoids w , this implies that G� − {x1, y1, w} would be
connected as well, contradicting the choice of w .

So, without loss of generality, G� has a separating triplet {x1, y1,u}. Since at least one of the two edges e2, e3 avoids this
triplet, we see that one of the components of G� − {x1, y1,u} consists of a single vertex x� ∈ {x2, x3}. Since each vertex in a
minimal separator must be adjacent to each of the components separated by the separator, G� contains the two edges x�x1
and x� y1. Consequently, x� , x1 and y1 induce a triangle in G� (and in G), and by Fact 2, at least one of the two edges x1 y1
and x� y1 is cancellable, and by Claim 2, at least one of the two edges is contractible or properly cancellable, contradicting
the minimality of (G, H,H).

This completes the proof of Proposition 10. ✷



476 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 8. The four graphs that make the embedded part of any minimal wrung obstruction. Note that H3 and H4 have two non-isomorphic embeddings, so
there are in total six possibilities how the embedded part of a minimal wrung obstruction may look like.

Fig. 9. The minimal wrung Pegs containing H1 as the embedded part. The numbers in brackets refer to the obstruction contained in the given Peg.

Proposition 10 implies that a minimal wrung Peg (G, H,H) has at most seven vertices, and that the graph H is isomor-
phic to one of the four graphs H1, H2, H3 and H4 depicted on Fig. 8. Moreover, in a minimal wrung Peg, the embedded
part forms a spanning subgraph.

Our next goal is to show that each minimal wrung Peg contains one of the obstructions of Fig. 1. In view of the previous
remarks, to generate all minimal wrung Pegs is a matter of a finite case analysis. Although it is possible to perform such
analysis by hand, this is rather tedious and it would make the paper intolerably long. We therefore omit the analysis here
and replace it with a simple computer script that simply generates all the minimal wrung Pegs programmatically, using the
libraries provided in the Sage package. The code of the script is listed in the Appendix. Note, however, that it is feasible to
perform the proof without the help of computer; indeed, the computer-free proof is presented in detail in the arXiv version
of this paper [7].

The script we use considers the four graphs Hi of Fig. 8 separately, and for each of them generates all minimal planar
spanning supergraphs that are subdivisions of a 3-connected graph. When testing minimality, the script only attempts to
remove edges not belonging to Hi , and checks whether this removal generates a smaller wrung Peg.

This procedure is guaranteed to generate all possible minimal wrung Pegs. It may also generate Pegs that are not minimal
wrung, e.g., it generates a wrung Peg containing H1, which can be transformed to a wrung Peg containing H2 via an H-edge
contraction. For our purposes, however, the script is sufficient, since it allows us to verify that each minimal wrung Peg
contains an obstruction.

Figs. 9–12 list the wrung Pegs generated by our script. The vertex labels shown on the figures correspond to the labeling
used by the script. The embeddings depicted on the figures are consistent with H, and are chosen in order to make the
obstructions apparent. Note that the output of the script represents each Peg by a planar embedding of the G-part of the
wrung Peg, which is therefore not consistent with the embedding H.

We may now conclude that every wrung Peg contains one of the obstructions from Fig. 1. However, wrung Pegs alone
are not sufficient for our analysis of edge-incompatible R-skeletons. We need to introduce another closely related concept
of ‘pseudo-wrung’ Peg.

Let (G, H,H) be a wrung Peg, and let u and v be the two vertices of degree 3 in H . Suppose that u and v are connected
by an edge of H . Let (G�, H�,H�) be the Peg obtained from (G, H,H) as follows (see Fig. 13):



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 477

Fig. 10. The minimal wrung Pegs containing H2 as the embedded part. The numbers in brackets refer to the obstruction contained in the given Peg.

Fig. 11. The minimal wrung Pegs containing H3 as the embedded part. The numbers in brackets refer to the obstruction contained in the given Peg.

Fig. 12. The minimal wrung Pegs containing H4 as the embedded part. The numbers in brackets refer to the obstruction contained in the given Peg.

Fig. 13. Modification of a wrung Peg (G, H,H) into a pseudo-wrung Peg (G�, H�,H�).

• G� is obtained from G by replacing the edge uv by a fourcycle uxvy, where x and y are new vertices not belonging
to G ,

• H� is obtained from H by replacing the edge uv by the two edges ux and vy, and
• in the embedding H� , the new edges ux and vy replace the removed edge uv in the rotation schemes of u and v .

We then say that Peg (G�, H�,H�) is obtained by modification of (G, H,H). We say that a Peg is pseudo-wrung if it can be
obtained from a wrung Peg by modification.

Lemma 11. Every pseudo-wrung Peg contains one of the obstructions from Fig. 1.

Proof. Let (G�, H�,H�) be a pseudo-wrung Peg obtained by modification of a wrung Peg (G, H,H). Let u and v be the
two vertices of degree 3 in H (and also in H�). We know that (G, H,H) can be transformed into a minimal wrung Peg by
a sequence of Peg-minor operations. Necessarily, the minimal wrung Peg must still contain the edge uv as an embedded
edge. Therefore (G, H,H) contains one of the Pegs B1–B4, D1 or D2 from Figs. 10 and 12.

Furthermore, we easily see that if a wrung Peg (G2, H2,H2) is obtained from (G, H,H) by Peg-minor operations that
preserve the edge uv , then an analogous sequence of Peg-minor operations can be applied to the modified pseudo-wrung
Peg (G�, H�,H�), resulting in the pseudo-wrung Peg (G�

2, H
�
2,H�

2) which is the modification of (G2, H2,H2).
We conclude that (G�, H�,H�) contains as a Peg-minor one of the six pseudo-wrung Pegs B1�–B4� , D1� and D2� ,

obtained by modifications of the Pegs B1–B4, D1 and D2. To prove the lemma, is suffices to verify that each of these six
pseudo-wrung Pegs contains an obstruction. This is indeed the case: contracting the edge x1 y2 in B1� gives obstruction 6,
contracting x1 y2 in B2� gives obstruction 5, as does contracting x2 y1 in B3� . Contracting x1 y1 in B4� yields obstruction 6,
while D1� and D2� are identical to obstructions 6 and 5, respectively. ✷

Finally, we have all the pieces together to prove the main result of this part.

Proposition 12. Let (G, H,H) be a biconnected obstruction-free Peg, and let R be the skeleton of an R-node of the SPQR-tree of G.
Then R has an edge-compatible embedding.

Proof. Suppose R does not have an edge-compatible embedding. If a single vertex u violates edge-compatibility in both
embeddings of R, we find an obstruction by Lemma 9.



478 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Suppose there are two distinct vertices u and v , each of them violating edge-compatibility of one of the two embeddings
of R. This means that u is incident to three H-edges e1, e2, e3 projecting into distinct R-edges e�

1, e
�
2, e

�
3, such that the

cyclic order of ei ’s in H coincides with the cyclic order of e�
i ’s in R− , and similarly v is adjacent to H-edges f1, f2, f3

projecting into R-edges f �
1, f �

2, f �
3, whose order in R+ agrees with H.

If all the e�
i and f �

i for i = 1,2,3 are distinct, then it is fairly easy to see that G must contain a wrung Peg, obtained
simply by replacing each edge of R with a path of G , chosen in such a way that all the six edges ei and f i belong to these
paths. Such a choice is always possible and yields a wrung Peg. In particular, this is always the case if u and v are not
adjacent in R.

Suppose now that u and v are connected by an edge g� of R, and suppose that we have e�
i = g� = f �

j for some i and j.
Without loss of generality, suppose that i = j = 1. If G has a path from u to v that contains both e1 and f1, then we may
replace g� by such a path, and replace the remaining edges of R by paths as before, to obtain a wrung Peg contained in
(G, H,H), and therefore an obstruction.

Let us now assume that G has no path from u to v containing both e1 and f1. Then G has a path Pe from u to v
that contains e1, as well as a path P f from u to v that contains f1. Necessarily, these paths project into g� . We also know
that these two paths are internally disjoint, otherwise we would obtain a single path containing both e1 and f1. We now
distinguish two cases, depending on whether the edges e2, e3, f2 and f3 form a fourcycle or not.

Suppose that the four edges e2, e3, f2 and f3 do not form a fourcycle. We then see that (G, H,H) contains a pseudo-
wrung Peg, obtained by contracting Pe ∪ P f into a fourcycle and by replacing all the R-edges different from g� by paths of
G that contain the four edges e2, e3, f2 and f3. By Lemma 11, (G, H,H) has an obstruction.

It remains to deal with the case when e2, e3, f2 and f3 form a fourcycle C of H . This means that the R-edges e�
2, e

�
3,

f �
2 and f �

3 form a fourcycle in R. Notice that we now cannot obtain a pseudo-wrung Peg as we did in the previous case: in
a wrung Peg, the H-edges cannot form a copy of K−

4 , and therefore in a pseudo-wrung Peg, the H-edges cannot contain a
fourcycle. We apply a different argument. Let w and z be the vertices of C distinct from u and v . As R is 3-connected, it
has a path Q � that connects w and z while avoiding u and v . There is a path Q of G which projects into Q � . The paths Q ,
Pe and P f , together with the cycle C , show that (G, H,H) contains obstruction 4. ✷

3.2.2. R has an edge-compatible embedding
Assume now that the embedding R+ of the skeleton R is edge-compatible but not cycle-compatible. We first give a

sketch of our general proof strategy. Our analysis of this situation strongly relies on the concept of C-bridge, which has
been previously used by Juvan and Mohar in the study of embedding extensions on surfaces of higher genus [9], and which
is also employed (under the name fragment) by Demoucron, Malgrange and Pertuiset in their planarity algorithm [2].

Let F be a graph and C a cycle of F . A C-bridge is either a chord of C , (i.e., an edge not belonging to C whose vertices
are on C ) or a connected component of F − C , together with all vertices and edges that connect it to C . A vertex of C that
is incident to an edge of a C-bridge X is called an attachment of X . Let att(X) denote the set of attachments of X . A bridge
that consists of a single edge is trivial.

In our argument, we focus on cycles in R that are projections of cycles in H . Notice that in this case, any non-trivial
bridge in R has at least three attachments, because R is 3-connected. If R+ violates cycle-compatibility, it means that H
must contain a cycle C � that projects to a cycle C of R, and R+ has a C-bridge that is embedded on the ‘wrong’ side
of C . We concentrate on the substructures that enforce such ‘wrong’ position for a given C-bridge, and use them to locate
planarity obstructions.

Let us describe the argument in more detail. Suppose again that C � is a cycle of H that projects to a cycle C of R. Let
x be a vertex of H that does not belong to any R-edge belonging to C . We say that x is happy with C � , if its embedding
in R+ does not violate cycle-compatibility with respect to the cycle C � , i.e., x is to the left of C � in H if and only if x is to
the left of C in R+ . Otherwise we say that x is unhappy with C � . We say that a C-bridge B of R is happy with C � if there
is a vertex x happy with C � that projects into B , and similarly for unhappy bridges. A C-bridge that is neither happy nor
unhappy is indifferent.

In our analysis of cycle-incompatible skeletons, we establish the following facts.

• With C and C � as above, if a single C-bridge is both happy and unhappy with C � , then (G, H,H) contains obstruction 1
or 4 (Lemma 20).

• Let us say that the cycle C � is happy if at least one C-bridge is happy with C � , and it is unhappy if at least one C-bridge
is unhappy with C � . If C � is both happy and unhappy, then (G, H,H) contains obstruction 4, obstruction 16, or an
alternating-chain obstruction (Lemma 21).

• Assume that the situation described above does not arise. Assume further that C � is an unhappy cycle of H. Then any
edge of H incident to a vertex of C � must project into an R-edge belonging to C , unless (G, H,H) contains obstruction 3
or one of the obstructions from the previous item. Note that this implies, in particular, that the vertices of C impose no
edge-compatibility constraints (Lemma 23).

• If C �
1 and C �

2 are two facial cycles of H whose projection is the same cycle C of R, then any C-bridge is happy with
C �
1 if and only if it is happy with C �

2, unless the graph G is non-planar, or the Peg (G, H,H) contains obstruction 1
(Lemma 24).

• If H contains a happy facial cycle as well as an unhappy one, we obtain obstruction 18 (Lemma 25).



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 479

• If H contains an unhappy facial cycle, and if at least one vertex of R imposes any non-trivial edge-compatibility con-
straints, then (G, H,H) contains one of the obstructions 19–22 (Lemma 26).

Note that these facts guarantee that if (G, H,H) is obstruction-free then R has a compatible embedding. To see this,
assume that R+ is an edge-compatible but not cycle-compatible embedding of R. This means that at least one facial cycle
of H is unhappy. This in turn implies that no cycle may be happy, and no vertex of R may impose any edge-compatibility
restrictions. Consequently, the embedding R− is compatible. In order to prove the above claims we need some technical
machinery, in particular the concept of conflict graph of C-bridges and its properties.

Conflict graph of a cycle and minimality of alternating chains. For a cycle C and two distinct vertices x and y of C , an arc of
C with endvertices x and y is a path in C connecting x to y. Any two distinct vertices of a cycle determine two arcs. Let
u, v, x, y be four distinct vertices of a cycle C . We say that the pair {x, y} alternates with {u, v} if each arc determined by x
and y contains exactly one of the two vertices {u, v}. If U and X are sets of vertices of a cycle C , we say that X alternates
with U if there are two pairs of vertices {u, v} ⊆ U and {x, y} ⊆ X that alternate with each other.

Let now F be a graph containing a cycle C . Intuitively, a bridge represents a subgraph, whose internal vertices and
edges must all be embedded on the same side of C in any embedding of F . Thus, a C-bridge may be embedded in two
possible positions relative to C . Moreover, if two bridges B1 and B2 have three common attachments, or if the attachments
of B1 alternate with the attachments of B2, then in any planar embedding, B1 and B2 must appear on different sides of C .
This motivates the definition of two types of conflicts between bridges. We say that two C-bridges X and Y of F have a
three-vertex conflict if they share at least three common attachments, and they have a four-vertex conflict if att(X) alternates
with att(Y ). Two C-bridges have a conflict if they have a three-vertex conflict or a four-vertex conflict. This gives rise to
a conflict graph of F with respect to C . For a cycle C , define the conflict graph KC to be the graph whose vertices are the
C-bridges, and two vertices are connected by an edge of KC if and only if the corresponding bridges conflict. Define the
reduced conflict graph K−

C to be the graph whose vertices are bridges of C , and two bridges are connected by an edge if they
have a four-vertex conflict.

As a preparation, we first derive some basic properties of conflict graphs.

Lemma 13. If F is a planar graph, then for any cycle C of F the conflict graph KC is bipartite (and hence K−
C is bipartite as well).

Proof. In any embedding of F , each C-bridge must be completely embedded on a single side of C . Two conflicting bridges
cannot be embedded on the same side of C . ✷

Consider now the situation when C is a cycle of length at least 4 in a 3-connected graph F . The goal is to show that
in this case also the reduced conflict graph K−

C is connected. To prove this we need some auxiliary lemmas. The first one
states that if the attachments of a set of bridges alternate with two given vertices x and y of C , then the set must contain
a C-bridge whose attachments alternate with x and y, provided that the set of bridges is connected in the reduced conflict
graph K−

C .

Lemma 14. Let F be a graph and let C be a cycle in F . Let K be a connected subgraph of the reduced conflict graph K−
C and let att(K ) be

the set of all attachment vertices of the C-bridges in K , that is, att(K ) = �
X∈K att(X). If {x, y} is a pair of vertices of C that alternates

with att(K ), then there is a bridge X ∈ K such that the pair {x, y} alternates with att(X).

Proof. Let α and β be the two arcs of C with endvertices x and y. Let Kα be the set of C-bridges from K whose all
attachments belong to α, and let Kβ be the set of bridges from K with all their attachments in β . Note that both Kα and
Kβ are proper subsets of K , because {x, y} alternates with att(K ).

Since no bridge in Kα conflicts with any bridge in Kβ , and since K is a connected subgraph in the reduced conflict
graph, there must exist a bridge X ∈ K that belongs to K \ (Kα ∪ Kβ). Clearly, X has at least one attachment in the interior
of α as well as at least one attachment in the interior of β . Thus, att(X) alternates with {x, y}. ✷

Next, we show that in a 3-connected graph, unless C is a triangle, its reduced conflict graph K−
C is connected.

Lemma 15. Let C be a cycle of length at least 4 in a 3-connected graph F . Then the reduced conflict graph K−
C is connected (and hence

KC is connected as well).

Proof. We first show that for a cycle C of length at least 4 and a set of C-bridges K that form a connected component in
K−
C , every vertex of C is an attachment of at least one bridge in K .

Claim 3. Let C be a cycle of length at least four in a 3-connected graph F . Let K be a connected component of the graph K−
C , and let

att(K ) be the set
�

X∈K att(X). Then each vertex of C belongs to att(K ).



480 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Suppose that some vertices of C do not belong to att(K ). Then there is an arc α of C of length at least 2, whose
endvertices belong to att(K ), but none of its internal vertices belongs to att(K ). Let x and y be the endvertices of α. Let
β be the other arc determined by x and y. Observe that, since |att(K )| � 3 in any 3-connected graph, β also has length at
least 2.

Since F is 3-connected, F − {x, y} is connected, and in particular, there is a C-bridge Y that has at least one attachment
u in the interior of the arc α and at least one attachment v in the interior of β . Clearly Y /∈ K , since Y has an attachment
in the interior of α.

Since the pair {u, v} alternates with {x, y} ⊆ att(K ), Lemma 14 shows that there is a bridge X ∈ K whose attachments
alternate with {u, v}. Then X and Y have a four-vertex conflict, which is impossible because K is a connected component
of K−

C not containing Y . This finishes the proof of the claim.
We are now ready to prove the lemma. Let K and K � be two distinct connected components of K−

C . Choose a bridge
X ∈ K . Let u and v be any two attachments of X that are not connected by an edge of C . By Claim 3, each vertex of C is in
att(K �), so att(K �) alternates with {u, v}, and hence by Lemma 14, the set K � has a bridge Y whose attachments alternate
with the attachments of X . Hence, X and Y have a four-vertex conflict and belong to the same connected component in
K−
C . ✷

Next, we show that if we have an induced path in the conflict graph, then we can find a corresponding sequence of
bridges and pairs of their attachment vertices such that consecutive pairs alternate. This lemma will be the main tool for
extracting alternating chains from non-planar Pegs.

Lemma 16. Let C be a cycle of length at least 4 in a graph F and let P be an induced path with k � 2 vertices in the graph K−
C . Let

X1, X2, . . . , Xk be the vertices of P , with Xi adjacent to Xi+1 for each i = 1, . . . ,k − 1. Then for each i ∈ {1, . . . ,k} we may choose a
pair of vertices {xi, yi} ⊆ att(Xi), such that for each i = 1, . . . ,k − 1 the pair {xi, yi} alternates with the pair {xi+1, yi+1}.

Proof. For each j � k, select a set S j ⊆ att(X j) in such a way that for each i < k the set Si alternates with Si+1. Such a
selection is possible, e.g., by taking S j = att(X j). Assume now that we have selected {S j | j = 1, . . . ,k} so that their total
size

�
j�k |S j | is as small as possible. We claim that each set S j consists of a pair of vertices {x j, y j}.

Assume for contradiction that this is not the case. Since obviously each S j has at least two vertices, assume that for
some j we have |S j| � 3. Clearly, this is only possible for 1 < j < k. Select a pair of vertices {x j−1, y j−1} ⊆ S j−1 and a
pair of vertices {x j+1, y j+1} ⊆ S j+1 such that both these pairs alternate with S j . The sets S j−1 and S j+1 do not alternate
because P was an induced path. Therefore, there is an arc α of C with endvertices {x j−1, y j−1} that has no vertex from
S j+1 in its interior, and similarly there is an arc β with endvertices {x j+1, y j+1} and no vertex of S j−1 in its interior.

Since both {x j−1, y j−1} and {x j+1, y j+1} alternate with S j , there must be a vertex x j ∈ S j that belongs to the interior of
α, and a vertex y j ∈ S j belonging to the interior of β . The pair {x j, y j} alternates with both S j−1 and S j+1, contradicting
the minimality of our choice of S j . ✷

Our next goal is to link the conflict graph with the elements of Achk . Recall that an element of Achk consists of an
H-cycle of length k + 1 and k edge-disjoint paths P1, . . . , Pk such that consecutive pairs have alternating endpoints on C .
Moreover, P2, . . . , Pk−1 are single edges, while P1 and Pk are subdivided by a single isolated H-vertex. Note that for all
elements (Gk, Hk,Hk) of Achk , the conflict graph of the unique Hk-cycle forms a path of length k. To establish a link, we
consider pairs of a graph and a cycle such that the conflict graph forms a path. Let F be a graph, and let C be a cycle
in F . We say that the pair (F ,C) forms a conflict path, if each C-bridge of F has exactly two attachments and the conflict
graph KC is a path. (Note that if each C-bridge has two attachments, then the conflict graph is equal to the reduced conflict
graph.)

Note that if (Gk, Hk,Hk) is an element of Achk and C the unique cycle of Hk , then (Gk,C) forms a conflict path. However,
not every conflict path arises this way. Suppose that (F ,C) forms a conflict path. Let e = uv be an edge of C . The edge e is
called shrinkable if no C-bridge attached to u conflicts with any C-bridge attached to v . Note that a shrinkable edge may be
contracted without modifying the conflict graph.

Before we can show that the elements of Achk are minimal non-planar Pegs, we first need a more technical lemma about
conflict paths.

Lemma 17. Assume that (F ,C) forms a conflict path. Then each vertex of C is an attachment for at most two C-bridges.

Proof. Suppose that (F ,C) forms a conflict path, and a vertex v ∈ C is an attachment of three distinct bridges X , Y and Z .
These three bridges do not alternate, so there must be at least five bridges to form a path in KC . Let x, y and z be the
attachments of X , Y and Z different from v . The three vertices x, y and z must be all distinct, because a pair of bridges
with the same attachments would share the same neighbors in the conflict graph, which is impossible if the conflict graph
is a path with at least five vertices.

Choose an orientation of C and assume that the four attachments appear in the order (v, x, y, z) with respect to this
orientation. Let αvx , αxy , αyz , and αzx be the four internally disjoint arcs of C determined by consecutive pairs of these four
attachments.



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 481

For a subgraph P � of P , let att(P �) denote the set of all the attachments of the bridges that belong to P � . Let Pxz be
the subpath of KC that connects X to Z . At least one vertex of att(Pxz) must belong to the interior of αvx and at least one
vertex of att(Pxz) must belong in the interior of αzv . Hence the set att(Y ) alternates with att(Pxz) and by Lemma 14, at
least one bridge in Pxz conflicts with Y . This means that Y is an internal vertex of Pxz .

Consider now the graph Pxz − Y . It consists of two disjoint paths Px and Pz containing X and Z respectively. We know
that Px has a vertex adjacent to X as well as a vertex adjacent to Y , but no vertex adjacent to Z . Consequently, att(Px)

contains at least one vertex from the interior of αvx as well as at least one vertex from the interior of αyz . Similarly, att(Pz)

has a vertex from the interior of αxy and from the interior of αzv . Hence, the set att(Px) alternates with att(Pz). Using
Lemma 14, we easily deduce that at least one bridge of Px must conflict with a bridge of Pz , which is a contradiction. ✷

Next, we show that the attachment vertices on the cycle C of a conflict path (F ,C) without shrinkable edges have a
structure very similar to that of an alternating chain.

Lemma 18. Assume that (F ,C) forms a conflict path with k � 4 C-bridges. Let X1, . . . , Xk be the C-bridges, listed in the order in
which they appear on the path KC . Let {xi, yi} be the two attachments of Xi . Assume that C has no shrinkable edge. Then

1. The two attachments {x1, y1} of X1 determine an arc α1 of length 2, and the unique internal vertex z1 of this arc is an attachment
of X2 and no other bridge.

2. The two attachments {xk, yk} of Xk determine an arc αk of length 2 different form α1 , and the unique internal vertex zk of this arc
is an attachment of Xk−1 and no other bridge.

3. All the vertices of C other than z1 and zk are attachments of exactly two bridges.

Proof. We know from Lemma 17 that no vertex of C is an attachment of more than two bridges.
Let α and β be the two arcs of C determined by {x1, y1}. The bridges X3, . . . , Xk do not alternate with X1, so all their

attachments belong to one of the two arcs, say β . The arc α then has only one attachment z1 in its interior, and this
attachment belongs to X2 and no other bridge. It follows that α has only one internal vertex. This proves the first claim;
the second claim follows analogously.

To prove the third claim, note first that any vertex of C must be an attachment of at least one bridge. Suppose that there
is a vertex v that is an attachment of only one bridge X j . Let u and w be the neighbors of v on C . By assumption, both u
and w are attachments of at least one bridge that conflicts with X j .

Assume first, that a single bridge Y conflicting with X j is attached to both u and w . Since the arc determined by u and
w and containing v does not have any other attachment in the interior, this means that Y conflicts only with the bridge X j .
Then Y ∈ {X1, Xk} and v ∈ {z1, zk}. Next, assume that the bridge X j−1 is attached to u but not to w , and the bridge X j+1 is
attached to w but not u. We then easily conclude that X j−1 conflicts with X j+1, which is a contradiction. ✷

This directly implies that non-planar Pegs that form a conflict path and do not have shrinkable edges are k-fold alter-
nating chains.

Corollary 1. Let (G, H,H) be a non-planar Peg for which H consists of a single cycle C of length at least 4 and two additional
vertices u and v that do not belong to C , such that (G,C) forms a conflict path with bridges X1, . . . , Xk along the path, each with
attachments {xi, yi}. Let further Xi consist of the single edge xi yi for i = 2, . . . ,k− 1 and let X1 consist of x1uy1 and Xk of xkvyk. If C
does not contain shrinkable edges then (G, H,H) is an element of Achk.

Proof. The non-planarity of G implies that u and v must be embedded on different sides of C if k is even, and on the same
side if k is odd.

Clearly, the graphs G and H have the same vertex set. By assumption, each bridge Xi forms a path Pi , which satisfy
the properties for k-fold alternating chains; they have the right lengths and contain the right vertices. Further, since (G,C)

forms a conflict path their endpoints alternate in the required way.
Finally, as C has no shrinkable edges, Lemma 18 implies that all vertices of C have degree 4, with the exception of

one of the attachments of X2 and Xk−1, which have degree 3. This also implies that the length of the cycle is k + 1, and
thus (G, H,H) thus is an element of Achk . ✷

We now employ the observations we made so far to show that every element of Achk is indeed an obstruction.

Lemma 19. For each k� 3, every element of Achk is an obstruction.

Proof. As observed before, Ach3 contains a single element, which is the obstruction 4. Assume k � 4, and choose
(G �, H �,H�) ∈ Achk . Let C be the unique cycle of H , and let u and v be the two isolated vertices of H . Observing that
(G �, H �,H�) is not planar is quite straightforward: since no two conflicting bridges can be embedded into the same region



482 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 14. Illustration of Lemma 20, the bridge embedded in the cycle contains a happy vertex u and an unhappy vertex v that are not connected by a path
avoiding x and y. In this case, the Peg contains obstruction 4.

of C , all the odd bridges X1, X3, X5, . . . must be in one region while all the even bridges must be in the other region, and
this guarantees that u or v will be on the wrong side of C .

Let us prove that (G �, H �,H�) is minimal non-planar. The least obvious part is to show that contracting an edge of a
cycle C always gives a planar Peg. If the cycle C contained a shrinkable edge e = xy, we might contract the edge into a
single vertex xe . After the contraction, the new graph still forms a conflict path, but the vertex xe is an attachment of at
least three bridges, which contradicts Lemma 17. We conclude that C has no shrinkable edge.

By contracting a non-shrinkable edge C , we obtain a new Peg (G ��, H ��,H��) where H consists of a cycle C � and two
isolated vertices. The conflict graph of C � in G �� is a proper subgraph of the conflict graph of C in G � . In particular, the
bridges containing u and v belong to different components of the conflict graph of C � . We may then assign each bridge to
one of the two regions of the cycle C � , in such a way that the bridges containing u and v are assigned consistently with the
embedding H�� , and the remaining bridges are assigned in such a way that no two bridges in the same region conflict.

It is easy to see that any collection of C �-bridges that does not have a conflict can be embedded inside a single region of
C � without crossing. Thus, (G ��, H ��,H��) is planar.

By analogous arguments, we see that removing or relaxing an edge or vertex of H � yields a planar Peg. Contracting an
edge incident to u or v yields an planar Peg as well. Thus, (G �, H �,H�) is an obstruction. ✷

At least one of the embeddings is edge-compatible. Finally, we use all this preparation to analyze the skeletons of R-nodes. In
all the following lemmas we suppose that (G, H,H) is a 2-connected obstruction-free Peg, and that R is an R-skeleton of
G with at least one edge-compatible embedding R+ , which we assume to be fixed. We denote this hypothesis (HP1).

Let C be a cycle of R that is a projection of a cycle C � of H. Recall that a vertex x of H that does not belong to an edge
of C is happy with C � if it is embedded on the correct side of C in R+ , and that it is unhappy otherwise. Recall further
that a C-bridge is happy with C � , if it contains a happy vertex, and it is unhappy if it contains an unhappy vertex and that
a bridge that is neither happy nor unhappy is indifferent. We first show that a C-bridge cannot be happy and unhappy at
the same time.

Lemma 20. In the hypothesis (HP1), if C is a cycle of R that is a projection of a cycle C � of H, then no C-bridge can be both happy and
unhappy with C � .

Proof. Assume a C-bridge X contains a happy vertex u and an unhappy vertex v .
If there exists a G-path from u to v that avoids all the vertices of C � , then we obtain obstruction 1. Assume then that

there is no such path. This easily implies that the bridge X is a single R-edge B with two attachments x and y. Fig. 14
shows this situation and illustrates the following steps. Since both u and v are connected to x and to y by a G-path
projecting into B , there is a cycle D of G containing both u and v , and which is contained in B . Since every G-path from
u to v inside B intersects x or y, we conclude that D can be expressed as a union of two G-paths P and Q from x to y,
with u ∈ P and v ∈ Q .

Similarly, the cycle C of R can be expressed as a union of two R-paths R and S , each with at least one internal
vertex. The paths R and S are projections of two H-paths R � and S � . Since R is 3-connected, it has a path T that connects
an internal vertex of R to an internal vertex of S , and whose internal vertices avoid C . The path T is a projection of a
G-path T � . The paths P , Q , R � , S � and T � can be contracted to form obstruction 4. ✷

Recall that a cycle C � in H that projects to a cycle C in R is happy, if there is at least one C-bridge that is happy with
C � and it is unhappy, if at least one C-bridge is unhappy with C � . Again, as the following lemma shows, cycles cannot be
both happy and unhappy at the same time.

Lemma 21. In the hypothesis (HP1), if C � is a cycle of H whose projection is a cycle C of R, then C � cannot be both happy and unhappy.

Proof. Suppose C has a happy bridge X containing a happy vertex u, and an unhappy bridge Y with an unhappy vertex v .
If C is a triangle, then X and Y cannot be chords of C and therefore they have three attachments, each. This implies that

they are embedded on different sides of the triangle and all vertices of the triangle are attachments of both X and Y . Since
Y is unhappy, it contains a vertex that is prescribed on the same side of C � as X . This yields obstruction 17. Otherwise,



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 483

Fig. 15. Illustration of Lemma 22. The edge e is a relevant chord of the shown cycle, and the bridge X is assumed to be unhappy. If the skeleton edge of e
also contains an unhappy vertex x, we obtain obstruction 3 (a). Otherwise, the skeleton edge of e together with the arc between its attachments forms a
smaller cycle Cα , for which X is still unhappy, but the remainder of the cycle is part of a happy bridge (b), which contradicts the fact that a cycle cannot
be both happy and unhappy.

C has length at least 4, and we know that the reduced conflict graph K−
C is connected by Lemma 15. We find a shortest

path X1, . . . , Xk in K−
C connecting X = X1 to Y = Xk . If the path is a single edge, we obtain obstruction 16. Otherwise we

use Lemma 16 to choose for each Xi a pair of attachments {xi, yi} ⊆ att(Xi), such that {xi, yi} alternates with {xi+1, yi+1}.
Since each C-bridge of the skeleton represents a connected subgraph of G , we know that for every i = 2, . . . ,k − 1 the

graph G has a path from xi to yi whose internal vertices avoid C � and which projects to the interior of Xi . We also know
that there is a G-path Q 1 from x1 to u, and a G-path R1 from y1 to u whose internal vertices avoid C � and which project
into X1. Similarly, there are G-paths Qk and Rk from xk to v and from yk to v , internally disjoint with C � and projecting
into Xk . Performing contractions if necessary, we may assume that all these paths are in fact single edges.

Consider the sub-Peg (G �, H �,H�), where H � consists of the cycle C � and the two vertices u and v , and G has in addition
all the edges obtained by contracting the paths defined above. If C � has shrinkable edges, we may contract them, until no
shrinkable edges are left. Then we either obtain obstruction 4 (if k = 3), or Corollary 1 implies that we have obtained an
occurrence of Achk for some k� 4. ✷

Next, we show that it is not possible that one cycle is happy and another one is unhappy. However, this is complicated
if the cycles are too close in R, in particular if they share vertices. Therefore, we first show that an unhappy cycle C �
projecting to a cycle C may not have an incident H-edge that does not belong to C . Such an edge e, if it existed, would
either be a chord of C � , or it would be part of a bridge containing a vertex of H (e.g., the endpoint of e not belonging to C �).
The next two lemmas exclude these two cases separately.

In the former case, where e is a chord of C � that hence projects to a chord of C , we also call e a relevant chord. Note that
if B is an edge of R containing a relevant chord, then in an edge-compatible embedding of R, B must always be embedded
on the correct side of C . For practical purposes, such an edge B behaves as a happy bridge, as shown by the next lemma.

Lemma 22. In the hypothesis (HP1), let C � be a cycle of H that projects to a cycle C of R. Let e be a relevant chord of C � that projects
into an R-edge B. Then C � cannot be unhappy.

Proof. Let u and v be the two vertices of e, which are also the two poles of B . Let α� and β � be the two arcs of C �
determined by the two vertices u and v , and let α and β be the two arcs of C that are projections of α� and β � , respectively.
Note that each of the two arcs α and β has at least one internal vertex, otherwise B would not be a chord.

Suppose for contradiction that C has an unhappy bridge X containing an unhappy vertex x. We distinguish two cases,
depending on whether B is part of X or not.

First, assume that the bridge X contains the R-edge B . Then X is a trivial bridge whose only edge is B; see Fig. 15(a).
The edge B then contains a G-path P from u to v containing x. The graph G also has a path Q connecting an internal
vertex of α to an internal vertex of β and avoiding both u and v . Together, the edge e, the paths P and Q , and the arcs α
and β can be contracted to form obstruction 3.

Assume now that the bridge X does not contain B . Consider two H-cycles C �
α = α� ∪ e and C �

β = β � ∪ e, and their
respective projections Cα = α ∪ B and Cβ = β ∪ B . It is not hard to see that the vertex x must be unhappy with at least
one of the two cycles C �

α and C �
β . Let us say that X is unhappy with C �

α ; see Fig. 15(b). Thus, Cα has at least one unhappy
bridge. We claim that Cα also has a happy bridge. Indeed, let Y be the bridge of Cα that contains β . Since β has at least one
internal vertex, the bridge Y is not indifferent. The bridge Y must be happy, otherwise the vertices u and v would violate
edge-compatibility. This means that Cα has both a happy bridge and an unhappy bridge, contradicting Lemma 21. ✷

Lemma 23. In the hypothesis (HP1), let C � be a cycle of H that projects to a cycle C of R. If C � is unhappy, then every edge of H that is
incident to a vertex of C projects into an R-edge that belongs to C .

Proof. For contradiction, assume that an edge e = uv of H is incident to a vertex u ∈ C , but projects into an R-edge B /∈ C .
If v is also a vertex of C , then e is a relevant chord and C may not have any unhappy bridges by Lemma 22. If v /∈ C , then



484 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 16. Illustration of the proof of Lemma 24. In the right part, the solid lines correspond to C �
1, the dashed lines represent C �

2, and the dotted lines
represent the paths from x to the two attachments of X .

v is an internal vertex of a C-bridge, and from edge-compatibility it follows that v is happy with C � . Thus C has both happy
and unhappy bridges, contradicting Lemma 21. ✷

The previous two lemmas show that for an unhappy cycle C � of H projecting to a cycle C of R+ , no C-bridge contains
an H-edge incident to a vertex of C . In particular, the projection of any happy H-cycle is either disjoint from C (that is they
are far apart) or it is identical to C . We now exclude the latter case.

Lemma 24. In the hypothesis (HP1), let C �
1 and C �

2 be two distinct facial cycles of H, which project to the same (undirected) cycle C
of R. Then any C-bridge that is happy with C �

2 is also happy with C �
1 .

Proof. Let F1 and F2 be the faces of H corresponding to facial cycles C �
1 and C �

2, respectively.
Suppose for contradiction that at least one C-bridge X is unhappy with C �

1 and happy with C �
2. In view of Lemma 20,

we may assume that X contains in its interior a vertex x ∈ H , such that x is unhappy with C �
1 and happy with C �

2. Refer to
Fig. 16.

Suppose that the two facial cycles C �
1 and C �

2 are oriented in such a way that their corresponding faces are to the left of
the cycles. Note that any vertex of C is a common vertex of C �

1 and C �
2. This shows that the two facial cycles have at least

three common vertices, which implies that they correspond to different faces of H.
Let a, b and c be any three distinct vertices of C , and assume that these three vertices appear in the cyclic order (a,b, c)

when the cycle C �
1 is traversed according to its orientation. The interior of the face F2 lies to the right of the cycle C �

1,
and in particular, the three vertices a,b, c appear in the cyclic order (c,b,a) when the boundary of F2 is traversed in the
orientation of C �

2. Thus, C
�
1 and C �

2 induce opposite orientations of their common projection C . Since x is happy with exactly
one of the two cycles C �

1 and C �
2, it means that in the graph H with embedding H, the two cycles either both have x on

their right, or both have x on their left. It is impossible that both facial cycles have x on their left, because the region left
of C �

1 is disjoint from the region left of C �
2. Hence x is to the right of C �

1 and C �
2.

Let HC be the connected component of H containing the vertices of C , and let HC be its embedding inherited from H.
By Lemma 23, the bridge X contains no edge of H adjacent to C , so x /∈ HC . Let F3 be the face of HC that contains x
in its interior. Note that F3 is distinct from F1 and F2, as x is contained in it, which is not the case for F1 and F2. All
the attachments of the bridge X must belong to the boundary of F3 (as well as F1 and F2), otherwise we would obtain
obstruction 1, using the fact that X contains a G-path from x to any attachment of X . If X has at least three attachments,
this leads to contradiction, because no three faces of a planar graph can share three common boundary vertices — to see
this, imagine inserting a new vertex into the interior of each of the three faces and connecting the new vertices by edges
to the three common boundary vertices, to obtain a planar drawing of K3,3.

Suppose now that X only has two attachments u and v , which means that X is a trivial bridge. Each of the two arcs
of C determined by u and v must have an internal vertex. Let y and z be such internal vertices of the two arcs. To get
a contradiction, insert a new vertex w into the interior of face F1 in H and connect it by edges to all the four vertices
u, v, y, z. Then draw an edge uv inside face F3 and an edge yz inside F2. The new edges together with the cycle C �

1 form
a subdivision of K5. ✷

We are now ready to show that R+ may not have a happy and an unhappy cycle.

Lemma 25. In the hypothesis (HP1), let C �
1 and C �

2 be two cycles of H that project to two distinct cycles C1 and C2 of R. If C �
1 is

unhappy, then C �
2 cannot be happy.

Proof. Suppose that C �
1 is unhappy and C �

2 is happy. By Lemma 23, this means that no C1-bridge may contain an edge of H
incident to a vertex of C1. Consequently, the two cycles C1 and C2 are vertex-disjoint. Since R is 3-connected, it contains
three disjoint paths P1, P2 and P3, each connecting a vertex of C1 to a vertex of C2. Each path Pi is a projection of a
G-path P �

i connecting a vertex of C �
1 to a vertex of C �

2. Note that C1 is inside a happy bridge of C2, and C2 is inside an
unhappy bridge of C1. Thus, contracting the cycles C �

1 and C �
2 to triangles and contracting the paths P �

i to edges, we obtain
obstruction 18. ✷



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 485

The next lemma shows that if any vertex u of R that requires the embedding R+ , then no cycle can be unhappy.

Lemma 26. In the hypothesis (HP1), assume that H has three edges e1 , e2 and e3 that are incident to a common vertex u and project
into three distinct R-edges B1 , B2 and B3 of R. Then no cycle of H that projects to a cycle of R can be unhappy.

Proof. Proceed by contradiction. Assume that there is an unhappy cycle C � of H, which projects to a cycle C of R. From
Lemma 23 it then follows that u does not belong to C , and hence u must belong to an unhappy C-bridge. From the same
lemma we also conclude that the vertex u and the three edges ei belong to a different component of H than the cycle C � .

For i ∈ {1,2,3}, suppose that the H-edge ei connects vertex u to a vertex vi , and is contained in an R-edge Bi that
connects vertex u to a vertex wi . These vertices, H-edges and R-edges are distinct, except for the possibility that vi = wi .

Let D be the horizon of u in R+ . The three vertices w1, w2 and w3 split D into three internally disjoint arcs α12, α13
and α23, where αi j has endvertices wi and w j .

As R is 3-connected, it contains three disjoint paths P1, P2 and P3, where Pi connects wi to a vertex of C . We now
distinguish two cases, depending on whether the paths Pi can avoid u or not.

First, assume that it is possible to choose the paths Pi in such a way that all of them avoid the vertex u. We may then
add Bi to the path Pi to obtain three paths from u to C , which only share the vertex u. It follows that the graph G contains
three paths R �

1, R
�
2 and R �

3 from u to C � which are disjoint except for sharing the vertex u, and moreover, each R �
i contains

the edge ei . This yields obstruction 19.
Next, assume that it is not possible to choose P1, P2 and P3 in such a way that all the three paths avoid u.
For i ∈ {1,2,3}, let xi be the last vertex of Pi that belongs to D , assuming the path Pi is traversed from wi towards C .

Let Q i be the subpath of Pi starting in xi and ending in a vertex of C (so Q i is obtained from Pi by removing vertices
preceding xi). Let y1, y2 and y3 be the endvertices of P1, P2 and P3 that belong to C . We may assume that yi is the only
vertex of Pi belonging to C , otherwise we could replace Pi with its proper subpath.

We claim that one of the three arcs α12, α13, and α13 must contain all the three vertices xi , possibly as endvertices. If
the vertices xi did not belong to the same arc, we could connect each xi to a unique vertex w j by using the edges of D , and
we would obtain three disjoint paths from wi to C that avoid u. Assume then, without loss of generality, that α12 contains
all the three vertices xi .

We may also see that if the cycles C and D share a common vertex y, then y belongs to α12. If not, we could connect
w3 to y by an arc of D that avoids w1 and w2, and we could connect w1 and w2 to two distinct vertices xi and x j by
disjoint arcs of D , thus obtaining three disjoint paths from wi to C avoiding u.

Fix distinct indices p,q, r ∈ {1,2,3} so that the three vertices x1, x2 and x3 are encountered in the order xp, xq, xr when
α12 is traversed in the direction from w1 to w2. Let β be the arc of D contained in α12 whose endpoints are xp and xr .
Clearly xq is an internal vertex of β .

We claim that at least one internal vertex of β is connected to u by an edge of R. Assume that this is not the case. Then
we may insert into the embedding R+ a new edge f connecting xp and xr and embedded inside the face of R+ shared
by xq and u. Let γ be the arc of C with endvertices yp and yr that does not contain yq . The arc γ , the paths Q p and
Qr and the edge f together form a cycle in the (multi)graph R ∪ { f }. The vertex xq and the vertex wq are separated from
each other by this cycle. Thus, the path Pq must share at least one vertex with this cycle, but that is impossible, since Pq is
disjoint from Q p , Qr and γ . We conclude that R has an R-edge B4 connecting u to a vertex x4 in the interior of β .

We define three paths R1, R2 and R3 of the graph G as follows. The path R1 starts in the vertex u, contains the edge
e1 = uv1, proceeds from v1 to w1 inside B1, then goes from w1 to xp inside the arc α12, then follows Q p until it reaches
the vertex yp . Similarly, the path R2 starts in u, contains the edge e2, follows from v2 to w2 inside B2, from w2 to xr inside
α12, and then along Qr to yr . The path R3 starts at the vertex w3, proceeds towards v3 inside B3, then using the edge e3
it reaches u, proceeds from u to x4 inside B4, then from x4 to xq inside β , then from xq towards yq along Qq . If any of the
three paths Ri contains more than one vertex of C � , we truncate the path so that it stops when it reaches the first vertex
of C � .

We also define two more paths S1 and S2 of G , where each Si connects the vertex wi to the vertex w3 and projects
into the arc αi3; see Fig. 17(a) for an illustration of the constructed paths.

Note that the three paths Ri only intersect at the vertex u, a path Si may only intersect R j at one of the vertices w1,
w2 or w3, and the cycle C � may intersect Si only in the vertex wi .

Consider the Peg (G �, H �,H�) formed by the union of the cycle C � , the three paths Ri , and the two paths S j , where
only the cycle C � and the three edges e1, e2 and e3 with their vertices have prescribed embedding, and their embedding is
inherited from H.

It can be easily checked that the graph G � is a subdivision of a 3-connected graph, so it has a unique edge-compatible
embedding G� . Consider the subgraph R� of R formed by all the vertices of R belonging to G � and all the R-edges that
contain at least one edge of G � . The graph G � is a subdivision of R� . Thus, the embedding of R� inherited from R+ must
have the same rotation schemes as the embedding G� . Let zi be the endpoint of Ri belonging to C � . Orient C � so that z1, z2,
z3 appear in this cyclic order on C � . Suppose that e1, e2 and e3 appear in this clockwise order in H. Then the four vertices u,
v1, v2 and v3 are to the left of C � in G� , and hence also in R+ . Since the four vertices are in an unhappy C-bridge of R,
they are to the right of C � in H� . This determines (G �, H �,H�) uniquely.



486 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 17. Illustration of Lemma 26, the paths constructed in the proof (a) and an intermediate step in obtaining one of the obstructions 20, 21 or 22 (b).

We now show that (G �, H �,H�) contains one of the obstructions 20, 21 or 22. First, we contract each of S1 and S2 to a
single edge. We also contract the cycle C � to a triangle with vertices z1, z2 and z3. We contract the subpath of R3 from w3
to v3 to a single vertex, and we contract the subpath of R3 from u to z3 to a single edge. After reversing the order of the
vertices on the cycle to make it happy, we essentially obtain the Peg shown in Fig. 17(b), except that for i = 1,2 it may be
that wi = vi or wi = zi , but not both since vi �= zi . This is already very close to obstructions 20–22.

To contract R1, we distinguish two cases. First, assume that w1 belongs to C � . This means that z1 = w1 �= v1, because
we know that v1 is not in the same component of H as C � . In this case, we contract the subpath of R1 from v1 to w1 to a
single edge. On the other hand, if w1 does not belong to C , we contract the subpath of R1 from v1 to w1 to a single vertex,
and we contract the subpath from w1 to z1 to a single edge.

The contraction of R2 is analogous to the contraction of R1, and it again depends on whether w2 belongs to C or not.
After these contractions are performed, we end up with one of the three obstructions 20, 21, or 22. ✷

With the lemmas proven so far, we are ready to prove the following proposition.

Proposition 27. Let (G, H,H) be an obstruction-free Peg, with G biconnected. Let R be a skeleton of an R-node of the SPQR tree of G.
If R has at least one edge-compatible embedding, then it has a compatible embedding.

Proof. Let R+ be an edge-compatible embedding. If this embedding is not cycle-compatible, then H has an unhappy facial
cycle C � projecting to a cycle C of R. The previous lemmas then imply that every facial cycle of H projecting to a cycle of
R can only have unhappy or indifferent bridges. Besides, Lemma 26 implies that no vertex u of R can be incident to three
R-edges, each of them containing an edge of H incident to u. Hence, the skeleton R has no edge-compatibility constraints.
Consequently, we may flip the embedding R+ to obtain a new embedding that is compatible. ✷

This concludes our treatment of R-nodes and thus also the proof of the main theorem for biconnected Pegs. We now
turn to 1-connected Pegs, i.e., Pegs that are connected but not necessarily biconnected and to disconnected Pegs.

4. Disconnected and 1-connected PEGs

We have shown that a biconnected obstruction-free Peg is planar. We now extend this characterization to arbitrary Pegs.
To do this, we will first show that an obstruction-free Peg (G, H,H) is planar if and only if each connected component of
G induces a planar sub-Peg. Next, we provide a more technical argument showing that a connected obstruction-free Peg
(G, H,H) is planar, if and only if all the elements of a certain collection of 2-connected Peg-minors of (G, H,H) are planar.

4.1. Reduction to G connected

Angelini et al. [1] proved the following lemma.



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 487

Lemma 28. (Cf. Lemma 3.4 in [1].) Let (G, H,H) be a Peg. Let G1, . . . ,Gt be the connected components of G. Let Hi be the subgraph
of H induced by the vertices of Gi , and let Hi be H restricted to Hi . Then (G, H,H) is planar if and only if

(1) each (Gi, Hi,Hi) is planar, and
(2) for each i, for each facial cycle �C of Hi and for every j �= i, no two vertices of H j are separated by �C , in other words, all the vertices

of H j are embedded on the same side of C .

A Peg that does not satisfy the second condition of the lemma must contain obstruction 1. Thus, if Theorem 1 holds for
Pegs with G connected, it holds for all Pegs.

4.2. Reduction to G biconnected

Next, we consider connected Pegs, i.e., Pegs (G, H,H) where G is connected. In contrast to planarity of ordinary graphs,
it is not in general true that a Peg is planar if and only if each sub-Peg induced by a biconnected component of G is planar.
However, for Pegs satisfying some additional assumptions, a similar characterization is possible.

Let (G, H,H) be a connected Peg and let v be a cut-vertex of G . We say that v is H-separating if at least two connected
components of G − v contain vertices of H .

Let (G, H,H) be a connected Peg that avoids obstruction 1. Let v be an H-separating cut-vertex of G that does not
belong to H . Let x and y be two vertices of H that belong to different connected components of G − v , chosen in such a
way that there is a path in G connecting x to y whose internal vertices do not belong to H . The existence of such a path
implies that x and y share a face F of H, otherwise H would contain a cycle separating x from y, creating obstruction 1.
The face F is unique, because x and y belong to distinct components of H . It follows that any planar embedding of G that
extends H must embed the vertex v in the interior of the face F . We define H � = H ∪ v and let H� be the embedding of H �
obtained from H by inserting the isolated vertex v into the interior of the face F . As shown above, any planar embedding
of G that extends H also extends H� . We say that (G, H �,H�) is obtained from (G, H,H) by fixing the cut-vertex v .

Let (G, H+,H+) be a Peg that is obtained from (G, H,H) by fixing all the H-separating cut-vertices of G not belonging
to H . Note that each H+-separating cut-vertex is also H-separating, and vice versa. A planar embedding of G that extends
H also extends H+ and in particular, (G, H,H) is planar if and only if (G, H+,H+) is planar. We now show that this
operation cannot create a new obstruction in (G, H+,H+).

Lemma 29. Let (G, H,H) be a connected Peg that avoids obstruction 1, and let (G, H+,H+) be the Peg obtained by fixing all the
H-separating cut-vertices of G. Then (G, H,H) contains a minimal obstruction X if and only if (G, H+,H+) contains X.

Proof. Since (G, H,H) is a Peg-minor of (G, H+,H+), it suffices to prove that if (G, H+,H+) contains an obstruction
X = (GX , HX ,HX ) then we can efficiently find the same obstruction in (G, H,H). This clearly holds in the case when HX

does not contain isolated vertices, because then any sequence of deletions, contractions and relaxations that produces X
inside (G, H+,H+) will also produce X inside (G, H,H).

Suppose now that HX contains isolated vertices. Assume first that GX is 2-connected. Let G1, . . .Gt be the 2-connected
blocks of G , let Hi be the subgraph of H induced by the vertices of Gi , let Hi be the embedding of Hi inherited from H,
and similarly for H+

i and H+
i . If (G, H+,H+) contains X , then for some i, (Gi, H

+
i ,H+

i ) contains X as well (here we use
the fact that each H+-separating cut-vertex of G belongs to H+). However, each (Gi, H

+
i ,H+

i ) is a Peg-minor of (G, H,H)

— this is because any vertex v of H+
i that is not a vertex of Hi is connected to a vertex of H by a path that internally

avoids Gi . By contracting all such paths, we obtain a copy of (Gi, H
+
i ,H+

i ) inside (G, H,H). Since (Gi, H
+
i ,H+

i ) contains X ,
so does (G, H,H).

It remains to deal with the case when X is not 2-connected and HX contains an isolated vertex. This means that X is
obstruction 1. By assumption, (G, H,H) does not contain obstruction 1. Suppose for contradiction that (G, H+,H+) contains
obstruction 1. This means that H+ contains a cycle C and a pair of vertices v and w separated by this cycle, and that there
exists a path P of G that connects v and w and has no vertex in common with C .

If v is not a vertex of H , then v is an H-separating cut-vertex. Therefore, there are two vertices x and y of H in distinct
components of G − v that both share a face F with v and are connected to v by paths Px and P y of G which do not contain
any other vertex of H . Since x and y are in distinct components of H , at least one of them, say x, does not belong to the
cycle C . Since x shares a face with v , it must be on the same side of C as v . By the same reasoning, the vertex w either
belongs to H or there is a vertex z ∈ H that appears on the same side of C as w and is connected to w by a G-path Pz

whose internal vertices do not belong to H . In any case, we find a pair of vertices of H that are separated by C and are
connected by a G-path that avoids C . This shows that (G, H,H) contains obstruction 1, which is a contradiction. ✷

Lemma 29 shows that we can without loss of generality restrict ourselves to Pegs (G, H,H) in which every H-separating
cut-vertex belongs to H . For Pegs having this property, we can show that planarity can be reduced to planarity of bicon-
nected components.



488 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

Fig. 18. A reduction rule transforming (G, H,H) into (G �, H �,H�).

First, we need a definition. Let H be a graph with planar embedding H, let v be a vertex of H , and let H1 and H2 be
two edge-disjoint subgraphs of H . We say that H1 and H2 alternate around v in H, if there exist edges e, e� ∈ E(H1) and
f , f � ∈ E(H2) which are all incident with v and appear in the cyclic order (e, f , e�, f �) in the rotation scheme of v in the
embedding H.

The following lemma is analogous to Lemma 3.3 of [1], except that the assumption “every non-trivial H-bridge is local”
is replaced with the weaker condition “every H-separating cut-vertex of G is in H”. This new assumption is weaker, because
a separating cut-vertex not belonging to H necessarily belongs to a non-local H-bridge. However, the proof in [1] uses only
this weaker assumption and therefore we have the following lemma.

Lemma 30. Let (G, H,H) be a connected Pegwith the property that every H-separating cut-vertex of G is in H. Let G1, . . . ,Gt be the
blocks of G, let Hi be the subgraph of H induced by the vertices of Gi and let Hi be H restricted to Hi . Then, (G, H,H) is planar if and
only if

(1) (Gi, Hi,Hi) is a planar Peg for each i,
(2) no two distinct graphs Hi and H j alternate around any vertex of H, and
(3) for every facial cycle �C of H and for any two vertices x and y of H separated by �C , any path in G connecting x and y contains a

vertex of �C .

Note that the last two conditions are always satisfied when (G, H,H) avoids obstructions 1 and 2. We can also efficiently
test whether the two conditions are satisfied and produce an occurrence of an obstruction when one of the conditions fails.
This concludes the proof of Theorem 1.

5. Other minor-like operations

Let us remark that our definition of Peg-minor operations is not the only one possible. In this paper, we preferred to
work with a weaker notion of Peg-minors, since this makes the resulting characterization theorem stronger. However, in
many circumstances, more general minor-like operations may be appropriate, providing a smaller set of obstructions.

For example, the G-edge contraction rules may be relaxed to allow contractions in more general situations. Here is an
example of such a relaxed G-edge contraction rule: given a Peg (G, H,H), assume e = uv is an edge of G but not of H ,
assume that u and v have a unique common face F of H, and assume furthermore that each of the two vertices is visited
only once by the corresponding facial walk of F . If u and v are in distinct components of H , or if the graph H is connected,
we embed the edge uv into F and then contract it, resulting in a new Peg (G �, H �,H�).

It is not hard to see that this relaxed contraction preserves the planarity of a Peg, and that H� is uniquely determined.
It also subsumes the ‘complicated G-edge contraction’ we introduced. With this stronger contraction rule, most of the
exceptional obstructions can be further reduced, leaving only the obstructions 1, 2, 3, 4, 6, 11, 14, 16, and 17, as well as K5
and K3,3. However, even this stronger contraction cannot reduce the obstructions from Achk .

To reduce the obstructions to a finite set, we need an operation that can be applied to an alternating chain. We now
present an example of such an operation. See Fig. 18.

Suppose that (G, H,H) is a Peg, let F be a face of H, let C be a facial cycle of F oriented in such a way that the interior
of F is to the left of C , let x and y be two vertices of C that are not connected by an edge of G , and let z be a vertex of H
not belonging to C . Assume that the following conditions hold.

1. The vertex z is adjacent to x and to y in G .
2. The vertex z is embedded to the left of C in the embedding H, and is incident to the face F .
3. Any connected component of H that is embedded to the left of C in H is connected to a vertex of C \ {x, y} by an edge

of G .
4. Any edge of H that is incident to x or to y and does not belong to C is embedded outside of F (i.e., to the right of C )

in H.

We define a new Peg by the following steps.



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 489

• Remove vertex z and all its incident edges from G and H .
• Add to G , H and H a new edge e = xy. The edge e is embedded inside F . (Note that the position of e in the rotation

schemes of x and y is thus determined uniquely, because of condition 4 above.)
• The edge e splits the face F into two subfaces F1 and F2. Let C1 and C2 be the facial cycles of F1 and F2 such that

C1 ∪ C2 = C ∪ {e}. For any connected component B of H that is embedded to the left of C in H , let w be a vertex
of C \ {x, y} adjacent to a vertex of B . Such a vertex w exists by condition 3 above. If there are more such vertices,
we choose one arbitrarily for each B . If w belongs to C1, then B will be embedded inside F1, otherwise it will be
embedded inside F2.

Let (G �, H �,H�) be the resulting Peg. We easily see that if (G, H,H) was planar, then (G �, H �,H�) is planar as well. In fact,
if the vertex z has degree 2 in G , then we may even say that (G, H,H) is planar if and only if (G �, H �,H�) is planar.

The operation described above allows to reduce each k-fold alternating chain with k � 4 to a smaller non-planar Peg
which contains a (k − 1)-fold alternating chain. It also reduces obstruction 4 to obstruction 3, and obstruction 16 to a Peg
that contains obstruction 1. Therefore, when the above operation is added to the permissible minor operations, there will
only be a finite number of minimal non-planar Pegs. More precisely, exactly nine minimal non-planar Pegs remain in this
case.

Let us point out that the obstructions from the infinite family
�

k�4 Achk only play a role when cycle-compatibility is
important. For certain types of Pegs, cycle-compatibility is not a concern. For instance, if the graph H is connected, it can be
shown that (G, H,H) is planar if and only if all the skeletons of G have edge-compatible embeddings, and therefore such a
Peg is planar if and only if it avoids the finitely many exceptional obstructions.

6. Conclusion

Note that Theorem 1 together with the linear-time algorithm for testing planarity of a Peg [1] immediately implies
Theorem 2. In any non-planar instance I = (G, H,H) only linearly many Peg-minor operations are possible. We test each
one individually and use the linear-time testing algorithm to check whether the result is non-planar. In this way we either
find a smaller non-planar Peg I � resulting from I by one of the operations, or we have found an obstruction, which by
Theorem 1 is contained in our list. The running time of this algorithm is at most O (n3).

In fact, in many cases, as indicated in the paper, obstructions can be found much more efficiently, often in linear time.
In particular, the linear-time testing algorithm gives an indication of which property of planar Pegs is violated for a given
instance. Is it possible to find an obstruction in a non-planar Peg in linear time? In general, given a fixed Peg (G, H,H),
what is the complexity of determining whether a given Peg contains (G, H,H) as Peg-minor? The answer here may depend
on the Peg-minor operations we allow.

It is not known whether the results on planar Pegs can be generalized to graphs that have a partial embedding on a
higher-genus surface. In fact, even the complexity of recognizing whether a graph partially embedded on a fixed higher-
genus surface admits a crossing-free embedding extension is still an open problem.

Appendix A. The code

def all_sublists(alist, minsize, maxsize):
” ” ”
Computes all sublists of alist with length in [minsize , maxsize]
” ” ”
if (alist==[]):

if (minsize <= 0 <= maxsize):
return [[]]

else:
return []

else:
newlist=alist[:] #make a copy to avoid modifying alist
last = newlist.pop()
rest = all_sublists(newlist, minsize −1, maxsize)
r1 = [x for x in rest if len(x)>=minsize]
r2 = [x+[last] for x in rest if len(x)<maxsize]
return r1+r2

def triconnected_subdiv(g):
” ” ”
Returns true iff g is subdivision of simple 3-connected graph
” ” ”
if g.is_clique(): #sage connectivity test can’t handle cliques



490 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

return g.order() > 3
if g.degree_histogram() [2]==0: # g has no vertices of degree 2?

return (g.vertex_connectivity() >= 3)
for (v,deg) in g.degree_iterator(labels=True):

if (deg<2): # g has a vertex of degree <2?
return False

if (deg==2): # g has a subdividing vertex?
neigh = g[v] # neigh is the list of neighbors of v
assert len(neigh)== 2
[x,y]=neigh
if g.has_edge(x,y):

return False
# cancel the subdividing vertex and recurse:
gnew=copy(g)
gnew.add_edge(x,y)
gnew.delete_vertex(v)
return triconnected_subdiv(gnew)

def good_graph(g):
” ” ”
Returns true iff g is planar subdivision of a 3-connected graph
” ” ”
if (g.degree_histogram() [1] >0): #g has a vertex of degree 1?

return False
if (not g.is_planar()):

return False
if (not triconnected_subdiv(g)):

return False
return True

def minimal_good_graph(g):
” ” ”
Returns true iff g is good
and removal of any ’G’-edge makes it bad
” ” ”
if not good_graph(g):

return False
for (u,v,lbl) in g.edges(labels=True):

assert (lbl ==’G’ or lbl==’H’)
if (lbl == ’G’ and g.degree(u)>2 and g.degree(v) >2):

gnew=copy(g)
gnew.delete_edge(u,v)
if triconnected_subdiv(gnew):

return False # g is not minimal good
return True

def supergraphs(h):
” ” ”
Generates a list of all nonisomorphic minimal
good graphs having a given graph h as a spanning subgraph

Edges of h are labelled ’H’, other edges are labelled ’G’
” ” ”
for (u,v) in h.edges (labels=False):

h.set_edge_label(u,v,’H’) #label edges of h by ’H’
# list all non–edges of h, add label ’G’ to them:
nonedges_raw=h.complement().edges(labels=False)
nonedges=[(u,v,’G’) for (u,v) in nonedges_raw]
# max. number of edges to add to h without violating planarity
maxsize = 3∗h.order()−6−h.size()
# generate a list of lists of non-edges to add into h:



V. Jelínek et al. / Computational Geometry 46 (2013) 466–492 491

candidates = all_sublists(nonedges, 0, maxsize)
# generate a list of all minimal planar graphs
# that are a subdivision of a 3-connected planar graph
# and contain h as a spanning subgraph
good_graphs = []
for c in candidates:

g=copy(h)
g.add_edges(c)
if minimal_good_graph(g):

good_graphs.append(g)
# remove isomorphic duplicates from good_graphs:
nonisomorphs = []
for g in good_graphs:

for g2 in nonisomorphs:
if g2.is_isomorphic(g, edge_labels=True):

break
else: #’else’ executes when for-cycle exits without break

nonisomorphs.append(g)
return nonisomorphs

def display_list(glist):
” ” ”
Displays each graph in the list glist,
Uses color coding to distinguish edges labelled ’H’ and ’G’
” ” ”
for g in glist:

hedges = []
gedges = []
for (x,y,lbl) in g.edges(labels=True):

if (lbl==’H’):
hedges.append( (x,y) )

else:
assert (lbl == ’G’)
gedges.append((x,y))

g.layout(save_pos=True, layout=”planar”)
g.show(edge_colors = { ’red’:hedges, ’blue’:gedges })

# The four possible H-components of a minimal wrung obstruction.
# For each of them, we compute the minimal
# planar 3-connected subdivisions
# containing H as a spanning subgraph

h1=Graph({ ’u’:[ ’x1’ , ’x2’ , ’w’], ’v’:[’y1’ , ’y2’ , ’w’]})
h1list= supergraphs(h1)

h2=Graph({ ’u’:[ ’x1’ , ’x2’ , ’v’] , ’v’:[ ’y1’ , ’y2’ , ’u’]})
h2list = supergraphs(h2)

h3 = Graph({ ’u’:[ ’x1’ , ’x2’ , ’x3’ ], ’v’:[ ’x1’ , ’x2’ , ’y3’] })
h3list = supergraphs(h3)

h4 = Graph({ ’u’:[ ’v’ , ’x1’ , ’x2’], ’v’:[ ’u’ , ’x1’ , ’y2’] })
h4list = supergraphs(h4)

display_list(h1list + h2list + h3list + h4list)

References

[1] P. Angelini, G. Di Battista, F. Frati, V. Jelínek, J. Kratochvíl, M. Patrignani, I. Rutter, Testing planarity of partially embedded graphs, in: Proceedings 21st
ACM–SIAM Symposium on Discrete Algorithms (SODA’10), SIAM, 2010, pp. 202–221.

[2] G. Demoucron, Y. Malgrange, R. Pertuiset, Reconnaissance et construction de représentations planaires topologiques, Rev. Franc. Rech. Oper. 8 (1964)
33–34.

[3] G. Di Battista, R. Tamassia, On-line maintenance of triconnected components with SPQR-trees, Algorithmica 15 (4) (1996) 302–318.
[4] G. Di Battista, R. Tamassia, On-line planarity testing, SIAM J. Comput. 25 (5) (1996) 956–997.



492 V. Jelínek et al. / Computational Geometry 46 (2013) 466–492

[5] C. Gutwenger, P. Mutzel, A linear time implementation of SPQR-trees, in: Graph Drawing (GD’00), in: LNCS, vol. 1984, 2001, pp. 77–90.
[6] D.A. Holton, B. Jackson, A. Saito, N.C. Wormald, Removable edges in 3-connected graphs, J. Graph Theory 14 (4) (1990) 465–473.
[7] V. Jelínek, J. Kratochvíl, I. Rutter, A Kuratowski-type theorem for planarity of partially embedded graphs, CoRR, arXiv:1204.2915, 2012.
[8] M. Jünger, M. Schulz, Intersection graphs in simultaneous embedding with fixed edges, J. Graph Algorithms Appl. 13 (2) (2009) 205–218.
[9] M. Juvan, B. Mohar, 2-restricted extensions of partial embeddings of graphs, European J. Comb. 26 (3–4) (2005) 339–375.

[10] M. Kriesell, Contractible subgraphs in 3-connected graphs, J. Comb. Theory Ser. B 80 (2000) 32–48.
[11] M. Kriesell, A survey on contractible edges in graphs of a prescribed vertex connectivity, Graphs and Combinatorics 18 (2002) 1–30.
[12] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 217–283.
[13] P. Mutzel, The SPQR-tree data structure in graph drawing, in: Proceedings of the 30th International Conference on Automata, Languages and Program-

ming (ICALP’03), Springer-Verlag, Berlin, Heidelberg, 2003, pp. 34–46.
[14] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Mathematische Annalen 114 (1937) 570–590, http://dx.doi.org/10.1007/BF01594196.
[15] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 43 (1932) 150–168.



Appendix G

Planar Embeddings with
Small and Uniform Faces

140



Planar Embeddings with Small and Uniform
Faces

Giordano Da Lozzo1(B), Vı́t Jeĺınek2, Jan Kratochv́ıl3,
and Ignaz Rutter3,4

1 Department of Engineering, Roma Tre University, Rome, Italy
dalozzo@dia.uniroma3.it

2 Computer Science Institute, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

jelinek@iuuk.mff.cuni.cz
3 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University, Prague, Czech Republic
honza@kam.mff.cuni.cz

4 Faculty of Informatics, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
rutter@kit.edu

Abstract. Motivated by finding planar embeddings that lead to draw-
ings with favorable aesthetics, we study the problems MinMaxFace and
UniformFaces of embedding a given biconnected multi-graph such that
the largest face is as small as possible and such that all faces have the
same size, respectively. We prove a complexity dichotomy for MinMax-
Face and show that deciding whether the maximum is at most k is
polynomial-time solvable for k ≤ 4 and NP-complete for k ≥ 5. Fur-
ther, we give a 6-approximation for minimizing the maximum face in
a planar embedding. For UniformFaces, we show that the problem is
NP-complete for odd k ≥ 7 and even k ≥ 10. Moreover, we charac-
terize the biconnected planar multi-graphs admitting 3- and 4-uniform
embeddings (in a k-uniform embedding all faces have size k) and give an
efficient algorithm for testing the existence of a 6-uniform embedding.

1 Introduction

While there are infinitely many ways to embed a connected planar graph into the
plane without edge crossings, these embeddings can be grouped into a finite num-
ber of equivalence classes, so-called combinatorial embeddings, where two embed-
dings are equivalent if the clockwise order around each vertex is the same. Many
algorithms for drawing planar graphs require that the input graph is provided

Work by Giordano Da Lozzo was supported in part by the Italian Ministry of Educa-
tion, University, and Research (MIUR) under PRIN 2012C4E3KT national research
project “AMANDA – Algorithmics for MAssive and Networked DAta”. Work by Jan
Kratochv́ıl and Vı́t Jeĺınek was supported by the grant no. 14-14179S of the Czech
Science Foundation GAČR. Ignaz Rutter was supported by a fellowship within the
Postdoc-Program of the German Academic Exchange Service (DAAD).

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 633–645, 2014.
DOI: 10.1007/978-3-319-13075-0 50



634 G. Da Lozzo et al.

together with a combinatorial embedding, which the algorithm preserves. Since
the aesthetic properties of the drawing often depend critically on the chosen
embedding, e.g. the number of bends in orthogonal drawings, it is natural to ask
for a planar embedding that will lead to the best results.

In many cases the problem of optimizing some cost function over all
combinatorial embeddings is NP-complete. For example, it is known that it is
NP-complete to test the existence of an embedding that admits an orthogonal
drawing without bends or an upward planar embedding [10]. On the other hand,
there are efficient algorithms for minimizing various measures such as the radius
of the dual [1,2] and attempts to minimize the number of bends in orthogonal
drawings subject to some restrictions [3,4,6].

Usually, choosing a planar embedding is considered as deciding the circular
ordering of edges around vertices. It can, however, also be equivalently viewed as
choosing the set of facial cycles, i.e., which cycles become face boundaries. In this
sense it is natural to seek an embedding whose facial cycles have favorable prop-
erties. For example, Gutwenger and Mutzel [12] give algorithms for computing
an embedding that maximizes the size of the outer face. The most general form
of this problem is as follows. The input consists of a graph and a cost function
on the cycles of the graph, and we seek a planar embedding where the sum of
the costs of the facial cycles is minimum. This general version of the problem
has been introduced and studied by Mutzel and Weiskircher [14]. Woeginger [15]
shows that it is NP-complete even when assigning cost 0 to all cycles of size up
to k and cost 1 for longer cycles. Mutzel and Weiskircher [14] propose an ILP
formulation for this problem based on SPQR-trees.

In this paper, we focus on two specific problems of this type, aimed at reduc-
ing the visual complexity and eliminating certain artifacts related to face sizes
from drawings. Namely, large faces in the interior of a drawing may be perceived
as holes and consequently interpreted as an artifact of the graph. Similarly, if the
graph has faces of vastly different sizes, this may leave the impression that the
drawn graph is highly irregular. However, rather than being a structural prop-
erty of the graph, it is quite possible that the artifacts in the drawing rather stem
from a poor embedding choice and can be avoided by choosing a more suitable
planar embedding.

We thus propose two problems. First, to avoid large faces in the drawing, we
seek to minimize the size of the largest face; we call this problem MinMaxFace.
Second, we study the problem of recognizing those graphs that admit perfectly
uniform face sizes; we call this problem UniformFaces. Both problems can be
solved by the ILP approach of Mutzel and Weiskircher [14] but were not known
to be NP-hard.

Our Contributions. First, in Section 3, we study the computational complexity of
MinMaxFace and its decision version k-MinMaxFace, which asks whether the
input graph can be embedded such that the maximum face size is at most k. We
prove a complexity dichotomy for this problem and show that k-MinMaxFace
is polynomial-time solvable for k ≤ 4 and NP-complete for k ≥ 5. Our hard-
ness result for k ≥ 5 strengthens Woeginger’s result [15], which states that



Planar Embeddings with Small and Uniform Faces 635

it is NP-complete to minimize the number of faces of size greater than k for
k ≥ 4, whereas our reduction shows that it is in fact NP-complete to decide
whether such faces can be completely avoided. Furthermore, we give an efficient
6-approximation for MinMaxFace.

Second, in Section 4, we study the problem of recognizing graphs that admit
perfectly uniform face sizes (UniformFaces), which is a special case of k-
MinMaxFace. An embedding is k-uniform if all faces have size k. We character-
ize the biconnected multi-graphs admitting a k-uniform embedding for k = 3, 4
and give an efficient recognition algorithm for k = 6. Finally, we show that for
odd k ≥ 7 and even k ≥ 10, it is NP-complete to decide whether a planar graph
admits a k-uniform embedding.

For space limitations, proofs are sketched or omitted; refer to [5] for full
proofs.

2 Preliminaries

A graph G = (V,E) is connected if there is a path between any two vertices.
A cutvertex is a vertex whose removal disconnects the graph. A separating pair
{u, v} is a pair of vertices whose removal disconnects the graph. A connected
graph is biconnected if it does not have a cutvertex and a biconnected graph
is 3-connected if it does not have a separating pair. Unless specified otherwise,
throughout the rest of the paper we will consider graphs without loops, but with
possible multiple edges.

We consider st-graphs with two special pole vertices s and t. The family of
st-graphs can be constructed in a fashion very similar to series-parallel graphs.
Namely, an edge st is an st-graph with poles s and t. Now let Gi be an st-
graph with poles si, ti for i = 1, . . . , k and let H be a planar graph with two
designated adjacent vertices s and t and k + 1 edges st, e1, . . . , ek. We call H
the skeleton of the composition and its edges are called virtual edges; the edge
st is the parent edge and s and t are the poles of the skeleton H. To compose
the Gi’s into an st-graph with poles s and t, we remove the edge st from H and
replace each ei by Gi for i = 1, . . . , k by removing ei and identifying the poles of
Gi with the endpoints of ei. In fact, we only allow three types of compositions:
in a series composition the skeleton H is a cycle of length k + 1, in a parallel
composition H consists of two vertices connected by k + 1 parallel edges, and in
a rigid composition H is 3-connected.

For every biconnected planar graph G with an edge st, the graph G − st
is an st-graph with poles s and t [7]. Much in the same way as series-parallel
graphs, the st-graph G − st gives rise to a (de-)composition tree T describing
how it can be obtained from single edges. The nodes of T corresponding to edges,
series, parallel, and rigid compositions of the graph are Q-, S-, P-, and R-nodes,
respectively. To obtain a composition tree for G, we add an additional root Q-
node representing the edge st. We associate with each node μ the skeleton of
the composition and denote it by skel(μ). For a Q-node μ, the skeleton consists
of the two endpoints of the edge represented by μ and one real and one virtual



636 G. Da Lozzo et al.

edge between them representing the rest of the graph. For a node μ of T , the
pertinent graph pert(μ) is the subgraph represented by the subtree with root μ.
For a virtual edge ε of a skeleton skel(μ), the expansion graph of ε is the pertinent
graph pert(μ′) of the neighbor μ′ corresponding to ε when considering T rooted
at μ.

The SPQR-tree of G with respect to the edge st, originally introduced by
Di Battista and Tamassia [7], is the (unique) smallest decomposition tree T for
G. Using a different edge s′t′ of G and a composition of G − s′t′ corresponds
to rerooting T at the node representing s′t′. It thus makes sense to say that
T is the SPQR-tree of G. The SPQR-tree of G has size linear in G and can
be computed in linear time [11]. Planar embeddings of G correspond bijectively
to planar embeddings of all skeletons of T ; the choices are the orderings of the
parallel edges in P-nodes and the embeddings of the R-node skeletons, which are
unique up to a flip. When considering rooted SPQR-trees, we assume that the
embedding of G is such that the root edge is incident to the outer face, which is
equivalent to the parent edge being incident to the outer face in each skeleton.
We remark that in a planar embedding of G, the poles of any node μ of T are
incident to the outer face of pert(μ). Hence, in the following we only consider
embeddings of the pertinent graphs with their poles lying on the same face.

3 Minimizing the Maximum Face

In this section we present our results on MinMaxFace. We first strengthen
the result of Woeginger [15] and show that k-MinMaxFace is NP-complete
for k ≥ 5 and then present efficient algorithms for k = 3, 4. In particular, the
hardness result also implies that the problem MinMaxFace is NP-hard. Finally,
we give an efficient 6-approximation for MinMaxFace on biconnected graphs.
Recall that we allow graphs to have multiple edges.

Theorem 1. k-MinMaxFace is NP-complete for any k ≥ 5.

Sketch of Proof. Clearly, the problem is in NP. We sketch hardness for k = 5.
Our reduction is from Planar 3-Sat where every variable occurs at most three
times, which is NP-complete [8, Lemma 2.1]. Note that we can assume without
loss of generality that for each variable both literals appear in the formula and,
by replacing some variables by their negations, we can assume that a variable
with three occurrences occurs twice as a positive literal. Let ϕ be such a formula.

We construct gadgets where some of the edges are in fact two parallel paths,
one consisting of a single edge and one of length 2 or 3. The ordering of these
paths then decides which of the faces incident to the gadget edge is incident to
a path of length 1 and which is incident to a path of length 2 or 3; see Fig. 1a.
Due to this use, we also call these gadgets (1, 2)- and (1, 3)-edges, respectively.

The gadget for a variable with three occurrences is shown in Fig. 1b. The cen-
tral (1, 3)-edge (variable edge) decides the truth value of the variable. Depending
on its flip either the positive literal edges or the negative literal edge must be



Planar Embeddings with Small and Uniform Faces 637

u v
f+

f−

2

a) b) c)

1

2
1

1

2

2

1

2

1

3

1

2

1

pos. literal

neg. literal

1

3

Fig. 1. Illustration of the gadgets for the proof of Theorem 1. (a) A (1, 3)-edge. (b) A
variable gadget for a variable that occurs twice as a positive literal and once as a
negative literal. Changing the flip of the (1, 3)-edge in the middle (variable edge) forces
flipping the upper two literal edges. (c) A clause gadget for a clause of size 3.

embedded such that they have a path of length 2 in the outer face, which corre-
sponds to a literal with truth value false. Figure 1c shows a clause gadget with
three incident literal variables. Its inner face has size at most 5 if not all incident
(1, 2)-edges transmit value false. Clauses of size 2 and variables occurring only
twice work similarly.

We now construct a graph Gϕ by replacing in the plane variable–clause graph
of ϕ each variable and each clause by a corresponding gadget and identifying
(1, 2)-edges that represent the same variable, taking into account the embedding
of the variable–clause graph. Finally, we arbitrarily triangulate all faces that are
not inner faces of gadgets. Then the only embedding choices are the flips of the
(1, 2)- and (1, 3)-edges. We claim that ϕ is satisfiable if and only if Gϕ has a
planar embedding where every face has size at most 5. ��

3.1 Polynomial-Time Algorithm for Small Faces

Next, we show that k-MinMaxFace is polynomial-time solvable for k = 3, 4.
Note that, if the input graph is simple, the problem for k = 3 is solvable if and
only if the input graph is maximal planar. A bit more work is necessary if we
allow parallel edges.

Let G be a biconnected planar graph. We devise a dynamic program on the
SPQR-tree T of G. Let T be rooted at an arbitrary Q-node and let μ be a node
of T . We call the clockwise and counterclockwise paths connecting the poles of
μ along the outer face the boundary paths of pert(μ). We say that an embedding
of pert(μ) has type (a, b) if and only if all its inner faces have size at most k and
its boundary paths have length a and b, respectively. Such an embedding is also
called an (a, b)-embedding. We assume that a ≤ b.

Clearly, each of the two boundary paths of pert(μ) in an embedding Eμ of
type (a, b) will be a proper subpath of the boundary of a face in any embedding
of G where the embedding of pert(μ) is Eμ. Hence, when seeking an embedding
where all faces have size at most k, we are only interested in the embedding Eμ

if 1 ≤ a ≤ b ≤ k − 1. We define a partial order on the embedding types by



638 G. Da Lozzo et al.

(a′, b′) � (a, b) if and only if a′ ≤ a and b′ ≤ b. Replacing an (a, b)-embedding Eμ

of pert(μ) by (a reflection of) an (a′, b′)-embedding E ′
μ with (a′, b′) � (a, b) does

not create faces of size more than k; all inner faces of E ′
μ have size at most k

by assumption, and the only other faces affected are the two faces incident to
the two boundary paths of E ′

μ, whose length does not increase. We thus seek to
compute for each node μ the minimal pairs (a, b) for which it admits an (a, b)-
embedding. We remark that pert(μ) can admit an embedding of type (1, b) for
some value of b only if μ is either a P-node or a Q-node.

Theorem 2. 3-MinMaxFace can be solved in linear time for biconnected graphs.

We now deal with the case k = 4, which is similar but more complicated.
The relevant types are (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), and (3, 3). We note that
precisely the two elements (2, 2) and (1, 3) are incomparable with respect to �.
Thus, it seems that, rather than computing only the single smallest type for
which each pertinent graph admits an embedding, we are now forced to find all
minimum pairs for which the pertinent graph admits a corresponding embedding.
However, by the above observation, if a pertinent graph pert(μ) admits a (1, 3)-
embedding, then μ must be a P-node. However, if the parent of μ is an S-node or
an R-node, then using a (1, 3)-embedding results in a face of size at least 5. Thus,
such an embedding can only be used if the parent is the root Q-node. If there is
the choice of a (2, 2)-embedding in this case, it can of course also be used at the
root. Therefore, we can mostly ignore the (1, 3)-case and consider the linearly
ordered embedding types (1, 1), (1, 2), (2, 2), (2, 3) and (3, 3). The running time
stems from the fact that, for an R-node, we need to find a matching between the
virtual edges whose expansion graphs admit a (1, 2)-embedding and the incident
triangular faces of the skeleton.

Theorem 3. 4-MinMaxFace can be solved in O(n1.5) time for biconnected
graphs.

3.2 Approximation Algorithm

In this section, we present a constant-factor approximation algorithm for the
problem of minimizing the largest face in an embedding of a biconnected graph G.
We omit the correctness proofs and some of the technical details.

We again solve the problem by dynamic programming on the SPQR-tree
of G.

Let G be a biconnected planar graph, and let T be its SPQR-tree, rooted at
an arbitrary Q-node. Let μ be a node of T . We also include the parent edge in
the embedding of skel(μ), by drawing it in the outer face. In such an embedding,
the two faces incident to the parent edge are called the outer faces; the remaining
faces are inner faces.

Recall that an (a, b)-embedding of pert(μ) is an embedding whose boundary
paths have lengths a and b, where we always assume that a ≤ b. We say that
an (a, b)-embedding of pert(μ) is out-minimal if for any (a′, b′)-embedding of



Planar Embeddings with Small and Uniform Faces 639

pert(μ), we have a ≤ a′ and b ≤ b′. Note that an out-minimal embedding need
not exist; e.g., pert(μ) may admit a (2, 4)-embedding and a (3, 3)-embedding,
but no (a, b)-embedding with a ≤ 2 and b ≤ 3. We will later show, however, that
such a situation can only occur when μ is an S-node.

Let Opt(G) denote the smallest integer k such that G has an embedding
whose every face has size at most k. For a node μ of T , we say that an embedding
of pert(μ) is c-approximate, if each inner face of the embedding has size at most
c · Opt(G).

Call an embedding of pert(μ) neat if it is out-minimal and 6-approximate.
The main result of this section is the next proposition.

Proposition 1. Let G be a biconnected planar graph with SPQR tree T , rooted
at an arbitrary Q-node. Then the pertinent graph of every Q-node, P-node or
R-node of T has a neat embedding, and this embedding may be computed in
polynomial time.

Since the pertinent graph of the root of T is the whole graph G, the proposi-
tion implies a polynomial 6-approximation algorithm for minimizing the largest
face.

Our proof of Proposition 1 is constructive. Fix a node μ of T which is not
an S-node. We now describe an algorithm that computes a neat embedding of
pert(μ), assuming that neat embeddings are available for the pertinent graphs of
all the descendant nodes of μ that are not S-nodes. We distinguish cases based
on the type of the node μ. We here only present the two difficult cases, when μ
is a P-node or an R-node.

P-nodes. Suppose that μ is a P-node with k child nodes μ1, . . . , μk, represented
by k skeleton edges e1, . . . , ek. Let Gi be the expansion graph of ei. We construct
the expanded skeleton skel∗(μ) as follows: if for some i the child node μi is an
S-node whose skeleton is a path of length m, replace the edge ei by a path of
length m, whose edges correspond in a natural way to the edges of skel(μi).

Every edge e′ of the expanded skeleton corresponds to a node μ′ of T which
is a child or a grand-child of μ. Moreover, μ′ is not an S-node, and we may thus
assume that we have already computed a neat embedding for pert(μ′). Note that
pert(μ′) is the expansion graph of e′.

For each i ∈ {1, . . . , k} define �i to be the smallest value such that Gi has
an embedding with a boundary path of length �i. We compute �i as follows: if
μi is not an S-node, then we already know a neat (ai, bi)-embedding of Gi, and
we may put �i = ai. If, on the other hand, μi is an S-node, then let m be the
number of edges in the path skel(μi), and let G1

i , G
2
i , . . . , G

m
i be the expansion

graphs of the edges of the path. For each Gj
i , we have already computed a neat

(aj , bj)-embedding, so we may now put �i =
∑m

j=1 aj . Clearly, this value of �i

corresponds to the definition given above.
We now fix two distinct indices α, β ∈ {1, . . . , k}, so that the values �α and

�β are as small as possible; formally, �α = min{�i; i = 1, . . . , k} and �β =
min{�i; i = 1, . . . , k and i �= α}.



640 G. Da Lozzo et al.

Let us fix an embedding of skel(μ) in which eα and eβ are adjacent to the
outer faces. We extend this embedding of skel(μ) into an embedding of pert(μ)
by replacing each edge of skel∗(μ) by a neat embedding of its expansion graph,
in such a way that the two boundary paths have lengths �α and �β . Let E be the
resulting (�α, �β)-embedding of pert(μ). The embedding E is neat (we omit the
proof).

R-nodes. Suppose now that μ is an R-node. As with P-nodes, we define the
expanded skeleton skel∗(μ) by replacing each edge of skel(μ) corresponding to
an S-node by a path of appropriate length. The graph skel∗(μ) together with
the parent edge forms a subdivision of a 3-connected graph. In particular, its
embedding is determined uniquely up to a flip and a choice of outer face. Fix
an embedding of skel∗(μ) and the parent edge, so that the parent edge is on the
outer face. Let f1 and f2 be the two faces incident to the parent edge of μ.

Let e be an edge of skel∗(μ), let Ge be its expansion graph, and let Ee be a
neat (a, b)-embedding of Ge, for some a ≤ b. The boundary path of Ee of length
a will be called the short side of Ee, while the boundary path of length b will be
the long side. If a = b, we choose the long side and short side arbitrarily.

Our goal is to extend the embedding of skel∗(μ) into an embedding of pert(μ)
by replacing each edge e of skel∗(μ) with a copy of Ee. In doing so, we have to
choose which of the two faces incident to e will be adjacent to the short side of
Ee.

First of all, if e is an edge of skel∗(μ) incident to one of the outer faces f1

or f2, we embed Ee in such a way that its short side is adjacent to the outer
face. Since f1 and f2 do not share an edge in skel∗(μ), such an embedding is
always possible, and guarantees that the resulting embedding of pert(μ) will be
out-minimal.

It remains to determine the orientation of Ee for the edges e that are not
incident to the outer faces, in such a way that the largest face of the resulting
embedding will be as small as possible. Rather than solving this task optimally,
we formulate a linear programming relaxation, and then apply a rounding step
which will guarantee a constant factor approximation.

Intuitively, the linear program works as follows: given an edge e incident to a
pair of faces f and g, and a corresponding graph Ge with a short side of length
a and a long side of length b, rather than assigning the short side to one face
and the long side to the other, we assign to each of the two faces a fractional
value in the interval [a, b], so that the two values assigned by e to f and g have
sum a + b, and the maximum total amount assigned to a single face of skel∗(μ)
from its incident edges is as small as possible.

More precisely, we consider the linear program with the set of variables

{M} ∪ {xe,f ; e is an edge adjacent to face f},

where the goal is to minimize M subject to the following constraints:

– For every edge e adjacent to a pair of faces f and g, we have the constraints
xe,f + xe,g = a + b, a ≤ xe,f ≤ b and a ≤ xe,g ≤ b, where a ≤ b are the
lengths of the two boundary paths of Ee.



Planar Embeddings with Small and Uniform Faces 641

– Moreover, if an edge e is adjacent to an outer face f ∈ {f1, f2} as well as an
inner face g, then we set xe,f = a and xe,g = b, with a and b as above.

– For every inner face f of skel∗(μ), we have the constraint
∑

e xe,f ≤ M ,
where the sum is over all edges incident to f .

Given an optimal solution of the above linear program, we determine the
embedding of pert(μ) as follows: for an edge e of skel∗(μ) incident to two inner
faces f and g, if xe,f ≤ xe,g, embed Ee with its short side incident to f and long
side incident to g. Let Eμ be the resulting embedding. It can be shown that Eμ

is neat.
Proposition 1 yields a 6-approximation algorithm for the minimization of

largest face in biconnected graphs.

Theorem 4. A 6-approximation for MinMaxFace in biconnected graphs can
be computed in polynomial time.

4 Perfectly Uniform Face Sizes

In this section we study the problem of deciding whether a biconnected planar
graph admits a k-uniform embedding. Note that, due to Euler’s formula, a con-
nected planar graph with n vertices and m edges has f = m − n + 2 faces. In
order to admit an embedding where every face has size k, it is necessary that
2m = fk. Hence there is at most one value of k for which the graph may admit
a k-uniform embedding.

In the following, we characterize the graphs admitting 3-uniform and 4-
uniform embeddings, and we give an efficient algorithm for testing whether a
graph admits a 6-uniform embedding. Finally, we show that testing whether a
graph admits a k-uniform embedding is NP-complete for odd k ≥ 7 and even
k ≥ 10. We leave open the cases k = 5 and k = 8.

Our characterizations and our testing algorithm use the recursive structure of
the SPQR-tree. To this end, it is necessary to consider embeddings of pertinent
graphs, where we only require that the interior faces have size k, whereas the
outer face may have different size, although it must not be too large. We call
such an embedding almost k-uniform. The following lemma states that the size
of the outer face in such an embedding depends only on the number of vertices
and edges in the pertinent graph.

Lemma 1. Let G be a graph with n vertices and m edges with an almost k-
uniform embedding. Then the outer face has length � = k(n − m − 1) + 2m.

Thus, for small values of k, where the two boundary paths of the pertinent
graph may have only few different lengths, the type of an almost k-uniform
embedding (as defined in Section 4) is essentially fixed. Using this fact, the
biconnected graphs (with possible multiple edges) admitting a k-uniform dual
for k = 3, 4 can be characterized. We remark that the simple graphs admitting
3-uniform and 4-uniform embeddings are precisely the maximal planar graphs
and the maximal planar bipartite graphs.



642 G. Da Lozzo et al.

Theorem 5. A biconnected planar graph G admits 3-uniform embedding if and
only if its SPQR-tree satisfies all of the following conditions.

(i) S- and R-nodes are only adjacent to Q- and P-nodes.
(ii) Every R-node skeleton is a planar triangulation.
(iii) Every S-node skeleton has size 3.
(iv) Every P-node with k neighbors has k even and precisely k/2 of the neighbors

are Q-nodes.

Theorem 6. A biconnected planar graph admits a 4-regular dual if and only if
it is bipartite and satisfies the following conditions.

(i) For each P-node either all expansion graphs satisfy me = 2ne − 4, or half
of them satisfy me = 2ne − 5 and the other half are Q-nodes.

(ii) For each S- or R-node all faces have size 3 or 4; the expansion graphs of
all edges incident to faces of size 4 satisfy me = 2ne − 3 and for each
triangular face, there is precisely one edge whose expansion graph satisfies
me = 2ne − 4, the others satisfy me = 2ne − 3.

Theorems 5 and 6 can be used to construct linear-time algorithms to test
whether a biconnected planar graph admits a 3-regular dual and a 4-regular
dual, respectively.

Theorem 7. It can be tested in O(n1.5) time whether a biconnected planar graph
admits a 6-uniform embedding.

Sketch of Proof. To test the existence of a 6-uniform embedding, we again use
bottom-up traversal of the SPQR-tree and are therefore interested in the types
of almost 6-uniform embeddings of pertinent graphs. Clearly, each of the two
boundary paths of a pertinent graph may have length at most 5. Thus, only
embeddings of type (a, b) with 1 ≤ a ≤ b ≤ 5 are relevant. By Lemma 1 the
value of a + b is fixed and in order to admit a k-uniform embedding with k
even, it is necessary that the graph is bipartite. Thus, for an almost 6-uniform
embedding the length of the outer face must be in {2, 4, 6, 8, 10}. Moreover, the
color classes of the poles in the bipartite graph determine the parity of a and b.

For length 2 and length 10, the types must be (1, 1) and (5, 5), respectively.
For length 4, the type must be (1, 3) or (2, 2), depending on the color classes of
the poles. For length 6, the possible types are (2, 4) or (3, 3) (it can be argued
that (1, 5) is not possible). Finally, for length 8, the possible types are (3, 5) and
(4, 4) and again the color classes uniquely determine the type.

Thus, we know for each internal node μ precisely what must be the type
of an almost 6-uniform embedding of pert(μ) if one exists. It remains to check
whether for each node μ, assuming that all children admit an almost 6-uniform
embedding, it is possible to put them together to an almost 6-uniform embedding
of pert(μ). For this, we need to decide (i) an embedding of skel(μ) and (ii) for
each child the flip of its almost k-uniform embedding. The main issue are R-
nodes, where we have to solve a generalized matching problem to ensure that
every face gets assigned a total boundary length of 6. This can be solved in
O(n1.5) time [9]. ��



Planar Embeddings with Small and Uniform Faces 643

1
1

4

1
2

1
2

1

2

1

4

a) b)

1 3

1

2

1

2

1 3

c)

1 3

1

2

2

1 3

1 2

1

2
2

1
4

1

d)

1 4

Fig. 2. Illustration of the gadgets used for the hardness proof in Theorem 8. (a) A
(1, 4)-edge. (b) A variable gadget for a variable with three occurrences. (c), (d) Crossing
gadgets for a pipe of (1, 2)-edges with a pipe of (1, 3)- and (1, 4)-edges, respectively.
The red arrows indicate the information flow.

Finally, we prove NP-hardness for testing the existence of a k-uniform embed-
ding for k = 7 and k ≥ 9 by giving a reduction from the NP-complete problem
Planar Positive 1-in-3-SAT where each variable occurs at least twice and at
most three times and each clause has size two or three. The NP-completeness of
this version of satisfiability follows from the results of Moore and Robson [13].

Theorem 8. k-UniformFaces is NP-complete for all odd k ≥ 7 and even
k ≥ 10.

Sketch of Proof. We sketch the reduction for k = 7, the other cases are similar.
We reduce from Planar Positive 1-in-3-SAT where each variable occurs two
or three times and each clause has size two or three. Essentially, we perform
a standard reduction, replacing each variable, each clause, and each edge of
the variable–clause graph by a corresponding gadget, similar to the proof of
Theorem 1.

First, it is possible to construct subgraphs that behave like (1, 2)-, (1, 3)-,
and (1, 4)-edges, i.e., their embedding is unique up to a flip, the inner faces have
size 7 and the outer face has a path of length 1 and a path of length 2, 3 or 4
between the poles; see Fig. 2a for an example.

A variable is a cycle consisting of (1, 2)-edges, called output edges (one for
each occurrence of the variable) and one sink-edge, which is a (1, 3)- or a (1, 4)-
edges depending on whether the variable occurs two or three times; see Fig. 2b.
It is not hard to construct clauses with two or three incident (1, 2)-edges whose
internal face has size 7 if and only if exactly one of the incident (1, 2)-edges
contributes a path of length 1 to the internal face. We then use simple pipes to
transmit the information encoded in the output edges to the clauses in a planar
way. The main issue are the sink-edges, which have different length depending on
whether the corresponding variable is true or false. To this end, we transfer the
information encoded in all sink edges via pipes to a single face. We use the fact
that sink-edges are (1, k)-edges with k > 2 to cross over pipes transmitting these
values using the crossing gadgets shown in Fig. 2c,d. Note that the construction
in Fig. 2d is necessary since crossing a pipe of (1, 4)-edges with a pipe of (1, 2)-
edges in the style of Fig. 2c would require face size at least 8.



644 G. Da Lozzo et al.

1

2

1

1

2

1 2

2

1
1 2 21

21

1

2

2

1

1

2
21

21

1

2
1

2

1

2
21

21

2

1

1

1
21

2

2

. . . . . .

2

C

Fig. 3. Illustration of a shift ring (the left and right dark gray edges are identified)
that allows to transpose adjacent (1, 2)-edges encoding different states. The read arrows
show the flow of information encoded in the (1, 2)-edges.

Now we have collected all the information encoded in the sink edges in a
single face. By attaching variable gadgets to each of the corresponding pipes, we
split this information into (1, 2)-edges, whose endpoints we identify such that
they all form a single large cycle C.

Now, for all faces except for the inner faces of the gadgets and the face inside
cycle C, we apply the following simple procedure. We triangulate them and insert
into each triangle a new vertex connected to all its vertices by edges subdivided
sufficiently often so that all faces have size 7. As a result the only remaining
embedding choices are the flips of the (1, d)-edges used in the gadgets. We have
that the original 1-in-3SAT formula is satisfiable if and only if the (1, d)-edges
can be flipped so that all faces except the one inside C have size 7.

It follows from Lemma 1 that the length of the face inside C is uniquely deter-
mined if all other faces have size 7, but we do not know which of the (1, 2)-edges
contribute paths of length 1 and which contribute paths of length 2. It then remains
to give a construction that can subdivide the interior of C into faces of size 7 for
any possible distribution. This is achieved by inserting ring-like structures that
allow to shift and transpose adjacent edges that contribute paths of length 1 and
length 2; see Fig. 3. By nesting sufficiently many such rings, we can ensure that in
the innermost face the edges contributing paths of length 1 are consecutive, and
the first one (in some orientation of C) is at a fixed position. Then we can assume
that we know exactly what the inner face looks like and we can use one of the
previous constructions to subdivide it into faces of size 7. ��

5 Conclusions and Open Problems

Throughout the paper we consider embeddings of planar multi-graphs on the
sphere, that is, no face is regarded as the outer face. On the other hand, when deal-
ing with embeddings in the plane, it seems natural to consider the variants of the
MinMaxFace and UniformFaces problems in which the size of the outer face
is not constrained. To simplify the analysis, we decided not to explicitly discuss
these variants. However, both the hardness results and the embedding algorithms
presented in the paper can be easily modified to handle outer faces of arbitrary
size. In fact, in the reduction for k-MinMaxFace and k-UniformFaces, we can
insert in any triangular face a cycle of arbitrary length and triangulate any but the



Planar Embeddings with Small and Uniform Faces 645

inner face bounded by the cycle. Also, when computing the type of an embedding
of a node of the SPQR-tree, it is not difficult to additionally consider embeddings
of the corresponding pertinent graph in which one of the two paths bounding the
outer face has length greater than or equal to k.

We list some interesting open questions: What is the complexity of k-
UniformFaces for k = 5 and k = 8? Are UniformFaces and MinMaxFace
polynomial-time solvable for biconnected series-parallel graphs? Are they FPT
with respect to treewidth?

Acknowledgments. We thank Bartosz Walczak for discussions.

References

1. Angelini, P., Di Battista, G., Patrignani, M.: Finding a minimum-depth embedding
of a planar graph in O(n4) time. Algorithmica 60, 890–937 (2011)

2. Bienstock, D., Monma, C.L.: On the complexity of covering vertices by faces in a
planar graph. SIAM J. Comput. 17(1), 53–76 (1988)

3. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with
flexibility constraints. Algorithmica 68, 859–885 (2014)

4. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with con-
vex bend costs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 184–195. Springer, Heidelberg (2013)

5. Da Lozzo, G., Jeĺınek, V., Kratochv́ıl, J., Rutter, I.: Planar Embeddings with Small
and Uniform Faces. ArXiv e-prints (September 2014)

6. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings.
SIAM Journal on Computing 27(6), 1764–1811 (1998)

7. Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In:
Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg
(1990)

8. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The complexity of
induced minors and related problems. Algorithmica 13, 266–282 (1995)

9. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In: Theory of Computing, STOC 1983,
pp. 448–456. ACM (1983)

10. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. on Comput. 31(2), 601–625 (2001)

11. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

12. Gutwenger, C., Mutzel, P.: Graph embedding with minimum depth and maximum
external face. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 259–272. Springer,
Heidelberg (2004)

13. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput.
Geom. 26(4), 573–590 (2001)

14. Mutzel, P., Weiskircher, R.: Optimizing over all combinatorial embeddings of a
planar graph. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO
1999. LNCS, vol. 1610, pp. 361–376. Springer, Heidelberg (1999)

15. Woeginger, G.J.: Embeddings of planar graphs that minimize the number of long-
face cycles. Oper. Res. Lett., 167–168 (2002)



Appendix H

Planarity of Partially
Embedded Graphs

154



32

Testing Planarity of Partially Embedded Graphs

PATRIZIO ANGELINI and GIUSEPPE DI BATTISTA, Roma Tre University, Italy
FABRIZIO FRATI, University of Sydney, Australia
VÍT JELÍNEK and JAN KRATOCHVÍL, Charles University, Prague, Czech Republic
MAURIZIO PATRIGNANI, Roma Tre University, Italy
IGNAZ RUTTER, Karlsruhe Institute of Technology (KIT), Germany and Charles University, Prague

We study the following problem: given a planar graph G and a planar drawing (embedding) of a subgraph
of G, can such a drawing be extended to a planar drawing of the entire graph G? This problem fits the
paradigm of extending a partial solution for a problem to a complete one, which has been studied before in
many different settings. Unlike many cases, in which the presence of a partial solution in the input makes an
otherwise easy problem hard, we show that the planarity question remains polynomial-time solvable. Our
algorithm is based on several combinatorial lemmas, which show that the planarity of partially embedded
graphs exhibits the ‘TONCAS’ behavior “the obvious necessary conditions for planarity are also sufficient.”
These conditions are expressed in terms of the interplay between (1) the rotation system and containment
relationships between cycles and (2) the decomposition of a graph into its connected, biconnected, and
triconnected components. This implies that no dynamic programming is needed for a decision algorithm and
that the elements of the decomposition can be processed independently.

Further, by equipping the components of the decomposition with suitable data structures and by carefully
splitting the problem into simpler subproblems, we make our algorithm run in linear time.

Finally, we consider several generalizations of the problem, such as minimizing the number of edges of
the partial embedding that need to be rerouted to extend it, and argue that they are NP-hard. We also apply
our algorithm to the simultaneous graph drawing problem SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE).
There we obtain a linear-time algorithm for the case that one of the input graphs or the common graph has
a fixed planar embedding.

Categories and Subject Descriptors: G.2.2 [Algorithms]

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Planarity, partial embedding, simultaneous embedding, algorithm

A preliminary version of this article appeared as “Testing Planarity of Partially Embedded Graphs” in
Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA’10), pages 202–221.
Work on the journal version of this article was supported by ESF EuroGIGA GraDR as Czech Research grant
GACR GIG-11-E023 for V. Jelı́nek, J. Kratochvı́l, and I. Rutter (partial support). I. Rutter was supported
by a fellowship within the postdoctoral program of the German Academic Exchange Service (DAAD). F.
Frati acknowledges support from the Australian Research Council (grant DE140100708). Research was
supported in part by the MIUR project AMANDA (Algorithmics for Massive and Networked Data) protocol
2012C4E3KT_001.
Authors’ addresses: P. Angelini, G. Di Battista, and M. Patrignani, Dipartimento di Ingegneria, Universita’
Roma Tre, Via della Vasca Navale 79, 00146, Rome, Italy; emails: {angelini, gdb, patrigna}@dia.uniroma3.it;
F. Frati, School of Information Technologies, The University of Sydney, NSW 2006, Sydney, Australia; email:
fabrizio.frati@sydney.edu.au; V. Jelı́nek, IUUK MFF UK, Malostranske nam 25, 11800 Praha 1, Czech;
email: jelinek@iuuk.mff.cuni.cz; J. Kratochvı́l, KAM MFF UK, Malostranske nam 25, 11800 Praha 1, Czech
Republic; email: honza@kam.mff.cuni.cz; I. Rutter, Karlsruhe Institute of Technology (KIT), Institute of
Theoretical Informatics, Box 6980, D-76128, Karlsruhe, Germany; email: rutter@kit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1549-6325/2015/04-ART32 $15.00

DOI: http://dx.doi.org/10.1145/2629341

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:2 P. Angelini et al.

ACM Reference Format:
Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vı́t Jelı́nek, Jan Kratochvı́l, Maurizio Patrignani,
and Ignaz Rutter. 2015. Testing planarity of partially embedded graphs. ACM Trans. Algor. 11, 4, Article 32
(April 2015), 42 pages.
DOI: http://dx.doi.org/10.1145/2629341

1. INTRODUCTION

Planarity is one of the central concepts not only in graph drawing but in graph theory as
a whole. The characterization of planar graphs proved by Kuratowski [1930] represents
a fundamental result in modern graph theory. This characterization, based on two
forbidden topological subgraphs—K5 and K3,3—makes planarity a finite problem and
leads to a polynomial-time recognition algorithm. Planarity is thus “simple” from the
computational point of view (this, of course, does not mean that algorithms for testing
planarity are trivial) in the strongest possible way, as several linear-time algorithms
for testing planarity are known [Boyer and Myrvold 2004; de Fraysseix et al. 2006;
Hopcroft and Tarjan 1974].

In this article, we pose and study the question of planarity testing in a constrained
setting, namely when part of the input graph is already drawn and cannot be changed.
Practical motivation for this question comes from the visualization of large networks
in which certain patterns are required to be drawn in a standard way. The known
planarity testing algorithms, even those that build a drawing incrementally, are of no
help here, as they are allowed to redraw at each step the part of the graph processed
so far. For similar reasons, online planar embedding and planarity testing algorithms,
such as those of Di Battista and Tamassia [1996], Poutré [1994], Tamassia [1996], and
Westbrook [1992], are not suitable to be used in this context.

Related work. The question of testing the planarity of partially drawn graphs fits
into the general paradigm of extending a partial solution for a problem to a full one.
This has been studied in various settings, and often the extendability problem is more
difficult than the unconstrained one. As an example, graph coloring is NP-complete for
perfect graphs even if only four vertices are already colored [Kratochvı́l and Sebo 1997],
whereas the chromatic number of a perfect graph can be determined in polynomial
time [Grötschel et al. 1988]. Another example is provided by edge colorings—deciding
3-edge-colorability of cubic bipartite graphs if some edges are already colored is NP-
complete [Fiala 2003], whereas it follows from the famous Kőnig-Hall theorem that
cubic bipartite graphs are always 3-edge colorable. In view of these hardness results,
it is somewhat surprising that the planarity of partially drawn graphs can be tested in
polynomial time, in fact in linear time, as we show in this article. This is all the more
so, considering that this problem is known to be NP-hard for drawings where edges are
constrained to be straight-line segments [Patrignani 2006].

Specific constraints on planar graph drawings have been studied by several authors
(e.g., see Dornheim [2002], Gutwenger et al. [2008], Tamassia [1998], and Tamassia
et al. [1988]). However, none of those results can be exploited to solve the question
that we pose in this article. The work in Juvan and Mohar [2005] and Mohar [1999]
give algorithms for extending 2-cell embeddings on the torus and surfaces of higher
genus. Their results show that even for arbitrary surfaces, the problem of extending
an embedding of a graph H ⊆ G to an embedding of G is fixed-parameter tractable
with respect to the branch size of H. The branch size of a graph H is the size of
the smallest graph H′ from which H can be obtained as a subdivision. However, the
approach of Juvan and Mohar is not applicable to our problem, as our goal is to find
algorithms that are polynomial in the size of H as well as G. Moreover, the algorithm

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:3

by Juvan and Mohar assumes that either each component of G − H has at most two
allowed embeddings, which are given as part of the input, or H has a closed 2-cell
embedding—that is, H is biconnected.

Contribution and outline. To solve the general problem, we allow disconnected graphs
or graphs with low connectivity to be part of the input. It is readily seen that in this case
the rotation system (i.e., the cyclic orderings of the edges incident to the vertices of the
graph) does not fully describe the input. In fact, the relative position of vertices against
cycles in the graph must also be considered. (These concepts and their technical details
are discussed later.) Further, we make use of the fact that drawing graphs on the plane
and on the sphere are equivalent concepts. The advantage of considering embeddings
on the sphere lies in the fact that we do not need to distinguish between the outer face
and the inner faces.

Many known planarity testing algorithms work by incrementally extending a partial
drawing constructed in previous steps. The main idea of our algorithm is to look at the
problem from the “opposite” perspective. Namely, we do not try to directly extend the
input partial embedding (which seems much harder than one would expect). Instead,
we look at the possible embeddings of the entire graph and decide if any of them
contains the embedding of the subgraph prescribed by the input.

Our algorithm is based on several combinatorial lemmas, relating the problem to the
connectivity of the graph. Most of them exhibit the TONCAS property—“the obvious
necessary conditions are also sufficient.” This is particularly elegant in the case of
2-connected graphs, in which we exploit the SPQR-tree decomposition of the graph.
This notion was introduced by Di Battista and Tamassia [1996] to describe all possible
embeddings of 2-connected planar graphs in a succinct way and has been used in
various situations when asking for planar embeddings with special properties. A survey
on the use of this technique in planar graphs is given by Mutzel [2003]. It is indeed
obvious that if a 2-connected graph admits an embedding extending a given partial
embedding, then the skeleton of each node of the SPQR-tree has a drawing compatible
(a precise definition of compatibility will come later) with the partial embedding. We
prove that the converse is also true. Hence, if we only aim at polynomial running time,
we do not need to perform any dynamic programming on the SPQR-tree and could
process its nodes independently. However, for the ultimate goal of linear running time,
we must refine the approach and pass several pieces of information through the SPQR-
tree. Then, dynamic programming becomes very useful. In addition, the SPQR-trees
are exploited at two levels of abstraction, both for decomposing an entire block and for
computing the embedding of the subgraph induced by each face of the constrained part
of the drawing.

The article is organized as follows. We first describe the terminology and list aux-
iliary topological lemmas in Section 2. In particular, the combinatorial invariants of
equivalent embeddings are introduced. In Section 3, we state the combinatorial char-
acterization theorems for 2-connected, connected, and disconnected cases. These the-
orems yield a simple polynomial-time algorithm outlined at the end of the section.
Section 4 is devoted to the technical details of the linear-time algorithm. Section 5
discusses several possible generalizations of the partially embedded planarity concept
leading to NP-hard problems and shows how our techniques can be used to solve other
graph drawing problems. We summarize our results and discuss some directions for
further research in Section 6.

2. NOTATION AND PRELIMINARIES

In this section, we introduce some notations and preliminaries that we use throughout
the article. In particular, we give a detailed description of how planar embeddings of

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:4 P. Angelini et al.

Fig. 1. (a) A planar drawing of a graph G. The shaded region represents a face f of the drawing.
(b) The boundary of f . The circular lists defining the boundary of f are [15, 16, 17], [33, 31, 32, 31],
[13, 12, 14, 12, 11, 10, 9, 4, 29, 20, 19, 18, 20, 4], [34]. (c) The facial cycles of f .

not necessarily connected graphs can be handled, and we give a first characterization
of the embeddings extending given partial embeddings. We conclude with an overview
of data structures and their efficient construction, which will be particularly important
for the linear-time implementation of our algorithm.

The definitions listed in this section are standard and can be found in most graph the-
ory textbooks. We are listing them for the sake of completeness. Perhaps less standard
is the notion of H-bridges (first introduced by Demoucron et al. [1964] under the name
fragment) and the definition of SPQR-trees (introduced in Di Battista and Tamassia
[1996], we have followed an alternative wording used in the conference version of this
paper [Angelini et al. 2010]).

2.1. Drawings, Embeddings, and the Problem Definition

A drawing of a graph is a mapping of each vertex to a distinct point of the plane and
of each edge to a simple curve connecting its endpoints. A drawing is planar if the
curves representing its edges do not intersect, except, possibly, at common endpoints.
A graph is planar if it admits a planar drawing. A planar drawing � determines a
subdivision of the plane into connected regions, called faces, and a circular ordering of
the edges incident to each vertex, called rotation system. The circular ordering of the
edges incident to a vertex x is the (local) rotation of x.

Visiting the (not necessarily connected) border of a face f of � in such a way to keep
f to the left, we determine a set of circular lists of vertices. Such a set is the boundary
of f . Two drawings are equivalent if they have the same rotation system and the same
face boundaries. A planar embedding is an equivalence class of planar drawings. Note
that equivalent planar drawings need not have the same outer face, and that a planar
embedding does not determine which face is the outer face. This loss of information
is harmless, as for the purposes of extending a partial embedding, the choice of the
outer face is irrelevant. It is therefore convenient to imagine planar graphs as being
embedded on a sphere, where no face plays the special role of outer face.

For connected graphs in the plane, an embedding is uniquely determined by the
rotation system. For disconnected graphs, on the other hand, this information is not
sufficient, as it does not determine the relative positions of the connected components.
However, this additional information is encoded in the face boundaries, which, together
with the rotation system, completely describe planar embeddings, even for disconnected
graphs; Figure 1(a) and (b) provide an example.

Our initial motivation was to extend a given drawing of a subgraph of a planar
graph to a planar drawing of the entire graph; however, it is not hard to see that this
is equivalent to an embedding problem, where we wish to extend a planar embedding
of a subgraph to a planar embedding of the whole graph.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:5

Fig. 2. Two different planar embeddings of a graph G whose restrictions to H (black vertices and edges)
coincide with H (a, b). An instance that does not admit an embedding extension (c). Vertices and edges in
G\H are grey.

A partially embedded graph, or PEG for short, is a triplet (G, H,H), where G is a
graph, H is a subgraph of G, and H is a planar embedding of H. We say that the
vertices and edges of H are prescribed. The problem PARTIALLY EMBEDDED PLANARITY

(PEP) asks whether a given PEG (G, H,H) admits a planar embedding G of G whose
restriction to H is H. In this case, we say that the PEG (G, H,H) is planar. We say that
G is an extension of an embedding H of H if the restriction of G to H is H. Figure 2
presents an example of a PEG that admits several different embedding extensions and
an example that does not admit any.

2.2. Facial Cycles

Let � be a planar drawing of a graph H (see Figure 1(a)). Let �C be a simple cycle in H
with an arbitrary orientation. The oriented cycle �C splits the plane into two connected
parts. Denote by V left

� ( �C) and V right
� ( �C) the sets of vertices of the graph that are to the

left and to the right of �C in �, respectively. The boundary of each face f of � can be
uniquely decomposed into simple edge-disjoint cycles, bridges (edges that are not part
of any cycle), and isolated vertices see Figure 1(b)). Orient the cycles in such a way that
f is to the left when walking along the cycle according to the orientation. Call these
oriented cycles the facial cycles of f (see Figure 1(c)). Observe that the sets V left

� ( �C),
V right

� ( �C), and the notion of facial cycles only depend on the embedding H of �. Hence,
it makes sense to write V left

H ( �C) and V right
H ( �C), and to define the facial cycles of H as the

facial cycles of the faces of H.
For a vertex x of a graph G with embedding G, we denote by EG(x) the set of edges

incident to x and by σG(x) the (local) rotation of x in G. The following lemma character-
izes the planar embeddings of a PEG (G, H,H) that extend H in terms of the rotation
system and relative cycle–vertex positions with respect to the facial cycles of H.

LEMMA 2.1. Let (G, H,H) be a PEG and let G be a planar embedding of G. The
restriction of G to H is H if and only if the following conditions hold:

(1) for every vertex x ∈ V (H), σG(x) restricted to EH(x) coincides with σH(x), and
(2) for every facial cycle �C of each face of H, we have that V left

H ( �C) ⊆ V left
G ( �C) and

V right
H ( �C) ⊆ V right

G ( �C).

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:6 P. Angelini et al.

PROOF. The proof follows easily from the following statement. Let �1 and �2 be two
drawings of the same graph G such that for every vertex x ∈ V (G), σ�1 (x) = σ�2 (x)
holds. Assume that each facial cycle �C for any face f in �1 or in �2 is oriented in
such a way that f is to the left of �C. Drawings �1 and �2 are equivalent if and only if
they have the same oriented facial cycles and, for each oriented facial cycle �C, it holds
V left

�1
( �C) = V left

�2
( �C).

We need to prove this statement in both directions: (i) if �1 and �2 have the same
embedding, then they have the same oriented facial cycles and, for each facial cycle �C,
we have V left

�1
( �C) = V left

�2
( �C), and (ii) if �1 and �2 have the same oriented facial cycles

and, for each facial cycle �C, we have V left
�1

( �C) = V left
�2

( �C), then �1 and �2 have the same
embedding.

We start with direction (i). By definition, drawings with the same embedding have
the same facial boundaries and hence the same oriented facial cycles. Suppose for a
contradiction that for some facial cycle �C, V left

�1
( �C) �= V left

�2
( �C). Then, at least one vertex

v is to the left of �C in �1 and to the right of �C in �2 (the opposite case being analogous).
Hence, v is part of the boundary of a face that is to the left of �C in �1 and part of the
boundary of a face that is to the right of �C in �2, contradicting the hypothesis that �1
and �2 have the same facial boundaries.

We now come to the proof of direction (ii). First, suppose that G is connected and
has at least one vertex of degree 3. In this case, the fact that �1 and �2 have the
same rotation system implies that they also have the same face boundaries and, hence,
the same embedding. Second, suppose that G is connected and has maximum degree
2. Then, G is either a path or a cycle. In both cases, the face boundaries of �1 and
�2 are the same (recall that G is drawn on the sphere). Finally, suppose that G has
several connected components C1, C2, . . . , Ck. We say that two components Ci and C j
share a face f if there exists a vertex of Ci and a vertex of Cj on the boundary of
f . The drawings �1 and �2 have the same face boundaries if (a) for each Ci, with
i = 1, . . . , k, the embedding G1 of G in �1 restricted to Ci is the same as the embedding
G2 of G in �2 restricted to Ci, and (b) each pair of connected components Ci and Cj ,
with i, j ∈ {1, . . . , k} and i �= j, either do not share a face both in G1 and in G2 or they
contribute with the same circular lists to the boundary of the same face f in G1 and
in G2.

It can be seen that condition (a) is satisfied by applying the argument we made for a
connected graph to each connected component of G.

Condition (b) follows from the hypothesis that for each oriented facial cycle �C, we
have V left

�1
( �C) = V left

�2
( �C). Suppose, for a contradiction, that two connected components

Cx and Cy of G share a face f in G1 and no face in G2. Since Cx and Cy share a face in
G1, they are on the same side of any facial cycle �C belonging to any other component
Cz of G (more intuitively, Cx and Cy are not separated by any cycle and in particular
by any facial cycle in �1). On the other hand, since Cx and Cy do not share a face in
�2, there exists a component Cz of G containing a facial cycle �C separating Cx from Cy,
thus contradicting the hypothesis that V left

�1
( �C) = V left

�2
( �C).

Next suppose, for a contradiction, that two connected components Cx and Cy con-
tribute with circular lists Lx

1 and Ly
1 to the boundary of the same face f1 of G1 and with

circular lists Lx
2 and Ly

2 to the boundary of the same face f2 of G2 and suppose that
Lx

1 �= Lx
2. In particular, assume, without loss of generality, that there exists a facial

cycle �C ′ of f2 that is part of Cx and that is not a facial cycle of f1. The boundary of f1 is

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:7

Fig. 3. A nonlocal bridge is either necessarily contained in a face fK (a) or causes a nonplanarity (b).

oriented in such a way that every facial cycle of f1 has f1 to its left. Then, every facial
cycle of f1 obtained from Lx

1 has Cy to its left. Further, there exists a facial cycle �C of f1

obtained from Lx
1 that has �C ′ to its right (part of �C and of �C ′ may coincide). As G1 and

G2 restricted to Cx give the same embedding, the last statement is true both in G1 and
in G2. Since �C ′ is incident to f2 and since Cy is incident to f2, such a component is to
the right of �C, contradicting the hypothesis that V left

�1
( �C) = V left

�2
( �C).

2.3. Connectivity, H -Bridges, and Data Structures

A graph is connected if every pair of vertices is connected by a path. A k-connected graph
G is such that removing any at most k − 1 vertices leaves G connected; 3-connected,
2-connected, and 1-connected graphs are also called triconnected, biconnected, and
simply connected graphs, respectively. By convention, the complete graph on k vertices
is (k − 1)-connected but not k-connected. A separating k-set is a set of k vertices whose
removal disconnects the graph. Separating 1- and 2-sets are called cutvertices and
separation pairs, respectively. Hence, a connected graph is biconnected if it has no
cutvertices, and it is triconnected if it has no separation pairs and no cutvertices. A
block of G is either a maximal biconnected subgraph of G or a bridge in G. Each edge of
G falls into a single block of G, whereas cutvertices are shared by different blocks. We
extend the notion of k-connectivity to PEGs by saying that a PEG (G, H,H) is k-connected
if and only if G is k-connected.

Let G be a graph and let H be a subgraph of G. An H-bridge K of G is a subgraph of
G formed either by a single edge e ∈ E(G)\E(H) whose end-vertices belong to H or by a
connected component K− of G − V (H), together with all edges (and their end-vertices)
that connect a vertex in K− to vertices in H. In the first case, the H-bridge is trivial.
A vertex that belongs to V (H) ∩ V (K) is called an attachment vertex (or attachment) of
K. Note that the edge sets of the H-bridges form a partition of E(G)\E(H).

An H-bridge K is local to a block B of H if all attachments of K belong to B. Notice
that an H-bridge with a single attachment can be local to more than one block, whereas
an H-bridge with at least two attachments is local to at most one block. An H-bridge
that is not local to any block of H is nonlocal.

Note that for a nonlocal H-bridge K, there exists at most one face of H containing all
attachments of K (Figure 3(a)). Namely, if all attachments of K were contained on the
boundaries of two distinct faces of H, then K would necessarily be local. In addition, if

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:8 P. Angelini et al.

there is no face of H incident to all attachments of K, then G clearly has no embedding
extension (see Figure 3(b)).

Let (G, H,H) be a PEG. In the following, we define some data structures that are
widely used throughout the article. All of these data structures can easily be computed
in time linear in the number of edges of the graph or of the embedding to which they
refer. We use the decomposition of a graph G into its connected, biconnected, and
triconnected components. To further relate these decompositions with the embedding
of H, we make use of several auxiliary data structures.

The component–face tree CF of H is a tree whose nodes are the connected compo-
nents of H and the faces of H. A face f and a component C are joined by an edge if
a vertex of C is incident to f . The block–face tree BF of H is a tree whose nodes are
the blocks of H and the faces of H. A face f and a block B are joined by an edge if
B contains an edge incident to f . The vertex–face incidence graph VF of H is a graph
whose nodes are the vertices of H and the faces of H. A vertex v and a face f are joined
by an edge if v appears on the boundary of f .

To handle the decomposition of a graph into biconnected components, we use the
block-cutvertex tree. The block-cutvertex tree of a connected graph G is a tree whose
nodes are the blocks and the cutvertices of G. Edges in the block-cutvertex tree join
each cutvertex to the blocks to which it belongs. The enriched block-cutvertex tree of G
is a tree obtained by adding to the block-cutvertex tree of G each vertex v of G that is
not a cutvertex and by connecting v to the unique block to which it belongs.

To handle the decomposition of a graph into its triconnected components, we use the
SPQR-tree T of G, which we describe in the following.

Let G be a graph. A split pair of G is either a separation pair or a pair of adjacent
vertices. A maximal split component1 of G with respect to a split pair {u, v} (or, simply,
a maximal split component of {u, v}) is either an edge (u, v) or a maximal subgraph G′
of G such that G′ contains u and v, and {u, v} is not a split pair of G′. A vertex w �= u, v
belongs to exactly one maximal split component of {u, v}. A split component of {u, v} is
the union of any number of maximal split components of {u, v}.

The SPQR-tree T of a biconnected graph G is a data structure that describes a
recursive decomposition of G induced by its split pairs. The nodes of T are of four
types: S, P, Q, and R. The Q-nodes are the leaves of the tree T . Each Q-node represents
a unique edge of the graph G.

Each node μ of T has an associated biconnected multigraph, called the skeleton of μ
and denoted by skel(μ). The skeleton describes a decomposition of G into edge-disjoint
split components. The edges of the skeleton are called virtual edges.

For an internal node μ of T of degree d, the skeleton skel(μ) has d virtual edges
e1, e2, . . . , ed, which correspond bijectively to the connected components of T −μ. Let Ti
be the component of T − μ corresponding to ei, and let Gi be the subgraph of G formed
by all edges of G whose Q-nodes belong to Ti. The graph Gi is called the expansion graph
of ei. Each expansion graph Gi is a split component of G, and by replacing each virtual
edge ei in skel(μ) with its expansion graph Gi, we obtain the graph G.

For algorithmic purposes, it is often convenient to treat T as a rooted tree. In such a
case, we choose an arbitrary Q-node as a root of T . In the skeleton of any nonroot node
μ, there is a unique virtual edge representing the component of T −μ that contains the
root. This virtual edge is the parent edge of skel(μ). Supposing that μ has k children,
let e1, . . . , ek be the nonparent edges of skel(μ), and let G1, . . . , Gk be their expansion
graphs. The graph G∗ = G1 ∪G2 ∪· · ·∪Gk is the pertinent graph of μ, denoted by pert(μ).

1Note that “maximal” refers to the splitting (the component cannot be split further by {u, v}), not the size, of
the component. We use the term for consistency with existing literature.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:9

Fig. 4. Different cases in the construction of an SPQR-tree: parallel case (a), series case (b), and rigid case
(c). The skeletons are shown in a box with the parent edge dashed. The dashed curves in the graphs represent
the split pair with respect to which the graphs are decomposed; the procedure decomposes the graph without
the dashed edge. The grey curves show the correspondence between the virtual edges of the skeleton and the
corresponding split pairs in the children.

If μ has no children—that is, μ is a nonroot Q-node—then pert(μ) consists of the single
edge represented by the node μ.

Note that the expansion graph of the parent edge of skel(μ) contains precisely those
edges of G that do not belong to pert(μ). Note also that if ν is the parent of μ, then
skel(ν) has a virtual edge whose expansion graph is pert(μ).

To give a precise definition of the SPQR-tree, we present an algorithm that recur-
sively builds T , starting from the root and then at each step adding a new child to a
previously constructed node. Given a biconnected graph G and an edge e = (u′, v′) of G,
the algorithm proceeds as follows. At each recursive step, a split pair {u, v} of G, a split
component G∗ of {u, v}, and a previously constructed node ν of T are given. A new node
μ with pertinent graph G∗ is added to T and attached as a child to ν. The vertices u
and v are the poles of μ and are denoted by u(μ) and v(μ), respectively. The algorithm
then possibly recurs on some split components of G∗.

At the beginning, the Q-node representing the edge e = {u′, v′} is designated as the
root of T . The algorithm then recurs with G∗ = G − {e}, {u, v} = {u′, v′}, and ν being the
root. The recursive step distinguishes some cases, which are illustrated in Figure 4:

Base case: If G∗ consists of exactly one edge between u and v, then μ is a Q-node
whose skeleton is a cycle of length 2.

Parallel case: If G∗ is composed of at least two maximal split components G1, . . . , Gk
(k ≥ 2) of G with respect to {u, v}, then μ is a P-node. The graph skel(μ) consists of k
parallel virtual edges between u and v, denoted by e1, . . . , ek and corresponding to
G1, . . . , Gk, respectively, plus an additional parent edge (u, v). The decomposition
recurs on G1, . . . , Gk, with {u, v} as poles for every graph, and with μ as parent
node.

Series case: If G∗ is composed of exactly one maximal split component of G with
respect to {u, v} and if G∗ has cutvertices c1, . . . , ck−1 (k ≥ 2), appearing in this
order on a path from u to v, then μ is an S-node. The graph skel(μ) is the cy-
cle composed of a path e1, . . . , ek of virtual edges, where e1 connects u with c1, ei
connects ci−1 with ci (i = 2, . . . , k − 1), and ek connects ck−1 with v, plus a par-
ent edge (u, v). The decomposition recurs on the split components corresponding
to each of e1, e2, . . . , ek−1, ek with μ as parent node and with {u, c1}, {c1, c2},
. . . ,{ck−2, ck−1}, {ck−1, v} as poles, respectively.

Rigid case: If none of the preceding cases applies, the purpose of the decomposition
step is that of partitioning G∗ into the minimum number of split components and
recurring on each of them. We need some further definitions. Given a maximal
split component G′ of a split pair {s, t} of G∗, a vertex w ∈ G′ properly belongs
to G′ if w �= s, t. Given a split pair {s, t} of G∗, a maximal split component G′
of {s, t} is internal if neither u nor v (the poles of G∗) properly belongs to G′,
external otherwise. A maximal split pair {s, t} of G∗ is a split pair of G∗ that is not

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:10 P. Angelini et al.

Fig. 5. The example graph of Figure 4 and its SPQR-tree with respect to the dashed reference edge. For
clarity, Q-nodes are omitted. The parent edge of each skeleton is dashed, and each skeleton is connected by
a grey curve to the virtual edge in the parent that represents it.

contained in an internal maximal split component of any other split pair {s′, t′}
of G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split pairs of G∗ (k ≥ 1) that have
at least one internal split component, and for i = 1, . . . , k, let Gi be the union
of all internal maximal split components of {ui, vi}. Observe that each vertex of
G∗ either properly belongs to exactly one Gi or belongs to some maximal split
pair {ui, vi}. Node μ is an R-node. Graph skel(μ) is the graph obtained from G∗
by replacing each subgraph Gi with the virtual edge ei between ui and vi and by
adding a parent edge (u, v). The decomposition recurs on each Gi with μ as parent
node and with {ui, vi} as poles. It can be shown that the skeleton of an R-node is
a triconnected graph.

Figure 5 illustrates an example of the construction of the SPQR-tree of a biconnected
graph G. The SPQR-tree T of an n-vertex biconnected graph G is well suited for the
implementation of efficient algorithms, as T can be computed in linear time [Gutwenger
and Mutzel 2000], it has O(n) nodes, and the total size of all skeletons of all nodes of
T is also O(n) [Bertolazzi et al. 2000]. We say that an edge e of G projects to a virtual
edge e′ (or belongs to e′) of skel(μ), for some node μ in T , if e belongs to the expansion
graph of e′.

The SPQR-tree T can be used to represent all planar embeddings of G. In the first
part of the article, for our characterization, we will use the unrooted version of the
SPQR-tree. In the second part of the article, for the linear-time implementation, we
will then root the tree to allow for dynamic programming on the tree in a bottom-up
fashion.

We emphasize the following properties, which are implicitly exploited throughout
the article.

PROPERTY 1. A planar embedding of the skeleton of every node of T determines a
planar embedding of G and vice versa.

PROPERTY 2. Let C be a cycle of G and let μ be any node of T . Then, either the edges of
C belong to a single virtual edge of skel(μ) or they belong to a set of virtual edges that
induce a cycle in skel(μ).

Efficient computation of data structures. We now briefly discuss the time complexity
of constructing the introduced data structures. We further show how to implement the
basic queries used in our algorithms in constant time per operation.

First, observe that linear-time preprocessing can associate each edge of a planar
graph with the unique connected component to which it belongs, with the unique block
to which it belongs, and (given a planar embedding of the graph) with the (at most) two
faces to which it is incident. Additionally, we can associate each vertex of a graph with
the unique connected component to which it belongs.

The block-cutvertex tree of a connected planar graph [Tarjan 1972] and the SPQR-
tree of a biconnected planar graph [Gutwenger and Mutzel 2000] can be constructed
in linear time. The enriched block-cutvertex tree of a connected planar graph G can be

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:11

constructed starting from the block-cutvertex tree of G by adding to the tree (i) each
vertex v that is not a cutvertex of G, and (ii) an edge between v and the only block to
which it belongs.

The block-face tree BF of a planar embedding G of a planar graph G can be con-
structed in linear time. Namely, for each edge e of G, let Be be the unique block of G
containing e and let f ′

e and f ′′
e be the two faces of G adjacent to e (possibly f ′

e = f ′′
e ). Add

edges ( f ′
e, Be) and ( f ′′

e , Be) to BF. When all edges of G have been considered, the result-
ing multigraph BF has a linear number of edges. Remove multiple edges as follows.
Root BF at any node and orient BF so that all edges point toward the root. Remove
all edges exiting from each node, except for one, thus obtaining the block-face tree BF
of G. The component-face tree CF of a planar embedding G of a planar graph G can be
constructed analogously in linear time.

The vertex-face incidence graph VF of a planar embedding G of a planar graph G can
be constructed in linear time by processing faces of G one by one, where for each face f
we walk along the boundary of f and add to VF edges between f and the vertices on
the boundary. To avoid adding multiple edges, we remember, for each vertex x, the last
face f that has been connected to x in VF. Note that VF is a planar graph.

Kowalik and Kurowski [2003] have shown that for a given planar graph F and a
fixed integer k, it is possible to build in linear time a “short-path” data structure that
allows checking in constant time whether two given vertices of F are connected by a
path of length at most k and returning such a path if it exists. We will employ this data
structure to search for paths of lengths 1 and 2 in our auxiliary graphs. Using this
data structure, we can, for example, determine in constant time whether two vertices
share a common face in H (by finding a path of length two in the vertex-face incidence
graph VF) or whether they share the same block (by finding a path of length 2 in the
enriched block-cutvertex tree).

Efficient computation of local and nonlocal H-bridges. We now describe how these
data structures can be used to solve the following problem. Given an instance (G, H,H)
of PEP and an H-bridge K of G, determine whether K is local or not and, in the latter
case, compute the unique face f of H in which K has to be embedded in any solution of
(G, H,H). In the following lemma, we show how to solve this problem in time linear in
the size of K.

LEMMA 2.2. Let (G, H,H) be any instance of PEP. Assume that we are given the
component-face tree CF of H, the vertex-face incidence graph VF of H, the block-face
tree BF of H, and, for each connected component Ci of H, the enriched block-cutvertex
tree B+

i of Ci. Suppose further that all of these graphs are endowed with short-path data
structures to check for paths of length 1 and 2. Let K be an H-bridge of G. There is an
algorithm that checks whether K is local to any block of H in time linear in the size of
K. Furthermore, if K is nonlocal, the algorithm computes the only face of H incident to
all attachment vertices of K, if such a face exists, in time linear in the size of K.

PROOF. Consider the attachment vertices a1, a2, . . . , ah of K. If h = 1, then K is
local. Otherwise, h ≥ 2. To decide whether K is local for some block of H, we perform
the following check. Consider the attachment vertices a1 and a2. If a1 and a2 belong
to distinct connected components, then K is not local to any block. Otherwise, they
belong to the same connected component Ci. Check whether a1 and a2 have distance
2 in B+

i —that is, whether they belong to the same block B. This is done in constant
time by querying the short-path structure. If the check fails, then K is not local to any
block. Otherwise, B contains both a1 and a2. In the latter case, check whether B is
also adjacent in B+

i to all other attachment vertices a3, . . . , ah of K. Again, each such
a check is performed in constant time. If the test succeeds, then K is local to block B.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:12 P. Angelini et al.

Otherwise, there exists a vertex aj , with 3 ≤ j ≤ h, that is not incident to B, and K is
not local to any block.

If K is nonlocal, we compute the unique face f of H to which all attachment vertices
of K are incident. First, we choose two attachment vertices ap and aq, with 1 ≤ p, q ≤ h,
that do not belong to the same block. If a1 and a2 do not belong to the same block,
then we take ap = a1 and aq = a2. If the check failed on an attachment vertex aj in
a3, . . . , ah, then either a1 and aj or a2 and aj do not belong to the same block. In the
former case, set ap = a1 and aq = aj ; in the latter one, set ap = a2 and aq = aj . By
querying the short-path data structure, we determine in constant time whether ap and
aq are connected by a path of length 2 in VF and find the middle vertex of such a path.
This middle vertex corresponds to the unique common face f of ap and aq. We then
check whether all attachments of K are adjacent to f in VF. If the test fails, then
no face of H contains all attachments of K. Otherwise, f is the only face of H whose
boundary contains all attachments of K.

3. COMBINATORIAL CHARACTERIZATION

We first present a combinatorial characterization of planar PEGs. This not only forms a
basis of our algorithm but also is interesting in its own right, as it shows that a PEG has
an embedding extension if and only if it satisfies simple conditions that are obviously
necessary for an embedding extension to exist.

Our characterization is based on a decomposition of the graph G of a PEG (G, H,H)
into its connected, biconnected and triconnected components. For triconnected PEGs,
the problem is particularly easy. For a triconnected PEG (G, H,H), the graph G has
only two distinct planar embeddings: G1 and G2. The PEG is thus planar if and only
if either G1 or G2 extends H. Clearly, for a disconnected PEG to admit an embedding
extension, it is a necessary condition that each of its connected components admits an
embedding extension. Similarly, it is a necessary condition for a connected PEG that
each biconnected component admits an embedding extension. We start with the most
specific case—the case where G is biconnected—and then extend the characterization
to the cases where G is connected or even disconnected.

3.1. Planarity of Biconnected PEGs

In this section, we focus on biconnected PEGs (G, H,H). This assumption allows us to
use the SPQR-tree T of G as the main tool of our characterization, which is based on
the two necessary and sufficient conditions of Lemma 2.1. We show that they can be
individually translated to constraints on the embeddings of the skeletons of T .

Definition 3.1. A planar embedding of the skeleton of a node μ of the SPQR-tree of G
is edge-compatible with H if, for every vertex x of skel(μ), and for every three edges of
EH(x) belonging to different virtual edges of skel(μ), their clockwise order determined
by the embedding of skel(μ) is a suborder of σH(x).

LEMMA 3.2. Let (G, H,H) be a biconnected PEG. Let T be the SPQR-tree of G. An
embedding G of G satisfies condition 1 of Lemma 2.1 if and only if for each node μ of T ,
the corresponding embedding of skel(μ) is edge-compatible with H.

PROOF. Obviously, if G has an embedding satisfying condition 1 of Lemma 2.1, then
the corresponding embedding of skel(μ) is edge-compatible with H for each node μ
of T .

To prove the converse, assume that the skeleton of every node of T has an embedding
that is edge-compatible with H, and let G be the embedding of G determined by all such
skeleton embeddings. We claim that G satisfies condition 1 of Lemma 2.1. To prove the
claim, it suffices to show that any three edges e, f, and g of H that share a common

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:13

Fig. 6. Illustration for the proof of Lemma 3.4. (a) Path P, vertices x and y, and edges e, f , and g in G. (b)
Path or cycle P ′ and edges e′, f ′, and g′ of skel(μ). Grey regions represent virtual edges of the skeleton of a
node of T .

vertex x appear in the same clockwise order around x in H and in G. Assume that the
triple (e, f, g) is embedded in clockwise order around x in H. Let μ be the node of T with
the property that the Q-nodes representing e, f , and g appear in distinct components
of T − μ. Note that such a node μ exists and is unique. The three edges e, f , and g
project into three distinct virtual edges e′, f ′, and g′ of skel(μ). Since the embedding of
skel(μ) is assumed to be edge-compatible with H, the triple (e′, f ′, g′) is embedded in
clockwise order in skel(μ), and hence the triple (e, f, g) is embedded in clockwise order
in G.

Lemma 3.2 settles the translation of condition 1 of Lemma 2.1 to conditions on the
embeddings of the skeletons of the SPQR-tree of G. Next, we deal with condition 2.
Consider a simple cycle �C of G with an arbitrary orientation and a node μ of the SPQR-
tree of G. By Property 2, either all edges of �C belong to the expansion graph of a single
virtual edge of skel(μ) or the virtual edges whose expansion graphs contain the edges
of �C form a simple cycle in skel(μ). Such a cycle in skel(μ) inherits the orientation of �C
in a natural way.

Definition 3.3. A planar embedding of the skeleton of a node μ of the SPQR-tree of G
is cycle-compatible with H if for every facial cycle �C of H whose edges project to a simple
cycle �C ′ in skel(μ), all vertices of skel(μ) that belong to V left

H ( �C) and all virtual edges
that contain vertices of V left

H ( �C) (except for the virtual edges of �C ′ itself) are embedded
to the left of �C ′, and analogously for V right

H ( �C).

LEMMA 3.4. Let (G, H,H) be a biconnected PEG. Let T be the SPQR-tree of G. An
embedding G of G satisfies condition 2 of Lemma 2.1 if and only if for each node μ of T ,
the corresponding embedding of skel(μ) is cycle-compatible with H.

PROOF. Obviously, if G is an embedding of G that satisfies condition 2 of Lemma 2.1,
then the corresponding embedding of skel(μ) is cycle-compatible with H for each node
μ of T .

To prove the converse, assume that skel(μ) has an embedding that is cycle-compatible
with H for each node μ of T , and let G be the resulting embedding of G.

Our goal is to show that for every facial cycle �C of H and for every vertex x of
H − V ( �C), the left/right position of x with respect to �C is the same in H as in G.

Refer to Figure 6(a). Assume that x is to the right of �C in G (the other case being
analogous). Let P be a shortest path in G that connects x to a vertex of �C. Such a path
exists since G is connected. Let y be the vertex of �C ∩ P, and let e and f be the two
edges of �C adjacent to y, where e directly precedes f in the orientation of �C. By the

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:14 P. Angelini et al.

minimality of P, all vertices of P − y avoid �C, and hence all vertices of P − y are to the
right of �C in G. Let g be the edge of P adjacent to y. In G, the triple (e, f, g) appears in
clockwise order around y.

Refer to Figure 6(b). Let μ be the (unique) internal node of T in which e, f , and g
project to distinct edges e′, f ′, and g′ of skel(μ). Let �C ′ be the projection of �C into skel(μ)
(i.e., �C ′ is the subgraph of skel(μ) formed by edges that contain the projection of at least
one edge of �C), and let P ′ be the projection of P. It is easy to see that �C ′ is a cycle of
length at least 2, whereas P ′ is either a path or a cycle. Note that the latter case only
happens when P ′ has at least two edges and the vertex x properly belongs to a virtual
edge d′ of skel(μ) incident with y. Assume that the edges of �C ′ are oriented consistently
with the orientation of �C and that the edges of P ′ form an ordered sequence, where the
edge containing x is the first and g′ is the last.

Both the endpoints of an edge of �C ′ are vertices of �C. Analogously, both the endpoints
of an edge of P ′ are vertices of P, with the possible exception of the first vertex of P ′. It
follows that no vertex of P ′ belongs to �C ′, except possibly for the first one and the last
one. Thus, no edge of P ′ belongs to �C ′, and by the assumption that the embedding of
skel(μ) is planar and that G is the embedding resulting from the skeleton embedding
choices, all edges of P ′ are embedded to the right of the directed cycle �C ′ in skel(μ). In
particular, the edge of skel(μ) containing x is to the right of �C ′. Since the embedding of
skel(μ) is assumed to be cycle-compatible with H, x is to the right of �C in H.

This shows that G satisfies condition 2 of Lemma 2.1, as claimed.

Definition 3.5. A planar embedding of the skeleton of a node μ of the SPQR-tree of
G is compatible with H if it is both edge- and cycle-compatible with H.

As a consequence of Lemmas 3.2 and 3.4, we obtain the following characterization of
planar biconnected PEGs.

THEOREM 3.6. Let (G, H,H) be a biconnected PEG. Then, G has an embedding that
extends H if and only if the skeleton of each node of its SPQR-tree has an embedding
compatible with H.

If G is biconnected, we can use Theorem 3.6 for devising a polynomial-time algorithm
for PEP. Namely, we can test, for each node μ of the SPQR-tree T of G, whether skel(μ)
has an embedding that is compatible with H. For Q-, S-, and R-nodes, this test is easily
done in polynomial time.

If μ is a P-node, the test is more complex. Let x and y be the two poles of skel(μ). We
say that a virtual edge e of skel(μ) is constrained if the expansion graph of e contains
at least one edge of H incident to x and at least one edge of H incident to y. To obtain
an embedding of μ edge-compatible with H, the constrained edges must be embedded
in a cyclic order that is consistent with σH(x) and σH(y). Such a cyclic order, if it exists,
is unique and can be determined in polynomial time. Note that if H has a facial cycle
�C that projects to a proper cycle �C ′ in μ, then �C ′ has exactly two edges and these two
edges are both constrained. Thus, the embedding of any such cycle �C ′ in μ is fixed
as soon as we fix the cyclic order of the constrained edges. Once the cyclic order of
the constrained edges of μ is determined, we process the remaining edges one by one
and insert them among the edges that are already embedded in such a way that no
edge- or cycle compatibility constraints are violated. It is not difficult to verify that
this procedure constructs an embedding of μ compatible with H, if such an embedding
exists.

Thus, PEP can be solved in polynomial time for biconnected PEGs.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:15

Fig. 7. Three examples of PEP instances (G, H, H) that have no embedding extension, even though each
block of G admits an embedding extending the corresponding sub-embedding of H. The black edges and
vertices represent H, and the grey edges and vertices belong to G but not to H. Note that instance (a) fails
to satisfy condition 3 of Lemma 3.8 (shown later), instance (b) fails to satisfy condition 2 of Lemma 3.8, and
instance (c) has a nontrivial nonlocal H-bridge. The modification of instance (c) into an equivalent instance
without nontrivial nonlocal H-bridges creates a block of G that does not have an embedding extension.

3.2. Planarity of Connected and Disconnected PEGs

A graph is planar if and only if each of its blocks is planar. Thus, planarity testing
of general graphs can be reduced to planarity testing of biconnected graphs. For pla-
narity testing of partially embedded graphs, the same simple reduction does not work
(Figure 7). However, we will show that solving partially embedded planarity for a gen-
eral instance (G, H,H) can be reduced to solving the subinstances induced by the blocks
of G and to checking additional conditions guaranteeing that the partial solutions can
be combined into a full solution for (G, H,H).

Let us consider a connected PEG (G, H,H)—that is, an instance of PEP in which G
is connected. When dealing with such an instance, it is useful to assume that G has
no nontrivial nonlocal H-bridge. We will now show that any instance of PEP can be
transformed into an equivalent instance that satisfies this additional assumption.

Let K be a nontrivial nonlocal H-bridge of G. Since K is nonlocal, it must have at
least two attachments that do not belong to any single block of H. Let fK be the face
of H whose boundary contains all attachments of the H-bridge K, if any such a face
exists. Otherwise, let fK be an arbitrary face of H.

Let K be the set of nontrivial nonlocal H-bridges of G. It is clear that in any embedding
of G extending H, all vertices of K − V (H) are embedded inside fK for every K ∈ K.
This motivates the following definition.

Definition 3.7. Let H′ be the graph whose edge set is equal to the edge set of H and
whose vertex set is defined by V (H′) = V (H) ∪ ⋃

K∈K V (K). Let H′ be the embedding
of H′ that is obtained from H by inserting, for every H-bridge K ∈ K, all vertices of
K − V (H) into the interior of face fK.

Observe that the graph G has no nontrivial nonlocal H′-bridges. In addition, observe
that any embedding of G that extends H also extends H′, and vice versa. Thus, the
instance (G, H,H) of PEP is equivalent to the instance (G, H′,H′), which contains no
nontrivial nonlocal bridges.

Before we state the next lemma, we need more terminology. Let H be an embedding
of a graph H, and let H1 and H2 be edge-disjoint subgraphs of H. We say that H1 and
H2 alternate around a vertex x of H if there are two pairs of edges e, e′ ∈ E(H1) and
f, f ′ ∈ E(H2) that are incident to x and that appear in the cyclic order (e, f, e′, f ′) in the
rotation of x restricted to these four edges. Let x and y be two vertices of H and let �C be

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:16 P. Angelini et al.

a directed cycle in H. We say that �C separates x and y if x ∈ V left
H ( �C) and y ∈ V right

H ( �C),
or vice versa.

LEMMA 3.8. Let (G, H,H) be an instance of PEP where G is connected and every
nontrivial H-bridge of G is local. Let G1, . . . , Gt be the blocks of G, let Hi be the subgraph
of H induced by the vertices of Gi, and let Hi be H restricted to Hi. Then, G has an
embedding extending H if and only if

(1) Gi has an embedding extending Hi , for every 1 ≤ i ≤ t,
(2) no two distinct graphs Hi and Hj alternate around any vertex of H, and
(3) for every facial cycle �C of H and for any two vertices x and y of H separated by �C,

any path in G connecting x and y contains a vertex of �C.

PROOF. Clearly, the three conditions of the lemma are necessary. To show that
they are also sufficient, assume that the three conditions are satisfied and proceed by
induction on the number t of blocks of G.

If t = 1, then G is biconnected and there is nothing to prove. Assume that t ≥ 2. If
there is at least one block Gi that does not contain any vertex of H, we consider the
subgraph G′ of G consisting of those blocks that contain at least one vertex of H. Since
every nontrivial H-bridge of G is local, the graph G′ is connected, and hence it satisfies
the three conditions of the lemma. By induction, the embedding H can be extended
into an embedding G ′ of G′. Since every block Gi of G is planar (by condition 1 of the
lemma), it is easy to extend the embedding G ′ into an embedding G of G.

Assume now that every block of G contains at least one vertex of H. This implies
that every cutvertex of G belongs to H, because otherwise the cutvertex would belong
to a nontrivial nonlocal H-bridge, which is impossible by assumption. Let x be any
cutvertex of G. Let G′

1, G′
2, . . . , G′

k be the connected components of G − x, where we
select G′

1 by the following rules: if there is a component of G − x that has no vertex
connected to x by an edge of H, then let G′

1 be such a component; if each component of
G − x is connected to x by an edge of H, then choose G′

1 in such a way that the edges
of H incident to x and belonging to G′

1 form an interval in σH(x). Such a choice of G′
1 is

always possible, due to condition 2 of the lemma.
Let G′ be the subgraph of G induced by V (G′

1) ∪ {x} and let G′′ be the subgraph of
G induced by V (G′

2) ∪ · · · ∪ V (G′
k) ∪ {x}. Let H′ and H′′ be the subgraphs of H induced

by the vertices of G′ and G′′, respectively, and let H′ and H′′ be H restricted to H′ and
H′′, respectively. Both G′ and G′′ have fewer blocks than G. In addition, both instances,
(G′, H′,H′) and (G′′, H′′,H′′), satisfy the conditions of the lemma. Thus, by induction,
there is an embedding G ′ of G′ that extends H′ and an embedding G ′′ of G′′ that extends
H′′. Our goal is to combine G ′ and G ′′ into a single embedding of G that extends H. To
see that this is possible, we prove two auxiliary claims.

Claim 1. H′ has a face f ′ whose boundary contains x and, for any facial cycle �C of
f ′, all vertices of H′′ except for x are in V left

H ( �C)—that is, they are “inside” f ′.

To see that the claim holds, assume first that H′ has no edge incident to x
(Figure 8(a)). Let f ′ be the unique face of H′ incident to x. We show that all ver-
tices of H′′ are inside f ′ in H. Let y be any vertex of H′′. Since G′′ is connected, there is
a path P in G′′ from y to x. Assume for contradiction that H′ has a facial cycle �C such
that �C separates y from x in H. This cycle belongs to H′ − x, and hence �C and P are
disjoint, contradicting condition 3 of the lemma.

Next, assume that H′ has an edge incident to x (see Figure 8(b)). By the construction
of G1, each connected component of G − x has at least one vertex connected to x by
an edge of H. Moreover, the edges of H′ incident to x form an interval in σH(x). This
shows that H′ has a face f ′ containing x on its boundary, such that every vertex of H′′

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:17

Fig. 8. Illustration for the proof of Lemma 3.8. (a) H′ has no edge incident to x. (b) H′ has an edge incident
to x.

adjacent to x is inside f ′ in H. We now show that all vertices of H′′ except for x are
inside f ′. Let y be a vertex of H′′ different from x. Let G′

i be the component of G − x
containing y. We know that G′

i has a vertex z adjacent to x by an edge of H and that z
is inside f ′ in H. Let P be a path in G′

i connecting y and z. If y is not inside f ′, then y
is separated from z in H by a facial cycle of H′, contradicting condition 3 of the lemma.

Claim 2. All vertices of H′, except for x, appear in H inside the same face f ′′ of H′′;
furthermore, x is on the boundary of f ′′.

To prove the claim, note that any two vertices from H′ − x are inside the same face
f ′′ of H′′ in H by condition 3 of the lemma because they are connected by a path in G′

1.
Vertex x is on the boundary of f ′′, as otherwise it would be separated in H from the
remaining vertices of H′ by a facial cycle of f ′′, again contradicting condition 3 of the
lemma.

In view of the previous two claims, the embedding G ′ of G′ and the embedding G ′′ of G′′
can be combined into a single embedding G of G that extends H. To see this, note that
when H′ is extended into G ′, the face f ′ from Claim 1 can be subdivided into several
faces of G ′, at least one of which, say g′, contains x on its boundary. Analogously, the
face f ′′ from Claim 2 can be subdivided into several faces of G ′′, at least one of which,
say g′′, contains x on its boundary. We then obtain the embedding G by merging the
faces g′ and g′′ into a single face.

Observe that computing the nonlocal H-bridges K and, for each nonlocal H-bridge
K ∈ K, the face fK can be done in polynomial time. Afterward, the second and third
conditions of Lemma 3.8 can easily be checked in polynomial time.

Next, we focus on disconnected PEGs—that is, the instances (G, H,H) of PEP in which
G is not connected. The possibility of solving the subinstances of (G, H,H) induced
by the connected components of G does not guarantee that the instance (G, H,H) of
PEP has a solution. However, we show that solving PEP for an instance (G, H,H) can
be reduced to solving the subinstances induced by the connected components of G
and to checking additional conditions that guarantee that the partial solutions can be
combined into a full solution for (G, H,H).

LEMMA 3.9. Let (G, H,H) be an instance of PEP. Let G1, . . . , Gt be the connected
components of G. Let Hi be the subgraph of H induced by the vertices of Gi, and let Hi
be H restricted to Hi. Then G has an embedding extending H if and only if

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:18 P. Angelini et al.

(1) Gi has an embedding extending Hi , for every 1 ≤ i ≤ t, and
(2) for every 1 ≤ i, j ≤ t with j �= i, and for each facial cycle �C of Hi, no two vertices of

Hj are separated by �C.

PROOF. Clearly, the two conditions of the lemma are necessary. To show that they are
also sufficient, assume that the two conditions are satisfied and proceed by induction
on the number t of connected components of G.

If t = 1, then G is connected and there is nothing to prove. Assume now that G has
t ≥ 2 connected components G1, . . . , Gt. Let Hi and Hi be defined as in the statement
of the lemma. Note that Hi may consist of several connected components. Let CF be
the component-face tree of H, rooted at a node that represents an arbitrary face of H.
We say that a face fi of H is the outer face of Hi if at least one child of fi in CF is a
component of Hi but the parent of fi is not a component of Hi. Observe that due to the
second condition of the lemma, each Hi has exactly one outer face fi. We thus have a
sequence of (not necessarily distinct) outer faces f1, . . . , ft of H1, . . . ,Ht.

Let us now assume, without loss of generality, that in the subtree of CF rooted at f1,
there is no outer face fi �= f1. This implies that f1 is the only face of H that is incident
both to H1 and to H − H1. By induction, the embedding H − H1 can be extended to
an embedding G≥2 of the graph G − G1. By the first condition of the lemma, H1 can
be extended into an embedding G1 of G1. The two embeddings H − H1 and H1 share a
single face f1.

When extending the embedding H1 into G1, the face f1 of H1 can be subdivided into
several faces of G1. Let f ′ be any face of G1 obtained by subdividing f1. Analogously, in
the embedding G≥2 the face f1 can be subdivided into several faces, among which we
choose an arbitrary face f ′′.

We then glue the two embeddings G1 and G≥2 by identifying the face f ′ of G1 and the
face f ′′ of G≥2 into a single face whose boundary is the union of the boundaries of f ′
and f ′′. This yields an embedding of G that extends H.

Note that the second condition of Lemma 3.9 can easily be tested in polynomial
time. Thus, we can use the characterization to directly prove that PARTIALLY EMBEDDED

PLANARITY is solvable in polynomial time. In the rest of the article, we describe a more
sophisticated algorithm that solves PEP in linear time.

4. LINEAR-TIME ALGORITHM

In this section, we devise a linear-time algorithm for solving PEP. The algorithm ba-
sically follows the outline of the characterization. The first milestone is a linear-time
algorithm for testing the planarity of biconnected PEGs. Afterward, we show that the ad-
ditional conditions for the planarity of connected and disconnected PEGs can be checked
in linear time.

Essentially, to solve the biconnected case, it is sufficient to give a linear-time imple-
mentation of the algorithm sketched at the end of Section 3.1. In fact, most of the steps
sketched there are fairly easy to implement in linear time. The problem of finding a
compatible embedding of a P-node, however, is tricky. Indeed, a P-node μ may contain
a linear number of facial cycles of H that project to cycles in skel(μ). Further, a linear
number of virtual edges of skel(μ) may have no H-edge adjacent to the poles of μ; hence,
the positions at which they have to be inserted in the cyclic orderings around the poles
of μ depend only on the cycle containment constraints. To process the skeleton of a
P-node μ in time proportional to its size, we would need to find, for each virtual edge
e of skel(μ), a position such that e is contained in all and only the cycles in which it
needs to be contained.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:19

Therefore, the main problem for reaching linear running time stems from the cycle
compatibility constraints (condition 2 of Lemma 2.1). The constraints stemming from
rotation system (condition 1 of Lemma 2.1) consist of orderings of subsets of the edges
incident to each vertex. Thus, the total size of the latter constraints is linear, and
additionally, the constraints are very “local.” In light of these two properties, it is not
surprising that the rotation system constraints are relatively simple to handle in total
linear time. The same does not hold, however, for the cycle containment constraints. As
specified in condition 2 of Lemma 2.1, these constraints determine, for each directed
facial cycle �C of H and each vertex v of H − C, whether v is to the left or to the right of
�C. Note that the graph H may contain a linear number of facial cycles, and thus this
amounts to quadratically many cycle–vertex constraints. Further, these constraints do
not exhibit any locality on G. Evidently, a lot of the information encoded in the cycle
containment constraints is redundant, as the set of cycles involved in these constraints
is the set of facial cycles of a planar graph.

We use two different approaches to handle the cycle containment constraints in
linear time. One is to ignore them; we prove that this yields a correct solution if H is
connected, as in this case the cycle containment constraints are implied by the rotation
system constraints. The second consists of considering restricted instances, where the
constraints can easily be expressed in linear time and space. Suppose that we have a
PEG (G, H,H) with a face f of H such that all vertices of H are part of at least one facial
cycle of f . This implies that each facial cycle of H has f on its left side and the right
side does not contain any vertex of H. In this case, the cycle containment constraints
of each facial cycle �C of f can be expressed as V right

H ( �C) = ∅, thus yielding a set of
constraints whose size is linear. Moreover, in the SPQR-tree, it is sufficient to keep
track of which virtual edges contain vertices of H and which do not. This information
is much easier to aggregate than information about individual vertices and all of their
cycle containment constraints.

First, we tackle the case in which G is biconnected. The algorithm solving this case,
presented in Section 4.3, uses the algorithms presented in Sections 4.1 and 4.2 as
subroutines to solve more restricted subcases. Then, we deal with the case in which
G is simply connected and with the general case, where G may be disconnected,
in Section 4.4. The algorithm we present exploits several auxiliary data structures,
namely block-cutvertex trees, SPQR-trees, enriched block-cutvertex trees, block-face
trees, component-face trees, and vertex-face incidence graphs. Note that all of these
data structures can easily be computed in linear time (see Section 2.3).

4.1. G Biconnected, H Connected

In this section, we show how to solve PEP in linear time for biconnected PEGs (G, H,H)
with H connected. We first show that in this case the rotation system alone is sufficient
for finding an embedding extension.

LEMMA 4.1. Let (G, H,H) be a PEG such that H is connected. Let G be any planar
embedding of G satisfying condition 1 of Lemma 2.1. Then, G satisfies condition 2 of
Lemma 2.1.

PROOF. Suppose, for a contradiction, that a planar embedding G of G exists such
that G satisfies condition 1 and does not satisfy condition 2 of Lemma 2.1. Then, there
exists a facial cycle �C of H such that either there exists a vertex x ∈ V left

H ( �C) with
x ∈ V right

G ( �C) or there exists a vertex x ∈ V right
H ( �C) with x ∈ V left

G ( �C). Suppose that we
are in the former case, as the latter case can be treated analogously. Since H is a planar
embedding and H is connected, there exists a path P = (x1, x2, . . . , xk) ∈ H such that x1

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:20 P. Angelini et al.

is a vertex of �C, xi ∈ V left
H ( �C), for each i = 2, . . . , k, and xk = x. Denote by x−

1 and by x+
1

the vertex preceding and following x1 in the oriented cycle �C, respectively. Consider the
placement of x2 with respect to �C in G. As x2 /∈ �C, either x2 ∈ V left

G ( �C) or x2 ∈ V right
G ( �C).

In the first case, the path (x2, . . . , xk) crosses �C, since x2 ∈ V left
G ( �C), xk ∈ V right

G ( �C),
and no vertex vi belongs to �C, for i = 2, . . . , k, thus contradicting the planarity of the
embedding G. In the second case, the clockwise order of the edges incident to x1 in H
is (x1, x−

1 ), (x1, x2), and (x1, x+
1 ), whereas the clockwise order of the edges incident to x1

in G is (x1, x−
1 ), (x1, x+

1 ), and (x1, x2), thus contradicting the assumption that G satisfies
condition 1 of Lemma 2.1.

By Lemma 4.1, testing whether a planar embedding G exists satisfying conditions 1
and 2 of Lemma 2.1 is equivalent to testing whether a planar embedding G exists
satisfying condition 1 of Lemma 2.1. Due to Lemma 3.2, testing whether a planar
embedding G exists satisfying condition 1 is equivalent to testing whether the skeleton
of each node of the SPQR-tree of G has a planar embedding that is edge-compatible
with H. We now describe an algorithm—Algorithm BC (for G Biconnected and H
Connected)—that achieves this in linear time.

Algorithm BC. Construct the SPQR-tree T of G and root it at an arbitrary Q-node.
This choice determines the pertinent graph of each node μ of T and also determines the
parent virtual edge in the skeleton of each nonroot node μ of T . A bottom-up visit of T is
performed, such that after a node μ of T has been visited, an embedding of skel(μ) that
is edge-compatible with H is selected, if it exists. To find an edge-compatible embedding
of the skeleton skel(μ) of a node μ of T , we need to know whether the expansion graph
of each virtual edge uv of skel(μ) contains H-edges incident to u and v. Due to the
bottom-up traversal, the pertinent graphs of all children have already been processed
by the algorithm, and we can thus aggregate this information for all virtual edges,
except for the parent edge.

To keep track of the edges of H that belong to pert(μ) and that are incident to the
pole u(μ), define the first edge fu(μ) and the last edge lu(μ) as the edges of H incident
to u(μ) in pert(μ) such that all other edges of H incident to u(μ) in pert(μ) appear
between fu(μ) and lu(μ) in the counterclockwise order of the edges incident to u(μ) in H.
The first and last edge of v(μ) are defined analogously. Note that if the edges of H that
belong to pert(μ) and are incident to u(μ) do not form an interval in the rotation of u in
H, then the skeleton of μ has no edge-compatible embedding and the PEG (G, H,H) is
nonplanar.

After a node μ of T has been visited by the algorithm, edges fu(μ), lu(μ), fv(μ), and lv(μ)
are associated with μ. We can then also refer to them as fu(e), lu(e), fv(e), and lv(e), where
e is the virtual edge corresponding to μ in the skeleton of the parent of μ.

If μ is a Q- or an S-node, no check is needed. As skel(μ) is a cycle (possibly of length 2
in case of a Q-node), the only planar embedding of skel(μ) is edge-compatible with H.
The edges fu(μ), lu(μ), fv(μ), and lv(μ) are easily computed.

If μ is an R-node, then skel(μ) has only two planar embeddings. For each of them,
verify if it is edge-compatible with H by performing the following check. For each vertex
x of skel(μ), restrict the circular list of its incident virtual edges to the virtual edges
e1, . . . , eh that contain an edge of H incident to x. Check if lx(ei ) precedes fx(ei+1) (for
i = 1, . . . , h, where eh+1 = e1) in the list EH(x) of edges incident to x in H. If x is a
pole, do an analogous check on the linear list of its incident virtual edges obtained by
removing the parent edge from the circular list. If one of the tests succeeds, then select
the corresponding embedding for skel(μ). Set fu(μ) = fu( f1), lu(μ) = lu( fp), fv(μ) = fv(g1),
and lv(μ) = lv(gq), where f1 and fp (g1 and gq) are the first and the last virtual edge in the

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:21

linear list of the virtual edges containing an edge of H and incident to u(μ) (respectively
to v(μ)).

If μ is a P-node, an embedding of skel(μ) is a counterclockwise order of its virtual
edges around u(μ). We describe how to verify whether an embedding of skel(μ) exists
that is edge-compatible with H.

Consider the virtual edges containing edges of H incident to u(μ). We show how
to construct a list Lu of such edges corresponding to the ordering they have in any
embedding of skel(μ) that is edge-compatible with H. Insert one such edge, say ei, into
Lu. Repeatedly consider the last element e j of Lu, and insert as the new last element
of Lu the edge e j+1 such that lu(e j ) immediately precedes fu(e j+1) in the counterclockwise
order of the edges incident to u(μ) in H. If e j+1 = ei, then Lu is the desired circular
list. If e j+1 does not exist, then the edge following lu(e j ) belongs to the parent edge of
μ. Then, consider the first edge ei. Repeatedly consider the first element e j of Lu, and
insert as the new first element of Lu the edge e j−1 such that fu(e j ) immediately follows
lu(e j−1) in the counterclockwise order of the edges incident to u(μ) in H. If e j−1 does not
exist, then check whether all virtual edges containing edges of H incident to u(μ) have
been processed, and in this case insert the the parent edge of μ as the first element of
Lu. Analogously, construct a list Lv.

Let Luv be the sublist obtained by restricting Lu to those edges that appear in Lv. Let
Lvu be the corresponding sublist of Lv. Check whether Luv and Lvu are the reverse of
each other. If this is the case, a list L of the virtual edges of skel(μ) containing edges of
H incident to u(μ) or to v(μ) can easily be constructed compatible with both Lu and Lv.

Finally, arbitrarily insert into L the virtual edges of skel(μ) not in Lu and not in Lv,
thus obtaining an embedding of skel(μ) edge-compatible with H.

Denote by f1 and fp (by g1 and gq) the virtual edges containing edges of H incident
to u(μ) (respectively to v(μ)) following and preceding the parent edge of μ in L. Set
fu(μ) = fu( f1), lu(μ) = lu( fp), fv(μ) = fv(g1), and lv(μ) = lv(gq).

THEOREM 4.2. Let (G, H,H) be an n-vertex instance of PEP such that G is biconnected
and H is connected. Algorithm BC solves PEP for (G, H,H) in O(n) time.

PROOF. We show that Algorithm BC processes each node μ of T in O(kμ) time, where
kμ is the number of children of μ in T .

First, observe that the computation of fu(μ), lu(μ), fv(μ), and lv(μ) is trivially done in
O(1) time once the embedding of skel(μ) has been decided.

If μ is a Q-node or an S-node, Algorithm BC does not perform any check or embedding
choice.

If μ is an R-node, Algorithm BC computes the two planar embeddings of skel(μ)
in O(kμ) time. For each of these embeddings, Algorithm BC processes each vertex x
of skel(μ) separately, considering the list of the virtual edges incident to x (which is
trivially constructed in O(t) time, where t is the number of such edges), and restricting
the list to those virtual edges containing an edge of H incident to x (for each virtual
edge, it suffices to check whether the first edge incident to x is associated with an edge
of H, which is done in O(1) time). Checking whether lx(ei ) precedes fx(ei+1) in the list of
the edges incident to x in H is done in O(1) time. Hence, the total time spent for each
node x is O(t). Summing up over all nodes of skel(μ) results in a total O(kμ) time, as
every edge is incident to two nodes and the total number of edges in skel(μ) is O(kμ).

If μ is a P-node, extracting the virtual edges of skel(μ) containing edges of H incident
to u(μ) or to v(μ) can be done in O(kμ) time, as in the R-node case. For each of such edges,
equipping fu(e), lu(e), fv(e), and lv(e) with a link to e is done in constant time. Determining
an ordering of the virtual edges containing edges of H incident to u(μ) can be done in
O(kμ) time, as the operations performed for each virtual edge ei are accessing the first

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:22 P. Angelini et al.

and the last edge of ei, accessing the edge following the last edge of ei (preceding the
first edge of ei) in the counterclockwise order of the edges incident to u(μ) in H, and
accessing a virtual edge linked from the first or last edge; each of these operations is
trivially done in O(1) time. Marking the virtual edges in Lu and in Lv is done in O(kμ)
time, as Lu and Lv have O(kμ) elements. Then, obtaining Luv and Lvu, and checking
whether they are the reverse of each other, is done in O(kμ) time. Finally, extending
Luv to L is also easily done in O(kμ) time; namely, if Luv is empty, then let L be the
concatenation of Lu and Lv (where such lists are made linear by cutting them at any
point). Otherwise, start from an edge ei of Luv; ei is also in Lu and in Lv; insert ei into
L; insert into L all the edges of Lu following ei until the next edge ei+1 of Luv has been
found; insert into L all edges of Lv preceding ei until the next edge ei+1 of Luv has been
found; insert ei+1 into L, and repeat the procedure. Each element of Luv, Lu, and Lv is
visited once, and hence such a step is performed in O(kμ) time.

As
∑

μ∈T kμ = O(n), the total running time of the algorithm is O(n).

Note that although Algorithm BC relies only on the assumptions that G is bicon-
nected and H is connected, we will only use it in the more special case where H is also
biconnected.

4.2. G Biconnected, All Vertices and Edges of G Lie in the Same Face of H
The PEGs considered in this section are denoted by (G( f ), H( f ),H( f )). Such instances
are assumed to satisfy the following properties: (i) G( f ) is biconnected, (ii) G( f ) and
H( f ) have the same vertex set, (iii) all vertices and edges of H( f ) are incident to the
same face f of H( f ), and (iv) no edge of G( f )\H( f ) connects two vertices of the same
block of H( f ). Algorithm BF, which deals with such a setting, is used as a subroutine
by Algorithm BA, to be shown later, dealing with the instances of PEP in which G is
biconnected and H is arbitrary.

First, we show that the structure of the cycles in H( f ) is very special.

PROPERTY 3. Every simple path with at least two vertices of H( f ) is contained in at
most one simple cycle of H( f ).

PROOF. Suppose that there exists a path (that can possibly be a single edge) of H( f )
belonging to at least two simple cycles of H( f ). Then, such cycles share edges and
define at least three regions of the plane. Not all edges of the two cycles can be incident
to the same region, contradicting the fact that all edges of H( f ) are incident to the
same region of the plane in H( f ).

Since all vertices and edges are incident to f , the only relevant cycles for which
cycle–vertex constraints have to be checked are the facial cycles of f . We exploit this
particular structure of the input to simplify the test of cycle compatibility with H( f )
for the skeleton of a node μ of T ( f ), where T ( f ) is the SPQR-tree of G( f ).

LEMMA 4.3. Consider any node μ of T ( f ). Then, an embedding of skel(μ) is cycle-
compatible with H( f ) if and only if for every facial cycle �C of H( f ) whose edges project
to a cycle �C ′ of skel(μ), no vertex and no edge of skel(μ) is to the right of �C ′, where �C ′ is
oriented according to the orientation of �C.

PROOF. By assumption (iii) on the input, all vertices and edges of H( f ) are incident
to the same face f of H( f ). By construction, every facial cycle �C of H( f ) is oriented
in such a way that f and hence all vertices of H( f ) are to the left of �C. Then, by
Lemma 3.4, if the edges of �C determine a cycle �C ′ of virtual edges of skel(μ), all vertices
of skel(μ) that are not in �C and all virtual edges of skel(μ) that are not in �C ′ and that

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:23

contain vertices of G( f ) have to be to the left of �C ′. Finally, all virtual edges that are
not in �C ′ and that do not contain any vertex of G( f ) (i.e., virtual edges corresponding
to Q-nodes) have one end-vertex that is not in �C, by assumption (iv) on the input. Such
an end-vertex forces the edge to be to the left of �C ′.

To find compatible embeddings for the skeletons of the nodes of T ( f ), we again need
to find edge-compatible embeddings, which can be done as in Algorithm BC. However,
unlike Algorithm BC, Algorithm BF has also to make embedding choices to satisfy cycle
compatibility constraints. Such constraints are the ones expressed by Lemma 4.3: for
any node μ of T ( f ), the sought-after embedding of skel(μ) is such that for every facial
cycle �C of H( f ) whose edges project to a cycle �C ′ of skel(μ), no vertex and no edge of
skel(μ) is to the right of �C ′, where �C ′ is oriented according to the orientation of �C.

The choice of an embedding for skel(μ) does not affect whether the cycle compatibility
constraints are satisfied for the facial cycles �C of H( f ) whose edges project to a single
virtual edge of skel(μ). On the other hand, the choice of an embedding for skel(μ) does
affect whether the cycle compatibility constraints are satisfied for the facial cycles �C of
H( f ) whose edges project to a cycle �C ′ of skel(μ). Hence, to ensure cycle compatibility,
we need to (quickly) find the projections of the facial cycles of H( f ) in the skeletons
of the nodes of T ( f ) and need to perform embedding choices for such skeletons that
satisfy the constraints of Lemma 4.3. These tasks are simplified by the following two
observations.

First, the facial cycles �C of H( f ) whose edges project to a cycle �C ′ of skel(μ) are
composed of a sequence of traversing paths for the neighbors of μ in T ( f ): for any
neighbor ν of μ in T ( f ), a traversing path is a path between u(ν) and v(ν) that is
composed of edges of H( f ), that belongs to pert(ν), and that is part of a facial cycle �C
of H( f ) not entirely contained in pert(ν).

Second, by Property 3, every edge of H( f ) (and hence every path of H( f )) can be
contained in at most one facial cycle of H( f ). Therefore, a single flag suffices to encode
the existence of a traversing path for a node of T ( f ).

We now give a high-level description of Algorithm BF.
Like Algorithm BC, Algorithm BF starts with the construction of the SPQR-tree

T ( f ) of G( f ), roots it at an arbitrary Q-node, and visits T ( f ) in bottom-up order in
such a way that after a node μ of T ( f ) has been visited, an embedding of skel(μ) that
is compatible with H( f ) is selected, if it exists.

To deal with edge compatibility constraints, Algorithm BF maintains edges fu(μ),
lu(μ), fv(μ), and lv(μ) for each node μ of T ( f ) (and for each virtual edge in the skeleton
of each node of T ( f )) as in Algorithm BC. Additionally, to deal with cycle compatibility
constraints, the algorithm maintains a flag p(μ) for each node μ of T ( f ) such that
p(μ) is set to TRUE if there exists a traversing path P for μ; flag p(μ) is set to FALSE

otherwise. Furthermore, to encode the direction of P the algorithm maintains a flag
uv(μ). If p(μ) = TRUE, the flag uv(μ) is set to TRUE if P is oriented from u(μ) to v(μ)
according to the orientation of �C, and it is set equal to FALSE otherwise. We also refer
to these flags as p(e) and uv(e), where e is the virtual edge corresponding to μ in the
skeleton of the parent of μ.

Now, we state lemmas specifically dealing with S-, R-, and P-nodes of T ( f ). These
lemmas will be used in the description of Algorithm BF.

LEMMA 4.4. Let μ be an S-node of T ( f ) with children μ1, μ2, . . . , μk. Then, p(μi) =
TRUE for some 1 ≤ i ≤ k if and only if p(μ j) = TRUE for all 1 ≤ j ≤ k.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:24 P. Angelini et al.

PROOF. If p(μ j) = TRUE for all 1 ≤ j ≤ k, then trivially p(μi) = TRUE. If p(μi) = TRUE

for some 1 ≤ i ≤ k, there exists a traversing path of μi that is part of a simple cycle �C of
H( f ) not entirely contained in pert(μi); however, as μ is an S-node, �C does not entirely
lie inside pert(μ), as otherwise it would entirely lie inside pert(μi). Then, �C consists of
a traversing path of pert(μ j), for all 1 ≤ j ≤ k, and of a traversing path of the parent
edge of skel(μ), thus proving the lemma.

Next, we derive a simple criterion for an embedding of an R-node to be cycle-
compatible. By Lemma 4.3, an embedding of a skeleton skel(μ) is cycle-compatible
if for each facial cycle �C of f that projects to a cycle �C ′ in skel(μ), the right side of �C ′

is empty. For an R-node μ this condition can be reformulated: each such cycle �C ′ must
have a face on its right side.

LEMMA 4.5. Let μ be an R-node of T ( f ). If an edge e of skel(μ) has a traversing path
belonging to a facial cycle �C, let us orient e in the direction determined by the projection
of �C in skel(μ). An embedding of skel(μ) is cycle-compatible with H( f ) if and only if for
each face g of the embedding of skel(μ), either (i) every virtual edge e on the boundary of
g is oriented so that g is to the right of e or (ii) none of the virtual edges on the boundary
of g is oriented in a way that g is to the right of it.

PROOF. Suppose that an embedding of skel(μ) is cycle-compatible with H( f ). Let g
be a face of the embedding. If no edge e on the boundary of g contains a traversing
path, then g satisfies condition (ii). Otherwise, assume that on the boundary of g there
is an edge e containing a traversing path P such that g is to the right of e. Let �C be
the facial cycle of H( f ) that contains P. By Lemma 4.3, �C projects to a directed cycle
�C ′ in skel(μ), and no vertex or edge of skel(μ) is embedded to the right of �C ′. Thus, �C ′
corresponds to the boundary of the face g, and hence g satisfies condition (i).

Suppose now that in an embedding of skel(μ), every face satisfies condition (i) or
condition (ii). We claim that the embedding of skel(μ) is cycle-compatible with H( f ).
To prove it, we use Lemma 4.3. Let �C be a facial cycle of H( f ) that projects to a simple
cycle �C ′ in skel(μ). Let e be any edge of �C ′ and let g be the face to the right of e in
the embedding of skel(μ). Necessarily, g satisfies condition (i). Hence, each edge on the
boundary of g has a traversing path. The union of these paths forms a cycle in H( f ),
and by Property 3, this cycle is equal to �C. Thus, the boundary of g coincides with the
cycle �C ′. In particular, no vertex and no edge of skel(μ) is embedded to the right of
�C ′. By Lemma 4.3, this means that the embedding of skel(μ) is cycle-compatible with
H( f ).

We next deal with P-nodes. The special structure of the PEGs (G( f ), H( f ),H( f ))
considered in this section implies that for each P-node μ, there exists at most one facial
cycle �C of f that projects to a cycle in skel(μ).

LEMMA 4.6. Let μ be a P-node of T ( f ). There exist either zero or two virtual edges of
skel(μ) containing a traversing path.

PROOF. If there exists one virtual edge ei of skel(μ) containing a traversing path that
is part of a simple cycle �C of H( f ) not entirely contained in pert(ei), another virtual edge
of skel(μ) containing a traversing path that is part of �C exists, as otherwise �C would
not be a cycle. Further, if there exist at least three virtual edges of skel(μ) containing
traversing paths, then each such path belongs to two simple cycles, thus contradicting
Property 3.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:25

Fig. 9. Illustration for the case in which μ is an R-node. (a) One of the two embeddings of skel(μ). Grey
regions represent expansion graphs of the virtual edges of the skeleton of μ. The expansion graph of the
parent edge ep is shaded. Edges in G( f ) not in H( f ) are not shown. (b) Graph skel′(μ) obtained by restricting
skel(μ) to those edges ei �= ep with p(ei) = TRUE. The only edges of H( f ) shown are those belonging to
traversing paths for children of μ in T ( f ).

Hence, the skeleton of every P-node contains at most one such cycle, whose right side
must be empty by Lemma 4.3. This considerably simplifies the problem of finding a
cycle-compatible embedding of a P-node. We are now ready to exhibit the main steps
of Algorithm BF.

Algorithm BF. As stated earlier, Algorithm BF performs a bottom-up traversal of
the rooted SPQR-tree T ( f ) of G( f ) such that for each processed node μ, a compatible
embedding of skel(μ) is computed, if it exists. The algorithm computes the edges fu(μ),
lu(μ), fv(μ), and lv(μ) for each node μ of T ( f ) (and for each virtual edge in the skeleton of
each node of T ( f )) as in Algorithm BC to find edge-compatible embeddings. Further, it
computes the flags p(μ) and uv(μ) for each processed node to identify facial cycles of f
that project to cycles in skel(μ). We now give a detailed description of how Algorithm
BF processes a node μ, assuming that all flags and edges for all children of μ have
already been computed.

If μ is a Q- or an S-node, no check is needed. As skel(μ) is a cycle, the only planar
embedding of skel(μ) is compatible with H( f ). Edges fu(μ), lu(μ), fv(μ), and lv(μ), as well
as flags p(μ) and uv(μ), can easily be computed. In particular, by Lemma 4.4, if μ is an
S-node, then p(μ) = p(μi) for any child μi of μ.

If μ is an R-node, as in Figure 9(a), then for each of the two planar embeddings of
skel(μ), check if it is edge-compatible with H( f ) and set values for fu(μ), lu(μ), fv(μ), and
lv(μ) as in Algorithm BC. To check if any of the two embeddings is cycle-compatible with
H( f ), we check if the conditions of Lemma 4.5 are satisfied. To perform this test, we
need, for each virtual edge e = uv of skel(μ), the corresponding flags p(e) and uv(e).
This information is already known for all virtual edges, except the parent edge ep of
skel(μ). To compute the flags for ep, we need to determine whether the virtual edge ep
contains a traversing path Pp and, if it does, determine its orientation. By definition
of traversing path, Pp exists if and only if there exists a traversing path in pert(μ).
Restrict skel(μ) to those edges ei �= ep with p(ei) = TRUE, and denote by skel′(μ) the

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:26 P. Angelini et al.

Fig. 10. Illustration for the case in which μ is a P-node. An embedding of skel(μ) is shown. Grey regions
represent expansion graphs of the virtual edges of the skeleton of μ. The expansion graph of the parent edge
ep is shaded. Edges in G( f ) not in H( f ) are not shown.

resulting graph. Refer to Figure 9(b). Note that by Property 3, for each virtual edge
ei ∈ skel′(μ), there exists exactly one traversing path in pert(ei), and this traversing
path is contained in exactly one simple cycle of H( f ). In addition, for each simple cycle
�C of H( f ) passing through a vertex of skel′(μ), there exist exactly two virtual edges of
skel′(μ) incident to this vertex that contain a traversing path that is part of �C. These
two observations imply that a traversing path Pp exists if and only if both the degree
of u(μ) and the degree of v(μ) in skel′(μ) are odd. Hence, if both the degree of u(μ)
and the degree of v(μ) are odd, then set p(μ) = TRUE and p(ep) = TRUE; otherwise, set
p(μ) = FALSE and p(ep) = FALSE. In the former case, the orientation of Pp is the only
one that makes the number of edges ei incident to u(μ) with uv(ei) = TRUE equal to
the number of edges ei incident to u(μ) with uv(ei) = FALSE; this determines uv(μ) and
uv(ep).

Now, p(ei) and uv(ei) are defined for every virtual edge ei of skel(μ). Consider every
face g of skel(μ) and denote by e j = (uj, v j) any edge incident to g. Suppose, without
loss of generality, that g is to the right of e j when traversing it from uj to v j . Then,
check if p(e j) = FALSE, or p(e j) = TRUE and uv(e j) = FALSE for all edges e j incident to g,
and check whether p(e j) = TRUE and uv(e j) = TRUE for all edges e j incident to g. If one
of the two checks succeeds, the face does not violate Lemma 4.5, but otherwise it does.

If μ is a P-node, as in Figure 10, check if an embedding of skel(μ) exists that is
compatible with H( f ) as follows. By Lemma 4.6, there exist either zero or two virtual
edges of skel(μ) containing a traversing path. Then, consider the children μi of μ such
that p(μi) = TRUE. If zero or two such children exist, then the parent edge of skel(μ)
has no traversing path; if one such a child exists, then the parent edge of skel(μ) has a
traversing path. Denote by ei and e j the edges of skel(μ) containing a traversing path,
if such edges exist, where possibly e j is the parent edge (in this case, set p(e j) = TRUE,
and set uv(e j) = TRUE if uv(ei) = FALSE and uv(e j) = FALSE otherwise). If there exists
no edge ei of skel(μ) such that p(ei) = TRUE, then construct an embedding of skel(μ)
that is edge-compatible with H( f ), if possible, as in Algorithm BC; as there exists no
facial cycle of H( f ) whose edges belong to distinct virtual edges of skel(μ), then an
edge-compatible embedding is also cycle-compatible with H( f ). Edges fu(μ), lu(μ), fv(μ),

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:27

and lv(μ) are computed as in Algorithm BC. Set flag p(μ) = FALSE. If there exist two
edges ei and e j such that p(ei) = TRUE, p(e j) = TRUE, and p(el) = FALSE for every edge
el �= ei, e j , suppose that uv(ei) = TRUE and uv(e j) = FALSE, the case in which uv(ei) = FALSE

and uv(e j) = TRUE being analogous. Note that the expansion graphs of ei and e j must
contain at least one H-edge incident to u(μ) as well as at least one H-edge incident to
v(μ). By Lemma 4.3, e j has to immediately precede ei in the counterclockwise order
of the edges incident to u(μ). Then, construct Lu and Lv as in Algorithm BC; check
whether Lu and Lv, restricted to the edges that appear in both lists, are the reverse of
each other; and further, check whether e j precedes ei in Lu and whether ei precedes e j in
Lv. If the checks are positive, construct the list L of all edges of skel(μ) as in Algorithm
BC, except for the fact that the edges of skel(μ) not in Lu and not in Lv are not inserted
between e j and ei. Edges fu(μ), lu(μ), fv(μ), and lv(μ) are computed as in Algorithm BC. Set
p(μ) = FALSE if e j corresponds to a child μ j of μ and p(μ) = TRUE if e j is the parent edge
of μ; in the latter case, uv(μ) = TRUE if uv(μi) = TRUE and uv(μ) = FALSE otherwise.

We get the following theorem.

THEOREM 4.7. Let (G( f ), H( f ),H( f )) be a biconnected PEG with n vertices such that
G( f ) and H( f ) have the same vertex set, all vertices and edges of H( f ) are incident to
the same face f of H( f ), and no edge of G( f )\H( f ) connects two vertices belonging to
the same block of H( f ). Algorithm BF solves PEP for (G( f ), H( f ),H( f )) in O(n) time.

PROOF. We show that Algorithm BF processes each node μ of T ( f ) in O(kμ) time,
where μ1, . . . , μkμ

are the children of μ in T ( f ).
Observe that the computation of fu(μ), lu(μ), fv(μ), and lv(μ) and the check of edge-

compatibility are done as in Algorithm BC; hence, they take O(kμ) time. We describe
how to check the cycle compatibility of an embedding of skel(μ) in O(kμ) time.

If μ is a Q-node or an S-node, Algorithm BF neither performs any checks nor does it
make any embedding choices.

If μ is a P-node, then Algorithm BF performs the same checks and embedding choices
as Algorithm BC, plus the check that the two edges ei and e j with p(ei) = TRUE and
p(e j) = FALSE (notice that one of these edges could be the the parent edge of μ) are
consecutive (with the right order) in Lu and Lv. This is done in constant time. Flags
p(μ) and uv(μ) are computed in O(kμ) time, by simply checking the flags p(μi) and
uv(μi), for i = 1, . . . , k.

Suppose that μ is an R-node. The construction of skel′(μ) can easily be done in O(kμ)
time, as such a graph can be obtained from skel(μ) by simply checking flag p(ei), for
each edge ei in skel(μ). Then, the degree of u(μ) and v(μ) in skel′(μ), as well as the flags
p(μ), uv(μ), p(ep) and uv(ep), can be computed in total O(kμ) time. The test on each
face takes time linear in the number of edges incident to the face. Namely, such a test
consists of two checks, each of which requires considering a constant number of flags
associated with each edge of the face. As every edge is incident to two faces of skel(μ)
and the number of edges in skel(μ) is O(kμ), the total time spent for the test on the
faces of skel(μ) is O(kμ).

As
∑

μ∈T kμ = O(n), the total running time of the algorithm is O(n).

4.3. G Biconnected

In this section, we show how to solve PEP for general biconnected PEGs—that is PEGs
(G, H,H) where G is biconnected and H is arbitrary. The algorithm employs the algo-
rithms from the previous two sections as subroutines. The general outline is as follows.
First, compute a subgraph H+ of G with the following properties: (i) H+ is biconnected;
(ii) H is a subgraph of H+; and (iii) H+ contains every nonlocal H-bridge of G. Second,
solve instance (H+, H,H) obtaining an embedding H+ of H+ extending H, if H+ admits

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:28 P. Angelini et al.

one. We will show that this step can be reduced to several applications of Algorithm
BF. Finally, solve instance (G, H+,H+) with Algorithm BC—we will see that H+ is
connected (even biconnected), and hence the algorithm can be applied.

In a first step, we ensure that all nonlocal H-bridges of G are trivial. Recall that
every nontrivial nonlocal H-bridge K has at most one candidate face fK of H where it
can be embedded. We obtain the graph H′ with embedding H′ as in Definition 3.7 by
adding the vertices of K − V (H) to H and embedding them into the face fK for each
nontrivial nonlocal H-bridge K of G.

Let H+ be the graph obtained from G by removing the vertices and edges (but not
the attachments) of all local H-bridges of G. Note that H′ ⊆ H+, that H+ and H′ have
the same vertex set, and that any embedding of H+ that extends H also extends H′
and vice versa.

Each H′-bridge K of H+ is nonlocal, and therefore there exists a unique face fK where
it needs to be embedded. Since H-bridges that are embedded in distinct faces of H do not
interact, we can solve the instances stemming from the faces of H independently, which
enables us to use Algorithm BF to find an embedding extension of H+. This motivates
the following definitions, which take a more local view at the PEG (H+, H′,H′). Let f
be a face of H′ and let V ( f ) be the set of vertices of H′ that are incident to f . Let H( f )
be the subgraph of H′ induced by V ( f ), let H( f ) be H′ restricted to H( f ), and let G( f )
be the subgraph of H+ induced by V ( f ). By construction, in any embedding of H+ that
extends H, the edges of G( f ) not belonging to H( f ) are embedded inside f .

Our approach is to first find an embedding H+ of H+ that extends H′ (i.e., solve
PEP for (H+, H′,H′)) and then find an embedding G for (G, H+,H+) (i.e., solve PEP

for (G, H+,H+)). The latter step is actually simple, as H+ is biconnected and thus
connected. Therefore, Algorithm BC can be used to solve this subproblem.

LEMMA 4.8. H+ is biconnected.

PROOF. By construction of H+, each H+-bridge of G has all of its attachment vertices
in the same block of H, and hence in the same block of H+, as H is a subgraph of H+.
Therefore, the number of blocks of H+ is not modified by the addition of the H+-bridges
of G. Since such an addition produces G, which is biconnected, it follows that H+ is
biconnected.

Clearly, if (G, H,H) is planar, then an embedding G of G extending H exists, and the
restriction of G to H+ yields an intermediate embedding H+ of H+ extending H′, which
can then be extended to an embedding of G extending H. We show that the choice of H+
does not change the possibility of finding such an embedding extension. In particular, if
H+

1 and H+
2 are two embeddings of H+ extending H, then the PEG (G, H+,H+

1 ) is planar
if and only if (G, H+,H+

2 ) is planar.

LEMMA 4.9. A biconnected PEG (G, H,H) is planar if and only if (a) H+ admits a planar
embedding extending H and (b) for every planar embedding H+ of H+, (G, H+,H+) is
planar.

PROOF. Clearly, if conditions (a) and (b) hold, then G has an embedding extending H.
To prove the converse, assume that G has an embedding G extending H. Clearly, G

contains a subembedding H+ of H+ that extends H, so condition (a) holds. It remains
to prove that condition (b) holds as well.

First, we introduce some terminology. Let f be any face of H and let H+ be any
embedding of H+ that extends H. In H+, the face f can be partitioned (by the edges of
H+ not in H) into several faces, which we will call the subfaces of f . A set of vertices
S ⊆ V (H) is said to be mutually visible in f with respect to H+ if H+ has a subface of
f that contains all vertices of S on its boundary.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:29

The proof that condition (b) holds is based on two claims. The first one shows that
for the vertices that belong to the same block of H, mutual visibility is independent of
the choice of H+.

Claim 3. Let �C be a facial cycle of f and let S ⊆ V ( �C) be a set of vertices of �C. If the
vertices in S are mutually visible in f with respect to at least one embedding of H+
that extends H, then they are mutually visible in f with respect to every embedding
of H+ that extends H.

Note that the mutual visibility of S in f only depends on the embedding H+ restricted
to G( f ). Let T be the SPQR-tree of G( f ). By Theorem 3.6, the embeddings of G( f ) that
extend H( f ) are exactly obtained by specifying a compatible embedding for the skeleton
of each node of T . Assume that G1 and G2 are two embeddings of G( f ) that extend H.
Assume that the vertices of S are mutually visible in f with respect to G1. We will show
that they are also mutually visible with respect to G2. In view of Theorem 3.6, we may
assume that G2 was obtained from G1 by changing the embedding of the skeleton of a
single node μ ∈ T .

Let us distinguish two cases, depending on whether �C is contained in the expansion
graph of a single virtual edge of skel(μ) or whether it projects to a cycle in skel(μ).

If �C is part of the expansion graph of a single virtual edge e = {x, y} ∈ skel(μ), then
let Ge be the embedded graph obtained as the union of the expansion graph of e and a
single edge connecting x and y, embedded in the outer face of the expansion graph. We
easily see that the vertices in S are mutually visible in f if and only if they share the
same face of Ge, other than the face that is to the right of �C. Since Ge does not depend
on the embedding of skel(μ), the vertices in S are mutually visible in G2.

Assume now that the cycle �C projects to a cycle �C ′ in skel(μ). By Lemma 4.3, in any
compatible embedding of skel(μ), all vertices and edges of skel(μ) that do not belong
to �C ′ are embedded to the left of �C ′. In particular, if μ is an R-node, then skel(μ) only
has a single compatible embedding. Thus, μ must be a P-node. Let e and e′ be the two
virtual edges of skel(μ) that form �C ′. In each compatible embedding of skel(μ), these
two edges must be embedded next to each other and in the same order. It follows easily
that any two compatible embeddings of skel(μ) yield embeddings of G( f ) in which the
vertices from S have the same mutual visibility. This completes the proof of the claim.

Let us proceed with the proof that condition (b) holds. We need more terminology.
Let K and K′ be a pair of local H-bridges of G whose attachments all appear on a
facial cycle �C of a face f in H. We say that K and K′ have a three-vertex conflict on �C
if they share at least three attachments, and that they have a four-vertex conflict on �C
if there are four vertices x, x′, y, y′ that appear on �C in this cyclic order, and x, y are
attachments of K, whereas x′, y′ are attachments of K′.

Claim 4. Assume that a face fK of H has been assigned to every local H-bridge K
of G so that all attachments of K are on the boundary of fK. Let H+ be an embedding
of H+ extending H. There is an embedding G of G extending H+, with the additional
property that each local H-bridge K is embedded inside a subface of fK if and only if:

(1) For any local H-bridge K, all attachments of K are mutually visible in fK with
respect to H+.

(2) If K and L are distinct local H-bridges assigned to the same face fK = fL such that
the attachments of K and L appear on a common facial cycle �C of H+, then K and
L have no conflict on �C.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:30 P. Angelini et al.

Clearly, the two conditions are necessary. To prove that they are also sufficient,
assume that both the conditions hold. Construct an embedding of G with the desired
properties as follows. Let f be any face of H. Observe that the first condition of the
claim guarantees that for every H-bridge K assigned to f, there is a face f ′ of H+ that
is a subface of f such that all attachments of K appear on the boundary of f ′. Let f ′
be a face of H+ that is a subface of f , and let K1, . . . Ks be all local H-bridges that were
assigned to f and whose attachments all appear on the boundary of f ′. We show that
all bridges K1, . . . , Ks can be embedded inside f ′.

First, observe that the boundary of f ′ is a simple cycle C ′, because H+ is biconnected.
In addition, observe that no two bridges Ki and Kj have a conflict on C ′, by the second
condition of the claim. To show that all bridges K1, . . . , Ks can be embedded inside C ′,
proceed by induction on s. If s = 1, the statement is clear. Assume that s ≥ 2 and that
the bridge K1 has been successfully embedded into f ′. The embedding of K1 partitions
f ′ into several subfaces f ′

1, . . . , f ′
t . Such subfaces are again bounded by simple cycles;

otherwise, G would not be biconnected. We claim that for every bridge Ki, with i ≥ 2,
there is a subface f ′

j containing all attachments of Ki. Consider any bridge Ki. Assume
first that Ki has an attachment x that is not an attachment of K1. Then, x belongs to a
unique subface f ′

j . Hence, if Ki has another attachment not belonging to f ′
j , there is a

four-vertex conflict of K1 and Ki on �C ′, contradicting the second condition of the claim.
Assume next that each attachment of Ki is also an attachment of K1. Then, Ki has ex-
actly two attachments, and if such attachments do not share a face f ′

j , a four-vertex con-
flict of K1 and Ki on �C ′ is created, again contradicting the second condition of the claim.

We can thus assign to each Ki a subface f ′
j that contains all of its attachments. By

induction, all Ki ’s can be embedded into their assigned faces, thus proving the second
claim.

The proof that condition (b) holds follows easily from the two claims. Namely, assume
that G has an embedding G extending H. Let H+ be G restricted to H+. For every local
H-bridge K of G, let fK be the face of H inside which K is embedded in G. Clearly, H+
satisfies the two conditions of the second claim, as it can be extended into G. Then, every
embedding of H+ that extends H satisfies the two conditions of the second claim: for the
first condition, this is a consequence of the first claim, and for the second condition, this
is obvious. We conclude that every embedding of H+ that extends H can be extended
into an embedding of G, thus proving condition (b) and hence the lemma.

As stated earlier, each H′-bridge K of (H+, H′,H′) is nonlocal, and we therefore know
into which face fK it needs to be embedded. Since H′-bridges that are embedded in
different faces do not interact, we can solve the subinstance (G( f ), H( f ),H( f )) arising
from each face separately. Clearly, if one of the instances fails, then G does not have
an embedding extension. If all instances admit embedding extensions, gluing them
together yields an embedding H+ of H+ extending H′. The previous lemma then implies
that (G, H,H) is planar if and only if (G, H+,H+) is planar. We are now ready to describe
Algorithm BA (for G Biconnected and H Arbitrary).

Algorithm BA. Starting from an instance (G, H,H) of PEP, graphs G( f ) and H( f ),
and embedding H( f ), for every face f of H, are computed as follows. For each H-bridge
K of G, determine whether it is local to a block of H or not. In the former case, K is
not associated to any face f of H. In the latter case, we compute the unique face f of
H in which K has to be embedded in any solution of instance (G, H,H) of PEP, and we
associate K with f .

These computations can be performed in linear time by applying Lemma 2.2. To
do so, we have to construct the CF-tree of H, the BF-tree of H, the VF-graph of H,
and the enriched block-cutvertex tree of each connected component of H. As shown in
Section 2.3, this can be done in linear time.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:31

Then, for each face f of H, consider every H-bridge K associated with f . Add the
vertices and the edges of K to G( f ), and add the vertices of K to H( f ) inside f . Let
H+ = ⋃

f ∈H G( f ). For each face f of H, call Algorithm BF with input (G( f ), H( f ),H( f )).
If Algorithm BF succeeds for every instance (G( f ), H( f ),H( f )) (thus providing an
embedding H+( f ) of G( f ) whose restriction to H( f ) is H( f )), merge the embeddings
H+( f ) of G( f ) into a planar embedding H+ of H+. Finally, call Algorithm BC with
(G, H+,H+).

THEOREM 4.10. Let (G, H,H) be an n-vertex instance of PEP such that G is biconnected.
Algorithm BA solves PEP for (G, H,H) in O(n) time.

PROOF. The correctness of the algorithm follows from Lemma 4.9.
By Lemma 2.2, determining whether an H-bridge K is local or not can be done in

time linear in the size of K. Further, if K is nonlocal, the only face of H incident to all
attachment vertices of K can be computed, if it exists, in time linear in the size of K.
Then, the construction of graphs G( f ), H( f ), H+ and of embeddings H( f ) takes O(n)
time, as it only requires to perform the union of graphs that have total O(n) edges.

By Theorem 4.7, Algorithm BF runs in time linear in the number of edges of G( f ),
and hence all executions of Algorithm BF take a total O(n) time. By Theorem 4.2,
Algorithm BC runs in O(n) time, and hence the total running time of Algorithm BA is
O(n).

This concludes the case of biconnected PEGs.

4.4. G Connected or Disconnected

In this section, we give an algorithm that decides the planarity of general PEGs. First,
we deal with instances (G, H,H) of PEP in which G is connected, every nontrivial
H-bridge of G is local, and H is arbitrary. We show that the three conditions of
Lemma 3.8 can be checked in linear time. The first condition can be checked in linear
time by Theorem 4.10. The second and the third conditions can be checked in linear
time by the following two lemmas.

LEMMA 4.11. Let (G, H,H) be a connected PEG. Let G1, . . . , Gt be the blocks of G, and
let Hi be the subgraph of H induced by the vertices of Gi. There is a linear-time algorithm
that checks whether any two distinct graphs among H1, . . . , Ht alternate around any
vertex of H.

PROOF. Let us describe the algorithm that performs the required checks. We assume
that every edge e of H has an associated label indicating the block of G that contains e.
We also associate to each block two integer counters that will be used in the algorithm.

We now describe a procedure TEST(x), which, for a given vertex x ∈ V (H), checks
whether any two graphs Hi, Hj alternate around x. Let us use the term x-edge to refer
to any edge of H incident to x, and let x-block refer to any block of G that contains at
least one x-edge.

The procedure TEST(x) proceeds as follows. First, for every x-block Gi, it determines
the number of x-edges in Gi and stores this in a counter associated with Gi. This is
done by simply looking at every edge incident to x and incrementing the counter of
the corresponding block. Next, TEST(x) visits all x-edges in the order determined by
the rotation σH(x), starting at an arbitrary x-edge. For each x-block, it maintains in a
counter the number of its x-edges that have been visited so far. An x-block is active if
some but not all of its x-edges have already been visited.

The procedure TEST(x) also maintains a stack containing the active x-blocks. At the
beginning of the procedure, the counters of visited edges of each x-block are set to zero
and the stack is empty.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:32 P. Angelini et al.

For every edge e that TEST(x) visits, it performs the following steps:

(1) Let Gi denote the block containing e. Increment the counter of visited x-edges of
Gi.

(2) If no other edge of Gi has been visited so far, push Gi on the stack.
(3) If some x-edge of Gi has been visited before e, we know that Gi is currently some-

where on the stack. Check whether Gi is on the top of the stack. If the top of the
stack contains an x-block Gj different from Gi, output that Hi and Hj alternate
around x and stop.

(4) Check whether e is the last x-edge of Gi to be visited (comparing its counter of
visited x-edges to the counter of total x-edges), and if it is, pop Gi from the stack.
(Note that if Gi has only one x-edge, it is pushed and popped during the visit of this
edge.)

If TEST(x) visits all x-edges without rejecting, it outputs that there is no alternation
around x.

The procedure TEST(x) takes time proportional to the number of x-edges. Thus, we
can call TEST(x) for all vertices x ∈ V (H) in linear time to test whether there is any
alternation in H.

Let us now argue that the procedure TEST(x) is correct. Assume that TEST(x) out-
puts an alternation of Hi and Hj . This can only happen when Gj is on the top of the
stack while an x-edge e ∈ Gi is visited, and furthermore, e is not the first edge of Gi
to be visited. It follows that the first edge of Gi was visited before the first edge of Gj ,
and Gj is still active when e is visited. This shows that Hi and Hj indeed alternate
around x.

Conversely, assume that there is a pair of graphs Hi and Hj that alternate around
x, and the alternation is witnessed by two pairs of x-edges e, e′ ∈ Hi and f, f ′ ∈ Hj .
For contradiction, assume that TEST(x) outputs that there is no alternation. Without
loss of generality, assume that at least one x-edge of Hi is visited before any x-edge of
Hj , that e is visited before e′, and that f is visited before f ′. Thus, the four x-edges are
visited in the order e, f, e′, f ′. When the procedure visits e′, both Gi and Gj are active,
and Gj is on the stack above Gi since we assumed that the first x-edge of Gi is visited
before the first x-edge of Gj . This means that when TEST(x) visited e′, Gi was not on
the top of the stack and an alternation should have been reported.

This contradiction completes the proof of the lemma.

The next lemma shows that the third condition of Lemma 3.8 can also be tested in
linear time, assuming that the first and second conditions of the lemma hold.

LEMMA 4.12. Let (G, H,H) be a connected PEG. Let G1, . . . , Gt be the blocks of G, and
let Hi be the subgraph of H induced by the vertices of Gi. Let Hi be H restricted to Hi.
Assume that the following conditions hold:

(1) each nontrivial H-bridge of G is local,
(2) each Gi has an embedding that extends Hi , and
(3) no two of the graphs H1, . . . , Ht alternate around any vertex of H.

There is a linear-time algorithm that decides whether there exists a facial cycle �C of H
that separates a pair of vertices x and y of H such that x and y are connected by a path
of G that has no vertex in common with �C.

PROOF. Let P be a path in G with end-vertices in H, and let �C be a facial cycle of
H. If P and �C are vertex-disjoint and the end-vertices of P are separated by �C, we
say that P and �C form a PC-obstruction. A PC-obstruction (P, �C) is called minimal if

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:33

Fig. 11. Illustration for the case in which K is local to a block B of H. Two edges of the path Q ⊆ B ⊆ Gi

connecting x and y in H alternate with two edges of cycle �C ∈ Gj around vertex z, which is a contradiction
to condition 3 of the lemma.

no proper subpath P ′ ⊂ P forms a PC-obstruction with �C. Observe that in a minimal
PC-obstruction, all internal vertices of P belong to V (G)\V (H).

We want to show that the existence of a PC-obstruction can be tested in linear time.
Of course, it is sufficient to test the existence of a minimal PC-obstruction. Before
we explain how this test is done, we make some more observations concerning the
structure of minimal PC-obstructions.

Let (P, �C) be a minimal PC-obstruction, and let x and y be the end-vertices of P. As
the internal vertices of P belong to V (G)\V (H), P is a subgraph of an H-bridge K, and
x and y are among the attachments of K. Let us now distinguish two cases, depending
on whether K is local to some block or not.

First, assume that K is local to a block B of H. Refer to Figure 11. Then, both B
and P are part of the same block Gi of G. Hence, �C belongs to a different block of G,
because if it belonged to Gi, then Gi would contain the whole PC-obstruction (P, �C) and
it would be impossible to extend the embedding Hi to Gi, thus contradicting condition 2
of the lemma. Then, let Gj be the block of G that contains �C. Since x and y belong to a
common block B of H, they are connected by a path Q ⊆ B. Since x and y are separated
by �C, Q shares a vertex z with �C (otherwise, the embedding H would not be planar).
Since Q and �C belong to distinct blocks, z is their unique common vertex. This, together
with the fact that �C separates x and y, implies that the two edges that belong to Q
alternate with the two edges that belong to �C in the rotation of z. Thus, Gi alternates
with Gj around z, contradicting condition 3 of the lemma. Then, K cannot be a local
bridge.

Suppose now that K is nonlocal. By condition 1 of the lemma, K consists of a sin-
gle edge of E(G)\E(H). We conclude that any minimal PC-obstruction (P, �C) has the
property that P is a single edge that forms a nonlocal H-bridge of G.

Observe that two vertices x and y belonging to distinct blocks of H are separated by
a facial cycle of H if and only if there is no face of H to which both x and y are incident.

We are now ready to describe the algorithm that determines the existence of a
minimal PC-obstruction. The algorithm tests all edges of E(G)\E(H) one by one. For
any such edge e, it determines in constant time whether it is an H-bridge—that is,
whether its endpoints x and y belong to H. If it is an H-bridge, it checks whether it
is nonlocal in constant time by using Lemma 2.2. For a nonlocal bridge, the algorithm
then checks in constant time whether there is a face f of H into which this bridge can be
embedded, again using Lemma 2.2. Such a face f , if it exists, is uniquely determined,
and its boundary contains x and y.

Overall, for any edge e, the algorithm determines in constant time whether this edge
is a nonlocal bridge that is part of a minimal PC-obstruction. Hence, in linear time,
we determine whether G has any PC-obstruction, thus concluding the proof of the
lemma.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:34 P. Angelini et al.

Combining Lemmas 2.2, 3.8, 4.11, and 4.12 with Theorem 4.10, we obtain the follow-
ing result.

THEOREM 4.13. PEP can be solved in linear time when restricted to instances (G, H,H)
where G is connected.

PROOF. By Lemma 2.2, an instance of PEP where G is connected can be reduced in
linear time to an equivalent instance that has the additional property that all nontrivial
H-bridges are local. Namely, by Lemma 2.2, we may compute whether an H-bridge K
is nonlocal and, in such case, which is the face of H in which K has to be embedded, in
time linear in the size of K. We may thus assume that (G, H,H) is an instance of PEP

where G is simply connected and all nontrivial H-bridges in G are local to some block.
To solve PEP for (G, H,H), we present an algorithm based on the characterization

of Lemma 3.8. First, we generate all subinstances (Gi, Hi,Hi) for i = 1, . . . , t, induced
by the blocks of G. It is not difficult to see that the subinstances can be generated in
linear time. We then solve these subinstances using Algorithm BA, which takes linear
time, by Theorem 4.10, since the total size of the subinstances is linear. If any of the
subinstances does not have an embedding extension, we reject (G, H,H), and otherwise
we continue.

In the next step, we check whether there is a pair of graphs Hi, Hj that have an
alternation around a vertex of H. If there is an alternation, we reject the instance,
and otherwise we continue. This step can be implemented in linear time, due to
Lemma 4.11.

Finally, we check the existence of PC-obstructions, which by Lemma 4.12 can be
done in linear time. We accept the instance if and only if we find no PC-obstruction.
The correctness of this algorithm follows from Lemma 3.8.

Next, we deal with the instances (G, H,H) of PEP in which G is disconnected and H
is arbitrary. We use Lemma 3.9 directly and show that the two conditions of the lemma
can be checked in linear time. The first condition of Lemma 3.9 can be checked in linear
time by Theorem 4.13. As the proof of the next theorem shows, the second condition
can be tested efficiently as well.

THEOREM 4.14. PEP can be solved in linear time.

PROOF. Let (G, H,H) be an instance of PEP. Let G1, . . . , Gt be the connected compo-
nents of G, let Hi be the subgraph of H induced by the vertices of Gi, and let Hi be H
restricted to Hi.

By Lemma 3.9, (G, H,H) has an embedding extension if and only if each instance
(Gi, Hi,Hi) has an embedding extension and, for i �= j, no facial cycle of Hi separates a
pair of vertices of Hj . By Theorem 4.13, we can test in linear time whether all instances
(Gi, Hi,Hi) have an embedding extension.

It remains to test the existence of a facial cycle of Hi that separates vertices of Hj .
For this test, we use the component-face tree CF of H. Assume that CF is rooted at any
node representing a face of H; call this face the root face of H. A face f is an outer face
of H j if at least one child of f in CF is a component of Hj but the parent of f does not
belong to Hj (which includes the possibility that f is the root face).

We claim that a pair of vertices of Hj is separated by a facial cycle belonging to
another component of H if and only if there are at least two distinct outer faces of H j in
CF. To see this, assume first that H j has two distinct outer faces f1 and f2, and let C1
(or C2) be a component of Hj which is a child of f1 (or f2, respectively). Any path from
C1 to C2 in CF visits the parent of f1 or the parent of f2. These parents correspond to
components of H not belonging to Hj , and at least one facial cycle determined by these
components separates C1 from C2.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:35

Conversely, if C1 and C2 are components of Hj separated by a facial cycle belonging
to a component C3 of Hi (i �= j), then the path in CF that connects C1 to C2 visits C3,
and in such a case it is easy to see that H j has at least two outer faces.

We now describe the algorithm that tests the second condition of Lemma 3.9. We
assume that each connected component of H has associated its corresponding subgraph
Hi in CF. We then process the components of H one by one, and for each component C,
we check whether its parent node is an outer face of the embedding Hi of the subgraph
Hi containing C. We accept (G, H,H) if and only if each Hi has one outer face. This
algorithm clearly runs in linear time.

The algorithms for PEP we presented in this section, handling simply connected and
disconnected PEGs, are nonconstructive. For simplicity, we preferred to present shorter
and nonconstructive versions of these algorithms. We now briefly sketch how they can
be extended to constructive linear-time algorithms.

Sketch of constructive algorithms. For the reduction from disconnected to connected
PEGs, designing a constructive algorithm is rather simple. Let (G, H,H) be a PEG and
let G1, . . . , Gt be the connected components of G. Assume that we already have an
embedding Gi for each instance (Gi, Hi,Hi), where Hi is the subgraph of H contained
in Gi and Hi is the restriction of H to Hi. Note that each Hi may consist of several
connected components. To merge the embeddings Gi into a single embedding G that
extends H, we make use of the following auxiliary graph. Create a node for each face
of H and a node for each Hi, i = 1, . . . , t. Connect a face f and a component Hi if f
is incident to an edge of Hi. For each edge ( f, Hi) of this auxiliary graph, additionally
store a pointer to some edge e f,Hi ∈ Hi such that f is to the right of e f,Hi . By Lemma 3.9,
this auxiliary graph is a tree T if the instance admits a solution. It can be computed
from the component face tree of H in O(n) time. We use T to guide the merging of the
embeddings Gi. Namely, for each face node f , let If be the set of indices i so that f is
adjacent to Hi. To merge the embeddings Gi, i ∈ If , we find in each of the Gi a subface of
f and merge their face boundaries. To find a subface of f in Gi, we use the additional
information stored in T . Namely, T contains the edge ( f, Hi), and using the pointer
stored there, we find the edge e f,Hi of Hi. Recall that f lies to the right of e f,Hi in H.
Let f ′ be the face that lies to the right of e f,Hi in Gi. Clearly, f ′ is a subface of f , and it
can be found in O(1) time. Thus, the merge step for face f can be implemented to run
in O(|If |) time, and the tree structure of T implies that the total time for merging all
faces is O(n).

Let us now consider the reduction from connected to biconnected PEGs. Recall that
for a cutvertex x of G, an x-edge is an edge of H incident to x, and an x-block is a block
of G containing at least one x-edge. Observe that the procedure TEST(x) described in
the proof of Lemma 4.11 does not just check whether, around each cutvertex x, the
x-blocks B1, . . . , Bt of G have a parenthetical structure, but it can actually be employed
to find an ordering of B1, . . . , Bt such that the blocks can be removed one by one in
such a way that the x-edges of Bi form an interval when Bi is removed. Further, the
check whether a trivial H-bridge is part of a PC-obstruction actually reveals a unique
face of H into which the block containing the H-bridge has to be embedded. We use
an arbitrary such H-bridge to determine the correct face into which any block that
does not contain any x-edge has to be embedded. This either gives a correct embedding
or one of the conditions of Lemma 4.11 or Lemma 4.12 is violated, in which case an
embedding does not exist. In the following, we assume that we have a feasible instance.

Our procedure for handling simply connected graphs is as follows. We first com-
pute the block-cutvertex tree BC of G and use Lemma 2.2 to ensure that all nonlocal
H-bridges are trivial. Let G1, . . . , Gt be the blocks of G and let H1, . . . , Ht be the sub-
graphs of H induced by G1, . . . , Gt, together with the embeddings H1, . . . ,Ht induced

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:36 P. Angelini et al.

by H. First, we compute in linear time an embedding extension Gi for each instance
(Gi, Hi,Hi). Next, we merge embeddings Gi into a single embedding G extending H, if
possible. To this end, we need to merge the rotation systems of the embeddings Gi at
the cutvertices of G. First, we iteratively remove each leaf block of BC that does not
contain any vertex of H, except, possibly, for the unique cutvertex of G that it contains.
Clearly, the removed blocks can easily be embedded later, as they are not subject to
any constraints. The remaining instance (let us denote it again by (G, H,H)) is still
connected. Moreover, by the assumption that all nonlocal H-bridges are trivial, all
cutvertices of G belong to H. Therefore, every block contains at least two vertices of H
(namely, every block of G that is not a leaf in BC contains at least two cutvertices, and
every block of G that is a leaf in BC contains at least two vertices of H, as otherwise it
would have been removed).

Let x be a cutvertex of G and let B1, . . . , Bt be the blocks incident to x. Denote by Bi
the embedding of Bi that has been already computed and that extends the restriction
of embedding H to the vertices of H in Bi. Assume that the ordering of the blocks
incident to x is such that B1, . . . , Bk contain an x-edge, whereas Bk+1, . . . , Bt do not.
We embed the blocks B1, . . . , Bk by using a modified version of the procedure TEST(x),
described in the proof of Lemma 4.11. For each i in k + 1, . . . , t, let e = xy be any edge
incident to x in Bi. Since Bi contains an H-vertex distinct from x, vertex y belongs to
H as well; otherwise, e would be part of a nontrivial nonlocal H-bridge. Since edge e
does not belong to H, we have that x and y belong to distinct connected components
of H. We use the component face tree CF to find in O(1) time the unique face fi of
H that is shared by x and y. We associate Bi with fi. Although the choice of e is
arbitrary, either all edges of Bi incident to x yield the same face or at least one of
them is part of a PC-obstruction, which we can rule out by first running the checking
algorithm.

We now construct the cyclic ordering of all edges of G incident to x by a single
traversal of σH(x), similarly to procedure TEST(x), except we alternately visit edges
and faces as they occur in counterclockwise order around x in H.

When the procedure visits a face f , it appends the edges of all blocks associated with
this face in the order as they occur in the embedding of the block. More precisely, let
Bi be any block associated with f , let e be any edge of Bi incident to x, and let e′ be the
predecessor of e in the counterclockwise ordering of x in Bi. Then, the counterclockwise
order of the edges incident to x in Bi forms a sequence e, . . . , e′, which we append to
our global ordering of the edges of G incident to x. We do this for all blocks associated
with f in an arbitrary order. When the procedure encounters the first x-edge ei of a
block Bi (recall that such an edge belongs to H and is incident to x), it appends ei to
the global ordering of x and stores the last encountered x-edge of Bi as ei. Whenever
it encounters another x-edge e′ of Bi, it appends all edges between ei and e′, excluding
ei and including e′, to the global ordering of the edges incident to x, then updates the
last encountered x-edge of Bi to e′. When the procedure encounters the last x-edge of
a block, it also inserts all remaining edges of Bi between the last encountered x-edge
and the first x-edge of Bi. As the x-edges occur in the embedding Bi of each block Bi in
the same order as in σH(x), each edge is inserted exactly once into the cyclic ordering.
Considering the output sequence as a cyclic sequence, we have found a cyclic ordering of
all edges incident to x in G. Clearly, the running time of the procedure is proportional
to the number of edges incident to x in G. In addition, the ordering is such that its
restriction to H yields σH(x), no two blocks alternate, and the ordering of the edges
of each incident block Bi are compatible with Bi. Finally, also the blocks that do not
have an x-edge are embedded into the correct face since this face exists and thus is
uniquely determined. The previously removed blocks containing at most one vertex of
H—the cutvertex x—can be embedded into arbitrary faces incident to their cutvertices

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:37

in reverse order of removal. Clearly, the total running time of this procedure is linear.
The following theorem summarizes our results.

THEOREM 4.15. Let (G, H,H) be a PEG. There is a linear-time algorithm that either
finds an embedding extension G of H or concludes that such an embedding does not
exist.

5. APPLICATIONS AND EXTENSIONS

In this section, we discuss several extensions of the problem PARTIALLY EMBEDDED PLA-
NARITY. Additionally, we show that PEP has some connections to the problem of finding a
simultaneous embedding with fixed edges of a pair of graphs. In particular, the results
of this work can be used to solve this problem for a restricted class of inputs.

Problem extensions. Several generalizations of the PARTIALLY EMBEDDED PLANARITY

problem naturally arise. In all of the following generalizations (denoted by G1 through
G4), the input is still a PEG (G, H,H). For the first two generalizations, we readily
conclude that they are NP-complete since they contain as special cases CROSSING NUMBER

and MAXIMUM PLANAR SUBGRAPH, respectively: (G1) deciding if H can be extended to a
drawing of G with at most k crossings and (G2) deciding if at least k edges of E(G)\E(H)
can be added to H while preserving planarity.

The following two additional problems generalize PEP in different directions: (G3)
deciding whether G has a planar embedding G in which at least k edges of H are
embedded as in H and (G4) deciding whether there is a set F ⊆ E(H) of at most k edges
such that (G\F, H\F,H\F) is a planar PEG. We show that problems G3 and G4, called
MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY and MAXIMUM PRESERVED PARTIALLY

EMBEDDED PLANARITY, respectively, are NP-hard.

THEOREM 5.1. MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY and MAXIMUM PRE-
SERVED PARTIALLY EMBEDDED PLANARITY are NP-hard.

PROOF. The proof is by reduction from STEINERTREE in planar graphs, which is known
to be NP-hard [Garey and Johnson 1977]. The problem STEINERTREE in planar graphs
takes as an input a planar graph G = (V, E), a set T ⊂ V of terminals, and an integer
k and asks whether a tree T ∗ = (V ∗, E∗) exists such that (1) V ∗ ⊆ V , (2) E∗ ⊆ E,
(3) T ⊆ V ∗, and (4) |E∗| ≤ k.

We show how to construct an equivalent instance (G′, H,H, k′) of MAXIMUM PRESERVED

PARTIALLY EMBEDDED PLANARITY, given an instance (G = (V, E), T , k) of STEINERTREE in
planar graphs. First, choose an embedding � of G and let H be the dual of �, with
embedding H. For each terminal t ∈ T , we add a new vertex vt to H and prescribe it
inside the face that is dual to t. This completes the construction of H and H. Graph G′
has the same vertex set as H, and its edge set is E(H) ∪ S, where S is the edge set of
any connected planar graph GS spanning the vertices vt. Finally, we set k′ = k.

Now consider the problem of finding a set F of k edges of H such that
(G′\F, H\F,H\F) is a planar PEG. Clearly, GS can be drawn in a planar way if and
only if we choose F in such a way that all vertices vt lie in the same face of H\F. This is
equivalent to the property that the set F� of edges dual to F is a Steiner tree in G with
terminal set T . Hence, (G′, H,H, k′) is a positive instance of MAXIMUM PRESERVED PAR-
TIALLY EMBEDDED PLANARITY if and only if (G, T , k) is a positive instance of STEINERTREE.
This shows that MAXIMUM PRESERVED PARTIALLY EMBEDDED PLANARITY is NP-hard.

The reduction from an instance (G, T , k) of STEINERTREE in planar graphs to an in-
stance (G′, H,H, k′) of MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY is analogous
to the one for MAXIMUM PRESERVED PARTIALLY EMBEDDED PLANARITY. In particular, G′, H,
and H are constructed in exactly the same way; however, in such a case, we have

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:38 P. Angelini et al.

k′ = |E| − k. Then, it is sufficient to observe that (i) graph GS can be drawn in a planar
way if and only if a set F of edges can be deleted in such a way that all vertices vt lie
in the same face of H\F; (ii) the set F� of edges dual to F is a Steiner tree in G with
terminal set T ; and (iii) since GS is a connected component of G′, the edges of F can be
reinserted without crossings into the drawing—that is, to have all vertices vt lie in the
same face of H, it is sufficient to reroute (instead of delete) the edges in F. This shows
that MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY is NP-hard.

In the case of MAXIMUM PRESERVED PARTIALLY EMBEDDED PLANARITY, we can even make
H connected as follows. We connect each vertex vt to an arbitrary vertex of its pre-
scribed face, and we let GS be a star graph on the vertices vt. Thus, MAXIMUM PRESERVED

PARTIALLY EMBEDDED PLANARITY is NP-hard even if the prescribed graph H is connected.
However, this strategy does not work for MINIMUM REROUTING PARTIALLY EMBEDDED PLA-
NARITY, as the reduction for this problem relies on the property that every edge of each
face can be removed and reinserted after drawing GS. This is not the case if H is con-
nected. We leave open the question whether MINIMUM REROUTING PARTIALLY EMBEDDED

PLANARITY is NP-hard if the graph H with prescribed embedding is connected.

Application to simultaneous embedding with fixed edges. The results presented in
this work can be used to solve special cases of the problem simultaneous embedding
with fixed edges. A simultaneous embedding with fixed edges (in the following called
SEFE, for short) of a pair G1 = (V, E1), G2 = (V, E2) of graphs on the same vertex set is
a pair (�1, �2) of drawings such that (i) �i is a planar drawing of Gi, for each i = 1, 2;
(ii) each vertex v ∈ V is drawn on the same point in �1 and in �2; and (iii) each edge
(u, v) ∈ E1 ∩ E2 is represented by the same curve in �1 and in �2. The problem can also
be generalized to simultaneous embedding of more than two graphs.

The SEFE problem is a well-studied problem in graph drawing. A lot of research has
been devoted to find pairs of graph classes that always admit a SEFE and to determine
how many bends are necessary for constructing a SEFE of pairs of graphs that admit
one (e.g., see Angelini et al. [2012b], Di Giacomo and Liotta [2007], Erten and Kobourov
[2005], Fowler et al. [2011], and Frati [2006]). Additionally, a lot of work is concerned
with the algorithmic aspects of the SEFE problem. In particular, it is known that SEFE

is NP-hard for two geometric graphs, where edges are restricted to be straight-line
segments [Estrella-Balderrama et al. 2007] and that SEFE is NP-hard for three (or
more) graphs [Gassner et al. 2006]. Polynomial-time algorithms have been designed
for deciding the existence of a SEFE of two graphs, if some further assumptions are made
on the input, such as if the intersection of the two input graphs is biconnected [Angelini
et al. 2012a; Haeupler et al. 2013], if the input graphs are biconnected and the common
graph is connected [Bläsius and Rutter 2013b], and if the connected components of
the common graph are biconnected or have low degree [Bläsius et al. 2013a; Bläsius
and Rutter 2013a; Schaefer 2013]. Refer to Bläsius et al. [2013b] for a comprehensive
survey on this topic. Despite a large amount of research, the complexity status of the
SEFE problem for two graphs remains open.

The results presented in this work allow us to solve in linear time an interesting
case of the SEFE problem. Namely, Jünger and Schulz [2009] showed that two graphs
G1 = (V, E1) and G2 = (V, E2) admit a SEFE if and only if they admit planar embeddings
E1 and E2, respectively, that coincide on the intersection graph. This result, together
with the results we presented on the PEP problem, implies the following theorem.

THEOREM 5.2. Let G1 and G2 be two graphs with the same n vertices, and let G1∩2 be a
planar embedding of their intersection graph G1∩2 := G1 ∩G2. There exists a linear-time
algorithm to decide whether G1 and G2 admit a SEFE in which the embedding of G1∩2
coincides with G1∩2.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:39

PROOF. By Jünger and Schulz [2009], G1 and G2 admit a SEFE in which the embedding
of G1∩2 coincides with G1∩2 if and only if each of G1 and G2 admits a planar embedding
that coincides with G1∩2 when restricted to the vertices and edges of G1∩2. In other
words, G1 and G2 admit a SEFE in which the embedding of G1∩2 coincides with G1∩2 if
and only if (G1, G1∩2,G1∩2) and (G2, G1∩2,G1∩2) are both YES-instances of PEP.

Theorem 5.2 implies that deciding whether two graphs have a SEFE is a linear-time
solvable problem if one of the graphs has a fixed embedding, such as if one of the two
graphs is triconnected.

6. CONCLUDING REMARKS

In this article, we showed that PARTIALLY EMBEDDED PLANARITY (PEP) is a linear-time
solvable problem. Problem PEP asks whether a partially embedded graph (PEG) is
planar—that is, whether a planar drawing H of a subgraph H of a planar graph G
can be extended to a planar drawing of G. To derive our linear-time algorithm, we
first presented a combinatorial characterization of planar PEGs in terms of conditions
on the structure of the triconnected, biconnected, and connected components of the
input graph. This characterization immediately implies a polynomial-time algorithm
for testing the planarity of a given PEG. The second part of the article was devoted to a
careful implementation of the algorithm following from the characterization, resulting
in an algorithm for PEP with optimal linear running time. Although edge compatibility
exhibits a very local behavior and hence is not too difficult to enforce in linear time,
numerous steps are necessary to handle cycle compatibility in linear time as well. In
addition, we showed that our testing algorithm can be made constructive—that is, it
can be implemented so that it finds an embedding extension for the input PEG, if one
exists. Altogether, from a purely algorithmic point of view, this completely settles the
problem PEP.

Further, we considered several generalizations of PEP and proved that they are
NP-hard. Additionally, we showed that PEP exhibits strong connections with another
well-known graph drawing problem: the SEFE problem. The results in this work im-
mediately imply a linear-time algorithm for solving SEFE when the embedding of the
intersection graph is fixed, which holds, for example, if one of the input graphs is
triconnected.

In a subsequent paper, Jelı́nek et al. [2013] characterize the planar PEGs via for-
bidden substructures in the spirit of Kuratowski’s theorem. In conjunction with the
results presented in this work, this gives an efficient algorithm that, for a given PEG,
either finds a planar extension or decides that the PEG is nonplanar and extracts an
obstruction.

Open problems. The problem PEP asks for determining the extendability of planar
combinatorial embeddings or, equivalently, of topological drawings of planar graphs. An
obvious research direction is to consider the complexity of the extendability question
for other drawing styles. It is known that completing partial straight-line drawings
is NP-hard [Patrignani 2006], and it seems that the NP-hardness proof generalizes
easily to poly-line drawings that admit a fixed number of bends per edge. Subsequent
to the conference version of this article [Angelini et al. 2010], the problem of extend-
ing partial representations has been considered for function graphs and permutation
graphs [Klavı́k et al. 2012a], for subclasses of chordal graphs [Klavı́k et al. 2012b], for
interval graphs [Klavı́k et al. 2011], and for proper and unit interval graphs [Klavı́k
et al. 2012c]. However, it might be interesting to consider the problems of extending,
for example, orthogonal drawings [Tamassia 1987] or Manhattan-geodesic drawings
[Katz et al. 2010].

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:40 P. Angelini et al.

A different direction for generalizing PEP would be to relax the strict condition to
have a fixed embedding H for a subgraph H of the entire planar graph G. Gutwenger
et al. [2008] consider the problem of testing the planarity of a graph with the fur-
ther constraint that every vertex has an associated PQ-tree representing the possible
rotations that are allowed for that vertex. The common generalization of PEP and
this problem assumes that only a subgraph is constrained by such PQ-trees and the
remaining edges can be inserted arbitrarily. Is it possible to decide planarity of a par-
tially PQ-constrained graph G in polynomial time? A positive answer to the previous
question has been provided in Bläsius and Rutter [2013b] for the case in which G is
biconnected.

ACKNOWLEDGMENTS

This work began at the BICI Workshop on Graph Drawing, held in Bertinoro, Italy, in March 2009 and was
carried out while the authors were at the Department of Applied Mathematics, Charles University, Prague.

REFERENCES

P. Angelini, G. Di Battista, F. Frati, V. Jelı́nek, J. Kratochvı́l, M. Patrignani, and I. Rutter. 2010. Testing
planarity of partially embedded graphs. In Proceedings of SODA’10. 202–221.

P. Angelini, G. Di Battista, F. Frati, M. Patrignani, and I. Rutter. 2012a. Testing the simultaneous embed-
dability of two graphs whose intersection is a biconnected or a connected graph. Journal of Discrete
Algorithms 14, 150–172.

P. Angelini, M. Geyer, M. Kaufmann, and D. Neuwirth. 2012b. On a tree and a path with no geometric
simultaneous embedding. Journal of Graph Algorithms and Algorithms 16, 1, 37–83.

P. Bertolazzi, G. Di Battista, and W. Didimo. 2000. Computing orthogonal drawings with the minimum
number of bends. IEEE Transactions on Computers 49, 8, 826–840.

T. Bläsius, A. Karrer, and I. Rutter. 2013a. Simultaneous embedding: Edge orderings, relative positions,
cutvertices. In Graph Drawing. Lecture Notes in Computer Science, Vol. 8242. Springer, 220–231.

T. Bläsius, S. G. Kobourov, and I. Rutter. 2013b. Simultaneous embedding of planar graphs. In Handbook of
Graph Drawing and Visualization, R. Tamassia (Ed.). CRC Press.

T. Bläsius and I. Rutter. 2013a. Disconnectivity and relative positions in simultaneous embeddings. In Graph
Drawing. Lecture Notes in Computer Science, Vol. 7704. Springer, 31–42.

T. Bläsius and I. Rutter. 2013b. Simultaneous pq-ordering with applications to constrained embedding
problems. In Proceedings of SODA’13. 1030–1043.

J. M. Boyer and W. J. Myrvold. 2004. On the cutting edge: Simplified O(n) planarity by edge addition. Journal
of Graph Algorithms and Applications 8, 3, 241–273.

H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. 2006. Trémaux trees and planarity. International
Journal on Foundations of Computer Science 17, 1017–1030.

G. Demoucron, Y. Malgrange, and R. Pertuiset. 1964. Reconnaissance et construction de représentations
planaires topologiques. Rev. Francaise Recherche Opérationelle 8, 33–34.

G. Di Battista and R. Tamassia. 1996. On-line planarity testing. SIAM Journal on Computing 25, 956–997.
E. Di Giacomo and G. Liotta. 2007. Simultaneous embedding of outerplanar graphs, paths, and cycles.

International Journal of Computational Geometry and Applications 17, 2, 139–160.
C. Dornheim. 2002. Planar graphs with topological constraints. Journal of Graph Algorithms and Applica-

tions 6, 1, 27–66.
C. Erten and S. G. Kobourov. 2005. Simultaneous embedding of planar graphs with few bends. Journal of

Graph Algorithms and Applications 9, 3, 347–364.
A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Percan, M. Schaefer, and M. Schulz. 2007. Simultane-

ous geometric graph embeddings. In Graph Drawing. Lecture Notes in Computer Science, Vol. 4875.
Springer, 280–290.

J. Fiala. 2003. NP-completeness of the edge precoloring extension problem on bipartite graphs. Journal of
Graph Theory 43, 2, 156–160.

J. Fowler, M. Jünger, S. G. Kobourov, and M. Schulz. 2011. Characterizations of restricted pairs of planar
graphs allowing simultaneous embedding with fixed edges. Computational Geometry 44, 8, 385–398.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Testing Planarity of Partially Embedded Graphs 32:41

F. Frati. 2006. Embedding graphs simultaneously with fixed edges. In Graph Drawing. Lecture Notes in
Computer Science, Vol. 4372. Springer, 108–113.

M. Garey and D. Johnson. 1977. The rectilinear Steiner tree problem is NP-complete. SIAM Journal on
Applied Mathematics 32, 4, 826–834.

E. Gassner, M. Jünger, M. Percan, M. Schaefer, and M. Schulz. 2006. Simultaneous graph embeddings with
fixed edges. In Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science,
Vol. 4271. Springer, 325–335.

M. Grötschel, L. Lovász, and A. Schrijver. 1988. Stable sets in graphs. In Geometric Algorithms and Combi-
natorial Optimization. Springer, 273–303.

C. Gutwenger, K. Klein, and P. Mutzel. 2008. Planarity testing and optimal edge insertion with embedding
constraints. Journal of Graph Algorithms and Applications 12, 1, 73–95.

C. Gutwenger and P. Mutzel. 2000. A linear time implementation of SPQR-trees. In Graph Drawing. Lecture
Notes in Computer Science, Vol. 1984. Springer, 77–90.

B. Haeupler, K. R. Jampani, and A. Lubiw. 2013. Testing simultaneous planarity when the common graph is
2-connected. Journal of Graph Algorithms and Applications 17, 3, 147–171.

J. Hopcroft and R. E. Tarjan. 1974. Efficient planarity testing. Journal of the ACM 21, 4, 549–568.
V. Jelı́nek, J. Kratochvı́l, and I. Rutter. 2013. A Kuratowski-type theorem for planarity of partially em-

bedded graphs. Computational Geometry: Theory and Applications 46, 4, 466–492. DOI:http://dx.doi.
org/10.1016/j.comgeo.2012.07.005

M. Jünger and M. Schulz. 2009. Intersection graphs in simultaneous embedding with fixed edges. Journal
of Graph Algorithms and Applications 13, 2, 205–218.

M. Juvan and B. Mohar. 2005. 2-restricted extensions of partial embeddings of graphs. European Journal of
Combinatorics 26, 3–4, 339–375.

B. Katz, M. Krug, I. Rutter, and A. Wolff. 2010. Manhattan-geodesic embedding of planar graphs. In Graph
Drawing. Lecture Notes in Computer Science, Vol. 5849. Springer, 207–218.

P. Klavı́k, J. Kratochvı́l, T. Krawczyk, and B. Walczak. 2012a. Extending partial representations of func-
tion graphs and permutation graphs. In Algorithms—ESA 2012. Lecture Notes in Computer Science,
Vol. 7501. Springer, 671–682.

P. Klavı́k, J. Kratochvı́l, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and T. Vyskočil. 2012c. Extending partial
representations of proper and unit interval graphs. CoRR abs/1207.6960.

P. Klavı́k, J. Kratochvı́l, Y. Otachi, and T. Saitoh. 2012b. Extending partial representations of subclasses
of chordal graphs. In Algorithms and Computation. Lecture Notes in Computer Science, Vol. 7676.
Springer, 444–454.

P. Klavı́k, J. Kratochvı́l, and T. Vyskočil. 2011. Extending partial representations of interval graphs. In Theory
and Applications of Models of Computation. Lecture Notes in Computer Science, Vol. 6648. Springer,
276–285.

L. Kowalik and M. Kurowski. 2003. Short path queries in planar graphs in constant time. In Proceedings of
STOC’03. 143–148.

J. Kratochvı́l and A. Sebo. 1997. Coloring precolored perfect graphs. Journal of Graph Theory 25,
207–215.

K. Kuratowski. 1930. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae 15,
271–283.

B. Mohar. 1999. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal on
Discrete Mathematics 12, 1, 6–26.

P. Mutzel. 2003. The SPQR-tree data structure in graph drawing. In Automata, Languages and Programming.
Lecture Notes in Computer Science, Vol. 2719. Springer, 35–46.

M. Patrignani. 2006. On extending a partial straight-line drawing. International Journal of Foundations of
Computer Science 17, 5, 1061–1069.

J. A. La Poutré. 1994. Alpha-algorithms for incremental planarity testing. In Proceedings of STOC’94. 706–
715.

M. Schaefer. 2013. Toward a theory of planarity: Hanani-tutte and planarity variants. Journal of Graph
Algorithms and Applications 17, 4, 367–440.

R. Tamassia. 1987. On embedding a graph in the grid with the minimum number of bends. SIAM Journal
on Computing 16, 3, 421–444.

R. Tamassia. 1996. On-line planar graph embedding. Journal of Algorithms 21, 2, 201–239.
R. Tamassia. 1998. Constraints in graph drawing algorithms. Constraints 3, 1, 87–120.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



32:42 P. Angelini et al.

R. Tamassia, G. Di Battista, and C. Batini. 1988. Automatic graph drawing and readability of diagrams.
IEEE Transactions on Systems, Man, and Cybernetics 18, 1, 61–79.

R. E. Tarjan. 1972. Depth first search and linear graph algorithms. SIAM Journal on Computing 2, 146–160.
J. Westbrook. 1992. Fast incremental planarity testing. In Automata, Languages and Programming. Lecture

Notes in Computer Science, Vol. 623. Springer, 342–353.

Received March 2013; revised April 2014; accepted April 2014

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.



Appendix I

On the Beer Index of
Convexity and its Variants

197



On the Beer Index of Convexity and Its Variants∗

Martin Balko1, Vít Jelínek2, Pavel Valtr1, and Bartosz Walczak3,4

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
balko@kam.mff.cuni.cz, valtr@kam.mff.cuni.cz

2 Institute for Theoretical Computer Science, Faculty of Mathematics and
Physics, Charles University, Prague, Czech Republic
jelinek@iuuk.mff.cuni.cz

3 Theoretical Computer Science Department, Faculty of Mathematics and
Computer Science, Jagiellonian University, Kraków, Poland
walczak@tcs.uj.edu.pl

4 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract
Let S be a subset of Rd with finite positive Lebesgue measure. The Beer index of convexity b(S)
of S is the probability that two points of S chosen uniformly independently at random see each
other in S. The convexity ratio c(S) of S is the Lebesgue measure of the largest convex subset
of S divided by the Lebesgue measure of S. We investigate the relationship between these two
natural measures of convexity of S.

We show that every set S ⊆ R2 with simply connected components satisfies b(S) 6 α c(S)
for an absolute constant α, provided b(S) is defined. This implies an affirmative answer to the
conjecture of Cabello et al. asserting that this estimate holds for simple polygons.

We also consider higher-order generalizations of b(S). For 1 6 k 6 d, the k-index of convexity
bk(S) of S ⊆ Rd is the probability that the convex hull of a (k+1)-tuple of points chosen uniformly
independently at random from S is contained in S. We show that for every d > 2 there is a
constant β(d) > 0 such that every set S ⊆ Rd satisfies bd(S) 6 β c(S), provided bd(S) exists.
We provide an almost matching lower bound by showing that there is a constant γ(d) > 0 such
that for every ε ∈ (0, 1] there is a set S ⊆ Rd of Lebesgue measure one satisfying c(S) 6 ε and
bd(S) > γ ε

log2 1/ε > γ c(S)
log2 1/ c(S) .

1998 ACM Subject Classification F.2.2 Geometrical problems and computations

Keywords and phrases Beer index of convexity, convexity ratio, convexity measure, visibility

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.406

1 Introduction

For positive integers k and d and a Lebesgue measurable set S ⊆ Rd, we use λk(S) to denote
the k-dimensional Lebesgue measure of S. We omit the subscript k when it is clear from the
context. We also write ‘measure’ instead of ‘Lebesgue measure’, as we do not use any other
measure in the paper.

For a set S ⊆ Rd, let smc(S) denote the supremum of the measures of convex subsets
of S. Since all convex subsets of Rd are measurable [12], the value of smc(S) is well defined.

∗ The first three authors were supported by the grant GAČR 14-14179S. The first author acknowledges the
support of the Grant Agency of the Charles University, GAUK 690214 and the project SVV-2014-260103
(Discrete Models and Algorithms). The last author was supported by the Ministry of Science and Higher
Education of Poland Mobility Plus grant 911/MOB/2012/0.

© Martin Balko, Vít Jelínek, Pavel Valtr, and Bartosz Walczak;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 406–420

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



M. Balko, V. Jelínek, P. Valtr, and B. Walczak 407

Moreover, Goodman’s result [9] implies that the supremum is achieved on compact sets S,
hence it can be replaced by maximum in this case. When S has finite positive measure, let
c(S) be defined as smc(S)/λd(S). We call the parameter c(S) the convexity ratio of S.

For two points A,B ∈ Rd, let AB denote the closed line segment with endpoints A and B.
Let S be a subset of Rd. We say that points A,B ∈ S are visible one from the other or see
each other in S if the line segment AB is contained in S. For a point A ∈ S, we use Vis(A,S)
to denote the set of points that are visible from A in S. More generally, for a subset T of S,
we use Vis(T, S) to denote the set of points that are visible in S from T . That is, Vis(T, S)
is the set of points A ∈ S for which there is a point B ∈ T such that AB ⊆ S.

Let Seg(S) denote the set {(A,B) ∈ S×S : AB ⊆ S} ⊆ (Rd)2, which we call the segment
set of S. For a set S ⊆ Rd with finite positive measure and with measurable Seg(S), we
define the parameter b(S) ∈ [0, 1] by

b(S) := λ2d(Seg(S))
λd(S)2 .

If S is not measurable, or if its measure is not positive and finite, or if Seg(S) is not
measurable, we leave b(S) undefined. Note that if b(S) is defined for a set S, then c(S) is
defined as well.

We call b(S) the Beer index of convexity (or just Beer index) of S. It can be interpreted
as the probability that two points A and B of S chosen uniformly independently at random
see each other in S.

1.1 Previous results
The Beer index was introduced in the 1970s by Beer [2, 3, 4], who called it ‘the index of
convexity’. Beer was motivated by studying the continuity properties of λ(Vis(A,S)) as
a function of A. For polygonal regions, an equivalent parameter was later independently
defined by Stern [19], who called it ‘the degree of convexity’. Stern was motivated by the
problem of finding a computationally tractable way to quantify how close a given set is
to being convex. He showed that the Beer index of a polygon P can be approximated by
a Monte Carlo estimation. Later, Rote [17] showed that for a polygonal region P with n
edges the Beer index can be evaluated in polynomial time as a sum of O(n9) closed-form
expressions.

Cabello et al. [7] have studied the relationship between the Beer index and the convexity
ratio, and applied their results in the analysis of their near-linear-time approximation
algorithm for finding the largest convex subset of a polygon. We describe some of their
results in more detail in Subsection 1.3.

1.2 Terminology and notation
We assume familiarity with basic topological notions such as path-connectedness, simple
connectedness, Jordan curve, etc. The reader can find these definitions, for example, in
Prasolov’s book [16].

Let ∂S, S◦, and S denote the boundary, the interior, and the closure of a set S, respectively.
For a point A ∈ R2 and ε > 0, let Nε(A) denote the open disc centered at A with radius ε.
For a set X ⊆ R2 and ε > 0, let Nε(X) =

⋃
A∈X Nε(A). A neighborhood of a point A ∈ R2

or a set X ⊆ R2 is a set of the form Nε(A) or Nε(X), respectively, for some ε > 0.
A closed interval with endpoints a and b is denoted by [a, b]. Intervals [a, b] with a > b

are considered empty. For a point A ∈ R2, we use x(A) and y(A) to denote the x-coordinate
and the y-coordinate of A, respectively.

SoCG’15



408 On the Beer Index of Convexity and Its Variants

P

(0, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (2n− 2, 1) (2n− 1, 1)
. . .

Figure 1 A star-shaped polygon P with b(P ) > 1
n

− ε and c(P ) 6 1
n
. The polygon P with

4n − 1 vertices is a union of n triangles (0, 0)(2i, 1)(2i + 1, 1), i = 0, . . . , n − 1, and of a triangle
(0, 0)(0, δ)((2n− 1)δ, δ), where δ is very small.

A polygonal curve Γ in Rd is a curve specified by a sequence (A1, . . . , An) of points of Rd
such that Γ consists of the line segments connecting the points Ai and Ai+1 for i = 1, . . . , n−1.
If A1 = An, then the polygonal curve Γ is closed. A polygonal curve that is not closed is
called a polygonal line.

A set X ⊆ R2 is polygonally connected, or p-connected for short, if any two points of X
can be connected by a polygonal line in X, or equivalently, by a self-avoiding polygonal line
in X. For a set X, the relation “A and B can be connected by a polygonal line in X” is an
equivalence relation on X, and its equivalence classes are the p-components of X. A set S is
p-componentwise simply connected if every p-component of S is simply connected.

A line segment in Rd is a bounded convex subset of a line. A closed line segment includes
both endpoints, while an open line segment excludes both endpoints. For two points A and
B in Rd, we use AB to denote the open line segment with endpoints A and B. A closed line
segment with endpoints A and B is denoted by AB.

We say that a set S ⊆ Rd is star-shaped if there is a point C ∈ S such that Vis(C, S) = S.
That is, a star-shaped set S contains a point which sees the entire S. Similarly, we say that
a set S is weakly star-shaped if S contains a line segment ` such that Vis(`, S) = S.

1.3 Results
We start with a few simple observations. Let S be a subset of R2 such that Seg(S) is
measurable. For every ε > 0, S contains a convex subsetK of measure at least (c(S)−ε)λ2(S).
Two random points of S both belong to K with probability at least (c(S) − ε)2, hence
b(S) > (c(S)− ε)2. This yields b(S) > c(S)2. This simple lower bound on b(S) is tight, as
shown by a set S which is a disjoint union of a single large convex component and a large
number of small components of negligible size.

It is more challenging to find an upper bound on b(S) in terms of c(S), possibly under
additional assumptions on the set S. This is the general problem addressed in this paper.

As a motivating example, observe that a set S consisting of n disjoint convex components
of the same size satisfies b(S) = c(S) = 1

n . It is easy to modify this example to obtain, for
any ε > 0, a simple star-shaped polygon P with b(P ) > 1

n − ε and c(P ) 6 1
n , see Figure 1.

This shows that b(S) cannot be bounded from above by a sublinear function of c(S), even
for simple polygons S.

For weakly star-shaped polygons, Cabello et al. [7] showed that the above example is
essentially optimal, providing the following linear upper bound on b(S).

I Theorem 1 ([7, Theorem 5]). For every weakly star-shaped simple polygon P , we have
b(P ) 6 18 c(P ).



M. Balko, V. Jelínek, P. Valtr, and B. Walczak 409

For polygons that are not weakly star-shaped, Cabello et al. [7] gave a superlinear bound.

I Theorem 2 ([7, Theorem 6]). Every simple polygon P satisfies

b(P ) 6 12 c(P )
(

1 + log2
1

c(P )

)
.

Moreover, Cabello et al. [7] conjectured that even for a general simple polygon P , b(P )
can be bounded from above by a linear function of c(P ). The next theorem, which is the
first main result of this paper, confirms this conjecture. Recall that b(S) is defined for a set
S if and only if S has finite positive measure and Seg(S) is measurable. Recall also that a
set is p-componentwise simply connected if its polygonally-connected components are simply
connected. In particular, every simply connected set is p-componentwise simply connected.

I Theorem 3. Every p-componentwise simply connected set S ⊆ R2 whose b(S) is defined
satisfies b(S) 6 180 c(S).

It is clear that every simple polygon satisfies the assumptions of Theorem 3, hence we
directly obtain the following, which confirms the conjecture of Cabello et al. [7].

I Corollary 4. Every simple polygon P ⊆ R2 satisfies b(P ) 6 180 c(P ).

The main restriction in Theorem 3 is the assumption that S is p-componentwise simply
connected. This assumption cannot be omitted, as shown by the set S = [0, 1]2 rQ2, where
it is easy to verify that c(S) = 0 and b(S) = 1.

A related construction shows that Theorem 3 fails in higher dimensions. To see this,
consider again the set S = [0, 1]2 rQ2, and define a set S′ ⊆ R3 by

S′ := {(tx, ty, t) : t ∈ [0, 1] and (x, y) ∈ S}.

Again, it is easy to verify that c(S′) = 0 and b(S′) = 1, although S′ is simply connected,
even star-shaped.

Despite these examples, we will show that meaningful analogues of Theorem 3 for higher
dimensions and for sets that are not p-componentwise simply connected are possible. The
key is to use higher-order generalizations of the Beer index, which we introduce now.

For a set S ⊆ Rd, we define the set Simpk(S) ⊆ (Rd)k+1 by

Simpk(S) := {(A0, . . . , Ak) ∈ Sk+1 : Conv({A0, . . . , Ak}) ⊆ S},

where the operator Conv denotes the convex hull of a set of points. We call Simpk(S) the
k-simplex set of S. Note that Simp1(S) = Seg(S).

For an integer k ∈ {1, 2, . . . , d} and a set S ⊆ Rd with finite positive measure and with
measurable Simpk(S), we define bk(S) by

bk(S) :=
λ(k+1)d(Simpk(S))

λd(S)k+1 .

Note that b1(S) = b(S). We call bk(S) the k-index of convexity of S. We again leave bk(S)
undefined if S or Simpk(S) is non-measurable, or if the measure of S is not finite and positive.

We can view bk(S) as the probability that the convex hull of k + 1 points chosen
from S uniformly independently at random is contained in S. For any S ⊆ Rd, we have
b1(S) > b2(S) > · · · > bd(S), provided all the bk(S) are defined.

We remark that the set S = [0, 1]d r Qd satisfies c(S) = 0 and b1(S) = b2(S) = · · · =
bd−1(S) = 1. Thus, for a general set S ⊆ Rd, only the d-index of convexity can conceivably
admit a nontrivial upper bound in terms of c(S). Our next result shows that such an upper
bound on bd(S) exists and is linear in c(S).

SoCG’15



410 On the Beer Index of Convexity and Its Variants

I Theorem 5. For every d > 2, there is a constant β = β(d) > 0 such that every set S ⊆ Rd
with defined bd(S) satisfies bd(S) 6 β c(S).

We do not know if the linear upper bound in Theorem 5 is best possible. We can, however,
construct examples showing that the bound is optimal up to a logarithmic factor. This is
our last main result.

I Theorem 6. For every d > 2, there is a constant γ = γ(d) > 0 such that for every
ε ∈ (0, 1], there is a set S ⊆ Rd satisfying c(S) 6 ε and bd(S) > γ ε

log2 1/ε , and in particular,
we have bd(S) > γ c(S)

log2 1/ c(S) .

In this extended abstract, some proofs have been omitted due to space constraints. The
omitted proofs can be found in the full version of this paper [1].

2 Bounding the mutual visibility in the plane

The goal of this section is to prove Theorem 3. Since the proof is rather long and complicated,
let us first present a high-level overview of its main ideas.

We first show that it is sufficient to prove the estimate from Theorem 3 for bounded open
simply connected sets. This is formalized by the next lemma, whose proof is omitted.

I Lemma 7. Let α > 0 be a constant such that every open bounded simply connected set
T ⊆ R2 satisfies b(T ) 6 α c(T ). It follows that every p-componentwise simply connected set
S ⊆ R2 with defined b(S) satisfies b(S) 6 α c(S).

Suppose now that S is a bounded open simply connected set. We seek a bound of the form
b(S) = O(c(S)). This is equivalent to a bound of the form λ4(Seg(S)) = O(smc(S)λ2(S)).
We therefore need a suitable upper bound on λ4(Seg(S)).

We first choose in S a diagonal ` (i.e., an inclusion-maximal line segment in S), and show
that the set S r ` is a union of two open simply connected sets S1 and S2 (Lemma 10). It is
not hard to show that the segments in S that cross the diagonal ` contribute to λ4(Seg(S)) by
at most O(smc(S)λ2(S)) (Lemma 14). Our main task is to bound the measure of Seg(Si ∪ `)
for i = 1, 2. The two sets Si ∪ ` are what we call rooted sets. Informally, a rooted set is a
union of a simply connected open set S′ and an open segment r ⊆ ∂S′, called the root.

To bound λ4(Seg(R)) for a rooted set R with root r, we partition R into levels L1, L2, . . . ,
where Lk contains the points of R that can be connected to r by a polygonal line with k
segments, but not by a polygonal line with k − 1 segments. Each segment in R is contained
in a union Li ∪ Li+1 for some i > 1. Thus, a bound of the form λ4(Seg(Li ∪ Li+1)) =
O(smc(R)λ2(Li ∪ Li+1)) implies the required bound for λ4(Seg(R)).

We will show that each p-component of Li ∪Li+1 is a rooted set, with the extra property
that all its points are reachable from its root by a polygonal line with at most two segments
(Lemma 11). To handle such sets, we will generalize the techniques that Cabello et al. [7]
have used to handle weakly star-shaped sets in their proof of Theorem 1. We will assign to
every point A ∈ R a set T(A) of measure O(smc(R)), such that for every (A,B) ∈ Seg(R),
we have either B ∈ T(A) or A ∈ T(B) (Lemma 13). From this, Theorem 3 will follow easily.

To proceed with the proof of Theorem 3 for bounded open simply connected sets, we
need a few auxiliary lemmas.

I Lemma 8. For every positive integer d, if S is an open subset of Rd, then the set Seg(S)
is open and the set Vis(A,S) is open for every point A ∈ S.



M. Balko, V. Jelínek, P. Valtr, and B. Walczak 411

Proof. Choose a pair of points (A,B) ∈ Seg(S). Since S is open and AB is compact, there
is ε > 0 such that Nε(AB) ⊆ S. Consequently, for any A′ ∈ Nε(A) and B′ ∈ Nε(B), we
have A′B′ ⊆ S, that is, (A′, B′) ∈ Seg(S). This shows that the set Seg(S) is open. If we fix
A′ = A, then it follows that the set Vis(A,S) is open. J

I Lemma 9. Let S be a simply connected subset of R2 and let ` and `′ be line segments
in S. It follows that the set Vis(`′, S) ∩ ` is a (possibly empty) subsegment of `.

Proof. The statement is trivially true if ` and `′ intersect or have the same supporting
line, or if Vis(`′, S) ∩ ` is empty. Suppose that these situations do not occur. Let A,B ∈ `
and A′, B′ ∈ `′ be such that AA′, BB′ ⊆ S. The points A,A′, B′, B form a (possibly self-
intersecting) tetragon Q whose boundary is contained in S. Since S is simply connected, the
interior of Q is contained in S. If Q is not self-intersecting, then clearly AB ⊆ Vis(`′, S).
Otherwise, AA′ and BB′ have a point D in common, and every point C ∈ AB is visible in
R from the point C ′ ∈ A′B′ such that D ∈ CC ′. This shows that Vis(`′, S) ∩ ` is a convex
subset and hence a subsegment of `. J

Now, we define rooted sets and their tree-structured decomposition, and we explain how
they arise in the proof of Theorem 3.

A set S ⊆ R2 is half-open if every point A ∈ S has a neighborhood Nε(A) that satisfies
one of the following two conditions:
1. Nε(A) ⊆ S,
2. Nε(A) ∩ ∂S is a diameter of Nε(A) splitting it into two subsets, one of which (including

the diameter) is Nε(A) ∩ S and the other (excluding the diameter) is Nε(A) r S.
The condition 1 holds for points A ∈ S◦, while the condition 2 holds for points A ∈ ∂S. A
set R ⊆ R2 is a rooted set if the following conditions are satisfied:
1. R is bounded,
2. R is p-connected and simply connected,
3. R is half-open,
4. R ∩ ∂R is an open line segment.
The open line segment R ∩ ∂R is called the root of R. Every rooted set, as the union of a
non-empty open set and an open line segment, is measurable and has positive measure.

A diagonal of a set S ⊆ R2 is a line segment contained in S that is not a proper subset of
any other line segment contained in S. Clearly, if S is open, then every diagonal of S is an
open line segment. It is easy to see that the root of a rooted set is a diagonal. The following
lemma allows us to use a diagonal to split a bounded open simply connected subset of R2

into two rooted sets. It is intuitively clear, and its formal proof is omitted.

I Lemma 10. Let S be a bounded open simply connected subset of R2, and let ` be a diagonal
of S. It follows that the set S r ` has two p-components S1 and S2. Moreover, S1 ∪ ` and
S2 ∪ ` are rooted sets, and ` is their common root.

Let R be a rooted set. For a positive integer k, the kth level Lk of R is the set of points
of R that can be connected to the root of R by a polygonal line in R consisting of k segments
but cannot be connected to the root of R by a polygonal line in R consisting of fewer than k
segments. We consider a degenerate one-vertex polygonal line as consisting of one degenerate
segment, so the root of R is part of L1. Thus L1 = Vis(r,R), where r denotes the root of R.
A k-body of R is a p-component of Lk. A body of R is a k-body of R for some k. See Figure 2
for an example of a rooted set and its partitioning into levels and bodies.

SoCG’15



412 On the Beer Index of Convexity and Its Variants

r

RB′ = B
A′

A



d(A, r)





d(B) = d(B, r)




d(A)

Figure 2 Example of a rooted set R partitioned into six bodies. The three levels of R are
distinguished with three shades of gray. The segment A′B′ is the base segment of AB.

We say that a rooted set P is attached to a set Q ⊆ R2 r P if the root of P is subset
of the interior of P ∪Q. The following lemma explains the structure of levels and bodies.
Although it is intuitively clear, its formal proof requires quite a lot of work and is omitted.

I Lemma 11. Let R be a rooted set and (Lk)k>1 be its partition into levels. It follows that
1. R =

⋃
k>1 Lk; consequently, R is the union of all its bodies;

2. every body P of R is a rooted set such that P = Vis(r, P ), where r denotes the root of P ;
3. L1 is the unique 1-body of R, and the root of L1 is the root of R;
4. every j-body P of R with j > 2 is attached to a unique (j − 1)-body of R.

Lemma 11 yields a tree structure on the bodies of R. The root of this tree is the unique
1-body L1 of R, called the root body of R. For a k-body P of R with k > 2, the parent of P
in the tree is the unique (k− 1)-body of R that P is attached to, called the parent body of P .

I Lemma 12. Let R be a rooted set, (Lk)k>1 be the partition of R into levels, ` be a closed
line segment in R, and k > 1 be minimum such that `∩Lk 6= ∅. It follows that ` ⊆ Lk∪Lk+1,
`∩Lk is a subsegment of ` contained in a single k-body P of R, and `∩Lk+1 consists of at
most two subsegments of ` each contained in a single (k + 1)-body whose parent body is P .

Proof. The definition of the levels directly yields ` ⊆ Lk ∪ Lk+1. The segment ` splits into
subsegments each contained in a single k-body or (k + 1)-body of R. By Lemma 11, the
bodies of any two consecutive of these subsegments are in the parent-child relation of the
body tree. This implies that ` ∩ Lk lies within a single k-body P . By Lemma 9, ` ∩ Lk is a
subsegment of `. Consequently, ` ∩ Lk+1 consists of at most two subsegments. J

In the setting of Lemma 12, we call the subsegment ` ∩ Lk of ` the base segment of `,
and we call the body P that contains ` ∩ Lk the base body of `. See Figure 2 for an example.

The following lemma is the crucial part of the proof of Theorem 3.

I Lemma 13. If R is a rooted set, then every point A ∈ R can be assigned a measurable set
T(A) ⊆ R2 so that the following is satisfied:
1. λ2(T(A)) < 87 smc(R);
2. for every line segment BC in R, we have either B ∈ T(C) or C ∈ T(B);
3. the set {(A,B) : A ∈ R and B ∈ T(A)} is measurable.

Proof. Let P be a body of R with the root r. First, we show that P is entirely contained in
one closed half-plane defined by the supporting line of r. Let h− and h+ be the two open
half-planes defined by the supporting line of r. According to the definition of a rooted set, the
sets {D ∈ r : ∃ε > 0: Nε(D) ∩ h− = Nε(D) ∩ (P r r)} and {D ∈ r : ∃ε > 0: Nε(D) ∩ h+ =
Nε(D)∩ (P r r)} are open and partition the entire r, hence one of them must be empty. This



M. Balko, V. Jelínek, P. Valtr, and B. Walczak 413

A = A′

HF

D

C

B′
B

r

T ′ E
T

Figure 3 Illustration for the proof of Claim 1 in the proof of Lemma 13.

implies that the segments connecting r to P rr lie all in h− or all in h+. Since P = Vis(r, P ),
we conclude that P ⊆ h− or P ⊆ h+.

According to the above, we can rotate and translate the set R so that r lies on the x-axis
and P lies in the half-plane {B ∈ R2 : y(B) > 0}. For a point A ∈ R, we use d(A, r) to
denote the y-coordinate of A after such a rotation and translation of R. We use d(A) to
denote d(A, r) where r is the root of the body of A. It follows that d(A) > 0 for every A ∈ R.

Let γ ∈ (0, 1) be a fixed constant whose value will be specified at the end of the proof.
For a point A ∈ R, we define the sets

V1(A) := {B ∈ Vis(A,S) : |A′B′| > γ|AB|, A ∈ Vis(r′′, R), d(A′, r′′) > d(B′, r′′)},
V2(A) := {B ∈ Vis(A,S) : |A′B′| > γ|AB|, A /∈ Vis(r′′, R), d(A′, r′′) > d(B′, r′′)},
V3(A) := {B ∈ Vis(A,S) : |A′B′| < γ|AB|, |AA′| > |BB′|},

where r′′ denotes the root of the base body of AB and A′ and B′ denote the endpoints
of the base segment of AB such that |AA′| < |AB′|. These sets are pairwise disjoint, and
we have A ∈ ⋃3

i=1 Vi(B) or B ∈ ⋃3
i=1 Vi(A) for every line segment AB in R. If for some

B ∈ ⋃3
i=1 Vi(A) the point A lies on r′′, then we have B ∈ V1(A) and V1(A) ⊆ r′′.

For the rest of the proof, we fix a point A ∈ R. We show that the union
⋃3
i=1 Vi(A) is

contained in a measurable set T(A) ⊆ R2 with λ2(T(A)) < 87 smc(R) that is the union of
three trapezoids. We let P be the body of A and r be the root of P . If P is a k-body with
k > 2, then we use r′ to denote the root of the parent body of P .
I Claim 1. V1(A) is contained in a trapezoid T1(A) with area 6γ−2 smc(R).

Let H be a point of r such that AH ⊆ R. Let T ′ be the r-parallel trapezoid of height d(A)
with bases of length 8 smc(R)

d(A) and 4 smc(R)
d(A) such that A is the center of the larger base and H

is the center of the smaller base. The homothety with center A and ratio γ−1 transforms T ′
into the trapezoid T := A+ γ−1(T ′ −A). Since the area of T ′ is 6 smc(R), the area of T is
6γ−2 smc(R). We show that V1(A) ⊆ T . See Figure 3 for an illustration.

Let B be a point in V1(A). Using similar techniques to the ones used by Cabello et
al. [7] in the proof of Theorem 1, we show that B ∈ T . Let A′B′ be the base segment of AB
such that |AA′| < |AB′|. Since B ∈ V1(A), we have |A′B′| > γ|AB|, A ∈ Vis(r′′, R), and
d(B, r′′) 6 d(A, r′′), where r′′ denotes the root of the base level of AB. Since A is visible
from r′′ in R, the base body of AB is the body of A and thus A = A′ and r = r′′. As we
have observed, every point C ∈ {A} ∪AB′ satisfies d(C, r) = d(C) > 0.

Let ε > 0. There is a point E ∈ AB′ such that |B′E| < ε. Since E lies on the base
segment of AB, there is F ∈ r such that EF ⊆ R. It is possible to choose F so that
AH and EF have a point C in common where C 6= F,H. Let D be a point of AH with
d(D) = d(E). The point D exists, as d(H) = 0 6 d(E) 6 d(A). The points A,E, F,H

SoCG’15



414 On the Beer Index of Convexity and Its Variants

form a self-intersecting tetragon Q whose boundary is contained in R. Since R is simply
connected, the interior of Q is contained in R and the triangles ACE and CFH have area
at most smc(R).

The triangle ACE is partitioned into triangles ADE and CDE with areas 1
2 (d(A) −

d(D))|DE| and 1
2 (d(D)−d(C))|DE|, respectively. Therefore, we have 1

2 (d(A)−d(C))|DE| =
λ2(ACE) 6 smc(R). This implies

|DE| 6 2 smc(R)
d(A)− d(C) .

For the triangle CFH, we have 1
2d(C)|FH| = λ2(CFH) 6 smc(R). By the similarity of the

triangles CFH and CDE, we have |FH| = |DE|d(C)/(d(E)− d(C)) and therefore

|DE| 6 2 smc(R)
d(C)2 (d(E)− d(C)).

Since the first upper bound on |DE| is increasing in d(C) and the second is decreasing in
d(C), the minimum of the two is maximized when they are equal, that is, when d(C) =
d(A)d(E)/(d(A) + d(E)). Then we obtain |DE| 6 2 smc(R)

d(A)2 (d(A) + d(E)). This and 0 6
d(E) 6 d(A) imply E ∈ T ′. Since ε can be made arbitrarily small and T ′ is compact, we
have B′ ∈ T ′. Since |AB′| > γ|AB|, we conclude that B ∈ T . This completes the proof of
Claim 1.
I Claim 2. V2(A) is contained in a trapezoid T2(A) with area 3(1− γ)−2γ−2 smc(R).

We assume the point A is not contained in the first level of R, as otherwise V2(A) is
empty. Let p be the r′-parallel line that contains the point A and let q be the supporting
line of r. Let p+ and q+ denote the closed half-planes defined by p and q, respectively, such
that r′ ⊆ p+ and A /∈ q+. Let O be the intersection point of p and q.

Let T ′ ⊆ p+ ∩ q+ be the trapezoid of height d(A, r′) with one base of length 4 smc(R)
(1−γ)2d(A,r′)

on p, the other base of length 2 smc(R)
(1−γ)2d(A,r′) on the supporting line of r′, and one lateral

side on q. The homothety with center O and ratio γ−1 transforms T ′ into the trapezoid
T := O + γ−1(T ′ − O). Since the area of T ′ is 3(1 − γ)−2 smc(R), the area of T is 3(1 −
γ)−2γ−2 smc(R). We show that V2(A) ⊆ T . See Figure 3 for an illustration.

Let B be a point of V2(A). We use A′B′ to denote the base segment of AB such that
|AA′| < |AB′|. By the definition of V2(A), we have |A′B′| > γ|AB|, A /∈ Vis(r′′, R), and
d(B, r′′) 6 d(A, r′′), where r′′ denotes the root of the base body of AB. By Lemma 12 and
the fact that A /∈ Vis(r′′, R), we have r′ = r′′. The bound d(A, r′) > d(B, r′) thus implies
A′ ∈ r ∩ p+ and B ∈ q+. We have d(C, r′) = d(C) > 0 for every C ∈ A′B′.

Observe that (1 − γ)d(A, r′) 6 d(A′, r′) 6 d(A, r′). The upper bound is trivial, as
d(B, r′) 6 d(A, r′) and A′ lies on AB. For the lower bound, we use the expression A′ =
tA+ (1− t)B′ for some t ∈ [0, 1]. This gives us d(A′, r′) = td(A, r′) + (1 − t)d(B′, r′). By
the estimate |A′B′| > γ|AB|, we have

|AA′|+ |BB′| 6 (1− γ)|AB| = (1− γ)(|AB′|+ |BB′|).

This can be rewritten as |AA′| 6 (1− γ)|AB′| − γ|BB′|. Consequently, |BB′| > 0 and γ > 0
imply |AA′| 6 (1− γ)|AB′|. This implies t > 1− γ. Applying the bound d(B′, r′) > 0, we
conclude that d(A′, r′) > (1− γ)d(A, r′).

Let (Gn)n∈N be a sequence of points from A′B′ that converges to A′. For every n ∈ N,
there is a point Hn ∈ r′ such that GnHn ⊆ R. Since r′ is compact, there is a subsequence of
(Hn)n∈N that converges to a point H0 ∈ r′. We claim that H0 ∈ q. Suppose otherwise, and



M. Balko, V. Jelínek, P. Valtr, and B. Walczak 415

F H

T ′

T

p+

r′

A′

A

D

C

G
B′E

B

r
p

q

H0

q+

D′

O

Figure 4 Illustration for the proof of Claim 2 in the proof of Lemma 13.

let q′ 6= q be the supporting line of A′H0. Let ε > 0 be small enough so that Nε(A′) ⊆ R. For
n large enough, GnHn is contained in an arbitrarily small neighborhood of q′. Consequently,
for n large enough, the supporting line of GnHn intersects q at a point Kn such that
GnKn ⊆ Nε(A′), which implies Kn ∈ r ∩Vis(r′, R), a contradiction.

Again, let ε > 0. There is a point E ∈ A′B′ such that |B′E| < ε. Let D′ be a point
of q with d(D′, r′) = d(E). Let δ > 0. There are points G ∈ A′B′ and H ∈ r′ such
that G ∈ Nδ(A′) and GH ⊆ R ∩ Nδ(q). If δ is small enough, then d(E) 6 d(A′, r′) −
δ 6 d(G) 6 d(A′, r′). Let D be the point of GH with d(D) = d(E). The point E
lies on A′B′ and thus it is visible from a point F ∈ r′. Again, we can choose F so
that the line segments EF and GH have a point C in common where C 6= F,H. The
points E,F,H,G form a self-intersecting tetragon Q whose boundary is in R. The interior
of Q is contained in R, as R is simply connected. Therefore, the area of the triangles
CEG and CFH is at most smc(R). The argument used in the proof of Claim 1 yields
|DE| 6 2 smc(R)

d(G)2 (d(G) +d(E)) 6 2 smc(R)
(d(A′,r′)−δ)2 (d(A′, r′) +d(E)). This and the fact that δ (and

consequently |D′D|) can be made arbitrarily small yield |D′E| 6 2 smc(R)
d(A′,r′)2 (d(A′, r′) + d(E)).

This together with d(A′, r′) > (1− γ)d(A, r′) yield |D′E| 6 2 smc(R)
(1−γ)2d(A,r′)2 (d(A, r′) + d(E)).

This and 0 6 d(E) 6 d(A, r′) imply E ∈ T ′. Since ε can be made arbitrarily small and T ′ is
compact, we have B′ ∈ T ′. Since |A′B′| > γ|AB| > γ|A′B|, we conclude that B ∈ T . This
completes the proof of Claim 2.
I Claim 3. V3(A) is contained in a trapezoid T3(A) with area (4(1− γ)−2 − 1) smc(R).

By Lemma 9, the points of r that are visible from A in R form a subsegment CD of r.
The homothety with center A and ratio 2(1− γ)−1 transforms the triagle T ′ := ACD into
the triangle T ′′ := A+ 2(1− γ)−1(T ′ −A). See Figure 5 for an illustration. We claim that
V3(A) is a subset of the trapezoid T := T ′′ r T ′.

Let B be an arbitrary point of V3(A). Consider the segment AB with the base segment
A′B′ such that |AA′| < |AB′|. Since B ∈ V3(A), we have |A′B′| < γ|AB| and |AA′| > |BB′|.
This implies |AA′| > 1−γ

2 |AB| > 0 and hence A 6= A′ and B /∈ P . From the definition of C
and D, we have A′ ∈ CD. Since |AA′| > 1−γ

2 |AB| and B /∈ P , we have B ∈ T .

SoCG’15



416 On the Beer Index of Convexity and Its Variants

A
A′

B B′

T ′

D

C

T r′

Figure 5 Illustration for the proof of Claim 3 in the proof of Lemma 13.

The area of T is (4(1− γ)−2− 1)λ2(T ′). The interior of T ′ is contained in R, as all points
of the open segment CD are visible from A in R. The area of T ′ is at most smc(R), as its
interior is a convex subset of R. Consequently, the area of T is at most (4(1−γ)−2−1) smc(R).
This completes the proof of Claim 3.

To put everything together, we set T(A) :=
⋃3
i=1 Ti(A). It follows that

⋃3
i=1 Vi(A) ⊆

T(A) for every A ∈ R. Clearly, the set T(A) is measurable. Summing the three estimates on
areas of the trapezoids, we obtain

λ2(T(A)) 6
(
6γ−2 + 3(1− γ)−2γ−2 + 4(1− γ)−2 − 1

)
smc(R)

for every point A ∈ R. We choose γ ∈ (0, 1) so that the value of the coefficient is minimized.
For x ∈ (0, 1), the function x 7→ 6x−2 + 3(1− x)−2x−2 + 4(1− x)−2 − 1 attains its minimum
86.7027 < 87 at x ≈ 0.5186. Altogether, we have λ2(T(A)) < 87 smc(R) for every A ∈ R.

It remains to show that the set {(A,B) : A ∈ R and B ∈ T(A)} is measurable. For every
body P of R and for i ∈ {1, 2, 3}, the definition of the trapezoid Ti(A) in Claim i implies that
the set {(A,B) : A ∈ P and B ∈ Ti(A)} is the intersection of P × R2 with a semialgebraic
(hence measurable) subset of (R2)2 and hence is measurable. There are countably many
bodies of R, as each of them has positive measure. Therefore, {(A,B) : A ∈ R and B ∈ T(A)}
is a countable union of measurable sets and hence is measurable. J

Let S be a bounded open subset of the plane, and let ` be a diagonal of S that lies on
the x-axis. For a point A ∈ S, we define the set

S(A, `) := {B ∈ Vis(A,S) : AB ∩ ` 6= ∅ and |y(A)| > |y(B)|}.

The following lemma is a slightly more general version of a result of Cabello et al. [7].

I Lemma 14. Let S be a bounded open simply connected subset of R2, and let ` be its
diagonal that lies on the x-axis. It follows that λ2(S(A, `)) 6 3 smc(S) for every A ∈ S.

Proof. Using an argument similar to the proof of Lemma 8, we can show that the set
{B ∈ Vis(A,S) : AB ∩ ` 6= ∅} is open. Therefore, S(A, `) is the intersection of an open set
and the closed half-plane {(x, y) ∈ R2 : y 6 −y(A)} or {(x, y) ∈ R2 : y > −y(A)}, whichever
contains A. Consequently, the set S(A, `) is measurable for every point A ∈ S.

We clearly have λ2(S(A, `)) = 0 for points A ∈ S r Vis(`, S). By Lemma 9, the set
Vis(A,S) ∩ ` is an open subsegment CD of `. The interior T ◦ of the triangle T := ACD is



M. Balko, V. Jelínek, P. Valtr, and B. Walczak 417

contained in S. Since T ◦ is a convex subset of S, we have λ2(T ◦) = 1
2 |CD| · |y(A)| 6 smc(S).

Therefore, every point B ∈ S(A, `) is contained in a trapezoid of height |y(A)| with bases of
length |CD| and 2|CD|. The area of this trapezoid is 3

2 |CD| · |y(A)| 6 3 smc(S). Hence we
have λ2(S(A, `)) 6 3 smc(S) for every point A ∈ S. J

Proof of Theorem 3. In view of Lemma 7, we can assume without loss of generality that
S is an open bounded simply connected set. Let ` be a diagonal of S. We can assume
without loss of generality that ` lies on the x-axis. According to Lemma 10, the set S r `

has exactly two p-components S1 and S2, the sets S1 ∪ ` and S2 ∪ ` are rooted sets, and ` is
their common root. By Lemma 13, for i ∈ {1, 2}, every point A ∈ Si ∪ ` can be assigned a
measurable set Ti(A) so that λ2(Ti(A)) < 87 smc(Si∪`) 6 87 smc(S), every line segment BC
in Si ∪ ` satisfies B ∈ Ti(C) or C ∈ Ti(B), and the set {(A,B) : A ∈ Si ∪ ` and B ∈ Ti(A)}
is measurable. We set S(A) := Ti(A) ∪S(A, `) for every point A ∈ Si with i ∈ {1, 2}. We
set S(A) := T1(A) ∪ T2(A) for every point A ∈ ` = S r (S1 ∪ S2). Let

S := {(A,B) : A ∈ S and B ∈ S(A)} ∪ {(B,A) : A ∈ S and B ∈ S(A)} ⊆ (R2)2.

It follows that the set S is measurable.
Let AB be a line segment in S, and suppose |y(A)| > |y(B)|. Then either A and B are in

distinct p-components of S r ` or they both lie in the same component Si with i ∈ {1, 2}. In
the first case, we have B ∈ S(A), since AB intersects ` and S(A, `) ⊆ S(A). In the second
case, we have B ∈ Ti(A) ⊆ S(A) or A ∈ Ti(B) ⊆ S(B). Therefore, we have Seg(S) ⊆ S.
Since both Seg(S) and S are measurable, we have

λ4(Seg(S)) 6 λ4(S) 6 2
∫

A∈S
λ2(S(A)),

where the second inequality is implied by Fubini’s Theorem. Using the bound λ2(S(A)) 6
90 smc(S), we obtain

λ4(Seg(S)) 6 2
∫

S

90 smc(S) = 180 smc(S)λ2(S).

Finally, this bound can be rewritten as b(S) = λ4(Seg(S))λ2(S)−2 6 180 c(S). J

3 General dimension

In this section, we sketch the proofs of Theorem 5 and Theorem 6. The detailed proofs can
be found in the full version of this paper [1]. In both proofs, we use the operator Aff to
denote the affine hull of a set of points.

Sketch of the proof of Theorem 5. Let T = (B0, B1, . . . , Bd) be a (d+ 1)-tuple of distinct
affinely independent points of S, ordered in such a way that the following two conditions
hold:
1. the segment B0B1 is the diameter of T , and
2. for i = 2, . . . , d − 1, the point Bi has the maximum distance to Aff({B0, . . . , Bi−1})

among the points Bi, Bi+1, . . . , Bd.
For i = 1, . . . , d− 1, we define Boxi(T ) inductively as follows:
1. Box1(T ) := B0B1,
2. for i = 2, . . . , d−1, Boxi(T ) is the box containing all the points P ∈ Aff({B0, B1, . . . , Bi})

with the following two properties:

SoCG’15



418 On the Beer Index of Convexity and Its Variants

a. the orthogonal projection of P to Aff({B0, B1, . . . , Bi−1}) lies in Boxi−1(T ), and
b. the distance of P to Aff({B0, B1, . . . , Bi−1}) does not exceed the distance of Bi to

Aff({B0, B1, . . . , Bi−1}),
3. Boxd(T ) is the box containing all the points P ∈ Rd such that the orthogonal projection of

P to Aff({B0, B1, . . . , Bd−1}) lies in Boxd−1(T ) and λd(Conv({B0, B1, . . . , Bd−1, P})) 6
λd(S) c(S).

It can be verified that if T ∈ Simpd(S), then Boxd(T ) contains the point Bd. Also, it can be
shown that the λd-measure of Boxd(T ) is equal to z := 2d−2d! smc(S), which is independent
of T . From this, we can deduce that the measure of Simpd(S) is at most (d + 1)λd(S)dz,
and hence bd(S) is at most (d+ 1)z/λd(S), which is of order c(S). J

Sketch of the proof of Theorem 6. To obtain a set S with arbitrarily small convexity ratio
c(S) and with the d-index of convexity bd(S) of order c(S)/ log2 (1/ c(S)), we let S be the
open d-dimensional box (0, 1)d with n points removed. We show that no matter which
n-tuple of points we remove from the box, the d-index of convexity bd(S) is still of order
Ω( 1

n ). Moreover, we show that for some constant α = α(d) > 0 it is possible to remove
n = α 1

ε log2
1
ε points from the box such that every convex subset of (0, 1)d with measure at

least ε contains a removed point. That is, we obtain c(S) 6 ε and bd(S) > γε/ log2 (1/ε) for
some constant γ = γ(d) > 0. Such an n-tuple of points to be removed is called an ε-net for
convex subsets of (0, 1)d. To find it, we first use John’s Lemma [11] to reduce the problem
to finding, for a suitably smaller ε′, an ε′-net for ellipsoids restricted to (0, 1)d. Then, we
apply a continuous version of the well-known Epsilon Net Theorem for families with bounded
Vapnik-Chervonenkis dimension due to Haussler and Welzl [10] (see also [14]). J

It is a natural question whether the bound for bd(S) in Theorem 6 can be improved
to bd(S) = Ω(c(S)). In the plane, this is related to the famous problem of Danzer and
Rogers (see [6, 15] and Problem E14 in [8]) which asks whether for given ε > 0 there is a set
N ′ ⊆ (0, 1)2 of size O( 1

ε ) with the property that every convex set of area ε within the unit
square contains at least one point from N ′.

If this problem was to be answered affirmatively, then we could use such a set N ′ to stab
(0, 1)2 in our proof of Theorem 6 which would yield the desired bound for b2(S). However it
is generally believed that the answer is likely to be nonlinear in 1

ε .

4 Other variants and open problems

We have seen in Theorem 3 that a p-componentwise simply connected set S ⊆ R2 whose
b(S) is defined satisfies b(S) 6 α c(S), for an absolute constant α 6 180. Equivalently, such
a set S satisfies smc(S) > b(S)λ2(S)/180.

By a result of Blaschke [5] (see also Sas [18]), every convex set K ⊆ R2 contains a triangle
of measure at least 3

√
3

4π λ2(K). In view of this, Theorem 3 yields the following consequence.

I Corollary 15. There is a constant α > 0 such that every p-componentwise simply connected
set S ⊆ R2 whose b(S) is defined contains a triangle T ⊆ S of measure at least α b(S)λ2(S).

A similar argument works in higher dimensions as well. For every d > 2, there is a
constant β = β(d) such that every convex set K ⊆ Rd contains a simplex of measure at
least βλd(K) (see e.g. Lassak [13]). Therefore, Theorem 5 can be rephrased in the following
equivalent form.



M. Balko, V. Jelínek, P. Valtr, and B. Walczak 419

I Corollary 16. For every d > 2, there is a constant α = α(d) > 0 such that every set
S ⊆ Rd whose bd(S) is defined contains a simplex T of measure at least α bd(S)λd(S).

What can we say about sets S ⊆ R2 that are not p-componentwise simply connected? First
of all, we can consider a weaker form of simple connectivity: we call a set S p-componentwise
simply 4-connected if for every triangle T such that ∂T ⊆ S we have T ⊆ S. We conjecture
that Theorem 3 can be extended to p-componentwise simply 4-connected sets.

I Conjecture 17. There is an absolute constant α > 0 such that every p-componentwise
simply 4-connected set S ⊆ R2 whose b(S) is defined satisfies b(S) 6 α c(S).

What does the value of b(S) say about a planar set S that does not satisfy even a weak
form of simple connectivity? Such a set may not contain any convex subset of positive
measure, even when b(S) is equal to 1. However, we conjecture that a large b(S) implies the
existence of a large convex set whose boundary belongs to S.

I Conjecture 18. For every ε > 0, there is a δ > 0 such that if S ⊆ R2 is a set with
b(S) > ε, then there is a bounded convex set C ⊆ R2 with λ(C) > δλ(S) and ∂C ⊆ S.

Theorem 3 shows that Conjecture 18 holds for p-componentwise simply connected sets,
with δ being a constant multiple of ε. It is possible that even in the general setting of
Conjecture 18, δ can be taken as a constant multiple of ε.

Motivated by Corollary 15, we propose a stronger version of Conjecture 18, where the
convex set C is required to be a triangle.

I Conjecture 19. For every ε > 0, there is a δ > 0 such that if S ⊆ R2 is a set with
b(S) > ε, then there is a triangle T ⊆ R2 with λ(T ) > δλ(S) and ∂T ⊆ S.

Note that Conjecture 19 holds when restricted to p-componentwise simply connected sets,
as implied by Corollary 15.

We can generalise Conjecture 19 to higher dimensions and to higher-order indices of
convexity. To state the general conjecture, we introduce the following notation: for a set
X ⊆ Rd, let

(
X
k

)
be the set of k-element subsets of X, and let the set Skelk(X) be defined by

Skelk(X) :=
⋃

Y ∈( X
k+1)

Conv(Y ).

If X is the vertex set of a d-dimensional simplex T = Conv(X), then Skelk(X) is often called
the k-dimensional skeleton of T . Our general conjecture states, roughly speaking, that sets
with large k-index of convexity should contain the k-dimensional skeleton of a large simplex.
Here is the precise statement.

I Conjecture 20. For every k, d ∈ N such that 1 6 k 6 d and every ε > 0, there is a δ > 0
such that if S ⊆ Rd is a set with bk(S) > ε, then there is a simplex T with vertex set X
such that λd(T ) > δλd(S) and Skelk(X) ⊆ S.

Corollary 16 asserts that this conjecture holds in the special case of k = d > 2, since
Skeld(X) = Conv(X) = T . Corollary 15 shows that the conjecture holds for k = 1 and d = 2
if S is further assumed to be p-componentwise simply connected. In all these cases, δ can be
taken as a constant multiple of ε, with the constant depending on k and d.

Finally, we can ask whether there is a way to generalize Theorem 3 to higher dimensions,
by replacing simple connectivity with another topological property. Here is an example of
one such possible generalization.

SoCG’15



420 On the Beer Index of Convexity and Its Variants

I Conjecture 21. For every d > 2, there is a constant α = α(d) > 0 such that if S ⊆ Rd is
a set with defined bd−1(S) whose every p-component is contractible, then bd−1(S) 6 α c(S).

A modification of the proof of Theorem 5 implies that Conjecture 21 is true for star-shaped
sets S.

Acknowledgment. The authors would like to thank to Marek Eliáš for interesting discussions
about the problem and participation in our meetings during the early stages of the research.

References
1 M. Balko, V. Jelínek, P. Valtr, and B. Walczak. On the Beer index of convexity and its

variants. full version, arXiv:1412.1769.
2 G. Beer. Continuity properties of the visibility function. Michigan Math. J., 20:297–302,

1973.
3 G. Beer. The index of convexity and the visibility function. Pacific J. Math., 44(1):59–67,

1973.
4 G. Beer. The index of convexity and parallel bodies. Pacific J. Math., 53(2):337–345, 1974.
5 W. Blaschke. Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse. Ber. Verh.

Kön. Sächs. Ges. Wiss. Leipzig Math.-Phys. Kl., 69:3–12, 1917.
6 P. G. Bradford and V. Capoyleas. Weak ε-nets for points on a hypersphere. Discrete

Comput. Geom., 18(1):83–91, 1997.
7 S. Cabello, J. Cibulka, J. Kynčl, M. Saumell, and P. Valtr. Peeling potatoes near-optimally

in near-linear time. In Proceedings of the 30th Annual Symposium on Computational Geo-
metry, pages 224–231, 2014.

8 H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry. Unsolved
Problems in Intuitive Mathematics. Springer New York, 2nd edition, 1991.

9 J. E. Goodman. On the largest convex polygon contained in a non-convex n-gon, or how
to peel a potato. Geom. Dedicata, 11(1):99–106, 1981.

10 D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom.,
2(2):127–151, 1987.

11 F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and
Essays, presented to R. Courant on his 60th birthday, January 8, 1948, pages 187–204,
1948.

12 R. Lang. A note on the measurability of convex sets. Arch. Math. (Basel), 47:90–92, 1986.
13 M. Lassak. Approximation of convex bodies by inscribed simplices of maximum volume.

Beitr. Algebra Geom., 52(2):389–394, 2011.
14 J. Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathematics.

Springer New York, 2002.
15 J. Pach and G. Tardos. Piercing quasi-rectangles—on a problem of Danzer and Rogers. J.

Combin. Theory Ser. A, 119(7):1391–1397, 2012.
16 V. V. Prasolov. Elements of combinatorial and differential topology, volume 74 of Graduate

Studies in Mathematics. American Mathematical Society, 2006.
17 G. Rote. The degree of convexity. In Abstracts of the 29th European Workshop on Compu-

tational Geometry, pages 69–72, 2013.
18 E. Sas. Über eine Extremumeigenschaft der Ellipsen. Compositio Math., 6:468–470, 1939.
19 H. I. Stern. Polygonal entropy: a convexity measure for polygons. Pattern Recogn. Lett.,

10(4):229–235, 1989.


