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Resumé

This habilitation thesis tackles a complicated inverse problem of estimating a latent sharp
image from observed blurred images. The blurring process is modeled by convolution and
the inverse problem is referred to as “blind” deconvolution since we assume limited or
zero knowledge of the convolution kernel. A wide range of degradation processes that
occur during data acquisition can be modeled or at least well approximated by convo-
lution. Camera/object motion, camera optics, turbulence of a measuring media such as
the atmosphere are some of the examples. A frequent encounter of convolution in diverse
application areas makes the deconvolution problem particularly appealing.

The thesis consists of eight scientific articles that survey author’s contribution to the
theory of image deconvolution. The common framework in the presented collection is a
multichannel scenario, i.e., the same scene is captured more than once and each observed
image contains a slightly different convolution kernel (blur). The presented work shows that
under the assumption of multichannel acquisition we have tools to estimate blurs directly
from the observed images without any prior knowledge of the kernel shape. Further it
demonstrates that formulating blind deconvolution as an energy minimization problem
provides the necessary robustness in the case of noisy acquisitions, which is essential for
usability of blind deconvolution in practical applications.

Real data seldom follow the mathematical model precisely. This is either due to un-
known perturbations or the acquisition model is more complicated than the assumed math-
ematical model. A common problem encountered in practice is misregistration of input
images. It is hard to guarantee that during multiple acquisitions the observed images will
be spatially aligned. The author shows that the proposed multichannel blind deconvolu-
tion method automatically estimates translation among images by shifting the estimated
convolution kernels in the correct direction, which makes the method robust to slight mis-
alignment of input images.

Another common problem is that input images have insufficient spatial resolution. In-
creasing the image resolution is called superresolution. The aliasing effect is important in
this case as the high-resolution details are recovered from the overlapping image spectra.
The author proposes to address both deconvolution and superresolution in one common
framework resulting in a blind superresolution method, which simultaneously estimates
convolution kernels and the sharp image in the high-resolution domain. In practice the
maximum meaningful resolution factor we can achieve (often between 2× and 3×) is lim-
ited by the number of input images and discrepancies from the mathematical model. The
author proves that the theory of blind superresolution derived for integer resolution factors
is easily extendable to rational factors using a polyphase decomposition.

Current images have many millions of pixels and fast, close to real time, deconvolution
methods are preferred. Recent progress in the direction of fast numerical optimization
methods is included in the thesis.

The final three articles in the collection illustrate applicability of blind deconvolution in
ophthalmology and mobile phone photography. Images of eye retina, analyzed by ophthal-
mologists are often blurred due to eye movement and pupil imperfections. The first paper
demonstrates that multichannel blind deconvolution could be a useful tool for obtaining
sharp retina images and therefore improving retina defect diagnosis. The second paper ex-
tends blind deconvolution to a space-variant case and evaluates its performance on retina
images. The final paper discusses implementation of blind deconvolution in embedded
device such as smartphones.
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Figure 1: Examples of acquired images under degraded conditions (top row) and ideal
nonviable conditions (bottom row) in three application areas: photography (house), mi-
croscopy (biological specimen), astronomy (sunspot).

1 Introduction

The habilitation thesis addresses one of the core problems of image processing, which is an
estimation of sharp images from degraded observations (measurements). Processing images
becomes an every-day practice in a wide range of applications in science and technology
and we rely on images with ever growing emphasis. Our understanding of the world is
however limited by measuring devices that we use to acquire images. Inadequate measur-
ing conditions together with technological limitations of the measuring devices result in
acquired images that represent a degraded version of the “true” image. Fig. 1 illustrates
examples of acquired images under real conditions versus ideal conditions in three differ-
ent application areas. It is important to underline that the ideal conditions may not be
achievable in practice and the only solution to get the ideal image is to estimate it from
the acquired ones.

The relation between the true latent image u and the degraded observed image g is
given by a formula

g = Hu+ n , (1)

where H is the degradation operator and n is additive noise. By the word “degradation” we
loosely mean an operator that diminishes or completely removes high frequency information
(details) from images. The difficulty with H is that it is ill-conditioned, which means that
during inversion noise n gets amplified and the solution is unstable. We face an ill-posed
inverse problem that requires special handling. Our scenario is even more complicated as
H is unknown, but we can assume that it belongs to a certain type of degradation.

The most common type of degradation, which is considered in the thesis, is convolution:

Hu(x) =

∫
h(x− t)u(t)dt , (2)

where x, t ∈ R2 for images. This definition extends to any number of dimensions and not
just R2. For example in confocal microscopy, convolution is in R3. Function h is a convolu-
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Figure 2: Examples of real camera blurs: (left) three blurs caused by out-of-focus lens
with different lens parameters (focal length and aperture size), notice polygonal shape
clearly visible in the central image, which corresponds to the aperture opening of 7-blade
diaphragm; (right) three blurs caused by camera motion during exposure.

tion kernel (or simply blur) and defines the behavior of the convolution operator. It is also
called a point spread function (PSF), because h is an image the device would acquire after
measuring an ideal point source δ(x) (delta function). Image blur due to camera motion
or improper camera focus setting can be modeled by convolution. The degree of blurring
influences the PSF size and the physical nature of blurring determines the PSF shape. For
example, out-of-focus camera lens causes convolution with a cylindrical PSF, and camera
motion causes convolution with a curvy PSF, where the curve shape is related to the motion
trajectory; see Fig. 2. There is a wide range of imaging devices, in which the acquisition
process can be modeled by convolution. Apart from devices with classical optical systems,
such as digital cameras, optical microscopes or telescopes, convolution degradation occurs
also in atomic force microscopy (AFM) or scanning tunneling microscopy (STM), where
the PSF is determined by the shape of a measuring tip. Media turbulence (e.g. atmosphere
for terrestrial telescopes) can cause blurring that can be modeled by convolution, and there
are many more examples. To make convolution more general, it is often necessary to allow
the PSF to change over the image. Then in (2), h becomes also a function of x, i.e. h(x, t).
This is called space-variant convolution, though strictly speaking it is not mathematical
convolution any more. Using space-variant convolution we can model a wider range of
degradation types, such as blur induced by complex camera motion and rotation, out-of-
focus blur in a wide-depth scene, or blur due to hot-air turbulence. Volumes acquired by a
confocal microscope are in general degraded by 3D space-variant blur, which renders this
particular problem even more challenging.

Deconvolution, as the name suggests, refers to the process of inverting the convolution
operator H. Blind deconvolution denotes the case when the PSF is also unknown. If only
one image g is observed then we call this problem single-channel blind deconvolution.

When we have more observations of the latent image u, we write

gk = Hku+ nk , (3)

where gk is the k-th degraded image. Notice the subscript k in H, which indicates that we
assume different convolution kernels hk across images. Indeed it is highly desirable that the
PSFs differ, since then multiple observations may convey complementary information. The
estimation of the latent image u from the multiple observations gk’s without any knowledge
of hk’s is referred to as multichannel blind deconvolution and this is the unifying theme of
the selected publications, which constitute the habilitation thesis.

An interesting extension of the above degradation operator, which is also discussed in
the thesis, is to consider in addition to convolution H a decimation operator D and rewrite
model (3) as

gk = DHku+ nk . (4)
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The decimation operator D models sampling on a camera sensor, which is affected by
diffraction, shape of light sensitive elements and void spaces between the elements. Includ-
ing D in the model allows us to increase spatial resolution of images. The corresponding
inverse problem is called superresolution.

The rest of the thesis is organized as follows. Section 2 overviews the evolution of state
of the art in the last 12 years during which the author of the thesis has contributed to
the field of image restoration. This section discusses the development in a slightly wider
perspective than the thesis topic and includes also references to author’s research articled
that are not part of the thesis collection.

Section 3 lists eight published research articles that constitute the habilitation thesis
and for each article gives a brief overview of the main ideas and contribution to the state
of the art.

Section 4 concludes the habilitation thesis and the final Section 5 contains reprints of
the research articles.

2 State of the art

Recovering u from g even in the nonblind case is not straightforward. A standard technique
is to convert the deconvolution problem to energy minimization [1]. The core term in the
energy function implied by the model (1) is called a data-fitting or fidelity term and takes
the form

E(u) = ‖g −Hu‖22 , (5)

where ‖ · ‖p denotes the Lp norm. In this case, finding the minimum of û = arg minuE(u)
is equivalent to a lease-square fit. The difficulty of finding the minimum of (5) resides in
the degradation operator H. Since blurring diminishes high frequency information (image
details), the spectrum of H contains zeros or values close to zero. Therefore, H is generally
not invertible.

A classical way to solve such ill-posed minimization problems is to add regularization
terms and convert the problem to a related one that admits a unique solution. Regular-
ization conveys additional prior knowledge of the original image u to the energy function.
Priors are application dependent and general rules for constructing the priors are hard
to find. Nevertheless, studying image statistics shows that the majority of natural im-
ages contain smooth regions with abrupt changes of intensity values at object boundaries
that correspond to edges. An image gradient is a useful feature, which can distinguish
between edges and smooth regions. Therefore, regularization terms are often functions of
∇u = [ux1 , ux2 ]. Other features are also used, such as outputs of various differential filters.
A typical example are wavelet coefficients. The Lp quasi-norms for p ≤ 1 of the image
gradient (a special case of p = 1 is called total variation [2]), is a popular choice for the
image regularization term. Then the regularized energy becomes

E(u) = ‖g −Hu‖22 + λ‖∇u‖pp . (6)

Parameter λ is a positive weighting constant. The first term forces the solution to be
close to the observed data and the second one guarantees that the solution is sufficiently
smooth in the Lp sense. Noise is removed in smooth regions, while edges are not excessively
penalized, since we use Lp for p ≤ 1 instead of L2 norm.

In blind image restoration, the energy E becomes a functional of two unknowns, orig-
inal image u and degradation H. In our case of convolution, H is parametrized by PSF
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h. If both u and h are unknown, the problem is underdetermined and some additional
information (e.g. regularization of h) or different minimization strategy is necessary. For
example, so called “no-blur” solution, when û = g and ĥ = δ, is one of the unwanted
solutions, which gives the blurred input as the latent image and the delta function as the
estimated PSF. Many commonly used energy functions get trapped in “no-blur” solution.

A more general formulation of the image restoration problem is stochastic [3]. Images
and PSFs are regarded as random vector fields [4] with known prior probability distribution
functions p(u) and p(h), respectively. The Bayesian paradigm dictates that the inference
on the latent image and PSF should be based on the posterior probability

p(u, h|g) ∝ p(g|u, h)p(u)p(h) , (7)

where u and h are assumed to be independent. The conditional distribution p(g|u, h)
is given by our model (1). Suppose that n is white Gaussian noise then the logarithm
of the conditional distribution is equivalent to (5). Different noise distributions result
in different data-fitting terms. For example, the Laplace distribution implies E(u) =
‖z −Hu‖1. Estimating the pair (û, ĥ) is equivalent to maximizing the posterior p(u, h|g),
which is commonly referred to as the maximum a posteriori (MAP) approach. Note that
maximization of the posterior is equivalent to minimization of − log p(u, h|g), which is
an energy minimization task (6), where the prior plays a role of the regularization term.
The simplest but also the most common method maximizes the posterior in an alternative
manner with respect to u and h. Unfortunately, since the posterior is not convex, it has an
uneven shape with many local peaks and alternating maximization often returns incorrect
solutions.

In the case of single-channel blind deconvolution, proposed approaches include stronger
regularization both on the image and blur and above all must use more sophisticated
estimation procedures as discussed in Sec. 2.1. The multichannel case discussed in Sec.
2.2 permits estimation of the blurs without any prior knowledge of their shape. The space-
variant case with parametric approaches is covered in Sec. 2.3.

2.1 Single-channel blind deconvolution

One way to tackle the problem, when we have only one observation and no knowledge of the
PSF, is to assume a parametric model of the PSF and search in the space of parameters
and not in the full space of PSFs. Chang et al. in [5] investigated zero patterns of
the Fourier transform or cepstrum, and assumed only parametric motion or out-of-focus
blurs. More recently a similar idea was proposed in [6]. Low-level parametric methods for
estimating general motion blurs were proposed in [7–10]. Parametric methods have two
disadvantages. They are more restrictive than the fully blind ones and they can also be
computationally more demanding. Even if minimization with respect to the unknown PSF
is linear, minimization with respect to one of the parameters of the PSF does not have
to be linear and thus effective methods for solving linear problems can not be applied.
Real PSFs typically differ from their parametric models and this prevents the parametric
methods to find an exact solution.

There has been a considerable effort in the image processing community in the last three
decades to find a reliable algorithm for single-channel blind deconvolution. First algorithms
appeared in telecommunication and signal processing in early 80’s [11]. For a long time,
the general belief was that blind deconvolution was not just impossible, but that it was
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hopelessly impossible. Proposed algorithms usually worked only for special cases, such as
astronomical images with uniform (black) background, and their performance depended
on initial estimates of PSFs; see [12–14].

Over the last few years, single-channel blind deconvolution experiences a renaissance.
The key idea of new algorithms is to address the ill-posedness of blind deconvolution
by characterizing the prior p(u) using natural image statistics and by a better choice of
estimators. The idea of natural image statistics was also explored by the author of the thesis
in [15]. A heated activity started with the work of Fergus et al. [16], who applied variational
Bayes to approximate the posterior p(u, h|g) by a simpler distribution q(u, h) = q(u)q(h).
Other authors [17–20] stick to the “good old” alternating MAP approach, but by using ad
hoc steps, which often lack rigorous explanation, they converge to a correct solution. Levin
et al. in [21, 22] proved that a proper estimator matters more than the shape of priors.
They showed that marginalizing the posterior with respect to the latent image u leads to
the correct solution of the PSF h. The marginalized probability p(h|g) can be expressed
in a closed form only for simple priors that are, e.g., Gaussian. Otherwise approximation
methods such as variational Bayes [23] or the Laplace approximation [24] must be used.

More recently, even better results were achieved if the model of natural images statistics
was abandoned and priors that force unnaturally sparse distributions were used instead,
such as in [25,26] and similarly also by the author of the thesis in [27]. A formal justification
of unnaturally sparse distributions was given in [28] together with a unifying framework
for the MAP and variational Bayesian formulation.

2.2 Multichannel blind deconvolution

The framework of multiple observations as defined in (3) provides the necessary constraint
to make the image restoration task well posed. One of the earliest intrinsic multichan-
nel blind deconvolution methods [29] was designed particularly for images blurred by at-
mospheric turbulence. Harikumar et al. [30] proposed an indirect algorithm, which first
estimates the blur functions and then recovers the original image by standard nonblind
methods. The blur functions are equal to the minimum eigenvector of a special matrix
constructed from the blurred images, which is the same idea published earlier for 1D sig-
nals in [31]. Necessary assumptions for perfect recovery of the blur functions are noise-free
environment and channel coprimeness, i.e. a scalar constant is the only common factor of
the blurs. Giannakis et al. [32] developed another indirect algorithm based on Bezout’s
identity of coprime polynomials which finds restoration filters and by convolving the filters
with the observed images recovers the original image. Both algorithms are vulnerable to
noise and even for a moderate noise level restoration may break down. In the latter case,
noise amplification can be attenuated to a certain extent by increasing the restoration filter
order, which comes at the expense of deblurring. Pai et al. [33] suggested two multichannel
restoration algorithms that constract a special matrix from the input blurred images and
estimate directly the original image from the null space or from the range of the matrix.
Another direct method based on the greatest common divisor was proposed in [34]. Inter-
esting approaches based on the ARMA (autoregressive moving average) model are given
in [35]. Multichannel blind deconvolution based on the Bussgang algorithm was proposed
in [36], which performs well on spatially uncorrelated data, such as binary text images and
spiky images. Most of the algorithms lack the necessary robustness since they do not in-
clude any noise assumptions in their derivation and miss regularization terms. The author
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of the thesis proposed an iterative multichannel algorithm [37] that performs well even on
noisy images. It is based on least-squares deconvolution by anisotropic regularization of
the image and between-channel regularization of the blurs.

An obstacle of multichannel methods, which is not present in the single-channel case,
is that the observed images must be spatially aligned, which is seldom true in practice. A
first attempt in this direction was done by the author in [38], where blind deconvolution of
images that are mutually shifted by unknown vectors was proposed. The author extended
this idea to superresolution in [39]. In superresolution, the physical resolution of the image
is increased, which is equivalent to considering both convolution and decimation according
to the model in (4).

The recent findings in the single-channel area, in particular the favorable property of
unnaturally sparse priors, was incorporated in the multichannel case in [40].

An interesting specific branch of the multichannel methods, which was found appealing
for its potential practical usage, works with a pair of acquired images: one correctly exposed
but blurred and one underexposed (noisy) but sharp image. We can apply the general
multichannel blind deconvolution methods, but in this particual case they are even better
posed, as was demonstrated in [41–43] and also by the author of the thesis in [44].

Blind deconvolution in the multichannel framework is in general a well-posed inverse
problem. However, in many practical situations we do not have multiple observation of the
same scene, which would differ only by the convolution kernel, and we must revert to the
single-channel case.

2.3 Space-variant blind deconvolution

Space-variant blind deconvolution is even more complicated as the PSF is also a function
of the position vector. As a rule, the space-variant PSF cannot be expressed by an explicit
formula but in many cases it has a special structure that can be exploited. For example,
the blur caused by camera motion is limited by six degrees of freedom of rigid body rotation
and translation. If we have an estimate of the camera motion from inertial sensors [45,46]
or other sources [47–49], we are able to reconstruct the PSF and recover the latent image.
The author of the thesis contributed in this area by implementing blind deconvolution
in mobile phones using gyroscopes [50, 51]. If the information about camera motion is
not available, the PSF can be estimated directly from the input images but additional
restrictions on camera motion are necessary for the methods to work. If for example only
rotation is assumed, we can express the degradation operator as a linear combination of
basis blurs (or images) and solve the blind problem in the space of the basis, which has
much lower dimension than the original problem. Whyte et al. [52] considered rotations
about three axes up to several degrees and described blurring using three basis vectors. For
blind deconvolution, they used an algorithm analogous to [16] based on marginalization
over the latent sharp image. Gupta et al. [53] and Hirsch et al. [54] adopted a similar
approach, replacing rotations about x and y axes by translations. Recently, convolution
neural networks were used to remove various types of blurs directly from the blurred image,
as e.g. proposed by the author of the thesis in [55], or indirectly by first estimating a motion
field and then performing space-variant nonblind deconvolution of the image [56].

Removing out-of-focus blur is a more complex problem, since the PSF depends on
object distance and we need to estimate also the depth map as was proposed in [57,58].

If the PSF changes smoothly over the image, the PSFs can be considered as constant
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on a small neighborhood and estimated on a regularly spaced grid. This idea has been
proposed by the author of the thesis in [44] and later extended to superresolution in [59]. For
estimation, we can apply locally single-channel blind deconvolution methods [60,61], or if a
pair of blurred and noisy/underexposed images is available, multichannel methods [41,62].
Recently, more accurate parametric interpolation of PSFs on the grid has been proposed
by the author in [63].

An especially difficult situation is that of the blur caused by object motion, as objects
usually move independently of each other and often in different directions. In order to
achieve a good quality of deblurring, the object must be precisely segmented, taking into
account partial occlusion close to object outline. Most of the methods [64–67] follow the
pioneering paper of Levin [68] that assumed that objects move with a constant velocity
and segmented objects based on a statistics of image derivatives. A completely different
approach, without the need to segment objects, was proposed in [69] but the method works
only with video sequences and not with single images.

3 Research articles in the habilitation thesis

The habilitation thesis represents a survey of the most important results in the area of
multichannel blind deconvolution that the author has achieved in the period 2003–2014.
The author has incorporated some of these results into the course “Variational Methods in
Image Processing”, which he opened at the Faculty of Mathematics and Physics, Charles
University and which he has been teaching since 2011. The teaching provides him with a
feedback which stimulates some of his recent and current research.

The habilitation thesis is a collection of eight research articles. The acquisition model
is assumed to be of the form (3) and in all the cases except one (paper no. 2) the energy
minimization approach is considered. The first five articles are chronologically sorted and
summarize contribution of the author to the theory of blind deconvolution. The remaining
three articles are examples of applied research articles that illustrate the use of blind
deconvolution in practice.

1. F. Šroubek and J. Flusser, “Multichannel blind iterative image restoration,” IEEE
Transactions on Image Processing, vol. 12, no. 9, pp. 1094–1106, 2003.

This research article was the first step in the direction of robust multichannel de-
convolution methods. We use energy minimization approach with regularization.
The PSF regularization is based on a simple but elegant idea presented originally
by Harikumar et al. in [30]. They showed that by constructing a special matrix
from blurred input images, we can determine PSFs as minimum eigenvalues of the
matrix. However, stability of Harikumar’s method deteriorates quickly with increas-
ing noise. Instead of using the special matrix directly, we construct from the matrix
a quadratic regularization term, which is intrinsically multichannel as it couples all
the input images and approaches the minimum for correct PSFs. Then we minimize
the regularized energy function with respect to the image and PSFs. To increase
stability even further we include image regularization based on image gradients, such
as Total Variation [70] or Mumford-Shah functional [71]. The final energy function
is convex but the solution leads to nonlinear equations. This drawback is solved by a
half-quadratic algorithm [72], which converts the problem to a set of linear equations.
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A special attention is paid to discretization of image regularization terms using four-
connectivity and eight-connectivity approximation. The performance of the proposed
method is evaluated on synthetically blurred data and also on camera out-of-focus
images and astronomical data.

The main contribution of this research article is in constructing a novel multichannel
regularization term and proposing an iterative method for blind deconvolution, which
is robust to noise and thus suitable for practical applications.

2. F. Šroubek and J. Flusser, “Multichannel blind deconvolution of spatially misaligned
images,” IEEE Transactions on Image Processing, vol. 14, no. 7, pp. 874–883, 2005.

In this research article, we adopt a stochastic approach to multichannel blind de-
convolution and formulate the restoration problem as a MAP inference; see (7).
Regularization terms are now replaced by prior distributions of images and blurs.
This interpretation introduces covariance matrices that were omitted in the original
formulation and allows us to better understand meaning of weighting parameters in
front of these terms. We also prove that the proposed method can compensate for a
misalignment of input blurred images. From the practical point of view, this is an
important feature. We require multiple (minimum two) images of the same scene that
are blurred in a slightly different way. Video sequences or continuous shooting in dig-
ital cameras often provide data where neighboring frames (images) depict the same
scene with blurs slightly varying in time. However, such images are rarely spatially
aligned (registered). We can use registration methods in [73] to geometrically align
input blurred images, but registration of blurred images is imprecise. We show that
by overestimating the blur support, the proposed method is able to automatically
shift the estimated blurs and thus cancel spatial misalignment of the images.

The main contribution of this research article is in built-in compensation for misalign-
ment of input images, which further increases applicability of the proposed method.

3. F. Šroubek, G. Cristóbal, and J. Flusser, “A unified approach to superresolution and
multichannel blind deconvolution,” IEEE Transactions on Image Processing, vol. 16,
no. 9, pp. 2322–2332, 2007.

In the previous two research articles, we have developed a theory of multichannel
blind deconvolution. Multiple observations of the same scene give us one additional
benefit. If the observations differ by subpixel shifts we can also increase spatial reso-
lution of the latent image (superresolution), which is explored in this research article.
We assume the multichannel acquisition model with decimation as defined in (4). We
prove that even in the presence of the decimation operator D, which does not com-
mute with the convolution operator H, we can construct a blur regularization term,
which is similar to the regularization term in the classical multichannel blind decon-
volution problem. The regularization term is not strictly convex and approaches the
minimum on a subspace of dimensions proportional to the superresolution factor.
The superresolution factor is a user parameter and determines the final high reso-
lution of the latent image. With an increasing superresolution factor the minimum
number of input images necessary to construct the regularization term increases pro-
portionally. The regularized energy function is minimized with respect to the image
and blurs as in the case of multichannel blind deconvolution. However in this case we
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also recover the lost spatial resolution of the latent image. We named this problem
blind superresolution.

The proposed blind superresolution method went way beyond standard superresolu-
tion techniques. While estimating the blurs in the high resolution grid of the final
latent image, we calculate not only PSFs but also subpixel shifts. This made it
one of the first methods that performs deconvolution and resolution enhancement
simultaneously.

4. F. Šroubek, J. Flusser, and G. Cristobal, “Super-resolution and blind deconvolution
for rational factors with an application to color images,” Computer Journal, vol. 52,
no. 1, pp. 142–152, 2009.

The previous research article demonstrates that superresolution neatly combines with
multichannel blind deconvolution. The minimum number of input images required for
well-posed blind superresolution depends on the superresolution factor. For example
estimating blurs and increasing resolution by a factor of 2, requires at least 5 images.
If the factor is 3, we already need 10 images. In many practical applications it is
difficult to guarantee this minimum number. In addition, acquired images do not
follow precisely our mathematical model, which implies that superresolution factor
of more than 2 provides negligible improvement in practice as was experimentally
demonstrated. These facts show that non-integer superresolution factors below two
are meaningful as they require less number of input images and recover high frequency
information. This work uses the notion of polyphase decomposition to derive PSF
regularization terms that work for any rational superresolution factor. We can thus
extend conclusions derived in the previous research article about blind superresolution
to factors such as 3/2 = 1.5 (requires 3 input images) or 7/4 = 1.75 (requires 4 input
images). Other improvements discussed in the paper are image regularization terms
for color images, and advantages of image registration performed in the decimation
matrix versus registration done beforehand.

The main goal of this paper has been to extend the theory of blind superresolution
for integer factors to rational factors.

5. F. Šroubek and P. Milanfar, “Robust multichannel blind deconvolution via fast al-
ternating minimization,” IEEE Transactions on Image Processing, vol. 21, no. 4, pp.
1687–1700, 2012.

The quality of image deconvolution is very sensitive to accuracy with which the PSF
is estimated. Disturbing artifacts appear in deconvolved images due to inaccurate
PSF estimation. Using stronger image regularization we can avoid the artifacts but
we inevitably loose details. In the first part of this research article, we analyze the
multichannel blur regularization term and show that its dependence on noise may bias
the estimation of PSFs in the noisy case. Using filtered images instead of the original
intensity values to construct the blur regularization term diminishes the bias and
improves the accuracy of PSF estimation. The second part of the paper is dedicated
to a fast numerical optimization method, which would allow blind deconvolution of
large images (several Mpixels) and large blurs (up to 100×100 pixels). Again we use
alternating minimization between two steps: minimization with respect to the latent
image and minimization with respect to the PSFs. However this time, we solve a
nonlinear problem in each step by applying a variable splitting technique to convert
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the problem to constrained optimization and then using an augmented Lagrangian
method to solve the constrained optimization. The augmented Lagrangian method
is a fast converging method, which can solve the blind deconvolution problem in an
efficient way. Examples of blind deconvolution of high resolution photos captured
with a DSLR camera conclude the paper.

The main contribution of this research article is in improving accuracy of PSF esti-
mation and providing a fast and reliable multichannel blind deconvolution algorithm
that copes with high-resolution image and large blurs.

6. A. Marrugo, M. Šorel, F. Šroubek, and M. Millan, “Retinal image restoration by
means of blind deconvolution,” Journal of Biomedical Optics, vol. 16, no. 11, pp.
116016-1-11, 2011.

This applied research article is an example of direct application of multichannel blind
deconvolution illustrating a step towards computer-assisted diagnosis and telemedicine
in ophthalmology. Here we present a method for color retinal image restoration by
means of multichannel blind deconvolution. The method is applied to a pair of retinal
images acquired within a lapse of time, ranging from several minutes to months. It
consists of a series of preprocessing steps to adjust the images so they comply with
the considered degradation model (3), followed by the estimation of the PSF and,
ultimately, image deconvolution. The preprocessing is composed of image registra-
tion, uneven illumination compensation, and segmentation of areas with structural
changes. In addition, we have developed a procedure for the detection and visualiza-
tion of structural changes. This enables the identification of subtle developments in
the retina not caused by variation in illumination or blur. The method was tested
on synthetic and real images.

The main purpose of this paper has been to investigate a new approach for retinal
image restoration based on multichannel blind deconvolution.

7. A. Marrugo, M. Millán, M. Šorel, and F. Šroubek, “Restoration of retinal images
with space-variant blur,” Journal of Biomedical Optics, vol. 19, no. 1, 2014.

In this paper we extend results of the previous article by introducing a method for
restoring retinal images affected by space-variant blur. To do so, we described a
space-variant model of blur in terms of convolution with a PSF that changes depend-
ing on its position. We show that the PSFs need not be computed for all pixels, which
is quite a demanding task, but for a small set of discrete positions. For any interme-
diate position bilinear interpolation suffices. In this way, we achieve a space-variant
representation of the PSF. The estimation of accurate local PSFs proved difficult due
to the very nature of the images; they usually contain texture-less or nearly homoge-
neous regions that lack retinal structures, such as blood vessels, to provide sufficient
information. In this regard, we propose a strategy based on eye-domain knowledge to
adequately identify and correct such non-valid PSFs. Without this, the restoration
results are artifact-prone with an overall image quality that is worse than the original
image. The proposal has been tested on artificially and naturally degraded retinal
images coming from the clinical practice. The details from the restored retinal images
show an important enhancement, which is also demonstrated with the improvement
in the detection of the retinal vasculature.
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The main contribution of this work is to demonstrate a relatively simple but effective
remedy to smoothly and slowly varying space-variant blur by applying patch-wise
blind multichannel deconvolution.

8. O. Šindelář and F. Šroubek, “Image deblurring in smartphone devices using built-
in inertial measurement sensors,” Journal of Electronic Imaging, vol. 22, no. 1, pp.
011003-1-8, 2013.

This is another example of an applied research article. The target application is
photography on embedded devices. Blur induced by camera motion is a frequent
problem in photography mainly when the light conditions are poor. As the exposure
time increases, involuntary camera motion has a growing effect on the acquired image.
Image stabilization devices that help to reduce the motion blur by moving the camera
sensor in the opposite direction are becoming more common. However, such hardware
remedy has its limitations as it can compensate only for motion of a very small extent
and speed. Deblurring the image offline using mathematical algorithms is usually the
only choice we have in order to obtain a sharp image. Motion blur can be modeled
by convolution and then the deblurring process is deconvolution. Many devices, such
as modern smartphones, are now equipped with inertial sensors (gyroscopes and
accelerometers) that can give us a very accurate information about camera motion.
If we are able to reconstruct camera path then we can recover blur and perform
nonblind image deblurring. This idea was originally described in [45] but the authors
have designed an expensive measuring apparatus consisting of a DSLR camera and a
set of inertial sensors, and perform image deblurring offline on a computer. Our work
is based on the same idea but the aim is to show that image deblurring is feasible on
modern smartphones without the requirement of other devices.

The main contribution of this work is to illustrate that blur estimation with built-
in inertial sensors is possible and to implement image deblurring on a smartphone,
which works in practical situations and is relatively fast to be acceptable for a general
user.

4 Conclusions

The presented habilitation thesis summarizes author’s contribution to the theory of blind
deconvolution in the last ten years. The underlying theme linking the collection of eight
publications that comprise the thesis is multichannel blind deconvolution. The presented
research articles summarize gradual improvements in the field of blind deconvolution that
resulted in a robust algorithm, which works with misaligned high-resolution blurry images,
can cope with large blurs, and is computationally efficient using advance numerical meth-
ods. Multichannel framework of blind deconvolution is extended to resolution enhancement
(superresolution), which is covered by two research articles in the collection. The appli-
cability of the approach has been demonstrated on many practical examples. A various
versions of the restoration algorithm are available for free for research purposes on the
institute web pages. To date, we file over 1000 downloads of the software, which indicates
a high interest of the research community in this topic. This fact is also supported by a
relatively high impact of the presented collection of articles, which is around 280 citations
(according to SCOPUS) in total excluding self-citations.
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Multichannel Blind Iterative Image Restoration
Filip S̆roubek and Jan Flusser, Senior Member, IEEE

Abstract—Blind image deconvolution is required in many ap-
plications of microscopy imaging, remote sensing, and astronom-
ical imaging. Unfortunately in a single-channel framework, serious
conceptual and numerical problems are often encountered. Very
recently, an eigenvector-based method (EVAM) was proposed for
a multichannel framework which determines perfectly convolu-
tion masks in a noise-free environment if channel disparity, called
co-primeness, is satisfied. We propose a novel iterative algorithm
based on recent anisotropic denoising techniques of total variation
and a Mumford–Shah functional with the EVAM restoration con-
dition included. A linearization scheme of half-quadratic regular-
ization together with a cell-centered finite difference discretization
scheme is used in the algorithm and provides a unified approach
to the solution of total variation or Mumford–Shah. The algorithm
performs well even on very noisy images and does not require an
exact estimation of mask orders. We demonstrate capabilities of
the algorithm on synthetic data. Finally, the algorithm is applied
to defocused images taken with a digital camera and to data from
astronomical ground-based observations of the Sun.

Index Terms—Conjugate gradient, half-quadratic regular-
ization, multichannel blind deconvolution, Mumford–Shah
functional, subspace methods, total variation.

I. INTRODUCTION

B LIND restoration of an image acquired in an erroneous
measuring process is often encountered in image pro-

cessing but a satisfying solution to this problem has not been
yet discovered. The amount ofa priori information about
degradation, i.e., the size or shape of blurs, and the noise level,
determines how mathematically ill-posed the problem is. Even
nonblind restoration, when blurs are available, is in general an
ill-posed problem because of zeros in the frequency domain
of the blurs. The single-channel (SC) blind and nonblind
deconvolution in two-dimensional (2-D) have been extensively
studied and many techniques have been proposed for their
solution [1], [2]. They usually involve some regularization
which assures various statistical properties of the image or
constrains the estimated image and/or restoration filter ac-
cording to some assumptions. This regularization is required
to guarantee a unique solution and stability against noise and
some model discrepancies. SC restoration methods that have
evolved from denoising applications form a very successful
branch. Anisotropic denoising techniques play a prominent role
due to their inherent ability to preserve edges in images. Total

Manuscript received June 28, 2002; revised March 28, 2003. This work
was supported by the Grant Agency of the Czech Republic under Project
102/00/1711. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Thierry Blu.

The authors are with the Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, 182 08 Prague 8, Czech Republic
(e-mail: sroubekf@utia.cas.cz; flusser@utia.cas.cz).

Digital Object Identifier 10.1109/TIP.2003.815260

variation (TV) has proved to be a good candidate for edge-pre-
serving denoising [3]. The TV solution is associated with highly
nonlinear Euler-Lagrange equations but several linearization
schemes were proposed to deal with this nonlinearity: the fixed
point iteration scheme [4], [5], the primal-dual method [6] or a
more general half-quadratic regularization scheme proposed in
[7]. Recently, a more sophisticated approach, which minimizes
the Mumford–Shah energy function [8], was successfully
applied to image denoising and segmentation [9]. A trivial
extension into the nonblind deconvolution problem exists for
all these iterative denoising techniques.

A breakthrough in understanding of blind deconvolution was
the method of zero sheets proposed by Lane and Bates [10].
They have shown that the SC blind deconvolution is possible in
a noise-free case. Their arguments rest on the analytical prop-
erties of the -transform in 2-D and on the fact that 2-D poly-
nomials are not generally factorizable. Although conceptually
the zero sheets are correct, they have little practical application
since the algorithm is highly sensitive to noise and prone to nu-
merical inaccuracy for large image sizes. A famous pioneering
work in blind deconvolution has been done by Ayers and Dainty
[11]. (Interesting also are enhancements proposed in [12]–[14].)
Their iterative method based on Wiener-like filters with the pos-
sibility to include all sorts of constraints is robust to noise but
lacks any reliability, since the problem of blind deconvolution is
ill-posed with respect to both the image and the blur. If the im-
ages are smooth and homogeneous, an autoregressive model can
be used to describe the measuring process. The autoregressive
model simplifies the blind problem by reducing the number of
unknowns and several techniques were proposed for finding its
solution [15]–[17]. Very promising results have been achieved
with a nonnegativity and support constraints recursive inverse
filtering (NAS-RIF) algorithm proposed by Kundur and Hatzi-
nakos [2] and extensions in [18], [19]. These methods, however,
work on images that contain objects of finite support and have a
uniform background. The area of the object support must be de-
termined in advance. A bold attempt [20] has been made to use
the TV-based reconstruction for the blind SC problems but with
dubious results as the problem is ill-posed with respect to both
the image and the blur. The alternating minimization algorithm
has been proposed for this purpose and Chanet al. [21] have
verified its convergence in case of the norm of the image
gradient, but not in case of the TV functional.

The knowledge of the degradation process does not have
to be the only source of usefula priori information. Multiple
acquisition that generates several differently blurred versions
of one scene may provided the information. Examples of
such multichannel (MC) measuring processes are not rare and
include remote sensing and astronomy, where the same scene
is observed at different time instants through a time-varying
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inhomogeneous medium such as the atmosphere; electron
microscopy, where images of the same sample are acquired
at different focusing lengths; or broadband imaging through
a physically stable medium but which has a different transfer
function at different frequencies. The MC acquisition refers
in general to two input/output models that differ fundamen-
tally, and from the mathematical point of view, should be
distinguished: the single-input multiple-output (SIMO) model
and the multiple-input multiple-output (MIMO) model. The
SIMO model is typical for one-sensor imaging under varying
environment conditions, where individual channels represent
the conditions at time of acquisition. The MIMO model refers
to multi-sensor or broadband imaging, where the channels
represent, for example, different frequency bands or resolution
levels. Color images are the special case of the MIMO model.
An advantage of MIMO is the ability to model cross-channel
degradations which occur in the form of channel crosstalks,
leakages in detectors, and spectral blurs. Many techniques for
solving the MIMO problem were proposed and could be found
in [22]–[25]. In the sequel, we confine ourselves to the SIMO
model exclusively and any reference to the term MC denotes
the SIMO model.

Nonblind MC deconvolution is potentially free of the prob-
lems arising from the zeros of blurs. The lack of information
from one blur in one frequency is supplemented by the informa-
tion at the same frequency from others. It follows that the blind
deconvolution problem is greatly simplified by the availability
of several different channels. Moreover, it is possible to esti-
mate the blur functions directly by a simple one-step procedure
and reduce the blind problem to the nonblind one if certain con-
ditions are met. Harikumar and Bresler proposed in [26], [27]
a very elegant one-step subspace procedure (EVAM) which ac-
complishes perfect blind restoration in a noise-free environment
by finding a minimum eigenvector of a MC condition matrix.
One disadvantage of EVAM is its vulnerability to noise. Even
for a moderate noise level the restoration may break down. Pillai
et al.[28] have proposed another intrinsically MC method based
on the greatest common divisor which is, unfortunately, even
less numerically stable. A different, also intrinsically MC, ap-
proach proposed in [29] first constructs inverse FIR filters and
then estimates the original image by passing the degraded im-
ages through the inverse filters. Noise amplification also occurs
here but can be attenuated to a certain extent by increasing the
inverse filter order, which comes at the expense of deblurring.

The above reasoning implies that the combination of the
anisotropic denoising technique with the subspace procedure
could provide both the numerical stability and the necessary
robustness to noise. In the paper, we thus propose an MC alter-
nating minimization algorithm (MC-AM) which incorporates
the EVAM condition matrix into the anisotropic denoising tech-
nique as an extra regularization term. We derive the algorithm
for two different denoising approaches: total variation and
Mumford–Shah functional; and discuss in detail linearization
and discretization schemes which lead in both cases to simple
equations that differ only in the construction of one particular
matrix.

The rest of this paper is organized as follows. Used notation
and few numerical considerations are presented in Section II.

Section III provides mathematical preliminaries for the develop-
ment of the algorithm, which is then described in Section IV. Re-
sults of three experiments conducted on artificial and real data,
and comparisons with the simple EVAM method are given in
Section V.

II. NOTATION AND DEFINITIONS

Throughout, will denote a rectangle in (although lower
or higher dimensions may be also considered) which is the def-
inition domain of image intensity functions. All the image in-
tensity functions will be regarded as a bounded gray-level func-
tions of the form . denotes location
in denotes Euclidian norm, and de-
notes the norm in . stands for the Lebesgue measure
of which could be considered to be equal to the area of

.
To be able to implement the proposed algorithm a proper dis-

cretization is necessary. We will follow the CCFD (cell-centered
finite difference) discretization scheme [5]. A square lattice is
constructed on top of with a constant step. Let and
denote the minimum number of cells in theand directions,
respectively, that covers the total area of. A cell is
defined as

with area . The cell centers are given by and
indexed , where

The cell middle edge points are given by and
indexed , where

Function is then approximated by a piecewise constant
function which has a constant value inside the cell

. is often calculated as the mean of over the cell
or simply the value of at the cell center . The set of
values fully defines the piecewise constant function

which can be thus regarded as a discrete matrix
of size . The 2-D discrete -transform of is defined
as , where . Fi-
nally, denotes the discrete vector representation of
the image function and is obtained by lexicographically
ordering with respect to the index pair . Any linear op-
erator and operation can be thus approximated
by a discrete matrix and matrix-vector multiplication , re-
spectively.

In the sequel, the symbol will denote 2-D convolution.
Using the vector-matrix notation, the convolution is
approximated by , where is a block Toeplitz matrix
with Toeplitz blocks. If spatial periodicity of functions is
assumed, standard convolution could be replaced with circular
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convolution, which is represented in the discrete space by a
block circular matrix with circular blocks. The Fourier trans-
form (FT) simplifies circular matrices to diagonal matrices,
and clearly, this is a very useful property which justifies the
periodic assumption.

Before we proceed on, it is crucial to investigate the
discretization of flux variables. Let us consider the
amount of image gradient flowing in the direction

, where
denotes the scalar product. The discretization of

follows the CCFD scheme. However, the normal vector
has a finite number of directions in the discrete space.

The most simplified approximation (four-connectivity)
defines only two main directions (1, 0), (0, 1) and the cor-
responding discrete flux is defined at the cell middle
edge points as

.
A more accurate approximation (eight-connectivity) would
include, apart from the two main directions, additional two
diagonal directions (1, 1), that define flux values at the
cell corners as and

.

III. M ATHEMATICAL PRELIMINARIES

Consider the MC (SIMO) model that consists ofmeasure-
ments of an original image. The relation between recorded
images and the original image is described by

(1)

where is the point spread function (PSF) of the-th channel
blur, and is signal independent noise. Note, that the only
known variables are . As the blind deconvolution problem is
ill-posed with respect to bothand , a constrained minimiza-
tion technique is required to find the solution of (1). Constraints
considered here are very common in real acquisition processes
and thus widely accepted. Assuming white noise (with diagonal
correlation matrix) of zero mean and constant variance, and
PSF’s preserving energy, the imposed constraints take the fol-
lowing form:

(2)

(3)

Let and denote some regularization functionals
of the estimated original image and PSFs , respectively.
The constrained minimization problem is formulated as

subject to (1)–(3). The unconstrained
optimization problem, obtained by means of the Lagrange
multipliers, is to find and which minimize the functional

(4)

where and are positive parameters which penalize the regu-
larity of the solutions and . Constraint (3) is automatically
satisfied under certain conditions as it will be clear later. For
now, the crucial question is how the functionalsand should
look like. We proceed the discussion first with possible choices
for and then for .

A. Regularization Term

Regularization of (1) with respect to the image function
can adopt various forms. The classical approach of Tichonov
chooses . The corresponding nonblind
minimization problem can be easily solved using FT and is
equivalent to Wiener filtering. However, this advantage is only
computational, because the obtained results are poor. The func-
tional assumes is smooth and any discontinuities increate
ringing artifacts. In the space of bounded variation functions
where TV serves as seminorm, it is possible to define correctly
image gradient together with discontinuities. Therefore, the
TV convex functional was proposed by Rudinet al. [3] as the
appropriate regularization functional

(5)

The associated Euler-Lagrange equations of (4) with respect to
are

(6)

where and denotes the adjoint oper-
ator, which is in our case . In the second
equation, is the directional derivative in the direc-
tion of the vector normal to the domain boundary. Let us
assume that the PSFs are known. It was mentioned in the in-
troduction that this equation is highly nonlinear, and moreover,
not defined for . Several techniques were proposed
to solve (6). We follow the linearization scheme described in
[30] which is similar to the half-quadratic regularization scheme
of Geman [7] and which could be easily applied to more com-
plex functionals of the Mumford–Shah kind. The scheme intro-
duces “an auxiliary variable” which transfers the problem to a
more feasible one. Note that for every

and the minimum is reached for
. For numerical reasons, it is necessary to restrict

on a closed set . Substituting the above
relation into (5), we obtain a functional of two variables

(7)

and the algorithm consists of alternating minimizations of
over and

. For any starting values and , the steps are
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(8)

The minimization over is trivial and the minimization over is
also simple, since is convex and quadratic with respect
to . Convergence of the algorithm to the minimizerof is
proved in [30]. Moreover, it is proved that converges to the
original functional

as but in a weak sense. This weaker notion of con-
vergence, called -convergence, was introduced for studying
the limit of variational problems. It states that if the sequence
(or a subsequence) of minimizersconvereges to somethen

is a minimizer for and . For each case, is
given by the second equation in (8).

In the late 80s, Mumford and Shah [8] have proposed a very
complex energy function designed for image segmentation
which depends on the image functionand the size of dis-
continuity set. In order to study the energy function, a weak
formulation which depends solely on was introduced. The
regularization term of the weak Mumford–Shah energy is then

(9)

where denotes the 1-D Hausdorff measure and is
the 1-D set on which is not continuous. The gradient is
defined everywhere outside . What follows is derived from
Chambolle [9]. Let denotes the piecewise constant ap-
proximation of as described in Section II. Let the set of cell
centers be .
Consider a functional

(10)

where is even, satisfies , and
for any where is the basis of

is a nondecreasing bounded function that satisfies
, and . A good candidate for is,

for example, . According to [9],
-converges to a close approximation of the weak Mum-

ford–Shah energy (9). The proximity is chiefly influenced by
the course of function . Due to the high nonconvexity in (10),
the numerical computation of an exact minimizer is not guar-
anteed. If, in addition to the previous assumptions about, we
assume that is concave and differentiable, we may write

(11)

and the minimum is reached for . We do not have to
be concerned about the shape of , since will vanish in the

minimization procedure. We may therefore combine (11) with
(10) and obtain a functional of two variables

(12)

where . The minimization algorithm
is similar to (8) and consists of alternating minimizations of

with
respect to and . The iteration steps are as follows:

(13)

The minimization over is straightforward and the minimiza-
tion over is a simple problem, since is convex and
quadratic with respect to .

B. Regularization Term

We show regularization of (1) with respect to the blurs.
The discrete noise-free representation of (1) that conforms to
the discretization scheme in Section II is given as follows:

(14)

where matrices , and are of size ,
and , respectively, regardless of the channel index.
The assumption that sizes of are equal, is not really restric-
tive, since any with a smaller size can be padded with zeros
up to the size of the largest one. Clearly,
and if full convolution is considered.

It was mentioned earlier, that an exact solution exists for
noise-free MC blind systems (using the subspace method) if cer-
tain disparity of channels is guaranteed. The following assump-
tion clarifies the disparity notion and is fundamental to the MC
blind deconvolution problem.

Assumption A1:Let be the discrete-transform of .
A set of 2-D polynomials is weakly
co-prime.

The polynomials are weakly (factor) co-prime
if and only if the greatest common divisor is scalar, i.e.,

hold
true only for a scalar factor . A similar
notion known as strong (zero) co-primeness is defined as
follows. The polynomials are strongly co-prime if and only
if they do not have common zeros, i.e., there does not exist

. Clearly, both notions
are equivalent for 1D polynomials. However, for 2-D polyno-
mials weak co-primeness is much less restrictive than strong
co-primeness. Strong co-primeness of two 2-D polynomials is
an event of measure zero, since two zero lines on the
plane intersect with probability one, but weak co-primeness in
practice holds for many common deterministic filters. Strong
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co-primeness is almost surely satisfied for , since three
or more zero lines pass through one common point on the

plane with probability zero.
The following proposition proved in [26] is regarded as the

core stone of the subspace method.
Proposition 1: If , A1 holds and has at least one

nonzero element, then solutions to

(15)

have the form

where is some factor of size
and is a scalar.

In the presence of noise, the situation is different and for the
correct support system (15) is not equal to zero but
rather to some measurement of noise. The strategy in this case
is to find the least-squares solution of (15) for. In the frame-
work of our proposed MC blind deconvolution algorithm, we
can thus define the regularization of as

(16)

where . It is clear that a correct estimation of
the PSF support is crucial, since the support overestimation adds
some spurious factor to the true solution, and even worth,
the support underestimation does not have any solution. It im-
plies, that with respect to (15), the solutions for different
overestimated supports are indistinguishable, i.e., (16) is convex
but far from strictly convex. It will be clear later, that the term

in (4) penalizes the overestimated solutions.
After substituting for in (4), the Euler-Lagrange equations

with respect to are

(17)

where and the adjoint operator is
. This is a simple set of linear equations and thus

finding solutions is a straightforward task. The Neumann
boundary condition could be omitted since the support of
is assumed to be much smaller then the support of.

It should be mentioned that Proposition 1 holds only in case
that the acquired images are of full size, i.e., convolution
in (14) is full and thus are not cropped. This is, however,
seldom true in real applications. For the cropped scenario, a sim-
ilar proposition holds which is also derived in [26]. We will not
discussed this proposition in detail. For our purpose, it will suf-
fice to note that the full convolution operator in (15) must be
replaced with a cropped convolution operator. Cropped convo-
lution differs from full convolution only in the size of the defi-
nition domain. It is not defined at image boundaries where one

of the convolution arguments is not fully defined, i.e., the result
of full convolution is of size ,
while the result of cropped convolution is of size

if . Cropped convolution
is thus well defined even for cropped images and the results of
Proposition 1 hold. By using cropped convolution, we get for
free another advantage that the Neumann boundary condition in
the Euler-Lagrange equation (6) will be automatically satisfied
for the convolution term in this equation. A slight computational
drawback is the fact that cropped convolution cannot be diago-
nalized with FT anymore. Nevertheless, we will assume cropped
convolution in the following discussion for the reasons given
above and show efficient computation of resulting matrices.

IV. MC-AM A LGORITHM

From the above discussion follows that the unveiled energy
function from (4) becomes

(18)

for the TV regularization and we would obtain a similar equation
for the Mumford–Shah regularization. Note that as a
functional of several variables is not convex everywhere and
allows infinitely many solutions. If is a solution, then so
are (mean-value ambiguity),

(shift ambiguity) for any and . On the other
hand, for fixed or is a convex functional of
or , respectively. The AM algorithm, for some initial value,
alternates between the following two steps:

(19)

for . A minimizer of the first minimization equation can be
determined by directly solving , i.e., (17). The
second minimization equation can be solved via (8) if the TV
functional is considered or via (13) if the Mumford–Shah func-
tional is considered. The mean-value ambiguity is removed by
constraint (3). It will be explained at the end of this section, that
this constraint is automatically satisfied in the AM algorithm.
A correct setting of the blur size alleviates the shift
ambiquity. In the noise-free case, the AM algorithm transforms
into the EVAM method: the first step in (19) becomes perfect
blur restoration and the second step calculates the least-squares
solution of the image. When noise is present, any convergence
analysis is difficult to carry out but results of our experiments
are satisfying and illustrate a strong stability of the algorithm.

Consider the discretization scheme described in Section II.
The P-channel acquisition model (1) becomes in the discrete
space

(20)

where and denote
vectors of size and representing discrete, con-
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catenated and lexicographically orderedand , respectively.
Matrices and are defined as

...
... (21)

where and denote cropped convolution with and
, respectively. The size of is and of
is . If the size of the recorded images is

then the minimum size of the original image is
.

Suppose that is a matrix defined by the iterative prescrip-
tion

...
...

(22)

where denotes cropped convolution with the image, then
the right-hand side of (16) becomes and the size
of is .
We assume that for .
From Proposition 1 follows, that for the noise-free case,has
full column rank only if the blur size is
underestimated, i.e., , where is
the correct blur size. For the overestimated blur size

.
In case of the modified TV functional (7), we need to consider

the discretization scheme of the flux variable. For the simple
four-connectivity approximation, one obtains (23) and for the
more elaborated eight-connectivity approximation (24)

(23)

(24)

where both and are block tridiagonal matrices formed
from and is a sum of inverse values of.
More precisely, the diagonal blocks are tridiagonal in both’s,
and the off-diagonal blocks in are just diagonal matrices,
while in they are tridiagonal as well. Almost identical dis-
crete equations can be obtained for the Mumford–Shah regu-
larization by means of (12). For instance, if except for

where then
(12) takes the form of (23) and, if in addition,
for then (12) takes the
form of (24). We should not forget, however, that the difference
between TV and Mumford–Shah still resides in the calculation
of the flux variable , e.g., from (8) follows that for TV

(25)

and from (13) for Mumford–Shah

(26)

In the vector-matrix notation, the total energy function (18)
for some overestimated blur size is

(27)

where stands for , or any other matrix of similar form
resulting from a different approximation. The flux variableis
neglected to simplify notation. Using this equation, the mini-
mization algorithm in (19) reduces to a sequence of solutions of
simple linear equations. The discrete MC-AM algorithm thus
consist of the following steps.

Require: initial valueu , blur size(m ;n ), wherem > m ;n > n ,

and regularization parameters
 > 0 and� > 0

1: for n � 1 do

2: h  solve [(U ) U + 
Z Z ]h = (U ) z; fU is

constructed byu g

3: setg = u andv = '(u )

4: for k � 1 do

5: g  solve [(H ) H + �L(v )]g = (H ) z; fH is con-

structed byh g

6: v = '(g ); ffor ' use (25) or (26)g

7: end for

8: u  g

9: end for

The linear equation at line 2 can be solved directly since
the symmetric square matrix is of
relatively small size , and is almost surly regular due
to full column rank of the convolution matrix . Any reason-
able image is “persistently exciting,” i.e., for
every FIR filter of size much smaller than. It was already
mentioned that for the noise-free case, the dimension of the
null space of is proportional to the overestimated blur size

, more precisely the dimension is equal to
, and any takes the form

, where is some spu-
rious factor and are correct PSFs of size . The spu-
rious factor spoils the correct solution but cannot be avoided if
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the exact size of blurs is not known in advance and if only
is considered. It is the fundamental constraint (2) included at
line 2 which penalizes the spurious factor. To see this, consider

which is strictly greater
than zero, unless is a factor of , which cannot happen al-
most surely. Hence, the minimum is reached only for
and reduced to the 2-D delta function.

Due to the large size of each matrix, it is not feasible to
compute the products and by first constructing

and and then doing the matrix multiplication. Fortu-
nately, there exists a very fast direct construction method
for both products. Moreover, the latter product is con-
structed only once at the beginning. It is easy to observe
that the products consist of square blocks of size

. In case of , only the diagonal
blocks are nonzero and defined as . In case of

, the off-diagonal blocks are defined as
and the diagonal blocks . We as-
sume that denotes cropped convolution. After some
consideration, one would derive that the elements of
are calculated as

, where and
are elements of and , respectively, and index shifts are

. Like-
wise, if are replaced with we get the elements of the
diagonal blocks in . This way, one block is computed in

multiplies. On contrary, the full
matrix multiplication requires multiplies.

The second linear equation at line 5 contains the symmetric
positive semidefinite matrix of size

. Most of the common PSFs have zeros in the frequency
domain and/or very small values at higher frequencies and the
resulting convolution matrices are strongly ill-conditioned.
Hence, the problem at line 5 is ill-posed and contains too many
unknowns to be solvable by direct methods. A common ap-
proach, which we have also adopted, is to use conjugate gra-
dient (CG) or preconditioned CG methods, see [5], [31]. The
flux variable is calculated directly by means of (25) if TV is
considered or by means of (26) if Mumford–Shah regularization
is considered. The relaxation parameterin (25) influences both
the converge speed of the algorithm and accuracy of solutions at
line 5. Refer to [4] for a discussion about howalters the conver-
gence rate and for comparison of different numerical methods.
In our experiments, we have found values around the most
appropriate. The parameterin (26) acts as a weighting factor
of the discontinuity term in the Mumford–Shah functional (9).
There is no straightforward estimation of the parameter’s cor-
rect value and an evaluation by trial and error is probably the
only choice. In our implementation, we alternate between mini-
mizations over and only five times before returning back to
line 2.

A. Convergence Properties

Convergence of the algorithm cannot be fully resolved on a
purely theoretical basis. Nevertheless, we have made several in-
teresting observations that rely on the fact that cropped convolu-
tion can be approximated by circular convolution and that eigen-

values of a circular convolution matrix are Fourier coefficients
of the convolution mask.

Constraint (3), which was left aside at the beginning, is au-
tomatically satisfied in the algorithm if the mean values of the
acquired images and the initial estimate are all equal,
i.e., . To see this, we first approxi-
mate at line 2 cropped convolution with circular convolution
and then apply FT to the equation. From the definition of
in (22) and from the assumption of zero-mean noise follow, that
the transformed vanishes at the spatial frequency (0, 0).
Since the (0, 0) frequencies refer to mean values, according to
the the definition of FT, the solution satisfies if

. Likewise, if , the solution at line 5
satisfies , since has zero
column-wise sums and hence vanishes at spatial frequencies

and .
The AM algorithm is a variation on the steepest-descent algo-

rithm. Our search space is a concatenation of the blur subspace
and the image subspace. The algorithm first descends in the blur
subspace and after reaching the minimum, i.e., , it
advances in the image subspace in the direction orthog-
onal to the previous one, and this scheme repeats. To speedup
the minimization, one may be tempted to implement direct set
methods like Powell’s that descend in arbitrary directions but
this would require to solve nonlinear equations and the effi-
ciency of such approach becomes problematic. Convergence is
assured if the descent is restricted to a convex region of the func-
tional which means that the Hessian matrix is positive semidefi-
nite in the region. The Hessian of is a symmetric matrix

where and the
cross second derivative is a combination of convolution
and correlation matrices with . Let and be pos-
itive definite, which is true if is persistently exciting and
are strongly coprime. The Hessian is then positive semidefi-
nite if and only if for all

and all . If we assume that the con-
volution matrices can be block diagonalized with FT then the
above semidefinite condition is satisfied if is satisfied for each
spatial frequency alone. The multichannel term is sin-
gular for each frequency and can be thus omitted. This leads
us to a conclusion that this multichannel term does not directly
enlarge the region of convexity. Instead, by defining mutual re-
lations between the channel blurs, it penalizes any diversion of
one blur from the rest. The necessary condition of convexity
is thus expressed for each spatial frequency in each channel
as , where denotes a
Fourier coefficient of the corresponding signal,is a simplified
expression that approximates eigenvalues of. Fundamental
constraint (2) for a zero noise level takes the form in the
Fourier domain. After substituting the constraint into the above
condition, we get which is always
true. In general, the condition is not satisfied only for the funda-
mental constraint but generates a periodic manifold that is dif-
ficult to visualize. It is important to note that the manifold size
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(a) (b)

(c)

Fig. 1. (a) Original 100� 100 cameraman image used for simulations; (b) three 7� 7 convolution masks; and (c) blurred and noise-free images.

grows with , i.e., with increasing noise, convexity is guaran-
teed on a larger neighborhood of .

B. Estimations of Parametersand

To calculate precisely the regularization parameters is not
only a tedious task but it also gives results that are of not much
help in practical applications, since both parameters depend on a
noise level which we usually do not know. Expressions derived
here are very loose approximations that do not provide exact
values but rather give a hint on the mutual relation of the pa-
rameters. Consider the equation at line 2 and let the values of
and be equal to the original image and correct PSFs, respec-
tively. Under the squared norm, we obtain

, where . It is
easy to verify that, if is white Gaussian noise anddenotes
convolution with . Since

stands for the correct PSFs, it must be a linear combination
of eigenvectors that correspond to a cluster of minimum
eigenvalues. Hence, , where denotes
the minimum eigenvalue of . From the definition of and
Proposition 1 follow that . Finally, we
get the approximation

(28)

The norms of and are of course not known in advance
but can be successfully approximated by and if
then .

If we apply a similar procedure to the equation at line 5,
we derive only the bottom limit of the regularization param-
eter . The uncertainty resides in the term , which cannot
be simplified, since it totally depends on local behavior of the
image function . We may only formulate a generous upper limit
which is , where the constant depends on
the used approximation and the regularization term, i.e., for TV
with and for TV with . The

bottom limit is in general zero. Now, since
, we obtain the approximated bottom limit ofas

(29)

The product of the parameters

(30)

depends only on the dimensions of the problem and thus defines
a fix relation between the parameters.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our
MC-AM approach on three different sets of data: simulated,
real indoor and astronomical data. First, the simulated data
for different SNR are used to compare results of MC-AM and
EVAM. Second, the performance of MC-AM is evaluated on
out-of-focus data acquired by a standard commercial digital
camera. Last but not least, we demonstrate capabilities of the
MC-AM approach on data from astronomical ground-based
observations of the Sun.

For the evaluation of the simulated data, we use the per-
centage mean squared errors of the estimated PSFsand of the
estimated original image, respectively, defined as follows:

(31)

Both and are the outputs of MC-AM. In general, the
mean squared errors do not correspond to our visual evaluation
of image quality and visual comparison is often the only
reliable evaluation technique. Nevertheless, the mean squared
errors give us a hint how successful the restoration task was
and therefore we present the calculated errors together with
estimated images. In cases of the camera and astronomical
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(a) (b) (c)

Fig. 2. Estimation of the cameraman image and blurs from threeSNR = 50 dB degraded images [(a) degradation withh ] using (b) the MC-AM algorithm and
(c) the EVAM algorithm.

(a) (b) (c)

Fig. 3. Estimation of the cameraman image and blurs from threeSNR = 40 dB degraded images [(a) degradation withh ] using (b) the MC-AM algorithm and
(c) the EVAM algorithm.

data, we use a wavelet-based focus measure [32] to compare
results. It is necessary to remark that all the focus measures,
which have been proposed in the literature, are easily deceived
by possible artifacts which often occur in the reconstruction
process. Artifacts are features (details) that were not present in
original images and have been added to the images later due to
erroneous image processing.

All the experiments were conducted for the TV regularization
with the eight-connectivity discretization scheme. The Mum-
ford–Shah regularization was found to produce similar results
with one advantage of having a good edge detector in the flux
variable . Less advantages is the presence of the new param-
eter which influences the amount of edges. Since we were
not interested in segmentation properties of the Mumford–Shah
functional, the flexibility provided by was redundant.

A. Simulated Data

Cameraman image of size 100100 in Fig. 1(a) was first
convolved with three 7 7 masks in Fig. 1(b) and then white
Gaussian noise at five different levels ( ,
and dB) was added. This way we simulated three acquisition
channels with a variable noise level that produced a

series of degraded images and . The signal-to-noise
ratio is calculated as usual

(32)

Both algorithms, our MC-AM and Harikumar’s EVAM, were
applied to the degraded data. The MC-AM algorithm was
let to iterate over the main loop (lines 1 to 9) ten times, and
within each iteration, the inner loop (lines 4 to 7) was iterated
five times. The input parameters were initialized as follows:

was calculated from
(29), since we know ; and was estimated from the parameter
product (30). Results for dB, dB, and

dB are shown in Figs. 2, 3, and 4, respectively.
Noise gets amplified in the EVAM reconstruction since it is
not considered in the derivation of this method. The results for

dB illustrate vividly this drawback. On contrary, the
MC-AM algorithm is still stable even for lower SNRs (20 dB,
10 dB) as Fig. 5 demonstrates. The percentage mean squared
errors of the results are summarized in Table I.

B. Real Indoor Data

Four images of a flat scene were acquired with a standard dig-
ital camera focused to 80 (objects in focus), 40, 39, and 38 cm
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(a) (b) (c)

Fig. 4. Estimation of the cameraman image and blurs from threeSNR = 30 dB degraded images [(a) degradation withh ] using (b) the MC-AM algorithm and
(c) the EVAM algorithm.

(a) (b) (c) (d)

Fig. 5. Estimation of the cameraman image and blurs from degraded images with low SNR using the MC-AM algorithm; (a)–(b)h degraded image withSNR =

20 dB and restored image-blur pair; (c)–(d)h degraded image withSNR = 10 dB and restored image-blur pair.

TABLE I
PERFORMANCE OF THE EVAM AND

MC-AM A LGORITHMS ON SYNTHETIC DATA IN FIG. 1

distance, respectively. The aperture was set at F2.8 and the expo-
sure at s. The acquired data were stored as low resolution
480 640 24-bit color images and only the central rectangular
part of the green channel of size 200250 was considered for
reconstruction. The central part of the first image, which cap-
tures the scene in focus, is shown in Fig. 6(a). Three remaining
images, Fig. 6(c), were used as the input for the MC-AM algo-

rithm. The parameter was estimated experimen-
tally by running the algorithm with different’s and selecting
the most visually acceptable results. The parameterwas calcu-
lated from (30). A defocused camera causes image degradation
that is modeled by cylindrical blurs. A cepstrum analysis [33]
was used to estimate diameters of these blurs, which were deter-
mined to be around 8 pixels. The size of blurs was then enlarged
to 10 10 to assure inclusion of the whole cylinder. Obtained
results after 10 iterations are shown in Fig. 6(b). Further iter-
ations did not produce any visual enhancement. Simple visual
comparison reveals that the letters printed on book covers are
more readable in the restored image but still lack the clarity of
the focused image, and that the reconstructed blurs resemble the
cylindrical blurs as it was expected.

A quantitative evaluation of the amount of image blurring
was done by wavelet-based focus measure [32]. The measured
values, which rate the focus or the sharpness of images, are
summarized in Table II. The three defocused images differ only
slightly from each other and the difference is not visually de-
tectable. However, the focus measure was able to distinguish
different focus levels. It decreases as the difference from the
correct focus distance increases. The focus measure of the re-
stored image is significantly higher than the measures of the
input images. It is remarkable how successful the restoration
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(a) (b)

(c)

Fig. 6. Real indoor images: (a) 200� 250 image acquired with the digital camera set to the correct focus distance of 80 cm; (b) MC-AM estimated image and
10� 10 blurs obtained from three images (c) of false focus distances 40 cm, 39 cm, and 38 cm, after 10 iterations and� = 1:6� 10 .

TABLE II
FOCUSMEASURESCALCULATED FOR THE REAL INDOORIMAGES IN FIG. 6

was, since one would expect that the similarity of blurs will vi-
olate the co-primeness assumption. It is believed that the algo-
rithm would perform even better if a wider disparity between
blurs was assured. Another interesting observation is the fact
that the restored image gives a smaller response than the focused
image. This is of course in agreement with our visual evaluation
but it also supports a hypothesis that our restoration technique
produces only few artifacts.

C. Astronomical Data

The last test which we have conducted was on real astro-
nomical data obtained in the observation of the Sun. In the
ground-based observations, the short-exposure images from
the telescope are corrupted by “seeing.” This degradation leads
to image blurring, where the actual PSF is a composition of
the intrinsic PSF of the telescope (which is constant over the
observation period) and of a random component describing

the perturbations of the wavefronts in the Earth’s atmosphere.
Different parts of the solar atmosphere are observed in different
spectral bands. The lower part called photosphere is usually
observed in visible light of nm while the medium part
called chromosphere is best to observe in ( nm)
wavelength. In visible light the effects of fluctuations in the
refractive index of the air caused by temperature variations are
more significant than in . Since the atmospheric conditions
may change very quickly, the acquired image sequence usually
contains images of different quality from almost sharp to
heavy blurred ones. Such sequence, which is a result of one
observation session, may consist of several tens (or even
hundreds) of images. Multichannel blind deconvolution is the
way how to fuse the individual images of low quality to obtain
one (or a few) “optimal” images which can be used for further
investigation of astronomical phenomena.

In this experiment, we processed a sequence of images of
a sunspot. Since the images were taken shortly one after an-
other they are almost perfectly registered. The random nature of
the atmospheric turbulence provides the necessary co-primeness
of the individual PSFs. The least degraded image from the se-
quence, which is shown in Fig. 7(a), was selected as a reference
image. Two other images of medium degradation, Fig. 7(b) and
(c), were used as the input of the algorithm. The size of blurring
masks was set to 1212 which was believed to be large enough
to contain the original blurring functions. The parameterwas
set to which corresponds to dB and which is the
expected noise level for this type of images. The restored image
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(a) (b) (c)

Fig. 7. Astronomical data: (a) the least degraded 500� 500 image of the sunspot from the sequence acquired with the terrestrial telescope (reference); (b)–(c)
two blurred images from the sequence used for the reconstruction.

Fig. 8. Astronomical data: MC-AM reconstructed sunspot and 12� 12 blurs
with � = 10 .

TABLE III
FOCUSMEASURESCALCULATED FOR THE SUNSPOTIMAGES IN FIGS. 7 AND 8

in Fig. 8 was obtained after three iterations of the MC-AM al-
gorithm. It is worth noting that the used data are far from being
“ideal” for the application of the MC-AM algorithm—there are
only two channels, and their degradations are of similar nature.
Nevertheless, the results are encouraging. By visual assessment,
the restored image is clearly sharper than the two input images,
contains no (or few) artifacts and its quality is comparable to
the reference image. As in the previous experiment, we asses
the quality also by quantitative focus measure (see Table III).
The focus measure of the restored image is significantly higher
than that of the input images and even slightly higher than the

measure of the reference image. Along with the visual assess-
ment, this illustrates a good performance of our method in this
case.

VI. CONCLUSION

We have developed the algorithm for multichannel blind
image restoration which combines the benefits of the edge
preserving denoising techniques and the one-step subspace
(EVAM) reconstruction method. This has been achieved by
utilizing the multichannel EVAM constraint as a regularization
term in the anisotropic denoising framework of total variation
or the Mumford–Shah functional. The fundamental assumption
is the weak co-primeness of blurs which guarantees the appro-
priate level of channel disparity and assures perfect restoration
in a noise-free environment. The only input parameters, that are
required, are the minimum order (size) of blurs and the noise
level in the acquisition system. However, exact values of these
parameters are not really needed and a rough estimate by trial
and error is usually sufficient.

It was shown that the proposed algorithm gives satisfying
results, compared to EVAM, even for low SNRs around 30 dB.
This indicates that the denoising scheme significantly stabilizes
the restoration process. The channel co-primeness is a mild
condition especially in real applications, since the necessary
channel disparity is probably always satisfied by random
processes intrinsic to a given acquisition system. For example
in case of the astronomical data, atmospheric turbulence is
often modeled by Gaussian masks. In theory, any two Gaussian
masks have a common nontrivial factor, but the algorithm was
still able to recover the image, since small fluctuations in PSFs
assured the co-prime condition.

Although we have not addressed the question of computa-
tional complexity directly, we have demonstrated the ability of
the algorithm to recover images of moderate size 500500 with
blurs up to 20 20.

We have not explored the influence of the blur order over-
estimation on image reconstruction and on convergence of the
algorithm. A crucial issue for successful reconstruction, which
to our knowledge has not been so far discussed in the literature,
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is the spatial alignment of channels. In real applications, the
channel misalignment occurs very frequently and therefore
channel registration must precede the MC restoration task.
Clearly by shifting the mask centers, we can compensate to
a certain extent for small translation misalignments. It is ex-
pected that the overestimated blur orders provide the necessary
freedom which nullifies such misalignments by automatically
offsetting the blurs centers during the reconstruction process.
The influence of the misregistration and the role of the order
overestimation are matters for debate and will be considered in
our future research.
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Multichannel Blind Deconvolution
of Spatially Misaligned Images

Filip Šroubek and Jan Flusser, Senior Member, IEEE

Abstract—Existing multichannel blind restoration techniques
assume perfect spatial alignment of channels, correct estimation
of blur size, and are prone to noise. We developed an alternating
minimization scheme based on a maximum a posteriori estimation
with a priori distribution of blurs derived from the multichannel
framework and a priori distribution of original images defined by
the variational integral. This stochastic approach enables us to
recover the blurs and the original image from channels severely
corrupted by noise. We observe that the exact knowledge of the
blur size is not necessary, and we prove that translation misregis-
tration up to a certain extent can be automatically removed in the
restoration process.

Index Terms—Image restoration, maximum a posteriori (MAP)
estimator, multichannel blind deconvolution, subspace methods,
variational integral.

I. INTRODUCTION

I N MANY applications, such as microscopy imaging, re-
mote sensing, and astronomical imaging, observed images

are often degraded by blurring. Examples of the most common
sources of blur are atmospheric turbulence, relative motion be-
tween a camera, and an object or wrong focus. Restoration of
the degraded images is a necessary step that precedes further
image analysis.

First, a proper mathematical model that simulates the acqui-
sition system is required. Images may be regarded as either de-
terministic or stochastic signals, blurred by linear or nonlinear
processes and corrupted with additive or multiplicative noise. In
the sequel, we assume a linear filter model with additive uncor-
related noise, i.e.

(1)

where and are the degraded image, system PSF (blur),
original image, and noise, respectively, and denotes convolu-
tion. This model accurately describes many common degrada-
tions and that justifies its frequent use.

The amount of a priori information about the degradation,
like the size or shape of blurring functions and the noise param-
eters, significantly influences the success of restoration. When
the blur function is known, many conventional approaches
have been developed to compensate for the distortion [1].
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The problem is ill posed, and, to overcome this difficulty, it is
common to use regularization. When the blur is unknown, we
talk about blind image restoration. A basic survey of different
blind restoration techniques is given in [2]. Most of the methods
are iterative or recursive. They involve regularization terms
based on available prior information which assure various
statistical properties of the image and constrains the estimated
image and/or restoration filter. As in the nonblind case, reg-
ularization is required to improve stability. For images with
sharp changes of intensity, the appropriate regularization is
based on variational integrals. A special case of the variational
integral, total variation, was first proposed in [3]. Minimization
of the variational integrals preserves edges and fine details in
the image and it was applied to image denoising [4]–[6] and
to blind restoration [7]–[9], as well. Since the blind case is
strongly ill posed, all the methods suffer from convergence and
stability problems. If the images are smooth and homogeneous,
an autoregressive model can be used to describe the measuring
process. The autoregressive model simplifies the blind problem
by reducing the number of unknowns and several techniques
were proposed for finding its solution [10]–[12].

There are many applications, where different blurred ver-
sions of the same original image are observed through multiple
acquisition channels. We distinguish in general two multi-
channel (MC) models: the single-input multiple-output (SIMO)
model and the multiple-input multiple-output (MIMO) model.
The SIMO model (see Fig. 1) is typical for one-sensor imaging
under varying environment conditions, where individual chan-
nels represent the conditions at time of acquisition. The MIMO
model refers, for example, to multisensor imaging, where
the channels represent different spectral bands or resolution
levels. Color images are the special case of the MIMO model.
An advantage of MIMO is the ability to model cross-channel
degradations which occur in the form of channel crosstalks,
leakages in detectors, and spectral blurs. Many techniques for
solving the MIMO problem were proposed and could be found
in [13]–[16]. In the sequel, we confine ourselves to the SIMO
model exclusively and any reference to the term MC denotes
the SIMO model. Sometimes the SIMO model is referred to
in the literature as a multiframe model. Following the above
notation, we define the SIMO model as:

(2)

where is the number of channels. Examples of such MC mea-
suring processes are common, e.g., in remote sensing and as-
tronomy, where the same scene is observed at different time
instants through a time-varying inhomogeneous medium such
as the atmosphere; in confocal microscopy, where images of

1057-7149/$20.00 © 2005 IEEE
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the same sample are acquired at different focusing lengths; or
in broadband imaging through a physically stable medium, but
which has a different transfer function at different frequencies.
Nonblind MC restoration is potentially free of the problems
arising from the zeros of blurs. The lack of information from
one blur in one frequency can be supplemented by the informa-
tion at the same frequency from the others. Intuitively, one may
expect that the blind restoration problem is also simplified by
the availability of different channels. Two classes of MC blind
image restoration algorithms exist. Extensions of single-channel
blind restoration approaches form the first class, but since they
suffer from similar drawbacks as their single-channel counter-
parts, they are of not much interest. The other class consists of
intrinsic MC approaches and will be considered here.

One of the earliest intrinsic multichannel blind deconvolu-
tion (MBD) methods [17] was designed particularly for images
blurred by atmospheric turbulence. Harikumar et al. [18] pro-
posed an indirect algorithm, which first estimates the blur
functions and then recovers the original image by standard
nonblind methods. The blur functions are equal to the minimum
eigenvector of a special matrix constructed by the blurred im-
ages. Necessary assumptions for perfect recovery of the blur
functions are noise-free environment and channel coprimeness,
i.e., a scalar constant is the only common factor of the blurs.
Giannakis et al. [19] (and at the same time Harikumar et al.
[20]) developed another indirect algorithm based on Bezout’s
identity of coprime polynomials which finds restoration filters
and by convolving the filters with the observed images recovers
the original image. Both algorithms are vulnerable to noise
and even for a moderate noise level restoration may break
down. In the latter case, noise amplification can be attenuated
to a certain extent by increasing the restoration filter order,
which comes at the expense of deblurring. Pai et al. [21],
[22] suggested two MC restoration algorithms that, contrary
to the previous two indirect algorithms, estimate directly the
original image from the null space or from the range of a
special matrix. Another direct method based on the greatest
common divisor was proposed by Pillai et al. in [23]. In noisy
cases, the direct algorithms are more stable than the indirect
ones. Interesting approaches based on the ARMA model are
given in [24], [25]. MC blind deconvolution based on the
Bussgang algorithm was proposed in [26], which performs
well on spatially uncorrelated data, such as binary text images
and spiky images. Most of the algorithms lack the necessary
robustness since they do not include any noise assumptions
(except ARMA and Bussgang) in their derivation and miss
regularization terms. Recently, we have proposed an iterative
MC algorithm [27] that performs well even on noisy images.
It is based on least-squares deconvolution by anisotropic reg-
ularization of the image and between-channel regularization
of the blurs.

Unfortunately, all the above mentioned multichannel blind
deconvolution methods contain two ultimate but unrealistic as-
sumptions. They require exact knowledge of the PSFs support
size and individual channels are supposed to be perfectly spa-
tially aligned (registered). These strong assumptions are seldom
true in practice and in fact they have prevented the usage of
multichannel blind deconvolution methods in real applications.

Fig. 1. Single-input multiple-output model: The original scene is captured by
K different channels which are subject to various degradations.

A realistic image acquisition model contains spatial coordinate
transformations that describe geometric differences between
the original scene and the th channel

(3)

Image deformations originate from the fact that the channels
are two-dimensional (2-D) projections of the three-dimensional
world, generally acquired from different viewpoints and/or
with different camera orientation. In simple cases, is limited
to rotation and translation, but, in real applications, complex
nonlinear deformations may be present, too. Image restoration
then consists of two stages: image registration, which brings
the channels into spatial alignment, followed by multichannel
blind deconvolution.

There have been published hundreds of image registration
methods (see [28] for the most recent survey) and even spe-
cial algorithms for registering blurred channels were developed
[29]–[34]. Despite this effort, perfect registration accuracy can
rarely be achieved, namely in the case of blurred and noisy im-
ages. The registration error results in a slight between-channel
shift of up to a few pixels, which cannot be further compensated
in the registration stage. Thus, channel-to-channel registration
simplifies (3) to the form

(4)

where is a small unknown alignment error.
Model (4) also applies to numerous practical tasks directly

without the preceding registration process. Such situations
typically occur when the camera is subject to vibrations or
in multitemporal imaging when the camera slightly moves
between consecutive channel acquisitions and/or the scene is
not perfectly still.

The deconvolution methods mentioned above cannot restore
images degraded according to model (4). If they were applied,
the channel misregistrations would lead to strong artifacts in the
restored image.

In this paper, we introduce the first MBD method which does
not require perfect alignment of the individual channels and
the knowledge of the blur size. Exploiting the stochastic model
and the Bayes rule in Section IV, we express the a posteriori
probability of the original image in terms of the conditional
probability and two a priori probabilities, which are derived
from properties of bounded variation functions and from the
MC framework. An alternating minimization (AM) algorithm
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as a solution to a maximum a posteriori probability (MAP) es-
timator is also given here. In Section V, we examine the mini-
mization algorithm for its ability to alleviate the blur-oversized
problem and demonstrate its convergence properties. We illus-
trate that the channel misalignment can be perfectly neutralized
by properly oversizing the blur support in Section VI.

II. NOTATION

We use the following conventions throughout this paper:
2-D space of integers;
image function with a finite rectangular
support;
support size of the image ;
position at the th row and the th column
in the image;
image value at the position ;

image column vector,
lowercase bold letters;
matrix, uppercase bold letters;

norm.
We endow the vector space with the following operators:

“ ” and “ ” defined in a standard way;
abbreviated form for ;

;
and similarly other

binary relations “ ,” “ ,” etc.
For our next discussion, it is necessary to define convolu-

tion with a variable output support in matrix-vector notation.
We follow the definition in [18]. Let and be two im-
ages with support and

, respectively, and
define an arbitrary output rectangle, where . We separate

column-wise and address individual columns as .

We denote by a Toeplitz-block-Toeplitz matrix of size
such that the concatenated result of con-

volution is equal to .
This is given by

...
...

...

and

...
...

...
...

(5)

where for
and the size of is .

III. PROBLEM FORMULATION

We first define the SIMO degradation model in the discrete
domain as follows. Suppose that an original (input) image

has support . The input image propagates
through different channels that behave as linear filters each
with a finite impulse response (blurs) . Let
the maximum support of the blurs be . In each channel, the
image is further degraded with additive white Gaussian noise
(AWGN) of zero mean and variance and shifted by

. Let denote the maximum observed shift. On
the output, we receive degraded and shifted images with
minimum support , where .
The whole model can be expressed as

where , and is the delta function at .
By concatenating columns of the images, we can rewrite the
previous equation in matrix-vector notation as

where , and are corresponding column image vectors.
is of size

and is of size
. Both matrices are constructed according to (5)

and perform discrete convolution with the reduced output size.
We refer to this type of convolution as “valid,” since the result
is defined only on the area where both convolution arguments
are properly defined. It is easy to verify that the matrix product

denotes “valid” convolution with a mask
of size . This mask is a shifted version

of the original blur . By concatenating the output vectors
and the shifted blur vectors ,

the MC model can be rewritten in two equivalent forms

(6)

where , and is a
block-diagonal matrix with blocks each performing convolu-
tion with the image , i.e.

...
. . .

...

We have obtained a standard MC convolution model and all con-
clusions for blur restoration in [18] and [19] apply also to our
shifted version. When noise is omitted, it follows from (6) that
the “valid” convolution matrix for some ar-
bitrary support is given by

(7)
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where and . The
above equality determines the rank property of and is utilized
in the following lemma.

First, we recall an important definition from [19]. Let
denote the 2-D transform of the blur . The

polynomials are called “weakly coprime” if their
only common factor is a scalar constant.

Lemma 1: Suppose that are weakly
coprime, in (7) has full column rank and the noise term is not
present in (6). Then, all solutions to

(8)

have the form

if
if
otherwise

where is some spurious factor of size and
is some scalar.
The proof is similar in nature to the proof given in [18]

except that is included in size constraints as discussed
below. The above lemma states that in the noiseless case,
if the estimated blur size is equal to the sum of the
maximum size of the original blurs and the maximum
shift , then the true shifted blurs can be recovered precisely
except to some scalar factor. This magnitude ambiguity can
be resolved by stipulating, e.g., , which is a
standard energy preserving assumption. For oversized , the
solutions lie in a subspace of dimension . The
first assumption that the blurs are weakly coprime is satisfied
for many practical cases, since the necessary channel disparity
is mostly guaranteed by the nature of the acquisition scheme
and random processes therein. Refer to [18] for a relevant
discussion. The second assumption of full column rank is also
a mild one. For persistently exciting1 , the matrix has full
column rank provided that it has more rows than columns.
Let us assume that the blur size is correctly estimated, i.e.,

, then is of size
from which follows a size constraint

. Generally, is much larger than and
the size constraint is violated only if the channel shift is for
example . To rephrase and simplify the
condition, does not have full column rank if .

There are equations in (8), and after stacking
them into one system, we get

(9)

where

...
. . .

...
...

...
. . .

... (10)

for .

1Function u is called persistently exciting for size S if u�g is different
from zero for any g 6= 0, which is almost certainly true for real images
if S � S .

The motivation behind Lemma 1 is to reduce the problem of
identifying the blurs to a null-space problem, where the dimen-
sion of the null-space of is .

IV. MAP BLIND DECONVOLUTION

Adopting a stochastic approach, the restoration problem can
be formulated as a MAP estimation. We assume that the images

, and are random vector fields with given probability den-
sity functions (pdf) , and , respectively, and we
look for such realizations of and , which maximize the a
posteriori probability . We assume that and are
uncorrelated then, according to the Bayes rule, the relation be-
tween a priori densities and the a posteriori den-
sity is . The pdf
is a constant and can, thus, be omitted. The conditional pdf

follows from our model (6) and from our assump-
tion of AWGN, i.e.

(11)

where is the noise diagonal covariance matrix with
on the corresponding positions on the main diagonal. If the same
noise variance is assumed in each channel, reduces to a
scalar .

A. A Priori Distribution of the Original Image

The necessity of meaningful a priori probabilities becomes
often Achilles’ heel of Bayesian approaches. Several different
forms of the image a priori probabilities were proposed in the
literature. Some are suitable only for a specific class of images
and others are more general. The classical form chooses the
Laplacian operator as the inverse of the covariance matrix of

, i.e., , where denotes the discrete
Laplacian operator. The exponent is the discretization of

, where denotes the gradient of . Apart from
easy implementation, this pdf is not suitable for the prior model,
since the norm of the image gradient penalizes too much
the gradients corresponding to edges and an oversmoothing ef-
fect is observed. In real images, object edges create sharp steps
that appear as discontinuities in the intensity function. It is the
space of bounded variation (BV) functions that is widely ac-
cepted as a proper setting for real images. Rudin et al. [3] first
demonstrated very good anisotropic denoising properties of the
total variation . Existence and uniqueness of the
minimum of total variation is possible only in the BV space, in
which case denotes the gradient of in the distributional
sense. The same holds true for a more general case of convex
functions of measures , where is a strictly
convex, nondecreasing function that grows at most linearly. Ex-
amples of are (total variation), (hypersurface
minimal function), or . For nonconvex functions,
nothing can be said about the existence of the minimum. Never-
theless, nonconvex functions, such as
or (Mumford-Shah functional [35]), are often used
since they provide better results for segmentation problems.

Our a priori image distribution consists of the convex func-
tion of measures. The function is highly nonlinear and to over-
come this difficulty we follow a half-quadratic scheme proposed
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in [36] and [37], which introduces an auxiliary variable. Special
attention must be paid to the discretization of the image gradient

and relaxation of . If a second-order centered approxi-
mation of the first derivative is used, the prior pdf takes the form

(12)

where is given by

(13)

The auxiliary flux variable is similar to Geman’s line process
[38]. It denotes the edge strength between point and its
neighbors . For example, in the case of the
hypersurface minimal function , the flux
variable becomes . Matrix
is a positive semidefinite block tridiagonal matrix constructed
by that performs shift-variant convolution with . In the above
discretization, the norm of the image gradient is variant to ro-
tation. A more precise discretization is possible if we take into
account the diagonal values.

B. A Priori Distribution of the Blurs

We derive the a priori distribution directly from the
MC model. If the AWGN noise term is present in model (6),
then the left-hand side of (9) is not zero, but equal to a real-
ization of a Gaussian process with zero mean and covariance

. Matrix takes the form of in (10) with
replaced by . Our first estimate of the a priori pdf

is then given by

From Lemma 1, it follows that is close to singular and
the number of eigenvalues that cluster around the noise variance
is proportional to the degree of overestimation .
The expected blurs lie inside a subspace defined by eigenvectors
that correspond to these eigenvalues. We propose to construct
a priori by constraining to a set of admissible
solutions. The set of admissible solutions is defined by our
assumption that the blurs are positive and preserve energy;

. We write

if
otherwise

(14)

This leads to a prior pdf that is data dependent. From a strictly
theoretical point of view, one should use here a different set

of input data but degraded by the same blurs as the data in
question, or use one part of the input data for and perform
restoration on the other part.

The main difficulties are connected with the matrix . The
inverse of the matrix is not trivial and the matrix is constructed by
the blurs that are to be estimated. One way is to use an iterative
algorithm and update by estimated in the previous iteration.
This iterative maximization of w.r.t. closely resembles
the maximum-likelihood algorithm proposed by Harikumar
[18]. However, this updating procedure is difficult to justify.
We, therefore, propose to simplify and approximated it by a
diagonal matrix such that , where
denotes the main diagonal of the matrix. The elements of take
the form for . The value of

is not known in advance, but a good initial approximation
can be given. If , then , and we
use the bottom limit for .

C. AM–MAP Algorithm

The a posteriori pdf is composed of (11), (12), and
(14) and turns out to be

(15)

for and zero otherwise. The MAP estimation is then
equivalent to minimizing sub-
jected to . To find a minimizer of the energy function

, we perform alternating minimizations of over and .
The advantage of this scheme lies in its simplicity. Each term
in (15) is convex (but not necessarily strictly convex, especially,
when is oversized) and the derivatives w.r.t. and can be
easily calculated.

In summary, the AM–MAP algorithm alternates between two
steps

1)

(16)

2)

(17)

In step 1, the flux variable is updated according to (13).
Our AM approach is a variation on the steepest-descent

algorithm. The search space is a concatenation of the blur
subspace and the image subspace. The algorithm first descends
in the image subspace and after reaching the minimum, i.e.,

, it advances in the blur subspace in the direction
orthogonal to the previous one, and this scheme repeats.

We use the preconditioned conjugate gradient method (func-
tion pcg in Matlab) to solve the unconstrained minimization
problem (16) and fmincon (Optimization Toolbox) function
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to solve the constrained minimization problem (17). as a
function of both variables and is not convex. We cannot,
thus, guarantee that the global minimum is reached by the
AM–MAP algorithm. Nevertheless, our thorough testing have
shown good convergence properties of the algorithm for many
real problems. In the following experiments, the hypersurface
minimum function was used as , and the more precise
discretization involving diagonal terms was implemented. We
also assumed that the noise variance is known and is the
same in each channel. If this is not the case, the noise variance
can be assessed by standard noise estimation methods or an
approach of “trial and error” can be considered. The impact
of wrong can be easily observed. If the parameter is too
small, i.e., we assume less noise, the restoration process begins
to amplify noise in the image. If the parameter is too big, the
restoration process starts to segment the image.

D. Initial Guess

Setting appropriately initial blurs can help our iterative algo-
rithm to converge to the global minimum. This issue is impor-
tant especially for the overestimated blur size. One can readily
see that translated versions of the correct blurs give the same
maximum probability as long as they fit into our es-
timated blur size. We already know that the prior pdf of the blurs
is unable to distinguish between the correct blurs and the correct
blurs convolved with an arbitrary spurious factor. This makes a
negative impact on the convergence mainly if the channel mis-
alignment occurs, since new local minima appear for blurs that
cope with the misalignment by convolving the correct blurs with
an interpolating kernel. For example, to compensate a one-pixel
shift between two channels, the suboptimal solution is to shift
both blurs in the opposite direction by half a pixel and perform
an interpolation, while the correct solution (global minimum)
is to shift one of the estimated blurs by one pixel and leave
the other. To get closer to the correct solution, we, thus, pro-
pose to set the initial blurs to delta functions positioned at
the centers of gravity of blurs . More pre-
cisely, if the images were blurred with energy preserving PSFs

, the centers of gravity (cog) satisfy
for any that preserves energy. From

Lemma 1, it follows that our estimate is a good approxima-
tion of , and we can, thus, calculate the relative positions of
the centers of gravity. This technique enables us to compensate
for the channel shifts right from the start of the algorithm and
get away from the incorrect interpolated solutions.

V. OVERSIZED BLURS

It is difficult to analyze global convergence properties of the
algorithm (16), (17) due to the nonlinear term . Chan et al.
in [9] transformed a similar alternating minimization problem
into the Fourier domain and performed the analysis there. In the
Fourier domain, it is difficult to apply the support constraint on
the blurs, but in our case, the blur size plays a fundamental role
in Lemma 1. The analysis should, thus, be performed in the
transform domain but this is difficult to carry out.

We have run a series of experiments on simulated data with
an incorrectly estimated blur size. A standard 128 128 “Lena”

image was degraded with three random blurs of size 3 3 and
with additive Gaussian noise of SNR dB
(SNR , where is the variance of
the original image). The original image was recovered from
each image triplet using the alternating minimization algorithm
with the blur size set to 3 3, 4 4, 6 6, and 8 8, respec-
tively. The percentage mean squared error of the estimated
image defined as was used as
the evaluation measure at each iteration. Calculated PMSEs are
summarized in Fig. 2. For less noisy data (SNR dB),
the convergence rate is fast and not affected by the incorrect
blur size estimation. In the case of SNR dB, we
observe a negative influence of the overestimated blur size on
the convergence. However, not many practical applications
provide data with such low SNRs.

VI. SHIFT-INVARIANT RESTORATION

In this section, we illustrate the ability of the method to handle
channels which are not registered. This is the most important
advantage of the new technique.

The first experiment demonstrates the capability of the
AM–MAP algorithm to recover the original image from two
degraded and shifted versions thereof, when the maximum shift
between the two channels is known. The standard 128 128
“Lena” image was degraded with two 5 5 blurs. One blurred
image was shifted by 10 20 pixels and then both images were
cropped to the same size; see Fig. 3. The AM algorithm was
initialized with the correctly estimated blur size 15 25. The
restored image and blurs are shown in Fig. 4. The blurs are
perfectly recovered and properly shifted. The restored image
matches the original on the area where data from both channels
were available. The same experiment was conducted again but
Gaussian noise SNR dB was added to the blurred and
shifted input images in Fig. 3. Obtained results are depicted in
Fig. 5 and illustrate satisfying restoration.

In the second experiment, we overestimated the blur size
and proceeded as follows. The 250 250 test image in Fig.
6(a) was degraded with two different 5 5 blurs and noise
of SNR dB. One blurred image was shifted by 5 5
pixels and then both images were cropped to the same size;
see Fig. 6(c). Contrary to the previous experiment, the shift
was considered unknown and the AM–MAP algorithm was
initialized with the overestimated blur size 12 12. The fused
image and the estimated blur masks are shown in Fig. 7.
Recovered blurs contain negligible spurious factors and are
properly shifted to compensate for the misregistration. The
fused image is by visual comparison much sharper than the input
channels and very similar to the original, which demonstrates
excellent performance.

We have also compared the performance of the AM–MAP
algorithm with the performance of Pai’s method [22] for
different noise levels. The Pai approach directly recovers the
original image by calculating the maximum singular vector
of a special matrix. The QR decomposition is necessary for
the construction of this matrix and the power method (or any
other iterative method for eigenvector computation) is used to
find the maximum singular vector, i.e., the original image.
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Fig. 2. PMSE of the estimated image as a function of iteration. The “Lena”
image was degraded with three random blurs of size 3� 3 and with AWGN of
SNR (a) 20, (b) 30, (c) 40, and (d) 50 dB. The AM algorithm was executed with
the estimated blur size (
) 3� 3 (correct size), ( ) 4� 4, ( ) 6� 6, and (�)
8� 8.

Fig. 3. (a) Input channels. “Lena” images degraded with two 5� 5 blurs.
Mutual translation between the images is 10 pixels vertically and 20 pixels
horizontally. (b) Blurring masks.

Fig. 4. Perfect noise-free AM restoration. (a) Recovered “Lena” image.
(b) Recovered blurs and 10� 20 shift between channels.

Fig. 5. Noisy AM restoration (30 dB). (a) Recovered “Lena” image.
(b) Recovered blurs and 10� 20 shift between channels.

Although the Pai method is not iterative in its definition, it
requires numerical iterative methods and, thus, approaches the
complexity of our inherently iterative algorithm. We used four
randomly generated 3 3 blurs to obtain four blurred “Lena”
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Fig. 6. (a) Original test image 250� 250 pixels. (b) Two 5� 5 PSFs. (c)
Blurred and shifted images.

Fig. 7. Image restoration for the overestimated blur size. (a) Recovered image.
(b) Estimated blur masks with the between-channel shift.

images. The images were then mutually translated so that
centers of the images were in corners of a 5 5 square. Noise
was added with SNR , and dB, respectively.
The maximum shift and the size of blurs were assumed to be
known and, therefore, both methods were initialized with the
correct blur size 8 8. For each SNR, the experiment was
repeated with different blurs 10 times and stopped after 50
iterations in the AM–MAP case. The mean PMSE and standard
deviation was calculated over these ten estimated images and
plotted in Fig. 8. Clearly, the AM–MAP performs better then
the Pai method for every SNR.

To evaluate the performance of the AM–MAP algorithm with
respect to the knowledge of the channel misalignment, a dif-
ferent experiment was conducted. Degraded images were pre-
pared in similar fashion as in the previous experiment but this
time the translation between the channels varied from 0 to 5 5

Fig. 8. Comparison of the (solid) AM–MAP algorithm and the (dashed) Pai
method. Mean PMSE and (vertical abscissae) standard deviation of the restored
images over ten different degradations and for different SNR.

Fig. 9. AM–MAP algorithm performance on misaligned channels. Mean
PMSE of restored images over ten different degradations for the channel
misalignment 0 to 5 pixels and SNR (�) 10, (�) 20, (�) 30, ( ) 40, and
(�) 50 dB.

pixels to simulate inaccurate registration. For each shift, the ex-
periment was repeated ten times with different blurs and was
every time initialized to 8 8 blur size. The calculated mean
PMSE is plotted in Fig. 9. PMSEs are almost constant, which
demonstrates very good stability of the algorithm against the
mask overestimation.

Finally, to demonstrate the power of the AM–MAP algorithm,
we performed an experiment with real data. This experiment
was motivated by many practical situations where we have to
handle images degraded by random motion and/or vibration
blur. This problem appears frequently in industrial visual in-
spection when the camera is mounted on a vibrating machine
or when a stationary camera monitors vibrating environment. A
text label (a part of a standard newspaper page) was attached to
a vibrating machine. The label was monitored under poor light
conditions by a standard digital camera mounted on a tripod.
The camera exposure time was set at s which was compa-
rable to the period of irregular vibrations of the machine. Three
cropped images of the label acquired with the camera were used
as the input channels of AM–MAP; see Fig. 10. The images
were not binarized but only trasformed to grey-level images.
Note strong motion blurs due to the machine movement and
clear spatial misalignment of the channels. Since the shift and
the size of the blurs were completely unknown and it was also
difficult to estimate the upper bound, the AM–MAP algorithm
was restarted with different parameters and the best results were
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Fig. 10. Real data experiment. Three consecutive acquisitions of a text label attached to a vibrating machine. The grey-level images are cropped to 100� 200
size. Shift blurs and spatial misalignment of the images are clearly visible.

Fig. 11. Real data experiment. Reconstructed part of the label and the
corresponding blurs (magnified) using the AM–MAP algorithm. The irregular
vibration of the machine is well preserved in the blurs.

found for the blur size 10 10 and . We used the total
variation in the a priori pdf to favor piecewise constant functions
which is the case of the text label. The reconstructed label and
the corresponding blur masks after 20 iterations are shown in
Fig. 11. One can see that the restoration was successful (the text
is clearly legible) and that the spatial misalignment inherent to
this type of problems poses no threat to proper functionality of
the algorithm. Observe that the restoration is slightly less suc-
cessful near the image borders, especially close to the top edge,
where only data from the third channel were available. Let us
recall that no assumption about the shape of the blurring func-
tions and no preprocessing of the input images were employed.

VII. CONCLUSION

We have developed the iterative algorithm for multichan-
nels blind deconvolution that searches for the MAP estimator.
The prior density functions were derived from the variational
integral defined on bounded variation functions and from the
mutual relation of weakly coprime channels. The restoration is
regularized with an anisotropic term for edge preservation and
performs well on heavily degraded images with high SNR and
shows better performance then the most recent multichannel
method. We have also shown that the inaccurate registration
of channels can be alleviated by properly overestimating the
size of blurs. All previously published MBD methods assumed
perfectly registered channels or required, though not specifi-
cally considered in their formulation, an exact knowledge of
the channel misalignment. To our knowledge, this is the only
method dealing explicitly with misregistration of images in the
multichannel framework and providing a successful solution
to this problem.
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A Unified Approach to Superresolution
and Multichannel Blind Deconvolution

Filip Šroubek, Gabriel Cristóbal, Senior Member, IEEE, and Jan Flusser, Senior Member, IEEE

Abstract—This paper presents a new approach to the blind
deconvolution and superresolution problem of multiple degraded
low-resolution frames of the original scene. We do not assume any
prior information about the shape of degradation blurs. The pro-
posed approach consists of building a regularized energy function
and minimizing it with respect to the original image and blurs,
where regularization is carried out in both the image and blur
domains. The image regularization based on variational principles
maintains stable performance under severe noise corruption.
The blur regularization guarantees consistency of the solution
by exploiting differences among the acquired low-resolution
images. Several experiments on synthetic and real data illustrate
the robustness and utilization of the proposed technique in real
applications.

Index Terms—Image restoration, multichannel blind deconvo-
lution, regularized energy minimization, resolution enhancement,
superresolution.

I. INTRODUCTION

IMAGING devices have limited achievable resolution due to
many theoretical and practical restrictions. An original scene

with a continuous intensity function warps at the camera
lens because of the scene motion and/or change of the camera
position. In addition, several external effects blur images: at-
mospheric turbulence, camera lens, relative camera-scene mo-
tion, etc. We will call these effects volatile blurs to emphasize
their unpredictable and transitory behavior, yet we will assume
that we can model them as convolution with an unknown point
spread function (PSF) . This is a reasonable assumption
if the original scene is flat and perpendicular to the optical axis.
Finally, the CCD discretizes the images and produces digitized
noisy image (frame). We refer to as a low-resolu-
tion (LR) image, since the spatial resolution is too low to capture
all the details of the original scene. In conclusion, the acquisi-
tion model becomes

(1)
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where is additive noise and denotes the geometric de-
formation (warping). is the decimation operator
that models the function of the CCD sensors. It consists of con-
volution with the sensor PSF followed by the sampling
operator , which we define as multiplication by a sum of delta
functions placed on a evenly spaced grid. The above model for
one single observation is extremely ill-posed. Instead of
taking a single image we can take images of the
original scene and this way partially overcome the equivocation
of the problem. Hence, we write

(2)

where , and remains the same in all the acqui-
sitions. In the perspective of this multiframe model, the orig-
inal scene is a single input and the acquired LR im-
ages are multiple outputs. The model is, therefore, called
a single-input–multiple-output (SIMO) formation model. The
upper part of Fig. 1 summarizes the multiframe LR acquisition
process. To our knowledge, this is the most accurate, state-of-
the-art model, as it takes all possible degradations into account.
Several other authors, such as in [1]–[4], adopt this model, as
well.

Superresolution (SR) is the process of combining a sequence
of LR images in order to produce a higher resolution image
or sequence. It is unrealistic to assume that the superresolved
image can recover the original scene exactly. A rea-
sonable goal of SR is a discrete version of that has a
higher spatial resolution than the resolution of the LR images
and that is free of the volatile blurs (deconvolved). In the paper,
we will refer to this superresolved image as a high resolution
(HR) image . The standard SR approach consists of sub-
pixel registration, overlaying the LR images on an HR grid, and
interpolating the missing values. The subpixel shift between im-
ages thus constitutes the essential assumption. We will demon-
strate that assuming volatile blurs in the model explicitly brings
about a more general and robust technique, with the subpixel
shift being a special case thereof.

The acquisition model in (2) embraces three distinct cases
frequently encountered in literature. First, if we want to resolve
the geometric degradation , we face a registration problem.
Second, if the decimation operator and the geometric
transform are not considered, we face a multichannel (or
multiframe) blind deconvolution (MBD) problem. Third, if the
volatile blur is not considered or assumed known, and
is suppressed up to a subpixel translation, we obtain a classical
SR formulation. In practice, it is crucial to consider all three
cases at once. We are then confronted with a problem of blind
superresolution (BSR), which is the subject of this investiga-

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. (Top) Low-resolution acquisition and (bottom) reconstruction flow.

tion. The approach presented in this manuscript is one of the
first attempts to solve BSR with only little prior knowledge.

Proper registration techniques can suppress large and com-
plex geometric distortions (usually just up to a small between-
image shift). There have been hundreds of methods proposed;
see, e.g., [5] for a survey. In the rest of this paper, we will as-
sume that the LR images are roughly registered and that s
reduce to small translations.

The MBD problem has recently attracted considerable atten-
tion. First blind deconvolution attempts were based on single-
channel formulations, such as in [6]–[9]. Kundur et al. [10], [11]
provide a good overview. The problem is extremely ill-posed
in the single-channel framework and cannot be resolved in a
fully blind form. These methods do not exploit the potential of
the multichannel framework, because in the single-channel case
missing information about the original image in one channel
is not supplemented by information in the other channels. Re-
search on intrinsically multichannel methods has begun fairly
recently; refer to [12]–[16] for a survey and other references.
Such MBD methods overpass the limitations of previous tech-
niques and can recover the blurring functions from the degraded
images alone. We further developed the MBD theory in [17]
by proposing a blind deconvolution method for images, which
might be mutually shifted by unknown vectors. To make this
brief survey complete, we should not forget to mention a very
challenging problem of shift-variant blind deconvolution, that
was considered in [18] and [19].

A countless number of papers address the standard SR
problem. A good survey can be found for example in [20] and
[21]. Maximum likelihood, maximum a posteriori (MAP), the
set theoretic approach using projection on convex sets, and
fast Fourier techniques can all provide a solution to the SR
problem. Earlier approaches assumed that subpixel shifts are
estimated by other means. More advanced techniques, such
as in [1], [2], and [4], include the shift estimation into the SR
process. Other approaches focus on fast implementation [3],
space-time SR [22] or SR of compressed video [2]. Most of
the SR techniques assume a priori known blurs. However, in
many cases, such as blurring due to camera motion, the blur
can have a wild shape that is difficult to predict; see examples
of real motion blurs in [23]. Authors in [24]–[26] proposed
BSR that can handle parametric PSFs, i.e., PSFs modeled with
one parameter. This restriction is unfortunately very limiting
for most real applications. In [27], we extended our MBD
method to BSR in an intuitive way but one can prove that this
approach does not estimate PSFs accurately. The same intuitive
approach was also proposed in [28]. To our knowledge, first
attempts for theoretically correct BSR with an arbitrary PSF
appeared in [29] and [30]. The interesting idea proposed therein
is the conversion of the SR problem from SIMO to multiple
input multiple output using so-called polyphase components.
We will adopt the same idea here as well. Other preliminary
results of the BSR problem with focus on fast calculation are
given in [31], where the authors propose a modification of the
Richardson–Lucy algorithm.

Current multiframe blind deconvolution techniques require
no or very little prior information about the blurs, they are suf-
ficiently robust to noise and provide satisfying results in most
real applications. However, they can hardly cope with the deci-
mation operator, which violates the standard convolution model.
On the contrary, state-of-the-art SR techniques achieve remark-
able results of resolution enhancement in the case of no blur.
They accurately estimate the subpixel shift between images but
lack any apparatus for calculating the blurs.

We propose a unifying method that simultaneously estimates
the volatile blurs and HR image without any prior knowledge
of the blurs and the original image. We accomplish this by for-
mulating the problem as a minimization of a regularized en-
ergy function, where the regularization is carried out in both
the image and blur domains. The image regularization is based
on variational integrals, and a consequent anisotropic diffusion
with good edge-preserving capabilities. A typical example of
such regularization is total variation first proposed in [32]. How-
ever, the main contribution of this work lies in the development
of the blur regularization term. We show that the blurs can be
recovered from the LR images up to small ambiguity. One can
consider this as a generalization of the results proposed for blur
estimation in the case of MBD problems. This fundamental ob-
servation enables us to build a simple regularization term for
the blurs even in the case of the SR problem. To tackle the mini-
mization task, we use an alternating minimization approach (see
Fig. 1), consisting of two simple linear equations.

The rest of the paper is organized as follows. Section II out-
lines the degradation model. In Section III, we present a pro-
cedure for volatile blur estimation. This effortlessly transforms
into a regularization term of the BSR algorithm as described
in Section IV. Finally, Section V illustrates applicability of the
proposed method to real situations.
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II. MATHEMATICAL MODEL

To simplify the notation, we will assume only images and
PSFs with square supports. An extension to rectangular images
is straightforward. Let be an arbitrary discrete image of
size , then denotes an image column vector of size

and denotes a matrix that performs convolution
of with an image of size . The convolution matrix can
have a different output size. Adopting the Matlab naming con-
vention, we distinguish two cases: “full” convolution of
size and “valid” convolution of size

. In both cases, the convolution matrix is a
Toeplitz-block-Toeplitz matrix. We will not specify dimensions
of convolution matrices if it is obvious from the size of the right
argument.

Let us assume we have different LR frames (each of
size ) that represent degraded (blurred and noisy) versions
of the original scene. Our goal is to estimate the HR represen-
tation of the original scene, which we denoted as the HR image

of size . The LR frames are linked with the HR image
through a series of degradations similar to those between
and in (2). First is geometrically warped , then it is
convolved with a volatile PSF and finally it is decimated

. The formation of the LR images in vector-matrix notation
is then described as

(3)

where is additive noise present in every channel. The decima-
tion matrix simulates the behavior of digital sensors
by first performing convolution with the sensor PSF
and then downsampling . The Gaussian function is widely
accepted as an appropriate sensor PSF and it is also used here. Its
justification is experimentally verified in [33]. A physical inter-
pretation of the sensor blur is that the sensor is of finite size and it
integrates impinging light over its surface. The sensitivity of the
sensor is highest in the middle and decreases towards its borders
with a Gaussian-like decay. Further, we assume that the sub-
sampling factor (or SR factor, depending on the point of view),
denoted by , is the same in both and directions. It is impor-
tant to underline that is a user-defined parameter. In principle,

can be a very complex geometric transform that must be
estimated by image registration or motion detection techniques.
We have to keep in mind that subpixel accuracy in s is nec-
essary for SR to work. Standard image registration techniques
can hardly achieve this and they leave a small misalignment be-
hind. Therefore, we will assume that complex geometric trans-
forms are removed in the preprocessing step and reduces to
a small translation. Hence, , where performs
convolution with the shifted version of the volatile PSF , and
the acquisition model becomes

(4)

The BSR problem then adopts the following form: We know the
LR images and we want to estimate the HR image for
the given and the sensor blur . To avoid boundary effects,
we assume that each observation captures only a part of .
Hence, and are “valid” convolution matrices

and , respectively. In general, the PSFs are of
different size. However, we postulate that they all fit into a

support.
In the case of , the downsampling is not present

and we face a slightly modified MBD problem that has been
solved elsewhere [12], [17]. Here, we are interested in the case
of , when the downsampling occurs. Can we estimate
the blurs as in the case ? The presence of prevents us
from using the cited results directly. However, we will show that
conclusions obtained for MBD apply here in a slightly modified
form, as well.

III. RECONSTRUCTION OF VOLATILE BLURS

Estimation of blurs in the MBD case (no downsampling) at-
tracted considerable attention in the past. A wide variety of
methods were proposed, such as in [12] and [13], that provide
a satisfactory solution. For these methods to work correctly,
certain channel disparity is necessary. The disparity is defined
as weak co-primeness of the channel blurs, which states that
the blurs have no common factor except a scalar constant. In
other words, if the channel blurs can be expressed as a con-
volution of two subkernels, then there is no subkernel that is
common to all blurs. An exact definition of weakly co-prime
blurs can be found in [13]. Many practical cases satisfy the
channel co-primeness, since the necessary channel disparity is
mostly guaranteed by the nature of the acquisition scheme and
random processes therein. We refer the reader to [12] for a rele-
vant discussion. This channel disparity is also necessary for the
BSR case.

Let us first recall how to estimate blurs in the MBD case
and then we will generalize the results for integer downsam-
pling factors. For the time being, we will omit noise , until
Section IV, where we will address it appropriately.

A. MBD Case

The decimation matrix is not present in (4) and only convo-
lution binds the input with the outputs. The acquisition model is
of the SIMO type with one input channel and output chan-
nels . Under the assumption of channel co-primeness, we can
see that any two correct blurs and satisfy

(5)

There are such relations and they can be arranged
into one system. Let us define

...
. . .

...
...

...
. . .

... (6)

for , where . The complete
system of relations (5) then takes the form

(7)

where . In most real situations, the correct
blur size (we have assumed square size ) is not known
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in advance, and, therefore, we can generate the above equation
for different blur dimensions . The nullity (null-space
dimension) of is exactly 1 for the correctly estimated
blur size. By applying SVD (singular value decomposition),
we recover precisely the blurs except for a scalar factor. One
can eliminate this magnitude ambiguity by stipulating that

, which is a common brightness preserving
assumption. For the underestimated blur size, the above equa-
tion has no solution. If the blur size is overestimated, then

.

B. BSR Case

Before we proceed, it is necessary to define precisely the
sampling matrix . Let denote a 1-D sampling matrix, where

is the integer subsampling factor. Each row of the sampling
matrix is a unit vector whose nonzero element is at such position
that, if the matrix multiplies an arbitrary vector , the result of
the product is every th element of . If the vector length is
then the size of the sampling matrix is . If is not
divisible by , we can pad the vector with an appropriate number
of zeros to make it divisible. A 2-D sampling matrix is defined by

(8)

where denotes the matrix direct product (Kronecker product
operator). Note that the transposed matrix behaves as an
upsampling operator that interlaces the original samples with

zeros.
A naive approach, as proposed in [27] and [28], is to modify

(7) for the MBD case by applying downsampling,
, and formulating the problem as

(9)

where is the identity matrix. One can easily verify
that the condition in (5) is not satisfied for the BSR case as the
presence of downsampling operators violates the commutative
property of convolution. Even more disturbing is the fact that
minimizers of (9) do not have to correspond to the correct blurs.
We are going to show that if one uses a slightly different ap-
proach, reconstruction of the volatile PSFs is possible even
in the BSR case. However, we will see that some ambiguity in
the solution of is inevitable.

First, we need to rearrange the acquisition model (4) and con-
struct from the LR images a convolution matrix with a
predetermined nullity. Then, we take the null space of and
construct a matrix , which will contain the correct PSFs in
its null space.

Let be the size of “nullifying” filters . (The meaning
of this name will be clear later). Define ,
where are “valid” convolution matrices. As-
suming no noise, we can express in terms of , , and as

(10)

where
(11)

and .

The convolution matrix has more rows than columns, and,
therefore, it is of full column rank (see proof in [12] for gen-
eral convolution matrices). We assume that has full column
rank as well. This is almost certainly true for real images if
has at least times more rows than columns. Thus,

and the difference between the number of columns and
rows of bounds from below the null space dimension, i.e.,

(12)

Setting and , we
visualize the null space as

...
. . .

... (13)

where is the vector representation of the nullifying filter
of size , and . The filters
are made of values of ’s null space and that is where their

name comes from. Let denote upsampled by factor ,
i.e., . Then, we define

...
. . .

... (14)

and conclude that

(15)

where . We have arrived to an equation that
is of the same form as (7) in the MBD case. Here, we have the
solution to the blur estimation problem for the BSR case. How-
ever, since is involved, ambiguity of the solution is higher.
Without proofs (for the sake of simplicity) we provide the fol-
lowing statements. For the correct blur size, .
For the underestimated blur size, (15) has no solution. For the
overestimated blur size ,

. The conclusion may seem to be pessimistic.
For example, for the nullity is at least 16, and for
the nullity is already 81.

To shed more light on the above discussion about the nullity
we have visualized the null space of in Fig. 2. We convolved
an image with six different 8 8 PSFs (the first PSF is in the top
of Fig. 2), downsampled the blurred images with factor 2, and
then constructed from the images following the above deriva-
tion. We know that in this case 16 independent vectors span the
null space of and their arbitrary linear combination is a so-
lution to (15). One such configuration of 16 independent vec-
tors, where only the first PSF is extracted from each, is shown
in the bottom of Fig. 2 arranged in a 4 4 table. One can see
that the recovered PSFs contain parts of the original PSF and
we have got four distinct parts each shifted to four different po-
sitions. Section IV will show that plays an important role in
the restoration algorithm as a consistency term and its ambiguity
is not a serious drawback.

It is interesting to note that a similar derivation is possible
for rational SR factors . We downsample the LR im-
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Fig. 2. Visualization of N ’s null space for " = 2. (Top) Original 8� 8 PSF
and (bottom) one example of 16 PSFs that span the null space of N . Proper
linear combination of these 16 PSFs gives the original PSF.

ages with the factor , thereby creating images and apply
thereon the above procedure for the SR factor .

Another consequence of the above derivation is the minimum
necessary number of LR images for the blur reconstruction to
work. The condition of the nullity in (12) implies that the
minimum number is . For example, for 3/2, 3 LR
images are sufficient; for , we need at least 5 LR images
to perform blur reconstruction. An intuitive explanation is that

input images are necessary for the SR problem to get a fully
determined system of equations and additional input images are
for the PSF estimation.

IV. BLIND SUPERRESOLUTION

In order to solve the BSR problem, i.e., determine the HR
image and volatile PSFs , we adopt an approach of mini-
mizing a regularized energy function. This way, the method will
be less vulnerable to noise and better posed. The energy consists
of three terms and takes the form

(16)

The first term measures the fidelity to the data and emanates
from our acquisition model (4). The remaining two are regu-
larization terms with positive weighting constants and that
attract the minimum of to an admissible set of solutions. The
form of very much resembles the energy proposed in [17] for
MBD. Indeed, this should not come as a surprise since MBD
and SR are related problems in our formulation.

Regularization is a smoothing term of the form

(17)

where is a high-pass filter. A common strategy is to use con-
volution with the Laplacian for , which in the continuous case
corresponds to . Recently, variational integrals

were proposed, where is a strictly convex,
nondecreasing function that grows at most linearly. Examples
of are (total variation), (hypersurface min-
imal function), , or nonconvex functions, such as

, and (Mumford–Shah func-
tional). The advantage of the variational approach is that it be-
haves as anisotropic diffusion. While in smooth areas it has the
same isotropic behavior as the Laplacian, it also preserves edges
in images. The disadvantage is that it is highly nonlinear. To
overcome this difficulty one must use, e.g., the half-quadratic
algorithm [34]. For the purpose of our discussion, it suffices to
state that after discretization we arrive again at (17), where this
time is a positive semidefinite block tridiagonal matrix con-
structed of values depending on the gradient of . The rationale
behind the choice of is to constrain the local spatial be-
havior of images; it resembles a Markov random field. Some
global constraints may be more desirable but are difficult (often
impossible) to define, since we develop a general method that
should work with any class of images.

The PSF regularization term directly follows from the
conclusions of the previous section. Since the matrix in (14)
contains the correct PSFs in its null space, we define the
regularization term as a least-squares fit

(18)

If one replaces with , we have the naive approach. The
product is a positive semidefinite matrix. More precisely,

is a consistency term that binds volatile PSFs and prevents
them from moving freely and, unlike the fidelity term [the first
term in (16)], it is based solely on the observed LR images. A
good practice is to include with a small weight a smoothing term

in . This is especially useful in the case of less noisy
data in order to overcome the higher nullity of .

The complete energy then takes the form

(19)

Energy as a function of both variables and , is not convex
due to convolution in the first term. On the other hand, the en-
ergy function is convex with respect to if is fixed and it
is convex with respect to if is fixed. The minimization se-
quence can, thus, be built by alternating between two
minimization subproblems. This procedure is called alternating
minimizations (AM) and the advantage lies in its simplicity. For
each subproblem a unique minimum exists that can be easily
calculated. Derivatives w.r.t. and must be zero at the minima,
which, in this case, leads to solving a set of simple linear equa-
tions. In conclusion, starting with some initial the two itera-
tive steps are

Step 1)

(20)

Step 2)

(21)
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where , and is the iter-
ation step. The AM approach is a variation on the steepest-de-
scent algorithm. The search space is a concatenation of the blur
subspace and the image subspace. The algorithm first descends
in the image subspace and after reaching the minimum, i.e.,

, it advances in the blur subspace in the direction
orthogonal to the previous one, and this scheme repeats.

Due to the coupling of the variables by convolution, we cannot
guarantee in theory that the global minimum is reached but thor-
ough testing indicates good convergence properties of the algo-
rithm for many real problems.

Convergence may further improve if we add feasible regions
for the HR image and PSFs specified as lower and upper bounds
constraints. To solve step 1, we use the method of conjugate
gradients (function cgs in standard Matlab) and then adjust the
solution to contain values in the admissible range, typi-
cally, the range of values of . It is common to assume that
PSF is positive and preserves image brightness, i.e.,
and . We can, therefore, restrict the intensity
values of PSFs between 0 and 1. In order to enforce the bounds
in step 2, we solve (21) as a constrained minimization problem
(function fmincon in Matlab Optimization Toolbox v.3) rather
than using the projection as in step 1. Constrained minimization
problems are more computationally demanding but we can af-
ford it in this case since the size of is much smaller than the
size of .

The weighting constants and depend on the level of
noise. If noise increases, and should increase, and
should decrease. One can use parameter estimation techniques,
such as cross-validation [24] or expectation maximization [35],
to determine the correct weights. However, in our experiments,
we set the values manually according to a visual assessment.
If the iterative algorithm begins to amplify noise, we have
underestimated the noise level. On the contrary, if the algorithm
begins to segment the image, we have overestimated the noise
level.

V. EXPERIMENTS

This section consists of two parts. In the first one, a set of
experiments on synthetic data evaluate performance of the BSR
algorithm with respect to the SR factor and compare the recon-
struction quality with other methods mentioned below under dif-
ferent levels of noise. The second part demonstrates the appli-
cability of the proposed method to real data.

In all the experiments the sensor blur is fixed and set to a
Gaussian function of standard deviation (relative to
the scale of LR images). One should underline that the proposed
BSR method is fairly robust to the choice of the Gaussian vari-
ance, since it can compensate for insufficient variance by auto-
matically including the missing factor of Gaussian functions in
the volatile blurs.

Another potential pitfall that we have to take into consider-
ation is a feasible range of SR factors. Theoretically there are
no limitations on the upper bound of the SR factor. However,
practical reasons impose limits. As the SR factor increases,
we need more LR images . The increasing number of
LR images negatively affects the stability of BSR, since in real
scenarios perturbations of the acquisition model occur, which

disrupts the minimization scheme. SR factors beyond 2.5 are,
thus, rare in real applications. A more elaborated discussion on
fundamental limits of SR algorithms is given in [36]. In addi-
tion, rational SR factors , where and are incommensu-
rable and large regardless of the effective value of , also make
the BSR algorithm unstable. It is the numerator that deter-
mines the internal SR factor used in the algorithm. Hence, we
limit ourselves to between 1 and 2.5, such as 3/2, 5/3, 2, etc.,
which is sufficient in most practical applications.

A. Simulated Data

First, let us demonstrate the BSR performance with a simple
experiment. An 175 175 image in Fig. 3(a) blurred with six
masks in Fig. 3(b) and downsampled with factor 2 gives six LR
images. Using the LR images as an input, we estimated the orig-
inal HR image with the proposed BSR algorithm for and
2. Fig. 4 summarizes obtained results in their original size. One
can see, that for [Fig. 4(b)], the reconstruction is good
but some details, such as the shirt texture, are still fuzzy. For the
SR factor 2, the reconstructed image in Fig. 4(c) is almost per-
fect as most of the high-frequency information of the original
image is correctly recovered.

Next, we evaluate noise robustness of the proposed BSR
and compare it with other two methods: interpolation tech-
nique and state-of-the-art SR method. The former technique
consists of the MBD method proposed in [17] followed by
standard bilinear interpolation resampling. The MBD method
first removes volatile blurs and then the interpolation of the
deconvolved image achieves the desired spatial resolution.
The latter method, which we will call herein a “standard SR
algorithm,” is a MAP formulation of the SR problem proposed,
e.g., in [1] and [2]. This method uses a MAP framework for the
joint estimation of image registration parameters (in our case
only translation) and the HR image, assuming only the sensor
blur and no volatile blurs. For an image prior, we use edge
preserving Huber Markov random fields [33].

In the case of BSR, Section III shows that two distinct ap-
proaches exist for the blur estimation. Either we use the naive
approach in (9) that directly utilizes the MBD formulation, or we
apply the intrinsically SR approach given in (15). Depending on
the approach, we use either or in the blur consistency
term in the AM algorithm.

Altogether we have, thus, four distinct methods for com-
parison: standard SR approach, MBD with interpolation, BSR
with naive blur regularization and BSR with intrinsic blur
regularization. The experimental setup was the following.
First, we generated six random motion blurs of size 4 4.
Then we generated six LR images from the original HR
image in Fig. 3(a) using the blurs and the downsampling
factor of 2, and added white Gaussian noise with different
SNR from 50 to 1 dB. The signal-to-noise ratio is defined as
SNR , where and are the image and
noise standard deviations, respectively. We repeated the whole
procedure ten times for different realizations of noise. For each
set of six LR images, the four methods were applied one by
one. Parameters of each method were chosen to minimize the
mean square error of the HR estimate. Fig. 5 summarizes the
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Fig. 3. Simulated data: (a) original 175� 175 image; (b) six 4� 4 volatile PSFs used to blur the original image.

Fig. 4. BSR of simulated data: (a) one of six LR images with the downsampling factor 2; (b) BSR for " = 1:5; (c) BSR for " = 2. The shirt texture is not yet
visible for the SR factor 1.5 but becomes well reconstructed for the SR factor 2. On the other hand, face features probably lack very small details, and there is no
visible improvement between 1.5 and 2.

obtained results in terms of peak signal to noise ratio defined
as , where is the
estimate of the original HR image , and denotes the
span of gray-level values in the original image, typically 255.

The standard SR method gives the poorest performance, since
it lacks any apparatus for removing volatile blurs. MBD with
interpolation removes blurs in the LR domain, which accounts
for better performance. However, the best performance is ap-
parent for the proposed BSR method, which accomplishes SR
and blind deconvolution in the HR domain. The shape of the
blur consistency term plays its role, as well. In the case
of the naive consistency term , estimated blurs are less
accurate. This leads to tiny artifacts in the HR image and a small
performance drop. On the other hand, the blur consistency term
with provides the most accurate estimations and outperforms
all the other methods. For low SNR, all the tested methods tend
to give similar results in the PSNR perspective and advantages
of the proposed BSR method are less evident. Thus, for very
noisy images (below 20 dB), it is sufficient to perform MBD
with simple interpolation than to apply advanced SR methods,
since MBD is definitely faster and the results look similar due to
noise. The level of noise depends on the amount of light during

Fig. 5. Performance of the BSR algorithm and the other two methods under
different levels of noise: (
) BSR usingN in the blur consistency term R(h);
( ) BSR usingN ; (�) MBD with bilinear interpolation; (4) standard SR
method. Note that the proposed BSR outperforms any other method but as the
noise level increases its supremacy becomes less evident.

acquisition and also on the quality of sensors. In our experi-
ence, most regular digital cameras have SNR around 50 dB, but
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Fig. 6. Reconstruction of images acquired with a camcorder (" = 2:5): (a) eight LR frames created from a short video sequence captured with the camcorder
and displayed in their original size; (b) bilinear interpolation of one LR frame; (c) BSR estimate of the HR frame; (d) original HR frame.

Fig. 7. Reconstruction of images acquired with a digital camera (" = 2): (a) eight LR acquired shot with the digital camera and displayed in their original size;
(b) bilinear interpolation of one LR image; (c) BSR estimate of the HR image; (d) image taken by the same camera but with optical zoom. The BSR algorithm
achieves reconstruction comparable to the image with optical zoom.

with decreasing light, it can drop down to 30 dB. Webcameras
have in general lower SNR around 30 dB, even in moderate light
conditions.

B. Real Data

The next three experimental settings come from a license
plate recognition task and they demonstrate the true power of
the BSR algorithm. We used data from two different acquisi-
tion devices: camcorder and digital camera. The camcorder was
Sony Digital Handycam and the digital camera was 5-Mpixel
Olympus C5050Z equipped with 3 optical zoom. In order to

work with color images, we extended the proposed BSR method
by utilizing color TV [37] instead of standard TV in image reg-
ularization and by assuming the same blurring in all three color
channels.

In the first scenario, we used a short video sequence pro-
vided by Dr. Z. Geradts from the Netherlands Forensic Insti-
tute (available at forensic.to/superresolution.htm). The video se-
quence was acquired with the camcorder and was artificially
downsampled with factor 10. We extracted 16 frames from the
downsampled video, of which eight are in Fig. 6(a), and applied
the proposed BSR algorithm with the SR factor of 2.5. Fig. 6(b)
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Fig. 8. License-plate recognition (" = 2): (a) one of eight LR images acquired with a digital camera (zero-order interpolation); (b) MBD followed by bilinear
interpolation; (c) PSFs estimated by the proposed BSR; (d) standard SR algorithm; (e) proposed BSR algorithm; (f) closeups of the images (a) and (b) on top and
(d) and (e) on bottom. Note that only the BSR result (e) reconstructs the car brand name in such a way that we can deduce that it was a “Mazda” car.

Fig. 9. Performance of the BSR algorithm with respect to the number of LR images (" = 1:5). (a) One of eight LR images of size 40� 70, zero-order interpola-
tion. (b) Image acquired with optical zoom 1.5�, which plays the role of “ground truth.” The proposed BSR algorithm using (c) 3, (d) 4, and (e) 8 LR images.

shows the first LR frame bilinearly interpolated to have the size
of HR images. The HR frame estimated by BSR is in Fig. 6(c),
and the original undecimated HR frame is in Fig. 6(d). The ob-
tained result remarkably well recovers letters and numbers on
the license plates.

In the second scenario, we used the digital camera and
took eight photos of a stalled car, registered the photos with
cross-correlation and cropped each to a 100 50 rectangle. All
eight cuttings printed in their original size (no interpolation),
including one image enlarged with bilinear interpolation, are in
Fig. 7(a) and (b). We set the desired SR factor to 2 and applied
BSR. In order to better assess the obtained results, we took one
additional image with optical zoom set close to 2 . This image
served as the ground truth; see Fig. 7(d). The proposed BSR
method returned a well reconstructed HR image [Fig. 7(c)],
which surpasses the image acquired with the optical zoom.

The third experimental setting consisted of a car moving to-
wards a hand-held digital camera. We took four consecutive
color images with the camera, and using both green channels
(color image in digital cameras are made of two green chan-
nels and one red and one blue channel), we generated alto-
gether eight LR images. The images were roughly registered
with cross-correlation and cropped each to a 90 50 rectangle.
One such image is in Fig. 8(a). We set the SR factor to 2 and
applied different reconstruction techniques. The MBD with in-
terpolation method [Fig. 8(b)] reconstructed the banner satis-
factory, yet the license plate is not legible, since it contains tiny
details that are beyond the resolution of LR images. The stan-
dard SR approach in Fig. 8(d) gives moderate results. The pro-
posed BSR method in Fig. 8(e) outperforms all the other tech-
niques and provides a sharp HR image. The PSFs estimated by
BSR are in Fig. 8(c). Note that every second PSF is a shifted
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version of the previous one, which was expected, since green
channels in digital cameras are shifted diagonally by 1 pixel in
each direction. For better visual comparison closeups of one of
the input LR image and three reconstructed HR images appear
in Fig. 8(f).

When dealing with real data, one cannot expect that the per-
formance will increase without limits as the number of available
LR images increases. At a certain point possible discrepancies
between the measured data and our mathematical model take
over, and the estimated HR image does not improve any more
or it can even worsen. We conducted several experiments on real
data (short shutter speed and motionless objects) with different
SR factors and number of LR images . See the results of one
such experiment in Fig. 9 for and the number of LR
images ranging from 3 to 8. A small improvement is apparent
between using 3 and 4 LR images; compare Fig. 9(c) and (d).
However, the result obtained with all eight images in Fig. 9(e)
shows a very little improvement. We deduce that for each SR
factor exists an optimal number of LR images that is close to
the minimum necessary number. Therefore, in practice, we rec-
ommend to use the minimum or close to minimum number of
LR images for the given SR factor.

VI. CONCLUSION

We have shown that the SR problem permits a stable solu-
tion, even in the case of unknown blurs. The fundamental idea
is to split radiometric deformations into sensor and volatile parts
and assume that only the sensor part is known. We can then con-
struct a convex functional using the observed LR images and ob-
serve that the volatile part minimizes this functional. Due to the
presence of resolution decimation, the functional is not strictly
convex and reaches its minimum on a subspace that depends on
the integer SR factor. We have also extended our conclusions to
rational factors. To achieve robust solution, we have adopted the
regularized energy minimization approach. The proposed BSR
method goes far beyond the standard SR techniques. The in-
troduction of volatile blurs makes the method particularly ap-
pealing to real situations. While reconstructing the blurs, we
estimate not only subpixel shifts but also any possible blurs
imposed by the acquisition process. To our knowledge, this is
one of the first methods that performs deconvolution and reso-
lution enhancement simultaneously.
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In many real applications, traditional super-resolution (SR) methods fail to provide high-resolution

images due to objectionable blur and inaccurate registration of input low-resolution images. Only

integer resolution enhancement factors, such as 2 or 3, are often considered, but non-integer factors

between 1 and 2 are also important in real cases. We introduce a method to SR and deconvolution,

which assumes no prior information about the shape of degradation blurs, incorporates registration

parameters, and is properly defined for any rational (fractional) resolution factor. The method

minimizes a regularized energy function with respect to the high-resolution image and blurs,

where regularization is carried out in both the image and blur domains. The blur regularization

is based on a generalized multi-channel blind deconvolution constraint derived in the paper. An

extension to color images is briefly discussed. Experiments on real data illustrate robustness to

noise and other advantages of the method.
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1. INTRODUCTION

Imaging devices have limited achievable resolution due to

many theoretical and practical restrictions. An original scene

with a continuous intensity function o(x, y) warps at the

camera lens because of the scene motion and/or the change

of the camera position. In addition, several external effects

blur images: atmospheric turbulence, camera lens, relative

camera-scene motion, etc. We will call these effects volatile

blurs to emphasize their unpredictable and transitory behavior,

yet we will assume that we can model them as convolution

with an unknown point spread function (PSF) v(x, y). This is

a reasonable assumption if the original scene is flat and

perpendicular to the optical axis. Finally, charge-coupled

devices (CCDs) discretize the image and produces digitized

noisy image g(i, j), which we refer to as a low-resolution

(LR) image, since the spatial resolution is too low to capture

all the details of the original scene. For one single observation

g(i, j), the problem is heavily underdetermined and lacks

stable solution. To partially overcome the equivocation of

the problem, we can take K (K . 1) images of the original

scene and face the so-called multi-channel (multi-frame)

problem. The acquisition model then becomes

gkði; jÞ ¼ Dð½vk�W kðoÞ�ðx; yÞÞ þ nkði; jÞ ð1Þ

where k ¼ 1,. . ., K is the acquisition index, nk(i, j) the additive

noise and Wk the geometric deformation (warping), in general

different for each acquisition. D(.) is the decimation operator

that models the function of CCD sensors. It consists of convo-

lution with a sensor PSF followed by a sampling operator,

which we define as multiplication by a sum of delta functions

placed on a grid. The above model is the state of the art as it

takes all possible degradations into account.

Super-resolution (SR) is the process of combining a

sequence of LR images in order to produce an image or

sequence of higher resolution. It is unrealistic to assume that

the super-resolved image can recover the original scene o(x,

y) exactly. A reasonable goal of SR is a discrete version of

o(x, y), which has higher spatial resolution than the resolution

of the LR images and which is free of the volatile blurs (decon-

volved). In the paper, we will refer to this super-resolved image

as a high-resolution (HR) image f(i, j) and the ratio between the
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size of the sought HR image and input LR image will be called

an SR factor and denoted by 1. The standard SR approach con-

sists of subpixel registration, overlaying the LR images on an

HR grid, and interpolating the missing values. The subpixel

shift between images thus constitutes an essential feature. We

will demonstrate that considering volatile blurs in the model

explicitly brings about a more general and robust technique,

with the subpixel shift being a special case thereof.

The acquisition model in equation (1) embraces three distinct

cases frequently encountered in the literature. First, removal of

the geometric degradation Wk is a registration problem. Second,

if the decimation operator D and the geometric transform Wk are

not considered, then we face a multi-channel (or multi-frame)

blind deconvolution (MBD) problem. Third, if the volatile

blur vk is not considered or assumed known, and Wk is sup-

pressed except to subpixel translations, we obtain a classical

SR formulation. In practice, it is crucial to consider all three

cases at once. We are then confronted with a problem of

blind SR (BSR), the topic of this paper.

Proper registration techniques can suppress large and

complex geometric distortions but usually a small between-

image shift is still observable. There have been hundreds of

methods proposed; see e.g. [1] for a survey. Here, we will

assume that registration parameters can be calculated by one

of the methods, and if applied, the LR images are registered

except to small translations.

Research on intrinsically MBD methods has begun fairly

recently; refer to [2–6] for a survey and other references.

The MBD methods can directly recover the blurring functions

from the degraded images alone. We further developed the

MBD theory in [7] by proposing a blind deconvolution

method for images, which might be mutually shifted by

unknown vectors. To make this brief survey complete, we

should not forget to mention a very challenging problem of

shift-variant blind deconvolution, that was considered in [8, 9].

A countless number of papers address the standard SR

problem. A good survey can be found in [10, 11]. Maximum

likelihood, maximum a posteriori (MAP), the set theoretic

approach using projection on convex sets and fast Fourier

techniques can all provide a solution to the SR problem.

Earlier approaches assumed that subpixel shifts are estimated

by other means. More advanced techniques, such as in [12–

14], include the shift estimation in the SR process. Other

approaches focus on fast implementation [15], space–time

SR [16], SR with complex image priors for joint image and

segmentation estimation [17] or SR of compressed video

[13]. Most of the SR techniques assume a priori known

blurs. However, in many cases, such as camera motion,

blurs can have wild shapes that are difficult to predict; see

examples of real motion blurs in [18]. Nguyen et al. [19],

Woods et al. [20] and Rajan and Chaudhuri [21] proposed

BSR that can handle parametric PSFs, i.e. PSFs modeled

with one parameter. This restriction is unfortunately very lim-

iting for most real applications. In [22], we extended our MBD

method to BSR in an intuitive way but one can prove that this

approach does not estimate PSFs accurately. The same intui-

tive approach was also proposed in [23]. To our knowledge,

first attempts for theoretically correct BSR with an arbitrary

PSF appeared in [24,25]. The interesting idea proposed

therein is to use the so-called polyphase components. We

will adopt the same idea here as well. Other preliminary

results of the BSR problem with focus on fast calculation

are given in [26], where the authors propose a modification

of the Richardson–Lucy algorithm.

Current MBD techniques require no or very little prior

information about the blurs, they are sufficiently robust to

noise and provide satisfying results in most real applications.

However, they can hardly cope with the decimation operator,

which violates the standard convolution model. On the con-

trary, state-of-the-art SR techniques achieve remarkable

results of resolution enhancement in the case of no blur.

They accurately estimate the subpixel shift between images

but lack any apparatus to calculate the blurs.

Recently, in [27], we proposed a unifying method that sim-

ultaneously estimates the volatile blurs and HR image. The

only prior knowledge required are estimates of the blur size

and the level of noise in the LR images, which renders it a

truly BSR method. The key idea was to determine subpixel

shifts by calculating volatile blurs. As the volatile blurs are

estimated in the HR scale, positions of their centroids corre-

spond to sub pixel shifts. Therefore, by estimating blurs, we

automatically estimate shifts with subpixel accuracy, which

is essential for good performance of SR. This complex SR

problem was solved by minimizing a regularized energy func-

tion, where the regularization was carried out in both the

image and blur domains. The image regularization is based

on variational integrals, and a consequent anisotropic diffu-

sion with good edge-preserving capabilities. The blur regular-

ization term is based on our generalized result of blur

estimation in the SR case. To tackle the minimization task,

we used an alternating minimization (AM) approach consist-

ing of two simple linear equations.

In this work, we extend the BSR method by incorporating

registration parameters and color images. To address correctly

the correlation of color channels, we apply the regularizations

proposed in [28]. Further, we show that by using the polyphase

decomposition, we can formulate the SR problem not only for

integer factors but also for any rational (fractional) factor,

which is important in real applications where often only an

SR factor between 1 and 2 is possible. If the noise removal

and registration steps are not sufficiently reliable, a factor of

1.6 is the practical limit of SR [29]. The need for rational

factors in SR was also reported in [30] with a focus on fast cal-

culation using preconditioners.

Section 2 outlines the degradation model in the discrete

domain for integer and non-integer SR factors. In Section 3,

we present the regularized energy functional, derive the regu-

larization terms and sketch an extension to color images.
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The AM scheme and parameter estimation is given in

Section 4. Finally, Section 5 illustrates the applicability of

the proposed method to real situations.

2. DISCRETE MODEL

To simplify the notation, we will assume only images and

PSFs with square supports. An extension to rectangular

images is straightforward. Let f(i, j) be an arbitrary discrete

image of size F � F then f denotes an image column vector

of size F2
� 1 and CA ffg denotes a matrix that performs con-

volution of f with an image of size A � A. The convolution

matrix can have a different output size. Adopting the Matlab

naming convention, we distinguish two cases: ‘full’ convolu-

tion CAffg of size (F þ A 2 1)2
� A2 and ‘valid’ convolution

CA
v
ffg of size (F 2 A þ 1)2

� A2. In both cases, the convolu-

tion matrix is of the Toeplitz-block-Toeplitz form. In the

paper, we will not specify dimensions of convolution matrices

if it is obvious from the size of the right argument.

Before we proceed, it is necessary to define precisely the

sampling matrix S. Let S1 denote an 1-D sampling matrix,

where 1 is the integer subsampling factor and i ¼ 1,. . .,1.

Each row of the sampling matrix is a unit vector whose

non-zero element is at such position that, if the matrix multi-

plies an arbitrary vector b, the result of the product is every 1th

element of b starting from bi. If the vector length is M then the

size of the sampling matrix is d(M 2 i þ 1)/1e � M, where d.e

rounds up to the closest integer. A 2-D sampling matrix is

defined by

S1
i;j :¼ S1

i � S1
j ; ð2Þ

where � denotes the matrix direct product (Kronecker product

operator). If the starting index (i, j) will be (1, 1) then we will

omit the subscript and simply write S1. Note that the trans-

posed matrix (S1)T behaves as an upsampling operator that

interlaces the original samples with (1 2 1) zeros.

Polyphase components of an image f(x, y) are

f ij :¼ S1
i;jf ð3Þ

which is equivalent to

f ij :¼ ½ f ½i; j�; f ½iþ 1; j�; f ½iþ 21; j�; . . . ; f ½i; jþ 1�;

f ½iþ 1; jþ 1�; . . .�T:

Therefore, each image breaks into 12 distinct polyphase

components (downsampled versions of the image) (see Fig. 1).

Let us now define a discrete version of the acquisition

model in equation (1). Assume that we have K different LR

frames fgkg (each of size G � G) that represent degraded

(blurred and noisy) versions of the original scene. Our goal

is to estimate the HR representation of the original scene,

which we denoted as the HR image f of size F � F. The LR

frames are linked with the HR image through a series of degra-

dations similar to those between o(x, y) and gk in equation (1).

First f is geometrically warped (Wk), then it is convolved with

a volatile PSF (Vk) and finally it is decimated (D). The deci-

mation operator D depends only on sensor characteristics

and since we assume the same sensor in all acquisitions it

appears without the index k. The formation of the LR

images in vector–matrix notation is then described as

gk ¼ DVkWkf þ nk; ð4Þ

where nk is additive noise present in every channel. In prin-

ciple, Wk can be a very complex geometric transform that

must be estimated by image registration or motion detection

techniques. We have to keep in mind that the subpixel accu-

racy in gk’s is essential for SR to work properly. Standard

image registration techniques can hardly achieve this and

they leave a small misalignment behind. Then the warping

operator splits into Wk ¼ TkWk
0, where Wk

0 is estimated by

some registration methods and Tk is the unknown translation.

In order to change the order of geometrical warping and con-

volution, we consider only linear transformations. Unknown

translation Tk combined with volatile PSF Vk gives us Vk

Tk ¼ Hk, where Hk performs convolution with the shifted

version of the volatile PSF vk. The decimation matrix D ¼
S1U simulates the behavior of digital sensors by first perform-

ing convolution with the U � U sensor PSF (U) and then

downsampling (S1) by factor 1. Assuming linear transform-

ations, Wk
0 may be grouped with the decimation operator

resulting in Dk ¼ S1 UWk
0. From the numerical point of

view, it is preferable to construct directly the whole Dk than

the individual matrices S1, U and Wk
0. Finally, the acquisition

model reads

gk ¼ DkHkf þ nk ¼ S1UW0kHkf þ nk: ð5Þ

The BSR problem we are solving is the following: we know

the LR images fgkg and Dk’s, and we want to estimate the HR

FIGURE 1. Polyphase decomposition for 1 ¼ 2: original image f

decomposes into four downsampled images.
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image f. In addition, the rough estimates of the size of volatile

blur hk and of the noise variance sn is necessary. PSFs hk can

be of different size. However, we postulate that they all fit into

an H � H support. To avoid boundary effects, we assume that

each observation gk captures only a part of f. Hence, Hk and U

are ‘valid’ convolution matrices CF
v
fhkg and CF2Hþ1

v
fug,

respectively.

To be able to deal correctly with non-integer SR factors, we

need to express the above model using a sampling operator

with integer 1. This will be necessary in the derivation of

blur regularization in the next section. It can be done for

factors expressed as a fraction p/q, where p and q are positive

integers and p . q (p and q are reduced so that they do not

have any common factor).

Let 1 ¼ p/q and the sampling frequency of the LR images gk

be q, then the sampling frequency (number of pixels per unit

distance) of the HR image f is p. From each LR image gk,

we generate q2 polyphase components. We consider these

polyphase components as new input (downsampled-LR)

images with the sampling frequency 1. Now, to obtain the

HR image from the downsampled-LR images, we must

solve an SR problem with the integer factor 1 ¼ p and not

with the rational one as before. In other words, in order to

obtained an integer SR factor we downsample the LR

images and thus artificially increase the number of channels.

However, the number of unknown PSFs hk remains the

same. We still have K PSFs since every pack of q2

downsampled-LR images contains the same blur.

An equivalent formulation of the model in equation (5) but

for fractional SR factors p/q is

g11
k

..

.

g
qq
k

2
64

3
75 ¼

SpU1;1

..

.

SpUq;q

2
64

3
75W0kHkf þ nk; ð6Þ

where each Ui,j performs convolution with one of the q2 discre-

tizations of the sensor PSF u and gk
ij ¼ S i,j

g gk are polyphase

components of gk for SR factor q. It is important to understand

the discretization of the sensor PSF u in the case of fractional

SR factors. Since p is not divisible by q, the product S1U is

shift-variant and it depends on a relative shift between the

HR and LR pixels. One can readily see that the relative shift

repeats every qth pixels (in both directions x and y) of the

LR image and therefore we have q2 distinct PSF discretiza-

tions. For further details see [31].

3. BLIND SUPERRESOLUTION

In order to solve the BSR problem, i.e. determine the HR

image f and volatile PSFs hk, we adopt an approach of mini-

mizing a regularized energy function. This way the method

will be less vulnerable to noise and better posed. The energy

consists of three terms and takes the form

Eðf; hÞ ¼
XK

k¼1

kDkHkf � gkk
2 þ QðfÞ þ RðhÞ; ð7Þ

where h ¼ [h1
T, . . . , hK

T]T. The first term measures the fidelity

to the data and emanates from our acquisition model (5).

The remaining two are regularization terms that attract the

minimum of E to an admissible set of solutions. The form of

E very much resembles the energy proposed in [7] for

MBD. Indeed, this should not come as a surprise since MBD

and SR are related problems in our formulation.

3.1. Image regularization

Regularization Q(f) is a smoothing term of the form

QðfÞ ¼ afTLf; ð8Þ

where L is a high-pass filter and a is a positive regularization

parameter. A common strategy is to use convolution with the

Laplacian for L, which in the continuous case, corresponds to

Q(f) ¼
Ð
jrfj2. Recently, variational integrals Q(f) ¼

Ð
f(jrfj)

were proposed, where f is a strictly convex, non-decreasing

function that grows at most linearly. Examples of f(s) are s

(total variation),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ s2 2 1
p

(hypersurface minimal func-

tion), log(cosh(s)) or non-convex functions, such as log(1 þ

s2), s2/(1 þ s2) and arctan(s2) (Mumford–Shah functional).

The advantage of the variational approach is that while in

smooth areas it has the same isotropic behavior as the Lapla-

cian, it also preserves edges in images. The disadvantage is

that it is highly nonlinear and to overcome this difficulty,

one must use, e.g. half-quadratic algorithm [32]. For the

purpose of our discussion, it suffices to state that after discre-

tization we arrive again at equation (8), where this time L is a

positive semi-definite block tridiagonal matrix constructed of

values depending on the gradient of f. The rationale behind the

choice of Q(f) is to constrain the local spatial behavior of

images; it resembles a Markov Random Field. Some global

constraints may be more desirable but are difficult (often

impossible) to define, since we develop a general method

that should work with any class of images.

3.2. PSF regularization

Our PSF regularization term R(h) consists of two terms. The

first one is the same smoothing term as for images but

applied to blurs, which is a typical prior that penalizes

jagged blurs that are rare in real situations. The second term

is a consistency term that binds the different volatile PSFs to

prevent them from moving freely and unlike the fidelity

term [the first term in equation (7)] it is based solely on the

observed LR images. It takes the form of kN hk2, where the
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matrix N will be derived later. The complete PSF regulariz-

ation is then given by

RðhÞ ¼ bhTLhþ gkN hk2; ð9Þ

where b and g are positive regularization parameters that give

different weights to the terms.

Consider the discrete model in equation (6) but without

noise nk and warping Wk
0 (this can be removed by registering

the LR images). Let E be a positive integer and G : ¼ [G1
11, . . . ,

G1
qq, G2

11, . . . , . . . , GK
qq], where Gk

ij : ¼ CE
v
fgk

ij
g. There are q2 dis-

tinct discretizations of the sensor PSF u that depend on the

relative shift between the HR and LR pixels. Let ui,j (i, j ¼

1,. . .,q) denote such discretizations.

Matrix G expressed in terms of f, u and hk takes the form

G ¼ SpF½U1;1; . . . ;Uq;q�H; ð10Þ

where Ui,j¼ CpE2pþHfui, jg, F ¼ CpE2pþHþU21
v

ffg and

H :¼ ½Iq2 � ðC pE�pþ1fh1gðS
pÞ

T
Þ; . . . ; Iq2 � ðC pE�pþ1fhKg

� ðSpÞ
T
Þ�:

The size of the upsampling matrix (Sp)T inside H is (pE 2

p þ 1)2
� E2.

If SpF is of full column rank, which is almost certainly true

for real and sufficiently large images (see [31] for more

details), then Null(G) ; Null([U1,1, . . . ,Uq,q]H). The differ-

ence between the number of columns and rows of [U1,1, . . . ,

Uq,q]H bounds from below the dimension of G’s null space, i.e.

nullity(G) �

N :¼ KðqEÞ2 � ð pE � pþ H þ U � 1Þ2: ð11Þ

Let N denote N null vectors of G stacked column-wise and hkn

are some E � E filters. We can visualize N as

N ¼

h1;1 � � � h1;N

..

. . .
. ..

.

hq2;1 � � � hq2;N

..

. . .
. ..

.

hKq2;1 � � � hKq2;N

2
66666664

3
77777775
; ð12Þ

where h kn is the vector representation of hkn. Let h̃kn denote

upsampled hkn by factor p. Then

N : ¼

CUþH�1f ~h1;1g . . . CUþH�1f ~hKq2;1g

..

. . .
. ..

.

CUþH�1f ~h1;Ng . . . CUþH�1f ~hKq2;Ng

2
664

3
775

� IK �

CHfu1;1g

..

.

CHfuq;qg

2
664

3
775 ð13Þ

and we conclude (without proofs for the sake if simplicity) that

N h ¼ 0 : ð14Þ

An interesting observation follows from the nullity con-

dition in equation (11): K . (pE 2 p þ H þ U 2 1)2/(qE)2

and if E 	 (p þ H þ U 2 1) then K . (p/q)2. It implies that

the minimum number of input channels necessary for blur

reconstruction to work is K . 12. For example, for 1 ¼ 3/2,

three LR images are sufficient; for 1 ¼ 2, we need at least

five LR images to perform blur reconstruction. Note that for

no SR (1 ¼ 1), the minimum number of input channels is 2,

which is of course in accordance with the MBD theory.

To better understand the above derivation, the following

example illustrates all the steps for an 1-D case.

EXAMPLE Let the HR signal be an 1-D periodic pulse f with

the period [1, 1, 1, 1,0,0,0]. Such signal satisfies the necessary

condition that SpF is of full-column rank. The HR signal is

blurred by h1 ¼ [0,1] and h2 ¼ [1, 0] (H ¼ 2) and down-

sampled by factor 1 ¼ p/q ¼ 3/2. To simplify the derivation,

the sensor PSF u will be a pulse of length 1.5 HR pixels and its

two (q ¼ 2) distinct discretizations are u1 ¼ [0.5, 0.5, 0] and

u2 ¼ [0, 0, 1] (U ¼ 3) as depicted below:

The two (K ¼ 2) measured LR signals are thus

g1 ¼ ½1; 1; 0:5; 0; 0:5; 1; 1; 0; 0; 1; 1; 1; 0; 0; . . .�;

g2 ¼ ½1; 1; 0; 0; 1; 1; 0:5; 0; 0:5; 1; 1; 0; 0; 1; . . .�
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and their two (q ¼ 2) polyphase components are

g1
1 ¼ ½1 0:5 0:5 1 0 1 0 . . .�;

g2
1 ¼ ½1 0 1 0 1 1 0 . . .�;

g1
2 ¼ ½1 0 1 0:5 0:5 1 0 . . .�;

g2
2 ¼ ½1 0 1 0 1 0 1 . . .�:

In the 1-D case, condition (11) reads nullity(G) � N: ¼

K(qE) 2 (pE 2 p þ H þ U 2 1). Therefore, for the

minimum admissible nullity N ¼ 1, the size of filters h must

be E ¼ 2. From the LR signals, we thus construct

G ¼

0:5 1 0 1 0 1 0 1

0:5 0:5 1 0 1 0 1 0

1 0:5 0 1 0:5 1 0 1

0 1 1 0 0:5 0:5 1 0

1 0 1 1 1 0:5 0 1

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
666666666664

3
777777777775
:

The null space of G is a single vector

N ¼

�0:6325

0

�0:3162

0

0:6325

0

0

0:3162

2
66666666664

3
77777777775
:

Extracting filters h’s of length E ¼ 2 from N and upsam-

pling by p ¼ 3, gives

~h1;1 ¼ ½ �0:6325 0 0 0 �;
~h2;1 ¼ ½ �0:3162 0 0 0 �;
~h3;1 ¼ ½ 0:6325 0 0 0 �;
~h4;1 ¼ ½ 0 0 0 0:3162 �:

Using equation (13) construct

N ¼

�0:3162 0 0 0

�0:3162 �0:3162 0:3162 0

�0:3162 �0:3162 0:3162 0:3162

0 �0:3162 0:3162 0:3162

0 0 0 0:3162

2
66664

3
77775

and one can readily see that

N ½h1; h2�
T
¼ 0:

The matrix N contains the correct blurs in its null space. In

real cases, when noise is present, we consider the l2 norm as

specified in equation (9).

In the course ofN’s derivation, we have to constructG,which

is huge even for images of moderate size, and then estimate its

null space. However, efficient computation exists. The N smal-

lest eigenvectors of GGT give the null space matrix N. The

product GGT is a square matrix of size proportional to E and

can be calculated directly without first constructing G; see

e.g. [2] for details. E is the size of filters h and it is calculated

from condition (11). It increases with the increasing SR

factor 1 and blur size H, but it decreases with the increasing

number of LR images K. In general cases, the values of E are

smaller or close to H. Therefore, the product GGT is relatively

small and the computation of N is fast.

3.3. Extension to color

There are three possible extensions of the acquisition model

(1) to color images: assuming same blurs in color channels

assuming different blurs in color channels and additionally

assuming also intrachannel blurs between color channels

(‘crosstalks’). For the first two extensions, the PSF regulariz-

ation term (9) can be used without any modifications. The

third extension brings extra burden of crosstalks that prevents

us from using the proposed PSF regularization and therefore

we did not consider it here. Color channels are strongly corre-

lated and it is highly desirable to introduce some coupling in

the image regularization term (8). One can find a very good

overview of different regularizations of color images in [28].

Here, we use the vector version of the variational approach,

which is given by

Qð f Þ ¼

ð
fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krfrk

2 þ krfgk
2 þ krfbk

2

q
Þdx dy;

where fr, fg, fb are red, greed, blue channels, respectively. Cor-

relation of colors is appropriately addressed by this term and

we can use the same numerical computation as in the case

of gray-scale images (see Section 3.1).

4. ALTERNATING MINIMIZATION

The complete energy function reads

Eðf; hÞ ¼
XK

k¼1

kDkHkf � gkk
2

þ afTLf þ hTðbLþ gN
T
NÞh: ð15Þ

To find a minimizer, we perform AMs of E over f and h. The

advantage of this scheme lies in its simplicity. Each term of

equation (15) is quadratic and therefore convex (but not
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necessarily strictly convex) and the derivatives w.r.t. f and h
are easy to calculate. This AM approach is a variation on

the steepest-descent algorithm. The search space is a concate-

nation of the blur subspace and the image subspace. The algor-

ithm first descends in the image subspace and after reaching

the minimum, i.e. rfE ¼ 0, it advances in the blur subspace

in the direction rhE orthogonal to the previous one, and this

scheme repeats. In conclusion, starting with some initial h0

the two iterative steps are:

Step 1.

fm ¼ arg min
f

Eðf; hmÞ

, solve for f

XK

k¼1

HT
k DT

k DkHk þ aL

 !
f ¼

XK

k¼1

HT
k DT

k gk :

ð16Þ

Step 2.

hmþ1 ¼ arg min
h

Eðfm;hÞ

, solve for h

ð½IK � FTDT
k DkF� þ gN

T
N þ bLÞh

¼ ½IK � FTDT
k �g;

ð17Þ

where F : ¼ CH
v
f f g, g : ¼ [g1

T, . . . ,gK
T]T and m is the iteration

step. Note that both steps consist of simple linear equations.

Energy E as a function of both variables f and h is not

convex due to coupling of variables via convolution in the

first term of equation (15). Therefore, it is not guaranteed

that the BSR algorithm reaches the global minimum,

instead, one may get trapped in local minima. In our experi-

ence, convergence properties improve significantly if we add

feasible regions for the HR image and PSFs specified as

lower and upper bounds constraints. To solve Step 1, we use

the method of conjugate gradients (function cgs in Matlab)

and then adjust the solution fm to contain values in the admis-

sible range, typically, the range of values of g. It is common to

assume that PSF is positive (hk � 0) and that it preserves

image brightness. We can therefore write the lower and

upper bounds constraints for PSFs as hk [ k0,1lH2

. In order

to enforce the bounds in Step 2, we solve equation (17) as a

constrained minimization problem (function fmincon in

Matlab) rather than using the projection as in Step 1. Con-

strained minimization problems are more computationally

demanding but we can afford it in this case since the size of

h is much smaller than the size of f.
Parameters a, b and g depend on the level of noise. If noise

increases, a and b should increase, and g should decrease. One

can prove that a and b are proportional to sn
2, which is the

noise variance. Estimation techniques, such as cross-validation

[19] or expectation maximization [33], can be used to determine

the correct weights. However, we did not want to increase the

complexity of the problem any further and thus we set the

values in experiments manually according to our visual assess-

ment. If the iterative algorithm begins to amplify noise, we have

underestimated the noise level. On contrary, if the algorithm

begins to segment the image, we have overestimated the

noise level.

5. EXPERIMENTS

The following experiments with the proposed BSR method

aim to first compare performance with other techniques and

second demonstrate its applicability to real scenarios with mis-

registered input images and non-integer SR factors.

5.1. PSNR performance

We evaluated noise robustness of the proposed BSR and com-

pared it with other two methods: interpolation technique and

state-of-the-art SR method. The former technique consists of

the MBD method proposed in [7] followed by the standard

bilinear interpolation resampling. The MBD method first

removes volatile blurs and then the interpolation of the decon-

volved image achieves the desired spatial resolution. The latter

method, which we will call herein a ‘standard SR method’, is a

MAP formulation of the SR problem proposed, in [12, 13]. This

method uses a MAP framework for the joint estimation of

image registration parameters (in our case only translation)

and the HR image, assuming only the sensor blur (U) and no

volatile blurs. For an image prior, we used edge preserving

FIGURE 2. Performance of the BSR algorithm and the other two

methods under different levels of noise: squares proposed BSR

with b ¼ 0; triangles proposed BSR with g ¼ 0; cross symbols rep-

resent MBD with bilinear interpolation; the circles represent the stan-

dard SR method. Note that the proposed BSR outperforms any other

method but as the noise level increases its supremacy becomes less

evident.
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Huber Markov random fields [34]. In order to evaluate the

effect of the PSF regularization term (9), we ran the BSR

method in two different modes. In the first mode, b ¼ 0 and

so the N term was considered. In the second mode, g ¼ 0

and so the standard smoothing term was considered.

The experimental setup was the following. First we gener-

ated six random motion blurs of size 4 � 4. Then we generated

six LR images from the original ‘Lena’ image using the blurs

and the downsampling factor of 2, and added white Gaussian

noise with different signal-to-noise ratio (SNR) from 50 to

10 dB. SNR ¼ 10 log(sf
2/sn

2), where sf and sn are the image

and noise standard deviations, respectively. We repeated the

whole procedure 10 times for different realizations of noise.

For each set of six LR images, the three methods were

applied one by one. Parameters of each method were chosen

to minimize the mean square error of the HR estimate.

Figure 2 summarizes the obtained results in terms of peak

SNR defined as PSNR(f̂) ¼ 10 log
spanðf Þ2

kf̂ � fk2=F2

� �
, where f̂

is the estimate of the original HR image f, and span(f)

denotes the span of gray-level values in the original image,

typically 255.

The standard SR method gives the poorest performance,

since it lacks any apparatus for removing volatile blurs.

MBD with interpolation removes blurs in the LR domain,

which accounts for better performance. However, the best per-

formance is apparent for the proposed BSR method with N in

the PSF regularization term. For low SNR, all the tested

methods tend to give similar results in the PSNR perspective

and advantages of the proposed BSR method are less

evident. Thus, for very noisy images (,20 dB), it is sufficient

to perform MBD with simple interpolation than to apply

advance SR methods, since MBD is definitely faster and the

results look similar due to noise.

5.2. Real data

We worked with a standard webcamera to record short video

sequences of still scenes, extracted several consecutive

frames and used the frames as input LR images. The input par-

ameters of the BSR method were selected manually to give the

best possible results. Common to all the experiments was the

choice of the sensor blur, which was determined experimen-

tally and was set to the Gaussian function of standard devi-

ation s ¼ 0.34 (relative to the scale of LR images). One

should underline that the proposed method is fairly robust to

the underestimated size of the sensor blur, since it can com-

pensate for insufficient variance by automatically including

the missing factor of Gaussian functions in the volatile

blurs. The quality of reconstructed HR images is not evaluated

by any quantitative measure. Instead, we advocate the use of

reader’s subjective assessment.

The first experiment summarized in Figs. 3 and 4 com-

pares results for different SR factors from 1.25 up to 3. In

this case, the hand-held webcamera operated in good light

conditions with the exposure time of 1/60 s and therefore

no volatile blur was visible. Ten frames (see one such

frame in the left side Fig. 3) extracted from the video

served as input LR images for the BSR method with par-

ameters a ¼ 2 � 1023, g ¼ 10, b ¼ 0, blur size 8 � 8 and

six different SR factors 1 ¼ 1.25, 1.5, 1.75, 2.0, 2.5, 3.0.

The HR images show improvement as the SR factor

increases; however, the refinement becomes less visible

after 2.0. The difference between 2.5 and 3.0 seems to be pri-

marily only in size as no more details appear. In all the cases,

estimated PSFs were more or less the same and an example

for SR factor 2 is in Fig. 4. The PSFs are very localized and

FIGURE 3. SR with non-integer factors of short-exposure images. The first left image is one of 10 LR frames acquired by a webcamera

(exposure time 1/60 s) that were used to estimate HR images. The proposed BSR method was initialized with different SR factors from 1.25

to 3. The estimated HR images appear in their original size. An example of estimated PSFs for factor 2 is in Fig. 4.

FIGURE 4. SR of short-exposure images. PSFs of LR images in

Fig. 3 estimated by the proposed BSR method.
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they resemble delta functions (note that the displayed PSFs

include the sensor blur), which was expected since the

input images did not exhibit any volatile blur. Notice that

the PSFs are shifted to compensate for subtle misalignments,

which seamlessly performs subpixel registration and thus

accurate SR.

In the second experiment, we recorded a greeting card with

the hand-held webcamera in poor light conditions. The

exposure time of the camera was 1/10 s and severe motion

blur coming from the hand vibration is visible in images;

see Fig. 5a. Then we move the camera toward the object,

stabilize it, and grabbed one frame (Fig. 5e) to have an

‘ideal’ representation, which we show here only for evaluation

reasons. Using five consecutive frames from the video, the HR

image (SRF ¼ 5/3) was estimated with three methods. The

first result in Fig. 5b) was achieved by the standard SR

method [13]. The result is poor as the method does not have

means of removing blur. The second result in Fig. 5c shows

MBD [7] with interpolation. The reconstructed image is

sharper but many details are still missing, e.g. note the erro-

neous reconstruction of ‘Anniv’ on the flag held by the ‘pig’

right to the ‘horse’. The third result is of the proposed BSR

(Fig. 5d) run with parameters a ¼ 2 � 1023 b ¼ 1, g ¼ 10

and blur size 12 � 12. The obtained result after only three iter-

ations of the AM algorithm is the sharpest with many details

properly reconstructed. The key to successful reconstruction

lies in the accurate estimation of PSFs within the iterative

algorithm. As one could see in Fig. 6, the estimated PSFs

model camera shake and since the whole procedure runs in

the HR scale, the proposed method outperforms the former

ones.

The third experiment demonstrates the advantage of using

the decimation operators Dk’s with registration instead of

running BSR on registered LR images. A similar video

sequence was recorded as in the previous case but this time

we also rotated the camera during shooting to introduce geo-

metric distortions that must be first eliminated by registration.

An example of two such frames out of 10 is in Fig. 7a.

Rotation is clearly visible and BSR cannot be applied

without first registering the images. We estimated registration

parameters and compared two approaches. First, we applied

BSR on registered images; see the result in Fig. 7b. Second,

we used the registration parameters to construct Dk’s and

applied BSR on the original unregistered images; see the

result in Fig. 7c. In both cases, the parameters were set as in

the previous experiment. Some small details are better recon-

structed in the second approach, which indicates that using the

registration parameters directly in BSR is preferable.

FIGURE 5. SR of long-exposure images. Five LR frames were extracted from a short video sequence captured by a webcamera (exposure time 1/

10 s). An example of one frame and its close-up is in (a) top and bottom, respectively. The image is printed in the size of the output HR image for

comparison reasons. Notice severe motion blur due to the long exposure time and motion of the hand-held camera. Estimated HR images for factor

5/3 were calculated by three different methods: standard SR in (b), MBD followed by bilinear interpolation in (c), and proposed BSR method in (d)

(see PSFs estimated by BSR in Fig. 6). Compare obtained results with the image (e) acquired with the same webcamera but installed closer to the

object.

FIGURE 6. SR of long-exposure images. PSFs of images in

Fig. 5(a) estimated by the proposed BSR method.
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6. CONCLUSION

This paper presented an SR method for both integer and non-

integer (rational) factors, which proved to be meaningful for

cases when insufficient number of input LR images is avail-

able to perform SR with only integer factors, such as 2 or

3. To achieve truly robust methodology applicable in real situ-

ations, we adopted the regularized energy minimization

approach, which we solve by alternating-minimization

scheme. The fundamental improvement on previously

proposed SR methods is the notion of estimating PSFs in the

HR scale, which indirectly aligns LR images with subpixel

accuracy. Using registration parameters inside, the algorithm

instead of registering input images gives better results and

paves the way for including methods of making registration

parameters more accurate during reconstruction of the HR

image [35].
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[31] Šroubek, F., Flusser, J. and Cristóbal, G. (2007) Multiframe
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Robust Multichannel Blind Deconvolution via Fast
Alternating Minimization
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Abstract—Blind deconvolution, which comprises simultaneous
blur and image estimations, is a strongly ill-posed problem. It is
by now well known that if multiple images of the same scene are
acquired, this multichannel (MC) blind deconvolution problem is
better posed and allows blur estimation directly from the degraded
images.We improve theMC idea by adding robustness to noise and
stability in the case of large blurs or if the blur size is vastly over-
estimated. We formulate blind deconvolution as an -regularized
optimization problem and seek a solution by alternately optimizing
with respect to the image and with respect to blurs. Each optimiza-
tion step is converted to a constrained problem by variable split-
ting and then is addressed with an augmented Lagrangianmethod,
which permits simple and fast implementation in the Fourier do-
main. The rapid convergence of the proposed method is illustrated
on synthetically blurred data. Applicability is also demonstrated
on the deconvolution of real photos taken by a digital camera.

Index Terms—Alternating minimization, augmented La-
grangian, blind deconvolution.

I. INTRODUCTION

I MAGE deconvolution is a classical inverse problem in
image processing. Deconvolution appears in a wide range

of application areas, such as photography, astronomy, medical
imaging, and remote sensing, just to name few. Images de-
teriorate during acquisition as data pass through the sensing,
transmission, and recording processes. In general, the observed
degradation is a result of two physical phenomena. The first is
of random nature and appears in images as noise. The second is
deterministic and results in blurring, which is typically modeled
by convolution with some blur kernel called the point spread
function (PSF). Degradation caused by convolution can thus
appear in any application where image acquisition takes place.
The common sources of blurring are lens imperfections, air
turbulence, or camera-scene motion. Solving the deconvolution
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problem in a reliable way has been of prime interest in the field
of image processing for several decades and has produced an
enormous number of publications.
Let us first consider problems with just one degraded image,

i.e., single-channel deconvolution. The simplest case is if the
blur kernel is known (i.e., a classical deconvolution problem).
However, even here, estimating an unknown image is ill-posed
due to the ill-conditioned nature of the convolution operators.
This inverse problem can only be solved by adopting some
sort of regularization (in stochastic terms, regularization corre-
sponds to priors). Another option is to use techniques such as
coded aperture [1], but this requires a modification of camera
hardware, which we do not consider here. A popular recent
approach is to let the unknown image be represented as a
linear combination of few elements of some frame (usually an
overcomplete dictionary) and to force this sparse representation
by using the norm . Either we can search
for the solution in the transform domain (coefficients of the
frame elements), which is referred to as the synthesis approach,
or regularize directly the unknown image, which is called the
analysis approach. Analysis versus synthesis approach has been
studied earlier [2], [3]. If the frame is an orthonormal basis,
both approaches are equivalent. More interesting however is
the case of redundant representation (e.g., an undecimated
wavelet transform), when the two approaches differ. Conclu-
sions presented in [3] suggest that, for deconvolution problems,
the analysis approach is preferable because sparsity should
be enforced only on a part of the redundant representation
(e.g., high-pass bands), and this can be easily implemented
only in the analysis approach. Very recently, it has been shown
that the analysis approach is solved efficiently using variable
splitting and by applying a Bregman iterative method [4] or an
augmented Lagrangian method (ALM) [5] (both methods lead
to the same algorithm).
If the blur kernel is unknown, we face single-channel blind

deconvolution, which is clearly even more complicated than the
classical deconvolution problem. This inverse problem is under-
determined as we have more unknowns (image and blur) than
equations. For a long time, the problem seemed too difficult to
solve for general blur kernels. Past algorithms usually worked
only for special cases, such as astronomical images with a uni-
form (black) background, and their performance depended on
initial estimates of PSFs. To name a few papers from this cat-
egory, consider [6]–[8] and survey [9]. Probably, the first at-
tempt toward a more general blur estimation came from Fergus
et al. [10], who proposed a variational Bayesian method [11]
with natural image statistics. This triggered a furious activity in
the computer vision community, and soon, several conference
papers appeared on the same topic [12]–[17]. Levin et al. [15]
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pointed out that the joint posterior probability of the image–blur
pair favors a trivial solution of the blur being a delta function
and that marginalizing the posterior (integrating out the image
variable) is more appropriate. However, a closed-form solution
seldom exists, and a complicated approximation of the poste-
rior is necessary, which leads to cumbersome methods that can
hardly handle large blurs. In order to avoid these drawbacks,
recent methods still try to minimize directly the joint posterior
probability since it can be done in an efficient way but perform
all sorts of tricks to avoid the trivial solution. Jia [12] uses an
alpha matte to extract a transparency map and estimates the blur
kernel on the map. Joshi et al. [13] predicts sharp edges using
edge profiles and estimates the blur kernel from the predicted
edges. Cho et al. [16] applies a shock filter and gradient thresh-
olding to restore only strong edges and estimates the blur kernel
from the truncated gradient image. A similar idea further im-
proved by a kernel refinement step has been proposed recently
by Xu et al. [17]. In general, the single-channel blind deconvo-
lution methods get trapped in local minima and must estimate
blurs using a multiscale approach. They have many parameters
that influence the result considerably and are hard to tune. The
common trick for the methods to work is to have means to pre-
dict strong edges. However, if the blurry image does not have
salient edges or it is corrupted by noise, all the single-channel
deconvolution methods usually fail.
The ill-posed nature of blind deconvolution can be reme-

died to a great extent by considering multiple images. In this
case, the problem is referred to as multichannel (MC) blind de-
convolution and will be the subject of our investigation. Ac-
quired images must capture the same scene and differ only in
the blur kernel. This may not seem to be easy to achieve in
practice. However, the opposite is true. There are many sit-
uations where multiple images blurred in a slightly different
way can be obtained. For example, if atmospheric turbulence
causes blurring, we can capture several images (or video frames)
in a row, and due to the random nature of turbulence, each
image is almost surely blurred in a different way. If camera
shake causes blurring, continuous shooting (or video capture)
with the camera provides several images that are blurred in a
different way since our hand moves randomly. MC deconvo-
lution requires that the input images are properly registered,
which is one drawback compared with the single-channel case.
If the images are acquired as described above, misregistration
is only minor, and even simple registration methods will pro-
vide accurate and stable results (see, e.g., [18]) for a survey of
registration methods. We will thus assume that the input im-
ages are registered up to some global translation. A simple reg-
istration method for affine transforms is used in our experi-
ments, as sketched in Section VI. More problematic is the oc-
currence of space-variant blur, which often arises in practice,
such as rotating camera or profound depth of scene. We note
that the method proposed here assumes a space-invariant case,
but by applying the method locally, we can, in theory, deal with
space-variant cases as well.We refer the interested reader to [19]
and references therein for space-variant deconvolution.
One of the earliest intrinsic MC blind deconvolution methods

[20] was designed particularly for images blurred by atmo-
spheric turbulence. Harikumar et al. [21] proposed an indirect

algorithm, which first estimates blur kernels and then recovers
the original image by a standard nonblind method. The blur
kernels are equal to the minimum eigenvector of a special
matrix constructed from the blurred input images. Necessary
assumptions for perfect recovery of the blurs are noise-free
environment and channel coprimeness, i.e., a scalar constant
is the only common factor of the blurs. Giannakis et al. [22]
developed another indirect algorithm based on Bezout’s iden-
tity of coprime polynomials, which finds restoration filters. In
addition, by convolving the filters with the input images, it
recovers the original image. Both algorithms are vulnerable
to noise and, even for a moderate noise-level restoration, may
break down. Pai et al. [23] suggested two MC restoration al-
gorithms that, contrary to the previous two indirect algorithms,
estimate directly the original image from the null space or
from the range of a special matrix. Another direct method
based on the greatest common divisor was proposed in [24].
In noisy cases, the direct algorithms are more stable than the
indirect ones. Approaches based on the autoregressive moving
average model are given in [25]. MC blind deconvolution using
a Bussgang algorithm was proposed in [26], which performs
well on spatially uncorrelated data, such as binary text images
and spiky images. Sroubek et al. [27] proposed a method that
reformulates Harikumar’s idea in [21] as a MC regularization
term and simultaneously minimizes an energy function with
respect to the image and blur kernels. This allows us to handle
inexact PSF sizes and to compensate for small misalignment in
input images, which made MC deconvolution more practical.
However, small PSFs (less than 15 15) and images of size
couple of hundreds of pixels were only considered. It is mainly
because of the inefficiency of the applied numerical algorithm
that the method is not converging for larger blurs and images.
Here, we propose anMCblind deconvolutionmethod that can

handle very large blurs (e.g., 50 50) and images of several
megapixels with even better accuracy and speed. The method
is based on the same idea as in [27], and it is formulated as
a constrained optimization problem. For image regularization,
we use total variation (TV) [28], and for blur regularization,
we use the MC constraint proposed in [21]. We show that the
original MC constraint is not robust to noise and propose a
simple remedy, which requires a negligible extra computation
but achieves much better stability with respect to noise. Since
the optimization problem mixes the and norms, we use the
state-of-the-art numerical method of augmented Lagrangian [5]
to solve the blind deconvolution problem and achieve very fast
convergence. As it will be cleared later, positivity of blur ker-
nels is an important constraint that must be included in the opti-
mization problem. We show that positivity can be incorporated
in augmented Lagrangian effortlessly without affecting the con-
vergence properties.
This paper is organized as follows. Section II defines nota-

tion and presents the basic alternating minimization approach
to blind deconvolution. Image regularization in the form of
isotropic TV is given in Section III. Section IV discusses the
problem of blur estimation in the MC scenario and influence of
noise and blur size and proposes a novel blur kernel constraint
with sparsity and positivity regularization. A description of
the proposed algorithm is given in Section V, together with
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Fig. 1. Flowchart of the alternating minimization algorithm.

implementation details. The experimental section, Section VI,
empirically validates the proposed method, and Section VII
concludes this paper.

II. MC BLIND DECONVOLUTION BASICS

We formulate the problem in the discrete domain and use
frequently vector–matrix notation throughout the text. Images
and PSFs are denoted by small italic letters and their corre-
sponding vectorial representations (lexicographically ordered
pixels) are denoted by small bold letters. The MC blind decon-
volution problem assumes that we have input images

that are related to an unknown
image according to model

(1)

where denotes an unknown blur (kernel or PSF PSF) and
is the additive noise in the th observation. Operator stands

for convolution, and .When no ambiguity arises, we drop
multiindex from the notation. In the vector–matrix notation,
(1) becomes

(2)

where matrices and perform convolution with and ,
respectively. To denote the th element in the vector notation,
we write , e.g., . The size of images and blurs
(matrices and vectors) will be discussed later when necessary.
In the case of multiple acquisitions, we cannot expect that

input images are perfectly spatially aligned. One can model
such misregistation by the geometric transformation
that precede blurring , i.e., . If is invert-
ible, then , where

. If is a standard convolution with
some PSF and is a linear geometric transformation,
then the new blurring operator remains a standard convo-
lution but with warped according to . Therefore, for
linear geometric transformations (such as affine), the order of
geometric transformation and blurring can be interchanged. We
thus assume that input images can be accurately registered
by linear transformations, and a registration step preceding
blind deconvolution removes such geometric transformations.
It is well known that the problem of estimating from is

ill-posed; thus, this inverse problem can only be solved satis-
factorily by adopting some sort of regularization. Formally, this
leads to the following optimization problem:

(3)

where is the data fidelity term and and are regular-
izers of the image and blurs, respectively. The formation model
(1) determines the data term leading to a standard formulation

, where is inversely
proportional to the variance of noise and denotes the
norm. For simplicity, we assume the same noise variance in all
frames; therefore, single parameter suffices. The standard ap-
proach to solve (3) is called alternating minimization and will
be adopted here as well. We split the problem into two subprob-
lems, i.e.,

-step" (4)

-step" (5)

and alternate between them (see the algorithm flowchart in
Fig. 1). Convergence to the global minimum is theoretically not
guaranteed since the unknown variables are coupled in the data
term . However, we show that each subproblem separately
converges to its global minimum and that it can be solved
efficiently by the ALM. This implies that, in general, the global
minimum of (3) is attainable after few alternations between
the subproblems. The next two sections describe in detail the
image and blur regularization terms.

III. IMAGE REGULARIZATION

A popular recent approach to image regularization is to as-
sume that the unknown image is represented as a linear com-
bination of few elements of some frame (usually an overcom-
plete dictionary) and to force this sparse representation by using
the norm (or ). Arguably, the best known and most com-
monly used image regularizer, which belongs to the category of
sparse priors, is the TV norm [28].
The isotropic TV model is the norm of image-gradient

magnitude values and takes the following form:

(6)

where . The TV regularizer thus forces the solu-
tion to have sparse image gradient. Depending on the type of
data, one can have sparsity in different domains. This modifica-
tion is however easy to achieve. All we have to do is to replace
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derivatives with a transformation (e.g., a waveletlike multiscale
transform), which gives sparse representation of our data.
Using the vector–matrix notation, the isotropic TV (6) can be

written as

(7)

where and are matrices performing derivatives with re-
spect to and , respectively.

IV. BLUR ESTIMATION AND REGULARIZATION

We first review an MC PSF estimation method proposed in
[21], [22], which was later used in MC blind deconvolution as
the PSF regularizer [27]. We demonstrate that the method is not
robust to noise and show a novel improvement in this aspect.
To keep the notation simple, let us assume 1-D data and the
two-channel convolution model (1) . The following
discussion can be easily extended to 2-D data and any .
The sizes of 1-D data , , and is , , and , respectively,
with . Noise is of the same size as . Kernels
can be of different sizes, but we can always pad the smaller
ones with zeros to have the size of the largest one and therefore
refers to the size of the largest PSF. To deal correctly with

convolution at image boundaries, weworkwith convolution that
returns a “valid” part of the support and thus .
The matrices and in the vector–matrix formation model
(2) are thus of size and , respectively.
Let be an estimate of . In general, the original PSF size
is not known; therefore, can be of different size, which

is denoted here as . Let us study three cases that will be used
in the following discussion: (a1) noiseless case ; (a2)
PSF size is exactly known ; and (a3) original PSFs are
weakly coprime and images are persistently exciting for size
. A set of kernels is called weakly coprime [22]; if there
exists kernel and set so that, , , then is
a scalar. In other words, if the kernels are decomposable, they
must not have a common kernel. An image of size is called
persistently exciting [21] for size if its “valid” convolution
matrix of size has full column rank. Note
that such an image will be also persistently exciting for any size
smaller than .

A. Noiseless Case

We first consider a situation, when all three assumptions (a1),
a(2), and (a3) hold. If , then

(8)

where we used the commutative property of convolution.
Rewriting the above relation in the vector–matrix notation, we
get

(9)

where . Matrices and denote “valid”
convolution with and , respectively, and they are of size

. Note that, in the case of , it is sufficient
to consider all unordered pairs of images, which is equal to the

Fig. 2. Spectra of kernel regularization matrices in (10), in (15), and
in (17). (a) in the (solid line) noiseless and (dotted line) noisy case and

(b) (solid line) and (dashed line) in the noisy case.

combinatorial number . Thus, for example, for , the
number of image pairs is ; (9) becomes

Let us continue with and define a symmetric positive
semidefinite matrix, i.e.,

(10)

The computational complexity of constructing this matrix is dis-
cussed in Section V-C. It follows from (9) that the correct esti-
mates of lie in the null space of . We refer to eigenvalues
of as and the corresponding
eigenvectors as . Since (a2) and (a3) hold, has exactly one
zero eigenvalue , and eigenvector is equal to the correct
PSFs stacked in one vector multiplied by a scalar. Note that
is constructed solely from the input image values, and it

can be thus used for the PSF estimation. An example of the
spectrum (plot of values) is in Fig. 2(a) (solid line). Matrix
was constructed from images blurred by two 5 5 PSFs in

Fig. 3(a). Notice the prominent kink at the first eigenvalue .
The corresponding eigenvector represents exactly the orig-
inal PSFs. This fact is also illustrated in Fig. 4(a), which plots
the representation of in basis , i.e., .
One can use to build the following quadratic form:

(11)

and rewrite the eigenvector estimation as a constrained op-
timization problem

s.t. (12)

As proposed in [27], it is better to use the quadratic term as a
PSF regularization term in the blindMC deconvolution problem
(3). Because of the favorable spectrum of , the convergence
of such algorithms is very fast.

B. Noisy Case

Let us see what happens if we remove (a1) and allow noise
to enter the formation model (1). We assume uncorrelated nor-
mally distributed noise . It follows from (2) that
the convolution matrices in (9) take the form

(13)
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Fig. 3. PSFs and their estimates (first eigenvectors) in the noisy case. (a) two
original PSFs of size 5 5. (b) Estimation using . (c) Estimation using .
(d) Estimation using .

Fig. 4. Representation of PSFs in the eigenvector basis of regularization ma-
trices. (a) in the noiseless case. (b) in the noisy case. (c) in the noisy
case. (d) in the noisy case.

where, this time, is of size and is a noise
convolutionmatrix constructed in the sameway as but using
elements of instead of . Substituting for in (9), we get

(14)

where

,
since , which
follows from (8). Because of noise, we cannot expect that the
smallest eigenvalue of will no longer be zero. Indeed, the
kink visible in the noiseless case is completely leveled out
in the noisy case. Fig. 2(a) (dotted line) shows the spectrum
of for the input data used before but corrupted by noise
with SNR dB, which is a relatively small level of noise
hardly detectable by human eyes. Eigenvector is no longer
informative and represents an erroneous solution, as shown in
Fig. 3(b). The correct solution is a linear combination of all
eigenvectors with the weights almost randomly distributed, as
shown in Fig. 4(b).

The maximum-likelihood estimation of kernels must include
the covariance matrix in , i.e.,

(15)

The spectrum of retains the kink at the first smallest
eigenvalue , as Fig. 2(b) (solid line) shows. For comparison,
we show the original spectrum of in (10), as a dotted line
[also in Fig. 2(a)]. The eigenvector of captures the orig-
inal PSFs, as shown in Fig. 3(c). Encoding of the true kernels
in the basis is relatively sparse and cluster around the

smallest eigenvalues [see Fig. 4(c)]. The same behavior persists
even for much higher noise levels (around 10 dB). The con-
struction of has one severe drawback: We must know the
correct kernels a priori in order to build . Since our aim is
to estimate PSFs, this seem to be contradictory. One can apply
an iterative procedure and update with every new estimate of
, as proposed in [21]. Unfortunately, this framework is not

guaranteed to converge. In addition, inversion of can be very
costly, which makes the whole calculation of for large ker-
nels (large ) impossible.
We propose to filter the blurred input images in such a way

so that without in (10) will be closed to in (15). If we
filter the input images with some kernel , then

(16)

where performs convolution with and the covariance matrix
is

. The best choice of the filter is such that
; since then, the covariance matrix can be neglected. How-

ever, this would again require a priori knowledge of unknown
kernels since depends on . Achieving a diagonal cor-
relation matrix means that we want to spatially decorrelate the
blur kernels. In the absence of any prior knowledge of the blurs,
we wish to employ a decorrelation method that is sufficiently
general. As such, given the well-accepted assumption of spar-
sity on high-frequency spatial structures, the natural choice is to
apply a Laplacian operator. The justification is therefore empir-
ical but quite reasonable. In Fig. 5(a), we show a small part of
the covariance matrix for our example with two blurs and, in
Fig. 5(b), the covariance matrix with being the Laplacian.
The covariance matrix of the filtered images is not diagonal but
close to diagonal. The Laplacian produces images, which are
relatively sparse and therefore spatially uncorrelated to a great
extent. The same holds for PSFs that blur the images, which ac-
counts for the close-to-diagonal covariance matrix.
Let denote a matrix that performs convolution with the

discrete Laplacian kernel (in 1-D ). The proposed
modification of the matrix is

(17)

Matrix depends only on the input images , and the con-
struction is trivial. The spectrum of this matrix retains the kink
[see dashed line in Fig. 2(b)] and relatively sparse representa-
tion of , as shown in Fig. 4(d). Eigenvector estimates in
a similar way as ideal [see Fig. 3(d)].
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Fig. 5. Covariance matrices. (a) Calculated from the original PSFs. (b) Calcu-
lated from the Laplacian of PSFs.

C. Overestimated Kernel Size

It is unrealistic to assume that the kernel size is exactly
known in practice. Let us thus consider the case when both (a1)
and (a3) hold, but (a2) is violated with the kernel size being
overestimated, i.e., . We can readily see that if
, where is an arbitrary spurious kernel of size ,

the MC constraint (8) still holds

(18)

In the language of matrix eigenvalues and eigenvectors, this
fact translates as follows. Matrix defined in (10) is of size

. The correct kernels lie again in the null space of , but
this time, the matrix nullity is of the size of the spurious kernel,
i.e., nullity . The regularization term (11) built from
becomes less restrictive (more “flat”) because of the increased
nullity. Therefore, convergence of any minimization algorithm,
which estimates PSFs using the proposed regularizer , is se-
riously hindered in the case of overestimated kernel size. Note
that if the kernel size is underestimated, (18) does not hold,
and we cannot estimated the kernels at all. We will not consider
the underestimated case and, instead, focus on improving the
stability of the overestimated case.
One can be tempted to assume that the unconstrained opti-

mization problem, as defined in (5), would eliminate the ambi-
guity inherent in . Using the vector–matrix notation, this
problem rewrites as

(19)

where is the convolution matrix with the estimate of
the original image . If estimate , the above optimization
problem is well posed, and in fact, we do not need regularizer
at all. However, this scenario is unrealistic since we do not know
the original image. Alternating minimization often starts with
equal to a so-called average image, i.e., . To
illustrate the behavior of the data term with respect
to the spurious kernel , we conducted the following experi-
ment. We generated two blurry signals and using some
random positive PSFs and of size . We set ;
therefore, the spurious kernel is of size 2, and .
Let us consider kernels of form that preserve en-
ergy , then for any and .
The data term with being the average image is a
function of , and we plot its values for different in Fig. 6.

Fig. 6. Data term as a function of the first elements of the
2 1 spurious vector , where . The minimum is not
reached for (delta function) but for with a small negative value.

The minimum was reached for a negative value of , and the
same behavior was observed for any pair of blurs and .
The data term is thus biased toward kernels with small nega-
tive values, and the unconstrained optimization problem (19) is
inappropriate if the kernel size is overestimated. An intuitive ex-
planation is the following. Since we use the average image, the
value of would reach its minimum for some close to delta
functions. Such a solution is however heavily penalized by ,
which allows only PSFs of form . In order to get closer to
the delta-function solution, must act as an inverse filter to all
positive , and this means that it must perform differentiation;
hence, negative values in are inevitable.
Forcing positivity on kernels is the remedy to the above

problem. Clearly, this approach is possible only for positive
kernels. We encounter positive-only kernels in many deconvo-
lution problems, and making this assumption is thus not very
restrictive. With the positivity constraint, the above problem
can be solved by means of quadratic programming. Here, we
show a different approach, which will allow us an elegant
integration in the ALM and much faster implementation than
quadratic programming. We have empirically observed that
forcing sparsity on further boosts convergence. In order to
guarantee both positivity and sparsity, we propose to use a new
kernel regularizer, i.e.,

(20)

where

if
otherwise

(21)
and is the weight that controls the influence of the MC con-
straint . The definition of ensures positivity by absolutely
penalizing negative values and forces sparsity by calculating the
norm of positive kernels.
Note that it is not necessary to explicitly include the constraint

as in (12), which preserves the average gray
value in images. This constraint is automatically enforced by
the fidelity term in (19). If the mean value
of the estimated image is equal to the mean value of , then
by solving (19) ( -step), we always preserve .
The -step in (4) does not change the mean value of either
because the fidelity term is present there as well. Therefore, the
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condition is not modified in alternating minimization, and we
only have to guarantee that initial PSFs follow the constraint.

D. Kernel Coprimeness

Let us consider the assumption (a3) of persistently exciting
images and weakly coprime kernels. The condition of persis-
tently exciting image is a very mild one. Usually , con-
volution matrices have many more rows than columns, and
the probability that the matrices will not have a full column rank
is thus very small. We do not consider here degenerate cases,
such as perfectly uniform or periodic images, that may not be
persistently exciting.
The condition of weakly coprime kernels may seem to be

more problematic. In the 1-D case (signals), any kernel of length
can be decomposed (factorized) into kernels (root fac-

tors) of size 2, which is the direct consequence of the funda-
mental theorem of algebra1 (see, e.g., [29]). It is therefore likely
that there might exist a factor common to all kernels . In the
2-D case (images), no such factorization in general exists and,
as also discussed in [21], coprimeness holds deterministically
for most of the 2-D cases of practical interest.
If the common factor exists despite its low probability, kernel

estimation still partially works. We are able to recover kernels
without their common factor, and the common factor remains
as a blur in the estimated image.

V. OPTIMIZATION ALGORITHM

Alternating minimization, which solves the MC blind decon-
volution problem (3), consists of two subproblems: minimiza-
tion with respect to the image ( -step) and the minimization
with respect to the blurs ( -step). Both subproblems share some
similarities because both the image (7) and the blur regularizer
(20) are not smooth and introduce nonlinearity in the problem.
Direct minimization in each step would be thus a slow process.
A simple procedure that solves such problems is called variable
splitting, which decouples the and portions of the problem
(3) by introducing auxiliary variable and converting each sub-
problem to two simpler minimization steps. We then apply the
ALM, which is equivalent to the split Bregman iterative method
[4], to solve the subproblems. Our derivation follows the work
presented in [5] and partially in [4]. Unique aspects of our al-
gorithm will be emphasized. From now on, we will exclusively
use the vector–matrix notation and stack all observations into
one system by using the compact notations ,

, , and the convolu-
tion matrix will now denote a block diagonal matrix with
blocks, where each block is the original from (2).

A. U-Step

Using the TV regularizer (7), minimization with respect to
the image (4) writes as

(22)

1However, some of the factors may contain complex values.

Applying variable splitting, we replace by and
by . This yields a constrained problem

s.t. (23)

which is equivalent to (22). The ALM (or split-Bregman iter-
ation) tackles the constrained problem (23) by considering the
functional

(24)

and solving it with an iterative algorithm:

Algorithm: -step

1: Set and

2: repeat

3:

4:
,
,

where

5:

6:

7: until stopping criterion is satisfied

8: return

This iterative algorithm consists of three update steps: lines
3, 4, and 5. Variables and are introduced by the ALM.
Their update on line 5 is trivial. It is worth drawing a relation
of the ALM to a penalty method. If we omit the updating step
for and , and keep , the above algorithm de-
faults to the penalty method. The penalty method converges to
the solution of the constrained problem (23) only if we keep
increasing to infinity while iterating, as advocated in [30].
This is however not practical as the problem becomes gradu-
ally more ill-posed with increasing . This drawback is avoided
in the ALM. Since is a lower semicontinuous proper convex
function,2 and has a full column rank, then, if (23)
has a solution, the -step algorithm converges to this solution
even for that is relatively small and fixed. This important the-
orem was proved in [31].

2In our case, is continuous and thus lower semicontinuous
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Fig. 7. Soft thresholding. (a) Shrinkage formula (26) for a nonzero threshold
(solid) and for (dashed). (b) Corresponding in (25) for a

(solid) nonzero threshold and (dashed) for . Note that is a
relaxed form of the norm, which is the absolute value (dashed) in this simple
case.

Since in (24) is quadratic with respect to , minimization
on line 3 is a solution to a set of linear equations. We show later
that this can be solved efficiently in the Fourier domain.
The beauty of variable splitting is that minimization with re-

spect to and is, by definition, the Moreau proximal map-
ping [32] of applied to and . The
problem can be solved for each th element independently. Let

and be
vectors of size 2 1; the problem on line 4 is of the form

(25)

and, as proved in [30], the minimum is reached for

(26)

which is a generalized shrinkage formula for vectors. For the
scalar, (26) corresponds to a well-known soft-thresholding for-
mula plotted as a solid line in Fig. 7(a). It is interesting to note
that, after substituting for in (25), [solid line in Fig. 7(b)]
can be written in a closed form

if
otherwise

(27)

which is a relaxed form of the original in the
isotropic TV definition (6). If , then , and the
corresponding graphs are plotted as dashed lines in Fig. 7.

B. H-Step

The kernel estimation proceeds analogously to the -step.
Using the proposed regularizer (20), minimization with respect
to the PSFs (5) writes as

(28)

Applying variable splitting yields the constrained
problem

s.t. (29)

Then, we consider the following functional:

(30)

Fig. 8. Thresholding in the blur domain. (a) Shrinkage formula (32) for (solid)
a nonzero threshold and for (dashed) . (b) Corresponding in
(31) for a nonzero threshold (solid) and for (dashed).

and solve it with the following iterative algorithm:

Algorithm: -step

1: Set and

2: repeat

3:

4:

5:

6:

7: until stopping criterion is satisfied

8: return

Matrix denotes identity of size . As in the -step,
the -step iterative algorithm consists of three update steps:
lines 3, 4, and 5. Since in (30) is quadratic with respect to
, minimization on line 3 is a solution to a set of linear equa-
tions. This time, the minimization with respect to is again the
Moreau proximal mapping of applied to , and it is
solved elementwise. Let and ; the problem
on line 4 is of the following form:

(31)

where is our positivity–sparsity enforcing function defined in
(21) and plotted as dashed line in Fig. 8(b). After some manip-
ulation, one can see that the minimum is reached for

(32)

The plot of this “one-sided” thresholding function is the solid
line in Fig. 8(a). Using the thresholding function, a closed form
of is

if

otherwise
(33)
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with a plot in Fig. 8(b), i.e., the solid line. The function linearly
increases in the positive domain, whereas in the negative do-
main, it increases quadratically. If , then , and
the thresholding function in (32) approaches the dashed line in
Fig. 8(a). However, as in the -step, we do not need to increase
to infinity for the -step algorithm to converge to the solution

of the constrained problem (29). The ALM approach with its
extravariable converges. Note, that must be a lower semi-
continuous proper convex function for the method to converge,
which is the case. Interestingly, if we replaced in definition (21)
infinity with some large but finite numbers, the resulting func-
tion would no longer be convex. Infinity in the definition might
look dangerous, but it turns out to give an elegant solution in the
form of the thresholding function (32).

C. Implementation

We have analyzed the main points ( -step and -step) of the
optimization algorithm. Nowwe proceed with the description of
the main loop of the algorithm and the computational cost of in-
dividual steps. Let denote the number of pixels in the output
image , and let denote the number of pixels in our overesti-
mated PSF support. The main loop of the MC blind deconvolu-
tion alternating minimization algorithm looks as follows:

MC blind deconvolution

Require: input images ; blur size ; parameters
, , ,

1: Set , ’s to delta functions, and

2: Calculate

3: repeat

4: -step

5: -step

6:

7: until stopping criterion is satisfied

8: return

The stopping criterion, which we typically use, is
. The same can be used in the

-step and, likewise, in the -step using instead of . The
calculation of can be done using the fast Fourier transform
(FFT) without explicitly constructing the convolution matrices
. Since values are “valid” convolutions, we can con-

struct only one row of at a time, and the overall complexity
is thus .
In general, the most time-consuming is the -step,

which requires an inversion of the huge matrix
. One can apply iterative

solvers, such as conjugate gradient, to avoid direct inversion,
but we can do even better and have a direct solver. In our for-
mulation, , , and are convolution matrices. To avoid
any ringing artifacts close to image boundaries, they should
perform “valid” convolution, i.e., the output image is smaller

and covers a region where both the input image and the convo-
lution kernel are fully defined. If we properly adjust the image
borders, e.g., by using the function edgetaper in MATLAB,
we can replace “valid” convolution with block-circulant one,
and ringing artifacts will be almost undetectable. The TV
regularizer also helps to reduce such artifacts. FFT diagonalizes
block-circulant convolution matrices, and inversion is thus
straightforward. The remaining update steps for and

are simple and can be computed in time. The
-step is thus carried out with an overall cost.
Unlike the -step, which is calculated almost entirely in the

Fourier domain, we perform the -step in the image domain
since we need the constrained kernel support . Otherwise,

becomes a very uninformative regularizer, as explained in
Section IV-C. On line 3 of the -step algorithm, we have to
invert matrix , which is of size

and thus much smaller than the matrix in the -step.
Typically, the size of blurs is not more than 40 40 pixels

, and for two input images , the matrix
size is 3200 3200, which is still relatively small.3 One can
again apply an iterative solver such as a conjugate gradient, but
we found it much more efficient to store the whole matrix and
perform Cholesky decomposition to solve this problem. This
can be computed in time. Again, update steps for
and are very simple and require operations.
Setting parameters is based solely on our empirical studies

and cannot be considered as a rigorous procedure. The opti-
mization method has four parameters. We have noticed that, in
general, they can be fixed relative to one of them, i.e., , which
depends on the noise level. This observation is not superficial.
Afonso et al. [5] (as well as is [4] for the split Bregman method)
also recommend to set parameters introduced by the ALM, i.e.,
in our case, and , with respect to the weight of the fidelity
term. Parameter , which is the weight of the MC constraint
term , is proportional to the noise variance, as shown
in (16), and therefore should be fixed to as well. The role of
thumb is to set equal to a ratio of signal and noise variances,
i.e., SNR dB or SNR dB ,
etc.4 Then, we have found that choosing , ,
and usually results in good convergence. For higher
noise levels (smaller ), we observed that is better.
In our experiments, the number of iteration in the main loop

and in the -step and -step typically did not exceed ten. In order
to further decrease computational time, we tried to modify the
algorithm in several ways. For example, we found it very effec-
tive to divide the algorithm into two stages. In the first stage, we
select a small (typically 256 256) central region from input
images and run the algorithm on this selection. In the second
stage, we take the estimated PSFs from the first stage and apply
one -step on the whole image in order to obtain the final recon-
structed image. The usable output of the first stage are thus PSFs
and not the reconstructed central region.We observed that fixing
to ten (even for the SNR above 10 dB) in the first stage and

3A matrix of such size, if stored in double precision, occupies approximately
78 MB of memory, which current computers can easily handle.
4We use a standard definition of the signal to noise ratio, SNR

, where and are the signal and noise variances, respec-
tively.
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Fig. 9. Test data set. (a) Original image 256 256. (b) Two blurs 9 9. (c) Example of an input blurry pair with SNR dB.

setting other parameters according to formulas as shown above
produces accurate PSFs in a more reliable way. This conver-
gence boost can be explained by noting that the reconstructed
image for lower becomes more piecewise constant (patchy)
with only strong edges preserved, which makes the -step in
the fidelity term focus only on areas around strong edges and
neglect areas with details that are prone to noise.
Another modification, which proved to be a minor improve-

ment, was to estimate PSFs in a multiscale fashion. Initializing
with upsampled PSFs from the courser levels tend to decrease
the number of iterations. However, we observed that more than
two levels (half-sized and original scale) are not necessary and
that the choice of the upsampling algorithm is important. Simple
linear upsampling generates PSFs that are wider than the true
PSFs on that scale, and we waste several iterations of the al-
gorithm to shrink the PSFs back. In our tests, we were using a
Lanczos interpolation method, which seems to give the best re-
sults.
To provide the cost of individual steps in terms of computer

time, we performed blind deconvolution of two one-megapixel
images with PSF size 40 40 on a 2.7-GHz Pentium Dual-Core
CPU using our MATLAB implementation. The cost of one it-
eration inside the -step and the -step is around 0.8 and 4.5
s, respectively. Calculating matrix using the whole images
takes 11 min in this case, which is clearly the most time-con-
suming step. However, as pointed out earlier, we can calculate
on a small region. For example, for a 256 256 block, the

calculation (same PSF size 40 40) then takes around 30 s.

VI. EXPERIMENTS

In order to illustrate the favorable convergence properties of
the proposed algorithm, we performed two sets of experiments.
The first set works with synthetically blurred data and compares
convergence and quality of PSF and image estimations for dif-
ferent SNRs and blur sizes. The second set of experiments com-
pares the proposed algorithm with another MC blind deconvo-
lution method of Katkovnik et al. [33] and demonstrates decon-
volution of real photos taken with a standard digital camera.
The setup for the synthetic data experiment was the fol-

lowing. We took the Lena image in Fig. 9(a) and convolve it
with two 9 9 blurs [see Fig. 9(b)] and add noise at three
different levels SNR and dB. An example of blurry
images for the least noisy case is in Fig. 9(c). To evaluate perfor-
mance in every iteration of the main loop, we use normalized

root mean square error defined as NRMSE ,
where is the estimation of PSFs after iterations and
are the true PSFs. NRMSE as a function of iterations and
estimated PSFs for different situations are summarized in
Fig. 10. NRMSE is plotted in logarithmic scale. Three graphs
correspond to three levels of SNRs. In each case, we ran the
algorithm with three different PSF supports: 9 9 (solid line),
15 15 (dotted line), and 21 21 (dashed line). The corre-
sponding estimated sharp images for the PSF support 21 21
and are summarized in Fig. 11. One can see that the proposed
method provides accurate results regardless of the degree of
PSF size overestimation and shows robustness with respect to
noise.
There are several interesting points we can draw from the

obtained results. First of all, the MSE decreases very quickly.
In most of the cases, after five iterations, MSE remains almost
constant. For overestimated blur supports (dotted and dashed
line) MSE reaches almost the same level as for the correct
blur support (solid line), but the decrease is slightly less sharp
(particularly visible for SNR dB). This is logical since,
in the overestimated case, the dimensionality of the problem
is higher, and the MC constraint is less effective, as dis-
cussed in Section IV-C. Clearly, as the noise level increases,
the lowest attainable MSE increases as well. For SNR dB
[see Fig. 10(a)], estimated PSFs are very accurate. The corre-
sponding estimated image in Fig. 11(a) is almost perfect. For
SNR dB, [see Fig. 10(b)], the estimated PSFs take the
shape of the true PSFs but are slightly blurred. The estimated
image in Fig. 11(b) still looks very sharp and artifact free.
As the noise level increases further to SNR dB [see
Fig. 10(c)], the quality of deconvolution starts to deteriorate,
but the TV denoising feature of the method is evident, as shown
in Fig. 11(c).
There are few data in the literature to which we can directly

compare which uses multiple frames in the process. Most of
the MC work presented in the introduction is mainly theoret-
ical and presents no algorithms for large-scale problems. Com-
parison with single-channel results is possible, but we do not
feel that this is fair to these other methods. To our knowledge,
the only recent method, which is intrinsically MC and claims
to work with large kernels, was proposed in [33]. This method
performs alternating minimization by switching between mini-
mization with respect to the image (corresponds to our -step)
and minimization with respect to the kernels (corresponds to our
-step). A variation of the steepest descent algorithm is used
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Fig. 10. Estimated PSFs and plots of NRMSE for different noise levels in input blurry images: (a) 50, (b) 30, and (c) 10 dB. Three different PSF supports were
considered in each noisy case: (solid line) correct PSF size 9 9, (dotted line) two overestimated sizes 15 15, and (dashed line) 21 21. (a) 50 dB. (b) 30 dB.
(c) 10 dB.

Fig. 11. Estimated sharp images for the PSF size set to 21 21 and three different noise levels: (a) 50, (b) 30, and (c) 10 dB. Results are arranged as in Fig. 10.
The first row shows one of the input images and the second row shows the estimated image. (a) 50 dB. (b) 30 dB. (c) 10 dB.

for minimization. Everything is implemented in the Fourier do-
main, as in our case. For minimization, we use ALM in order to
work with nonlinear regularization terms in an efficient manner.
Katkovnik et al. use a variation of the steepest descent algo-
rithm with only quadratic terms. Instead of using regulariza-
tion, they project current estimation after every iteration into
an admissible set of solutions (such as positive PSFs with lim-
ited support and image intensity values between 0 and 1) and
perform spatially adaptive image denoising based on the inter-
section-of-confidence-interval rule. To compare the methods,
we took a data set generated in [15], which contained four im-
ages blurred by eight PSFs providing 32 blurred images [see
Fig. 12(a) and (b)]. The blurred images are real and captured
by a digital camera. The ground-truth PSFs in Fig. 12(b) were
estimated by a collection of point sources installed in the ob-
served scene. We divided the blurred images into eight groups
(each containing one image blurred by four blurs) and applied
both methods. The NRMSE of the estimated images and blurs

are plotted in Fig. 12(c) and (d). One can see that, in half of the
cases, our method provides better PSFs (in the NRMSE sense)
and outperforms the other method in the image NRMSE in all
eight cases. In addition, our method requires only ten iterations
of alternating minimization, whereas the other method requires
roughly 100 iterations to achieve these results.5

In order to demonstrate that the algorithmworks well in many
practical applications, we took several pairs of images with a
3-megapixel digital camera Olympus C3020Z and applied the
proposed algorithm. Light conditions were low, and the shutter
speed of the camera was typically longer than 1/10 s. Such set-
ting produces nice blurry images, when the camera is held in
hands. It is of course necessary to first register the input photos
before the algorithm can be applied. In our case, we do not have

5It is true that we perform at most ten iterations inside both -step and -step.
Katkovnik’s method cannot perform many iterations inside their -step and
-step since they need to project into the admissible set frequently; therefore,
they do ten steps of steepest descent in the -step and one step in the -step.
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Fig. 12. Comparison with Katkovnik et al [33] Ground-truth data from Levin’s data set [15]: (a) four images and (b) eight blur kernels, which generates 32 blurred
images. We split the kernels into two groups (b1, b2) and got eight input sets each containing four blurred images. (c) NRMSE of estimated sharp images. (d)
NRMSE of estimated kernels. Left bars are results of our method and right bars are results of [33].

Fig. 13. Real data set. (a) and (b) Ttwo input blurry images of size 2048 1536. (c) Estimated output sharp image using the proposed algorithm. (d) Closeups of
the input images and the output, and estimated PSFs of size 50 30.

to deal with heavily misregistered data since the images have
been taken one after another with minimum delay. A fast reg-
istration method, which proved to be adequate and was used
in these experiments, works as follows. A reference image is
selected from the input set , and the other images (called
sensed images) are sequentially registered to the reference one.
The reference and sensed image are first divided into several
nonoverlapping blocks (typically 6 6). Phase correlation is
applied in each block to determine the integer translation vector
between the reference and the sensed block. The estimated shifts

are used to calculate parameters of an affine trans-
form. The sensed images are then interpolated using the esti-
mated affine transforms.
Reconstruction results for two different data sets are in

Figs. 13 and 14. Input image pairs exhibit relatively large blur-

ring, but the reconstructed images are sharp and with negligible
artifacts (see image closeups for better visual comparison).
Estimated PSF pairs model very well motion blurs induced by
camera shake. Some artifacts are visible in the second data set
[see Fig. 14(c)] around the snow heap in the left bottom corner.
It is very likely, that the blur is slightly different in this part
due to a different distance from the camera or due to rotational
movement during acquisition. Since our method assumes
space-invariant blurs, such artifact are however inevitable.

VII. CONCLUSION

We have presented a new algorithm for solving MC blind de-
convolution. The proposed approach starts by defining an opti-
mization problem with image and blur regularization terms. To
force sparse image gradients, the image regularizer is formu-
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Fig. 14. Real data set. (a) and (b) Two input blurry images of size 2048 1536. (c) Estimated output sharp image using the proposed algorithm. (d) Closeups of
the input images and the output and estimated PSFs of size 40 40.

lated using a standard isotropic TV. The PSF regularizer con-
sists of two terms:MC constraint (matrix ) and sparsity–pos-
itivity. The MC constraint is improved by considering image
Laplacian, which brings better noise robustness at little cost.
Positivity helps the method to convergence to a correct solu-
tion, when the used PSF size is much larger than the true one.
The proposed approach solves the optimization problem in an it-
erative way by alternating between minimization with respect to
the image ( -step) and with respect to the PSFs ( -step). Spar-
sity and positivity imply nonlinearity, but by using the variable
splitting and ALM (or split-Bregman method), we can solve
each step efficiently, and moreover, convergence of each step
is guaranteed. Experiments on synthetic data illustrate fast con-
vergence of the algorithm, robustness to noise, and stability in
the case of overestimated PSF sizes. Experiments on large real
data underline practical aspects of the algorithm. Current and fu-
ture work involves extending this approach to the space-variant
blur and analyzing the convergence properties.
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Abstract. Retinal imaging plays a key role in the diagnosis and management of ophthalmologic disorders, such as
diabetic retinopathy, glaucoma, and age-related macular degeneration. Because of the acquisition process, retinal
images often suffer from blurring and uneven illumination. This problem may seriously affect disease diagnosis and
progression assessment. Here we present a method for color retinal image restoration by means of multichannel
blind deconvolution. The method is applied to a pair of retinal images acquired within a lapse of time, ranging from
several minutes to months. It consists of a series of preprocessing steps to adjust the images so they comply with
the considered degradation model, followed by the estimation of the point-spread function and, ultimately, image
deconvolution. The preprocessing is mainly composed of image registration, uneven illumination compensation,
and segmentation of areas with structural changes. In addition, we have developed a procedure for the detection
and visualization of structural changes. This enables the identification of subtle developments in the retina not
caused by variation in illumination or blur. The method was tested on synthetic and real images. Encouraging
experimental results show that the method is capable of significant restoration of degraded retinal images. C©2011
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3652709]
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1 Introduction
A fundus imaging device or retinal camera is a specialized low-
power microscope with an attached camera designed to pho-
tograph the interior of the eye in association with the optical
system of the eye. Retinal imaging is acknowledged to be an
important tool for both detection and monitoring the progres-
sion of diseases affecting the eye, such as diabetic retinopathy,
glaucoma, and age-related macular degeneration.1 The digital
format provides a permanent record of the appearance of the
retina at any point in time.2

The imaging procedure is usually carried in two separate
steps: Image acquisition and diagnostic interpretation. Image
quality is subjectively evaluated by the person capturing the im-
ages, and they can sometimes mistakenly accept a low-quality
image.3 Low-quality image occurrence rate has been reported
at 3.7–19.7% in clinical studies,4–6 which is not a minor fact. A
recent study by Abràmoff et al.7 using an automated system for
detection of diabetic retinopathy found that from 10,000 exams
23% had insufficient image quality. A major source of retinal
image quality degradation are aberrations of the human eye, im-
perfections in the fundus camera optics, and improper camera
adjustment, flash lighting, or focusing during the exam.8 More-
over, regardless of how well controlled the aforementioned pa-
rameters are, in practice it may not always be possible to obtain
good enough image quality as a result of additional factors such

Address all correspondence to: Andrés G. Marrugo, Universitat Politècnica de
Catalunya, Department of Optics and Optometry, Group of Applied Optics and
Image Processing, Violinista Vellsolà 37, Terrassa, Barcelona 08222 Spain; Tel:
3493738678; E-mail: andres.marrugo@upc.edu.

as lens opacities in the examined eye, scattering, insufficient
pupil dilation or patient difficulty in steady fixating a target in
the camera (such as in patients suffering from amblyopia).3 Out
of all possible retinal image degradations, some can be properly
compensated via enhancement or restoration techniques (e.g.,
low-contrast, nonuniform illumination, noise, and blur).2 How-
ever, this compensation is also dependent on the extent of the
degradation. Regarding retinal image blurring, its main causes
are relative camera-eye motion, inherent optical aberrations in
the eye, and improper focusing.

In the past decade, many wavefront technologies—with its
origins in astronomy—such as adaptive optics (AO)9 and de-
convolution from wavefront sensing (DWFS),10 gave rise to the
correction of monochromatic aberrations of the eye and also cre-
ated new opportunities to image the retina at unprecedented spa-
tial resolution. However, AO-corrected and DWFS-based fundus
imagers usually aim at resolving details at the level of individual
photoreceptors, thus have a field of view (FOV) of a couple de-
grees and a high resolution on the order of 1 or 2 μm.11 Greater
FOVs can be achieved (∼5 deg)12, 13 with additional hardware
constraints, beside the fact that diffraction limited imaging is not
guaranteed due to an increase in aberrations.14 Nevertheless, it
is still a considerably narrow FOV and a major disadvantage
with clinical subjects because of the need to examine larger ar-
eas of the retina. On the other hand, regular non-AO corrected
fundus imagers used for routine checkups have a large FOV (typ-
ically, 30 deg) at the expense of lower spatial resolution, but still
sufficient for practical detection and progression of observable
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Fig. 1 Block diagram illustrating the proposed method. z̆i are the unregistered degraded input images, and ûi are their restored versions. The other
variables are intermediate outputs of every stage; their meaning is given in the text.

clinical signs, such as microaneurysms, dot and blot hemor-
rhages, and exudates, among others. Consequently, large FOV
fundus imagers are the major imaging modality available to pa-
tients visiting an eye-care clinic. The method proposed herein
aims to restore images from conventional large FOV fundus
imagers.

Among the normal retinal features, the blood vessel distri-
bution exhibits a unique pattern in each individual and is highly
stable in time. It is quite difficult to forge, and most common
diseases do not change the pattern in a way that its topology
is affected. For that reason, much effort has been put into the
development of security systems based on the blood vessel distri-
bution as a biometric signal for authentication purposes.15 From
this consideration, it is reasonable to assume the hypothesis that
a pair of fundus images of the same retina, taken at different mo-
ments in time, contain enough common information to restore
any of them by existing multichannel deconvolution techniques.
We will demonstrate this fact later.

1.1 Overview of Proposed Approach
In this paper, we propose a new strategy for retinal image de-
blurring where we consider the most general image degradation
case: blurred retinal images acquired in different moments in
time, ranging from minutes to months; hence, disease progres-
sion is also considered. The main reason for this general image
degradation case that considers long time lapses comes from the
potential need to restore a degraded image acquired in the past
being the only one available at that stage of the disease. This
problem arises quite often in clinical practice. A correct assess-
ment of a patient’s state evolution requires sharp images from
all moments in time; the method proposed here enables such
opportunity. Disease progression characterization is embedded
in the algorithm with the identification of areas of structural
change (see Sec. 3.3).

Our restoration method is based on a technique called blind
deconvolution (BD).16, 17 The goal of BD is to recover the orig-
inal scene from a single image or a set of blurred images in
the presence of a poorly determined or unknown point-spread
function (PSF). The main assumption is that the blur can be
described by a convolution of a sharp image with the unknown
PSF. Restoration by deconvolution improves contrast and reso-
lution of digital images (i.e., it is easier to resolve and distin-
guish features in the restored image). To avoid confusion with
super-resolution, we briefly describe what we mean by reso-
lution improvement. Digital deconvolution can be described as

any scheme that sharpens up the PSF, while the spatial frequency
bandwidth remains unchanged. This means that the spatial fre-
quency response and the two-point resolution is improved, but
the cutoff frequency is unchanged;18 in the super-resolution con-
text, the goal is to increase the cutoff frequency.

BD algorithms can be of single input [single-image blind de-
convolution (SBD)] or of multiple images [multichannel blind
deconvolution (MBD)]. Despite the fact that SBD is one of
the most ill-posed problems, there are several reliable SBD
algorithms,19 although most of them require that the blurred
image be governed by relatively strong edges, which is not case
here. In Sec. 4.1 we compare our approach to a recent state-of-
the-art SBD method.20 The computational overhead from MBD
(all of the preprocessing to adjust the time-sequence of images)
in comparison to SBD is practically negligible, and the robust-
ness of MBD is far superior and worth applying because SBD
fails to produce a valid restoration. By the same token, the addi-
tional processing enables the identification of structural changes
in the retina over time—a central task in medical practice. As a
result, we have chosen a multichannel approach for the restora-
tion of blurred retinal images.

An overview of the proposed approach is described in
Fig. 1. We consider as input two-color retinal images acquired
with a conventional fundus camera within a time lapse that
can span from several minutes to months given by routine pa-
tient checkups. The images correspond to the same retina but
can differ with respect to illumination distribution, blur, and
local structural changes given by pathological developments.
These differences cannot solely be accounted for by the convo-
lutional model described in Sec. 2. For that reason, the images
must be preprocessed before the blind deconvolution stage can
take place. We register the images and compensate for inter-
image illumination variation and structural changes. In fact,
this preprocessing work becomes a great opportunity to meet
one of the main concerns of ophthalmologists when they vi-
sually compare fundus images of the same retina over time:
To identify true structural or morphological changes pertaining
to possible pathological damage and, consequently, disregard-
ing other changes merely caused by variation of illumination
or blur. Ours is a two-stage blind deconvolution strategy. The
first stage consists in the estimation of the PSFs following a
multichannel scheme, and the second stage is the image decon-
volution, where we restore every image with its corresponding
PSF, independently. This has several advantages that will be ex-
plained in detail Sec. 3.5. The multichannel scheme is based on
the method described in Ref. 21, which has proved to work well
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in practice with sufficient experimental data. It is an alternating
minimization scheme based on a maximum a posteriori (MAP)
estimation, with a priori distribution of blurs derived from the
multichannel framework and a priori distribution of the ideal
sharp image defined by regularization with the total variation
of the image.22 MAP is formulated as an optimization problem,
where regularization terms are directly related to priors. Reg-
ularization involves the introduction of additional information
in order to solve an ill-posed problem in the form of a penalty
or restriction in the minimization routine (see Sec. 3.4). This
provides good quality of restoration—significantly better than,
for example, Lucy–Richardson algorithm,23 still widely used
in biomedical applications. We have modified the algorithm in
Ref. 21 to leave out regions where the eye fundus has struc-
turally changed (it only takes into account one image in these
regions) with the use of a masking operator, similarly to the so-
lution proposed in Ref. 24 within the super-resolution context.
This enabled us to restore both degraded input images.

In this work, our novel contributions to the retinal image pro-
cessing task are twofold. First, we propose a degradation model
for time-series retinal images, which captures the underlying
distortions resulting from instrument limitations and changes
between patient visits; we are also able to identify and highlight
such changes. Second, we propose a restoration strategy based
on blind deconvolution that is able to obtain image enhancement
and resolution improvement using inexpensive digital methods
applied to images acquired with a conventional fundus camera.

2 Mathematical Model of Image Degradation
The unregistered input images, as shown in Fig. 1, are z̆1 and
z̆2. After registration, we obtain two degraded registered images
z1 and z2, which we model as originating from an ideal sharp
image u. Mathematically, the degradation model is stated as

z1 = u ∗ h1 + n1,

z2 = (uk−1) ∗ h2 + n2 , (1)

where the asterisk is the standard convolution, hi are called con-
volution kernels or PSFs, and k is a function accounting for
relative local illumination change between images z1 and z2. For
pixels where no illumination changes occur, k ≈ 1. The noise ni

is assumed Gaussian additive with zero mean in both images. In
our case, the PSFs and k comprise all radiometric degradations
described above except structural changes in the eye, which is
treated in Sec. 3.3. Despite the fact that we consider the PSFs
to vary in time between the two image acquisitions, we assume
them to be spatially invariant within each image. Because the
FOV is of 30 deg or less, this assumption can be accepted in the
first approach. This ideal sharp image u is actually unknown,
and its estimation is the purpose of this paper. Thus to avoid
confusion, the estimated (restored) image is denoted by û. In
Sec. 4.1, we test the performance of our method with syntheti-
cally degraded images, which means that we know u.

3 Description of the Method
In this section, we describe every stage of the proposed method.
To illustrate each stage we use the images shown in Fig. 2. They
were acquired using a nonmydriatic digital fundus camera sys-

Fig. 2 Color fundus images of a human eye affected by age-related
macular degeneration. Images (a) and (b) were captured within a seven-
month time lapse, and (a) was captured before (b).

tem with conventional xenon flash lighting source (in the visible
spectrum). The fundus images are from a patient that suffered
from age-related macular degeneration and were captured within
a seven-month time lapse. They are color RGB 24 bit-depth fun-
dus images of size 1500 × 1200 digitized in TIFF format. This is
a general example where both images do not correspond exactly
to the same object field, the illumination distribution across both
images is not exactly the same, and there are some structural dif-
ferences between them given by the pathological development
in the macula (centered yellowish region).

3.1 Image Registration
Image registration is a procedure that consists of spatial align-
ment of two or more images. General and application-specific
image registration, such as in retinal imaging, has been inves-
tigated from the beginning of image-processing research. The
interested reader is referred to the image registration review
of Zitová and Flusser25 and the recent work by Lee et al.26

for objective validation of several retinal image registration
algorithms. Image-registration techniques are usually divided
into two groups: intensity-based and feature-based methods.
Intensity-based methods have the drawback of poor performance
under varying illumination conditions. Feature-based methods
are robust to such effects but rely on accurate and repeatable
extraction of the features. The retinal vasculature is known to
provide a stable set of features for registration.

For registering the images, we use the robust dual-bootstrap
iterative closest-point algorithm. We briefly describe it here; for
a full description, of the method the reader is referred to Ref. 27.
The vasculature from each image is automatically traced; start-
ing from initial seed points extracted from a 1-D edge detection
and, later, recursively tracking the vessels using directional tem-
plates. The vessel branching and crossover points are used as
landmarks to register the images to subpixel accuracy. The reg-
istration algorithm starts from initial low-order estimates that
are accurate only in small image regions called bootstrap re-
gions. The transformation is then refined using constraints in
the region, and the bootstrap region is expanded iteratively. The
algorithm stops when the bootstrap region expands to cover the
overlap between the images, and uses 12-dimensional quadratic
mapping. This transformation model includes rotation, scale,
translation, a shearing term, and a quadratic term that describes
the spherical shape of the retina. We refer the interested reader to
Ref. 28 for details on the model derivation. This registration al-
gorithm is very robust to local changes and low overlap between
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Fig. 3 Registration of images from Fig. 2 in checkerboard representa-
tion. (a) Before and (b) after registration.

images as demonstrated by its high success rate on test images
with at least one common landmark point and overlaps even as
low as 35%.27 Even though the reported accuracy in Ref. 27 is
of subpixel accuracy, in our case of degraded images this can
be slightly worse without compromising the outcome. Minor
local misregistration errors may occur when landmark points do
not match precisely, but they will not be taken into account in
the restoration because they will be masked out before the PSF
estimation and image deconvolution stages (see Sec. 3.3).

To confirm the registration outcome, the pair of images before
and after registration are shown in Fig. 3 in checkerboard repre-
sentation, where the images are merged together in a chesslike
pattern, where each square alternates information from one im-
age to the other. Note how after registration the images have
been correctly aligned, especially the blood vessel distribution.

3.2 Compensation of Uneven Illumination
Despite controlled conditions in retinal image acquisition, such
as optical stops to prevent glares and provide a diffuse illumi-
nation, there are many patient-dependent aspects that are dif-
ficult to control and mainly affect the illumination component
with gradual nonuniform spatial variations. Some of the con-
tributing factors are (i) the curved surface of the retina (as a
consequence, all regions cannot be illuminated uniformly); (ii)
imaging requires either a naturally or an artificially dilated pupil
(The degree of dilation is highly variable across patients); (iii)
unexpected movements of the patient’s eye; and (iv) presence
of diseases. This nonuniform illumination across the image re-

sults in shading artifacts and vignetting. This effect hinders both
quantitative image analysis and the reliable operation of subse-
quent global operators.

In our model, described by Eq. (1), the relative changes in
intensity between the two fundus images cannot be described
exclusively by convolution with different PSFs and must be
compensated by k. A number of general-purpose techniques
have been investigated to attenuate the variation of illumination.
However, most techniques are oriented toward single-image
compensation,2 for instance, using the red channel to estimate
background illumination.29 Therefore, no consistency between
two images is guaranteed. For our case, this uneven illumination
can be compensated by properly adjusting the intensity values
on one image to approximately match that of the other while sat-
isfying a predetermined illumination model. This can be carried
out if the blurring is not too large and the illumination changes
smoothly, which is usually the case for fundus images. This
assumption can be expressed mathematically as

(k−1 · u) ∗ h ≈ k−1(u ∗ h).

The illumination of the fundus is formed by a slowly varying
light field over a smooth surface, thus it can be modeled by a
low-order parametric surface. In Ref. 30 they used a fourth-order
polynomial to effectively model the light pattern formed by an
illumination source passing through the attenuating ocular me-
dia. Here, we use a similar approach, but fitting the surface with
respect to both images. The parametric surface fitting equation
can then be formulated as

arg min
k

‖z1(x, y) − k(x, y)z2(x, y)‖, (2)

where k(x, y) = α15y4 + α14y3x + ·· · + α2y + α1, and z1,
z2 are the registered fundus images. We minimize Eq. (2) in the
least-squares sense to estimate the 15 parameters. This proce-
dure can be both carried out using the luminance channel or the
green channel as usual in retinal image processing.31 Here, we
have used the green channel. Owing to the fact that the illumina-
tion can be compensated globally by the polynomial function k,
it is important to realize that the structural changes remain unaf-
fected. The interpretation of k from Eq. (2) is straightforward. If
the registered images z1 and z2 had neither illumination changes
nor structural changes, then k ≈ 1 throughout the common object
field. In Fig. 4, we show the resulting k(x, y) for the images in
Fig. 2. The different shades of gray indicate the average contrast
and intensity difference between the two images. From the im-
age, it can be seen that most areas have similar intensity values
except for the upper left part (dark region).

3.3 Segmentation of Areas with Structural Changes
The pathological region is actually a structural change and can-
not be taken as a variation of illumination. Image change analysis
is of interest in various fields and many algorithms have been
developed for change detection.32, 33 A survey of change detec-
tion methods can be found in Ref. 34. An initial step in order
to identify these changes comes from computing the differ-
ence from the two registered images including the illumination
compensation as

�z(x, y) = z1(x, y) − k(x, y)z2(x, y) . (3)
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Fig. 4 Illumination compensation function k(x, y).

The difference image is shown in absolute value Fig. 5(a).
To better understand this result, in Fig. 5(b) we show one of the
retinal images in gray scale, where the pixels related to structural
changes are highlighted in pseudocolor. This image constitutes
an important output of our algorithm. The structural changes can
now be visualized and detected from the difference image �z(x,
y) by taking a statistical significance test, in the same fashion
as in Ref. 30. First, structural changes are often associated with
a group of pixels; thus, the change decision at a given pixel j
should be based on a small block of pixels in the neighborhood
of j denoted as wj. Second, in the absence of any change, the
difference can be assumed to be due to noise alone. Therefore,
the decision as to whether or not a change has occurred corre-
sponds to choosing one of two competing hypothesis: the null
hypothesis H0 or the alternative hypothesis H1, correspond-
ing to no-change and change decisions, respectively. Assuming
a Gaussian distribution for the difference values, the changes
can be identified by comparing the normalized sum square of
the differences within the neighborhood wj to a predetermined
threshold τ as described by Aach and Kaup.32 The test is carried
out as follows:

� j = 1

σ 2
n

∑
(x,y)∈w j

�z(x, y)2
H1

≷
H0

τ, (4)

where σ n is the noise standard deviation of the difference in the
no-change regions. The threshold τ is derived from the fact that
�j follows a χ2 distribution with N degrees of freedom, where N
is the number of pixels in the window wj. It can be obtained for a
particular false-positive rate α from the χ2 tables. The choice of

an appropriate α is both guided by mathematical considerations
(a 5% level for statistical significance is commonplace35) and
the consequences that false alarms and misses might have. In
this case, the effect of false alarms is unimportant because there
would still be a large number of remaining pixels from where
to compute the PSFs. On the other hand, misses do have a
considerable impact in view of the fact that these pixels do not
fulfill the convolutional model. As a result, α values of <0.05
might yield a more accurate change detection at the expense
of possible undesirable misses. For all experiments, we use a
3 × 3 window (N = 9) and set α = 0.05. The parameter σ n

was estimated by manually picking out no-change regions from
a training set of images, computing Eq. (3) and the standard
deviation inside these regions. Using Eq. (4) at each pixel, we
can determine a change mask between the images or conversely
a no-change mask. Given that, for the MBD procedure, we are
interested in estimating the PSF from the no-change regions,
the masking function m is obtained directly from the no-change
mask of the significance test. The mask is shown in Fig 5(c).
Note that the pathological region is the main cause of structural
changes.

3.4 Point-Spread Function Estimation
In this section, we describe the basic principles of the blind
deconvolution method used for the estimation of the PSFs.
For this purpose, we have chosen one of the best working
MBD methods.21 MATLAB implementation of this method is
available on the web of the authors.36 The algorithm can be
viewed as a Bayesian MAP estimation of the most probable
sharp image and blur kernels. For our purposes, we used a
modification of the original method that ignores regions af-
fected by structural changes, which improves stability and preci-
sion of the computation. Without this modification, represented
by the mask m in Eq. (5), the algorithm does not work reli-
ably. The algorithm can be described as a minimization of the
functional

arg min
u,h1,h2

(
1

2
‖u ∗ h1 − z1‖2 + 1

2
‖m(u ∗ h2 − kz2)‖2

+ λu

∫
|∇u| dx dy + λh‖m(z1 ∗ h2 − kz2 ∗ h1)‖2

)
,

h1, h2 ≥ 0, (5)
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Fig. 5 Intermediate outputs from the algorithm: (a) image difference �z(x, y) in absolute value, (b) image difference in pseudocolor on top of
gray-scale fundus image, and (c) mask m for avoiding areas with structural changes.
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Fig. 6 (a, b) Degraded images (BSNR = 40 dB) and (c, d) PSFs.

with respect to the latent image u and blur kernels h1 and h2.
The first and second terms measure the difference between the
input blurred images and the searched image u blurred by ker-
nels h1 and h2. The size of this difference is measured by L2

norm ‖.‖ and should be small for the correct solution; ideally,
it should correspond to the noise variance in the given image.
Function k compensates for uneven illumination as described
in Sec. 3.2. The value of the masking function m is 1 in the
valid points [white in Fig. 5(c)] and 0 in the pixels where the
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Fig. 7 (a) Restored image (ISNR = 4.45 dB) and (b) Estimated PSFs.

eye fundus has structurally changed. Any of the first two terms
could be masked, but not both at the same time. This is be-
cause the latent image u cannot have pixels with no value at
all; hence, these pixels must take values from any of the two
images. In this case, z2 is masked. As a result, these pixels take
values from the first term. The two remaining terms are reg-
ularization terms with positive weighting constants λu and λh.
The third term is nothing else than the total variation of im-
age u. It improves stability of the minimization and from the
statistical viewpoint incorporates prior knowledge about the so-
lution. The last term is a condition linking the PSFs h1 and h2 of
both images, which also improves the numerical stability of the
minimization.

The functional is alternately minimized in the subspaces cor-
responding to the image and the PSFs. The advantage of this
scheme lies in its simplicity, this alternating minimization ap-
proach is actually a variation of the steepest-descent algorithm.
The minimization in the PSF subspace is equivalent to the so-
lution of a system of linear equations in the least-squares sense
with the non-negativity constraint, in our implementation solved
by the MATLAB fmincon function. The nonblind deconvolution
realized by the minimization in the image subspace, is solved
by half-quadratic iterative scheme,37 replacing the total varia-
tion by

∫ √
|∇u|2 + ε2, where ε is an auxiliary variable in the

(a () b () c)

Fig. 8 Details from (a) degraded image, (b) restored image, and (c) original image.
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(a () b)

Fig. 9 (a) Original image and (b) geometrically distorted image.

range 0 < ε 	 1. It is a small relaxation parameter that makes
total variation differentiable around zero. A typical value for ε

is 10− 1.
The main difference with respect to the original method21

is the introduction of the masking function m, which is
computed in the beginning of the algorithm as described in
Sec. 3.3. During the minimization, the multiplication by m is
included in the operator corresponding to the convolution with
u (in the PSF minimization step) and in the operator corre-
sponding to the convolution with h2 (in the image minimization

step). Because of the simplicity of this masking operation, the
speed is practically the same as the speed of the original al-
gorithm. In addition, even though we work with a complicated
set of pixels, we can use the standard operation of convolution,
which can eventually be speeded up using Fast Fourier transform
(FFT).

3.5 Image Restoration
The aim of our algorithm is to restore both images as much
as possible. Note that from Eq. (5) the restored version of z1

(û1) is obtained because z2 is masked; û2 could be obtained by
minimizing Eq. (5) again with fixed PSFs and masking z1. This
procedure has the disadvantage that both images are restored
only within the common object field. Therefore, an appropriate
solution is to restore each image zi via single-channel decon-
volution with their corresponding PSF hi (estimated from the
previous step) by the minimization of the functional

arg min
ui

(
‖ui ∗ hi − zi‖2 + λu

∫
|∇ui | dx dy

)
. (6)

This approach provides a further advantage in that the PSF es-
timation can be computed from a relatively small area of the
common object field, provided that there are retinal structures
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Fig. 10 Image restoration from degraded and geometrically distorted images: (a) restored image by the proposed method (ISNR = 4.11 dB);
(b) estimated PSFs; and (c) image detail, restored image by the method in Ref. 20 (ISNR = − 0.72 dB); and (d) image detail.
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within, thus greatly reducing the computational cost of the com-
bined PSF estimation plus image deconvolution.

Finally, it should also be noted that the whole process of PSF
estimation plus deconvolution can be computed for every chan-
nel of the RGB fundus image. However, in spite of the increase
in computational burden, tests showed no real advantage to es-
timate the PSF for each channel. Moreover, the most suitable
channel for PSF estimation is the green because it provides the
best contrast. Whereas the blue channel encompasses the wave-
lengths most scattered and absorbed by the optical media of the
eye; hence, the image has very low energy and a relatively high
level of noise. As a result, the RGB deconvolved fundus image
was computed by deconvolving every R, G, and B channel from
the green channel PSF.

4 Experiments and Results
4.1 Synthetic Images
In this section, we use synthetically degraded retinal images to
test the performance of the proposed method. We use blurred
signal-to-noise ratio (BSNR) to measure the noise contained in
the degraded image, and improvement in signal-to-noise ratio
(ISNR) to measure the quality of restored images.38 They are
defined as follows:

BSNR = 20 log10

( ‖z‖
‖n‖

)
,

ISNR = 20 log10

( ‖u − z‖
‖u − û‖

)
,

where u, z, û, and n are the original image, degraded image,
restored image, and noise vector, respectively. For ISNR, higher
means better restoration; whereas for BSNR, lower means nois-
ier degraded image. These metrics are mainly used to provide an
objective standard for comparison to other techniques and they
can only be used for simulated cases.

The first example is shown in Fig. 6, where the degraded
images are synthesized from a sharp real image and the ker-
nels shown in Fig. 6(c) and 6(d) plus Gaussian noise with zero
mean and variance σ 2 = 10− 6 (BSNR=40 dB). The recovered
image and PSFs are shown in Fig. 7. The restoration provides
an ISNR=4.45 dB. In this case, for synthetically degraded im-
ages the masking operation of Sec. 3.3 was not applied. Visual
inspection of the details shown in Fig. 8 clearly reveal the accu-
racy of the method. Under these circumstances, the algorithm is
able to produce a significant restoration of fine details like small
blood vessels around the optic disc.

To further test our approach under a more realistic degra-
dation, we produced an initial geometrical distortion, via a
quadratic model26, 28 as the one used for registration (Fig. 9).
After the geometric distortion, the degradation (blur plus noise)
is produced on both images (BSNR=40 dB). They are then
registered, and the restored image is recovered via MBD. The
restored image and the estimated PSFs are shown in Fig. 10.
The ISNR is slightly less (4.11 dB) than in the previous case,
but still sufficient to produce a significant restoration. To cor-
roborate our assumption that MBD methods seem better suited
for this type of images, we tried to restore the image with a
recent SBD method proposed in Ref. 20. The result is shown in
Fig. 10(e) and visually reveals that it does not follow the true

(a)

(b)

Fig. 11 Test on parameter setting (BSNR = 40 dB). Average ISNR with
respect to different initial values of (a) λu and (b) λh.

nature of the blurring with artifacts around the blood vessels,
thus being prone to produce a poor restoration evidenced by an
ISNR=− 0.72 dB.

Concerning parameter setting, in Fig. 11 we show the sensi-
tivity of the two parameters λu and λh for the minimization of
Eq. (5) in ISNR of the restored images. In Fig. 11(a), we fix the
value of λh to 10 and check the ISNR of the restored images for
different initial values of λu = {100, 101, 102, 103, 104, 105}.
The best restoration is obtained with λu = 103; thus, in Fig. 11(b)
we carried out the same procedure by fixing the value of λu to
103 and checking the ISNR of the restored image for different
values of λh = {1, 10, 20, 30, 40, 50}. The best restoration was
obtained with an initial value of λh = 30. For this type of image,
when scaled to the interval 〈0, 1〉, we find 20 < λh < 40 to be a
suitable range to produce an optimal restoration.

4.2 Real Images
The experiments shown in this section aim to demonstrate the
applicability of the proposed method for retinal image de-
blurring in real scenarios. Three different cases are shown in
Fig. 12, including the retinal images that were used to illustrate
the method (Fig. 2). The estimated PSFs are shown at the bottom
of the restored images. All images contain some pathological
damage and have been acquired within considerable lapses of
time (several months). In all examples, the resolution improve-
ment can be visually assessed by the clear distinction of de-
tails, such as small blood vessels or the increase in sharpness
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z1 û1 z2 û2

(a)
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Fig. 12 Original and restored color retinal images; (a–c) indicate three separate cases arranged from left to right following our notation for degraded
(zi) and restored (ûi ) images. The images are cropped to represent the region of interest given by the pathological area. The estimated PSF is shown
at the bottom of the restored image. Video files are also included for change detection in cases (a) and (b). (Video 1, Quicktime, 0.5 MB) [URL:
http://dx.doi.org/10.1117/1.3652709.1]; (Video 2, Quicktime, 0.4 MB) [URL: http://dx.doi.org/10.1117/1.3652709.2]
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Fig. 13 Visualization of structural changes in pseudo-color for the images of Fig. 12.
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of edges, especially in the pathological areas. We emphasize
the fact that these images correspond to real routine patient
follow-up and were not intentionally degraded. From a clini-
cal viewpoint, the enhancement can be used for a more precise
assessment of a patient’s state. Likewise, the images are more
suitable for subsequent processing such as for the detection of
retinal pathology.29, 39

In Fig. 13, the same images are shown but in gray scale to
highlight the areas of structural change in pseudocolor. As men-
tioned earlier, this is an important result for its potential impact
in medical practice. Subtle changes can be identified by this
approach, such as the ones in Fig. 13(b) and the hemorrhage
in the region of the optic disk in Fig. 13(c). Another technique
to rapidly identify changes from the two images is by alternat-
ing both restored images in a video sequence. Videos 1 and 2
(Fig. 12) correspond to the first two real cases.

5 Conclusion
The main purpose of this paper has been to investigate a new ap-
proach for retinal image restoration based on multichannel blind
deconvolution. In addition, we developed a strategy for identi-
fying and highlighting areas of structural change with possible
relation to pathological damage. We have verified that fundus
images of the same retina over time contain enough common in-
formation to be restored with the proposed method. The method
consists of a series of preprocessing steps to adjust the images
so they comply with the convolutional model, followed by the
final stages of PSF estimation and deconvolution. The syntheti-
cally degraded images enabled us to test the performance of the
proposed approach and also to compare with a state-of-the-art
single-channel blind deconvolution method. Results showed a
remarkable enhancement evidenced by the increased visibility
of details such as small blood vessels or pathological areas. The
proposed method provides a novel practical approach for retinal
image enhancement and, equally important the analysis of reti-
nal changes over time. Central to the task of determining disease
progression is the distinction of true change from variability.

The results of this study open several new avenues for re-
search and applications. A possible application is found in the
restoration of stereo retinal images for depth estimation. Most
stereo images do not satisfy the brightness constancy assump-
tion along with the expected blurring of some parts of the im-
ages because photographers find it difficult to focus two images
simultaneously. Finally, research can also be conducted to com-
pare to deconvolution from wavefront-sensing fundus imagers
to determine if our method could be a suitable and inexpensive
alternative.
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Abstract. Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular
diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are
often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring
algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we
propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both
unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread
function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose
a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration
method was tested on artificially and naturally degraded retinal images. The results show an important enhance-
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1 Introduction
Blur is one of the main image quality degradations in eye fundus
imaging, which along with other factors such as nonuniform
illumination or scattering, hinder the clinical use of the images.
Its main causes are inherent optical aberrations in the eye, rel-
ative camera-eye motion, and improper focusing. Eye motion is
related to the patient inability to steady fixate a target in the fun-
dus camera. Many patients have difficulty in fixating, like many
elderly patients or those that suffer from amblyopia.1 Because
the optics of the eye is part of the optical imaging system, the
aberrations of the eye are a common source of image quality
degradation. To overcome this limitation, adaptive optics tech-
niques have been successfully applied to correct the aberrations,
thus producing high resolution images.2 However, most com-
mercial fundus cameras compensate for spherical refractive
errors, but not for astigmatism3—let alone higher-order aberra-
tions. In general, the aberrations of the eye have a stronger
impact in image degradation than the aberrations introduced by
the rest of the optical system, i.e., the retinal camera. Besides,
even though it is possible to measure the optical quality of the
camera, it would be exceptional to have readily available addi-
tional information related to the optical quality of the patient’s
eye. The described scenario is commonplace in the clinical
setting, for which we assume the same conditions here. This
brings about the need for a restoration procedure that accounts
for the lack of information related to the origin of the image
degradation.

The technique for recovering an original or unblurred image
from a single or a set of blurred images in the presence of a
poorly determined or unknown point-spread function (PSF) is
called blind deconvolution. Removing blur from a single blurred

image is an ill-posed problem as there are more unknowns
(image and blur) than equations. Having more than one
image of the same scene better poses the problem. In retinal im-
aging, it is not difficult to obtain a second image from the same
eye, with the convenience that acquisition conditions remain
quite similar. In fact, in Ref. 4, we took advantage of this con-
dition and proposed a blind deconvolution method to restore
blurred retinal images acquired with a lapse of time, even in the
case where structural changes had occurred in the images. In
that work, we detected structural changes, which in turn have
clinical relevance, and applied a masking operator so that the
images would comply with the considered degradation model.
This enabled the successful restoration of many degraded retinal
images coming from patient follow-up visits. However, the
method is limited to images blurred uniformly; in other words,
we assumed the blur to be space-invariant. In Sec. 4.2, we show
an attempt at restoring an image degraded with spatially variant
blur with this approach. The space-invariant assumption is
commonplace in most of the restoration methods reported in
the literature,5 but in reality it is a known fact that blur changes
throughout the image.6 In this work, we consider the blur to be
both unknown and space-variant (SV). This in itself is a novel
approach in retinal imaging; relevant to such extent that many
common eye related conditions, such as astigmatism, keratoco-
nus, corneal refractive surgery, or even tear break-up, may con-
tribute significantly to a decline in image quality7,8 typically in
the form of an SV degradation. An example of such a condition
is shown in Fig. 1(a). The image corresponds to an eye from a
patient with corneal abnormalities that lead to a loss in visual
acuity and a quality degradation of the retinal image [Fig. 1(b)].

Restoration of images with SV blur from optical aberrations
has been reported in the literature,9 although the main limitation
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is that the blurred image is often restored in regions or patches,
which are then stitched together. This inevitably leads to ringing
artifacts associated with frequency-domain filtering like in
Wiener filtering. Another clear disadvantage is a significant
complexity for accurately estimating the SV PSF, for instance
Bardsley et al.10 use a phase-diversity based scheme to obtain
the PSF associated with an image patch. This type of approach
is common in atmospheric optics where the conditions and setup
of the imaging apparatus (typically a telescope) are well known
and calibrated. Unfortunately, this is not immediately applicable
to retinal imaging, at least nonadaptive optics retinal imaging.
Recently, there have been several works11–13 that try to solve
the SV blind deconvolution problem from a single image. The
common ground in these works is that the authors assume that
the blur is only due to camera motion. They do this in order to
reduce the space in which to search for SV blurs. Despite their
approach being more general, the strong assumption of camera
motion is simply too restrictive to be applied in the retinal im-
aging scenario.

1.1 Contribution

In this work, we propose a method for removing blur from reti-
nal images. We consider images degraded with SV blur, which
may be due to factors like aberrations in the eye or relative
camera-eye motion. Because restoring a single blurred image

is an ill-posed problem, we make use of two blurred retinal
images from the same eye fundus to accurately estimate the SV
PSF. Before the PSF estimation and restoration stages take
place, we preprocess the images to accurately register them and
compensate for illumination variations not caused by blur, but
by the lighting system of the fundus camera. This is depicted in
the block diagram shown in Fig. 2. The individual stages of the
method are explained in Sec. 3.

We assume that in small image patches, the SV blur can be
approximated by a spatially invariant PSF. In other words, that
in a small region, the wavefront aberrations remain relatively
constant; the so-called isoplanatic patch.6 An important aspect
of our approach is that instead of deblurring each patch with its
corresponding space-invariant PSF—and later stitching together
the results—we sew the individual PSFs by interpolation and
restore the image globally. This is intended to reduce some arti-
facts that otherwise would likely appear at the seams of the
restored patches. The estimation of the local space-invariant
PSFs may fail in patches with hardly any structural information
(e.g., such as blood vessels). These poorly estimated or nonvalid
PSFs introduce artifacts in the restored image. Detecting such
artifacts and inferring the nonvalid PSFs is a difficult problem.
Recently, Tallón et al.14 developed a strategy for detecting these
patches in an SV deconvolution and denoising algorithm from a
pair of images acquired with different exposures: a sharp noisy
image with a short exposure and a blurry image with a long
exposure. Because they had two distinct input images that were
able to: (i) Identify patches where the blur estimates were poor
based on a comparison (via a thresholding operation) of the
deconvolved patches with the sharp noisy patches. (ii) In those
patches, instead of correcting the local PSFs and deconvolving
the patches again, they performed denoising in the noisy sharp
image patch. The end result is a patchwork-image of decon-
volved patches stitched together with denoised patches. Their
method is mainly oriented at motion blur, this is the reason
for a dual exposure strategy. This is not readily implementable
in the retinal imaging scenario where the SV blur is generally
caused by factors like aberrations, including those belonging to
the patient’s eye optical system, the eye fundus shape, and the
retinal camera. In this paper, we address the question “how to
identify PSF estimation failure to improve the SV deconvolution
of retinal images?” Retinal imaging provides a constrained
imaging scenario from which we can formulate a restoration
approach that incorporates prior knowledge of blur through
the optics of the eye. The novelty in our approach is in the strat-
egy based on eye-domain knowledge for identifying the non-
valid local PSFs and replacing them with appropriate ones.
Even though methods for processing retinal images in a space-
dependent way (like locally adaptive filtering techniques15,16)

Fig. 1 (a) Top: Eye with corneal defects that induce retinal images
with space-variant (SV) degradation. Bottom: zoomed region.
(b) Left column: original image and details. Right column: restored
image with proposed approach and details.

Fig. 2 Block diagram illustrating the proposed method. z is the degraded image, g is an auxiliary image
of the same eye fundus used for the point-spread function (PSF) estimation, and u is the restored image.
The other variables are intermediate outputs of every stage; their meaning is given in the text.
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have been proposed in the literature; to the best of our knowl-
edge, this is the first time a method for SV deblurring of retinal
images is proposed.

2 SV Model of Blur
In our previous work,4 we modeled the blurring of a retinal
image by convolution with a unique global PSF. This approxi-
mation is valid as long as the PSF changes little throughout the
field of view (FOV). In other words, that the blurring is homog-
enous. In reality, we know that the PSF is indeed spatially vari-
ant,6 to such an extent that in some cases the space-invariant
approach completely fails, bringing forth the need for an SV
approach. To address this limitation, in this work, we model
the blurred retinal image z by the linear operation

zðx; yÞ ¼ ½Hu�ðx; yÞ ¼
Z

uðs; tÞhðs; t; x − s; y − tÞdsdt;
(1)

where u is the unblurred retinal image and h is the SV PSF. The
operator H is a generalization of standard convolution where h
is now a function of four variables. We can think of this oper-
ation as a convolution with a PSF hðs; t; x; yÞ that is now depen-
dent on the position ðx; yÞ in the image. Standard convolution is
a special case of Eq. (1), where hðs; t; x; yÞ ¼ hðs; tÞ for an arbi-
trary position ðx; yÞ. Note that the PSF h is a general construct
that can represent other complex image degradations which
depend on spatial coordinates, such as motion blur, optical aber-
rations, lens distortions, and out-of-focus blur.

2.1 Representation of SV PSF

An obvious problem of spatially varying blur is that the PSF is
now a function of four variables. Except trivial cases, it is hard
to express it by an explicit formula. Even if the PSF is known,
we must solve the problem of a computationally efficient
representation.

In practice, we work with a discrete representation, where the
same notation can be used but with the following differences:
the PSF h is defined on a discrete set of coordinates, the integral
sign in Eq. (1) becomes a sum, operator H corresponds to a
sparse matrix and u to a vector obtained by stacking the columns
of the image into one long vector. For example in the case
of standard convolution, H is a block-Toeplitz matrix with
Toeplitz blocks and each column of H corresponds to the same
kernel hðs; tÞ.17 In the SV case that we address here, as each
column of H corresponds to a different position ðx; yÞ, it may
contain a different kernel hðs; t; x; yÞ.

In retinal imaging, all typical causes of blur change in a con-
tinuous gradual way,18 which is why we assume the blur to be
locally constant. Therefore, we can make the approximation that
locally the PSFs are space-invariant. By taking advantage of this
property, we do not have to estimate local PSFs for every pixel.
Instead, we divide the image into rectangular windows and esti-
mate only a small set of local PSFs [see Fig. 3(a)] following the
method described in Ref. 4 and outlined in Sec. 3. The estimated
PSFs are assigned to the centers of the windows from where
they were computed. In the rest of the image, the PSF h is
approximated by bilinear interpolation from the four adjacent
local PSFs. This procedure is explained in further detail in
the following section.

3 Description of the Method
In this section, we describe the different stages of the proposed
restoration method shown in Fig. 2. This paper follows Ref. 4
but addresses a more general problem: restoration of retinal
images in the presence of an SV PSF. In Ref. 4, we showed
that the single image blind deconvolution for blurred retinal
images does not provide a suitable restoration. Moreover,
in images with SV blur, the restoration is even worse.
Alternatively, by taking two images of the same retina we
can use a multichannel blind deconvolution strategy that is
mathematically better-posed.19

In this paper, the estimation of the SV PSF is carried out via
local multichannel deconvolution. To illustrate the method and
to study its dependence on its tunable parameters, we use an
original real image of the retina and obtain two artificially
degraded versions from it, denoted by z and g. Figure 3(a) con-
tains image z. The degraded images z and g have been obtained
by blurring the original image with an SV PSF represented by
the grid of local PSFs shown in Fig. 3(b) and adding Gaussian

Fig. 3 (a) Retinal image degraded with artificial SV blur given by
(b) grid of PSFs. The grid and the image patches shown in (a) are
used for local PSF estimation.
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zero-mean noise (σ ¼ 10−6). The PSF grid was built with real-
istic PSFs estimated from real blurred retinal images using the
method of Ref. 4.

3.1 Preprocessing

Because we use a multichannel scheme for the estimation of the
local PSFs, the images are preprocessed so that they meet the
requirements imposed by the space-invariant convolutional
model given by Eq. (2). This consists in registering the images
and adjusting their illumination distribution following Ref. 4.
By carrying out this procedure, the remaining radiometric
differences between the images are assumed to be caused by
blur and noise. Unlike the case considered in Ref. 4, where a
relatively long lapse of time between the two image acquisitions
may possibly involve a potential structural change, in this study,
both the images z and g are originated from the same image or,
in practice, they are acquired one shortly after the other.
Therefore, no structural change is expected. Since image g is
registered and its illumination matched to z, we denote this
transformed auxiliary image as ĝ.

3.2 Estimation of the Local PSFs

In Sec. 2, we described the model for a spatially varying blur in
which we assume the PSF h to vary gradually, which means that
within small regions the blur can be locally approximated by
convolution with a space-invariant PSF. For this reason, we
approximate the global function h from Eq. (1) by interpolating
local PSFs estimated on a set of discrete positions. The main
advantage of this approach is that the global PSF needs not
be computed on a perpixel basis which is inherently time-
consuming.

The procedure for estimating the local PSFs is the following.
We divide the images z and ĝ with a grid of m ×m patches
[Fig. 3(a)]. In each patch p, we assume a convolutional blurring
model where an ideal sharp patch up originates from two
degraded patches zp and ĝp (for p ¼ 1; : : : ; m ×m). The
local blurring model is

zp ¼ hp � up þ n;

ĝp ¼ ĥp � up þ n̂; (2)

where * is the standard convolution and hp and ĥp are the con-
volution kernels or local PSFs. The noise (n and n̂) is assumed to
have a constant spectral density and a zero-mean Gaussian dis-
tribution of amplitude. Despite the fact that this may not be the
most accurate representation of the noise, because the retinal
images considered here are acquired by illuminating with a
flash, the resulting signal-to-noise ratio is high enough that in
the estimation of the PSFs, the impact of noise is not significant.

From this model, we can estimate the local PSFs with an
alternating minimization procedure as described in Ref. 4 but
applied locally. The general guideline is that the patch size
should be large enough to include retinal structures and much
larger than the size of the local PSF. In Sec. 4, we show further
analysis on the robustness of the method to these parameters.
Every local PSF is computed on each patch p by minimizing
the functional

arg min
up;hp;ĥp

�
1

2

��up�hp−zp
��2þ1

2

��up� ĥp− ĝp
��2

þλ1

Z
j∇upjdxdyþλ2

��zp� ĥp− ĝp�hp
��2�;hp;ĥpðs;tÞ≥0;

(3)

with respect to the ideal sharp patch up and the blur kernels hp
and ĥp. The blur kernel hpðs; tÞ is an estimate of hðs; t; x0; y0Þ,
where ðx0; y0Þ is the center of the current window zp, and k:k is
the l2 norm. The first and second terms of Eq. (3) measure the
difference between the input blurred patches (zp and ĝp) and the
sharp patch up blurred by kernels hp and ĥp. This difference
should be small for the correct solution. Ideally, it should
correspond to the noise variance in the image. Although up is
a restored patch, note that it is not used by our method, but dis-
carded. This is because our method does not work by perform-
ing local deconvolutions and sewing restored patches together,
which in practice would produce artifacts on the seams. Instead,
we perform a global restoration method explained in Sec. 3.5.
The two remaining terms of Eq. (3) are regularization terms with
positive weighting constants λ1 and λ2, which we have set fol-
lowing the fine-tuning procedure described in Ref. 4. The tuning
procedure consists of an optimization process where an artifi-
cially degraded retinal image is restored by varying λ and meas-
uring a restoration error. This way an optimal λ is obtained.
Typical values are λ1 ¼ ∼103 and λ2 ¼ ∼101. The third term
is the total variation of up. It improves stability of the minimi-
zation and from a statistical perspective, it incorporates prior
knowledge about the solution. The last term is a condition
linking the convolution kernels which also improves the numeri-
cal stability of the minimization. The functional is alternately
minimized in the subspaces corresponding to the images
and the PSFs. The estimated PSFs for the artificially degraded
[Fig. 3(a)] image are shown in Fig. 6(a).

3.3 Identifying and Correcting Nonvalid PSFs

3.3.1 Strategy based on eye-domain knowledge

The local PSF estimation procedure does not always succeeds.
Consequently, such nonvalid PSFs must be identified, removed,
and replaced. In our case, we replace them by an average of
adjacent valid kernels. The main reason why the PSF estimation
may fail is due to the existence of textureless or nearly homog-
enous regions bereft of structures with edges (e.g., blood
vessels) to provide sufficient information.14 To identify these
nonvalid PSFs, we devised an eye-domain knowledge strategy.
The incorporation of proper a priori assumptions and domain
knowledge about the blur into the method provides an effective
mechanism for a successful identification of poorly estimated
PSFs.

The optics of the eye is part of the imaging system, therefore
it is reasonable to assume that the PSF of the imaging system is
determined by the PSF of the eye. The retinal camera can indeed
be close to diffraction limited with a very narrow PSF, but the
optics of the eye is governed by optical aberrations that change
across the visual field18 that lead to an SV PSF. The typical PSFs
of the human eye, as reported in the literature,18,20 display dis-
tinct shapes in many cases displaying long tails’ evidence of the
inherent optical aberrations. What is common to all PSFs of the
human eye is that the energy is spread from a central lobe and
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decreases outwardly. In this paper, we assume that PSFs that do
not follow this general pattern are nonvalid PSFs which corre-
spond to patches where the estimation failed.

In order to prove this, we designed an artificial experiment
where we compare the estimated PSFs with the ground-truth
PSFs by using a kernel similarity measure S proposed by Hu
and Yang.21 The measure is based on the peak of the normalized
cross correlation between the two PSFs. The authors showed in
the paper that this measure is more accurate than the root mean
square error, especially because it is shift invariant. The measure
is defined as the blur kernel similarity Sðh; h̃Þ of two kernels,
h and ~h,

Sðh; h̃Þ ¼ max
γ

ρðh; h̃; γÞ; (4)

where ρð:Þ is the normalized cross-correlation function and γ is
the possible shift between the two kernels. Let τ represent
element coordinates, ρð:Þ is given by

ρðhp; h̃p; γÞ ¼
P

τhpðτÞ · h̃pðτ þ γÞ
khpk · kh̃pk

; (5)

where k · k is the l2-norm. Larger similarity values reflect more
accurate PSF estimation, thus better image restoration. The
graphical representation of the similarity measure S is shown
in Fig. 4(a). The darkest squares correspond to PSFs with the
lowest similarity score.

The way we determine a nonvalid PSF is by characterizing
the energy distribution along the local PSF space. We add the
PSF values along concentric squares of radius r to build an
energy distribution histogram fðrÞ, which is normalized to
sum to 1. In Fig. 4(b), we show the histograms for the energy
distribution characterization of the estimated PSFs from the arti-
ficially degraded retinal image [Fig. 3(a)]. To identify nonvalid
PSFs, i.e., PSFs that do not follow the pattern we have previ-
ously described, we compute a shape descriptor for fðrÞ defined
as the probability Pðr ≤ rmÞ,

Pðr ≤ rmÞ ¼
Xrm
0

fðrÞ · r; (6)

where rm is the mode of fðrÞ. This descriptor gives an indication
of how much a histogram is spread in relation to the peak (rm) of
the histogram. Particularly, it yields low values when the mode
is located in the first few bins of the histogram and large values
otherwise. This descriptor can be correlated with the PSF sim-
ilarity measure to determine how it discriminates valid and
nonvalid PSFs.

In Fig. 5, we plot the similarity measure S against Pðr ≤ rmÞ
for the estimated PSFs from two different retinal images which
have been artificially degraded. The correlation coefficient for
the two variables is −0.64. In addition to the correlation,
from the plot we note that most PSFs with high Pðr ≤ rmÞ
have low kernel similarity (S) values, which is an indication
that these are nonvalid or poorly estimated PSFs. A machine
learning algorithm or clustering technique that automatically
classifies nonvalid PSFs is out of the scope of this paper.
Instead, our aim is to show that the energy characterization
approach is sufficient to identify nonvalid PSFs, even at the
expense of a few valid ones. As we show in Sec. 4.1, this is

(a)

(b)

Fig. 4 (a) PSF similarity measure. (b) Characterization of estimated
local PSFs by energy distribution. Histograms plotted in white bars in
(b) have been labeled as valid PSFs based on the histogram proba-
bility descriptor (P) described in the text.
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not critical because the PSF changes smoothly throughout
the FOV.

The histograms plotted in white bars in Fig. 4(b) correspond
to PSFs with Pðr ≤ rmÞ < 0.3, which we have labeled as valid
PSFs. This means that we are favoring histograms skewed
toward the left side. This is based on our assumption of the pat-
tern that valid PSFs should follow. This correlates well with
the similarity measure. Note that most PSFs with low similarity
measure [darkest squares in Fig. 4(a)] have been correctly iden-
tified as nonvalid PSFs [black histograms in Fig. 4(b) and PSFs
labeled with boxes in Fig. 6(a)].

The procedure for correcting the nonvalid local PSFs consists
of replacing them with the average of adjacent valid kernels.
Without this correction, the reconstruction develops ringing
artifacts [see for example Fig. 11(b)]. The new set of valid
local PSFs after replacing the nonvalid ones for the artificially
degraded image is shown in Fig. 6(b).

3.4 PSF Interpolation

The computation of the SV PSF h is carried out by interpolating
the local PSFs estimated on the regular grid of positions. The
PSF values at intermediate positions are computed by bilinear
interpolation of four adjacent known PSFs,22 as shown in Fig. 7.
Indexing any four adjacent grid points as p ¼ 1; : : : ; 4 (starting
from the top-left corner and continuing clockwise), the SV PSF
in the position between them is defined as

hðs; t; x; yÞ ¼
X4
p¼1

αpðx; yÞhpðs; tÞ; (7)

where αp is the coefficients of bilinear interpolation. Let us
denote x1 and x2 as minimum and maximum x-coordinates
of the subwindow, respectively. Analogously, y1 and y2 are the
y-coordinates. Using auxiliary quantities

tx ¼
x − x1
x2 − x1

; ty ¼
y − y1
y2 − y1

; (8)

the bilinear coefficients are

α1 ¼ ð1 − tyÞð1 − txÞ; α2 ¼ ð1 − tyÞtx;
α3 ¼ tyð1 − txÞ; α4 ¼ tytx:

(9)

In light of the definition for an SV PSF in Eq. (7), we can
compute the convolution of Eq. (1) as a sum of four convolu-
tions of the image weighted by coefficients αpðx; yÞ

½Hu�ðx; yÞ ¼
Z

uðs; tÞhðs; t; x − s; y − tÞdsdt; (10)

¼
Z

uðs; tÞ
X4
p¼1

αpðs; tÞhpðx − s; y − tÞdsdt;

(11)

¼
X4
p¼1

Z
ðαpðs; tÞuðs; tÞÞhpðx − s; y − tÞdsdt;

(12)

¼
�X4
p¼1

½αpu� � hp
�
ðx; yÞ: (13)

In the same fashion, the operator adjoint to H (SV counter-
part of correlation) denoted by H� can also be defined in terms
of the sums of four convolutions weighted by the αp coeffi-
cients. These two operators are needed in all first-order minimi-
zation algorithms as the one used in the restoration stage (see
Ref. 23 for further details).

3.5 Restoration

Having estimated a reliable SV PSF, we proceed to deblur
the image. Image restoration is typically formulated within
the Bayesian paradigm, in which the restored image is sought
as the most probable solution to an optimization problem.

Fig. 6 (a) Estimated set of 5 × 5 local PSFs. (b) New set of local PSFs with nonvalid PSFs replaced
[compared with ground-truth set Fig. 3(b)]. Nonvalid PSFs have been labeled with a red square.
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The restoration can be described as the minimization of the
functional

min
u

�
1

2

��z −Hu
��2 þ λ

Z
j∇ujdxdy

�
; (14)

where z is the blurred observed image,H is the blurring operator
[Eq. (1)], u is the unknown sharp image, and λ is a positive regu-
larization constant, which we have set according to a fine-tuning
procedure.4 The tuning procedure consists in artificially degrad-
ing a retinal image and restoring it with Eq. (14) by varying λ.
Because the sharp original image is known we can compare it
against the restored image using a metric like the peak-signal-to-
noise ratio to determine an optimal value of λ. The first term
penalizes the discrepancy between the model and the observed
image. The second term is the regularization term which serves
as a statistical prior. As regularization we use total variation, a
technique that exploits the sparsity of image gradients in natural
images. At present, solving the convex functional of Eq. (14) is
considered a standard way to achieve close to state-of-the-art
restoration quality without excessive time requirements.24

We used an efficient method25 to solve Eq. (14) iteratively as
a sequence of quadratic functionals

uiþ1 ¼ arg min
u

�
1

2

��z −Hu
��2 þ λ

Z j∇uj2
2j∇uij

þ j∇uij
2

dxdy

�
:

(15)

The functional of Eq. (15) bounds the original function in
Eq. (14) and has the same value and gradient in the current
ui, which guarantees convergence to the global minimum.
To solve Eq. (15), we used the conjugate gradient method.17

The initial value of ui for i ¼ 0 is set to be equal to z. In
order to avoid numerical instability for areas with small gradient
(j∇uij approaching zero), we use a relaxed ϵ-form of the mini-
mized functional in Eq. (14), which implies that j∇uij < ϵ is
equal to ϵ.

As regards the restoration of color RGB retinal images, we
consider the following. The most suitable channel for PSF
estimation is the green because it provides the best contrast.26

This is mainly due to the spectral absorption of the blood in this
band, which yields the dark and well contrasted blood vessels.27

Conversely, the blue channel encompasses the wavelengths
most scattered and absorbed by the optical media of the
eye,28 therefore the image in this band has very low energy and
a relatively high level of noise. In the spectral zone of wave-
lengths larger than 590 nm, the light scattering on the red
blood cells and the light reflection from the eye structures
behind the vessel are dominant.29 This produces the red band
to be saturated and of poor contrast. As a result, we estimate
the SV PSF from the green channel of the RGB color image,
and later deconvolve every R, G, and B channels with the esti-
mated SV PSF to obtain a restored RGB color image.

4 Experiments and Results
We performed several experiments on artificially and naturally
degraded images to illustrate the appropriateness of the SV
approach for restoring blurred retinal images. Moreover, to
achieve an artifact-free restoration, we used our strategy for
detecting and replacing the nonvalid local PSFs.

4.1 Artificially Degraded Images

For the artificial experiment, we take a pair of images and
degrade them with a 5 × 5 grid of realistic PSFs plus Gaussian
noise (σ ¼ 10−6). The grid of PSFs was built upon realistic PSFs
estimated from real degraded retinal images following the
approach of Ref. 4. From the two input images, we restore
one, and the other is used exclusively for the purpose of PSF
estimation. We estimate the local PSFs by dividing the image
into overlapping patches on a 5 × 5 grid [as shown in Fig. 3(a)].
The estimated PSFs are shown in Fig. 6(a). Because the PSF
estimation may fail, we identify the nonvalid PSFs as described
in Sec. 3.3. We replace them with with the average of adjacent
valid kernels.

In Fig. 8(a), we show the restored artificial image with the
directly estimated PSFs. The effect of nonvalid PSFs is evident
in the poor quality of the restoration and the ringing artifacts. In
Fig. 8(b), we show the restoration with the proposed method,
where the nonvalid PSFs have been identified, removed, and
replaced by the average of adjacent PSFs. To evaluate the resto-
ration, we use the cumulative error histogram on a patch basis.
The error5 is the difference between a recovered image Ir with
the estimated kernels and the known ground-truth sharp image
Ig over the difference between the deblurred image Ikg with the
ground-truth kernels. The error is given by kIr − Igk∕kIkg − Igk.
In Fig. 8(c), we show the cumulative error histogram for three
restorations. H1 is the restoration with the directly estimated
PSFs. It is important to note that shifted local PSFs warp the
image which introduce additional artifacts and is the reason
for such a low performance with approximately 40% of patches
with an error lower than 2.5. After shifting the centroid of the
PSFs to the geometrical center [restoration H2 in Fig. 8(c)], the
reconstruction error is reduced significantly, about 60% of
patches have an error lower than 1.5. Finally, the restoration
(H3) with the removal of nonvalid PSFs increases significantly
with all patches now displaying an error lower than 1.5. This
means that after the nonvalid PSFs have been replaced the resto-
ration quality is significantly increased.

To determine the limitations and robustness of the proposed
method, we carried out several tests. First, we need to determine
an optimal patch size for accurately estimating the local PSF. A
patch that is too small compared to the kernel size may not have

Fig. 7 Because the blur changes gradually, we can estimate convo-
lution kernels on a grid of positions and approximate the PSF in the
rest of the image (bottom kernel) by interpolation from four adjacent
kernels.
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enough information and is likely to favor the trivial solution
(convolution with a delta). Conversely, a patch that is bigger
than necessary may hinder the SV approach in addition to
increasing the computational burden. In Fig. 9(a), we show
the mean similarity measure versus the image patch size. It is
important to note that a patch size of roughly four times the
kernel size may be sufficient for an accurate PSF estimation.
Increasing too much the patch size hinders the PSF estimation.

The second aspect to consider is under- and over-estimation
of the local PSF size. In Fig. 9(b), we show the mean patch
reconstruction error versus PSF size. As expected the error is
minimum when the size is similar to the true size, yet under-esti-
mating the PSF size is worse than over-estimating.

In relation to the SV characterization of the blur, we per-
formed the PSF estimation with a different number of kernels.
Initially with a coarse 2 × 2 grid increasing up to a 10 × 10 fine
grid (the 5 × 5 grid is the ground-truth). A similar behavior is
observed. Under-estimating the proper PSF grid size has a neg-
ative effect in that the SV nature of the blur is hardly identified
which yields an error above 6 for the whole image. In this case,
the error is not computed on a patch-basis because of the
variable grid size.

4.2 Naturally Degraded Images

All of the naturally degraded images used in the experiments
were acquired in pairs, typically with a time span between
acquisitions of several minutes. Initially, to show the limits
of the space-invariant approach we restored the blurred retinal
image from Fig. 10(a) with a single global PSF with the space-
invariant method we proposed in Ref. 4. This image corresponds
to the eye fundus of a patient with strong astigmatism, which
induces an SV blur as depicted by the image details shown
in Figs. 10(b)–10(e). The restoration is shown in Fig. 11(a)
and we can clearly observe various artifacts despite an increase
in sharpness in a small number of areas. In view of this, it is
evident that the space-invariant assumption does not hold in
such cases. In the following, we move to the SV approach.

To carry out the SV restoration, we estimated the local PSFs
on a 5 × 5 grid of image patches. From the estimated PSFs
shown in Fig. 12(a), we notice a clear variation in shape mainly
from the top-right corner where they are quite narrow, to the
bottom left corner where they are more spread and wide. This
variation is consistent with the spatial variation of the blur
observed in the retinal image of Fig. 10(a). We restored the

Fig. 8 (a) Restoration with the set of directly estimated PSFs shown in Fig. 6(a) (notice the artifacts due
to nonvalid PSFs) and (b) restoration with the new set of PSFs with nonvalid PSFs replaced shown in
Fig. 6. (c) Error histogram for evaluating the reconstruction using: H1—directly estimated PSFs, H2—
PSFs shifted toward the geometrical center, and H3—the new set of valid PSFs.
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image with these local PSFs that were estimated directly without
any adjustment. The restored image is shown in Fig. 11(b). One
immediately obvious feature is that in several areas the restora-
tion is rather poor, displaying ringing artifacts, whereas in others
it is to some extent satisfactory. The local poor-restoration is
linked to areas where the PSF estimation failed. By removing
and correcting these nonvalid local PSFs, we obtained a note-
worthy restoration shown in Fig. 11(c). Notice the overall
improvement in sharpness and resolution with small blood ves-
sels properly defined as shown by the image-details in the third
column of Fig. 13. It could be said that without the replacement
of the nonvalid PSFs the image quality after restoration is
certainly worse than the original degraded image (see second
column of Fig. 13).

To further demonstrate the capabilities of our method, addi-
tional restoration results on real cases from the clinical practice
are shown in the following figures. As we mentioned in Sec. 1, a
typical source of retinal image degradation comes from patients
with corneal defects in which the cornea has an irregular structure
[Fig. 1(a)]. This induces optical aberrations, which are mainly
responsible for the SV blur observed in the retinal image. The
image details shown in Fig. 1(b) reveal a significant improvement
in which the retinal structures are much sharper and enhanced. In
Fig. 14(a), a full color retinal image is shown, in which three
small hemorrhages are more easily discernible in the restored
image, along with small blood vessels. Another retinal image,
shown in Fig. 14(b), reveals a clear improvement in resolution
with a much finer definition of blood vessels.

Fig. 10 (a) Retinal image degraded with real SV blur given by strong astigmatism. (b), (c), (d), and
(e) zoomed regions to show the SV nature of the blur.

Fig. 11 (a) Space-invariant restoration, (b) SV restoration with directly estimated PSFs, and (c) SV resto-
ration with the new set of PSFs. The reader is strongly encouraged to view these images in full resolution
at http://www.goapi.upc.edu/usr/andre/sv-restoration/index.html.
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In addition, we processed retinal angiography images to test
our method against a different imaging modality. Ocular angi-
ography is a diagnostic test that documents, by means of photo-
graphs, the dynamic flow of dye in the blood vessels of the
eye.30 The ophthalmologists use these photographs both for
diagnosis and as a guide to patient treatment. Ocular angiogra-
phy differs from fundus photography in that it requires an
exciter–barrier filter set (for further details see Ref. 30). The reti-
nal angiography shown in Fig. 15 is degraded with a mild SV
blur that hinders the resolution of small—yet important—
details. The restoration serves to overcome this impediment; this
can be observed from the zoomed-detail of the restored image.

The image enhancement may be useful for the improvement of
recent analysis techniques for automated flow dynamics and
identification of clinical relevant anatomy in angiographies.31

Finally, another way to demonstrate the added value of
deblurring the retinal images is to extract important features,
in this case detection of blood vessels. Such a procedure is com-
monly used in many automated disease detection algorithms.
The improvement in resolution paves the way for a better seg-
mentation of structures with edges. This is in great part due to
the effect of the total variation regularization because it pre-
serves the edge information in the image. To carry out the detec-
tion of the retinal vasculature, we used Kirsch’s method.32 It is a
matched filter algorithm that computes the gradient by convo-
lution with the image and eight templates to account for all
possible directions. This algorithm has been widely used for

Fig. 12 (a) Estimated set of local PSFs from naturally degraded retinal image shown in Fig. 10(a). (b) Set
of local PSFs after replacing nonvalid PSFs. Nonvalid PSFs have been labeled with a red square.

Fig. 13 Details of restoration. From left to right: the original degraded
image, the SV restoration without correction of PSFs and the SV
restoration with the correction.

Fig. 14 Other retinal images restored with the proposed method.
(a) First row: original and restored full-size retinal images.
(b) Second and third rows: image details.
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detecting the blood vessels in retinal images.33 In Fig. 16, we
show the detection of the blood vessels from a real image of
poor quality image and its restored version using our proposed
method. A significant improvement in blood vessel detection is
achieved. Smaller blood vessels are detected in the restored
image, whereas the detection from the original image barely
covers the main branch of the vasculature.

5 Conclusion
In this paper, we have introduced a method for restoring retinal
images affected by SV blur by means of blind deconvolution. To
do so, we described a spatially variant model of blur in terms of
a convolution with a PSF that changes depending on its position.
Since the SV degradation changes smoothly across the image,

we showed that the PSF need not be computed for all pixels,
which is quite a demanding task, but for a small set of discrete
positions. For any intermediate position bilinear interpolation suf-
fices. In this way, we achieve an SV representation of the PSF.

The estimation of accurate local PSFs proved difficult due to
the very nature of the images; they usually contain textureless or
nearly homogenous regions that lack retinal structures, such as
blood vessels, to provide sufficient information. In this regard,
we proposed a strategy based on eye-domain knowledge to
adequately identify and correct such nonvalid PSFs. Without
this, the restoration results are artifact-prone with an overall
image quality that is worse than the original image. The pro-
posal has been tested on artificially and naturally degraded
retinal images coming from the clinical practice. The details
from the restored retinal images show an important enhance-
ment, which is also demonstrated with the improvement in
the detection of the retinal vasculature.

In summary, it seems clear that the SV restoration of blurred
retinal images is significant enough to leverage the images’
clinical use. Improving the visibility of subtle details like small
hemorrhages or small blood vessels may prove useful for dis-
ease screening purposes, follow-up monitoring, or early disease
detection. With the new challenges faced by clinical services in
the 21st century, automated medical image analysis tools are
mandatory—this work is a step toward that direction.
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Abstract. Long-exposure handheld photography is degraded with
blur, which is difficult to remove without prior information about the
camera motion. In this work, we utilize inertial sensors (accelerome-
ters and gyroscopes) in modern smartphones to detect exact motion
trajectory of the smartphone camera during exposure and remove blur
from the resulting photography based on the recorded motion data.
The whole system is implemented on the Android platform and
embedded in the smartphone device, resulting in a close-to-real-
time deblurring algorithm. The performance of the proposed system
is demonstrated in real-life scenarios.© 2013 SPIE and IS&T [DOI: 10
.1117/1.JEI.22.1.011003]

1 Introduction
Blur induced by camera motion is a frequent problem in pho-
tography mainly when the light conditions are poor. As the
exposure time increases, involuntary camera motion has a
growing effect on the acquired image. Image stabilization
(IS) devices that help to reduce the motion blur by moving
the camera sensor in the opposite direction are becoming
more common. However, such hardware remedy has its lim-
itations, as it can compensate only for motion of a very small
extent and speed. Deblurring the image offline using math-
ematical algorithms is usually the only choice we have in
order to obtain a sharp image. Motion blur can be modeled
by convolution, and the deblurring process is called decon-
volution, which is a well-known ill-posed problem. In gen-
eral, the situation is even more complicated, since we usually
have no or limited information about the blur shape.

We can divide the deconvolution methods into two cat-
egories: methods that estimate the blur and the sharp
image directly from the acquired image (blind deconvolu-
tion) and methods that use information from other sensors
to estimate the blur (semi-blind deconvolution).

Over the last few years, blind deconvolution has experi-
enced a renaissance. The key idea of new algorithms belong-
ing to the first category is to address the ill-posedness of
blind deconvolution by characterizing the image prior to
using natural image statistics and by a better choice of
estimators. A frantic activity started with the work of
Fergus et al.,1 who applied variational Bayes to approximate
the posterior by a simpler distribution. Other authors2,3,4,5

stick to the “good old” alternating maximum a posteriori esti-
mation approach, but by using ad hoc steps, which often lack
rigorous explanation, they converge to a correct solution.
Levin et al. in Refs. 6 and 7 proved that a proper estimator
matters more than the shape of priors. They showed that mar-
ginalizing the posterior with respect to the latent image leads
to the correct solution of the blur. The marginalized proba-
bility can be expressed in a closed form only for simple pri-
ors that are, e.g., Gaussian. Otherwise approximation
methods such as variational Bayes8 or the Laplace approxi-
mation9 must be used. Complex camera motion often results
in blur that is space-variant, i.e., the blur is a function of a
position vector. As a rule, the space-variant blur cannot be
expressed by an explicit formula, but in many cases it has a
special structure that can be exploited. If only one type of
camera motion is considered (e.g., rotation), we can express
the degradation operator as a linear combination of basis
blurs (or images) and solve the blind problem in the space
of the basis, which has much lower dimension than the origi-
nal problem. Whyte et al.10 considered rotations about three
axes up to several degrees and described blurring using three
basis vectors. For blind deconvolution, they used an algo-
rithm analogous to Ref. 1 based on marginalization over the
latent sharp image. Gupta et al.11 adopted a similar approach,
replacing rotations about x and y axes by translations. State-
of-the-art blind-deconvolution algorithms achieve some-
times awesome results. However, their main limitation is that
they work only in specific situations, they are prone to local
extrema, and they are computationally very demanding.

The second category of deconvolution algorithms (semi-
blind) tries to overcome these drawbacks by using informa-
tion about the camera motion from other sources. One
possibility is to acquire a pair of images: one correctly
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exposed but blurred and one underexposed (noisy) but sharp
image. Then we can apply multichannel blind deconvolution
methods, which are better posed, as was proposed for exam-
ple in Refs. 12, 13, and 14. Another possibility is to attach an
auxiliary high-speed camera of lower resolution to estimate
the point-spread function (PSF) using for example optical
flow techniques.15,16 Many devices, such as modern smart-
phones, are now equipped with inertial sensors (gyroscopes
and accelerometers) that can give us accurate information
about camera motion. If we are able to reconstruct camera
path, then we can recover blur and perform nonblind
image deblurring. This idea was recently described by
Joshi et al., in Ref. 17, but they have designed an expensive
measuring apparatus consisting of a digital single-lens reflex
camera and a set of inertial sensors and perform image
deblurring offline on a computer. This work is based on
the same idea, but our aim is to show that image deblurring
is feasible on modern smartphones and not requiring any
other devices.

The main contribution of this work is to illustrate that blur
estimation with built-in inertial sensors is possible and to
implement image deblurring on a smartphone, which
works in practical situations and is relatively fast to be
acceptable for a general user. The next section shows the
relation between the camera pose and the image blur, and
discusses simplifications that we make. Section 3 briefly
describes implementation on our test device (Samsung
smartphone). Section 4 shows results of our experiments
and addresses pitfalls that are common for cameras
embedded in smartphones.

2 Camera Motion Blur Analysis
We start the discussion with a general camera motion. Since
our primary goal is a handy implementation for mobile devi-
ces, we then introduce simplification of the problem that
allows a fast and memory-conserving solution with promis-
ing results.

2.1 Model
The image degradation model is represented by relation

g ¼ HðuÞ þ n; (1)

where H is a linear degradation operator and n is additive
noise. Image coordinate indices are omitted here for simplic-
ity. Our goal is to find an estimate of the original image u
from the observed blurred image g.

To track the effect of camera motion on the output
image, we first assume a standard perspective projection
Π∶ℝ3 → ℝ2 that transforms a three-dimensional (3-D)
point ½x; y; z� in the observed scene to a two-dimensional
(2-D) location ½x 0; y 0� in the image plane:

Πð½x; y; z�TÞ ¼
�
xf
z
;
yf
z

�
T
: (2)

For the sake of brevity, we assume here only the focal
length f in the intrinsic camera matrix. The optical axis is
identical with the z axis. During camera motion, projection
of a point p ¼ ½x; y; z�T at time τ within the exposure period
is given by

CðτÞ ¼ Π

0
@RðτÞ

" x
y
z

#
þ
" txðτÞ
tyðτÞ
tzðτÞ

#1A ¼ Π½RðτÞpþ tðτÞ�;

(3)

where R and t are the 3-D rotation matrix and translation
vector, respectively, that define the camera pose at time τ.
The rotation matrix RðτÞ is given by three rotation angles
ϕxðτÞ, ϕyðτÞ and ϕzðτÞ.

The resulting curve Cmakes up a trajectory of a trace that
is left on the sensor by a point light source. Assuming a con-
stant illuminance over the exposure period, the light energy
emitted from the point is distributed evenly (with respect to
time) over the curve C. This effectively gives us a time para-
metrization of a PSF for a given point, which forms the blur
operatorH. The operatorH can be written in a form naturally
generalizing standard convolution as

HðuÞ½x; y� ¼
Z

uðx − s; y − tÞh̃ðs; t; x − s; y − tÞdsdt; (4)

where h̃ depends on the position (third and fourth variable)
and can be regarded as a space-variant PSF.

Now we can draw the relation between ~h in Eq. (4) and
the curve C. For any given 3-D point at position p rendered
on the image plane to ½x 0; y 0� ¼ ΠðpÞ the point-spread blur
function h̃ðs; t; x 0; y 0Þ is a 2-D function of ½s; t�, which can be
interpreted as a blurred image of an ideal light point dis-
played at ½x 0; y 0�. It can be thus obtained by rendering the
curve C on a plane with the total integral of ~h (which has
to be equal to 1 to conserve distribution of energy) distrib-
uted along the path evenly in respect to the time parameter.

In the next section, we will show how to simplify
this model and assume the space-invariant case, i.e., ~hðs; t;
x; yÞ ¼ hðs; tÞ.

2.2 Space-Invariant Simplification
We will consider a situation when the operator H is spatially
invariant, so Eq. (1) becomes

g ¼ h∗uþ n; (5)

where “∗” denotes convolution and h is a space-invariant PSF.
The PSF Eq. (3) is spatially variant in general, so it will be

modified for our purposes. First of all, the translation t
affects the projection differently depending on the object dis-
tance from the camera. The relation is inversely proportional,
as shown in Fig. 1(a). In the case of our test device, if the
camera shifts by 1 mm, objects at distance of 2 m or more
move by less than 1 pixel in the image. We can thus effec-
tively ignore translation as a cause of blur in many practical
situations.

Rotation about the optical z axis (yaw) intuitively inter-
feres with the space-invariant blur assumption. This type of
rotation applied on a point light source placed in the center of
the picture (on the optical axis) leaves the projection
unchanged, but points outside the center form arc-shaped
traces that grow toward the image borders. Provided that
the camera is rotated with an equal amount around all
three axes, which is a fair assumption under normal circum-
stances, a yaw has the least effect on the resulting blur, espe-
cially in the center of the sensor. Cellphone cameras typically
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have the focal length close to the sensor size, which means
that only close to the image borders the blur size produced by
yaw is approaching the blur size produced by rotation about
x or y; see Fig. 1(b).

The last obstacle towards the space-invariant PSF is the
perspective projection itself. Length of a trace caused by x
and y rotations are projected slightly differently depending
on the distance from the optical center, because the rectilin-
ear projection in Eq. (2) casts a point at an angle α from the
optical axis to a point at a distance of f · tanðαÞ from the
image center. The tangent function is close to linear for
small angels, so both x and y rotations by a small angle α
shift a point in the sensor center approximately f · α
away in the direction of the given axis. Using the same
rule for all points on the sensor gives us the space-invariant
simplification of Eq. (3):

CðτÞ ≈
�
x 0

y 0

�
þ f

�
ϕxðτÞ
ϕyðτÞ

�
; (6)

where ½x 0; y 0� is the location of a point in the image. This
approximation holds if z is large, and x 0ϕx ≪ f and

y 0ϕy ≪ f, which is true at least in the central part of
the image.

3 Implementation
As a testing platform, we have chosen a Samsung Galaxy S II
smartphone with Android OS. It is equipped with all the
apparatus needed for our experiments; namely a relatively
high-quality camera, motion sensors, a fast CPU, and enough
RAM to perform computations.

3.1 PSF Estimation
During the photo acquisition, samples of angular velocity are
recorded using the embedded gyroscopes, which are after-
ward trimmed to fit the exposure period. An estimation of
the PSF is rendered by integrating the curve position from
the recorded data using Eq. (6).

3.2 Deconvolution
State-of-the-art nonblind deconvolution methods use sparse
image priors, and the solution is usually found by some iter-
ative minimization algorithms, such as in Ref. 4. However, the
limited computational power of the smartphone prevents us
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Fig. 1 Dependence of projection shift on translation and z rotation for a test device. (a) Influence of 1 mm x or y translation depending on object
distance. Angle of view is 60 deg; two curves represent different image sensor resolution; (b) influence of 1 deg rotation about x and z axis
depending on a distance d from the image sensor center. The full sensor extent corresponds to d ¼ 2.3 mm; image resolution is 2048 × 1536.
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Fig. 2 Basic application workflow. Together with a taken photograph gyroscope data are recorded, which is a base for blur kernel estimation. A
deconvolution is then performed to remove blur from the image.
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from implementing these sophisticated deconvolution meth-
ods. We thus use a simple but fast Wiener filter in the form

Û ¼ G
H�

jHj2 þΦ
; (7)

where Φ is an estimation of the inverse signal-to-noise ratio,
and G, H, and Û are discrete Fourier transforms of the
observed image g, PSF h, and the estimated latent image
û, respectively.

Filtering in the frequency domain treats the image as
a periodic function, which causes ringing artifacts around
image borders. To overcome this problem, several less
or more sophisticated techniques were proposed in the
literature.18,19 We have found sufficient to preprocess the
input image g by blending the opposite image borders at
the width of the PSF, which creates a smooth transition
and eliminates the artifacts.

The intensity values of the output image û sometimes lie
outside the 8-bit range (0 to 255), therefore we added
optional normalization with clipping of outliers. The nor-
malization is especially useful in the case of larger blurs
and scene with high illumination.

For conversions of the images to frequency domain and
back, we use fast Fourier transform (FFT) algorithm imple-
mented in the fastest Fourier transform in the West (FFTW)
library. Utilizing a fast ARM Cortex-A9 CPU with two cores
and support for a single instruction, multiple data instruction
set (NEON), FFTW proved to be remarkably fast on the
tested smartphone (see Table 1).

The acquired images with native camera resolution of
3264 × 2448 is by default scaled down to 2048 × 1536 to
take the advantage of better performance of FFTW when
the image size is a factor of small primes. Image downsampling
has a negligible effect on the image quality, because native
camera resolution is unnecessarily high. The optical system
of the camera has a very small aperture, which, because of dif-
fraction and optical aberrations, limits the number of pixels that
can be effectively captured by the image sensor.

To perform Wiener filtering, FFT must be applied several
times: once for the PSF and twice (forward and backward-
inverse) for each color channel. That yields a total of seven
FFT operations. With some overhead of bitmap transfers, the
deconvolution phase for the image resolution 2048 × 1536
takes about 2.6 s. The whole process starting from the cam-
era shutter is done in a little over 6 s. This includes image
resizing, PSF estimation, compressing, and saving the origi-
nal and deblurred image files. The main application work-
flow is summarized on a schematic diagram in Fig. 2.

4 Results
In this section we display several of our results together with
estimated PSFs; see Figs. 3, 4, and 5. All results were com-
puted with the signal-to-noise parameter Φ set to 0.01. This
value was determined experimentally to provide the best
looking results. The original intention was to set Φ propor-
tionally to the film speed (ISO value) extracted from the
exchangeable image file format data of a photo, which
should determine the amount of noise present in the
image. However, we found the dependency of Φ on ISO
very negligible. We explain this behavior by the denoising
step that the mobile phone internally performs on the cap-
tured photos.

For comparison, we show an advanced nonblind iterative
method (TV-L1) by Xu and Jia (Ref. 5)*, which minimizes
image total variation and data term in the L1-norm. We also
tested blind deconvolution proposed in the same, which is
probably currently the best blind deconvolution method.
However, the result of the first test image shown in
Fig. 3(e) illustrates a total failure of this method when
applied to images taken by our test device. The PSF
[Fig. 3(f)] estimated by the blind deconvolution method is
close to a delta function and the estimated image
[Fig. 3(e)] is thus a slightly sharpened image. We suspect
that small PSF variations in space and/or the image post-
processing done by the smartphone prevents a successful
estimation of the correct motion blur. The same unsatisfac-
tory behavior was observed in all our tests. However, our
results in Figs 3(c), 4c, and 5c illustrate that in spite of a
relatively simple approach, which incorporates the Wiener
filter with the space-invariant PSF estimated by inertial sen-
sors, the proposed method is capable of producing convinc-
ing images exposing many details that were hidden in the
original. The nonblind algorithm of Xu and Jia, which is
using the same PSF estimated by inertial sensors, tends to
amplify the signal, which rather emphasizes noise and
false edges than gains signal improvement. Conversely,
high-frequency details are more suppressed, probably due
to being treated as noise, despite of careful attempts to
tune the parameters of the method. Within our testing envi-
ronment, the simplified Wiener filter is more advantageous
as it filters all frequencies evenly which apparently matches
the spectrum characteristics of most of the tested images.

Our results seem to lack contrast, which is largely because
of the normalization. On the other hand, it helps retaining the
full dynamic range without saturation as clearly seen in the
comparison Fig. 3.

Our deconvolution process admittedly has downsides, as
well. Focusing in a dark environment may be unsuccessful,
and then the deconvolved result cannot be sharp even if the
PSF estimation is correct, since we lack any means to esti-
mate the out-of-focus blur.

The subjective quality of the deconvolution output is not
entirely consistent. Images presented in this section are the
best-looking results. Outputs of the similar quality are fre-
quently achieved by our method, but sometimes the result
is impaired by visual anomalies worsening its appearance.
Most often it is manifested as ringing artifacts surrounding
sharp edges in the picture, as demonstrated in Fig. 6.

Table 1 Speed (in milliseconds) of FFT transform of grayscale
images with different sizes and different CPU settings.

Resolution No NEON, No hardware
FPU

NEON, 1
core

NEON, 2
cores

1536 × 1152 2900 185 110

2048 × 1536 5300 330 195

2050 × 1538 — 1000 540

3264 × 2448 21200 1450 800 *An executable is available for download at ~http://appsrv.cse.cuhk.edu.hk/
~xuli/deconv.zip
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The lack of control over camera hardware in the phone
(no manual exposure settings, no access to raw data from
the image sensor) and inaccurate timing of exposure events
prevents us to systematically evaluate our method and find
sources of malfunctioning.

The main problem is most likely the space-variant nature
of the PSF as discussed in Sec. 2, which is particularly
noticeable when a rotation about the z axis is significant
or a translation movement is present and the scene depth
is small. The example in Fig. 6 is influenced by a combina-
tion of both of these factors. The space-invariant approxima-
tion of camera projection is often apparent in parts close to
image borders, because of a relatively wide camera field of
view (60 deg).

However, another cause is the shutter mechanism. Contrary
to systems with a mechanical shutter, values of illuminated
pixels are here read successively line by line. The readout
from the CMOS sensor takes several tens of milliseconds
as shown in Fig. 7, which results in a picture not taken at
a single moment, but with a slight time delay between the
first and last pixel row. This process, called rolling shutter,
is therefore another cause of the blur variance as the PSF
depends on the vertical position in the image. The correct
approach to PSF estimation is thus shifting inertial sensor
data in time according to the vertical position in the image.

The application programming interface (API) of the
tested device does not allow accurate synchronization
between camera and gyroscope samples. Therefore we have

(a) original (b) TV-L1 (c) our result

(d) PSF

(e) Xu, Jia — blind (f) PSF est. – Xu, Jia

Fig. 3 Test 1: 1∕7 s exposure, 16 × 59 estimated PSF.

(a) original (b) TV-L1 (c) our result

(d) PSF

Fig. 4 Test 2: 1∕9 s exposure, 21 × 28 estimated PSF.
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implemented a deconvolution preview, where the user picks
the best option from a set of results created with time-shifted
PSFs. The preview also partly solves the rolling shutter prob-
lem, since the selected time shift corresponds to a horizontal
image band of a certain height that can be considered as
acquired at one moment, thus eliminating the rolling shutter
effect for that image part.

Image post-processing might also present a serious prob-
lem for the deconvolution. Since the original raw data from

the image sensor are not available, we are forced to work
with the JPEG-compressed image, which is most likely proc-
essed by a denoising, contrast-enhancement algorithm, or
lens-distortion compensation. These adjustments are unde-
sirable for our purposes, as they were not taken into account
in our model.

Noise present in gyroscope measurement data can also be
a problem, as displayed in Figs. 8 and 9. This has been exam-
ined in a following synthetic experiment. A test image was

(a) original (b) TV-L1 (c) our result

(d) PSF

Fig. 5 Test 3: 1∕2 s exposure, 72 × 76 estimated PSF.

(a) original (b) result (c) PSF

Fig. 6 An example of an unsatisfactory result.

(a) traces of points on LCD

(b) 40 ms (c) 50 ms (d) 60 ms (e) 70 ms (f) 80 ms (g) 90 ms (h) 100 ms

Fig. 7 A snapshot of point grid displayed on a liquid crystal display screen showing the rolling shutter effect. The bottom row shows a series of blur
kernels rendered using data from the gyroscope sensor shifted in time. Exposure 1∕14 s, PSF images were created from sensor data starting 40 to
100 ms after a synchronization timestamp.
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first blurred using convolution with a PSF counted from one
set of gyroscope samples recorded in our mobile application.
An additive noise was added to the image in accordance with
the model 1 (40-dB Gaussian noise was used). Gaussian
noise was also added to the gyroscope samples to simulate
errors in sensor measurement. Corrupted image was then
repaired using our deblurring algorithm from the altered
motion data. Results for different amounts of noise in gyro-
scope samples are shown in Fig. 8. The mean square error of
the result as a function of the gyroscope noise level (vari-
ance) is in Fig. 9. We can see that the performance starts
to drop for noise levels above 0.05 rad∕s. The gyroscope
noise level typically encountered in the motion sensors inside

mobile devices (in our case Samsung Galaxy S II) is
0.007 rad∕s for our sampling rate, and it is therefore way
below the critical level.

5 Conclusion
We have presented an image deblurring method that can
effectively remove blur caused by camera motion using
information from inertial sensors. The proposed method is
fully implemented on a smartphone device, which is to
our knowledge the first attempt in this direction and renders
the method particularly appealing for end users. We have jus-
tified the space-invariant simplification for certain camera
motions, but simultaneously we have uncovered intrinsic

Fig. 8 Noise in gyroscope data. Synthetically blurred Lena image using PSF from recorded gyroscope samples and afterward deblurred using PSF
from measurements with variable amount of noise. Images are from left to right, top to bottom: original, blurred, and six deblurred images using
original gyroscope data altered by random Gaussian noise with variance from 0 to 0.05 (gyroscope measurements are in rad/s).
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Fig. 9 Mean squared error (MSE) of difference between the original and deblurred image in relation to amount of added sensor noise. Gaussian
noise of variance 0 to 0.1 was added to gyroscope measurements (angular velocity in rad/s). Deconvolution algorithm was then performed using
computed blur kernels based on these altered measurements. MSE of difference to the original image is plotted in the graph (pixel value was
normalized to h0; 1i range). The graph shows mean of 10 iterations for each of the variance values. Lena image was used for the test.
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sources of space-variant blur, such as rolling shutter. The
space-variant implementation of the deblurring algorithm,
which would solve some of the current issues, is in theory
possible, but the computational cost on the smartphone may
be too high. It will be a topic of our future research to find out
whether this is viable.
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