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Chapter 1

Introduction

Let us consider a sparse real matrix A of size n,

A ∈ Rn×n.

We here assume that the matrix A is real, but all results of the habilitation
thesis can be easily generalized for complex matrices as well. Sparsity of a
matrix is often defined as the property that the number of zero entries is
high enough to take advantage of in arithmetical manipulations and software
implementations [120, Chapter 3], without further quantitative specification of
the number of zero entries. A large number of methods can take advantage of
or are specially designed to take advantage of sparsity of matrices and vectors
(see, e.g., [138, Chapter2] [139, Chapter 3]) ; we will discuss here only the
methods relevant for this thesis. A standard operation where sparsity can be
exploited is matrix-vector multiplication, with the number of required floating
point operations (flops) being proportional to the number of nonzeros of A.
They can be of the order n when only a few diagonals of A are nonzero, whereas
multiplication with a dense (i.e. non-sparse) matrix asks for O(n2) flops in
general. The popular class of Krylov subspace methods consists of methods
based on repeated multiplication of vectors with a given matrix (see, e.g., [82]
or [113]) and is therefore especially suited for large sparse matrices. Direct
solvers which compute matrix decompositions [80] like an LU decomposition
are somehow less naturally favorable for sparsity, because the decompositions
can be dense even with a sparse input matrix. The aim therefore is to keep
the decomposition maximally sparse (i.e. to avoid fill-in) by using for instance
suitable row or column permutations( see, e.e., [40, 120]). Sparse direct solvers
often rely on results from graph theory and apply them to a graph representing
the sparsity pattern of A (see, e.g., [120, 69]). Graph theory plays an important
role as well in partitioning sparse matrices (or also sparse vectors) for efficient
storage and parallel implementations. For incomplete matrix decompositions,
which are used to accelerate Krylov subspace methods, it is customary to
neglect (drop) small size entries (see, e.g., [139, Chapter 10]) and thus enforce
sparsity of the computed factors.

7



8 CHAPTER 1. INTRODUCTION

In this habilitation thesis we focus on sparse matrix methods for solving
linear systems of algebraic equations, while some results concern eigenvalue
problems. Consider the solution of a linear system

(1.1) Ax = b, b ∈ Rn,

with a non-singular, sparse and possibly very large matrix A. Sparse linear
solvers may be roughly divided into three classes, which are often combined in
practical computations: Krylov subspace methods, direct (LU-based) solvers
and multigrid-type methods (including domain decomposition, Schwarz and
hierarchically semiseparable matrix methods). Multigrid methods use multi-
ple, sometimes fictitious, discretization levels and combine several techniques
on the different levels (see, e.g. [142]). For some important classes of problems
they are asymptotically optimal, but they can also be sensitive to changes of
the problem [62]. Modern LU packages (e.g. UMFPACK [41], GPLU [75],
PARDISO [141], MUMPS [2] or WSMP [88]) use heuristics based on graph
theory and combinatorics to preserve sparsity and use advanced developments
in computer science like BLAS, paralell or out-of-core implementation tech-
niques [76]. They are able to solve huge sparse linear systems (with billions
of unknowns) in very short CPU-time. However, if fill-in cannot be controlled
efficiently, the L and U factors become sometimes too large to store for the
available computer memory. An advantage of Krylov subspace methods is that
they are efficient for a wide variety of problems. They are iterative and thus
allow the computation to be stopped as soon as a satisfactory approximation
to the solution has been found. Depending on the application, the required
approximation needs not be very accurate. In addition, they allow matrix-free
implementations, where the multiplication of A with vectors is done without
storing A. For example, it can be performed using a difference scheme if A
represents the Jacobian matrix of a function to be minimized. In most Krylov
subspace methods multiplication with A is the only information needed about
A (but some methods require multiplication with the transposed of A as well).
Then the system matrix needs not be stored at all, leading to considerable
memory savings.

The most important part of this habilitation thesis adresses Krylov sub-
space methods and their acceleration through preconditioning. A Krylov sub-
space for A and a given vector v (not necessarily the right-hand side b in (1.1))
is a subspace generated by the vectors v, Av,A2v,A3v, . . . (for an overview see,
e.g., [105, 154, 82, 113]). More precisely, the kth Krylov subspace Kk(A, v) for
A and v is defined as

Kk(A, v) ≡ span{v, Av, ..., Ak−1v}.

Krylov subspace methods are based on projection of the given, large matrix
problem for A (e.g., a linear system, eigenproblem, matrix function problem) to
Krylov subspaces of small dimension which grow with the iteration number. In
favorable cases, dominant properties become apparent after a relatively small
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number of iterations and may yield sufficiently accurate approximations to the
solution. Convergence analysis, the first topic of this thesis, studies how fast
approximations with a given accuracy are found depending on properties of A
and v. We remark that even if we consider linear systems and linear eigenvalue
problems, convergence analysis consists of highly nonlinear problems due to
the structure of the Krylov subspaces [149] (all vectors in Kk(A, v) are of the
form π(A)v for a polynomial π of degree k − 1). Focusing for a moment on
linear systems, this is in contrast with the situation for classical, so-called
stationary iterative methods based on a matrix splitting like Gauß-Seidel or
SOR [156]. Convergence analysis for these methods traditionally studies the
asymptotic convergence factor, i.e. the factor by which the Euclidean norm of
the residual vector,

rk = b− Axk,
where xk is the approximation obtained in the kth iterate, is reduced in every
iteration [156]. In other words, it investigates the linear convergence rate. In
applications where Krylov subspace methods are most often used, however,
one hopes to find acceptable approximations after a rather small number of
iterations already. Hence what is important is not the asymptotic linear con-
vergence, but fast, usually superlinear convergence during the initial phase of
the iterative procedure [152, 155]. As we explain below, convergence analysis is
particularly challenging for non-normal matrices A, which probably account for
the majority of cases arising in real-world applications. A matrix A is normal
if it commutes with its transposed matrix denoted by AT , i.e. if AAT = ATA.

Although in some applications, Krylov subspace methods indeed yield sat-
isfactory approximations in a low number of iterations, in general some type of
acceleration needs to be added for fast convergence. The most popular accel-
eration technique for solving linear systems is probably preconditioning. An
efficient left preconditioner M for (1.1) is a matrix relatively cheaply com-
putable from A, allowing cheap solution of linear systems with that matrix
and such that the solution process for

M−1Ax = M−1b

with a Krylov subspace method converges considerably faster than if the
Krylov subspace method is applied to the original system (1.1) (for an overview
see, e.g., [37] or [13]). A right preconditioner satisfies the same criteria except
for that it modifies the original problem to the linear system

AM−1y = b,

so that the solution of the original system (1.1) is x = M−1y. Preconditoners
modifying (1.1) from both the left and the right are used as well, in particular
for symmetric linear systems in order to preserve symmetry. The term pre-
conditioning originates from the solution of symmetric linear systems, where a
reduction of the 2-norm condition number of the system matrix can be expected
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to improve the convergence speed of the used Krylov subspace method [139,
Chapter 6]. The 2-norm condition number κ(A) of a nonsingular matrix A is
defined as

κ(A) = ‖A‖ · ‖A−1‖,

where ‖·‖ denotes the Euclidean norm. The estimation of condition numbers is
treated in detail in Section 1.2. For symmetric matrices, the 2-norm condition
number equals the ratio

κ(A) =
|λ1|
|λn|

,

where |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0 are the (real) eigenvalues of A. The way
many preconditioners attempt to improve convergence for symmetric linear
systems is through eigenvalue clustering to reduce the 2-norm condition num-
ber. We note that modification of the eigenvalues of A by the choice of an
appropriate preconditioner can be useful for non-normal matrices as well, but
in general the spectrum of non-normal system matrices needs not decide about
the converge speed of the used Krylov subspace method [84]. This is the main
topic of Section 1.1 below.

A popular class of preconditioners is given by the incomplete LU facto-
rizations mentioned earlier. They approximate A with a product M = LU,
where L is a lower and U an upper triangular matrix. The solution of linear
systems with M requires a forward solve with L and a backward solve with
U, both requiring O(n2)) flops at most (for sparse factors L and U the costs
are in general much lower). The computation of the incomplete factorization
itself has computational costs proportional to the number of nonzeros of A if a
standard dropping strategy is used [139, Chapter 10]. With a reasonable accu-
racy of the incomplete factorization, the system matrix of the preconditioned
linear system may approximate the identity matrix well enough to yield faster
convergence than for the original system when a Krylov subspace method is
applied.

A different class of preconditioners attempts to find explicit cheap approx-
imations of A−1, instead of A. In other words, one constructs M−1 such that
M−1 ≈ A−1 instead of constructing M such that M ≈ A. This has the ad-
vantage that multiplication of vectors with the preconditioned system matrix
needed in Krylov subspace methods does not require the solution of a linear
system, but only multiplication with the explicitly constructed matrix M−1.
This can be easily done in parallel, whereas the solution of triangular sys-
tems needed with incomplete LU factorizations is much more difficult to par-
allelize [13]. On the other hand, approximations of A−1 tend to be less sparse
than approximations of A if A itself is sparse. Preconditioners of this class (ap-
proximate inverse preconditioners), include the SPAI [86] and AINV [16, 17]
preconditioners.

Incomplete and approximate inverse factorizations belong to the most ro-
bust and universally applicable preconditioners. Physics-based preconditioners
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take into account the specific physical problem underlying the given linear sys-
tem [104]. For instance, if the linear system arises from the discretization of
a convection-diffusion or convection-diffusion-reaction equation, then the pre-
conditioner may consist of the matrix for the discretization corresponding to
the diffusion part only. Physics-based preconditioners are mostly available in
matrix-free form, which is not the case for the previously mentioned types
of preconditioners. Another matrix-free preconditioning technique consists of
applying a number of inner iterations with a suitable Krylov subspace method
(which need not be the same as the method used for outer iterations).

A popular acceleration technique for linear systems, which can but need not
be incorporated in preconditioning, is deflation (see [125, 103, 36, 64, 35, 116,
77, 78], to cite just some of the proposed approaches and a few overviews). The
main idea is to use information about approximate eigenspaces of A, computed
along with the iterative process of the Krylov subspace method, to eliminate
the influence of eigenvalues assumed to hamper convergence.

Section 1.3 of this chapter addresses the preconditioning of sequences of
linear systems. Linear system sequences arise in a wide variety of applied
mathematics. Some examples are simulation of processes in fluid dynamics
where every time step requires the solution of a system of nonlinear equations,
operation research problems where the linear programs are solved with the
simplex method, the solution of Helmholtz equations for the propagation of
time-harmonic waves, structural mechanics problems or numerical optimiza-
tion.

Preconditioning is a research area probably more closely related to prac-
tice than the theory of iterative methods like Krylov subspace methods. One
sometimes hears the phrase that preconditioning is ”a combination of art and
science” [139, Chapter 10]. It is often hard to predict a priori the efficiency
of a preconditioner which involves its construction costs, its application costs
and the resulting number of iterations of the Krylov subspace method. Partic-
ular applications usually ask for tailor-made preconditioners whereas Krylov
subspace methods can be applied to basically all type of problems involving
large sparse matrices.

The field where both preconditioning and Krylov subspace methods were
first applied, is finite element and difference discretization of partial differential
equations. But in recent years they have shown to be useful in many other
research area’s where sparse matrices arise. The last topic of the habilitation
thesis concerns the somehow remote field of statitistics (a field that also can be
seen as a combination of art and science). Section 1.4 introduces the statistical
task of data classification, an application in which efficient operations with
sparse matrices start to become very important.

Throughout the thesis computations are assumed to run in exact arith-
metic. In practice finite precision arithmetic is used and although it can sig-
nificantly influence computations, we do not consider issues related to finite
precision computations here.
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1.1 On the convergence of Krylov subspace

methods

Methods for symmetric matrices occupy a special place among Krylov subspace
methods. The most popular Krylov subspace methods for symmetric matrices
are the Conjugate Gradient (CG) method [92, 109] for positive definite linear
systems, the MINRES method [130] for indefinite systems and the Lanczos
method [108] for symmetric eigenproblems. They build bases for the involved
Krylov subspaces that are orthogonal, a property which is very desirable with
respect to numerical stability and implementation. With symmetric matrices,
they can be constructed using three-term recurrences by an orthogonalization
method called Lanczos process [108, 109]. This implies low, constant compu-
tational costs per iteration as well as low memory requirements.

Symmetric matrices also lead to an analysis of convergence behavior which
is well understood. For instance when using the MINRES method to solve
an indefinite symmetric linear system, the iterate xk in the kth iteration mini-
mizes, with initial guess x0 = 0, the norm of the kth residual vector rk = b−Axk
over all vectors in the kth Krylov subspace Kk(A, b). Therefore, residual norms
are non-increasing and satisfy

(1.2) ‖rk‖ = min
p∈πk
‖p(A)b‖,

where πk is the set of polynomials of degree k with the value one at the origin.
Because A is symmetric, it can be decomposed as

(1.3) A = V ΛV T , Λ = diag(λ1, . . . , λn), V TV = In,

where In denotes the size n identity matrix. The entries λ1, . . . , λn of the
matrix Λ are the eigenvalues of A and the columns of V are the corresponding
eigenvectors. Substituting this decomposition into (1.2) gives

(1.4) ‖rk‖ = min
p∈πk
‖p (Λ)V T b‖,

showing that MINRES residual norms are fully determined by two quantities:
eigenvalues and components of the right-hand side in the eigenvector basis. A
closed-form expression for the kth MINRES residual norm in terms of these
quantities, i.e. the solution of (1.4), was presented in [9] and in [52]DT (it
generalizes the results in [115] for the special case k = n− 1). From (1.4), the
upper bound

(1.5)
‖rk‖
‖b‖ ≤ min

p∈πk
max
i=1,...,n

|pk(λi)|,

can be derived (see, e.g., [139, Chapter 6]). It consists of a min-max approxi-
mation problem which depends on the spectrum only. The bound is sharp in
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the sense that for every k there exists a right-hand side (depending on k) such
that equality holds. For the CG method, (1.4) and (1.5) hold with the 2-norm
replaced by the A-norm and the residual replaced with the error ek = x − xk
(‖b‖ = ‖r0‖ is replaced with e0). For A a symmetric positive definite matrix,
the A-norm ‖v‖A of a vector v is defined as

√
vTAv. A well-known bound [139,

Chapter 6] for CG derived from the CG variant of (1.5) and involving the con-
dition number of A is

‖ek‖A
‖e0‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

.

This bound is often used to explain the improved convergence of CG when a
preconditioner that clusters eigenvalues is applied.

Krylov subspace methods for non-symmetric matrices are more compli-
cated in several ways. First, they generally do not allow the construction of
orthogonal bases with short recurrences. More precisely, unless the matrix
belongs to the set of normal(s) matrices, which is a subset of normal matrices,
orthogonal bases for Kk(A, v) cannot be generated (for any initial vector v)
with (s+ 2)-term recurrences [67]. For the definition of normal(s) and discus-
sions of this fundamental result we also refer to [112, 66] and [113, Chapter 3].
Thus with non-normal matrices, if we wish to use orthogonal bases of Krylov
subspaces, we have to generate them with long recurrences whose computa-
tional and storage costs grow with the iteration number. This is done in the
GMRES [140] and FOM [136, 137] methods to solve linear systems and in the
Arnoldi method for eigenproblems [135]. All three methods use the Arnoldi
orthogonalization process to build orthogonal bases. If on the other hand, we
wish to use short recurrences with non-normal matrices, we must give up or-
thogonality. Often it is replaced with bi-orthogonality of a pair of bases, one
for Kk(A, v) and one for Kk(AT , w) with a shadow vector w. Popular meth-
ods for non-normal linear systems using short recurrences include Bi-CG [71],
QMR [72] and Bi-CGSTAB [153]. A different, straightforward way to bound
the length of recurrences is through restarting a long-recurrence method after
a small number of iterations; the most popular method of this type is restarted
GMRES.

As for convergence analysis of Krylov subspace methods for non-normal lin-
ear systems, despite considerable efforts, it is in fact not well understood [114].
The properties of A and v that dominate convergence behavior are not clear.
These are not the distribution of eigenvalues and the components of the right-
hand side in the eigenvector basis, as is the case for symmetric matrices: When
A is not normal, there is no orthogonal eigenvector basis and the decomposition
(1.3) must replaced with

(1.6) A = V JV −1,

where in the worst case, for non-diagonalizable matrices, J is a bidiagonal
Jordan matrix. If we concentrate on the GMRES method, which satisfies the
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same optimality criterion (1.2) as the MINRES method, we see that substi-
tuting (1.6) in (1.2) does not reduce to the minimization problem (1.4) but to

(1.7) ‖rk‖ = min
p∈πk
‖V p (J)V −1b‖,

which is much more difficult to analyze and which shows that the eigenvec-
tors (or principal vectors) play a more important role. The interplay between
eigenvalues, eigenvectors and right-hand side seems to be rather complicated.
This was confirmed in [122]DT (the last paper of Chapter 2 of this habilitation
thesis) which presents the solution of (1.7), thus giving a complete description
of how eigenvalues contribute in forming residual norms and of what quantities
can prevent GMRES from being governed by eigenvalues.

Many papers look for approaches other than eigenvalue analysis to explain
GMRES convergence, possibly in an elegant way. They include approaches
based on pseudospectra [151, 126], the field of values [58], the polynomial
numerical hull [83], potential theory [107], decomposition in normal plus low-
rank [98] or comparison with GMRES for non-Euclidean inner products [133].
Though they can be very suited to explain convergence for particular prob-
lems, none of the approaches seems to represent a universal tool for GMRES
analysis. In [155] it was suggested that convergence of the eigenvalue approxi-
mations generated in the Arnoldi orthogonalization process, the Ritz values, to
eigenvalues of A will often explain the acceleration of convergence of GMRES.

The probably most convincing results showing that GMRES needs not be
governed only by eigenvalues can be found in a series of papers by Arioli,
Greenbaum, Pták and Strakoš [85, 84, 4]. They represent an alternative ap-
proach to gain insight in convergence behavior, namely through investigation
of the form taken by matrices (with initial vectors) that generate the same
convergence behavior. The first paper [85] showed that if a residual norm con-
vergence curve is generated by GMRES, the same curve can be obtained with
a matrix having prescribed nonzero eigenvalues (an analogue on prescribed
nonzero singular values can be found in [59]). In addition, the same curve can
be generated with a normal and even with a unitary matrix. This naturally
leads to the question whether some properties of A and b can be related to
properties of a unitary matrix V generating the same residual norms as A and
b. Spectral properties of V are particularly interesting because they do govern
convergence behavior since V is normal. An answer pointing out, once more,
the indispensable role of eigenvectors, was given in [52]DT , which forms the
second part of Chapter 2.

Greenbaum, Pták and Strakoš [84] complemented the earlier results of [85]
by proving that any nonincreasing sequence of residual norms can be generated
by the GMRES method (a similar result for residual norms at the end of restart
cycles in the restarted GMRES method can be found in [157]). Furthermore, in
Arioli, Pták and Strakoš [4] a complete parametrization was given of all pairs
{A, b} generating a prescribed residual norm convergence curve and such that
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A has prescribed spectrum. The conclusion of this paper mentions that it is
desirable to formulate similar parametrizations for the early termination case
(i.e. the situation where GMRES finds, in exact arithmetic, the solution of the
linear system in less than n iterations). Some aspects of the early termination
case related to the minimal polynomial were pointed out in the next to last
section of that paper. Related results for early termination were described in
the Ph.D. thesis of Liesen [110]; see also [111]. In [51]DT , we gave a complete
parametrization of all matrices and right-hand sides yielding a prescribed non-
increasing GMRES convergence curve terminating before iteration n and where
the input matrix has prescribed nonzero eigenvalues.

The residual norms generated in the GMRES method can be described,
theoretically, by the particularly simple and natural minimization property
(1.2). This is perhaps the main cause of the fact that the majority of con-
vergence results about Krylov methods for nonsymmetric matrices concern
the GMRES method (and to a lesser extent FOM). The analysis of methods
like Bi-CG, QMR and Bi-CGStab is further complicated by several types of
potential breakdowns, non-orthogonal projection processes and the presence
of a second Krylov subspace, Kk(AT , w). In [49]DT an attempt was made to
generalize convergence results like [85, 84, 4] to some methods which do not
employ orthonormal bases like Bi-CG and QMR. The paper shows that, just
as for GMRES, linear systems can be constructed with arbitrary spectrum and
generating arbitrary residual norms when these methods are applied.

A similarly strong division between convergence theory for normal and non-
normal matrices exists for eigenproblems solved with Krylov subspace meth-
ods. A fundamental tool in the convergence analysis of the Lanczos method
for symmetric eigenproblems is the interlacing property for the eigenvalues of
the subsequently generated tridiagonal matrices (the restrictions of A to small
Krylov subspaces). The interlacing property is instrumental for the persistence
theorem on stabilization of Ritz values (see, e.g., [127, 128, 129], [123] or [48,
Chapter 7] (in Czech)). Several generalizations of the interlacing property to
normal matrices exist; see e.g. [68, 3], or the publications [118, 65] with geo-
metric interpretations. However, potentially non-normal input matrices make
convergence analysis of the Arnoldi method for non-normal eigenproblems del-
icate. There is no interlacing property for the principal submatrices of general
non-normal matrices, see [144] for a thorough discussion on this topic and its
relation to the field of Lie algebra’s.

The GMRES and the Arnoldi methods being closely related through the
Arnoldi orthogonalization process, a naturally arising question is whether a
result, similar to the results of Arioli, Greenbaum, Pták and Strakoš, on arbi-
trary convergence behavior of the Arnoldi method can be proved. By arbitrary
convergence behavior of the Arnoldi method we mean the ability to prescribe
all Ritz values from the very first until the very last iteration. The opening pa-
per of Chapter 2 (i.e., the publication [50]DT ) gives an affirmative answer and a
parametrization of the class of all matrices and initial Arnoldi vectors that gen-
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erates prescribed Ritz values in all iterations. Besides this result on arbitrary
convergence behavior of the Arnoldi method, it derives a parametrization that
allows to characterize all pairs {A, b} generating arbitrary convergence behav-
ior of both GMRES and Arnoldi. In this sense not even Ritz values generated
in the GMRES method do, in general, have an influence on the generated
residual norms.

The negative results of [50]DT can save researchers lots of effort. It is not
possible to prove anything on the convergence speed of Arnoldi’s method with-
out special assumptions on A (and on the initial vector v). In practice one uses
specialized variants like implicit restarts and exact shifts [6, 7], making conver-
gence analysis even more complicated with some examples of non-convergence
given in [63]. A discussion on the impact of our results for practice can be
found in the conclusion of [50]DT . Les us mention one consequence for the
solution of non-symmetric linear systems. Deflation techniques are popular to
accelerate the convergence of (restarted) GMRES. As explained earlier, they
try to eliminate eigenvalues that are supposed to slow down the convergence.
There are two potential problems with such a strategy: First, any convergence
speed is possible with any nonzero eigenvalues. Second, information on the
eigenvalues of A must be obtained from the Arnoldi orthogonalization process,
i.e. basically from the Arnoldi method. But Ritz values need not converge to
the eigenvalues at all. Though one frequently uses harmonic Ritz values and in
practice, deflation is often beneficial, there is no sound theoretical explanation
for the efficiency of deflation methods for non-normal linear systems.

We close this section, which discussed several results on constructing sys-
tems with prescribed convergence behavior, with the remark that in [46]DT
and [45]DT the author proposed a way to improve restarted GMRES through
switching to a rank-one updated linear system with prescribed residual norms
when GMRES is applied.

1.2 Condition number estimation

We have seen that the condition number κ(A) = ‖A‖‖A−1‖ is a quantity that
can be useful for convergence bounds of Krylov subspace methods. It is in fact a
very important tool to assess in various ways the quality of computed solutions
of linear algebraic equations and eigenvalue problems and their sensitivity to
perturbations. For example, if the right-hand side in (1.1) is perturbed by a
vector ∆b, then the resulting perturbation ∆x of the solution in

A(x+ ∆x) = b+ ∆b

can be related to ∆b through

‖∆x‖
‖x‖ ≤ κ(A)

‖∆b‖
‖b‖ .
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The condition number is in general rather expensive to compute because it re-
quires knowledge about the inverse of the matrix (as is clear from its definition).
In fact, its computation costs are often of the same order as for the solution
of the corresponding linear system or eigenproblem. Computation of the 2-
norm condition number is particularly expensive because the matrix 2-norm
is itself expensive. Efficient but cheap condition number estimates are highly
desirable. Not surprisingly, the most popular condition number estimators ap-
proximate the easily computable 1-norm (or column norm) condition number,
see, e.g., [89], [94], [95]. The method proposed in [96], based on [89], [94], [95],
is the standard condition estimator implemented in Matlab [119].

Estimators for the Euclidean norm (2-norm) condition number are, how-
ever, possibly needed more often than for any other norm. Traditionally they
are computed with the help of a triangular decomposition of A [93] (as are,
when necessary, matrix inverses), like an LU decomposition or if the matrix is
symmetric positive definite, a Cholesky decomposition. The estimator then es-
timates the condition numbers of the triangular factors, which is more efficient
than estimation for an unstructured original matrix. A breakthrough in the
development of estimators in the 2-norm was incremental condition estimation
of a triangular matrix. This way of estimation is closely related to the trian-
gular decomposition process and to incomplete triangular decompositions, as
will be explained below.

Incremental condition estimation was proposed by Bischof at the beginning
of the nineties [24], [25] and further generalized for solving related tasks [26],
[145]. It computes approximate condition numbers for consecutively all lead-
ing upper left submatrices of the given triangular matrix, starting from the
smallest submatrix of size one. The estimate for the current submatrix is ob-
tained from an approximate left singular vector constructed through updating
the approximate left singular vector for the previous submatrix, without how-
ever accessing it. This makes the procedure relatively inexpensive; the costs
for incremental condition estimation are of order n2 for dense matrices. It is
particularly suited when a triangular matrix is computed one row or column at
a time, which is precisely what is usually done during the LU decomposition
process. An analogue strategy based on approximate right singular vectors
was proposed later by Duff and Vömel [44] and recommended for sparse ma-
trices, while it appears to do worse than [24] for the estimation of the factor
‖A−1‖ in the definition of the condition number. Both incremental estimators
compute lower bounds which are in general within a factor 2 to 10 from the
exact condition number.

Chapter 3 (i.e., the publication [57]DT ) shows that an appropriate combina-
tion of the technique based on right singular vectors [44] with cheap inversion
of the involved triangular matrix leads to an incremental condition estimator
which is significantly more accurate than the estimators of [24, 44]. It obtains
lower bounds which are on average within a factor 1.2 from the exact condition
number. The costs of triangular matrix inversion are low compared to those
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of the triangular decomposition procedure itself. Moreover, some variants of
decomposition compute not only the triangular factors, but simultaneously, as
a by-product, the inverses of these factors [31, 32, 33]. In incomplete factor-
ization, information on the inverses of the progressively computed factors is
important to guarantee robust dropping and pivoting (permutation) rules. For
instance, the robust incomplete LU decompositions implemented in the pop-
ular software package ILUPACK [29] estimate the infinity norm (row-norm)
condition number of submatrices to control the growth of the entries of inverse
submatrices [27, 28]. The usage of our improved 2-norm estimators could lead
to a further increase of robustness. Future work with respect to the new es-
timator from [57]DT include a variant where the inverse factors need not be
stored (which is particularly important for sparse matrices whose inverses tend
to be dense) and incremental condition estimation of preconditioned system
matrices.

1.3 Preconditioning linear system sequences

A natural property of most sequences of linear systems arising in the applica-
tions mentioned earlier, is that the individual linear systems change relatively
slowly in the course of the sequence. One therefore often attempts to reuse
information gained from the solution of one linear system for the solution of
some of the following systems. Some examples are the usage of hot starts
(the solution of the previous system or an extrapolation obtained from the
solutions of several previous systems), recycling of Krylov subspaces generated
earlier [131, 116] or recycling of spectral information [77]. A different way to
save costs throughout the sequence is through using efficient stopping crite-
ria [60]. In some cases exact updating of the system matrix is feasible even
for large problems. Rank-one updates of LU factorizations have been used
since decades in the simplex method where the change of one system matrix
to another is restricted to one column [150]. General rank-one updates of an
LU decomposition are discussed in [148].

For many difficult problems, the linear systems of the sequence need to
be preconditioned with a powerful type of incomplete factorization, which is
typically relatively expensive to compute. A popular straightforward strategy
to share part of the computational effort throughout the sequence is freezing
of the preconditioner for a number of linear systems of the sequence. Let us
consider for a moment one of the standard tasks where linear system sequences
arise, function optimization. A system of nonlinear equations F (x) = 0 for a
non-linear function F : Rn → Rn solved by a Newton- or Broyden-type method
leads to a sequence of problems of the form

(1.8) A(i)(xi+1 − xi) = b(i), i = 1, . . . ,

where the right-hand side b(i) equals−F (xi) and the matrix A(i) is the Jacobian
evaluated in the current iteration xi of the Newton process or its approximation
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[101], [102]. A well-known strategy when solving with a Newton-type method
is to skip evaluations of the (approximate) Jacobian during some iterations,
leading to Shamanskii’s combination of the chord and Newton method [30],
[143]. Hence during several subsequent systems of the sequence the system
matrix is frozen. The systems differ only by their right hand side and linear
solving techniques with multiple right hand sides can be exploited [146], [74].
An alternative way to save costs is through freezing the preconditioner only,
i.e. allowing the changing of the system matrices [104].

In many situations a frozen preconditioner can be very efficient for a large
portion of the sequence (see, e.g., [90]DT .) In other applications, as the se-
quence progresses the number of iterations to solve linear systems with a frozen
preconditioner tends to deteriorate. To enhance the power of frozen precondi-
tioners one may in addition use approximate preconditioner updates. In Quasi-
Newton methods the difference between system matrices is of small rank and
preconditioners may be efficiently adapted with approximate small-rank up-
dates; this has been done in the symmetric positive definite case, see [19, 124].
In a more general situation, however, it is not clear whether the system ma-
trices change in a structured way and, in fact, it is not clear either what an
exact update of a preconditioner means. Let us try to explain the idea of
approximate preconditioner updates more in detail.

In order to simplify the notation, consider two linear systems of the se-
quence, one reference system denoted by Ax = b and a system arising later
in the sequence denoted by A+x+ = b+. In many situations, the individual
systems of a sequence are not available simultaneously, but the systems follow
from the solution of previous systems. Let us denote the difference matrix
A−A+ by B and let M be a reference preconditioner approximating A. Some
information about the quality of the preconditioner M can be taken from the
distance

(1.9) ‖A−M‖N

for an appropriate matrix norm ‖ · ‖N or from the distances

(1.10) ‖I −M−1A‖N or ‖I − AM−1‖N

depending on whether we precondition from the left or right (see, e.g. [14]).
If preconditioners are in factorized form, both (1.9) and (1.10) should be con-
sidered in practice since the preconditioners can suffer from two types of de-
teriorations. While the norm of the matrix (1.9) expresses accuracy of the
preconditioner, the norms of the matrices (1.10) relate to its stability [39], see
also [15]. We immediately obtain

‖A−M‖N = ‖A+ − (M −B)‖N .

Hence
M+ ≡M −B
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represents an updated preconditioner for A+ of the same level of accuracy as
M represents for A. This updated preconditioner may be regarded as an exact
update with respect to accuracy.

If we want to use M+ as a preconditioner, we need to multiply vectors
with its inverse in every iteration of the linear solver. In some problems, the
difference matrix B is such that (M − B)−1 can be obtained from M−1 with
low costs. For instance if B has small rank, M+ can be easily inverted using
the Sherman-Morrison formula, see e.g. [124, 19]. In general, however, this
exact update cannot be used since multiplication of vectors with (M −B)−1 is
expensive. Instead, cheap approximations of (M−B)−1 must be considered. In
the work [121] of Meurant we find approximate updates of incomplete Cholesky
factorizations and [14, 20] banded updates were proposed for both symmetric
positive definite approximate inverse and incomplete Cholesky preconditioners
by Benzi and Bertaccini.

Chapter 4 of this habilitation thesis addresses a more general black-box ap-
proximate update scheme for factorized preconditioners which first appeared
in [54]DT , see also its extensions in [22]DT , [23]DT , [55]DT and [56]DT . The
chapter contains the basic paper [54]DT , the more applied paper [23]DT with
additional theory, generalizations for block decompositions and experiments
with problems from computational fluid dynamics, and the paper [56]DT on
matrix-free implementations. The proposed preconditioner update is designed
for general nonsymmetric linear systems solved by arbitrary iterative solvers
and hence it can be combined with some of the techniques for more specific
systems and solvers mentioned before. The basic idea is to combine an in-
complete reference factorization with a Gauss-Seidel type of approximation of
the difference between the current and the reference matrix. The technique
tends to correct deteriorating numbers of iterations needed to solve with a
frozen preconditioner by reducing them to an acceptable level. Moreover, the
updated factorizations can be more powerful than preconditioners computed
from scratch; this may happen, for instance, when the updates are related to
more stable reference preconditioners generated earlier in the sequence. Since
the updated factorizations are both cheap to compute and cheaply applied as
a preconditioner, their use is of considerable interest for practice. This is espe-
cially true when preconditioner computations are expensive, like in matrix-free
environment where the matrix has to be estimated first to be able to construct
at all a reference preconditioner. Special techniques like graph coloring have
to be used and the application of our updated preconditioner should be carried
out in such a way that the difference matrix B is never computed and stored
explicitly. These and other issues related to matrix-free implementation are
the subject of [56]DT . Our work, which was inspired by the work of Benzi
and Bertaccini [14, 20], appears to be the first in a series of papers on pre-
conditioner updates for nonsymmetric linear systems [34, 11, 10, 12, 117, 42]
and is being referred to in publications from different research areas (see, e.g.,
[21, 43, 81, 158, 18]).
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1.4 Classification with high-dimensional data

The task of classifying an observation to a group based on a number of ob-
servations for which the group information is known a priori, forms a classical
part of statistics [134, Chapters 8 and 9]. Consider n observations, each repre-
sented by a vector xi ∈ Rp, i = 1, . . . , n, where p is the number of variables (i.e
of observed properties). Assume each observation belongs to one of g groups
with g < n. A very simple way to assign a new observation z ∈ Rp to one
of the g groups is to compute its distance to all group means and select the
group with closest mean. In other words, z is classified to the kth group, if

(1.11) k = arg min
1≤j≤g

‖z − x̄j‖,

where x̄1, . . . , x̄g are the group means. This way of classification does not
take into account potentially different variability of the observed variables.
In Linear Discriminant Analysis this is overcome by replacing the Euclidean
distance in (1.11) with the Mahalanobis distance. The Mahalanobis distance
‖z − x̄j‖M is defined with the help of the sample covariance matrix S ∈ Rp×p,
provided it is non-singular, as

(1.12) ‖z − x̄j‖M ≡
√

(z − x̄j)TS−1(z − x̄j).

The sample covariance matrix is symmetric positive definite and describes
the correlation between the individual variables. Its entry on position (i, j)
gives the sample covariance between the ith and jth variable, or, in terms of
linear algebra, the inner product between xi and xj, both centered through
substraction of their sample mean. Using matrix notation, if the given n
observations are collected in a matrix X ∈ Rp×n whose ith column contains
the ith observation and if X is centered by substracting the overall mean
denoted x̄, then the sample covariance matrix is

(1.13) S = (X − x̄eT )(XT − ex̄T ),

where e ∈ Rn is the vector of ones. Yet another way to write this is

(1.14) S =
n∑

i=1

(xi − x̄eT )(xTi − ex̄T ).

We do not include here the usual normalization (division with n−1) as it does
not influence the outcome of the classification procedure.

When the given data are high-dimensional, i.e. p is large, efficient ma-
trix computations become important for several reasons. First of all, sparsity
should be exploited when X is sparse. This is often the case in data mining
and pattern recognition applications like, for instance, information retrieval.
The observations can, to give an example, represent documents classified ac-
cording to the presence of certain keywords. As most documents contain only



22 CHAPTER 1. INTRODUCTION

a few significant keywords (variables), most of the entries of the correspond-
ing term-document matrix X are zero [61, Chapter 1]. If X is sparse, S can
be represented with low memory costs (only X and x̄ need to be stored, see
(1.13)) and a sparse factorization or a Krylov subspace method may be used
for the multiplication with S−1.

If p is larger than n (in modern problems often p� n) an additional issue
arises: The covariance matrix will be singular. This is so because its rank is
at most n, see (1.14). Then classification based on the Mahalanobis distance
(1.12) cannot be carried out. One usually applies some form of regularization
to the covariance matrix, for example one adds a small multiple ε of the identity
matrix [73, 87]. Such techniques do overcome the singularity of S, but from the
numerical point of view they are not very efficient. They work with a large, full
rank matrix S∗ ∈ Rp×p (the regularization of S), whereas S is of much smaller
rank. Some artificial information has been added, making decompositions
for S∗ unnecessarily expensive. In addition, regularization requires the time-
consuming search for an appropriate regularization parameter (ε in the above
example).

To reduce the number of variables p, one can perform a preprocessing step
named dimension reduction. Principal component analysis (PCA) is a stan-
dard technique which uses the singular value decomposition as its main tool,
but in the context of classification it is necessary to preserve class informa-
tion during the dimension reduction. This is achieved by a variant of linear
discriminant analysis which can be used for both dimension reduction and
classification. Fisher’s linear discriminant analysis [70] (FLDA) splits the co-
variance matrix into a matrix B for the variance between groups and a matrix
W for the variance within each group. The data are then projected onto a small
subspace in which between-group variances are maximized and within-group
variances are minimized, thus emphasizing the available group information.
These projections are obtained from the solution of the generalized eigenprob-
lem

Bv = λWv.

If p < n, this generalized eigenproblem can be transformed into the standard
eigenproblem

W−1Bv = λv,

or even into a standard symmetric eigenproblem using the Cholesky decom-
position of W. But for p ≥ n, W is singular and similarly as before for the
covariance matrix S, one usually applies some form of regularization to W like
a small positive shift [97, 38, 106].

In Chapter 5 (i.e., publication [53]DT ), an FLDA method for p� n is pro-
posed which attempts to optimize the involved matrix operations and other
numerical aspects. It is not merely a variant of FLDA with a strong numeri-
cal linear algebra kernel, but it addresses in detail the best way to cope with
singular covariance matrices, both from the classification and the matrix com-
putation point of view. The main idea is to eliminate the common null space
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of B and W before starting the FLDA process. The paper shows that this
does not affect the performance of FLDA classification, while it takes away
precisely the property that can make the solution of generalized eigenprob-
lems numerically most unstable. Moreover, it is shown that elimination of the
common null space of B and W amounts to performing a PCA for X − x̄e; for
a sparse data matrix X this can be done efficiently with an iterative Krylov
subspace method for the singular value decomposition, e.g. Golub-Kahan bidi-
agonalization [79]. For dense data, nearly all computations can be performed
in n-dimensional or smaller spaces, making the overall computational costs of
the order of pn2 flops, as opposed to O(p3) flops for most regularized versions
of FLDA.

A Matlab code [47]DT for our proposed method was incorporated into
BIOSIG [1], an open source software library for biomedical signal process-
ing. Major application areas are neuroinformatics, brain-computer interfaces,
neurophysiology, psychology, cardiovascular systems and sleep research. A
very active research area where the p > n problem arises frequently, is gene
expression for cancer diagnostics. Here one classifies genes to disease types
based on their gene expressions (i.e., the amino-acids that characterize them),
but it is very difficult or even impossible to gather enough genes. Not only
is the number of investigated genes in general very small, but in addition the
number of variables is significantly larger (for instance thousand times larger).

Recently, the author of this habilitation thesis has tried with collaborators
to extend ideas of [53]DT to other variants and aspects of linear discriminant
analysis, see e.g. [100]DT , [99]DT , [5], and, in Czech, [132]. The author of this
habilitation thesis has contributed to the publications [8]DT , [91]DT and [147]DT
through providing various types of statistical analyses.



24 CHAPTER 1. INTRODUCTION



Bibliography

[1] BIOSIG open software library. http://biosig.cvs.sourceforge.net/.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L‘Excellent, Multifrontal paral-
lel distributed symmetric and unsymmetric solvers, Comput. Methods Appl.
Mech. Engrg., (2000), pp. 501–520.

[3] G. S. Ammar and C. Y. He, On an inverse eigenvalue problem for unitary
Hessenberg matrices, Linear Algebra Appl., 218 (1995), pp. 263–271.

[4] M. Arioli, V. Pták, and Z. Strakoš, Krylov sequences of maximal length
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[142] V. V. Shăıdurov, Multigrid methods for finite elements, vol. 318 of Mathe-
matics and its Applications, Kluwer Academic Publishers Group, 1995.

[143] V. Shamanskii, A modification of Newton’s method, Ukrain. Mat. Z., 19
(1967), pp. 1333–1338.

[144] N. Shomron and B. N. Parlett, Linear algebra meets Lie algebra: the
Kostant-Wallach theory, Linear Algebra Appl., 431 (2009), pp. 1745–1767.

[145] G. Shroff and C. Bischof, Adaptive condition estimation for rank-one up-
dates of QR factorizations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1264–
1278.

[146] V. Simoncini and E. Gallopoulos, An iterative method for nonsymmeric
systems with multiple right-hand sides, SIAM J. Sci. Comput., 16 (1995),
pp. 917–933.
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ANY RITZ VALUE BEHAVIOR IS POSSIBLE FOR ARNOLDI AND
FOR GMRES∗

JURJEN DUINTJER TEBBENS† AND GÉRARD MEURANT‡

Abstract. We show that arbitrary convergence behavior of Ritz values is possible in the Arnoldi
method, and we give two parametrizations of the class of matrices with initial Arnoldi vectors that
generate prescribed Ritz values (in all iterations). The second parametrization enables us to prove
that any GMRES residual norm history is possible with any prescribed Ritz values (in all iterations),
provided that we treat the stagnation case appropriately.

Key words. Ritz values, Arnoldi process, Arnoldi method, GMRES method, prescribed con-
vergence, interlacing properties
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1. Introduction. Let A be a nonsingular matrix of order n and b a nonzero
n-dimensional vector. The Arnoldi process [3] reduces A to upper Hessenberg form
by a particular type of Gram–Schmidt orthogonalization for the vectors b, Ab,A2b, . . . .
At each step of the process, one matrix-vector multiplication with A is performed, and
one row and one column are appended to the previous Hessenberg matrix. The process
is well suited to iterative methods with large sparse matrices A. Two popular methods
for extracting approximate solutions from the generated Hessenberg matrices are the
generalized minimal residual (GMRES) method [40] for solving the linear system
Ax = b and the Arnoldi method (see, e.g., [38, 39]) for computing the eigenvalues and
eigenvectors of A.

The Arnoldi process can be seen as a generalization to non-Hermitian matrices
of the Lanczos process for tridiagonalization of Hermitian matrices [24]. The Lanczos
process is at the basis of the conjugate gradients (CG) method [23, 25] for Hermitian
positive definite linear systems and of the Lanczos method for Hermitian eigenprob-
lems [24]. In this sense GMRES is a generalization of CG (even though the l2 norm
of the residual is not minimized in CG), and the Arnoldi method is a generalization
of the Lanczos method. As convergence of the CG and Lanczos methods are well
understood, it is natural to take the convergence theory of these methods as a start-
ing point for explaining the behavior of the GMRES and Arnoldi methods. In the
CG method, the convergence behavior is dictated by the distribution of the eigenval-
ues of the matrix. In practice, the same is often observed for the GMRES method,
but, with possibly nonnormal input matrices, the situation becomes more subtle. For
example, Greenbaum and Strakoš [22] proved that if a residual norm convergence
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curve is generated by GMRES, the same curve can be obtained with a matrix having
prescribed nonzero eigenvalues (see [12, Lemma 6.9] for an analogue on prescribed
nonzero singular values). Greenbaum, Pták, and Strakoš [21] complemented their
result by proving that any nonincreasing sequence of residual norms can be given
by GMRES (a similar result for residual norms at the end of restart cycles in the
restarted GMRES method can be found in [47]). Furthermore, in Arioli, Pták, and
Strakoš [2] a complete parametrization was given of all pairs {A, b} generating a pre-
scribed residual norm convergence curve and such that A has a prescribed spectrum.
The results in these papers show that the GMRES residual norm convergence need
not, in general, depend on the eigenvalues of A alone. Other objects, mostly closely
related to eigenvalues, have been considered to explain convergence, for example, the
pseudospectrum [44], the field of values [11], or the numerical polynomial hull [20].
In [46] it was suggested that convergence of the eigenvalues of the Hessenberg matrices
generated in the Arnoldi process (the so-called Ritz values) to eigenvalues of A will
often explain the acceleration of convergence of GMRES.

A fundamental tool in the convergence analysis of the Lanczos method for Hermi-
tian eigenproblems is the interlacing property for the eigenvalues of the subsequently
generated tridiagonal matrices. It enables one to prove, among other things, the
persistence theorem on stabilization of Ritz values (see, e.g., [32, 33, 34] or [31]).
There are several generalizations of the interlacing property to normal matrices; see,
e.g., [16, 1] or the papers [27, 14] with geometric interpretations. However, just as
for GMRES, potentially nonnormal input matrices make convergence analysis of the
Arnoldi method delicate. There is no interlacing property for the principal submatri-
ces of general nonnormal matrices; see [42] for a thorough discussion on this topic and
its relation to the field of Lie algebra. In [9, 10] one finds a sufficient and necessary
condition for prescribing arbitrary eigenvalues of (not necessarily principal) submatri-
ces of general non-Hermitian matrices. For a detailed spectral analysis of nonnormal
Hessenberg matrices and their principal submatrices, see also [49].

Since the GMRES and the Arnoldi methods are closely related through the
Arnoldi orthogonalization process, a naturally arising question is whether a result,
similar to the results of Arioli, Greenbaum, Pták, and Strakoš, on arbitrary con-
vergence behavior of the Arnoldi method can be proved. By arbitrary convergence
behavior of the Arnoldi method, we mean the ability to prescribe all Ritz values from
the very first until the very last iteration (we do not consider convergence to eigen-
vectors). In this paper we will give a parametrization of the class of all matrices and
initial Arnoldi vectors that generates prescribed Ritz values. Besides this result on
arbitrary convergence behavior of the Arnoldi method, we derive a parametrization
that allows us to characterize all pairs {A, b} generating arbitrary convergence behav-
ior of both GMRES and Arnoldi. The Ritz values generated in the GMRES method
therefore do not, in general, have any influence on the generated residual norms.

The paper is organized as follows: In the remainder of this section we introduce
some notation, in particular the notation used in [2], which we adopt, and we recall
the parametrization given in [2]. In section 2 we give a parametrization of the class of
matrices and initial Arnoldi vectors that generates prescribed Ritz values. Section 3
reformulates the parametrization in order to parametrize the pairs {A, b} generating
arbitrary behavior of GMRES and Arnoldi at the same time. We close with a brief
discussion of our results and some words on future work.

1.1. Notation. We will use the following parametrization of matrices and right-
hand sides giving prescribed spectrum and prescribed convergence of the GMRES
method (see Theorem 2.1 and Corollary 2.4 of [2]).
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Theorem 1.1. Assume that we are given n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) > 0

and n complex numbers λ1, . . . , λn all different from 0. Let A be a matrix of order n
and b an n-dimensional vector. The following assertions are equivalent:

1. The spectrum of A is {λ1, . . . , λn}, and GMRES applied to A and b with zero
initial guess yields residuals r(k), k = 0, . . . , n − 1, such that

‖r(k)‖ = f(k), k = 0, . . . , n − 1.

2. The matrix A is of the form

A = WYC(n)Y −1W ∗

and b = Wh, where W is a unitary matrix; Y is given by

(1.1) Y =

[
h

R
0

]
,

with R being a nonsingular upper triangular matrix of order n − 1 and h a
vector such that
(1.2)
h = [η1, . . . , ηn]

T , ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1);

and C(n) is the companion matrix corresponding to the polynomial q(λ) de-
fined as

q(λ) = (λ − λ1) · · · (λ − λn) = λn +

n−1∑

j=0

αjλ
j ,

C(n) =

⎡
⎢⎣

0 −α0

In−1

...
−αn−1

⎤
⎥⎦ .

Furthermore, we will denote by ej the jth column of the identity matrix of ap-
propriate order. For a matrix M , the leading principal submatrix of order k will
be denoted by Mk. With “the subdiagonal” and “subdiagonal entries” we mean the
(entries on the) first diagonal under the main diagonal. Throughout the paper we
assume exact arithmetics, and we also assume that the investigated Arnoldi processes
do not terminate before the nth iteration. This means that the input matrix must
be nonderogatory. Note that Theorem 1.1 assumes this situation. The case of early
termination will be treated in a forthcoming paper.

2. Prescribed convergence of Ritz values in Arnoldi’s method. Consider
the kth iteration of an Arnoldi process with a matrix A and initial vector b where an
upper Hessenberg matrix Hk (with entries hi,j) is generated satisfying

(2.1) AV (k) = V (k)Hk + hk+1,k vk+1e
T
k , k < n,

with V (k)∗V (k) = Ik, V
(k)e1 = b/‖b‖, and V (k)∗vk+1 = 0, V (k) being the matrix

whose columns are the basis vectors v1, . . . , vk of the kth Krylov subspace Kk(A, b) ≡
span{b, Ab, . . . , Ak−1b}. The eigenvalues of Hk give the k-tuple

R(k) = (ρ
(k)
1 , . . . , ρ

(k)
k )
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of the k (not necessarily distinct) Ritz values generated at the kth iteration of Arnoldi’s
method. We denote by R the set

R ≡ {R(1),R(2), . . . ,R(n)}

representing all (n + 1)n/2 generated Ritz values. We also use S for the strict Ritz
values without the spectrum of A, i.e.,

S ≡ R \ R(n),

and we will denote the (not necessarily distinct) eigenvalues of the input matrix by
λ1, . . . , λn, i.e.,

R(n) = (λ1, . . . , λn).

In this section we investigate whether the Arnoldi method can generate arbitrary
Ritz values in all iterations. The Ritz values in the Arnoldi method are eigenval-
ues of the leading principal submatrices of upper Hessenberg matrices with positive
real subdiagonal entries. Prescribing the set R is possible only if there exist, at all,
Hessenberg matrices with positive subdiagonal entries where the eigenvalues of all the
leading principal submatrices can be prescribed. Parlett and Strang proved that there
is a unique upper Hessenberg matrix with the entry one along the subdiagonal such
that all leading principal submatrices have arbitrary prescribed eigenvalues; see [36,
Theorem 3]. We give here a characterization of this unique matrix, which we denote
with H(R), that shows how it is constructed from the prescribed Ritz values.

Proposition 2.1. Let the set

R = { ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) }

represent any choice of n(n+1)/2 complex Ritz values, and denote the k×k companion

matrix of the polynomial with roots ρ
(k)
1 , . . . , ρ

(k)
k by C(k). If we define the kth column

of the unit upper triangular matrix U(S) through

(2.2) U(S) e1 = e1, U(S) ek =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−eT1 C
(k−1)ek−1

...

−eTk−1C
(k−1)ek−1

1
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k = 2, . . . , n,

then the unique upper Hessenberg matrix H(R) with the entry one along the subdiag-
onal and with the spectrum λ1, . . . , λn such that the kth leading principal submatrix

has eigenvalues ρ
(k)
1 , . . . , ρ

(k)
k for all k = 1, . . . , n − 1 is

(2.3) H(R) = U(S)−1C(n)U(S).
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Proof. We will show that the spectrum of the k×k leading principal submatrix of

H(R) is ρ
(k)
1 , . . . , ρ

(k)
k (uniqueness of H(R) was shown in [36] and will also be proved

later). Let Uk denote the k × k leading principal submatrix of U(S), and let, for
j > k, ũj denote the vector of the first k entries of the jth column of U(S)−1. The
spectrum of the k × k leading principal submatrix of H(R) is the spectrum of

[Ik, 0]U(S)−1C(n)U(S)
[

Ik
0

]
= [U−1

k , ũk+1, . . . , ũn]

⎡
⎣

0
Uk

0

⎤
⎦ = [U−1

k , ũk+1]

[
0
Uk

]
.

It is also the spectrum of the matrix

Uk[U
−1
k , ũk+1]

[
0
Uk

]
U−1
k = [Ik, Ukũk+1]

[
0
Ik

]
,

which is a companion matrix with last column Ukũk+1. From

ek+1 = Uk+1U
−1
k+1ek+1 =

[
Uk −C(k)ek
0 1

] [
U−1
k ũk+1

0 1

]
ek+1

=

[
Ukũk+1 − C(k)ek

1

]

we obtain Ukũk+1 = C(k)ek.
Note that (2.3) represents a similarity transformation separating the spectrum

of H(R) from the strict Ritz values S of H(R). The matrix U(S) transforms the
companion matrix whose strict Ritz values are all zero to a Hessenberg matrix with
arbitrary Ritz values, and it is itself composed of (parts of) companion matrices. We
will call U(S), for lack of a better name, the Ritz value companion transform.

Clearly, the Ritz values generated in the Arnoldi method can exhibit any conver-
gence behavior: It suffices to apply the Arnoldi process with the initial Arnoldi vector
e1 and the matrix H(R) with arbitrary prescribed Ritz values from Proposition 2.1.
Then the method generates the Hessenberg matrix H(R) itself. If the prescribed Ritz
values occur in complex conjugate pairs, then the Ritz value companion transform
U(S) and the Hessenberg matrix H(R) in (2.3) are real, and the Arnoldi process runs
without complex arithmetics.

We next look for a parametrization of the class of all matrices and initial Arnoldi
vectors generating given Ritz values. From H(R) we can easily obtain an upper Hes-
senberg matrix whose leading principal submatrices have the same prescribed eigen-
values but with arbitrary positive values along the subdiagonal. Let σ1, σ2, . . . , σn−1

be given positive real numbers, and consider the similarity transformation

H ≡ diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)H(R)

(
diag (1, σ1, σ1σ2, . . . ,Π

n−1
j=1 σj)

)−1
.

Then the subdiagonal of H has the entries σ1, σ2, . . . , σn−1, and all leading principal
submatrices of H are similar to the corresponding leading principal submatrices of
H(R). The following theorem shows the uniqueness of H .



ON ARBITRARY ARNOLDI AND GMRES CONVERGENCE 963

Theorem 2.2. Let the set

R = { ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) }
represent any choice of n(n+ 1)/2 complex Ritz values, and let

Dσ = diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj),

where σ1, σ2, . . . , σn−1 are n − 1 positive real numbers. Then

H = Dσ H(R)D−1
σ

is the unique Hessenberg matrix H with subdiagonal entries

hk+1,k = σk, k = 1, . . . , n − 1,

with eigenvalues λ1, . . . , λn and with ρ
(k)
1 , . . . , ρ

(k)
k being the eigenvalues of its kth

leading principal submatrix for all k = 1, . . . , n − 1.
Proof. We have already explained that H has the desired Ritz values and subdi-

agonal entries. It remains to show uniqueness. For this we need a recursion for the
characteristic polynomials of the leading submatrices Hk of H . We denote the pre-
scribed characteristic polynomial of Hk by pk(λ), and by σk,i we denote the product
of prescribed subdiagonal entries

σk,i =
k∏

�=i

σ�.

We also define the polynomial p0(λ) ≡ 1. Using expansion along the last column to
compute the determinant of Hk − λI, we get

det(Hk − λI) = (−1)k−1h1,kσ
k−1,1 + (−1)k−2h2,kp1(λ)σ

k−1,2

+(−1)k−3h3,kp2(λ)σ
k−1,3 + · · · + (hk,k − λ)pk−1(λ),

and hence we have the recursion

(2.4) pk(λ) = (hkk − λ)pk−1(λ) +

k−1∑

i=1

(−1)k−ihikσ
k−1,ipi−1(λ), 1 ≤ k ≤ n.

Now assume that both H and H̃ have the desired Ritz values and subdiagonal entries,
and let us prove that H = H̃ by induction for all subsequent leading principal sub-

matrices. Clearly, h1,1 = h̃1,1 = ρ
(1)
1 , and if the claim is valid for all leading principal

submatrices of dimension at most k− 1, then the entries of Hk and H̃k can differ only
in the last column. By comparing the coefficients (subsequently before λk until λ0)
of the polynomial pk(λ) as given in (2.4) with the coefficients given by

pk(λ) = (h̃kk − λ)pk−1(λ) +
k−1∑

i=1

(−1)k−ih̃ikσ
k−1,ipi−1(λ),

we obtain hik = h̃ik subsequently for i = k, k − 1, . . . , 1.
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Theorem 2.2 immediately leads to a parametrization of the matrices and initial
Arnoldi vectors that generate a given set of Ritz values R. In addition, the subdiagonal
of the generated Hessenberg matrix can be prescribed.

Corollary 2.3. Assume that we are given a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)}

and n − 1 positive real numbers σ1, . . . , σn−1. If A is a matrix of order n and b a
nonzero n-dimensional vector, then the following assertions are equivalent:

1. The Hessenberg matrix generated by the Arnoldi process applied to A and
initial Arnoldi vector b has eigenvalues λ1, . . . , λn and subdiagonal entries

σ1, . . . , σn−1, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of its kth leading principal

submatrix for all k = 1, . . . , n − 1.
2. The matrix A is of the form

A = V DσU(S)−1C(n)U(S)D−1
σ V ∗

and b = ‖b‖V e1, where V is a unitary matrix, Dσ is the diagonal matrix

Dσ = diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj),

U(S) is the Ritz value companion transform in (2.2), and C(n) is the com-
panion matrix of the polynomial with roots λ1, . . . , λn.

Corollary 2.3 is an analogue of Theorem 1.1 on arbitrary convergence of the
GMRES method. Here we prescribe k values (the k Ritz values) in the kth iteration,
whereas Theorem 1.1 prescribes one value (the kth residual norm); the spectrum of A
is prescribed in both results. Note that in [43] it was shown that if the Arnoldi method
produces a particular sequence of n(n + 1)/2 Ritz values, the same sequence can be
generated by a whole class of matrices together with initial Arnoldi vectors. The
paper also gives a description of this class. It can be seen as an analogue of the earlier
result of Greenbaum and Strakoš [22], showing that if a residual norm convergence
curve is generated by GMRES, the same curve can be obtained by a whole class
of matrices together with right-hand sides. Our corollary shows, surprisingly, that
for general nonnormal matrices the distribution of the Ritz values generated in the
Arnoldi method can be arbitrary and fully independent of the spectrum. We remark
that there exist some results on the distribution of Ritz values for specific nonnormal
matrices, for example, for Jordan blocks and block diagonal matrices with a simple
normal eigenvalue; see [7].

The given parametrization may give some additional insight into the convergence
behavior of versions of Arnoldi used in practice, e.g., implicitly restarted Arnoldi with
polynomial shifts [4, 5]; in particular it may help one to better understand cases where
Arnoldi with exact shifts fails; see, e.g., [13]. As Ritz values are contained in the field
of values, it may also have implications for field of values–based analysis of iterative
methods.

We deal here with the problem of constructing both an input matrix and an
initial vector to produce prescribed Ritz values. In Corollary 2.3 the initial vector
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b = ‖b‖V e1 could be chosen arbitrarily if we define A appropriately, since the only
requirement for the matrix V is to be unitary. When the matrix A is given, changing
b will, of course, change the Ritz values. Constructing an initial vector to produce
prescribed Ritz values was done for the Lanczos method in [41]. If a Hermitian matrix
has distinct eigenvalues, that paper shows how to construct a perverse initial vector
such that the Ritz values in the next-to-last iteration are as far from the eigenvalues as
allowed by the interlacing property (see [14] for a generalization to the normal case).

Another consequence of Corollary 2.3 is that the Ritz values in the Arnoldi method
are in general independent of the subdiagonal elements hk+1,k of the generated Hes-
senberg matrix. This is not that strange if one realizes that hk+1,k is not an element
of the matrix Hk used to extract the current Ritz values. But, on the other hand,
the independency from hk+1,k is still surprising in view of the fact that one is used to
regarding the residual norm

(2.5) ‖AV (k)y − ρ(k)V (k)y‖ = hk+1,k|eTk y|

for an eigenpair (ρ(k), y) of Hk (see (2.1)) as a measure of the quality of the approx-
imate Ritz value-vector pair (ρ(k), V (k)y). Corollary 2.3 shows that, in theory, any
small nonzero value of hk+1,k is possible with ρ(k) arbitrarily far from the eigenvalues
of A. And conversely, all eigenvalues of Hk may coincide with eigenvalues of A with
an arbitrarily large value of hk+1,k. Though it is known that the residual norm is
not always indicative for the quality of the Ritz values (see, e.g., [8, 18]), one might
expect that in such counterintuitive cases, the misleading behavior of hk+1,k is com-
pensated for by |eTk y| in (2.5). But consider the following: Let A be parametrized
as A = V H(R)V ∗ and b = V e1, and let for an approximate Ritz value-vector pair
(ρ(k), V (k)y) the residual norm in (2.5) be |eTk y| (all subdiagonal entries hk+1,k of
H(R) are one), where

H(R)ky = ρ(k)y.

For any choice of small nonzero entries σ1, . . . , σn−1, the matrix V DσH(R)D−1
σ V ∗

withDσ = diag(1, σ1, . . . ,Π
n−1
j=1 σj) generates the same Ritz value ρ(k), but the residual

norm in (2.5) will change as σk|eTk ys|, where
(
Dσk

H(R)kD
−1
σk

)
ys = ρ(k)ys

with Dσk
= diag(1, σ1, . . . ,Π

k−1
j=1σj). However, the eigenvector ys is nothing but a

scaling of y because

(
Dσk

H(R)kD
−1
σk

)
(Dσk

y) = ρ(k)(Dσk
y),

i.e., ys = Dσk
y. This means that, with appropriate subdiagonal entries, the value

|eTk ys| can be small too (even if ys is normalized) and does not compensate for a small
σk, in spite of a possibly diverging Ritz value ρ(k). Something similar can be said
about cases where all eigenvalues of Hk coincide with eigenvalues of A for arbitrarily
large values of σk.

3. Prescribed convergence behavior of the Arnoldi and the GMRES
methods for the same pair {A, b}. The diagonal matrix Dσ with positive entries
in Corollary 2.3 contains the subdiagonal entries of the generated Hessenberg matrix,
and it can be chosen arbitrarily for any prescribed Ritz values. Because the values
of these subdiagonal entries influence the residual norms generated by the GMRES
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method applied to the corresponding linear system, there is a chance we can modify
the behavior of GMRES while maintaining the prescribed Ritz values. This is what
we will investigate next. Rather than directly choosing the diagonal matrix Dσ to
control GMRES convergence, we will derive an alternative parametrization of the
matrices and initial Arnoldi vectors that generate a given set of Ritz values. This
parametrization will reveal the relation with the parametrization in Theorem 1.1 and
thus might enable us to combine prescribing Ritz values with prescribing GMRES
residual norms.

The parametrization in Corollary 2.3 is based on a unitary matrix V whose
columns span the nth Krylov subspace Kn(A, b), whereas the parametrization in The-
orem 1.1 works with a unitary matrix W whose columns span AKn(A, b). To better
understand the relation between Corollary 2.3 and Theorem 1.1, we will translate
the former parametrization in terms of the latter. To achieve this, we will use two
factorizations of the Krylov matrix

K ≡
[
b, Ab,A2b, . . . , An−1b

]
,

one with V and one with W . The first factorization is nothing but the QR decompo-
sition

(3.1) K = V U

of K. By the QR decomposition we will always mean the unique QR decomposition
whose upper triangular factor has positive real main diagonal. The upper triangular
factor U is related to the generated Ritz values as follows.

Lemma 3.1. Let H be the Hessenberg matrix generated by an Arnoldi process
terminating at the nth iteration applied to A and b, and let U(S) be the Ritz value
companion transform in (2.2) corresponding to the generated strict Ritz values. Then
the upper triangular factor U of the QR factorization (3.1) of the Krylov matrix K is

U = ‖b‖ diag
(
1, h2,1, h2,1h3,2, . . . ,Π

n−1
j=1 hj+1,j

)
U(S)−1.

Proof. Any Arnoldi process (terminating at the nth iteration) can be written ac-
cording to the parametrization of Corollary 2.3 withDσ = diag (1, h2,1, . . . ,Π

n−1
j=1 hj+1,j).

Then in the Krylov matrix

K =
[
b, Ab, . . . , An−1b

]

we can take ‖b‖V out of the brackets to factor it since

b = ‖b‖V e1,

Ab = ‖b‖VDσU(S)−1C(n)U(S)D−1
σ e1,

A2b = ‖b‖V
(
DσU(S)−1C(n)U(S)D−1

σ

)2
e1,

· · · = · · ·
An−1b = ‖b‖V

(
DσU(S)−1C(n)U(S)D−1

σ

)n−1

e1.

Therefore

K = ‖b‖V
[
e1, DσU(S)−1C(n)U(S)D−1

σ e1, . . . ,
(
DσU(S)−1C(n)U(S)D−1

σ

)n−1

e1

]
.
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Now we would like to show that the last matrix on the right-hand side is just
DσU(S)−1. The first entry of the diagonal matrixDσ being one, we have U(S)D−1

σ e1 =
e1. Obviously we have (DσU(S)−1C(n)U(S)D−1

σ )j = (DσU(S)−1(C(n))jU(S)D−1
σ ).

Hence
(
DσU(S)−1C(n)U(S)D−1

σ

)j
e1 = DσU(S)−1(C(n))je1. It is straightforward to

see that (C(n))je1 = ej+1. This yields

(
DσU(S)−1C(n)U(S)D−1

σ

)j
e1 = DσU(S)−1ej+1, j = 0, . . . , n − 1,

and hence we have the factorization K = ‖b‖VDσU(S)−1. On the other hand, K =
V U . The uniqueness of the QR factorization gives U = ‖b‖DσU(S)−1.

A similar result is proved in [28, Proposition 3.1]. The second factorization of K
which we need involves the unitary factor W . We prove the following result in the
same way as the previous lemma; it was also proved in [2] in a different way.

Lemma 3.2. Consider a matrix A with initial Arnoldi vector b such that the
Arnoldi process does not terminate before iteration n. If A = WY C(n)Y −1W ∗ and
b = Wh according to Theorem 1.1, then we have

K = WY.

Proof. With Theorem 1.1 the Krylov matrix is defined as

K =
[
Wh,AWh,A2Wh, . . . , An−1Wh

]
.

We wish to take W out of the brackets to factor K. This can be done since

AW = WYC(n)Y −1,

A2W = W (Y C(n)Y −1)2,

· · · = · · ·
An−1W = W (Y C(n)Y −1)n−1.

Therefore

K = W
[
h, Y C(n)Y −1h, . . . , (Y C(n)Y −1)n−1h

]
.

Now we would like to show that the last matrix on the right-hand side is just Y .
The vector h being the first column of Y , we have h = Y e1. Obviously we have
(Y C(n)Y −1)j = Y (C(n))jY −1. Hence (Y C(n)Y −1)jh = Y (C(n))je1. As before,
(C(n))je1 = ej+1. This yields

(Y C(n)Y −1)jh = Y ej+1, j = 0, . . . , n − 1,

and this proves the result.
With the two factorizationsK = V U = WY we are ready for a second parametriza-

tion, formulated with the notation of Theorem 1.1 and based on the unitary matrixW ,
of the pairs {A, b} generating arbitrary Ritz values.

Theorem 3.3. Assume that we are given a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,
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such that (λ1, . . . , λn) contains only nonzero numbers, and n−1 positive real numbers
σ1, . . . , σn−1. If A is a matrix of order n and b a nonzero n-dimensional vector, then
the following assertions are equivalent:

1. The Hessenberg matrix generated by the Arnoldi process applied to A and
initial Arnoldi vector b has eigenvalues λ1, . . . , λn and subdiagonal entries

σ1, . . . , σn−1, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of its kth leading principal

submatrix for all k = 1, . . . , n − 1.
2. The matrix A is of the form

A = WYC(n)Y −1W ∗

and b = Wh, where W is a unitary matrix, C(n) is the companion matrix
corresponding to the eigenvalues λ1, . . . , λn, and Y is of the form

Y =

[
h

R
0

]
.

R is the upper triangular matrix

(3.2) R = ΓL∗T

of order n− 1, where T is the trailing principal submatrix in the partitioning

(3.3) ‖b‖ diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)U(S)−1 =

[
‖b‖ t∗

0 T

]

of the scaled inverse of the Ritz value companion transform U(S) in (2.2) and
L is the lower triangular factor in the Cholesky decomposition

(3.4) LL∗ = In−1 + T−∗tt∗T−1.

The diagonal matrix Γ with unit modulus entries is such that

(3.5) eTk ΓL
−1T−∗t ≥ 0, k = 1, . . . , n − 1,

and the entries of h = [η1, . . . , ηn]
T satisfy

(3.6) [η1, . . . , ηn−1]
T = ‖b‖ΓL−1T−∗t, ηn = ‖b‖

√
1 − ‖L−1T−∗t‖2.

Proof. First we prove the implication 1 → 2. Because the Arnoldi process does
not stop before the last iteration, GMRES applied to the linear system with matrix A,
right-hand side b, and zero initial guess does not stop before the last iteration, and
we can write A = WYC(n)Y −1W ∗ and b = Wh according to Theorem 1.1. From
Lemma 3.2, the factorization (3.1), and Lemma 3.1, we have

K∗K = Y ∗W ∗WY = Y ∗Y, K∗K = U∗V ∗V U = ‖b‖2U(S)−∗DT
σDσU(S)−1.

Hence the matrix Y from the parametrization must satisfy

Y ∗Y = ‖b‖2U(S)−∗DT
σDσU(S)−1.

Let ĥ = [η1, . . . , ηn−1]
T be the vector of the first n − 1 components of h from (1.2).

Then from (1.1) we have

(3.7) Y ∗Y =

[
‖h‖2 ĥ∗R
R∗ĥ R∗R

]
.
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Comparing (3.7) with ‖b‖2U(S)−∗DT
σDσU(S)−1 and using the partitioning (3.3), we

obtain for R and ĥ the conditions

(3.8) R∗R = T ∗T + tt∗, ĥ = ‖b‖R−∗t.

Furthermore, we have the conditions ηk ≥ 0, k = 1, . . . , n− 1, because all entries of ĥ
correspond to entries describing the GMRES convergence curve according to (1.2).

Let L be the lower triangular factor in the Cholesky decomposition

LL∗ = In−1 + T−∗tt∗T−1,

let Γ be a diagonal matrix with unit modulus entries, and let R = ΓL∗T . Then

R∗R = T ∗LΓ∗ΓL∗T = T ∗(In−1 + T−∗tt∗T−1)T = T ∗T + tt∗

is always satisfied and Γ can be chosen such that

eTk ΓL
−1T−∗t ≥ 0, k = 1, . . . , n − 1.

It follows that

ĥ = ‖b‖R−∗t = ‖b‖ΓL−1T−∗t,

and with ‖h‖ = ‖W ∗b‖ = ‖b‖ we obtain

ηn =

√
‖h‖2 − ‖ĥ‖2 = ‖b‖

√
1 − ‖L−1T−∗t‖2.

For the implication 2 → 1, let A = WY C(n)Y −1W ∗ be the parametrization of A
given in assertion 2, and let b = Wh. By Lemma 3.2, K = WY ; let K = V Ũ be the
QR factorization of the Krylov matrix K. We first show that Ũ = ‖b‖DσU(S)−1.

In the QR decomposition K = V Ũ we have V e1 = b/‖b‖, and therefore we can
partition Ũ as

(3.9) Ũ =

[ ‖b‖ t̃∗

0 T̃

]
.

With the first part of the proof

R∗R = T̃ ∗T̃ + t̃t̃∗, ĥ = ‖b‖R−∗t̃,

(see (3.8)), i.e.,

t̃ =
R∗ĥ
‖b‖ , T̃ ∗T̃ = R∗R − R∗ĥĥ∗R

‖b‖2 .

But by assumption, we have for t and T from (3.4) and (3.6) the same equalities,

t =
T ∗LΓ∗ĥ

‖b‖ =
R∗ĥ
‖b‖ ,

T ∗T = T ∗(LL∗ − T−∗tt∗T−1)T = T ∗LΓ∗ΓL∗T − tt∗ = R∗R − R∗ĥĥ∗R
‖b‖2 .
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The matrix R∗R − R∗ĥĥ∗R
‖b‖2 is positive definite since it is the Schur complement of

‖h‖2 in Y ∗Y , which is positive definite. Therefore the Cholesky decomposition of the

matrix R∗R− R∗ĥĥ∗R
‖b‖2 exists, and T̃ = T is the unique Cholesky factor. Together with

t̃ = t = R∗ĥ
‖b‖ we have

Ũ = ‖b‖DσU(S)−1.

Because of K = WY = V Ũ and with (2.3) it follows that

A = WYC(n)Y −1W ∗ = V ŨC(n)Ũ−1V ∗

= V DσU(S)−1C(n)U(S)D−1
σ V ∗ = V DσH(R)D−1

σ V ∗.

The upper Hessenberg matrix DσH(R)D−1
σ generated by the Arnoldi method there-

fore has the prescribed Ritz values and subdiagonal entries.
Note that Theorem 3.3 and Corollary 2.3 are not fully equivalent. In Theorem 3.3

we must assume, for reasons of compatibility with Theorem 1.1, that the spectrum of
A does not contain the origin. In Corollary 2.3 the only free parameters are a unitary
matrix and the norm of the initial Arnoldi vector. In Theorem 3.3 there appears to
be slightly more freedom because a unit modulus entry of Γ can lie anywhere on the
unit circle if the corresponding entry of L−1T−∗t is zero; see (3.5). There is of course
much less freedom in Theorem 3.3 than there is in the parametrization of Theorem 1.1
when prescribing a GMRES convergence curve.

We see that by modifying the choice of the subdiagonal entries σ1, . . . , σn−1 in
Theorem 3.3, we might modify the vector h representing the GMRES convergence
curve generated with A and b while maintaining the prescribed Ritz values, i.e., while
leaving the Ritz value companion transform U(S) in (3.3) unchanged. Does this mean
we can force any GMRES convergence speed with arbitrary Ritz values? There is one
situation where this is certainly not possible: When there is a zero Ritz value in some
iteration, this implies a singular Hessenberg matrix and corresponds to an indefinable
iterate in the full orthogonalization method, which is equivalent to stagnation in the
parallel GMRES process; see, e.g., [6, 19]. Hence zero Ritz values are equivalent with
GMRES stagnation. For completeness, we give another proof of this well-known fact,
formulated with the notation of Theorem 3.3.

Lemma 3.4. With the notation of Theorem 3.3 and for 1 ≤ k ≤ n−1, the k-tuple

(ρ
(k)
1 , . . . , ρ

(k)
k ) contains a zero Ritz value if and only if ηk = 0 in (3.6).

Proof. Denote by U(S) the Ritz value companion transform in (2.2), and let it
be partitioned according to (3.3) as

U(S) = ‖b‖Dσ

[
‖b‖ t∗

0 T

]−1

= ‖b‖Dσ

[
1

‖b‖
−t∗T−1

‖b‖
0 T−1

]
,

whereDσ = diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj). By definition of U(S), the k-tuple (ρ(k)1 , . . . ,

ρ
(k)
k ) contains a zero Ritz value if and only if t∗T−1ek = 0. It can easily be checked

that the lower triangular factor L in the Cholesky decomposition

LL∗ = In−1 + T−∗tt∗T−1

has its kth row and column zero, except for the diagonal entry, if and only if
t∗T−1ek = 0. Then the vector ĥ, being the solution of the lower triangular system

LΓ∗ĥ = T−∗t,

has kth entry zero if and only if t∗T−1ek = 0.
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Thus GMRES residual norms cannot be fully independent of Ritz values. How-
ever, we will show that the only restriction Ritz values put on GMRES residual norms
is precisely that zero Ritz values imply stagnation. Otherwise, any GMRES behavior
is possible with arbitrary prescribed Ritz values. Before proving this, we need the
following auxiliary result.

Lemma 3.5. Consider n positive real numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) > 0,

and define

ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n − 1), ĥ = [η1, . . . , ηn1 ]
T .

If we denote by Rh the upper triangular factor of the Cholesky decomposition

RT
hRh = In−1 − ĥĥT

f(0)2
,

then we have

eTkR
−T
h ĥ = 0 ⇔ f(k − 1) = f(k), k = 1, . . . , n − 1.

Proof. The entries of RT
h are

(3.10)

(RT
h )i,k =

−ηiηk√
η2k+1 + · · · + η2n

√
η2k + · · · + η2n

, (RT
h )k,k =

√
η2k+1 + · · · + η2n√
η2k + · · · + η2n

;

see [17] on the Cholesky decomposition of a rank-one updated identity matrix, or
also [29, Theorem 4.2]. Therefore, if ηk = 0 for some k ≤ n − 1, then the kth row
and kth column of RT

h are zero except for the main diagonal entry. It is easily seen

from solving the lower triangular system RT
hx = ĥ with forward substitution that

x = R−T
h ĥ is zero only where ĥ is zero.

Theorem 3.6. Consider a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number, and n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) > 0,

such that f(k − 1) = f(k) if and only if the k-tuple (ρ
(k)
1 , . . . , ρ

(k)
k ) contains a zero

number. Let A be a square matrix of size n, and let b be a nonzero n-dimensional
vector. The following assertions are equivalent:
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1. The GMRES method applied to A and right-hand side b with zero initial guess
yields residuals r(k), k = 0, . . . , n − 1, such that

‖r(k)‖ = f(k), k = 0, . . . , n − 1,

A has eigenvalues λ1, . . . , λn, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of the

kth leading principal submatrix of the generated Hessenberg matrix for all
k = 1, . . . , n − 1.

2. The matrix A is of the form

A = WYC(n)Y −1W ∗

and b = Wh, where W is a unitary matrix and C(n) is the companion matrix
corresponding to the polynomial with roots λ1, . . . , λn. Y is given by

Y =

[
h

R
0

]
,

h being the vector

h = [η1, . . . , ηn]
T , ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1),

and R being the nonsingular upper triangular matrix of order n − 1

(3.11) R = R−1
h D−∗

c C−1,

where C is the trailing principal submatrix in the partitioning

(3.12) U(S) =
[

1 c∗

0 C

]

of the Ritz value companion transform U(S) for R defined in (2.2). Rh is the
upper triangular factor of the Cholesky decomposition

RT
hRh = In−1 − ĥĥT

f(0)2

for ĥ = [η1, . . . , ηn−1]
T , and Dc is a nonsingular diagonal matrix such that

(3.13) R−T
h ĥ = −f(0)2Dc c.

Proof. Because of Theorem 1.1 it is clear that the parametrization given here
generates the prescribed GMRES residual norms and vice versa. Hence it suffices to
show that the given parametrization generates the prescribed Ritz values and vice
versa. For this we will use the parametrization of Theorem 3.3 and prove that the
matrix R in (3.11) satisfies the same conditions as the upper triangular R in (3.2) in
Theorem 3.3.

First we show that the nonsingular diagonal matrix Dc used to define R in (3.11)
exists. With the assumed partitioning (3.12) of U(S) and by the definition of U(S),
the entries of c are zero precisely at positions corresponding to iterations with a zero
Ritz value. By assumption, ĥ is zero at exactly these positions and so is R−T

h ĥ with
Lemma 3.5. Thus we can always define a nonsingular diagonal matrix Dc such that

R−T
h ĥ = −f(0)2Dcc.
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Now with the definition (3.11) of R we have

R∗ĥ = −f(0)2C−∗c.

Next, in analogy with (3.3), consider the partitioning

(3.14) diag(f(0), D−∗
c )U(S)−1 =

[
f(0) t∗

0 T

]

of a diagonal scaling of U(S)−1 =
[
1 −c∗C−1

0 C−1

]
. It follows that

t = −f(0)C−∗c =
R∗ĥ
f(0)

and

T = D−∗
c C−1.

To prove that the matrix R in (3.11) satisfies the same conditions as the upper trian-
gular R in (3.2) in Theorem 3.3, it remains to show that R−1

h = L∗, Γ = In−1, where
L and Γ are the matrices defined in the second assertion of Theorem 3.3. We have

In−1 + T−∗tt∗T−1 = In−1 +DcC
∗ R

∗ĥ

f(0)

(
DcC

∗R
∗ĥ

f(0)

)∗

= In−1 +
R−T

h ĥ

f(0)

(
R−T

h ĥ

f(0)

)∗

= R−T
h

(
RT

hRh +
ĥĥ∗

f(0)2

)
R−1

h

= R−T
h R−1

h

and with Γ = In−1

eTkR
T
hT

−∗t = eTkR
T
h

R−T
h ĥ

f(0)
=

ηk
f(0)

≥ 0, k = 1, . . . , n − 1.

Together with

ηn = f(n − 1) =
√
f(0)2 − (f(0)2 − f(1)2) − · · · − (f(n − 2)2 − f(n − 1)2)

= f(0)

√
1 − ‖ĥ‖2

f(0)2
,

we have that matrices of the form

W

[
h

R
0

]
C(R(n))

[
h

R
0

]−1

W ∗

and right-hand sides Wh generate the prescribed Ritz values and vice versa; see
Theorem 3.3.

The only freedom we have to prescribe both Ritz values and GMRES residual
norms is in the unitary matrix W and in those entries of the diagonal matrix Dc

on positions corresponding to iterations with a zero Ritz value or, equivalently, on
positions corresponding to iterations where GMRES stagnates. On these positions
Dc may have arbitrary values. In this sense we have exhausted all the degrees of



974 JURJEN DUINTJER TEBBENS AND GÉRARD MEURANT

freedom; GMRES and Arnoldi are invariant under unitary transformation, and more
values than Ritz values and residual norms cannot be prescribed for the same Arnoldi
process.

Theorem 3.6 says that one can construct matrices and right-hand sides for which
converged Ritz values need not imply accelerated convergence speed in the GMRES
method, as is the case for the CG method for Hermitian positive definite matrices [45].
The only restriction Ritz values put on GMRES is that a zero Ritz value leads to stag-
nation in the corresponding iteration. A restricted role of Ritz values for GMRES may
be expected in view of the fact that the Ritz values are not the roots of the poly-
nomials GMRES generates to compute its residuals. These roots are the harmonic
Ritz values [35, 19]. Although harmonic Ritz values generated in the Arnoldi proce-
dure might be prescribed in a way similar to what we did for ordinary Ritz values in
the previous section [30], it is not clear whether this is possible with given GMRES
residual norms. Nonetheless, the extent to which ordinary Ritz values and residual
norms are independent is astonishing. Note, for example, that for matrices close to
normal the bounds derived in [46] suggest that as soon as eigenvalues of such matrices
are sufficiently well approximated by Ritz values, GMRES from then on converges at
least as fast as for a related system in which these eigenvalues are missing. This may
be surprising, but it is not contradictory.

Note that we also could have formulated the second assertion in the previous
theorem analogously to the second assertion in Theorem 3.3. Then the diagonal
scaling matrix in (3.3) takes the form of the diagonal matrix in (3.14); otherwise the
assertion need not be changed. Translated in the notation of Corollary 2.3, this gives
the following alternative parametrization.

Corollary 3.7. Assume that we are given a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number, and n positive real numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) > 0,

such that f(k − 1) = f(k) if and only if the k-tuple (ρ
(k)
1 , . . . , ρ

(k)
k ) contains a zero

number. If A is a matrix of order n and b a nonzero n-dimensional vector, then the
following assertions are equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial guess
yields residuals r(k), k = 0, . . . , n − 1, such that

‖r(k)‖ = f(k), k = 0, . . . , n − 1,

A has eigenvalues λ1, . . . , λn, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of the

kth leading principal submatrix of the generated Hessenberg matrix for all
k = 1, . . . , n − 1.

2. The matrix A is of the form

A = V diag(f(0), D−∗
c )U(S)−1C(n)U(S) diag(f(0)−1, D∗

c )V
∗



ON ARBITRARY ARNOLDI AND GMRES CONVERGENCE 975

and b = ‖b‖V e1, where V is a unitary matrix, U(S) is the Ritz value com-
panion transform for R defined in (2.2), and C(n) is the companion matrix
of the polynomial with roots λ1, . . . , λn. Dc is a nonsingular diagonal matrix
such that

R−T
h ĥ = −f(0)2Dcc

with ĥ being the vector

ĥ = [η1, . . . , ηn−1]
T , ηk = (f(k − 1)2 − f(k)2)1/2,

Rh being the upper triangular factor of the Cholesky decomposition

RT
hRh = In−1 − ĥĥT

f(0)2
,

and c being the first row of U(S) without its diagonal entry.
This parametrization is based on unitary matrices V spanning Kn(A, b) instead of

unitary matrices W spanning AKn(A, b) and is therefore closer to the actual Arnoldi
process which is run in standard implementations of the GMRES and Arnoldi meth-
ods. On the other hand, the parametrization in Theorem 3.6 reveals more clearly the
relation with the prescribed residual norms. Note that we can easily change Corol-
lary 3.7 to yield a “V -based” analogue of Theorem 1.1; it suffices to consider U(S)
as a free parameter matrix. Corollary 3.7 also shows how to define the subdiagonal
entries hk+1,k of a Hessenberg matrix with prescribed Ritz values in order to obtain
prescribed GMRES residual norms: They follow from the equality

f(0) diag
(
1, h2,1, h2,1h3,2, . . . ,Π

n−1
j=1 hj+1,j

)
= diag (f(0), D−∗

c ).

4. Conclusions and future work. The Arnoldi orthogonalization process is a
cornerstone of several successful Krylov subspace methods for non-Hermitian matrices.
Nevertheless, two of the most popular methods based on it, the GMRES and the
Arnoldi methods, can exhibit counterintuitive convergence behavior. For GMRES it
has been known for some time that any nonincreasing convergence curve is possible
and can be generated with any spectrum [21]; the fact that all Ritz values formed by
the Arnoldi method can be prescribed appears not to have been noticed so far. The
present paper also shows that arbitrary convergence of GMRES is possible not only
with any spectrum, but even with any Ritz values for all iterations (provided that we
treat the stagnation case correctly).

Given the success of (modified versions of) the GMRES and Arnoldi methods for
a large variety of problems, the situations described in our theoretical results may
occur rarely in solving practical problems in scientific computing. For example, in
the Arnoldi method, cases of Ritz values diverging further away from the spectrum in
every iteration are possible, as we proved in section 2, but they happen for particular
matrices only in combination with particular initial Arnoldi vectors. As one normally
chooses the initial Arnoldi vector randomly, the chances that this vector produces di-
verging Ritz values may be small, and in practice one can easily rerun the process with
a different random initial Arnoldi vector. In the GMRES method, however, one is
stuck with a given right-hand side, and applications exist where the pathological cases
described in [21] occur. An example is given by convection-diffusion problems; see,
e.g., [37] or [26, Figures 3.10 and 3.11]. This type of problem also contains an illustra-
tion of our results of section 3: In the convection dominated case, system matrices are
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often close to transposed Jordan blocks (i.e., upper Hessenberg matrices with identical
Ritz values for all iterations), and, for certain boundary conditions, right-hand sides
are close to the first unit vector [26]. Hence we have almost converged Ritz values
from the very start, but this does not mean that GMRES converges rapidly as one
would expect. On the contrary, it is known that these problems give very slow, nearly
stagnating GMRES residual norms during the initial phase of convergence [15, 26].

It is often assumed that counterintuitive GMRES behavior, i.e., spectral informa-
tion which is misleading for residual norms, is possible in the highly nonnormal case
only, and one may expect the counterintuitive results of this paper to be restricted to
the highly nonnormal case, too. Neither of the two statements is entirely correct; for
instance, arbitrary GMRES convergence curves are possible for such nice normal ma-
trices as are the perfectly conditioned unitary matrices; see [22, section 3.1] and [21].
As for our results on the Arnoldi method, certainly prescribed Ritz values outside
the convex hull of the eigenvalues are possible with nonnormal matrices only, and
probably the further one prescribes Ritz values away from the convex hull, the more
nonnormal the constructed input matrix must be. On the other hand, divergence
inside the convex hull might still be possible with some normal but non-Hermitian
matrices. Very little appears to the authors to be known on this topic (for general
normal matrices of size three, see, e.g., [7]). Although there are generalized interlacing
properties for normal matrices, they cannot be exploited because the leading principal
submatrices of normal Hessenberg matrices need not be normal. Let us also recall
that the Ritz values generated in the Lanczos method in the next-to-last iteration can
be as far from the eigenvalues as allowed by the interlacing property [41].

Our results are of a theoretical nature and may give additional insight into the
properties of the GMRES and the Arnoldi methods. An important issue related
to our results is how to detect, a priori, whether a matrix with initial vector will
lead to diverging Ritz value behavior in Arnoldi or to stagnation in GMRES. For
GMRES, work on complete or partial stagnation was done, for example, in [48] or,
recently, in [29], where the results are linked with the parametrization in Theorem 1.1.
More generally, the question is whether our theory gives some insight into what is
a good Arnoldi starting vector, respectively, right-hand side b. Work for the near
future includes modifications of our results for popular restarted versions of Arnoldi
or GMRES which may enhance theoretical insight into the behavior of strategies that
are frequently used in practice.

Software. At http://www.cs.cas.cz/duintjertebbens/duintjertebbens soft.html
the reader can find MATLAB subroutines to create matrices and initial vectors with
the parametrizations in this paper.
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[21] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible
for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465–469.
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1. Introduction

In this paper we consider the convergence behavior of the GMRES method for solving
linear systems

Ax = b

with (generally complex) square matrices A of order n and right-hand sides b; for a
detailed description of this popular Krylov subspace method see [1] or [2]. With no loss
of generality, we consider zero initial guess x0 = 0. The kth GMRES iterate is the
vector xk in the kth Krylov subspace which minimizes the residual norm, that is

xk = arg min
x∈Kk(A,b)

‖b − Ax‖, Kk(A, b) ≡ span
{
b, Ab, . . . , Ak−1b

}
. (1)

It follows that the kth residual vector rk = b − Axk is the difference between b and its
orthogonal projection onto the Krylov residual subspace AKk(A, b). A standard conver-
gence bound for the kth residual norm with diagonalizable A is

‖rk‖
‖b‖ � κ(Z) min

p∈Πk

max
i=1,...,n

∣∣pk(λi)
∣∣, (2)

where A has the spectral decomposition A = ZΛZ−1, Λ = diag(λ1, . . . , λn), κ(Z) is the
condition number of the eigenvector matrix and Πk is the set of polynomials of degree k

with the value one at the origin (see, e.g., [2]). For Hermitian matrices, convergence of
Krylov subspace methods like Conjugate Gradient or MINRES is very strongly linked
with the eigenvalue distribution. For instance, the values these methods minimize (some
norm of the error or residual vector) can be bounded with the same bound as in (2)
where κ(Z) = 1. This bound then depends on the spectrum only and, concerning the
envelope of all possible convergence curves for matrices A having the given spectrum,
it is sharp [3], i.e., for every k there exists a right-hand side (depending on k) such
that equality holds in (2). However, it has been known for some time that eigenvalues
alone cannot explain GMRES convergence for non-Hermitian and, more specifically, for
non-normal matrices. This was first shown in the 1994 paper [4], in which the authors
studied the matrices B that generate the same Krylov residual space as the one given
by the pair (A, b), that is

BKk(B, b) = AKk(A, b), k = 1, 2, . . . , n.

Then GMRES applied to (B, b) yields the same convergence history (with respect to
residual norms) as GMRES applied to (A, b). Matrices B with this property will be called
GMRES(A, b)-equivalent matrices. They can be characterized as follows (we assume for
simplicity of notation, that GMRES applied to (A, b) does not terminate until the step n,
i.e., dim(Kn(A, b)) = n).
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Theorem 1. (See Theorem 1 of [4].) Let W be a unitary matrix whose first k columns
give a basis of AKk(A, b) for all k with 1 � k � n and let H be an unreduced upper
Hessenberg matrix such that AW = WH. Then, the following assertions are equiva-
lent:

1. B is GMRES(A, b)-equivalent.
2. B = WR̃HW ∗, where R̃ is any nonsingular upper triangular matrix.

Among other results, it is shown in [4] that the spectrum of B can consist of arbitrary
nonzero values. In [5] this was extended by proving the fact that any nonincreasing
sequence of residual norms can be generated by GMRES and [6] closed this series of
papers with a full parametrization of the class of matrices and right-hand sides giving
prescribed convergence history while the system matrix has prescribed nonzero spectrum;
for a survey we refer to [7, Section 5.7]. In [8] a parametrization was given of the class of
matrices and right-hand sides generating, in addition to prescribed residual norms and
eigenvalues, prescribed Ritz values in all iterations.

While all these results show that spectral information only can be misleading when
explaining GMRES convergence behavior with general matrices, GMRES convergence
is bounded using the eigenvalue distribution when it is applied to normal matrices in
view of (2). More strongly, GMRES convergence is for normal matrices determined by
the approximation problem

‖rk‖ = min
p∈Πk

∥∥p(Λ)Z∗b
∥∥. (3)

On p. 105 of [4] the authors wrote, with respect to Theorem 1: “If, for each vector b,
we can find a matrix B of the given form, for which we can analyze the behavior of the
GMRES method applied to B, then we can also analyze the behavior of the GMRES
method applied to A. Since the behavior of the GMRES method for normal matrices
is well-understood in terms of the eigenvalues of the matrix, it is desirable to find an
upper triangular matrix R̃ such that R̃H is normal.” It was shown subsequently in [4]
that R̃ can always be chosen such that R̃H is normal and even unitary, and under some
assumptions such that R̃H is Hermitian positive definite or just Hermitian. In general,
however, no simple properties of A were found which are related to the spectral properties
of a GMRES(A, b)-equivalent normal matrix.

Two papers, both published in 2000, analyzed the eigenvalues of particular unitary
GMRES(A, b)-equivalent matrices and studied in detail the relation with GMRES con-
vergence. In [9], Liesen used QR and RQ factorizations of the matrix H to obtain bounds
for the residual norms in terms of the largest gap in the spectrum of the Q factors
on the unit circle. He showed, among other things, that a large maximum gap in the
spectrum of the Q factor in an RQ factorization H = RQ implies fast GMRES con-
vergence; see also his PhD thesis [10, Section 5]. In [11], Knizhnerman considered H
to be a possibly infinite dimensional bounded operator and showed an inverse result,
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namely that for finite operators (matrices), fast GMRES convergence implies a large gap
in the spectrum of Q in a certain RQ factorization of H. It was also shown that the
entries of this particular Q can be expressed in terms of the residual norms only [11,
Section 6.1].

The goal of this paper is to further explore how and to what extent GMRES con-
vergence can be explained using unitary GMRES(A, b)-equivalent pairs. With a unitary
GMRES(A, b)-equivalent pair (B, c) we mean a matrix B with a right-hand side c which
generate the same convergence history as (A, b) where B is unitary and c is not neces-
sarily equal to b. We will characterize such pairs and investigate their properties. Unlike
in [4], we will not consider the unitary matrix W in B = WR̃HW ∗ (see Theorem 1)
merely an unimportant change of variables matrix, whose influence is not taken into
account when analyzing the spectrum of B. Our investigation will rely on the fact that
the first k columns of W form a basis of AKk(A, b), 1 � k � n. We show that all unitary
GMRES(A, b)-equivalent matrices B can be constructed from W and from a unitary
matrix V whose first k orthogonal columns form bases of Kk(A, b), 1 � k � n. Since V

and W depend strongly on the interplay between A and b, our goal cannot be in relating
GMRES convergence to some simple properties of A only. Instead, we will describe how
both the eigenvalues of B and components of c in the eigenvector basis of B determine
the convergence curve. This will be based on a new explicit expression for the kth residual
norm generated by a normal matrix.

The paper is organized as follows. Section 2 characterizes GMRES(A, b)-equivalent
matrices B and pairs (B, c), where B is unitary, and it explains their relationship to the
Krylov subspaces and Krylov residual subspaces produced by A and b. In this section
it is also shown that the eigenvectors of B play a substantial role in the description
of convergence for GMRES applied to (A, b). Section 3 contains the derivation of a
formula for the kth GMRES residual norm in terms of the eigenvalues, eigenvectors
and the right-hand side when GMRES is applied to a normal matrix. These quan-
tities can be useful to gain some insight in the convergence for (A, b) with the help
of a GMRES(A, b)-equivalent pair where the matrix is normal and, in particular, uni-
tary.

Throughout the paper we will assume, as mentioned above, that GMRES does not
terminate until the last step n. Hence, the Krylov subspaces are of full dimension and
their orthogonal bases constructed using the Gram–Schmidt algorithm are well defined.
We also assume the zero initial guess in all applications of GMRES. For simplicity we
normalize the right-hand side b such that ‖b‖ = 1. We will use repeatedly the fact that
GMRES residual norm convergence is unitarily invariant in the sense that, U being
any unitary matrix, the pair (U∗AU,U∗b) generates the same residual norms as (A, b).
With ei we will denote the ith column of the identity matrix (of appropriate order).
With “the subdiagonal” and “subdiagonal entries” of an upper Hessenberg matrix we
will mean the (entries on the) first subdiagonal under the main diagonal. Hessenberg
matrices with a real positive subdiagonal will be denoted with a plus as lower index, for
example H+.
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2. Unitary GMRES(A, b)-equivalent pairs

In this section we characterize pairs (B, c) which yield the same GMRES conver-
gence history as (A, b) with B unitary and c not necessarily equal to b. We describe
their relationship to the Krylov subspaces and Krylov residual subspaces generated by
(A, b) and study the influence of the spectrum of B on the convergence history for
(A, b).

2.1. Unitary GMRES(A, b)-equivalent matrices

First let us consider the case where c = b. Here is a characterization of the class of all
unitary GMRES(A, b)-equivalent matrices.

Proposition 2. Let W be a unitary matrix whose first k columns give a basis of AKk(A, b)
for 1 � k � n, let H be an unreduced upper Hessenberg matrix such that AW = WH
and let H = RQ be an RQ factorization of H. Then, the following assertions are equiv-
alent:

1. B is unitary and GMRES(A, b)-equivalent.
2. B = WD1QW ∗, where D1 is a diagonal unitary matrix.

Proof. Any RQ factorization of H has the form H = (RD−1
0 )(D0Q), where D0 is a

diagonal unitary matrix. Thus, with the notation of Theorem 1, B is unitary if and
only if B = W (R̃RD−1

0 )(D0Q)W ∗ is unitary, which is true if and only if R̃R is unitary.
This holds if and only if R̃ = D1R

−1 for a diagonal unitary matrix D1, giving B =
WD1D

−1
0 D0QW ∗ = WD1QW ∗. �

Thus all unitary GMRES(A, b)-equivalent matrices are of the form B = WQW ∗

where Q is the unitary factor of an RQ decomposition of H.
Note that the Hessenberg matrix H is not the Hessenberg matrix generated in a

standard implementation of GMRES where an orthogonal basis of Kn(A, b) is built.
H results from building an orthogonal basis of AKn(A, b) by starting the Arnoldi process
with the vector Ab/‖Ab‖. This is done, for example, in the Walker–Zhou implementation
of GMRES [12]. In a standard implementation of GMRES, one constructs the unitary
matrix V̂ whose first k columns span the Krylov space Kk(A, b) for all 1 � k � n

and which is the result of the Arnoldi orthogonalization process applied to (A, b). More
precisely, the unitary V̂ satisfies

AV̂ = V̂ H+, V̂ e1 = b, (4)

for an unreduced upper Hessenberg matrix H+ with positive subdiagonal entries. Con-
sider the unique QR decomposition
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H+ = Q+R (5)

such that Q+ is a unitary upper Hessenberg matrix with a real positive first row; see [13].
The entries of the matrix Q from an RQ decomposition of H were given in terms of the
GMRES residual norms in Eq. (6.1) of [11]. Interestingly enough, the moduli of the
entries of Q+ and Q coincide. In order to show this, we need the following lemma. For
real matrices, it was also proved in [13, Theorem 3.1].

Lemma 3. Let W be a unitary matrix whose first k columns give a basis of AKk(A, b)
for 1 � k � n and let V̂ be the unitary matrix in (4). If Q+ is the unitary factor in the
QR factorization (5) of H+, then

Q+ = V̂ ∗WD2,

where D2 is a diagonal unitary matrix.

Proof. Because the first k columns of W form a basis of AKk(A, b), 1 � k � n, we can
write

AV̂ = WR̂

for some nonsingular upper triangular matrix R̂. Then from AV̂ = V̂ H+ = WR̂ we have
the QR decomposition

H+ =
(
V̂ ∗W

)
R̂.

Hence, for the properly chosen diagonal unitary matrix D2, Q+ = V̂ ∗WD2 has its first
row real and positive. �
Corollary 4. Let Q+ be the unitary factor in the QR factorization (5) and let Q be the
unitary factor of an RQ decomposition of H. Then

Q = D∗
3Q

+D∗
2

where D2 is the matrix of Lemma 3 and D3 is a diagonal unitary matrix.

Proof. From (4) and Lemma 3 we have

AWD2
(
Q+)∗ = WD2

(
Q+)∗H+,

which implies

W ∗AW = H = D2
(
Q+)∗H+Q+D∗

2 .
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Hence we have the RQ decomposition

H = D2
(
Q+)∗(Q+R

)
Q+D∗

2 = (D2R)
(
Q+D∗

2
)
.

Therefore, Q is of the form Q = D∗
3Q

+D∗
2 for some diagonal unitary matrix D3. �

Lemma 3 enables another characterization of unitary GMRES(A, b)-equivalent matri-
ces; cf. Proposition 2.

Theorem 5. The following assertions are equivalent:

1. B is unitary and GMRES(A, b)-equivalent.
2. B = WV ∗, where V is a unitary matrix whose first k columns give a basis of Kk(A, b)

and W is a unitary matrix whose first k columns give a basis of AKn(A, b) for
1 � k � n.

Proof. Because of Proposition 2, if B is unitary and GMRES(A, b)-equivalent, then B

is of the form

B = ŴD1QŴ ∗,

where the columns of Ŵ are an orthonormal basis of AKn(A, b). Using Lemma 3 and
Corollary 4, we obtain

B = ŴD1QŴ ∗ = ŴD1D
∗
3Q

+D∗
2Ŵ

∗ = ŴD1D
∗
3 V̂

∗ŴŴ ∗ = ŴD1D
∗
3 V̂

∗.

Putting V = V̂ D3 and W = ŴD1 gives the first implication. Now let B = WV ∗. Then
with Lemma 3, for some diagonal unitary matrix D4,

B = W
(
V ∗W

)
W ∗ = W

(
D4V̂

∗W
)
W ∗ = W

(
D4Q

+D∗
2
)
W ∗

and with Corollary 4,

B = W
(
D4Q

+D∗
2
)
W ∗ = W

(
D4D3QD2D

∗
2
)
W ∗ = W (D4D3Q)W ∗.

This yields the second implication if we use Proposition 2. �
This theorem shows how closely unitary GMRES(A, b)-equivalent matrices are related

to the Krylov subspaces Kk(A, b) and the Krylov residual subspaces AKk(A, b) for 1 �
k � n. These subspaces, and therefore also the matrices V and W , depend strongly on the
interplay between A and b. Linking the properties of unitary GMRES(A, b)-equivalent
matrices (like spectral properties) to some simple properties of A only is therefore rather
complicated.
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With the help of Theorem 5 we can characterize the eigenvalues of unitary
GMRES(A, b)-equivalent matrices in terms of the Krylov subspaces Kk(A, b) and the
Krylov residual subspaces AKk(A, b), 1 � k � n. GMRES convergence for (A, b) is
bounded by these eigenvalues in the following sense.

Corollary 6. Using the notation of Theorem 5, the GMRES residual norms for the pair
(A, b) are bounded as

‖rk‖
‖b‖ � min

p∈Πk

max
i=1,...,n

∣∣pk(μi)
∣∣, (6)

with μ1, . . . , μn being the eigenvalues in the generalized eigenvalue problem

V ∗x = μW ∗x. (7)

It is worth noticing that in (6) the polynomials are evaluated at points which depend
through V and W in (7) on the right-hand side b.

2.2. Unitary GMRES(A, b)-equivalent pairs

Now we come to unitary matrices that give the same residual norm convergence curve
as (A, b) with a right-hand side possibly different from b. Our goal will be to characterize
the set of all pairs (B, c) with these properties. Some pairs are obtained simply by using
the fact that GMRES convergence is unitarily invariant. For example, let us consider
a unitary GMRES(A, b)-equivalent matrix B = WV ∗ defined in Theorem 5 and let us
define S by interchanging V and W , i.e.

S = V ∗W. (8)

Since GMRES convergence is unitarily invariant, the pair (W ∗BW,W ∗b) = (V ∗W,

W ∗b) = (S,W ∗b) gives also the same residual norm convergence curve. We can find
a GMRES(A, b)-equivalent pair with the same unitary system matrix S but a different
right-hand side: Using the unitary equivalence (B, b) = (V ∗WV ∗V, V ∗b) = (S, e1) we
obtain the GMRES(A, b)-equivalent pair (S, e1). Since B is normal, we have B = ZΔZ∗

where Z is unitary and Δ is the diagonal matrix containing the eigenvalues of B. There-
fore yet another GMRES(A, b)-equivalent pair is (Δ, Z∗b).

We next give a parametrization of all GMRES(A, b)-equivalent pairs with a unitary
system matrix. For our result we will exploit the relationship between unitary upper
Hessenberg matrices with real positive subdiagonals and the so-called Schur parameters.
This relationship is briefly outlined below.

2.2.1. Unitary Hessenberg matrices and Schur parameters
Any unitary upper Hessenberg matrix of order n with positive subdiagonal entries can

be uniquely parametrized by n complex parameters γk such that |γk| < 1, k = 1, . . . , n−1
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and |γn| = 1, see, e.g., [14–19] or, for a reference from functional analysis, [20, Section 4.1]
where the parametrization is named GGT representation (after Geronimus, Gragg, and
Teplzaev). We will denote such unitary upper Hessenberg matrices with Q+ (not to
be confounded with the unitary upper Hessenberg matrices Q+ in (5) which have a
positive first row but do not necessarily have a positive subdiagonal). The γk’s are called
Schur parameters (this term was introduced in [14]). They are also known as partial
correlation coefficients in statistics and reflection coefficients in signal processing. It is
useful to introduce the so-called complementary Schur parameters σk, k = 1, . . . , n − 1
which are real and positive such that σk =

√
1 − |γk|2. The matrix Q+ can be written

as the product

Q+ = G1(γ1)G2(γ2) · · ·Gn−1(γn−1)G̃n(γn),

where

Gk(γk) = diag
(
Ik−1,

[−γk σk

σk γk

]
, In−k−1

)
, G̃n(γn) = diag(In−1,−γn), (9)

and the nonzero entries of Q+ are given by

qk+1,k = σj , qj,k = −γj−1σjσj+1 · · ·σk−1γk, 1 � j � k. (10)

This means that the matrix Q+ has the following form (see [18]):

Q+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ1 −σ1γ2 · · · · · · −σ1 · · ·σk−1γk · · · −σ1 · · ·σn−1γn

σ1 −γ1γ2 · · · · · · −γ1σ2 · · ·σk−1γk · · · −γ1σ2 · · ·σn−1γn

σ2 −γ2γ3 · · ·
... · · · −γ2σ3 · · ·σn−1γn

. . . . . . ...
σk−1 −γk−1γk · · · −γk−1σk · · ·σn−1γn

...
. . .

σn−1 −γn−1γn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Conversely, if we know Q+, then the Schur parameters and the complementary Schur
parameters are given by

γk = − q1,k

σ1 · · ·σk−1
, 1 � k � n, σk = qk+1,k, 1 � k < n, (11)

i.e., there is a one-to-one correspondence between Schur parameters and unitary upper
Hessenberg matrices with positive subdiagonal entries.

We also mention the relationship of Schur parameters with Szegö polynomials. If Qk

is the leading (in general not unitary) principal submatrix of Q+, then
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ψk(λ) = det(λI − Qk),

is the kth Szegö polynomial for 1 � k � n [21, Chapter XI]. Szegö polynomials can be
computed from a recurrence whose coefficients are the Schur parameters.

2.2.2. GMRES residual norms and Schur parameters
The matrices Gk(γk) in (9) remind us of Givens rotations used in the standard GMRES

implementation (see, e.g., [1]). The Arnoldi process applied to the pair (A, b) generates
the upper Hessenberg matrix H+ in (4) (this matrix is, in general, not unitary). Instead
of the QR decomposition (5) we can consider H+ = Q+R̂ where

Q∗
+ = F1(c1)F2(c2) · · ·Fn−1(cn−1),

Fk(ck) = diag
(
Ik−1,

[−ck sk

sk ck

]
, In−k−1

)
,

with Givens rotation parameters ck and sk > 0 satisfying |ck|2 + |sk|2 = 1. With this
choice Q+ has positive subdiagonal entries. Using (9), the Schur parameters and comple-
mentary Schur parameters of Q+ are related to the Givens rotation parameters through

|γk| = |ck|, σk = sk, k = 1, . . . , n − 1. (12)

Moreover, it follows easily from the minimization property (1) of GMRES that, with
‖b‖ = 1,

‖rk‖ =
k∏

j=1
|sj |, k = 1, . . . , n − 1, (13)

see, e.g., [2, Section 6.5.5, p. 166]. This results in the next theorem.

Theorem 7. Consider GMRES applied to (A, b) with corresponding residual norms
‖r0‖, ‖r1‖, . . . , ‖rn−1‖. The following assertions are equivalent:

1. (B, c) is GMRES(A, b)-equivalent and B is unitary.
2. The Arnoldi process applied to (B, c) generates the decomposition BX = XQ+ where

X is unitary, Q+ is a unitary upper Hessenberg matrix with positive subdiagonal
entries and the Schur parameters of Q+ satisfy

|γk| = ‖rk‖
√

1
‖rk‖2 − 1

‖rk−1‖2 , k = 1, . . . , n − 1.

Proof. For the first implication, note that Q+ has positive subdiagonal entries because
it is the Hessenberg matrix resulting from the Arnoldi process, with X denoting the



J. Duintjer Tebbens et al. / Linear Algebra and its Applications 450 (2014) 83–107 93

unitary matrix of the associated Arnoldi vectors. Because B is unitary by assumption,
Q+ = X∗BX must be unitary, too. Also note that Q+ is the Q factor of its own
QR decomposition computed with Givens rotations that have real positive off-diagonal
entries. Hence the Schur parameters γk and complementary Schur parameters σk, k =
1, . . . , n − 1 of Q+ satisfy (12). Because (B, c) is GMRES(A, b)-equivalent, we have

k∏

j=1
σj = ‖rk‖, k = 1, . . . , n − 1,

see (13). A straightforward argument using induction then gives

σk = ‖rk‖
‖rk−1‖

, k = 2, . . . , n − 1.

Using σk =
√

1 − |γk|2 we have

|γk| = ‖rk‖
√

1
‖rk‖2 − 1

‖rk−1‖2 .

For the opposite implication, first note that B is unitary because so are Q+ and X.
It follows from |γk| = ‖rk‖

√
1

‖rk‖2 − 1
‖rk−1‖2 and from σk =

√
1 − |γk|2 that the comple-

mentary Schur parameters of Q+ are

σk = ‖rk‖
‖rk−1‖

, k = 2, . . . , n − 1.

They are identical with the Givens sines because Q+ is the Q factor of its own QR
decomposition. Then, because of (13), the kth GMRES residual norm ρk generated by
(B, c) is

ρk =
k∏

j=1
sj =

k∏

j=1
σj = ‖rk‖, k = 1, . . . , n − 1. �

We remark that with Theorem 7 we can write the entries of Q+ as a function of the
residual norms. Consider the column k of the matrix Q+. Denoting γk = |γk|eiφk , the
entry in the first row is

q1,k = −σ1 · · ·σk−1γk = −eiφk
(
‖rk−1‖2 − ‖rk‖2)1/2

. (14)

The entry in row j � k is

qj,k = −γj−1σj · · ·σk−1γk

= −ei(φj−1+φk)
(

1
‖rj−1‖2 − 1

‖rj−2‖2

)1/2(
‖rk−1‖2 − ‖rk‖2)1/2

,
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where we use the convention σk · · ·σk−1 ≡ 1. Finally, as we already know, qk+1,k = σk =
‖rk‖/‖rk−1‖.

The previous theorem shows that for the upper Hessenberg matrix generated by the
Arnoldi process applied to a unitary GMRES(A, b)-equivalent pair, its Schur parameters
give the residual norms and, except for the phase angles, the residual norms determine
the Schur parameters.

Note that the upper Hessenberg matrix analyzed in [11] is the specific matrix where
all Schur parameters are chosen to be real positive. The upper Hessenberg matrix Q+

in (5) does not have a positive subdiagonal, but the entries of its first row satisfy

q+
1,k = ηk ≡

√
‖rk−1‖2 − ‖rk‖2, k = 1, . . . , n − 1, q+

1,n = ηn ≡ ‖rn−1‖,

see [13, Theorem 3.4], and they have the same moduli as in (14). Here ηk represents the
progress GMRES makes at the iteration step k; see [4–6].

Theorem 7 leads to the following characterization.

Corollary 8. The following assertions are equivalent:

1. (B, c) is GMRES(A, b)-equivalent and B is unitary.
2. The matrix B and the vector c are of the form

B = XV ∗WX∗, c = Xe1,

where X is any unitary matrix, V is a unitary matrix whose first k columns give a
basis of Kk(A, b) for 1 � k � n and W is a unitary matrix whose first k columns
give a basis of AKk(A, b) for 1 � k � n.

Proof. With Theorem 7, (B, c) is GMRES(A, b)-equivalent and B is unitary if and only
if the matrix B and the vector c are of the form

B = XQ+X∗, c = Xe1,

where X is unitary and Q+ is a unitary upper Hessenberg matrix with real positive
subdiagonal whose Schur parameters satisfy

|γk| = ‖rk‖
√

1
‖rk‖2 − 1

‖rk−1‖2 , k = 1, . . . , n − 1, |γn| = 1.

It is easy to see that all unitary Hessenberg matrices generated by unitary GMRES(A, b)-
equivalent pairs are diagonal unitary row and column scalings of each other. For example,
denoting γk = |γk|eiφk , Q+ is a diagonal unitary row and column scaling

Q+ = D∗
5Q++D6, D∗

5 = diag
(
1, e−iφ1 , . . . , e−iφn−1

)
, D6 = diag

(
eiφ1 , . . . , eiφn

)
(15)

of the upper Hessenberg matrix Q++ where all Schur parameters are real positive.
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A particular unitary GMRES(A, b)-equivalent pair is (S, e1) with S = V̂ ∗Ŵ where V̂

is a unitary matrix whose first k columns give a basis of Kk(A, b) and Ŵ is a unitary
matrix whose first k columns give a basis of AKk(A, b) for 1 � k � n, see (8). Note
that because of Lemma 3, S is a unitary row and column scaling of Q+ in that lemma
and is, in particular, upper Hessenberg. Therefore the Arnoldi process for the pair (S, e1)
generates a unitary upper Hessenberg matrix which is a diagonal unitary scaling of V̂ ∗Ŵ
and the upper Hessenberg matrix Q+ generated by any unitary GMRES(A, b)-equivalent
pair can be written as Q+ = D∗

7SD8 = (V̂ D7)∗ŴD8 for appropriate diagonal unitary
matrices D7 and D8. �

We see that like unitary GMRES(A, b)-equivalent matrices (see Theorem 5), unitary
GMRES(A, b)-equivalent pairs are determined (here up to unitary equivalence expressed
by X in Corollary 8), by orthonormal bases for the Krylov subspaces Kk(A, b) and Krylov
residual subspaces AKk(A, b) for 1 � k � n.

2.3. Unitary spectra and convergence behavior of GMRES

It is clear from the previous sections that there exist unitary GMRES(A, b)-equivalent
matrices with different spectra: With Proposition 2 the same convergence curve can be
generated with the spectrum of WQW ∗ and with the spectrum of WD1QW ∗ where D1
represents any diagonal unitary scaling. Similarly, there exist unitary system matrices
of GMRES(A, b)-equivalent pairs with different spectra. This follows for instance from
Theorem 7, where the same convergence curve is generated for all choices of phase angles
of the involved Schur parameters. We can also prove the following result.

Proposition 9. Consider GMRES applied to an unreduced unitary Hessenberg matrix Q

with the right-hand side e1 and zero initial guess. The following assertions are equivalent:

1. Q̃ is unitary and GMRES(Q, e1)-equivalent.
2. Q̃ = D1QD2, where Di, i = 1, 2 are diagonal unitary matrices.

Proof. For all k � n, an orthogonal basis for Kk(Q, e1) is given by the unit vectors
e1, . . . , ek and an orthogonal basis for

QKk(Q, e1) = span
{
Qe1, Q

2e1, . . . , Q
ke1
}

is given by the first k columns of Q. Therefore, with Theorem 5, Q̃ = WV ∗ where W is
a diagonal unitary column scaling of Q and V is a diagonal unitary column scaling of
the identity matrix I. �

In the following numerical experiments we take n = 50 and for given eigenvalues on the
unit circle and an initial vector, we generate the unitary upper Hessenberg matrix Q+
with real positive subdiagonal by applying the Arnoldi process to the corresponding
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Fig. 1. Spectrum (left) of the matrix Q+ and the GMRES residual norms for the pair (Q+, e1).

diagonal matrix Λ, i.e., ΛX = XQ+. The spectrum is chosen to have two clusters
within the semi-angle 10 and 5 degrees around 1 and −1 respectively, each containing
20 eigenvalues. The other 10 eigenvalues are distributed uniformly within the remaining
parts of the unit circle; see the left part of Fig. 1. The initial Arnoldi vector is chosen to
have all its entries equal, i.e., from Q+ = X∗ΛX it implies that the first column of X,
which is equal to the first row of the eigenvector matrix X∗ has all its entries equal to
1/

√
n. Applying GMRES to (Q+, e1) gives the residual norms shown in the right part of

Fig. 1. The first 12 Schur parameters of Q+ (see (11) and Theorem 7) are of small size
and the remaining ones have absolute value close to one.

Now we change the phase angles of the Schur parameters of Q+ to make them real
and positive. This gives the unitary upper Hessenberg matrix Q++; see (15) and [11].
Obviously, applying GMRES to (Q++, e1) gives the same residual norms as before. The
eigenvalues and the size of the squared first entries of the eigenvectors are for Q++,
however, different from those of Q+. They are plotted in Fig. 2, where the eigenvectors
are ordered increasingly with respect to the phase angle of the corresponding eigenvalues
(with the smallest phase angle being −π and the largest being π).

We can generate yet another GMRES(Q+, e1)-equivalent pair by using Proposition 9.
For instance let Q̃ = D1Q+D2 with

D1 = diag
(
e2πi/50, e4πi/50, e6πi/50, . . . , e2πi), D2 = I.

Fig. 3 plots for Q̃ the information analogous to Fig. 2. The spectrum of Q̃ and the first
components of its eigenvectors are clearly different from that of both Q+ and Q++.

Summarizing, there is no characteristic unitary spectrum corresponding to a certain
GMRES convergence curve; many unitary spectra can be in general associated with the
same curve. On the other hand, the bound (2) for a unitary GMRES(A, b)-equivalent pair
with κ(Z) = 1 seemingly suggests a relation between a unitary spectrum and GMRES
convergence. Such interpretation of (2) is, however, misleading. One must be careful with
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Fig. 2. Eigenvalues (left) and size of the squared first components of the associated eigenvectors of the
matrix Q++. The eigenvectors are in increasing order with respect to the phase angle of the eigenvalues.

Fig. 3. Spectrum (left) and size of the squared first components of the associated eigenvectors of the matrix Q̃.
The eigenvectors are in increasing order with respect to the phase angle of the eigenvalues.

linking the bound (2) to GMRES convergence, even if the matrix is normal. We remark
that when the matrix A is Hermitian with real distinct eigenvalues, the right-hand side
of (2) takes the value

min
p∈Πk

max
i=1,...,n

∣∣pk(λi)
∣∣ =
(

k+1∑

j=1

k+1∏

i=1, i�=j

|μi|
|μi − μj |

)−1

(16)

for a subset {μ1, . . . , μk+1} of k + 1 eigenvalues of {λ1, . . . , λn}, see [22]. However, as
soon as one eigenvalue of A is complex, Eq. (16) does not hold in general [23]. We have
the following facts for a unitary A.

If the spectrum of a unitary matrix has a large maximum gap, then we have fast
GMRES convergence. This was shown in [9]. On the other hand, if we have fast
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GMRES convergence, then there does not need to be a large gap in the spectrum of
the unitary matrix A; the fast convergence can be assured by a particular decomposi-
tion of b in the invariant subspaces of A. If Q+ is the corresponding upper Hessenberg
matrix resulting from the Arnoldi process applied to (A, b), then (Q+, e1) is a unitary
GMRES(A, b)-equivalent pair where Q+ has the same spectrum as the unitary matrix A.
Since the right-hand side e1 for the pair (Q+, e1) is independent of A and b, the interplay
of A and b has been in some sense wrapped into the entries of Q+. Of course, convergence
still depends on how rich e1 is in the various eigenvectors of Q+. However, if we scale
Q+ with unitary diagonal matrices D1 and D2 such that Q++ = D1Q+D2 has only real
positive Schur parameters, then, according to [11], fast convergence corresponds to a
large gap in the spectrum of the Hessenberg matrix Q++. The pair (Q++, e1) is another
unitary GMRES(A, b)-equivalent pair (by Proposition 9). This pair does not result from
the Arnoldi process for (A, b). It results from the Arnoldi process for a pair (Ã, b̃) where
the eigenvalues of the unitary matrix Ã must contain the same large gap as the spectrum
of Q++. GMRES applied to this matrix Ã with an arbitrary right-hand side will exhibit
fast convergence, see [9].

If we have stagnation of GMRES, then all corresponding unitary spectra have a very
regular structure. This is shown in the following result first proved in [24]; here we give
a shorter proof.

Proposition 10. Let the GMRES method for a pair (A, b) where A has order n stagnate
until the last iteration. The following assertions are equivalent:

1. There exists a vector c such that (B, c) is a GMRES(A, b)-equivalent pair and B is
unitary.

2. The spectrum of the unitary matrix B is given by the roots of the equation λn = eiφ

for a real number φ.

Proof. Let (B, c) be a GMRES(A, b)-equivalent pair. Because of Theorem 7, the Arnoldi
process applied to this pair generates a unitary upper Hessenberg matrix Q+ whose Schur
parameters are all zero, except for γn with |γn| = 1, i.e. γn = eiφ for a real number φ.
Then the Hessenberg matrix Q+ is nothing but the companion matrix for the polynomial
λn − eiφ (see (10)). The claim follows because B is obtained from Q+ using a similarity
transformation, see Theorem 7. Inversely, let the spectrum of the unitary matrix B be
given by the roots of the equation λn = eiφ for a real number φ and let B = ZBΛZ∗

B

be the spectral decomposition of B with unitary ZB . If C is the companion matrix
for the polynomial λn − eiφ, then it is also unitary and has the spectral decomposition
C = ZCΛZ∗

C with unitary ZC . We can write B as

B = ZBΛZ∗
B = ZBZ∗

CCZCZ∗
B = XCX∗, X ≡ ZBZ∗

C ,

with X unitary. Thus we have BX = XC and if we put X = [x1, . . . , xn], then
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xj = Bxj−1, j = 2, . . . , n

and

xj = Bj−1x1, j = 2, . . . , n, Bxn = eiφx1.

This means that with the choice c ≡ x1

BKn(B, c) = span{x2, . . . , xn, x1}.

Thus for k < n, x1 = c ⊥ BKk(B, c) = span{x2, . . . , xk+1} and GMRES applied to
(B, c) stagnates until the last step. �

The previous proposition shows that complete stagnation is possible for GMRES with
a unitary matrix B only if the spectrum of B represents a rotation of the roots of unity.
But if the spectrum of a unitary matrix B represents a rotation of the roots of unity,
this needs not imply complete stagnation of GMRES applied to B with an arbitrary
right-hand side. It holds for some specific choice of c.

In a more general context it is worth mentioning the paper [25] where the isometric
Arnoldi process is analyzed asymptotically using potential theory. In particular, the
paper defines and investigates the isometric Arnoldi minimization problem and makes
analogies between the properties of unitary Hessenberg matrices with positive diagonals
and Jacobi matrices.

In the next section we derive an expression for the residual norms in terms of eigen-
values and eigenvector components when GMRES is applied to a normal matrix.

3. GMRES residual norms for normal matrices

Let the Arnoldi process applied to the pair (A, b) with normal A generate the unre-
duced Hessenberg matrix H+ and the unitary matrix V̂ satisfying (4). Since V̂ ∗b = e1,
GMRES generates with (A, b) the same residual norms as with (H+, e1). We will there-
fore consider the pairs (H+, e1) with normal unreduced upper Hessenberg matrices. First
we need the following lemma, which also holds for non-normal H+.

Lemma 11. Let H+ be an unreduced Hessenberg matrix with real positive subdiagonal,
C be the companion matrix corresponding to its characteristic polynomial and let

U =
[
e1 H+e1 · · · Hn−1

+ e1
]
, (17)

which is an upper triangular matrix with real positive diagonal entries. Then

H+ = UCU−1.
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Proof. See [26, Lemma 2] and [27, Eq. (2.4)]. �
The matrix H+ is a normal unreduced upper Hessenberg matrix with real posi-

tive subdiagonal if and only if U in (17) is the Cholesky factor of a moment matrix.
This is stated more precisely in the next result, which is due to Parlett [28]. Note that
an unreduced normal Hessenberg matrix is diagonalizable and it has distinct eigenval-
ues.

Theorem 12. Let H+ be an unreduced Hessenberg matrix having real positive subdiagonal
entries. Let all its eigenvalues λi, i = 1, . . . , n be distinct and let U be the upper triangular
matrix in (17). Then the following statements are equivalent:

1. H+ is normal.
2. There exist real positive weights ωk with

∑n
k=1 ωk = 1 such that M = U∗U is the

moment matrix with entries defined by

Mi,j =
n∑

k=1
ωk(λ̄k)i−1λj−1

k . (18)

Proof. See [28]. �
For the proof see also [27, p. 392].
The weights in the second assertion are the squares of the moduli of the first

components of the eigenvectors of H+. Indeed, with the spectral factorization H+ =
Z diag(λ1, . . . , λn)Z∗ = ZΛZ∗ we get

U = Z
[
c Λc · · · Λn−1c

]
, c = Z∗e1,

which gives

M = U∗U =
[
c Λc · · · Λn−1c

]∗[
c Λc · · · Λn−1c

]
.

Comparing with (18) we obtain ωk = |eT
k c|2.

The residual norms generated by GMRES can be expressed in terms of the moment
matrix M = U∗U as follows. Let

K =
[
b, Ab, . . . , An−1b

]

be the Krylov matrix for a pair (A, b). Using (4),

M = U∗U = (V̂ U)∗V̂ U

=
(
V̂
[
e1 H+e1 · · · Hn−1

+ e1
])∗

V̂
[
e1 H+e1 · · · Hn−1

+ e1
]

=
([

b Ab · · · An−1b
])∗[

b Ab · · · An−1b
]

= K∗K.
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It has been proved in several publications (see, e.g., [29, Theorem 4.1] and [30, Lemma 1]),
that if Mk denotes the kth leading principal submatrix of M = K∗K, then the kth
GMRES residual norm ‖rk‖ satisfies

‖rk‖2 = 1
(M−1

k+1)1,1
. (19)

In [31, Theorem 2.1] the same result is written slightly differently and it is pointed out
that the formula goes back to [32, Sections 3 and 4], see also [33, Theorem 2.1] and
the remarks thereafter. Note that the formula (19) holds for general, not necessarily
normal A. In the normal case it leads to the main result of this section.

Theorem 13. Let A be a normal matrix with distinct eigenvalues and the spectral factor-
ization ZΛZ∗ where Λ = diag(λ1, . . . , λn), Z∗Z = ZZ∗ = I. Let b be a vector of unit
norm such that all entries of the vector c ≡ Z∗b are nonzero and let

∑
Ik

denote sum-
mation over all possible sets Ik of k indices i1, i2, . . . , ik such that 1 � i1 < · · · < ik � n.
The residual norms of GMRES applied to (A, b) then satisfy

‖r1‖2 =

∑
I2

ωi1ωi2

∏
i1�i�<ij�i2

i�,ij∈I2

|λij
− λi�

|2
∑n

i=1 ωi|λi|2
, (20)

and for k = 2, . . . , n − 1,

‖rk‖2 =

∑
Ik+1

[
∏k+1

j=1 ωij
]
∏

i1�i�<ij�ik+1
i�,ij∈Ik+1

|λij
− λi�

|2

∑
Ik

[
∏k

j=1 ωij
|λij

|2]∏i1�i�<ij �ik

i�,ij∈Ik

|λij
− λi�

|2
, (21)

where ωij
= |eT

ij
c|2.

Proof. Using (19) and Cramer’s rule:

‖rk‖2 = 1
(M−1

k+1)1,1
= det(Mk+1)

det(M2:k+1,2:k+1)
,

where M2:k+1,2:k+1 is the k×k trailing principal submatrix of Mk+1. We can write Mk+1
as

Mk+1 = V∗
k+1DωVk+1 =

(
V∗

k+1D
1/2
ω

)(
D1/2

ω Vk+1
)

≡ F ∗F, (22)

where

Vk+1 =

⎛
⎜⎜⎜⎝

1 λ1 · · · λk
1

1 λ2 · · · λk
2...

...
...

1 λn · · · λk
n

⎞
⎟⎟⎟⎠ ,
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is an n×(k+1) Vandermonde matrix and Dω a diagonal matrix of order n with ω1, . . . , ωn

on the diagonal. Similarly,

M2:k+1,2:k+1 = V∗
kΛ∗DωΛVk =

(
V∗

kD1/2
ω Λ∗)(ΛD1/2

ω Vk

)
≡ G∗G.

Let us first consider the determinant of Mk+1. Let FIk+1,: be the square submatrix
of F whose row indices belong to an index set Ik+1. Following [34], we can use the
Cauchy–Binet formula1 for the determinant of the square product of two conforming
rectangular matrices. When the rectangular matrices are Hermitian transposes of each
other, the formula yields

det(Mk+1) =
∑

Ik+1

∣∣det(FIk+1,:)
∣∣2.

Thus

det(Mk+1) =
∑

Ik+1

[
k+1∏

j=1
ωij

]
∣∣det(VIk+1)

∣∣2,

where (see [35])

VIk+1 =

⎛
⎜⎜⎜⎝

1 λi1 · · · λk
i1

1 λi2 · · · λk
i2...

...
...

1 λik+1 · · · λk
ik+1

⎞
⎟⎟⎟⎠ , det(VIk+1) =

∏

i1�i�<ij�ik+1
i�,ij∈Ik+1

(λij
− λi�

).

Analogously,

det(M2:k+1,2:k+1) =
∑

Ik

∣∣det(GIk,:)
∣∣2

=
∑

Ik

[
k∏

j=1
ωij

|λij
|2
]
∣∣det(VIk

)
∣∣2.

Noting that for k = 1, the matrix VIk
reduces to the number one, we have

∑

I1

[ 1∏

j=1
ωij

|λij
|2
]
∣∣det(VI1)

∣∣2 =
n∑

i=1
ωi|λi|2

∣∣det(1)
∣∣2,

which finishes the proof. �
Assuming that GMRES applied to a normal matrix A and a given right-hand side

vector b does not terminate until the last step n, this theorem gives the GMRES residual

1 This formula was first proved in 1812 independently by Augustin-Louis Cauchy (1789–1857) and Jacques
Binet (1786–1856).
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norms in terms of the eigenvalues and the squared size of the components of the right-
hand side vector in the direction of the individual eigenvectors. Thus Theorem 13 gives
the solution of the polynomial approximation problem (3).

It can easily be extended to the case where GMRES terminates before the step n.
If A has m < n distinct eigenvalues and b has nonzero components in all m associated
invariant subspaces, then GMRES terminates with rm = 0, (20) holds and if m > 2,
(21) holds for k = 2, . . . ,m − 1. If b has nonzero components only in � < m invariant
subspaces corresponding to distinct eigenvalues, then GMRES terminates with r� = 0,
(20) holds and if � > 2, (21) holds for k = 2, . . . , � − 1.

It should be pointed out that Ipsen gave in [31, Theorem 4.1] another expression
for ‖rk‖ using a minimization problem over k + 1 eigenvalues. In [23, Theorem 2.1],
the formula (21) was derived for k = n − 1. Formulas (20) and (21) might be of use in
situations where the influence of the right-hand side is of interest. For instance, restarting
in GMRES corresponds to changes in the weights ωij

. Worst case behavior corresponds
to taking the maximum over the values of ωij

. Theorem 13 also leads to a straightforward
lower and upper bound where the influence of b is separated from the influence of the
spectrum.

Corollary 14. With the notation of Theorem 13, let

ω− = min
1�i�n

ωi, ω+ = max
1�i�n

ωi.

Then the residual norms of GMRES applied to (A, b) satisfy

∑
I2

∏
i1�i�<ij �i2

i�,ij∈I2

|λij
− λi�

|2
∑n

i=1 |λi|2
ω− � ‖r1‖2 �

∑
I2

∏
i1�i�<ij�i2

i�,ij∈I2

|λij
− λi�

|2
∑n

i=1 |λi|2
ω+, (23)

and for k = 2, . . . , n − 1,

‖rk‖2 �

∑
Ik+1

∏
i1�i�<ij �ik+1

i�,ij∈Ik+1

|λij
− λi�

|2

∑
Ik

[
∏k

j=1 |λij
|2]∏i1�i�<ij�ik

i�,ij∈Ik

|λij
− λi�

|2
ω−, (24)

‖rk‖2 �

∑
Ik+1

∏
i1�i�<ij �ik+1

i�,ij∈Ik+1

|λij
− λi�

|2

∑
Ik

[
∏k

j=1 |λij
|2]∏i1�i�<ij�ik

i�,ij∈Ik

|λij
− λi�

|2
ω+. (25)

Proof. If C and D are two matrices of sizes n× (k+1) and n×n respectively, k � n−1,
and C is of full rank, then

σmin(D)2
eT
1 (C∗C)−1e1

� 1
eT
1 (C∗(D∗D)C)−1e1

� σmax(D)2
eT
1 (C∗C)−1e1

, (26)
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see [36, Lemma 1]. If we put, using the notation of the proof of Theorem 13, C ≡ Vk+1
and D ≡ D

1/2
ω , then the claim follows using exactly the same arguments as in the proof

of Theorem 13. �
The bounds are attained for ω− = ω+, that is, for all components of the right hand

side in the eigenvector basis of the same size. In that case the bounds are attained for
all k, i.e. one choice of b guarantees the equality throughout the entire GMRES process.
In comparison, the standard bound (2) with κ(Z) = 1 is fully dependent on eigenvalues,
but it is attained at iteration k for a specific right-hand side which depends upon k.
Moreover, (2) is an upper bound only; Corollary 14 gives both lower and upper bounds
showing the descriptive role of eigenvalues for the behavior of GMRES in the normal
case.

When A is unitary, the eigenvalues are of modulus one and (20) and (21) simplify to

‖r1‖2 =
∑

I2

ωi1ωi2

∏

i1�i�<ij �i2
i�,ij∈I2

|λij
− λi�

|2

and

‖rk‖2 =

∑
Ik+1

∏k+1
j=1 ωij

∏
i1�i�<ij �ik+1

i�,ij∈Ik+1

|λij
− λi�

|2

∑
Ik

∏k
j=1 ωij

∏
i1�i�<ij�ik

i�,ij∈Ik

|λij
− λi�

|2
, (27)

respectively. We see that the GMRES convergence for unitary matrices depends strongly
on the angles between pairs of eigenvalues on the unit circle. As it is obvious, the residual
norms stay the same when all eigenvalues are rotated by a given angle (without modifying
the eigenvectors).

Formula (27) for the GMRES residual norm, which holds at every iteration step,
offers an insight to the fact that outlying eigenvalues can often be associated with an
initial stage of slow GMRES convergence (see, e.g., [37] where the emphasis is on the
asymptotic convergence factor after the initial stage). From (27) we see that if there is
one tight cluster of eigenvalues and, say, m other eigenvalues well separated from this
cluster, then after m + 1 iterations there will be at least one small factor |λij

− λi�
|2 in

every summation term of the numerator because m + 2 eigenvalues are involved and at
least one pair of eigenvalues will belong to the cluster. If the weights are of similar size,
one can therefore expect acceleration of convergence after the m initial steps.

An analogous argument can be used in the presence of multiple clusters; with � well
separated clusters and another m well separated single eigenvalues, acceleration might
be expected after m + � steps. This offers an explanation for the acceleration of con-
vergence after 13 steps in Fig. 1, Section 2.3, where the spectrum was chosen to have
two clusters, the other 10 eigenvalues were regularly distributed around the remaining
portions of the unit circle and all weights were chosen to be equal. Here the sharpness of
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the start of the acceleration as well as the approximate slope of the convergence curve for
k > 13 depend on the tightness of the clusters in comparison with the mutual distance of
the well-separated eigenvalues. A bad configuration is when the eigenvalues are almost
regularly distributed on the unit circle and the weights are all of similar size.

Corollary 8 and (27) finally give the following statement.

Theorem 15. Let V be a unitary matrix whose first k columns give a basis of the Krylov
space Kk(A, b) and W be a unitary matrix whose first k columns give a basis of the
Krylov residual space AKk(A, b) for 1 � k � n. Using the notation of Theorem 13, the
residual norms of GMRES applied to (A, b) satisfy

‖r1‖2 =
∑

I2

ωi1ωi2

∏

i1�i�<ij �i2
i�,ij∈I2

|δij
− δi�

|2,

‖rk‖2 =

∑
Ik+1

∏k+1
j=1 ωij

∏
i1�i�<ij�ik+1

i�,ij∈Ik+1

|δij
− δi�

|2

∑
Ik

∏k
j=1 ωij

∏
i1�i�<ij �ik

i�,ij∈Ik

|δij
− δi�

|2
, k = 2, . . . , n,

where the δi are the eigenvalues in the generalized eigenvalue problem

Wx = δV x

and the ωi are the squared moduli of the first components of the corresponding eigenvec-
tors.

4. Conclusion

We investigate GMRES(A, b)-equivalent pairs (B, c), where B is unitary. We charac-
terize B in terms of orthonormal bases for the sequence of Krylov subspaces Kk(A, b)
and Krylov residual subspaces AKk(A, b), k = 1, 2, . . . , n. This shows that a possible
linking of the spectral properties of unitary GMRES(A, b)-equivalent matrices, which
influence GMRES convergence behavior, to some simple properties of A would be, in
general, rather difficult. We also offer some insight concerning the substantial role of the
right-hand side vector components in the direction of the individual eigenvectors. The
presented formula giving the residual norms for normal matrices can for some particular
eigenvalue distribution explain acceleration of convergence of GMRES observed after a
number of iterations.
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Abstract In this paper we give explicit expressions for the norms of the residual
vectors generated by the GMRES algorithm applied to a non-normal matrix. They
involve the right-hand side of the linear system, the eigenvalues, the eigenvectors and,
in the non-diagonalizable case, the principal vectors. They give a complete descrip-
tion of how eigenvalues contribute in forming residual norms and offer insight in
what quantities can prevent GMRES from being governed by eigenvalues.
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1 Introduction

We consider the convergence of GMRES (the Generalized Minimal RESidual
method) for solving linear systems with complex nonsingular matrices A of size
n and n-dimensional right-hand sides b; see e.g. [38] or [37] for a description of
the algorithm. The kth GMRES iterate xk minimizes, with x0 = 0, the norm of
the kth residual vector rk = b − Axk over all vectors in the kth Krylov subspace
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Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b}. Therefore, residual norms are non-increasing
and satisfy

‖rk‖ = min
p∈πk

‖p(A)b‖,
where πk is the set of polynomials of degree k with the value one at the origin and ‖·‖
denotes the 2-norm. If the Jordan canonical form of A is denoted by A = XJX−1,

then
‖rk‖ = min

p∈πk
‖Xp (J )X−1b‖. (1)

In this paper we focus on how convergence of the GMRES residual norms is influ-
enced by the entirety of spectral properties of A, that is, by the eigenvalues contained
in J and by the eigenvectors or principal vectors contained in X.

If A is Hermitian, the orthogonality of the eigenvectors results in a predominant
influence of the eigenvalues on convergence. For example, in Hermitian counterparts
of GMRES like the MINRES method [34] or the Conjugate Gradients method [19],
clustering of eigenvalues stimulates convergence, eigenvalues close to zero hamper
convergence and the eigenvalue distribution decides about the rate of convergence
(for a survey, see, e.g., [27]). In addition, there exist for these methods sharp upper
bounds consisting of a min-max problem which depends on the spectrum only. For
instance, in MINRES the residual norms satisfy

‖rk‖
‖b‖ ≤ min

p∈πk
max

i=1,...,n
|pk(λi)|, (2)

with λi denoting the eigenvalues of A (see, e.g., [37]) and for every k there exists
a right-hand side (depending on k) such that equality holds. MINRES is a method
for Hermitian matrices which is mathematically equivalent with GMRES, thus the
residual norms generated by GMRES applied to a Hermitian matrix satisfy the same
inequality. In fact, it is satisfied with normal matrices too, and in this case, GMRES
convergence is governed by eigenvalues as well. Moreover, from (1) we have for any
normal matrix

‖rk‖ = min
p ∈πk

‖p (J )X∗b‖, (3)

with J being a diagonal matrix of eigenvalues. This shows that with Hermitian or
other normal matrices, the residual norms are fully determined by two quantities:
eigenvalues and components of the right-hand side in the eigenvector basis. A closed-
form expression for the kth GMRES residual norm in terms of these quantities (in fact
of the moduli of the components of the right-hand side in the eigenvector basis), i.e.
the solution of (3), was presented in [10] and in an unpublished report from Bellalij
and Sadok (A new approach to GMRES convergence, 2011).

When A is not normal, the predominant role of the eigenvalues can be lost.
For diagonalizable non-normal matrices, the upper bound (2) is multiplied with the
condition number κ(X) of the eigenvector matrix, which may be large. We refer
to [26, Section 3.1] for a detailed discussion of other difficulties with interpreting
this bound in the non-normal case. The probably most convincing results showing
that GMRES need not be governed only by eigenvalues can be found in a series
of papers by Arioli, Greenbaum, Pták and Strakoš [1, 17, 18]. They show that for
any prescribed sequence of n non-increasing residual norms, there exists a class of
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right-hand sides and matrices, whose nonzero eigenvalues can be chosen arbitrarily,
giving residual norms that coincide with the given non-increasing sequence. In this
sense, GMRES convergence curves (with respect to residual norms) are independent
from the eigenvalues of A. It was shown in [8] that convergence curves do not even
depend on the Ritz values generated during all iterations of the GMRES process.
The strong potential independence from eigenvalues inspired many papers that look
for some approaches other than eigenvalue analysis to explain GMRES convergence.
They include pseudospectra [33, 44], the field of values [11], the polynomial numer-
ical hull [16], potential theory [23], decomposition in normal plus low-rank [20] or
comparison with GMRES for non-Euclidean inner products [36]. Though they can be
very suited to explain convergence for particular problems, none of the approaches
seems to represent a universal tool for GMRES analysis.

Nevertheless for many practical problems, eigenvalues seem to influence con-
vergence behavior strongly. This follows for instance from the fact that slow
convergence can often be successfully cured by eliminating particular convergence
hampering eigenvalues with a so-called deflation strategy; see, to mention just some
of a large number of proposed techniques, for instance [2, 5–7, 12, 14, 15, 22, 24,
29–32, 35]. This is not surprising since residual vectors are formed from a matrix
polynomial times the right-hand side and matrix polynomials are naturally related
to eigenvalues. It is often assumed that the situation where the behavior of GMRES
is not or little governed by eigenvalues occurs only for matrices that are far from
normal. However, even such a highly non-normal matrix as a Jordan block can
yield GMRES convergence curves that are dominated by the size of the involved
eigenvalue (this will also be discussed in Section 3 of this paper). In fact, Arioli,
Greenbaum, Pták and Strakoš never wrote in [1, 17, 18] that GMRES convergence
does not depend on the eigenvalues. The results in [1, 17, 18] merely show that
there are sets of matrices with different (arbitrary) eigenvalue distributions and right-
hand sides giving the same GMRES residual norms. In view of (1) this means that if
one modifies eigenvalues, then in order to have the same residual norms, the eigen-
vectors and/or principal vectors and the right-hand side must and can be modified
appropriately.

In this paper we address the interplay of eigenvalues, eigenvectors and the right-
hand side with respect to convergence. In the first place, our goal is to show as
precisely as possible, how eigenvalues contribute to the computation of residual
norms. To this end, we derive closed-form expressions for the residual norms. In
the second place, we use these expressions in an attempt to enhance insight in when
convergence can be suspected to be dominated by the spectrum and when not. We
discuss several interpretations of departure from normality, the role of the right-hand
side and the frequently observed convergence hampering influence of eigenvalues
close to the origin. For ease of presentation we will not consider the early termination
case in detail, though in practice, of course, one often terminates the process after a
small number of iterations. With early termination we obtain the same closed-form
expressions but for a smaller number of iterations and this leads to exactly the same
insights.

The contents of the paper are as follows. In Section 2 we give an expression of
the GMRES residual norms for diagonalizable matrices. Section 3 generalizes the
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ideas of the previous section for matrices with one Jordan block and Section 4 treats
the more general case when the matrix A is not diagonalizable. We formulate some
conclusions in the last section. Throughout the paper we will use the phrase “conver-
gence is governed by eigenvalues” when convergence depends only on eigenvalues
and on components of the right-hand side in the eigenvector basis; eigenvectors and
right-hand side do not influence convergence curves in any other way. This is the case
for GMRES applied to normal matrices, see (3), for the MINRES method, and, with
respect to the norm of the A-error, the Conjugate Gradients method. We will assume
that GMRES does not terminate before iteration n. Hence, the Krylov subspaces are
of full dimension and their orthogonal bases constructed using the Gram-Schmidt
algorithm are well defined. For the sake of simplicity we choose x0 = 0 and we nor-
malize the right-hand side b such that ‖r0‖ = ‖b‖ = 1. The vector ei will denote the
ith column of the identity matrix (of appropriate order). The entry on the ith row and
in the j th column of a matrix X is denoted by Xi,j and Xi:j,k:� denotes the subma-
trix of X with rows from i to j and columns from k to �. Xi:j,: denotes the submatrix
with rows from i to j and with all columns of X.

2 GMRES convergence for diagonalizable matrices

In this section we look for the solution of the minimization problem (1) in terms of
J , X and X−1b when A is diagonalizable with spectral factorization X�X−1 where
the eigenvalues are contained in � = J = diag(λ1, . . . , λn) . To this end, we gen-
eralize the results in [10] and in the unpublished report from Bellalij and Sadok (A
new approach to GMRES convergence, 2011) that solved the minimization prob-
lem (3) for normal matrices. The next sections will address the non-diagonalizable
case.

Let
K = (

b Ab A2b · · · An−1b
)
,

be the Krylov matrix whose first k columns are the natural basis vectors of the Krylov
subspace Kk(A, b) for 1 ≤ k ≤ n and let c = X−1b. Then the Krylov matrix K can
be written as K = X

(
c �c · · · �n−1c

)
and let us define the moment matrix.

M = K∗K = (
c �c · · · �n−1c

)∗
X∗X

(
c �c · · · �n−1c

)
(4)

For all Krylov subspaces to have full dimension we need the eigenvalues to be distinct
and c to have no zero entries. We remark that it is easily seen from the parametriza-
tions in [1] and [9] that any non-increasing GMRES convergence curve is possible
for diagonalizable matrices with any distinct eigenvalues. We now try to show how
eigenvectors and components of the right-hand side must be modified if we wish to
generate the same residual norms with different distinct eigenvalues.

The residual norms in GMRES are given by

‖rk‖2 = 1

eT1 M
−1
k+1e1

, k = 1, . . . , n− 1, (5)

where Mk+1 is the leading principal submatrix of order k + 1 of M . This result has
been proved independently in several papers; see [45, Theorem 4.1], [21, Theorem
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2.1] where the result is formulated differently using a pseudo-inverse and [39, Lemma
1] where it is given for real matrices. In [25, Theorem 2.1] and the remarks thereafter
it is pointed out that the formula goes back to [40, Section 3 and 4]. As in [10]
and in the unpublished report from Bellalij and Sadok (A new approach to GMRES
convergence, 2011), the (1, 1) entry of M−1

k+1 in (5) will be calculated using Cramer’s
rule:

(M−1
k+1)1,1 = det(M2:k+1,2:k+1)

det(Mk+1)
. (6)

With Dc denoting the diagonal matrix whose diagonal entries ci are the components
of c and with

Vk+1 =

⎛

⎜⎜
⎜
⎝

1 λ1 · · · λk1
1 λ2 · · · λk2
...

...
...

1 λn · · · λkn

⎞

⎟⎟
⎟
⎠
, (7)

an n× (k + 1) matrix, we see that Mk+1 in (6) can be written as

Mk+1 = V∗
k+1D

∗
cX

∗XDcVk+1. (8)

If F ≡ XDcVk+1, then Mk+1 is the product F ∗F of two rectangular matrices. To
compute the determinants of Mk+1 and M2:k+1,2:k+1 in (6) we will use the Cauchy-
Binet formula for determinants of products of rectangular matrices: For the product
of a (k × n) matrix G with an (n× k) matrix H there holds

det(GH) =
∑

Ik

det(G:,Ik ) det(HIk,:).

The notation used here is clear from the following definitions, which we will need in
the sequel.

Definition 1 With Ik (or Jk) we denote sets of k ordered indices i1, . . . , ik such that
1 ≤ i1 < · · · < ik ≤ n. With

∑
Ik

we denote summation over all such possible
ordered index sets. With XIk,Jk we denote the square k×k submatrix of X whose row
and column indices of entries are defined respectively by Ik and Jk . With

∏
j�<jp∈Jk

we denote the product over all pairs of indices j�, jp in the ordered index set Jk such
that j� < jp.

Having outlined the main proof ingredients, we now give the resulting expressions
of the residual norm for GMRES processes that do not terminate before iteration n.
We remark that they can be used for the case where GMRES terminates before the
step n as follows: If A has m < n distinct eigenvalues and b has nonzero components
in all m associated invariant subspaces, then GMRES terminates with rm = 0, and
the expressions presented below hold for k = 1, . . . , m− 1. If b has nonzero compo-
nents only in � < m invariant subspaces corresponding to distinct eigenvalues, then
GMRES terminates with r� = 0 and the expressions holds for k = 1 and if � > 2,
for k = 2, . . . , �− 1.

The next theorem does not contain very elegant formulaes, but it gives the solution
of (1) in the case where J is a diagonal matrix.
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Theorem 1 Let A be a diagonalizable matrix with a spectral factorization X�X−1

where � = diag(λ1, . . . , λn) contains the distinct eigenvalues and let b be a vector
of unit norm such that c = X−1b has no zero entries. When solving Ax = b with
x0 = 0, the GMRES residual norm at iteration k < n satisfies

‖rk‖2 = σN
k+1/σ

D
k ,

where

σN
k+1 =

∑

Ik+1

∣∣
∣∣
∣∣

∑

Jk+1

det(XIk+1,Jk+1) cj1 · · · cjk+1

∏

j�<jp∈Jk+1

(λjp − λj�)

∣∣∣
∣∣
∣

2

,

σD
1 = ∑n

i=1

∣
∣∣
∑n

j=1 Xi,j cj λj

∣
∣∣
2
, and for k ≥ 2

σD
k =

∑

Ik

∣
∣∣
∣∣
∣

∑

Jk

det(XIk,Jk ) cj1 · · · cjk λj1 · · · λjk
∏

j�<jp∈Jk
(λjp − λj�)

∣
∣∣
∣∣
∣

2

.

Proof We apply Cramer’s rule (6) to compute the (1, 1) entry of the inverse of Mk+1.
Let us first consider the determinant of Mk+1. By the Cauchy-Binet formula,

det(Mk+1) =
∑

Ik+1

| det(FIk+1,:)|2.

Thus we have to compute the determinant of FIk+1,:, a matrix which consists of rows
i1, . . . , ik+1 of XDcVk+1. It is the product of a (k+1)×n matrix that we can write as
(XDc)Ik+1,: by the n× (k+1) matrix Vk+1. Once again we can use the Cauchy-Binet
formula. Let

V(λj1, . . . , λjk+1) =

⎛

⎜⎜⎜⎜
⎝

1 λj1 · · · λkj1

1 λj2 · · · λkj2
...

...
...

1 λjk+1 · · · λkjk+1

⎞

⎟⎟⎟⎟
⎠

which is a square Vandermonde matrix of order k + 1. Then

det(FIk+1,:) =
∑

Jk+1

det(XIk+1,Jk+1)cj1 · · · cjk+1 det(V(λj1, . . . , λjk+1)).

Moreover, we have (see, e.g. [13])

det(V(λj1, . . . , λjk+1)) =
∏

j�<jp∈Jk+1

(λjp − λj�).

Finally, the determinant of Mk+1 is

σN
k+1 =

∑

Ik+1

∣∣∣∣∣∣

∑

Jk+1

det(XIk+1,Jk+1)cj1 · · · cjk+1

∏

j�<jp∈Jk+1

(λjp − λj�)

∣∣∣∣∣∣

2

.

Let us now consider the determinant of M2:k+1,2:k+1 which is a matrix of order
k. The computation is essentially the same, except that we have to consider the rows
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and columns 2 to k + 1. Therefore, it is not Vk which is involved any longer but a
matrix that can be written as �Vk . We have

M2:k+1,2:k+1 = V∗
k �

∗D∗
cX

∗XDc�Vk.

Then, we have some additional factors arising from the diagonal matrix � and we
have to consider only sets of k indices Ik and Jk . The determinant of M2:k+1,2:k+1 is
obtained, for k > 1, as

σD
k =

∑

Ik

∣∣∣
∣
∣∣

∑

Jk

det(XIk,Jk )cj1 · · · cjk λj1 · · · λjk
∏

j�<jp≤Jk

(λjp − λj�)

∣∣∣
∣
∣∣

2

.

Noting that for k = 1, the matrix VIk reduces to the number one, we have

σD
1 =

∑

I1

∑

J1

∣
∣det(XI1,J1)cj1 · · · cj1 λj1 · · · λj1 det(VI1)

∣
∣2

=
n∑

i=1

∣∣
∣∣∣∣

n∑

j=1

Xi,j cj λj det(1)

∣∣
∣∣∣∣

2

.

The residual norm squared is finally given as ‖rk‖2 = σN
k+1/σ

D
k .

Theorem 1 shows in what manner the norm of the residual vector depends on the
eigenvalues (through eigenvalue products and products of eigenvalue differences), on
the eigenvectors (through determinants of submatrices of the eigenvector matrix) and
on c = X−1b (through products of its entries). Theorem 1 seems to support the fre-
quently observed fact that eigenvalues close to the origin tend to hamper convergence.
The common explanation for this behavior is that it is difficult for GMRES to con-
struct, when it terminates, a polynomial with the value one in the origin which is zero
in an eigenvalue close to zero. Theorem 1 shows that, with diagonalizable matrices,
a spectrum close to the origin may cause many terms in the denominators σD

k to be
close to zero and may give relatively large residual norms. Of course, the papers [1,
17, 18] proved that small eigenvalues need not hamper convergence in general.

As we mentioned in the introduction, a standard upper bound for GMRES residual
norms with diagonalizable matrices is

‖rk‖
‖b‖ ≤ κ(X) min

p∈πk
max

i=1,...,n
|pk(λi)|, (9)

see, e.g., [38]. This bound suggests that the condition number κ(X) of the eigen-
vector matrix plays an important role for convergence behavior. But according to
Theorem 1, GMRES residual norms are not explicitly dependent on κ(X). The eigen-
vector matrix X has a large impact, but its inverse is present only through the entries
of c = X−1b (which is also clear from (1)). With an appropriate right-hand side, the
influence of a large value of ‖X−1‖ can be eliminated and give a vector c with entries
of moderate size.

When the matrix A is normal, we have X∗X = I and the sums over Jk and Jk+1
reduce to only one term (Jk = Ik, respectively Jk+1 = Ik+1). We then recover
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the formula in [10] and in the unpublished report from Bellalij and Sadok (A new
approach to GMRES convergence, 2011).

Theorem 2 Let A be a normal matrix with distinct eigenvalues and the spectral
factorization X�X∗ where � = diag (λ1, . . . , λn), X∗X = XX∗ = I . Let b be a
vector of unit norm such that all entries of the vector c = X∗b are nonzero. When
solving Ax = b with x0 = 0, the GMRES residual norm at iteration k = 1 satisfies

‖r1‖2 =
∑

I2
ωi1ωi2

∏
i�<ij∈I2

|λij − λi� |2
∑n

i=1 ωi |λ i |2 , (10)

and for k = 2, . . . , n− 1,

‖rk‖2 =
∑

Ik+1

[∏k+1
j=1 ωij

] ∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 ωij |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

, (11)

where ωij = |eTij c| 2.

We remark that equations (10) and (11) were derived in [28, Theorem 2.1] for
k = n − 1 and that the equations (for all k) hold as well for the residual norms
generated by the mathematically equivalent MINRES method for Hermitian (and so
normal) matrices.

When A is normal, GMRES residual norms depend on the eigenvectors and the
right-hand side only through the sizes ωi of the squared components of the right-
hand side in the eigenvector basis (which is also clear from (3)). Therefore, the role
of eigenvalues is much more pronounced than in the non-normal case. If A is close to
normal in the sense that X∗X ≈ I , then in the numerators σN

k+1 and denominators σD
k

of Theorem 1 the involved determinants of submatrices of X may be small except for
the choices Jk+1 = Ik+1, respectively Jk = Ik , but this has to be investigated further.
We can, however, derive bounds from Theorem 1 that involve the conditioning of X.
We derive them with the help of the following bounds that can be found in [3].

Lemma 1 Let G and H be two matrices of sizes n× (k+ 1) and n× n respectively,
k ≤ n− 1. If the matrix G is of full rank,

σmin(H)2

eT1 (G
∗G)−1e1

≤ 1

eT1 (G
∗(H ∗H)G)−1e1

≤ σmax(H)2

eT1 (G
∗G)−1e1

. (12)

Proposition 1 Let A be a matrix with distinct eigenvalues and the spectral factoriza-
tion X�X−1 where � = diag (λ1, . . . , λn). Let b be a vector of unit norm such that
all entries of the vector c ≡ X−1b are nonzero. When solving Ax = b with x0 = 0,
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the GMRES residual norm at iteration k = 1 satisfies

‖r1‖2 ≥ σmin(X)2

∑
I2
ωi1ωi2

∏
i�<ij∈I2

|λij − λi� |2
∑n

i=1 ωi |λ i |2 ,

‖r1‖2 ≤ ‖X‖2

∑
I2
ωi1ωi2

∏
i�<ij∈I2

|λij − λi� |2
∑n

i=1 ωi |λ i |2 ,

and for k = 2, . . . , n− 1,

‖rk‖2 ≥ σmin(X)2

∑
Ik+1

[∏k+1
j=1 ωij

] ∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 ωij |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

,

‖rk‖2 ≤ ‖X‖2

∑
Ik+1

[∏k+1
j=1 ωij

] ∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 ωij |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

,

where ωij = |eTij c| 2.

Proof Because of (5) and (8), we have

‖rk‖2 = 1

eT1 (V∗
k+1D

∗
c (X

∗X)DcVk+1)−1e1
.

Applying Lemma 1 with G ≡ DcVk+1 and H ≡ X we obtain

σmin(X)2

eT1 (V∗
k+1D

∗
cDcVk+1)−1e1

≤ ‖rk‖2 ≤ ‖X‖2

eT1 (V∗
k+1D

∗
cDcVk+1)−1e1

.

The claim follows by realizing that the value 1/eT1 (V∗
k+1D

∗
cDcVk+1)

−1e1 is precisely
the squared residual norm for a linear system with normal matrix having eigenvalues
λ1, . . . , λn and such that c = X−1b.

The bounds in the previous proposition are attained if κ(X) = 1 and are in some
sense a two-sided alternative to (9). They show that if σmin(X) is close to σmax(X),
then residual norms behave essentially as in the normal case and are governed by
eigenvalues. However, the opposite need not be true. If κ(X) is large, the question
whether convergence is dominated by the spectrum of A will depend on the inter-
play with the entries of c = X−1b and determinants of X. If we wish to derive
bounds similar to those in Proposition 1 where the eigenvalues are fully separated
from eigenvectors and right-hand side, this can be done as follows.

Proposition 2 Let A be a matrix with distinct eigenvalues and the spectral factor-
ization X�X−1 where � = diag (λ1, . . . , λn). Let b be a vector of unit norm such
that all entries of the vector c ≡ X−1b are nonzero and let Dc denote the diagonal
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matrix whose diagonal entries ci are the components of c. When solving Ax = b with
x0 = 0, the GMRES residual norm at iteration k = 1 satisfies

‖r1‖2 ≥ σmin(XDc)
2

∑
I2

∏
i�<ij∈I2

|λij − λi�|2
∑n

i=1 |λ i |2 ,

‖r1‖2 ≤ ‖XDc‖2

∑
I2

∏
i�<ij∈I2

|λij − λi�|2
∑n

i=1 |λ i |2 ,

and for k = 2, . . . , n− 1,

‖rk‖2 ≥ σmin(XDc)
2

∑
Ik+1

∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 |λij |2

] ∏
i�<ij∈Ik |λij − λi� |2

,

‖rk‖2 ≤ ‖XDc‖2

∑
Ik+1

∏
i�<ij∈Ik+1

|λij − λi� |2
∑

Ik

[∏k
j=1 |λij |2

] ∏
i�<ij∈Ik |λij − λi�|2

.

Proof Because of (5) and (8), we have

‖rk‖2 = 1

eT1 (V∗
k+1D

∗
c (X

∗X)DcVk+1)−1e1
.

Applying Lemma 1 with G ≡ Vk+1 and H ≡ XDc we obtain

σmin(XDc)
2

eT1 (V∗
k+1Vk+1)−1e1

≤ ‖rk‖2 ≤ ‖XDc‖2

eT1 (V∗
k+1Vk+1)−1e1

.

The claim follows in the same way as in the proof of Proposition 1.

The bounds in this proposition may be tight even if the condition number of the
eigenvector matrix X is large: Dc = diag(c) may represent a favorable scaling of
the eigenvector matrix. In fact, as Dc contains X−1 through c = X−1b, in some
particular cases the influence of X−1 in the product XDc might be cancelled out
by X. For other bounds that incorporate the right-hand side through X−1b we refer
to [43], where the scaling of X is also discussed.

Because for diagonalizable matrices, “departure from normality” can be trans-
lated to “size of the condition number of the eigenvector matrix”, we conclude
that GMRES for diagonalizable matrices close to normal will be governed by the
spectrum. With a more important departure from normality, the degree to which
eigenvalues govern GMRES will depend upon the interplay with determinants of X
and entries of X−1b; even with a high condition number κ(X), GMRES behavior can
be governed by the spectrum in particular cases.

3 One Jordan block

We start our investigation of how Theorem 1 can be extended to the non-
diagonalizable case by considering the situation where the Jordan canonical form
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of A has one Jordan block only. Let A have the Jordan form XJX−1 with J =
bidiag (λ, 1) for a nonzero eigenvalue λ and let b be a vector of unit norm such that
the last entry of c = X−1b is nonzero (otherwise GMRES terminates before the nth
iteration). Then the moment matrix M is

M = K∗K = (
c J c · · · J n−1c

)∗
X∗X

(
c J c · · · J n−1c

)
.

In contrast with the Krylov matrix
(
c �c · · · �n−1c

) = DcVn in the previous
section (see (4) and (7)), the Krylov matrix

(
c J c · · · J n−1c

)
cannot be written as

the product of a diagonal matrix containing the entries of c with a Vandermonde
matrix. Instead, it can be decomposed as

(
c J c · · · J n−1c

) = CE ≡ (13)

⎛

⎜⎜
⎜⎜
⎜⎜⎜⎜⎜
⎝

c1 c2 . . . . . . cn

c2 c3 . . . cn

c3 . . . cn
... cn
cn

⎞

⎟⎟
⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎜⎜⎜⎜⎜
⎝

1 λ λ2 · · · λn−1

0 1 2λ · · ·
(
n− 1

1

)
λn−2

0 0 1 · · ·
(−1

2

)
λn−3

...
...

...
. . .

...

0 0 0 · · · 1

⎞

⎟⎟
⎟⎟
⎟⎟⎟⎟⎟
⎠

,

where the matrix C is a Hänkel “anti upper triangular” matrix defined by
c1, . . . , cn, 0, · · · , 0. Here is a small example for illustration: Let n = 5 and let all
entries of c = X−1b be nonzero. Then the Krylov matrix

(
c J c · · · J 4c

)
is

⎛

⎜⎜
⎜
⎜
⎝

c1 λc1 + c2 λ2c1 + 2λc2 + c3 λ3c1 + 3λ2c2 + 3λc3 + c4 λ4c1 + 4λ3c2 + 6λ2c3 + 4λc4 + c5

c2 λc2 + c3 λ2c2 + 2λc3 + c4 λ3c2 + 3λ2c3 + 3λc4 + c5 λ4c2 + 4λ3c3 + 6λ2c4 + 4λc5

c3 λc3 + c4 λ2c3 + 2λc4 + c5 λ3c3 + 3λ2c4 + 3λc5 λ4c3 + 4λ3c4 + 6λ2c5

c4 λc4 + c5 λ2c4 + 2λc5 λ3c4 + 3λ2c5 λ4c4 + 4λ3c5

c5 λc5 λ2c5 λ3c5 λ4c5

⎞

⎟⎟
⎟
⎟
⎠

with the factorization

(
c J c · · · J 4c

) =

⎛

⎜⎜⎜⎜
⎝

c1 c2 c3 c4 c5
c2 c3 c4 c5
c3 c4 c5
c4 c5
c5

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

1 λ λ2 λ3 λ4

1 2λ 3λ2 4λ3

1 3λ 6λ2

1 4λ
1

⎞

⎟⎟⎟⎟
⎠
.

The (k + 1)st leading principal submatrix Mk+1 of M is given by

Mk+1 = (
c J c · · · J kc

)∗
X∗X

(
c J c · · · J kc

)
.

With (13) and defining
Y ≡ XC,

we have

Mk+1 = (E:,1:k+1)
∗(XC)∗XCE:,1:k+1 = (E:,1:k+1)

∗Y ∗YE:,1:k+1,

which can be written as the product Mk+1 = F ∗F of two rectangular matrices where
F ≡ YE:,1:k+1. The matrix E:,1:k+1 depends only on the eigenvalue, the matrix Y
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contains all information from the principal vectors and the right-hand side. Using
exactly the same proof technique as for Theorem 1, we obtain for a single Jordan
block the following.

Corollary 1 Let A be a nonsingular matrix with a single eigenvalue λ and with
Jordan form XJX−1 where J = bidiag (λ, 1). Let b be a vector of unit norm such
that the last entry of c = X−1b is nonzero, let E be the eigenvalue matrix defined by
(13) and let Y = XC, where C is the Hänkel matrix defined in (13). When solving
Ax = b with x0 = 0, the GMRES residual norm at iteration k < n satisfies

‖rk‖2 =
∑

Ik+1

∣
∣∣
∑

Jk+1
det(YIk+1,Jk+1) det(EJk+1,1:k+1)

∣
∣∣
2

∑
Ik

∣∣
∣
∑

Jk
det(YIk,Jk ) det(EJk,2:k+1)

∣∣
∣
2

. (14)

Corollary 1 shows an interplay between eigenvalues, principal vectors and right-
hand side which is similar to the interplay between eigenvalues, eigenvectors and
right-hand side in Theorem 1. GMRES residual norms are formed from polynomi-
als in the eigenvalue on the one hand and from determinants of the principal vector
matrix multiplied with a matrix containing the entries of X−1b on the other hand.
The inverse X−1 of the matrix of principal vectors X appears only in combination
with the right-hand side through the vector c = X−1b and as before, possible ill-
conditioning of X does not necessarily have a significant influence on convergence
behavior.

One can prove an analogue of Proposition 1 by applying Lemma 1 with G ≡ CE

and H ≡ X. It would show that if κ(X) = 1, the behavior of GMRES applied
to a very defective matrix is still governed by the eigenvalue, i.e. influenced only
by the spectrum and the components of b in X (in particular cn may be important).
This would correspond to the special and somewhat superficial situation where A

has a single Jordan block and where the matrix X is unitary, i.e. the Jordan form
of A is A = XJX∗. For example, GMRES for a single, plain Jordan block is, in
general, strongly governed by the eigenvalue (see, e.g., the results for a single Jordan
block in [26] and [42]). Matrices of the form A = XJX∗ are far from normal in the
sense of being maximally defective. Clearly, this type of departure from normality
of A does not decide upon whether GMRES is governed by eigenvalues. As in the
previous section, the departure from orthogonality of the eigenvector or principal
vectors tells us something. If κ(X) is large, the degree to which the spectrum governs
convergence behavior is influenced by the entries of X and c = X−1b (an analogue
of Proposition 2 for one Jordan block is possible too).

Some simplifications of the expression (14) are given by the next lemmas. The
numerator of ‖rk‖2 contains the determinants of EJk+1,1:k+1 for all index sets Jk+1.
Their values are given in the following result.

Lemma 2 For all the sets of k + 1 indices Jk+1 in the numerator of (14), the only
determinant of EJk+1,1:k+1 which is non-zero is det(E1:k+1,1:k+1) = 1.

Proof We have to consider all the sets of indices j� such that 1 ≤ j1 < · · · < jk+1 ≤
n. Since E is upper triangular, all the determinants involving a row of index larger
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than k + 1 are zero. The only set of indices Jk+1 without a row of index larger than
k+1 is {1, 2, . . . , k+1}. The corresponding submatrix is triangular with ones on the
diagonal.

From Lemma 2 there is only one term for the sum over Jk+1 in the numerator σN
k+1

in (14) and

σN
k+1 =

∑

Ik+1

∣
∣det(YIk+1,1:k+1)

∣
∣2
.

We remark that in this case the numerator does not depend on the eigenvalue. For
the denominator in (14) we are interested in the determinants of EJk,2:k+1. They are
characterized in the following lemma.

Lemma 3 The k+1 non-zero determinants of EJk,2:k+1 are obtained for the sets of
indices Jk not containing an index strictly larger than k + 1. If those sets are enu-
merated in lexicographic order, the determinants are respectively λk, λk−1, . . . , λ, 1.
Moreover, the denominator σD

k for ‖rk‖2 in (14) is

σD
k =

∑

Ik

∣∣∣λk det(YIk,I1)+ · · · + λ det(YIk ,Ik
)+ det(YIk,Ik+1)

∣∣∣
2
,

where Ij , j = 1, . . . , k + 1, are the sets of indices with k elements in the ordered
combinations of k + 1 elements enumerated in lexicographic ordering.

Proof The first claim is obvious since if there is a row index strictly larger than
k + 1 in Jk then there is a zero row in the matrix EJk,2:k+1 and the determinant
is zero. The proof of the second claim is by induction on k. For k = 1 the only
nonzero determinants of EJ1,2 are, in lexicographical order, det(E1,2) = E1,2 = λ

and det(E2,2) = E2,2 = 1. Let us assume that the claim is true for k − 1. We have to
consider the determinants of submatrices of order k of the n× k matrix

E:,2:k+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ λ2 · · · λk−1 λk

1 2λ · · ·
(
k − 1

1

)
λk−2

(
k

1

)
λk−1

0 1 · · ·
(
k − 1

2

)
λk−3

(
k

2

)
λk−2

...
...

. . .
...

...

0 0 · · · 1

(
k

k − 1

)
λ

0 0 · · · 0 1
...

...
...

...
...

0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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In lexicographic order the first set of indices Jk is {1, 2, . . . , k}. We have to con-
sider the determinant of the matrix E(k) obtained from the first k rows of E:,2:k+1.
Let us compute this determinant using the last column. It is equal to

(−1)k+1[λk det(E(k)
−1,1:k−1) −

(
k

1

)
λk−1 det(E(k)

−2,1:k−1)

− · · · + (−1)k−1
(

k

k − 1

)
λ det(E(k)

−k,1:k−1)],

where det(E(k)
−j,1:k−1) denotes the determinant of the square submatrix of order k− 1

of E(k) from columns 1 to k − 1 with row j removed. Those determinants are given
by our induction hypothesis (in reverse order); they are 1, λ, . . . , λk−1. Therefore we
can factor λk in the expression displayed above and we obtain

(−1)k+1λk[1 −
(
k

1

)
+

(
k

2

)
− · · · + (−1)k−1

(
k

k − 1

)
].

One can see that the sum within brackets is equal to (−1)k+1 and thus the determinant
we were looking for is λk. The proof for the other sets of indices Jk is along the same
lines.

Combining Lemmas 3 and 2 with Corollary 1, we obtain the next theorem. Note
that if the given right-hand side is sparse this may influence the nonzero pattern of Y
and cause the annihilation of some further determinants.

Theorem 3 Let A be a nonsingular matrix with a single eigenvalue λ and with Jor-
dan form XJX−1 where J = bidiag (λ, 1). Let b be a vector of unit norm such that
the last entry of c = X−1b is nonzero, let E be the eigenvalue matrix defined by (13)
and let Y = XC, where C is as defined in (13). When solving Ax = b with x0 = 0,
the GMRES residual norm at iteration k < n satisfies

‖rk‖2 =
∑

Ik+1
| det(YIk+1,1:k+1)|2

∑
Ik
|λk det(YIk ,I1)+ · · · + λ det(YIk ,Ik

)+ det(YIk,Ik+1)|2
, (15)

where Ij , j = 1, . . . , k + 1 are the sets of indices with k elements in the ordered
combinations of k + 1 elements enumerated in lexicographic ordering.

Another result for the residual norms generated by GMRES applied to a Jordan
block was given in [21]. The expression in that paper contains constants whose values
are generally unknown.

We observe from Theorem 3 an interesting, slightly enhanced independence from
the spectrum in comparison with diagonalizable matrices: The numerator is fully
independent from the eigenvalue and so are the summands det(YIk,Ik+1) in the
denominator. In the expression for residual norms of Theorem 1 all summands in
both numerator and denominator depend on eigenvalues.

We next consider a very small convection-diffusion model problem where matri-
ces close to a single Jordan block arise. We also examine the corresponding Jordan
block for which the theory holds exactly. The choice of the number of inner nodes for
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discretization and of the source term are physically somewhat articifial but we made
these choices for the sake of showing that the formulae for the residual norm can be
useful.

Consider the one-dimensional convection-diffusion problem on the unit interval
[0, 1]

−νu′′ + u′ = f, u(0) = u(1) = 0,

discretized with finite differences on a regular grid with n inner nodes using upwind
differences for the convective term. This gives a linear system where the system
matrix A is tridiagonal with entries

A = h−2 tridiag(−ν − h, 2ν + h,−ν),

see, e.g. [41, Section 4]. In the convection dominated case, ν 
 h2 and A is close
to a scaled transposed Jordan block. Let the source term be nonzero only around the
first inner node 1/(n+ 1), with the value (ν+h)/(−h2) in that node. Then the right-
hand side b is a multiple of e1 and GMRES applied to the pair (A, b) gives the same
residual norms as GMRES applied to the pair

( −h2

ν + h
I−AI−, −h2

ν + h
I−b

)
, (16)

where I− denotes the (unitary) antidiagonal reversion matrix with ones on the

antidiagonal. The matrix −h2

ν+h
I−AI− is a near Jordan block with the eigenvalue

λ = −(2ν + h)/(ν + h), the right-hand side is en.
In the left part of Fig. 1 we show the GMRES residual norms generated with the

pair (16), where n = 4 and ν = 0.01 (dashed lines). We also show the convergence
curve for the same pair, except that the lower subdiagonal entries of A have been
put to zero to obtain a true Jordan block (dotted lines). Clearly, the convergence
of GMRES applied to the pair (A, b) is very close to that for a Jordan block with
eigenvalue λ = −(2ν + h)/(ν + h) = −1.0476 and right-hand side en. Below we
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Fig. 1 GMRES relative residual norm curves for a one-dimensional convection-diffusion model problem
with near Jordan block (dashed lines) and with true Jordan block (dotted lines). In the left part the right-
hand side is en, in the right part it is e1 + en
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give explicit formulaes for the residual norms generated with this Jordan block using
Theorem 3. Note that in this example Y = C = I−.

– For k = 1, with Lemma 2, the numerator in (15) is

∑

I2

| det(CI2,1:2)|2.

There are six terms for I2 : {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, with only
the last one giving the nonzero determinant det(C{3,4},{1,2}) = −1. For the
denominator in (15) we sum over the trivial index sets {1}, {2}, {3}, {4} and
I1 = {1}, {2}. We obtain nonzero values for the index sets {3},{4} only:

|λ det(C{3},{1})+ det(C{3},{2})|2 = 1, |λ det(C{4},{1})+ det(C{4},{2})|2 = |λ|2.

The first residual norm satisfies

‖r1‖2 = 1

1 + |λ|2 .

– For k = 2 the numerator in (15) is computed by summation over the sets of
ordered indices {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}with only the last one giving
the nonzero determinant det(C{2,3,4},1:3) = −1.

For the denominator, we have I2 = {1, 2}, {1, 3}, {2, 3}, and the outer
summation is over the index sets {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. From
these, only those not containing the index 1 lead to non-zero summands (the first
three entries of the first row are all zero). Thus

∑
I2

∣∣∣λ2 det(CI2,{1,2})+ λ det(CI2,{1,3})+ det(CI2,{2,3})
∣∣∣
2

=
∣∣∣λ2 det(C{2,3},{1,2})+ λ det(C{2,3},{1,3})+ det(C{2,3},{2,3})

∣∣∣
2

+
∣∣∣λ2 det(C{2,4},{1,2})+ λ det(C{2,4},{1,3})+ det(C{2,4},{2,3})

∣∣∣
2

+
∣∣∣λ2 det(C{3,4},{1,2})+ λ det(C{3,4},{1,3})+ det(C{3,4},{2,3})

∣∣∣
2

= 1 + |λ|2 + |λ|4.

The square of the norm of the residual at iteration 2 is

‖r2‖2 = 1

1 + |λ|2 + |λ|4 .

– For k = 3 we have only one set of indices for I4 that is, {1, 2, 3, 4}. Therefore,

∑

I4

| det(CI4,1:4)|2 = | det(C)|2 = | det(I−)|2 = 1.
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For the denominator in (15) we have I3 = {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4} = I3. It yields

∑
I3

|λ3 det(CI3,{1,2,3})+ λ2 det(CI3,{1,2,4})+ λ det(CI3,{1,3,4})
+ det(CI3,{2,3,4})|2 = | det(C{1,2,3},{2,3,4})|2 + |λ det(C{1,2,4},{1,3,4})|2
+ |λ2 det(C{1,3,4},{1,2,4})|2 + |λ3 det(C{2,3,4},{1,2,3})|2
= 1 + |λ|2 + |λ|4 + |λ|6

and the last non-zero residual norm satisfies

‖r3‖2 = 1

1 + |λ|2 + |λ|4 + |λ|6 .
We can easily obtain formulaes for a right-hand side with more nonzero entries. For
instance with a source term having the value (ν + h)/(−h2) also in the last inner
node n/(n + 1), we obtain a linear system with a near Jordan block and right-hand
side e1+en. The convergence curves for GMRES applied to the resulting system and
applied to the same system where the nonzero lower subdiagonal entries have been
replaced by zeros, are displayed in the right part of Fig. 1. They are very close. Note
that the graphs represent relative residual norms or, equivalently, absolute residual
norms for the systems where the right-hand side e1 + en was normalized through
division with

√
2. Using Theorem 3 we obtain the exact residual norms for the system

where the nonzero lower subdiagonal entries have been replaced by zeros (in this
case Y = C is the matrix (I− + e1e

T
1 ).)

– For k = 1, in comparison with the case b = en, the numerator in (15) con-
tains the additional nonzero determinant det(C{1,3},{1,2}) = b1 = 1. For the
denominator in (15) we have an additonal nonzero value for the index sets {1}:
|λ det(C{1},{1}) + det(C{1},{2})|2 = |λb1|2 = |λ|2. The squared first relative
residual norm is

‖r1‖2 = 1

1 + 2|λ|2 .
– For k = 2, in comparison with the case b = en, the numerator in (15) also con-

tains the nonzero determinant det(C{1,2,3},1:3) = −b1. For the denominator, the
outer summation is over the index sets {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4} where {1, 2}, {1, 3} lead to the additional non-zero summands
|λb1|2 and |λ2b1|2, respectively. The square of the relative residual norm at
iteration 2 is

‖r2‖2 = 1

1 + 2|λ|2 + 2|λ|4 .

– For k = 3, the numerator in (15) is
∑

I4
| det(CI4,1:4)|2 = | det(C)|2 = | det(I−+

e1e
T
1 )|2 = 1. For the denominator, the outer summand for the index set {1, 2, 3}

takes the value |λ3b1+1|2 and the remaining summands are unchanged. The last
non-zero relative residual norm satisfies

‖r3‖2 = 1

2(|λ3 + 1|2 + |λ|2 + |λ|4 + |λ|6) .
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We see that for these right-hand sides we would have good convergence if the
modulus of λ is large, as one would expect. In other cases, however, it is in general
not true that an eigenvalue close to zero hampers convergence for matrices with one
Jordan block. If λ → 0, then for a given k both the numerator and denominator
in (15) go to values independent from λ. The speed of convergence is then fully
determined by the entries of X and X−1b and need not be slow. In case it is not slow,
our formulae give an explicit explanation for the limited role of the eigenvalue, i.e. of
the theory in the series of papers [1, 17, 18].

4 GMRES for non-diagonalizable matrices

The generalization of Section 3 to multiple Jordan blocks is straightforward. Let A
have the Jordan form XJX−1 and let it have m (m ≤ n) distinct eigenvalues denoted
as λ1, λ2, . . . , λm. We assume A is non-derogatory because we consider GMRES
processes that do not terminate before iteration n. Let the size of the Jordan block Ji
corresponding to λi be ni , i.e.

∑m
i=1 ni = n, and let us denote by si , i = 1, . . . , m

the index of the row where the block Ji starts, to which we add sm+1 = n + 1. The
block Ji goes from row si to row si+1−1. To avoid early termination, we also assume
that the right-hand side b is a vector of unit norm such that the entries on positions
si+1 − 1, 1 ≤ i ≤ m, of c = X−1b are nonzero.

As before, we have

M = K∗K = (
c J c · · · J n−1c

)∗
X∗X

(
c J c · · · J n−1c

)
.

For multiple Jordan blocks, the decomposition (13) can be modified as follows. If we
define the rows si to si+1 − 1 of E corresponding to the eigenvalue λi as

Esi :si+1−1,: ≡

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 λi λ2
i · · · λ

ni−1
i · · · λn−1

i

0 1 2λi · · ·
(
ni − 1

1

)
λ
ni−2
i · · ·

(
n− 1

1

)
λn−2
i

0 0 1 · · ·
(
ni − 1

2

)
λ
ni−3
i · · ·

(
n− 2

2

)
λn−3
i

...
...

...
. . .

...
...

...

0 0 0 · · · 1 · · ·
(
n− 1
ni − 1

)
λ
n−ni
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and the corresponding diagonal block of C as

Csi :si+1−1,si :si+1−1 ≡

⎛

⎜⎜⎜⎜⎜
⎝

csi csi+1 . . . . . . csi+1−1
csi+1 csi+2 . . . csi+1−1
csi+2 . . . csi+1−1
... csi+1−1

csi+1−1

⎞

⎟⎟⎟⎟⎟
⎠
,

then
(
c J c · · · J n−1c

) = CE.
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The matrix C is block diagonal with Hänkel anti-upper triangular diagonal blocks of
order ni . We again give an example to illustrate.

Consider a matrix A = XJX−1 of order 5 with J defined as

J =

⎛

⎜⎜
⎜⎜
⎝

λ 1
λ 1
λ

μ 1
μ

⎞

⎟⎟
⎟⎟
⎠
, (17)

where λ and μ (λ = μ) are given complex numbers different from 0. Let c = X−1b,
where b is the right-hand side, and let c have no zero entries. Then the Krylov matrix(
c J c · · · J n−1c

)
is

⎛

⎜
⎜⎜
⎜
⎝

c1 λc1 + c2 λ2c1 + 2λc2 + c3 λ3c1 + 3λ2c2 + 3λc3 λ4c1 + 4λ3c2 + 6λ2c3

c2 λc2 + c3 λ2c2 + 2λc3 λ3c2 + 3λ2c3 λ4c2 + 4λ3c3

c3 λc3 λ2c3 λ3c3 λ4c3

c4 μc4 + c5 μ2c4 + 2μc5 μ3c4 + 3μ2c5 μ4c4 + 4μ3c5

c5 μc5 μ2c5 μ3c5 μ4c5

⎞

⎟
⎟⎟
⎟
⎠

and can be factorized as

(
c J c · · · J n−1c

) =

⎛

⎜⎜⎜⎜
⎝

c1 c2 c3 0 0
c2 c3 0 0 0
c3 0 0 0 0
0 0 0 c4 c5
0 0 0 c5 0

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

1 λ λ2 λ3 λ4

0 1 2λ 3λ2 4λ3

0 0 1 3λ 6λ2

1 μ μ2 μ3 μ4

0 1 2μ 3μ2 4μ3

⎞

⎟⎟⎟⎟
⎠
,

with a block diagonal matrix C.
Let, as before,

Y ≡ XC.

Then if the (k + 1)st leading principal submatrix Mk+1 of M is written as

Mk+1 = (
c J c · · · J kc

)∗
X∗X

(
c J c · · · J kc

)

= E∗
:,1:k+1C

∗X∗XCE:,1:k+1 = (YE:,1:k+1)
∗YE:,1:k+1,

we immediately obtain, again by using the proof technique of Theorem 1, the formula

‖rk‖2 =
∑

Ik+1
|∑Jk+1

det(YIk+1,Jk+1) det(EJk+1,1:k+1)|2
∑

Ik

∣∣∣
∑

Jk
det(YIk,Jk ) det(EJk,2:k+1)

∣∣∣
2

. (18)

The formula is the same as the one presented in Corollary 1, but of course, Y and E

are here generalizations of the Y and E in Corollary 1. E represents all the influence
of eigenvalues and Y all the influence of eigenvectors, principal vectors and right-
hand side. The remarks in Sections 2 and 4 on the role of κ(X) and of X−1b apply to
this section, too.

A difference is that the interplay between the distinct eigenvalues will play a role.
The determinants of EJk+1,1:k+1 and EJk,2:k+1 may contain eigenvalue differences.
For example, so do most determinants of E involved in forming ‖r3‖2 for the matrix
J in (17), see Tables 1 and 2. All determinants in Table 1 have μ−λ as a factor. Hence
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Table 1 Determinants of
EJ4,1:4 for the numerator in (18)
with k = 3, for the matrix J in
(17)

Indices in J4 value

{1,2,3,4} (μ− λ)3

{1,2,3,5} 3(μ− λ)2

{1,2,4,5} (μ− λ)4

{1,3,4,5} −2(μ− λ)3

{2,3,4,5} 3(μ− λ)2

they may be small if μ is close to λ. This suggests that eigenvalue clusters acceler-
ate convergence whereas outliers cause delay, which is often true (see, e.g., [4]). If
μ = λ, corresponding to two Jordan blocks with the same eigenvalue, we have early
termination, ‖r3‖ = 0 (in exact arithmetic).

We now investigate whether with non-diagonalizable matrices, GMRES residual
norms are slightly less dependent on eigenvalues than with diagonalizable matrices
in the sense that not all summands in (18) depend upon eigenvalues. We have seen
with Theorem 3 that this holds for matrices with a single Jordan block.

For simplicity, we first we address the case k = 1. Let us consider the determinants
in the numerator of (18), i.e. the determinants of EJ2,{1,2} for the set of indices J2.
There are n!/(2(n − 2)!) of them. But the rows that are involved are only of three
different types whatever the dimension n is. The first type that we can denote as
t1(λi) is t1(λi) =

(
1 λi

)
, for an eigenvalue λi . The two other types are t2 = (

0 1
)

and t3 = (
0 0

)
. The two last types may or may not exist depending on the values of

ni, i = 1, . . . , m. We have only three kinds of non-zero determinants
∣∣∣∣
1 λi
1 λj

∣∣∣∣ = λj − λi,

∣∣∣∣
1 λi
0 1

∣∣∣∣ = 1,

∣∣∣∣
0 1
1 λi

∣∣∣∣ = −1. (19)

Then in the terms
∣∣∣∣∣∣

∑

J2

det(YI2,J2) det(EJ2,1:2)

∣∣∣∣∣∣

2

,

of the numerator of (18), the sum runs over the set of indices such that det(EJ2,1:2) =
0 that is, such that we have one of the three kinds of determinant listed above. With the

Table 2 Determinants of EJ3,2:4 for the denominator in (18) with k = 3, for the matrix J in (17)

Indices in J3 value Indices in J3 value

{1,2,3} λ3 {1,4,5} λμ2(μ− λ)2

{1,2,4} λ2μ(μ− λ)2 {2,3,4} μ[(μ− λ)2 + λ(2λ− μ)]
{1,2,5} λ2(μ− λ)(3μ− λ) {2,3,5} 3(μ− λ)2

{1,3,4} λμ(μ− λ)(μ− 2λ) {2,4,5} μ2(μ− λ)(μ− 3λ)

{1,3,5} λ[2(μ − λ)2 + μ(μ− 2λ)] {3,4,5} μ2(3λ− 2μ)
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second and third kind there is no dependence on eigenvalues. For the denominator of
(18) we can proceed similarly. Thus, depending on the sizes of the individual Jordan
blocks, a number of summands is independent from the spectrum.

For k > 1 we have the following straightforward result.

Proposition 3 If k < maxi(ni), then in formula (18) there are determinants of both
EJk+1,1:k+1 and EJk,2:k+1 that are equal to 1.

Proof The result is obvious since some of the submatrices are upper triangular with
ones on the diagonal.

It is not difficult to see that when an eigenvalue approaches zero, this gives
determinants tending to be independent on that eigenvalue. Similarly to the previ-
ous section, the influence of the corresponding Jordan block on GMRES is then
fully determined by the right-hand side and eigenvectors and/or principal vectors
and consequently, eigenvalues close to the origin do not seem to necessarily hamper
convergence.

5 Conclusion

We presented the solution of the minimization problem (1) for GMRES residual
norms generated with general diagonalizable and with non-diagonalizable matrices.
It is explicitly formulated in a closed form, unlike the norms of the GMRES residuals
in GMRES computations. The solution is not simple and has no immediate practi-
cal application but it completely describes the mechanism of forming the residual
norm from eigenvalues, eigenvectors or principal vectors and the right-hand side. It
shows in what (complicated) way eigenvalues influence GMRES convergence. Other
objects than eigenvalues may lead to more elegant formulaes, but if we wish to know
the exact influence of eigenvalues, the presented closed-form expressions give the
answer. In the diagonalizable case, it is eigenvalue products and products of eigen-
value differences that influence the residual norm. In the non-diagonalizable case,
more general polynomials in eigenvalues play a role in forming the residual norm
and small eigenvalues are less prone to hamper convergence. Eigenvectors (princi-
pal vectors) influence residual norms in two ways. Determinants of the eigenvector
(principal vector) matrix play the most important role. The inverse of this matrix con-
tributes only in the form of its product with the right-hand side. As for the right-hand
side, it contributes only through its components in the eigenvector (principal vec-
tor) basis. The degree to which GMRES is governed by eigenvalues is not so much
determined by the departure from diagonalizability of the system matrix, but in gen-
eral more by the departure from orthogonality of the eigenvector (principal vector)
matrix X. With a small value of κ(X), GMRES is governed by the spectrum even
if the system matrix is defective; with a larger value of κ(X) GMRES may or may
not be governed by the spectrum, depending on X, X−1b and the interplay between
them.

Future work includes extension to other Krylov methods.
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Abstract. This paper deals with estimating the condition number of triangular matrices in
the Euclidean norm. The two main incremental methods, based on the work of Bischof and the
later work of Duff and Vömel, are compared. The paper presents new theoretical results revealing
their similarities and differences. As typical in condition number estimation, there is no universal
always-winning strategy, but theoretical and experimental arguments show that the clearly preferable
approach is the algorithm of Duff and Vömel when appropriately applied to both the triangular
matrix itself and its inverse. This leads to a highly accurate incremental condition number estimator.
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1. Introduction. The condition number

κ(A) = ‖A‖ · ‖A−1‖

of a nonsingular matrix is a very important quantity in numerical linear algebra.
While its computation is typically as expensive as solving a corresponding system
of linear equations, there exist efficient procedures for condition number estimation.
Proper use of the computed estimates can often save a lot of computational effort.

First, matrix condition number estimates may be used in the basic tasks of nu-
merical linear algebra, that is, in solving systems of linear algebraic equations and
solving eigenvalue problems, to assess the quality of the computed solutions and their
sensitivity to perturbations. Further, there are specific fields in scientific computing
that are strongly linked with condition number estimation. The estimated condition
number may be used to monitor and control adaptive computational processes, some-
times using the terminology adaptive condition estimators (ACE). Such adaptive pro-
cesses may include evaluation of adaptive filters [23], [30] and recursive least squares
in signal processing [21] or solving nonlinear problems by linearization methods [23],
[35]. Standard algebraic approaches are used for tracking the condition number in
a sequence of modified matrices of the same dimension as well as when matrices are
subsequently constructed by augmentation [33], [34], [36], [20], [21]. ACE based on
properties of model and grid hierarchies is a standard tool in multilevel PDE solvers
[28]. Another type of problem-oriented ACE in recursive least squares measured with
a norm close to the Frobenius norm is represented in [1], [2]. An emerging applica-
tion is the use of condition number estimates for dropping and pivoting in incomplete
matrix decompositions, which we will mention later.
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Králové, Czech Republic (duintjertebbens@cs.cas.cz).

‡Institute of Computer Science, Academy of Sciences of the Czech Republic, 18207 Praha 8, Czech
Republic (tuma@cs.cas.cz).

174



INCREMENTAL 2-NORM CONDITION ESTIMATORS 175

In order to have useful condition estimators, they should be cheap. At the same
time, they should provide condition number approximations which are reasonably
accurate, and this may mean different things in different applications. Sometimes,
relatively rough estimates are satisfactory, e.g., it is sufficient in many cases that
the estimates stay within a reasonable multiplicative factor from the exact condition
number; see, e.g., [16]. In other cases, more precise estimates may be needed [27].

Condition number estimators typically provide lower bounds on the condition
number of a nonsingular matrix A by estimating a lower bound on the norm of A
and an upper bound on the norm of A−1. The most popular general approaches
compute approximations of the condition number in the 1-norm [22], [25], [24], [26].
An important milestone in the development of estimators in the 2-norm was the
incremental condition estimation (ICE) of a triangular matrix that was introduced
in papers by Bischof [3] and Bischof, Lewis, and Pierce [5] and further generalized
for solving related tasks [6], [36]. This strategy is naturally connected to adaptive
techniques and contains clearly visible links to matrix decompositions. As mentioned
by Stewart [37], the approach can be viewed as a special case of the framework in [14].
A closely related approach called incremental norm estimation (INE) was developed
by Duff and Vömel in [18] to get an estimation of the norm of a triangular matrix.
While a slight reformulation of this algorithm similar to that in [3] can be used to
estimate the minimum singular value as well, we will see in this paper that this does
not work well in practice and we will give a partial explanation for this. Nevertheless,
when the inverses of the triangular factors of A are available, INE could be used to
get a useful estimate for the minimum singular value of A [18]. A similar conclusion
follows for the recent iterative procedure to get a lower bound for the minimum
singular value given in the interesting paper [29]. The actual strategy is based on an
improvement of the algorithm in [19] and applied to symmetric and positive definite
Toeplitz matrices. ICE is also closely related to rank-revealing decompositions; see,
e.g., [32].

A strong motivation to study and further develop incremental condition estima-
tors is their applicability in incomplete decompositions. In particular, a part of recent
advances in preconditioning of systems of linear algebraic equations is based on mon-
itoring the conditioning of the partially computed factors via a condition estimator.
The incremental nature of the estimator enables one to monitor and control both
dropping and pivoting of the decomposition. This is done in strategies developed
by Bollhöfer [7], [8] and Bollhöfer and Saad [10] and implemented in the package
ILUPACK [9]; see also their use in the multilevel framework [11]. Both perturbation
arguments and experiments point out that preconditioners from incomplete decom-
positions using dropping criteria based on conditioning control are rather robust, but
we believe that more accurate incremental strategies may help to push the approach
even further. Note that the use of ICE for pivoting in decompositions was considered
much earlier (see, e.g., [4]), but the significant progress in this research direction is
connected with the work of Bollhöfer and Saad.

Recently, incomplete decompositions that compute both direct and inverse fac-
tors were introduced. That is, they compute not only the standard Cholesky or LU
factors but also their inverses. In [38] the author proposes to compute the inverse of
the incomplete factor once the direct factor is computed. The mixed direct-inverse
decompositions in [12], [13] obtain the direct and inverse factors simultaneously, en-
abling one to exploit information from the partial inverse factor for the computation
of the direct factor and vice versa. It was shown that despite rather sophisticated
implementation, typical computational costs of the decomposition may still be low.
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Moreover, condition estimators can be applied to both the direct and the inverse fac-
tor, thus enabling one to use the more accurate condition estimators discussed in this
paper.

This paper presents some new theoretical and practical results leading to an im-
proved incremental condition estimator in the 2-norm. As it is well known that the
strengths of different condition estimators are often complementary and any one of
them can sometimes fail, we do not propose a strategy that is always better than
all the other approaches, but we have rather strong theoretical and computational
evidence to propose a choice based on INE. In the paper, we will show some theo-
retical results related to the condition estimators introduced in [3] and [18] as well
as the mutual relation of these estimators. In particular, we will show that the best
strategy should be based on the computed factor as well as its inverse. We recall
that factorizations that could be used for this task are readily available. The paper
is organized as follows. In section 2 the two basic strategies for ICE in the 2-norm
are introduced. Section 3 provides new theoretical results on the ICE and INE esti-
mators. In particular, it reveals the strong potential of the INE algorithm using the
factor as well as its inverse. Section 4 then analyzes reasons for the superiority of INE
over ICE that is clear from both the graphical demonstration in this section and from
the numerical experiments in section 5. In the sections to follow, we will assume that
A is real and ‖ · ‖ will denote the 2-norm. With “direct factor” we will mean a trian-
gular Cholesky, L, or U factor of a given input matrix, as opposed to its inverse, the
“inverse factor.”

2. Incremental condition estimators in the 2-norm. This section presents
a brief overview of the two basic incremental strategies to estimate the 2-norm con-
dition number of a triangular matrix. The idea is to find an upper bound estimate
σest
min of its smallest singular value and a lower bound estimate σest

max of its largest
singular value. The condition number estimate is then σest

max/σ
est
min. Without loss of

generality we assume our matrix to be upper triangular. By the incremental nature
of the estimates we mean that the estimate for the leading principal submatrix R̂ of
dimension k+1 is obtained from the estimate for its leading principal submatrix R of
dimension k in a simple way, without explicitly accessing the entries of R. In order to
be able to do this, we also keep estimates of the corresponding singular vectors. Note
that the basic matrix decompositions like Cholesky or LU reveal the triangular factors
just in this incremental way and the incremental estimates may be used not only to
form the final condition number estimate, but they may be exploited throughout the
decomposition.

Let us use the following notation:

(2.1) R̂ =

[
R v
0 γ

]
.

As mentioned above, the first incremental estimation strategy of this kind, ICE, was
proposed by Bischof [3] in 1990. This method computes approximations to the ex-
tremal singular values and to left singular vectors of triangular leading principal sub-
matrices. Note that if R = UΣV T is the SVD of R, an extremal left singular vector
uext satisfies ‖uT

extR‖ = ‖uT
extUΣV T ‖ = σext(R) with σext denoting the extremal

singular value. The ICE method computes

σC
ext(R) = ‖yTextR‖ ≈ σext(R),
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where ext is substituted for either min or max and yext denotes a left singular vec-
tor approximation. The superscript C here means the considered ICE incremental
strategy that can be described as follows. Consider the submatrix R̂. The algorithm
computes the approximation σC

ext(R̂) from the optimization problem

‖ŷTextR̂‖ = ext‖[s,c]‖=1

∥∥∥∥
[
s yText, c

] [R v
0 γ

]∥∥∥∥ =
∥∥∥∥
[
sext y

T
ext, cext

] [R v
0 γ

]∥∥∥∥ ,

where the approximation ŷext of the left singular vector of R̂ is

ŷext ≡
[
sext yext
cext

]
.

It can be easily verified that sext and cext are the components of the eigenvector
corresponding to the extremal (minimum or maximum) eigenvalue of the matrix

(2.2) BC
ext ≡

⎡
⎣
σC
ext(R)2 + (yTextv)

2 γ(yTextv)

γ(yTextv) γ2

⎤
⎦ .

If BC
ext has two identical eigenvalues, the algorithm of [3] puts sext = 0 and cext = 1.

Further,

σC
ext(R̂) ≡ ‖ŷTextR̂‖ =

√
λext(BC

ext),

where λext denotes the extremal (minimum or maximum) eigenvalue. Clearly, the in-
volved eigenvectors are computed without accessing R. Note that the original deriva-
tion in [3] uses a lower triangular matrix and it is slightly different from the one
presented here; see [18].

Another incremental strategy was proposed in 2002 by Duff and Vömel [18] and
used only for norm estimation based on a maximization problem, although it is pos-
sible to formulate the dual minimization problem as well; it is denoted here by INE
using the superscript N. It computes approximations σN

ext(R) of the extremal singular
values

σN
ext(R) = ‖Rzext‖ ≈ σext(R)

as well as the corresponding INE approximations zext to the right singular vectors.
Similarly as above, σN

ext(R̂) is obtained from the optimization problem

‖R̂ẑext‖ = ext‖[s,c]‖=1

∥∥∥∥
[
R v
0 γ

] [
s zext
c

]∥∥∥∥ =
∥∥∥∥
[
R v
0 γ

] [
sextzext
cext

]∥∥∥∥ ,

where the approximation ẑext of the right singular vector of R̂ is

ẑext ≡
[
sext zext
cext

]
.

The scalars sext and cext are then the entries of the eigenvector corresponding to the
extremal (minimum or maximum) eigenvalue of the matrix

(2.3) BN
ext ≡

⎡
⎣
σN
ext(R)2 zTextR

T v

zTextR
T v vT v + γ2

⎤
⎦
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with the convention that sext = 0 and cext = 1 when BN
ext has two identical eigenval-

ues. Then

σN
ext(R̂) ≡ ‖R̂ẑext‖ =

√
λext(BN

ext).

In the remaining text we will further simplify the notation as follows. The subscripts
min and max denoting minimum or maximum, respectively, such as smax or ymin, will
be replaced by plus or minus signs, which give in this example s+ ≡ smax and y− ≡
ymin.

Note that the main costs involved in both techniques come from the inner products
needed to get the entries of the matrices BC

ext and BN
ext. For a dense triangular matrix

of dimension n the total costs to obtain its estimate are of the order n2. Further, the
above descriptions give no clear indication about whether one technique is superior
to the other. In [18] the authors conclude, based on their experiments, that there
is no general superiority of one technique. They explain that INE is more suited
for sparse matrices and they show experimentally that INE is slightly superior for
finding the largest singular value of dense triangular matrices. The following sections
contain, among others, new theoretical comparisons of the quality of the two described
techniques and a strong numerical confirmation of our findings.

3. ICE and INE estimates using both direct and inverse factors. Let us
consider ICE and INE in the situation when we have both the direct triangular factor
and its inverse available. In this section we are interested to know whether exploiting
the inverse factor may help to improve accuracy of the estimates. At first sight this
may seem trivial since the hard part in the estimation is often to find a good approx-
imation of the minimum singular value. If the inverse is available, the problem can
be circumvented by estimating the maximum singular value of the inverse. However,
we will see that the two considered techniques behave differently in this respect.

Note that the inverse or its approximation is naturally available in the mixed
direct-inverse decompositions [12], [13] mentioned in the introduction. In addition,
information on rows and/or columns of the inverse is computed when applying the
techniques of [7], [8], [10]. In some other applications, for example, in signal process-
ing [15], [31], it is necessary to compute the matrix inverses explicitly and this is
traditionally done via their triangular factors. Further, the inversion of a triangular
factor can be done at costs that are low compared to the computation of the factor.
For example, the algorithm in [18, Lemma 3.1] asks for about n3/6 flops; see also the
techniques in [38].

First we will show that using the inverse triangular factor does not give any
improvement for ICE. Let us start with a simple lemma related to the exact singular
values and vectors.

Lemma 3.1. Let R be a nonsingular matrix. Then the extremal singular values
of R and R−1 satisfy σ−(R) = 1/σ+(R

−1). The corresponding left singular vectors
y− and x+ of R and R−1, respectively, satisfy

(3.1) σ−(R)xT
+ = yT−R.

Proof. The first part of the assertion is trivial. Let R = USWT be the SVD
of R with the singular values in S in nonascending order. Then R−1 = WS−1UT

and the left singular vectors y− and x+ can be expressed as y− = Uen and x+ =
Wen, respectively. Then we can write xT

+R
−1 = eTnW

TR−1 = eTnW
TWS−1UT =

(1/σ−(R))eTnU
T = (1/σ−(R))yT−, which implies (3.1).
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The main result relating the ICE estimates for R and R−1 looks similarly.
Theorem 3.2. Let R be a nonsingular upper triangular matrix. Then the ICE

estimates of the singular values of R and R−1 satisfy

(3.2) σC
−(R) = 1/σC

+(R
−1).

The approximate left singular vectors y− and x+ corresponding to the ICE estimates
for R and R−1, respectively, satisfy

(3.3) σC
−(R)xT

+ = yT−R.

Proof. Consider mathematical induction on the dimension n of R. Clearly, the
estimates are exact for n = 1, 2. Assume that the lemma holds for some n ≥ 2 and
we will prove it for n+ 1. Let us use the notation (2.1) for the upper triangular R̂ of
dimension n + 1. The estimate σC

−(R̂) for the extended matrix R̂ is obtained as the
square root of the minimum eigenvalue of the matrix BC

− given above in (2.2), where
“ext ≡ min ≡ −”. Clearly, BC

− has the following LTL decomposition:

BC
− =

[
σC
−(R)2 + (yT−v)

2 γ(yT−v)

γ(yT−v) γ2

]
=

[
σC
−(R) yT−v

0 γ

][
σC
−(R) 0

yT−v γ

]
≡ (LC

−)
TLC

−.

Further, the estimate 1/σC
+(R̂

−1) for

R̂−1 =

[
R−1 −R−1v/γ

0 1/γ

]

is the square root of 1/λ+(B
C
+), where BC

+ is defined with respect to R̂−1. This value
is also equal to the square root of λ−((BC

+)−1). Using the assumptions (3.2) and (3.3),
from (2.2) we subsequently get

(BC
+ )−1 =

[(
σC
+(R−1)

)2
+ (−xT

+R
−1v/γ)2 −(xT

+R
−1v)/γ2

−(xT
+R

−1v)/γ2 1/γ2

]−1

=

[
1/(σC

−(R))2 + ((yT−v)
2/(σC

−(R))2γ2) −yT−v/(σ
C
−(R)γ2)

−yT−v/(σ
C
−(R)γ2) 1/γ2

]−1

=

([
1/σC

−(R) −yT−v/(σ
C
−(R)γ)

0 1/γ

][
1/σC

−(R) 0

−yT−v/(σ
C
−(R)γ) 1/γ

])−1

=

[
σC
−(R) 0

yT−v γ

] [
σC
−(R) yT−v

0 γ

]
.

Clearly, we obtained the LLT decomposition (BC
+)−1 = LC

+(L
C
+)

T , where LC
+ is the

same as the factor L of the LTL decomposition of BC
− . That is, we have L ≡ LC

+ = LC
−.

It is easy to see from the SVD ULSW
T
L of L that BC

+ and (BC
−)−1 have the same

eigenvalues. This implies the first part (3.2) of the theorem.
The approximate singular vectors for the extended problems are

ŷ− =

[
s− y−
c−

]
, x̂+ =

[
s+ x+

c+

]
,



180 JURJEN DUINTJER TEBBENS AND MIROSLAV TŮMA

where [s−, c−]T is the eigenvector of BC
− = (LC

−)
TLC

− corresponding to its minimum
eigenvalue and [s+, c+]T is the eigenvector of BC

+ = (LC
+)

−T (LC
+)

−1 corresponding
to its maximum eigenvalue. Then [s−, c−]T = WLe2 is also the right singular vector

of LC
− with the singular value σC

−(R̂). Similarly, [s+, c+]T is equal to ULe2 and it is

also the right singular vector of (LC
+)

−1 with the singular value σC
+(R̂

−1) = 1/σC
−(R̂).

Taking all these into account, we get

ŷT−R̂ =
[
s−yT−, c−

] [R v
0 γ

]
=
[
s−yT−R, s−yT−v + c−γ

]
=
[
σC
−(R)s−xT

+, s−yT−v + c−γ
]

=
[
σC
−(R)s−, s−yT−v + c−γ

] [xT
+

1

]
=
[
s−, c−

]
(LC

−)
T

[
xT
+

1

]

= eT2 W
T
L WLSU

T
L

[
xT
+

1

]
= σC

−(R̂)eT2 U
T
L

[
xT
+

1

]
= σC

−(R̂)x̂T
+.

We remark that the previous equalities also hold in the special case where BC
− has two

identical eigenvalues and where ICE defines
[
s−, c−

]T
= eT2 and

[
s+, c+

]T
=

eT2 .
Note that we can prove analogously that σC

+(R) = 1/σC
−(R

−1). Hence the ICE
estimate of the condition number of R is always identical with the reciprocal of the
ICE estimate of the condition number of R−1. Now let us consider the alternative
INE technique. INE deals with the right singular vectors of a triangular matrix. The
following lemma is just an analogue of Lemma 3.1 for right singular vectors.

Lemma 3.3. Let R be a nonsingular matrix. Then the extremal singular values
of R and R−1 satisfy σ−(R) = 1/σ+(R

−1). The corresponding right singular vectors
z− and x+ of R and R−1, respectively, satisfy

(3.4) σ−(R)x+ = Rz−.

Proof. As above, the first part is trivial. Let R = USWT be the SVD of R
with the singular values in S in nonascending order. Clearly, z− = Wen. Since
R−1 = WS−1UT we also have x+ = Uen. Furthermore, R−1Uen = WS−1UTUen =
1/(σ−(R))Wen. This immediately implies (3.4).

The following theorem shows that INE is inherently different from ICE and it
reveals that there is no analogy with Theorem 3.2. In particular, Theorem 3.4 cannot
be applied recursively for leading principal submatrices of growing dimension because
the assumption 1/σN

+ (R−1) = σN
− (R) will in general cease to hold.

Theorem 3.4. Let R be a nonsingular upper triangular matrix. Assume that the
INE estimates of the singular values of R and R−1 satisfy 1/σN

+ (R−1) = σN
− (R) =

σ−(R). Then the INE estimates of the singular values related to the extended matrix
(2.1) satisfy

1/σN
+ (R̂−1) ≤ σN

− (R̂)

with equality if and only if v in (2.1) is collinear with the left singular vector corre-
sponding to the smallest singular value of R.

Proof. Consider the INE process applied to R̂. The estimate σN
− (R̂) is given by

the square root of the minimum eigenvalue of the matrix BN
− obtained from (2.3) by

setting “ext ≡ min ≡ −”, which is also equal to the inverse of the square root of the
maximum eigenvalue of the matrix (BN

− )−1. The LTL decomposition of the matrix
(BN

− )−1 is derived as follows using Lemma 3.3 and its notation:
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(BN
− )−1 =

[
zT−R

TRz− vTRz−
vTRz− vT v + γ2

]−1

=

[
σ−(R)2 σ−(R)vTx+

σ−(R)vTx+ vT v + γ2

]−1

=

([
σ−(R) 0

vTx+

√
vT v − (vTx+)2 + γ2

] [
σ−(R) vTx+

0
√
vT v − (vTx+)2 + γ2

])−1

= LT
−L−

with

L− =

[
1/σ−(R) 0

−vTx+/
(
σ−(R)

√
vT v − (vTx+)2 + γ2

)
1/
√
vT v − (vTx+)2 + γ2

]
.

Further, the INE estimate for 1/σN
+ (R̂−1) is obtained from the eigenvalues of the

matrix BN
+ which can be put down and represented in the form of an LLT decompo-

sition. Its derivation uses the fact that σ−(R)R−T z− = x+, which can be easily seen
from the SVD R = USWT with z− = Wen and x+ = Uen. Then with Lemma 3.3,
R−TR−1x+ = x+/σ−(R)2. A few simple steps provide

BN
+ =

[
xT
+R

−TR−1x+ −xT
+R

−TR−1v/γ

−xT
+R

−TR−1v/γ vTR−TR−1v/γ2 + 1/γ2

]

=

[
1/σ−(R)2 −vTx+/(σ−(R)2γ)

−vTx+/(σ−(R)2γ) (||R−1v||2 + 1)/γ2

]
= L+L

T
+

with

L+ =

[
1/σ−(R) 0

−vTx+/(σ−(R)γ)
(√

||R−1v||2 − (vTx+)2/σ−(R)2 + 1
)
/γ

]
.

The Cauchy inequality (vTx+)
2 ≤ vT v and properties of the SVD imply

(3.5) ‖R−1v‖2 = ‖S−1UT v‖2 =

n∑

j=1

(eTj U
T v)2

s2jj
≥ (vTx+)

2/σ−(R)2.

This implies the relation

‖L−‖ =

∥∥∥∥∥

[
1

γ√
vT v−(vT x+)2+γ2

]
L+

[
1

1√
||R−1v||2−(vT x+)2/σN

− (R)2+1

]∥∥∥∥∥ ≤ ‖L+‖.

The involved norms of the triangular factors directly provide

(3.6)
(
σN
+ (R̂−1)

)−1

= ‖L+‖−1 ≤ ‖L−‖−1 = σN
− (R̂).

Equality in (3.6) is attained if and only if (vTx+)
2/(σ−(R))2 = ‖R−1v‖2 and also

(vTx+)
2 = vT v. These two conditions are equivalent with the collinearity of v with

x+ = Uen.
We can obtain the analogue result for the approximate largest singular value

σN
+ (R̂) if we consider in Theorem 3.4 instead of R̂ its inverse. Let us denote the inverse

of R̂ by Ŝ. Using Theorem 3.4 we get σN
− (R̂) = σN

− (Ŝ−1) ≥ 1/σN
+ (R̂−1) = 1/σN

+ (Ŝ),
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i.e., for any upper triangular S with 1/σN
− (S−1) = σN

+ (S) = σ+(S) we have for the

extended matrix Ŝ

(3.7) σN
+ (Ŝ) ≥ 1/σN

− (Ŝ−1).

Consequently, under the assumption of starting with exact estimates like in The-
orem 3.4, INE will be more accurate when estimating σ−, respectively, σ+, if one
applies incremental maximization (using 1/σN

+ or σN
+ , respectively) instead of incre-

mental minimization (using σN
− or 1/σN

− , respectively). This is in contrast with the
ICE technique, where maximization and minimization give identical approximations
in the sense of (3.2). When the inverse is not available, Theorem 3.4 and (3.7) seem
to suggest that the quality of the INE estimate of the largest singular value might in
most cases be better than the quality of the estimate for the smallest singular value.
Further, Theorem 3.4 and (3.7) assume that the INE estimates of the singular values
of R and R−1 are exact. Our experiments suggest that even in the more general situ-
ation when the assumptions of Theorem 3.4 may not hold, minimization works better
than maximization very rarely in practice. In fact, in our tests with various types of
matrices traditionally used to assess the quality of incremental condition estimators
and with matrices from the Matrix Market collection [17] this never occurred. In order
to better understand this behavior, we propose to consider the following expressions
for 1/σN

+ (R̂−1) and σN
− (R̂).

Proposition 3.5. Let R be a nonsingular upper triangular matrix and let the
INE approximate singular vectors for σN

+ (R−1) and σN
− (R) be denoted by x+ and z−,

respectively. Then the INE estimates of the singular values related to the extended
matrix (2.1) satisfy

σN
− (R̂) = σ−(L

N
− ), LN

− =

[
σN
− (R) 0

ι−
√
γ2 + vT v − ι2−

]
, ι− = vTRz−/σ

N
− (R)

and

1/σN
+ (R̂−1) = σ−(L

N
+ ), LN

+ =

⎡
⎢⎣

1/σN
+ (R−1) 0

ι+√
‖R−1v‖2−(

ι+
σ+

)2+1

γ√
‖R−1v‖2−(

ι+
σ+

)2+1

⎤
⎥⎦ ,

where σ+ = σN
+ (R−1), ι+ = vTR−TR−1x+/σ

2
+.

Proof. The estimate σN
− (R̂) is given by the root of the minimum eigenvalue of

the matrix BN
− obtained from (2.3) by setting “ext ≡ min ≡ −”. The Cholesky

decomposition of the matrix BN
− is

BN
− =

[
zT−R

TRz− vTRz−
vTRz− vT v + γ2

]

=

[
σN
− (R) 0

ι−
√
γ2 + vT v − ι2−

][
σN
− (R) ι−

0
√
γ2 + vT v − ι2−

]
= LN

− (LN
− )T .

This gives σN
− (R̂) = σ−(LN

− ). Similarly, the estimate 1/σ+(R̂
−1)N is given by the root

of the minimum eigenvalue of the matrix (BN
+ )−1 obtained from (2.3) and defined with

respect to R̂−1 by setting “ext ≡ max ≡ +”. The LTL decomposition of the matrix
(BN

+ )−1 is
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(BN
+ )−1 =

[
xT
+R

−TR−1x+ −vTR−TR−1x+/γ

−vTR−TR−1x+/γ vTR−TR−1v/γ2 + 1/γ2

]−1

=

[
σN
+ (R−1)2 −ι+σ

N
+ (R−1)2/γ

−ι+σ
N
+ (R−1)2/γ ‖R−1v‖2/γ2 + 1/γ2

]−1

=

[
σN
+ (R−1) −ι+σ

N
+ (R−1)/γ

0
√

||R−1v||2 − ι2+σ
N
+ (R−1)2 + 1/γ

]−1

=

[
σN
+ (R−1) 0

−ι+σ
N
+ (R−1)/γ

√
||R−1v||2 − ι2+σ

N
+ (R−1)2 + 1/γ

]−1

= (LN
+ )TLN

+ .

The claim follows from

LN
+ =

[
1/σN

+ (R−1) 0

ι+/
√

||R−1v||2 − ι2+/(σN
+ (R−1))2 + 1 γ/

√
||R−1v||2 − ι2+/(σN

+ (R−1))2 + 1

]
.

For a partial explanation of why maximization seems in general to outperform
minimization, let us compare the entries of the matrices LN

− and LN
+ defined in Propo-

sition 3.5. Since we have i2− ≤ vT v and ι2+/(σ
N
+ (R−1))2 ≤ ||R−1v||2, the second diag-

onal entry of LN
+ is always smaller than that of LN

− . When the dimension of R̂ is two,
the first diagonal entries of LN

− are LN
+ identical at the beginning of the estimation

process, because they are exact. When R̂ has dimension three, the first diagonal entry
of LN

+ is not larger than that of LN
− from Theorem 3.4. Further, when started with

1/σN
+ (R−1) ≤ σN

− (R), in order for 1/σN
+ (R̂−1) ≤ σN

− (R̂) to hold it clearly suffices
that the off-diagonal entries of LN

+ and LN
− satisfy the simple inequality stated in the

following corollary.
Corollary 3.6. Using the notation of Proposition 3.5 and assuming

1/σN
+ (R−1) ≤ σN

− (R), there holds

(3.8) 1/σN
+ (R̂−1) ≤ σN

− (R̂) if |ι−| ≤

∣∣∣∣∣∣
ι+√

‖R−1v‖2 − ( ι+
σ+

)2 + 1

∣∣∣∣∣∣
.

The following example shows that the sufficient condition in the previous corollary
may possibly be simplified but it cannot be removed. Let us consider matrices R and
R−1 defined as follows:

R =

⎡
⎣
2 0 1

1 0
1

⎤
⎦ , R−1 =

⎡
⎣

1
2 0 − 1

2
1 0

1

⎤
⎦ .

The ICE estimate σC
−(R) for the smallest singular value σ−(R) = 0.874 is σC

−(R) = 1.
The ICE estimate 1/σC

+(R
−1) is of the same value, i.e., 1/σC

+(R
−1) = 1, which is in

agreement with Theorem 3.2. Note that here we used a matrix in block angular form
that does not pass the information in ICE as discussed in [5]. The INE estimate σN

− (R)
for the smallest singular value is also σN

− (R) = 1, but the INE estimate 1/σN
+ (R−1)

is more accurate since 1/σN
+ (R−1) =

√
4/5 ≈ 0.8944. This is what one would expect

from Theorem 3.4. (Its assumptions are satisfied because the estimates for triangular
matrices of size two are always exact.)
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Consider now an extended matrix R̂ with γ = 1 in (2.1). The choice of v influences
the values ι− and ι+ in Proposition 3.5, which can be crucial for whether 1/σN

+ (R̂−1) <

σN
− (R̂) holds; see Corollary 3.6. The INE approximation of the right singular vec-

tor z− corresponding to σN
− (R) is z− = [0, 1, 0]T , hence ι− = (vTRz−)/σN

− (R) =
vT [0, 1, 0]T . Similarly, using the INE approximate right singular vector x+ = [0, 0, 1]T

corresponding to 1/σN
+ (R−1) we arrive at ι+ = (vTR−TR−1x+)/σ

N
+ (R−1)2 = 4/5 ·

vT [−1/4, 0, 5/4]T . Let us consider the vector v = [1, 1, 1]T giving

R̂ =

⎡
⎢⎢⎣

2 0 1 1
1 0 1

1 1
1

⎤
⎥⎥⎦ , σ−(R̂) ≈ 0.5155, ι− = 1, ι+ = 4/5, and

0.5381 ≈

⎛
⎝17/4 +

√
(17/4)

2 − 11

2

⎞
⎠

− 1
2

=1/σN
+ (R̂−1) < σN

− (R̂)=

√
5 −

√
13

2
≈ 0.835,

which is what one may expect from Proposition 3.5. Just note that the ICE estimates
are

σC
−(R̂) = 1/σC

+(R̂
−1) =

√
3 −

√
5

2
≈ 0.618.

We can, however, construct a case where the sufficient condition of Corollary 3.6 is
not satisfied and 1/σN

+ (R̂−1) > σN
− (R̂) by making ι+ smaller. For instance, with

v = [0, 1, 0]T we have ι+ = 0 and ι− = 1. The extended matrix is then

R̂ =

⎡
⎢⎢⎣

2 0 1 0
1 0 1

1 0
1

⎤
⎥⎥⎦ with σ−(R̂) =

√
3 −

√
5

2
,

and we obtain

0.618 ≈

√
3 −

√
5

2
= σN

− (R̂) < 1/σN
+ (R̂−1) =

√
1

2
≈ 0.7071.

The ICE estimates satisfy in this case σC
−(R̂) = 1/σC

+(R̂
−1) = 1.

This example might indicate that it is not too difficult to find academic exam-
ples where estimating σ−(R̂) by σN

− (R̂) (i.e., with minimization) works better than

using 1/σN
+ (R̂−1) (i.e., maximization). But as we mentioned, we never observed this

in practice. Let us give one striking example. In Figure 3.1 the pluses display the
minimum singular value of the one-dimensional Laplacians Li, i = 1, . . . , 100, of size
1 to 100. The circles represent the INE estimates 1/σN

+ (L−1
i ), i = 1, . . . , 100, and

they are very accurate. (See also Figure 3.2, which is a zoom of Figure 3.1 for the
INE estimates 1/σN

+ (L−1
i ), i = 50, . . . , 100.) The solid line represents the INE esti-

mates σN
− (Li), i = 1, . . . , 100 based on minimization. They stagnate around the value

0.6356.
Summarizing, we present at the end of this section a number of results suggesting

superiority of INE maximization based on the inverse of the triangular factor over
INE minimization. A sound theoretical explanation for this phenomenon, which is
often observed but for which counterexamples can be constructed (see above), is an
open problem.
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Fig. 3.1. INE estimation of the smallest
singular value of the one-dimensional Lapla-
cians of size 1 to 100: INE with minimization
(solid line), INE with maximization (circles),
and exact minimum singular values (pluses).
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Fig. 3.2. INE estimation of the smallest
singular value of the one-dimensional Lapla-
cians of size 50 to 100, zoom of Figure 3.1 for
INE with maximization and exact minimum
singular values.

4. Superiority of INE maximization over ICE maximization. While the
previous section concludes that the maximization problem in INE should be preferred
for estimating both the maximum and the minimum singular value (exploiting the
inverse), this section addresses the question of whether the ICE technique can be
more efficient than INE when the inverse is available. We already proved that using
the inverse does not improve the ICE technique (Theorem 3.2), but this does not
mean that ICE estimates are worse than INE estimates exploiting the inverse. If ICE
maximization were more powerful than INE maximization, there would hold, with
the assumptions of Theorem 3.4,

σC
−(R̂) = 1/σC

+(R̂
−1) ≤ 1/σN

+ (R̂−1) ≤ σN
− (R̂)

and in that case also ICE minimization would be more powerful than INE mini-
mization. We therefore concentrate on maximization. The subsequent text presents
sufficient conditions for the opposite case, that is, for the superiority of INE maxi-
mization to ICE maximization. Extensive numerical experiments confirm that INE
maximization is the method of choice. We also graphically demonstrate the strength
of the introduced sufficient conditions. Let us compare INE and ICE maximization
from the theoretical point of view first.

Similarly to the results of the previous section, we are not able to prove the
superiority of INE unconditionally and counterexamples exist. This type of conclusion
seems to be present in many areas connected with condition estimators that can
sometimes fail. On the other hand we are just interested in proposing a strategy which
would give results as good as possible on average and we believe that we are successful
in this. We will see that both the theoretical arguments, the figures displayed in this
section, and also the results in the experimental section support the claim that INE
maximization is preferable over ICE maximization.

The theoretical arguments consist of the two following theorems that provide
sufficient conditions for superiority of INE.

Theorem 4.1. Consider norm estimation of the extended matrix (2.1) where
ICE and INE start with the same approximation σ+ ≡ σC

+(R) = σN
+ (R). Let y be the

corresponding approximate left singular vector, let z be the corresponding approximate
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right singular vector, and let w = Rz/σ+. Then the approximation σN
+ (R̂) obtained

from INE is at least as good as the approximation σC
+(R̂) from ICE if

(4.1) (vTw)2 ≥ (vT y)2.

Proof. The largest eigenvalue of BC
+ from (2.2) (with the simplified notation

introduced here) corresponds to the rightmost intersection of the parabola �(λ) =(
λ − σ2

+ − (vT y)2
)
(λ − γ2) with the horizontal line h(λ) ≡ γ2(vT y)2. Hence the

largest eigenvalue λR of BN
+ from (2.3) is larger than or equal to the leading eigen-

value of BC
+ if and only if

(4.2) �(λR) ≥ γ2(vT y)2.

The condition (4.2) corresponds to the case when INE maximization for R̂ is at least
as good as ICE maximization for the same matrix. Substituting

(4.3) λR ≡ 1

2

(
σ2
+ + vT v + γ2 + S

)
, S ≡

√
(σ2

+ − γ2 − vT v)2 + 4σ2
+(v

Tw)2

into �(λR) we have

�(λR) =
(
γ2 − λR

) (
σ2
+ + (vT y)2 − λR

)

=
1

4

(
γ2 − σ2

+ − vT v − S
) (

σ2
+ + 2(vT y)2 − vT v − γ2 − S

)

=
1

4

(
(γ2 − σ2

+ − vT v)(σ2
+ − γ2 − vT v + 2(vT y)2) − 2((vT y)2 − vT v)S + S2

)
.

Thus (4.2) is satisfied if and only if

(γ2 − σ2
+ − vT v)(σ2

+ − γ2 − vT v + 2(vT y)2) − 2((vT y)2 − vT v)S + S2 ≥ 4γ2(yT v)2.

Substituting S2 from (4.3) we can obtain

2
(
σ2
+ − γ2 + vT v + S + 2γ2

) (
vT v − (vT y)2

)
− 4σ2

+

(
vT v − (vTw)2

)
≥ 0,

and after some rewriting we arrive at the equivalent condition

(4.4) 2
(
γ2 − σ2

+ + vT v + S
) (

vT v − (vT y)2
)
+ 4σ2

+

(
(vTw)2 − (vT y)2

)
≥ 0

that is equivalent to (4.2). The Cauchy inequality implies that vT v − (vT y)2 ≥ 0. If
vT v − (vT y)2 = 0, then we are done since (4.4) follows directly from (4.1).

Consider vT v − (vT y)2 > 0. Let ε ≥ 0 be defined through

(4.5) (vTw)2 − (vT y)2 = ε
(
vT v − (vT y)2

)
.

Then (4.4) implies that (4.2) is satisfied if and only if

(4.6) 2
(
γ2 + vT v + S + (2ε − 1)σ2

+

)
≥ 0,

that is, if and only if

S2 = (σ2
+ − γ2 − vT v)2 + 4σ2

+(v
Tw)2 ≥

(
σ2
+ − γ2 − vT v − 2εσ2

+

)2
.
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Equivalently, (4.2) is valid with vT v − (vT y)2 > 0 if and only if

(4.7) ε2σ2
+ − ε(σ2

+ − γ2 − vT v) − (vTw)2 ≤ 0.

This is true for ε = 0. But this means, in view of (4.6), that for ε = 0

γ2 + vT v + S + (2ε − 1)δ2 ≥ 0.

Consequently, for all ε ≥ 0,

γ2 + vT v + S + (2ε − 1)δ2 ≥ 0.

The next theorem formulates an even stricter sufficient condition for the superi-
ority of INE. This condition seems to be rather technical but it enables us to specify
more precisely the areas of parameters where one of the techniques is better than the
other. We will see that based on the input parameters of the condition estimator,
there is always a possibility that the INE technique is better than ICE, but not vice
versa.

Theorem 4.2. Using the same notation and assumptions as in Theorem 4.1,
the approximation σN

+ (R̂) obtained from INE is at least as good as the approximation

σC
+(R̂) from ICE if

(4.8) (vTw)2 ≥ ρ1,

where ρ1 is the smaller root of the quadratic equation in (vTw)2,

(vTw)4 +

(
γ2 + (vT y)2

σ2
+

(
vT v − (vT y)2

)
− vT v − (vT y)2

)
(vTw)2(4.9)

+ (vT y)2
(
γ2 + vT v

σ2
+

(
(vT y)2 − vT v

)
+ vT v

)
= 0.

Proof. Assume for the moment that vT v − (vT y)2 > 0. Let us substitute the
expression for ε from (4.5) into the inequality (4.7). We get directly

(
(vTw)2 − (vT y)2

vT v − (vT y)2

)2

σ2
+ −

(
(vTw)2 − (vT y)2

) (
vT v − (vT y)2

)

(vT v − (vT y)2)
2 (σ2

+ − γ2 − vT v)

− (vTw)2
(
vT v − (vT y)2

)2

(vT v − (vT y)2)
2 ≤ 0,

and after a few simple steps we obtain the sufficient condition for the superiority of
INE

(4.10) ρ1 ≤ (vTw)2 ≤ ρ2,

where ρ1,2 are the roots of (4.9). They have the form

(4.11) (vT y)2 +

(
vT v − (vT y)2

)

2σ2
+

(
β ±
√
β2 + 4σ2

+(v
T y)2
)
,

where β = σ2
+ − γ2 − (vT y)2. Clearly, we get

(4.12) ρ1 ≤ (vT y)2 ≤ ρ2.
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Fig. 4.1. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 0.1, σ+ = 1 and with Δ = 0 in (4.13).
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Fig. 4.2. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 1, σ+ = 1 and with Δ = 0 in (4.13).

If (vTw)2 < (vT y)2, then (4.8) and (4.12) imply superiority of INE based on (4.10);
otherwise Theorem 4.1 can be applied. Finally, if vT v− (vT y)2 = 0, then the roots of
(4.9) coincide and take the value ρ1,2 = (vT y)2; see (4.11). Hence the condition (4.8)
reduces to (4.1) and again, Theorem 4.1 can be applied.

An important conclusion of the previous theorems is as follows. Let us divide the
possible input vectors v into two sets. The first set contains v such that (vTw)2 ≥
(vT y)2 and the second set contains the other instances of v. Then, the sufficient
condition for superiority is always valid for all v from the first group and it is possibly
valid also for some v from the second group. In particular, INE is never worse than
ICE under the assumptions of these theorems whenever ρ1 ≤ 0. We do not have a
similar claim for the superiority of ICE.

4.1. Graphical demonstration. In this subsection we graphically demonstrate
the relation between ICE and INE maximization that points out the superiority of
the latter approach. The presented figures depict on the z-axis the value max(0, ρ1),
that is, the sufficient condition for the superiority of INE estimation in (4.8), where
we display max(0, ρ1) because for ρ1 ≤ 0 the condition is automatically satisfied. If
we scale the matrix such that σ+ = 1, and this can always be done without loss
of generality, the coefficients of (4.9) depend on three variables only. These three
variables are (vT y)2, vT v, and γ2. Fixing vT v, we can display the dependence on the
other variables in the remaining two dimensions of the figures. We plot the values of
(vT y)2 on the x-axis and γ2 on the y-axis. For practical reasons, we restrict ourselves
to γ2 ≤ 5 but the behavior for larger values is more or less the same as for γ2 = 5.
Figures 4.1–4.3 display the values for three different choices of the norm vT v. We know
from Theorem 4.2 that INE is unconditionally (regardless of the vector w) superior
over ICE for ρ1 ≤ 0. In our pictures this case corresponds to its crosshatched part.
In the other cases (dark part of the figures), the conclusion of whether ICE or INE
maximization is better still depends on the mutual relation of (vTw)2 and (vT y)2 and
either of the techniques can be better than the other.

Let us mention here that a result similar to Theorem 4.2 could be derived that
uses as an additional parameter the distance

(4.13) Δ ≡
√
(σN

+ )2 − (σC
+)2, σN

+ ≥ σC
+ ,

with σN
+ = σN

max(R) and σC
+ = σC

max(R). The previous case corresponds to the case
Δ = 0. The claims and proofs are very similar and we omit them here since they would
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Fig. 4.3. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 10, σ+ = 1 and with Δ = 0 in (4.13).
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Fig. 4.4. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 0.1, σ+ = 1 and with Δ = 0.6 in (4.13).
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Fig. 4.5. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 1, σ+ = 1 and with Δ = 0.6 in (4.13).
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Fig. 4.6. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 10, σ+ = 1 and with Δ = 0.6 in (4.13).

not give additional insight for our statement that INE maximization is preferable over
ICE maximization. Nevertheless, just for illustration, we present here figures for the
same choices of values of ||v|| and with nonzero Δ; here, Δ = 0.6. In Figures 4.4–4.6
we can see that the results are as we would intuitively expect; Δ > 0 seems even to
increase the expectation for the superiority of INE over ICE.

Let us recall the one-dimensional Laplacian example from section 3. It shows not
only that INE maximization based on the inverse matrix may be very accurate, but
it also points out that the estimate of σN

− via INE minimization can be very poor.
Therfore, if the plain ICE-based strategy is used without the matrix inverse to estimate
both singular values, the condition number estimate is often better than if plain INE
without inverse is used. In other words, experiments show that INE minimization is
by far the weakest point of the two investigated strategies. The explanation of this
observation is an interesting open problem.

5. Numerical experiments. In this section we focus on illustrating the theo-
retical results in sections 3 and 4. In particular, we confirm that using just maximiza-
tion in INE seems to be a better strategy than using minimization as well. Further,
we will see that ICE is clearly outperformed by INE using various matrix test sets.
The experiments, all run in MATLAB, show that the availability of the inverse inside
the decomposition is desirable, but, except for the last experiment, we compute the
inverse separately with MATLAB’s backslash command.
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Our experiments compare the following four strategies:
1. The original ICE technique from [3] with the estimates defined as

σC
+(R)/σC

−(R).
2. The INE technique from [18] for estimating both the norm and the minimum

singular value with the estimates defined by σN
+ (R)/σN

− (R). Although INE
was originally proposed for norm estimation only, we refer to this estimator
as the original INE.

3. The INE technique based on maximization only, which also uses the inverse
R−1, that is, estimates defined as σN

+ (R)σN
+ (R−1).

4. The INE technique based on minimization only which uses the matrix inverse

as well, that is,
(
σN
− (R)σN

− (R−1)
)−1

.
Note that we do not display any results for the estimates σC

−(R
−1)/σC

+(R
−1) since,

as we proved in Theorem 3.2, they are identical with the original ICE estimates.

5.1. Example 1. Using the MATLAB command A = rand(100,100) -
rand(100,100) we generated 50 matrices A of size 100, computed a column pivoting
using colamd, and obtained an upper triangular factor R from the QR decomposition
of the column permuted matrix A. This is the same type of experiment as in [3, sec-
tion 4, Test 1]. The condition estimators were tested on R; see Figures 5.1 and 5.2.
Note that for simplicity we refer here also to an experiment from Example 2. When
omitting the column pivoting we get qualitatively the same picture.

We can see that the estimate σN
+ (R)σN

+ (R−1), which uses maximizing INE
processes only, performs the best by far. On the other hand, the estimate
(σN

− (R)σN
− (R−1))−1, which uses minimizing INE processes only, performs very poorly.

This supports experimentally the fact mentioned above that INE is powerful when
maximizing and weak when minimizing. The ICE technique performs moderately
(and it cannot be improved by exploiting the inverse) and the original INE technique
performs even worse, again, because of the weak performance when estimating the
minimum singular value.

It may be interesting to see a comparison between the theoretically derived suf-
ficient conditions for the superiority of INE maximization over ICE maximization.
Figures 5.3 and 5.4 display the fraction of cases in which the sufficient conditions for
superiority of INE maximization (4.1), (4.8), and (3.8) are satisfied if this superiority
is actually achieved. Note that the first two conditions refer to a comparison of INE
and ICE and the third just relates INE maximization and minimization. Overall, in
about half of the cases the conditions are satisfied and they represent a nonnegligible
case in the estimation process. We also see verified the fact that condition (4.1) is
weaker than (4.8), as mentioned in section 4.

5.2. Example 2. We generated 50 matrices of the form A = UΣV T of size 100
with a prescribed condition number κ by choosing Σ = diag(σ1, . . . , σ100) with

σk = αk, 1 ≤ k ≤ 100, where α = κ− 1
99 .

U and V are the Q factors of the QR factorizations of matrices B generated using the
MATLAB command B = rand(100,100) - rand(100,100). Then we computed a column
pivoting with the colamd command and obtained an upper triangular factor R from
the QR decomposition of the permuted A. This corresponds to the experiments in [3,
section 4, Test 2] and [18, section 5, Table 5.4]. The condition estimators were tested
on R; see Figures 5.2, 5.5, 5.6 for κ = 10, 100, 1000, respectively. When omitting the
column pivoting we get qualitatively the same picture.
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Fig. 5.1. Ratio of estimate to real condi-
tion number for the 50 matrices in example 1.
Solid line: ICE (original); pluses: INE with
inverse and using only maximization; circles:
INE (original); squares: INE with inverse and
using only minimization.
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Fig. 5.2. Ratio of estimate to real condi-
tion number for the matrices in example 2 with
κ(A) = 10. Solid line: ICE (original); pluses:
INE with inverse and using only maximization;
circles: INE (original); squares: INE with in-
verse and using only minimization.
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Fig. 5.3. Ratio of the satisfied sufficient
conditions in condition number estimation for
the 50 matrices in example 1. Solid line: (4.8);
dotted: (4.1); dashed: (3.8).
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Fig. 5.4. Ratio of the satisfied sufficient
conditions in condition number estimation for
the 50 matrices in example 2 with κ(A) = 10.
Solid line: (4.8); dotted: (4.1); dashed: (3.8).

All the observations from the first example apply. Note that the two better tech-
niques are nearly insensitive to increasing the condition number while the two other
are getting worse. Also note that Figures 5.2 and 5.5 seem to suggest a general inferi-
ority of INE using minimization only compared to original INE. This again supports
the conjecture that INE is powerful when maximizing and weak when minimizing.

5.3. Example 3. We generated 50 matrices A of size 100 all with the same
prescribed Euclidean norm N by choosing the uniformly distributed singular values

σk =
N

k
, 1 ≤ k ≤ 100.

The matrix A was formed as A = UΣV T , where Σ = diag(σ1, . . . , σ100), and the
matrices U and V are the Q factors of the QR factorizations of matrices B generated
using the MATLAB command B=rand(100,100) - rand(100,100). Then we computed a
column pivoting (using the MATLAB command colamd(A)) and obtained an upper tri-
angular factor R from the QR decomposition of the column permuted matrix A. This
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Fig. 5.5. Ratio of estimate to real con-
dition number for the 50 matrices in example
2 with κ(A) = 100. Solid line: ICE (origi-
nal); pluses: INE with inverse and using only
maximization; circles: INE (original); squares:
INE with inverse and using only minimization.
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Fig. 5.6. Ratio of estimate to real con-
dition number for the 50 matrices in example
2 with κ(A) = 1000. Solid line: ICE (origi-
nal); pluses: INE with inverse and using only
maximization; circles: INE (original); squares:
INE with inverse and using only minimization.
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Fig. 5.7. Ratio of estimate to real
condition number for the 50 matrices in ex-
ample 3 with N = 10. Solid line: ICE (origi-
nal); pluses: INE with inverse and using only
maximization; circles: INE (original); squares:
INE with inverse and using only minimization.
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Fig. 5.8. Ratio of estimate to real
condition number for the 50 matrices in exam-
ple 3 with N = 1012. Solid line: ICE (origi-
nal); pluses: INE with inverse and using only
maximization; circles: INE (original); squares:
INE with inverse and using only minimization.

is the same type of experiment as tested in [18, section 5, Table 5.3]. The condition
estimators were tested on R; see Figures 5.7 and 5.8 for, respectively, N = 10, 1012.
Qualitatively the same pictures are obtained when one omits column pivoting.

Again, INE with maximization only is the best for both cases ofN . Also, the other
techniques keep the same relative superiority as above (exception for one matrix in
Figure 5.7 and two matrices in Figure 5.8). Further, all techniques perform better
overall than with exponentially distributed singular values, even when the condition
number is like that in Figure 5.5.

5.4. Example 4. We considered 20 small sparse matrices from the Matrix Mar-
ket collection [17], most of them tested also in [18, section 5, Table 5.1]. We computed
their QR decomposition (with and without column pivoting) and tested the estima-
tors with the factor R. We provide the ratios of the ICE and INE estimates versus the
actual condition numbers in Figures 5.9 and 5.10, with and without column pivoting
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Table 5.1
Examples of matrices from Matrix Market: Ratios of the estimates over the actual condition

numbers.

Number Name dim. nnz ICE (orig) INE (orig) INE (max) INE (min)
1 494 bus 494 1666 0.09 0.06 0.99 0.02
1 (colamd) 494 1666 0.09 0.06 1 0.057
2 arc130 130 1037 0.42 4e-06 1 9e-10
2 (colamd) 130 1037 0.63 5e-06 1 5e-6
3 bfw398a 398 3678 0.29 0.005 0.83 0.004
3 (colamd) 398 3678 0.03 0.005 0.9 0.004
4 cavity04 317 5923 0.11 1e-4 0.88 3e-5
4 (colamd) 317 5923 0.13 5e-4 0.87 7e-6
5 ck400 400 2860 0.15 9e-5 0.99 8e-5
5 (colamd) 400 2860 0.09 2e-4 1 2e-5
6 dwa512 512 2480 0.16 0.005 0.97 0.003
6 (colamd) 512 2480 0.11 0.005 0.94 0.003
7 e05r0400 236 5846 0.09 5e-4 0.86 1e-4
7 (colamd) 236 5846 0.06 0.001 0.94 3e-4
8 fidap001 216 4339 0.63 0.02 0.76 0.01
8 (colamd) 216 4339 0.19 0.03 0.85 0.02
9 gre 343 343 1310 0.37 0.05 0.87 0.05
9 (colamd) 343 1310 0.33 0.025 0.9 0.023
10 impcol b 59 271 0.16 2e-4 0.98 5e-5
10 (colamd) 59 271 0.17 2e-4 0.98 5e-5
11 impcol c 137 400 0.24 0.007 0.99 0.007
11 (colamd) 137 400 0.32 0.006 0.99 0.006
12 lshp 406 406 2716 0.11 0.006 0.88 0.004
12 (colamd) 406 2716 0.13 0.006 0.88 0.005
13 lund a 147 2449 0.18 3e-5 0.94 1e-5
13 (colamd) 147 2449 0.15 2e-4 0.91 1e-4
14 olm500 500 1996 0.08 0.03 0.93 0.019
14 (colamd) 500 1996 0.08 0.03 0.93 0.019
15 pde225 225 1065 0.38 0.11 0.77 0.088
15 (colamd) 225 1065 0.53 0.099 0.96 0.093
16 rw496 496 1859 0.92 3e-8 0.99 3e-8
16 (colamd) 496 1859 1e-5 3e-8 1 2e-8
17 saylr1 238 1128 0.4 0.07 0.69 0.02
17 (colamd) 238 1128 0.77 0.11 0.89 0.08
18 steam 240 2248 1 0.96 1 0.81
18 (colamd) 240 2248 1 0.2 1 0.03
19 str 0 363 2454 0.38 0.07 0.97 0.04
19 (colamd) 363 2454 0.06 0.08 0.71 0.02
20 west0381 381 2134 0.66 0.005 0.99 0.002
20 (colamd) 381 2134 0.4 0.003 0.92 0.002

by colamd, respectively. In these figures the x-axis corresponds to the matrix number,
where the numbering follows from alphabetical ordering according to matrix name.
In order to see the huge differences in the quality of the estimators we also provide
the values of these ratios in Table 5.1. We can see that the differences between the
individual techniques do change more among the matrices than in the previous ex-
amples, but the basic message is the same: the INE technique with maximization is
the clear winner. Column pivoting seems to have a more profound influence. In some
situations all techniques do reasonably well (the matrix “steam” without pivoting) or
badly except for INE using only maximization (the matrix “rw496” with pivoting).

As above, we display for the matrices from the Matrix Market the fraction of cases
in which the sufficient conditions for superiority of INE maximization (4.1), (4.8),
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Fig. 5.9. Ratio of estimate to actual con-
dition number for the 20 matrices from the Ma-
trix Market collection without column pivoting.
Solid line: ICE (original); pluses: INE with
inverse and using only maximization; circles:
INE (original); squares: INE with inverse and
using only minimization.
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Fig. 5.10. Ratio of estimate to actual con-
dition number for the 20 matrices from the
Matrix Market collection with column pivoting.
Solid line: ICE (original); pluses: INE with
inverse and using only maximization; circles:
INE (original); squares: INE with inverse and
using only minimization.
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Fig. 5.11. Ratio of the satisfied sufficient
conditions in condition number estimation for
the 20 matrices from the Matrix Market. Solid
line: (4.8); dotted: (4.1); dashed: (3.8).
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Fig. 5.12. Ratio of the satisfied sufficient
conditions in condition number estimation for
the 20 matrices from the Matrix Market. Solid
line: (4.8); dotted: (4.1); dashed: (3.8).

and (3.8) are satisfied if this superiority is actually achieved. They are depicted in
Figures 5.11 and 5.12. We can see that these conditions often seem to cover even more
cases of INE maximization superiority than in the case of the random matrices from
Example 1.

5.5. Example 5. The last series of experiments uses the investigated condi-
tion estimators inside a mixed direct-inverse matrix decomposition. As we mentioned
in the introduction, we believe that more accurate estimates are also useful in an
incomplete decomposition since their values may decide about dropping and pivot-
ing. Here we use the compact BIF decomposition introduced in [12, 13] (see the
MATLAB code there) that computes the incomplete direct and inverse factor at the
same time and their mutual computation can be exploited in monitoring the decom-
position. However, to facilitate comparison of the condition estimators, we will use
only BIF decomposition without dropping, i.e., both the full direct and inverse factor
are computed. Of course, in the case of the original ICE method we could use any
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Fig. 5.13. Ratio of estimate to actual con-
dition number for the 50 dense symmetric pos-
itive definite matrices in example 5 decomposed
with the BIF method. Solid line: ICE (origi-
nal); pluses: INE with inverse and using only
maximization; circles: INE (original); squares:
INE with inverse and using only minimization.
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Fig. 5.14. Ratio of estimate to actual con-
dition number for the 50 sparse symmetric pos-
itive definite matrices in example 5 decomposed
with the BIF method. Solid line: ICE (origi-
nal); pluses: INE with inverse and using only
maximization; circles: INE (original); squares:
INE with inverse and using only minimization.

other implementation of the Cholesky decomposition, but for simplicity we stick with
the same method here.

First, we generated 50 dense symmetric positive definite matrices A of size 100
using the MATLAB command B = randn(100,100) and putting A = BTB. The results
are displayed in Figure 5.13. Next we generated 50 sparse symmetric positive definite
matrices A of size 100 using the MATLAB command B = sprandn(100,100,0.02) +
speye(100) and putting A = BTB. This gave matrices A with an average of about
850 nonzeros. The results are displayed in Figure 5.14.

As for Example 4, with sparse matrices the differences between the estimators
are somehow less regular and sparse matrices seem to be favorable for original ICE.
Nevertheless, the overall assessment of the quality of the individual techniques is as
in the previous examples.

6. Conclusions and future work. In this paper, we have discussed incremen-
tal condition estimators in the 2-norm. In particular, the two main strategies, ICE
and INE, were analyzed. It was shown that these two strategies are inherently dif-
ferent and the presented experiments support this claim. Moreover, we accumulated
both theoretical and experimental evidence that the INE strategy using both the di-
rect and the inverse factor is a method of choice yielding a highly accurate 2-norm
estimator. Our future work will consider the effects of higher accuracy of the condi-
tion estimator used inside incomplete factorizations. In particular, we intend to use
accurate condition estimation for dropping and pivoting. We also intend to develop a
fast block version of the described strategy taking into account several ways to extract
the estimates for the diagonal blocks.
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[1] J. Benesty and T. Gänsler, New insights into the RLS algorithm, EURASIP J. Appl. Signal
Processing, 3 (2004), pp. 331–339.



196 JURJEN DUINTJER TEBBENS AND MIROSLAV TŮMA
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[7] M. Bollhöfer, A robust ILU with pivoting based on monitoring the growth of the inverse
factors, Linear Algebra Appl., 338 (2001), pp. 201–218.
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[18] I. S. Duff and C. Vömel, Incremental norm estimation for dense and sparse matrices, BIT,

42 (2002), 300–322.
[19] C. Fassino, On updating the least singular value: A lower bound, Calcolo, 40 (2003),

pp. 213–229.
[20] R. Ferng, Lanczos-Based Condition Estimation in Signal Processing and Optimization, Ph.D.

thesis, Department of Mathematics, North Carolina State University, 1991.
[21] W. R. Ferng, G. H. Golub, and R. J. Plemmons, Adaptive Lanczos methods for recursive

condition estimation, Numer. Algorithms, 1 (1991), pp. 1–19.
[22] W. W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311–316.
[23] S. Haykin, Adaptive Filter Theory, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 2002.
[24] N. J. Higham, A survey of condition number estimation for triangular matrices, SIAM Rev.,

29 (1987), 575–596.
[25] N. J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix, with

applications to condition estimation, ACM Trans. Math. Softw., 14 (1989), pp. 381–396.
[26] N. J. Higham, Experience with a matrix norm estimator, SIAM J. Sci. Statist. Comput., 11

(1990), pp. 804–809.
[27] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with an

application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1185–
1201.

[28] J. Mandel and B. Soused́ık, Adaptive selection of face coarse degrees of freedom in the BDDC
and the FETI-DP iterative substructuring methods, Comput. Methods Appl. Mech. Engrg.,
196 (2007), pp. 1389–1399.

[29] N. Mastronardi, M. Van Barel, and R. Vandebril, A Schur-based algorithm for computing
bounds to the smallest eigenvalue of a symmetric positive definite Toeplitz matrix, Linear
Algebra Appl., 428 (2008), pp. 479–491.

[30] J. Neering, Optimization and Estimation Techniques for Passive Acoustic Source Localization,
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EFFICIENT PRECONDITIONING OF SEQUENCES OF
NONSYMMETRIC LINEAR SYSTEMS∗
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Abstract. We present a new approach for approximate updates of factorized nonsymmetric
preconditioners for solving sequences of linear algebraic systems. This approach is algebraic and it
is theoretically motivated. It generalizes diagonal updates introduced by Benzi and Bertaccini [BIT,
43 (2003), pp. 231–244] and Bertaccini [Electron. Trans. Numer. Anal., 18 (2004), pp. 49–64]. It
is shown experimentally that this approach can be very beneficial. For example, it is successful in
significantly decreasing the number of iterations of a preconditioned iterative method for solving
subsequent systems of a sequence when compared with freezing the preconditioner from the first
system of the sequence. In some cases, the updated preconditioners offer a rate of convergence similar
to or even higher than the rate obtained when preconditioning with recomputed preconditioners.
Since the updates are typically cheap and straightforward, their use is of practical interest. They can
replace recomputing preconditioners, which is often expensive, especially in parallel and matrix-free
environments.

Key words. preconditioned iterative methods, sparse matrices, sequences of linear algebraic
systems, incomplete factorizations, factorization updates, Gauss–Jordan transformations, minimum
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1. Introduction. We consider the solution of sequences of linear systems

(1.1) A(i)x = b(i), i = 1, . . . ,

where A(i) ∈ Rn×n are general nonsingular sparse matrices and b(i) ∈ Rn are corre-
sponding right-hand sides. Such sequences arise in many applications such as com-
putational fluid dynamics, structural mechanics, numerical optimization as well as in
solving non-PDE problems. For example, a system of nonlinear equations F (x) = 0
for F : Rn → Rn solved by a Newton- or Broyden-type method leads to a sequence
of problems

(1.2) J(xi)(xi+1 − xi) = −F (xi), i = 1, . . . ,

where J(xi) is the Jacobian evaluated in the current iteration xi or its approximation
[31], [32].

The solution of sequences of linear systems is the main bottleneck in many appli-
cations mentioned above. For instance, the solvers may need powerful preconditioners
in order to be efficient, and computing preconditioners M (1),M (2), . . . for individual
systems separately can be very expensive. There is a strong need for reduction of costs
by sharing some of the computational effort among the subsequent linear systems.

A way to reduce the overall costs for solving systems of the type (1.2) is to mod-
ify Newton’s method by skipping some Jacobian evaluations as in the Shamanskii
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combination of Newton’s method and the Newton-chord method [11], [54]. In this
way we get a sequence of systems with identical matrices, and techniques for solving
systems with more right-hand sides may be applied provided that the right-hand sides
are available a priori; see, e.g., [45], [25], [55], [60]. However, combinations of New-
ton’s method and the Newton-chord method have much weaker nonlinear convergence
properties than the standard Newton method.

A different approach to reducing the overall costs, which is usually more efficient,
is based on freezing the preconditioner (using the same preconditioner for a sequence
of linear systems), but recomputing (approximate) Jacobians A(i) [12], [37], [38]. This
approach is very natural in the context of a matrix-free environment, where the system
matrices A(i) may be available only in the form of matrix-vector products (matvecs);
see also the overview of matrix-free Newton–Krylov methods in [36].

Another way to avoid efficiency and/or memory related problems connected to
algebraic preconditioning is to use conceptually simpler preconditioners derived from
the physics of the problem. In some PDE problems the original operator can be re-
placed by a simpler one. Early results related to preconditioning by fast solvers can
be found in [16], [24]. For instance, the simpler operator can be a scaled diffusion
operator for a PDE with variable coefficients or a convection-diffusion operator [12],
[34], [36]. In the algebraic setting, simple preconditioners derived from stationary iter-
ative methods can be used. Preconditioning by the symmetric part of a nonsymmetric
matrix was proposed in [17], [62]; see also [14]. Another popular preconditioning tech-
nique for general convection-diffusion-reaction models is based on generalizations of
ADI splitting from [48]; see, e.g., [34]. Note that we restrict ourselves here to linear
preconditioners; for nonlinear preconditioning techniques we refer, e.g., to [13] and the
references therein. In order to make the preconditioning more efficient and to sim-
plify the preconditioner setup even more, reformulations based on nested iterations
were introduced; see, e.g., [59]. For instance, the flexible Krylov-subspace framework
enables theoretically sound implementations of inner-outer Krylov-subspace methods
[51], [56].

Freezing the preconditioner or using simple preconditioning techniques may not be
enough for fast convergence in practice. Our contribution proposes new and efficient
approximate updates of a preconditioner which is factorized as LDU ≈ A. The
updated preconditioners are then used for solving the subsequent members of the
sequence. We do not assume any simple relation among the systems of the sequence.
Note that straightforward approximate small rank preconditioner updates can be
obtained in case of a sequence of linear systems from a quasi-Newton method, as
shown in the symmetric and positive definite case in [44], [8]. It is well known how
to compute the exact updates of sparse decompositions [19], [20], [21]; the techniques
for dense updates starting in early papers, e.g., [27], and having mainly the intent
of being applied to the simplex method of linear programming and its extensions are
a classical part of numerical mathematics. Another algebraically motivated strategy
used in preconditioning sequences of systems is to use adaptive information generated
by Krylov-subspace methods [2]. Recent work on recycling explicit information from
Krylov subspaces can be found in [41], [47].

In this paper we directly generalize the approximate diagonal updates which are
useful for solving the parabolic PDEs proposed in [3]; see also [9]. This generalization
consists in modifying general off-diagonal entries. Our numerical experiments show
that the generalizations are competitive with recomputing the factorized nonsym-
metric preconditioners in terms of achieving similar convergence rates for subsequent
systems. Moreover, forming the updates can be significantly cheaper than recomput-
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ing the preconditioner. As far as we know, there are no theoretical or experimental
results in this direction. We give a couple of theoretical explanations for the good
performance of the updates and discuss some unexpected effects which help to im-
prove the convergence and, as far as we know, have not been communicated before.
The strategy which we use forms the updated preconditioner from two separate lay-
ers: entries of the original factorized preconditioner and scaled entries of the matrix
update. For the sake of quality and efficiency we typically need to exploit only a part
of the update. This part may result from a Gauss–Seidel type of splitting, or it may
be found in a more sophisticated way. In this paper we treat both cases.

The paper is organized as follows. In section 2 we present a brief introduction into
preconditioner updates and motivate the basic form of our updated factorizations. In
section 3 we describe the new techniques for approximate updating. The results of
numerical experiments with the new algorithms are presented and discussed in section
4. Directions for current and future research are given in section 5. Throughout the
paper, ‖ · ‖ denotes an arbitrary matrix norm.

2. The ideal updated preconditioner. Some of the strategies for updating
preconditioners that we mentioned in the introduction are linked with specific classes
of linear solvers (e.g., recycling Krylov subspaces) and nonlinear solvers (e.g., Broyden-
type methods) or they were designed for symmetric matrices. In this paper we wish
to consider sequences of general, nonsymmetric systems that are solved by precondi-
tioned iterative methods. We address here the following problems: First, how can we
update, in theory, a preconditioner in such a way that the updated preconditioner is
likely to be as powerful as the original one? And second, how can we approximate,
in practice, such an update in order to obtain a preconditioner that is inexpensive to
apply and yet useful?

In order to simplify the notation, we consider two linear systems of dimension n
denoted by Ax = b and A+x+ = b+. Denote the difference matrix A − A+ by B and
let M be a preconditioner approximating A. Some information about the quality of
the preconditioner M can be taken from a norm of the matrix

(2.1) A − M

or from some norm of the matrix

(2.2) I − M−1A or I − AM−1

if we consider preconditioning from the left or right, respectively (see, e.g., [3]). If
preconditioners are in factorized form, both (2.1) and (2.2) should be considered in
practice since the preconditioners can suffer from two types of deteriorations. While
the norm of the matrix (2.1) expresses accuracy of the preconditioner, the norms of
the matrices (2.2) relate to its stability [15]; see also [5]. We will define updated
preconditioners M+ for A+ whose accuracy and stability are close to the accuracy
and stability of M for A. For their derivation we concentrate on the norm of the
matrix (2.1) because of its simplicity. Later in this section we present theoretical
results demonstrating that both accuracy and stability of the derived updates are
comparable to or even better than those of M for A.

We immediately obtain

‖A − M‖ = ‖A+ − (M − B)‖.
Hence M+ ≡ M −B represents an updated preconditioner for A+ of the same “level”
of accuracy as M represents for A. We will call it the ideal updated preconditioner.
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Note that there may very well exist different preconditioners that are ideal with respect
to a norm of A+ − M+. Just consider M+ = M − C for some matrix C �= B with

‖A − M‖ = ‖A+ − M+‖ = ‖A+ − M + C‖.

Because B is often readily available, we will concentrate on M+ = M − B.
If we want to use M+ as a preconditioner, we need to multiply vectors with the

inverse of M+ in every iteration of the linear solver. In some problems, the difference
matrix B is such that (M − B)−1 can be obtained from M−1 with low costs. For
instance, if B has small rank, M+ can be easily inverted using the Sherman–Morrison
formula; see, e.g., [44, 8]. In general, however, the ideal updated preconditioner cannot
be used since multiplication of vectors with (M −B)−1 is expensive. Instead, we will
consider cheap approximations of (M − B)−1.

In this paper we will assume that M is given in the form of a triangular decompo-
sition as M = LDU ≈ A, where L and U have unit main diagonal. The approximate
updates of factorized preconditioners which we will describe below typically assume
that the matrices have a strong diagonal. Note that this assumption is very simi-
lar to theoretical assumptions which are generally required to get simple incomplete
factorizations without a breakdown. For example, standard ILU(0) and AINV pre-
conditioners are proved to be breakdown-free if the system matrix is an H-matrix
[43], [6]. In order to extend the breakdown-free property to more general matrices, we
need to change the decomposition by modifications which make the diagonal stronger,
e.g., by a preliminary shift [43], [40] (see also [33], [1]) or by global modification of
the decomposition [57], [35], [4]. The transfer from diagonal dominance of the matrix
to diagonal dominance of the factors is discussed, for example, in [7] (cf. [3]) or in
the practical reordering strategies based on strong transversals [46], [22], [23]. In the
following we tacitly assume matrices are given in such form that the factors L and U
more or less approximate the identity matrix.

If M−B is invertible, we can approximate its inverse by a product of more factors
which are easier to invert. For example, we can replace (M − B)−1 by a product of
inverses of triangular matrices and by an inverse of a difference of matrices where a
diagonal matrix is used instead of M , as in

(2.3) (M − B)−1 = U−1(D − L−1BU−1)−1L−1 ≈ U−1(D − B)−1L−1,

provided that D−B is nonsingular. Now assume D − B is a nonsingular approxima-
tion of D−B that can be inverted inexpensively. Then we can define a preconditioner
M+ via the last expression in (2.3) as

(2.4) M+ = L(D − B)U.

In the symmetric case, this preconditioner changes to M+ = L(D − B)LT ; hence
symmetry is preserved if we choose D − B appropriately. Here we are primarily inter-
ested in the nonsymmetric case, and in this case we can further simplify the update.
For example, we can approximate as

(2.5) (M − B)−1 = (DU − L−1B)−1L−1 ≈ (DU − B)−1L−1

if DU − B is nonsingular. If DU − B denotes a nonsingular and easily invertible
approximation of DU − B, then we define M+ by

(2.6) M+ = L(DU − B).
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In comparison with (2.4), it seems to be much easier to deal only with two factors.
An analogue of (2.5) is approximation through

(2.7) (M − B)−1 = U−1(LD − BU−1)−1 ≈ U−1(LD − B)−1.

In our experiments we choose between approximation with (2.5) or (2.7) adaptively
(we explain this later on). We describe our theoretical results for the case (2.5) only.

A first question is whether the update (2.6) has the potential to be more powerful
than the frozen preconditioner M = LDU for A+. In the following simple lemma we
express the relation of the frozen preconditioner to the updated form quantitatively.

Lemma 2.1. Let ‖A−LDU‖ = ε‖A‖ < ‖B‖. Then the preconditioner from (2.6)
satisfies

‖A+ − M+‖ ≤ ‖L(DU − DU − B) − B‖ + ε‖A‖
‖B‖ − ε‖A‖ · ‖A+ − LDU‖

≤ ‖L‖ ‖DU − B − DU − B‖ + ‖L − I‖ ‖B‖ + ε‖A‖
‖B‖ − ε‖A‖ · ‖A+ − LDU‖.

Proof. We get directly

‖A+ − M+‖ = ‖A − B − L(DU − B)‖ = ‖(A − LDU) + L(DU − DU − B) − B‖

≤
(
ε‖A‖ + ‖L(DU − DU − B) − B‖

) ‖B‖ − ε‖A‖
‖B‖ − ε‖A‖

≤
(
ε‖A‖ + ‖L(DU − DU − B) − B‖

) ‖(A − LDU) − B‖
‖B‖ − ε‖A‖

≤ ‖A+ − LDU‖‖L(DU − DU − B) − B‖ + ε‖A‖
‖B‖ − ε‖A‖

= ‖A+ − LDU‖‖L(DU − DU − B − B) + (L − I)B‖ + ε‖A‖
‖B‖ − ε‖A‖

≤ ‖A+ − LDU‖‖L‖ ‖DU − B − DU − B‖ + ‖L − I‖ ‖B‖ + ε‖A‖
‖B‖ − ε‖A‖ .

The multipliers of ‖A+ −LDU‖ in Lemma 2.1 can be smaller than one if DU − B is
close to DU − B and if ‖L − I‖ tends to be small. In practice, taking into account
preconditioner modifications to improve diagonal dominance, this is often realistic.
Note that the assumption ‖A − LDU‖ = ε‖A‖ < ‖B‖ is satisfied as soon as we have
a strong preconditioner M = LDU .

The lemma states, apart from showing a relation to the frozen preconditioner,
that for ε‖A‖ small enough a good approximation to DU − B combined with a close
to diagonal factor L yields an accurate preconditioner which may be as powerful as
a recomputed preconditioner. If we have a recomputed preconditioner MR with say,
‖A+ − MR‖ = δ = ‖A − M‖, then based on (2.5) we expect ‖A+ − M+‖ ≥ δ. But
the previous lemma shows ‖A+ −M+‖ < δ is not at all excluded. In section 4 we will
show experimentally that the update (2.6) in some cases gives a higher convergence
rate than if the preconditioner is recomputed.

The following theorem shows in a different way that, under the given assumptions,
the quality of the update may be better than that of recomputed preconditioners if
the approximation DU − B is favorably chosen. Since Lemma 2.1 is related to the
accuracy according to (2.1), the theorem considers its quality with respect to (2.2).
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The result is a straightforward generalization of a result from [9]. To simplify the
description, the scaled updated approximate factor D−1(DU − B) will be denoted by
U − D−1B, and U−1(U − D−1B) will be denoted by I − U−1D−1B.

Theorem 2.2. Assume that LDU + E = A for some error matrix E and let
‖U−1D−1B‖2 ≤ 1/c < 1, where ‖ · ‖2 denotes the Euclidean norm. Further assume
that the singular values σi of

(I − L)B + L
(
DU − B − (DU + L−1E − B)

)

satisfy

σ1 ≥ σ2 ≥ · · · ≥ σt ≥ δ ≥ σt+1 ≥ · · · ≥ σn

for some integer t, t 
 n, and some small δ > 0. Let (DU − B) have nonzero main
diagonal, and let D = diag(d1, . . . , dn). Then there exist matrices F and Δ such that

(2.8) (DU − B)−1L−1A+ = I +Δ+ F,

with rank(Δ) ≤ t and

‖F‖2 ≤ c

c − 1
max

i

δ

|di|
‖L−1‖2‖U−1‖2.

Proof. We have

L(DU − B) − A+ = L(DU + L−1E − B +DU − B − (DU + L−1E − B)) − A+

= (I − L)B + L
(
DU − B − (DU + L−1E − B)

)
.

By assumption, the SVD of the latter matrix can be written as

(I − L)B + L
(
DU − B − (DU + L−1E − B)

)
= WΣV T

= Wdiag(σ1, . . . , σt, 0, . . . , 0)V
T +Wdiag(0, . . . , 0, σt+1, . . . , σn)V

T ≡ Δ1 + F1,

where rank(Δ1) ≤ t and ‖F1‖2 ≤ δ. Hence

L(DU − B) − A+ = Δ1 + F1

and

(DU − B)−1L−1A+ = I − (DU − B)−1L−1Δ1 − (DU − B)−1L−1F1.

By setting

F ≡ −(DU − B)−1L−1F1, Δ ≡ −(DU − B)−1L−1Δ1,

we get (2.8), where rank(Δ) ≤ t. The matrix F can be bounded by

‖F‖2 ≤ ‖L−1‖2
∥∥∥∥
(
D(U − D−1B)

)−1
∥∥∥∥
2

δ;

hence

‖F‖2 ≤ max
i

δ

|di|
‖L−1‖2‖(U − D−1B)−1‖2

≤ max
i

δ

|di|
‖L−1‖2‖U−1‖2‖(I − U−1D−1B)−1‖2.
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By assumption, ‖U−1D−1B‖2 ≤ 1/c < 1, and, consequently,

‖F‖2 ≤ max
i

δ

|di|
‖L−1‖2‖U−1‖2

(
1 − ‖U−1D−1B‖2

)−1

≤ c

c − 1
max

i

δ

|di|
‖L−1‖2‖U−1‖2.

Note that if the matrix F in (2.8) is zero, then the preconditioned system is a rank
t update of the identity, and Krylov-subspace methods converge, in exact arithmetics,
in at most t+ 1 iterations.

In the following section we propose approximations DU − B of DU − B that
can be efficiently computed and that lead to preconditioners that are inexpensive to
apply. All techniques we present can be analogously formulated for updates of the
form (LD − B)U corresponding to (2.7).

3. Approximate preconditioner updates. We propose the following strate-
gies to approximate DU −B by an easily invertible matrix (DU − B). A first obvious
but effective strategy is to set DU − B ≡ triu(DU −B), where triu denotes the pos-
sibly sparsified upper triangular part (including the main diagonal). This results in
the preconditioner

(3.1) M+ = L(DU − triu(B)),

which can be obtained entirely for free. The additional cost for applying this precon-
ditioner is one triangular sweep with the triangular part of B if we store B and U
separately. We may also merge them; then the additional sweep can be virtually free
if the sparsity patterns of triu(B) and U are close enough. We will call the update
constructed by considering entries only from one triangular part the structured update.
A trivial structured sparsification is given by

DU − B ≡ diag(DU − B),

which is a straightforward application of an approach from [3] to nonsymmetric prob-
lems.

As we show in the experiments, the simple update (3.1) and its analogue

(3.2) M+ = (LD − tril(B))U

seem to be powerful in many problems. One expects them to be particularly suited
when one triangular part of B clearly dominates the other. The typical situation of
that kind arises when matrices come from upwind/downwind discretization schemes.
Nevertheless, as they take into account only one triangular part of the difference
matrix B, there may be applications where important information is lost, leading to
weak convergence. In the following we present a technique to replace DU − B by an
easily invertible matrix which is in general not triangular.

Denote the matrices diag(DU − B) by D̃, and D̃−1(D̃ − DU − B) by B̃, respec-
tively. Then B̃ has zero diagonal and we can write

(3.3) DU − B = D̃(I − B̃).

To motivate the scaling transformation in (3.3) consider for a moment the case when
B̃ = βeie

T
j for some 1 ≤ i, j ≤ n, i �= j, and recall that we assume DU − B is

nonsingular; hence so is I − B̃. Then we get, with the Sherman–Morrison formula,

(3.4) (I − B̃)−1 = I + βeie
T
j /(1 − βeTj ei) = I + βeie

T
j = I + B̃.
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The matrix in (3.4) is equal to the identity modified by an off-diagonal entry β at the
position (i, j). That is, (I − B̃) is a special Gauss–Jordan transformation [28], it is
inverted without costs, and it has a fill-in free inverse.

Based on this well-known fact, in the following we will try to find unstructured
approximations DU − B of DU −B such that the scaled matrix I − B̃ can be written
as a product of Gauss–Jordan transformations

(3.5) (I − ei1 b̃i1∗)(I − ei2 b̃i2∗) . . . (I − eiK b̃iK∗), K ≤ n − 1,

where B̃ = (b̃)ij . Denote the sparsity structure of a row i of B̃ (with zero diagonal)

by row(i), that is, row(i) = {k|i �= k ∧ b̃ik �= 0}. The multiplication (I − B̃)−1v for a
given vector v is very cheap, as stated in Observation 3.1.

Observation 3.1. The number of operations for multiplying a vector by a matrix
of the form (3.5) or its inverse is at most 2

∑K
j=1 |row(ij)|.

It is well known that any unit upper triangular matrix I − B̃ from (3.3) can be
trivially written as the product Rn−1 . . . R1 of n − 1 elementary triangular matrices
Ri = I − eib̃i∗ for i = 1, . . . , n − 1. Hence using (3.1) may be considered a special
case of (3.5). The following theorem shows a necessary and sufficient condition for
the existence of a decomposition of I − B̃ of the form (3.5).

Theorem 3.1. Let I − B̃ = I − ∑
jl:l=1,...,K ejl b̃jl∗. Then

(3.6) I − B̃ = (I − ei1 b̃i1∗)(I − ei2 b̃i2∗) . . . (I − eiK b̃iK∗)

if and only if

(3.7) il �∈
l−1⋃

k=1

row(ik) for 2 ≤ l ≤ K

for all i1, . . . , iK such that {j1, . . . , jK} = {i1, . . . , iK}.
Proof. The equivalence of (3.6) and (3.7) follows from the orthogonality of the

unit vector eil with respect to all b̃ik∗ for k < l, 1 ≤ l ≤ K.
Based on Theorem 3.1 we first propose a greedy procedure to find a suitable

approximation DU − B with I − B̃ satisfying (3.6). Consider a sequential choice of
indices i1, . . . , iK , where K ≤ n− 1 are determined by the algorithm. In each step we
keep and update a set of candidate rows R initialized by {1, . . . , n}. After choosing a
row i we remove from R all the rows j ∈ R for which b̃ij �= 0.

Algorithm 3.1. We use this algorithm to approximate DU − B by a matrix
which, scaled by its diagonal, can be written in the form (3.6).
(1) set R = {1, . . . , n}, K = 0
(2) for k = 1, . . . , n do
(3) set row(k) = {i|i �= k ∧ |(DU − B)ki| �= 0}
(4) set pk =

∑
j∈row(k) |(DU − B)kj |

(5) end for
(6) while R �= 0 do
(7) choose a row i ∈ R maximizing pi − ∑

j∈R∩row(i) pj
(8) set K = K + 1, iK = i, R = R\{row(iK) ∪ i}
(9) end while

The row indices i1, . . . , iK provided by Algorithm 3.1 then determine the approx-
imation in (3.3) with I − B̃ equal to the product (3.5). The heuristic criterion in step
(7) aims, on the one hand, to choose the row of DU −B with the largest entries. On
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the other hand, it stimulates the choice of a row which results, based on condition
(3.7), in removal of candidate rows with small entries. To balance between the two
heuristics one may want to introduce a weighting parameter ω and use

(7′) choose a row i ∈ R maximizing pi − ω · ∑j∈R∩row(i) pj .

Clearly, the algorithm may find more factors of (3.6) if there are fewer nonzero
entries in the searched rows. Therefore it may be reasonable to perform some dropping
strategy on-the-fly when running the algorithm by substituting step (3) with

(3′) set row(k) = {i|i �= k ∧ |(DU − B)ki| > tol}
for a predefined drop tolerance tol. Apart from tolerance-based dropping, sparsifica-
tion based on the given mask may enhance the effectiveness of our strategy. Note that
sparsification not only helps in covering as many rows as possible by Gauss–Jordan
transformations, but it also leads to less expensive matvecs with the inverse of (3.5).

A more elegant and systematic way to get an unstructured update based on
Gauss–Jordan transformations can be described by the following bipartite graph
model. Let us define the bipartite graph of (DU − B) as G(DU − B) = (R,C,E),
where R = {1, . . . , n}, C = {1′, . . . , n′} and E = {(i, j′)|(DU − B)ij �= 0}. Then we
have the following result.

Theorem 3.2. Consider a spanning forest T = (VT , ET ) of G(DU − B) such
that {(i, i′)|1 ≤ i ≤ n} ⊆ ET . Then the matrix DU − B ∈ Rn×n with the entries
defined by

(DU − B)ij =

{
(DU − B)ij if (i, j′) ∈ ET ,
0 otherwise,

scaled by its diagonal entries as in (3.3), can be expressed as a product of the form
(3.5).

Proof. First consider the case when the spanning forest T is not connected. Com-
ponents of T induce a block-diagonal splitting ofDU − B, and matrices corresponding
to individual blocks can be mutually multiplied in any order without causing any fill-
in. Consequently, we can assume without loss of generality that T is connected and
that T is a spanning tree. In the following we will show how to form the sequence of
Gauss–Jordan transformations from the left to the right.

Our assumption implies that T contains at most n − 1 edges (i, j′) with i �= j.
There exists a free row vertex i ∈ R in T which is in T incident only to the edge (i, i′)
such that there is an edge (k, i′) ∈ ET for some k. Set i1 = i. Then remove from T
the vertices i ∈ R, i′ ∈ C and all edges incident to them. Clearly, the updated tree
T contains a free row vertex again. By repeating the choice of free row vertices and
updates T in this way we get the sequence i1, . . . , in−1. If we rewrite as I − B̃ the
matrixDU − B scaled by its diagonal, we have I−B̃ = (I−ei1 b̃i1∗)(I−ei2 b̃i2∗) . . . (I−
ein−1 b̃in−1∗) which proves the theorem.

Theorem 3.2 implies the following algorithmic strategy to find a matrix DU − B
which would approximate DU − B and could be expressed as a product of Gauss–
Jordan transformations.

Algorithm 3.2. We use this algorithm to findDU − B such that (3.6) is satisfied
based on a bipartite graph of DU − B.
(1) Find a spanning forest T = (VT , ET ) of G(DU − B) of maximum weight with

edge weights wij = |(DU−B)ij | for (i, j′) ∈ ET such that {(i, i′)|1 ≤ i ≤ n} ⊆ ET .

(2) Find the entries of B̃ (and corresponding entries of DU − B) as well as a feasible
ordering of Gauss–Jordan factors for i1, . . . , in−1 in (3.5) with Theorem 3.2.
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(3) For each k = 2, . . . , n add to DU − B all entries (DU − B)ikl of DU − B such
that l ∈ {i1, . . . , ik−1}.

Note that in the last step of Algorithm 3.2 we possibly put into DU − B many more
nonzero entries than the 2n − 1 entries provided by the weighted spanning forest.
This is possible because of Theorem 3.1. The complexity of the weighted minimum
spanning forest (here we need, in fact, a weighted maximum forest) is O(m logm) for
the Kruskal algorithm [39] and O(n + m logm) for the Prim algorithm [50], where
m is the number of edges in the graph G. Note, in addition, that we start with the
partial spanning tree with the set of edges {(i, i′)|1 ≤ i ≤ n}. While in some cases the
algorithms may seem time consuming, this procedure can provide useful updates. As
in Algorithm 3.1, we can sparsify DU −B by discarding entries smaller than a certain
drop tolerance tol, which reduces the value of m and therefore also the computational
complexity.

From Lemma 2.1 it is clear that the quality of the approximation of DU −B may
play a decisive role in the power of the preconditioner M+ = L(DU − B). In practice,
the way that the original incomplete decomposition is constructed (scaling L during
the construction, pivoting) can strongly support the quality of DU − B. In order
to use the most powerful type of update, in our experiments we switch adaptively
between (3.1) and (3.2) based on the weighting of both triangular parts of B and
use an unstructured update based on Algorithm 3.1 or 3.2 if its weighting is the most
important. More precisely, we compute sums of magnitudes of entries in the triangular
parts of the matrices and simulate runs of Algorithms 3.1 and 3.2 to get the sum of
magnitudes of entries covered by the unstructured update. We then use the strategy
which corresponds to the maximum value among these sums.

It can and often does happen that, in spite of the fact that the updated precondi-
tioner loses some information about the system matrix, it yields a better convergence
rate than if the preconditioner would be recomputed from the scratch. There are
several possible explanations for this phenomenon. First, note that we showed theo-
retically in Lemma 2.1 and Theorem 2.2 that our updated preconditioners have the
potential to be stronger than recomputed factorizations. In practice, it frequently
happens that by updating the preconditioner we relate it to a previous decomposition
which is more diagonally dominant than a recomputed decomposition. A part of the
stable triangular factors is inherited and the update may even stabilize less stable
factors of the initial factorization. Note that a modified old decomposition might be
useful in general, but, e.g., in the related strategy [43], the size of the modification
should be typically rather small to get a useful preconditioned iterative method. This
is exactly what happens when modifying with entries of difference matrices B that
are typically small compared to those of A(i). In addition, updates appear to perform
better also in cases where there is no instability. We presume this is so because the
preconditioner may be favorably modified by the additional structural information
given by the update. To our knowledge, this conjecture is stated for the first time.
An overlooked fact is that the most powerful dual-threshold incomplete decomposi-
tions and inverse decompositions can be very memory-efficient, but they may discard
the structure of the problem. Our updates can add to a memory-efficient decomposi-
tion cheap and useful information about the structure, as seems to be clear from our
experiments. We believe that such a strategy might be used to improve constructing
general preconditioners in some cases. We might consider the update as a simple
and efficient way to modify off-diagonal entries of the preconditioner, thus getting
a generalization of diagonal modifications from [43] or forced diagonal modifications
introduced in [33]. It is not unusual that level-based incomplete decompositions are
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much better than their sophisticated counterparts. Such a behavior has been observed
on some VENKAT matrices from the Harwell–Boeing collection, where powerful and
compact dual threshold ILUT [52] preconditioners are less efficient than often very
dense but reasonably structured ILU preconditioners using the concept of levels [61],
[29].

The next section is devoted to numerical experiments with the most promising
updates introduced in the paper.

4. Numerical experiments. In this section we present results of numerical
experiments with preconditioned Krylov-subspace methods for solving sequences of
systems of linear algebraic equations, where updated preconditioners are compared
with recomputed and frozen preconditioners. We consider the sequences in three
application problems. The first and second problems were generated with the opti-
mization software UFO [42]. The last application is based on [10]. Software for the
problem was kindly provided by Philipp Birken. We present results with several kinds
of ILU preconditioners to show that the introduced techniques are quite general. In
order to show a larger spectrum of various results, some of the computations were
done in MATLAB using its ILU decomposition script. We used MATLAB version 7.0.
Most of the tests, in particular for larger problems, were written in Fortran 90 and
were compiled by Compaq Visual Fortran 6.6a. The codes were run on a computer
with Intel Pentium 4, 3GHz processor, 1GB RAM memory, and 512k L2 cache.

As an accelerator, the BiCGSTAB [58] iterative method with right precondition-
ing was used. We also performed some experiments with the restarted GMRES [53]
method and the transpose-free QMR [26] method. The results were similar, and we
do not report on them here. Iterations were stopped when the Euclidean norm of
the residual was decreased by seven orders of magnitude. Nevertheless, in our experi-
ments we observed close to linear behavior of convergence curves of the preconditioned
iterative method. Therefore, we expect qualitatively the same results for weaker or
nonuniform stopping criteria used in nonlinear solvers.

Our first test problem is a two-dimensional nonlinear convection-diffusion model
problem which we use to illustrate various aspects of the proposed strategies (general
behavior of the strategies, choice of parameters, values of the bounds in Lemma 2.1).
It has the form (see, e.g., [31])

(4.1) −Δu+Ru

(
∂u

∂x
+

∂u

∂y

)
= 2000x(1 − x)y(1 − y)

on the unit square, discretized by 5-point finite differences on a uniform 70× 70 grid.
The initial approximation is the discretization of u0(x, y) = 0. We choose the modest
Reynolds number R = 50 in order to avoid potential discretization problems which
may ask for adding stabilization terms. We obtain a small sequence of 7 matrices
with 24220 nonzeros each (in the tables we denote the number of nonzeros by nnz).

Our update techniques are particularly beneficial when recomputing precondi-
tioners is expensive. We start with a typical example given by the so-called ILU(0)
incomplete decomposition which has the same sparsity pattern as the matrix it pre-
conditions. This has the obvious advantage that it enables straightforward a priori
allocation, but its computation may be time-consuming. In Table 1 we display the
total time to solve the whole sequence and the numbers of BiCGSTAB iterations
needed to solve the individual linear systems for several preconditioning strategies.
In the first, denoted by “Recomp,” the ILU(0) preconditioner was computed for each
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Table 1
Nonlinear convection-diffusion model problem with R = 50, n = 4900, nnz = 24220, ILU(0).

ILU(0), psize ≈ 24000

Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.

A(0) 40 40 40 40 40

A(1) 29 36 32 39 30

A(2) 21 39 27 34 30

A(3) 20 48 26 33 24

A(4) 17 55 26 31 26

A(5) 16 58 29 29 30

A(6) 15 50 22 24 26

A(7) 15 62 26 28 29

A(8) 17 68 28 30 31

A(9) 15 71 27 28 28

A(10) 15 51 24 29 28

Overall time 11 s 7.5 s 5 s 8.5 s 12.5 s

matrix separately. The strategy “Freeze” used a fixed preconditioner. The strat-
egy denoted by “Str” used structured updates, “Unstr. GJ” stands for unstructured
updates based on Gauss–Jordan transformations obtained from Algorithm 3.1, and
“Unstr. Kr.” stands for those obtained from Algorithm 3.2, where the spanning tree
is computed with the Kruskal algorithm. We see that the recomputed ILU(0) decom-
positions yield powerful preconditioners for our problem, but they are rather slowly
computed in MATLAB. Freezing the initial ILU(0) decomposition avoids these slow
computations, and although it yields much higher numbers of BiCGSTAB iterations,
the overall time to solve the sequence is shorter. Excellent behavior of the structured
updates is demonstrated by this table. Here the triangular parts were chosen adap-
tively based on the magnitudes of their entries. While iteration numbers are nearly as
low as with recomputation, significant time savings are achieved by avoiding the re-
computation of preconditioners. The iteration counts for unstructured updates from
Algorithm 3.1 are a little higher than for structured updates, but they are clearly
lower than with the frozen preconditioner. Unstructured updates from Algorithm 3.2
yield iteration numbers comparable to those of structured updates.

Of course, running Algorithm 3.1 or 3.2 to compute the unstructured updates
adds a time penalty. However, the timings displayed in Table 1 are pessimistic be-
cause they include solving with nontriangular factors of the form (3.5), which cannot
compete with the highly optimized implementation of backward and forward solves
in MATLAB. The complexity of Algorithm 3.1 or 3.2 alone is not very high for sparse
matrices since it is linear in the number of matrix nonzeros. In this context, note
that using a drop tolerance in Algorithms 3.1 and 3.2 has an influence on the number
of nonzeros and hence also on computational time. We computed the unstructured
updates with tol = 0.3 in Algorithms 3.1 and 3.2. In practice this parameter should
be chosen according to the following considerations for the individual algorithms.

In Algorithm 3.2 we first construct a maximum spanning forest of at most 2n− 1
entries. Hence we need a value of tol selecting the 2n − 1 largest entries and as few
other entries as necessary to be able to build the spanning forest. We could have
optimized the choice of tol according to this rationale, leading to tol = 0.35 and an
overall time of 10.5 seconds. For Algorithm 3.1 the situation is quite different. Here,
an interesting fact is that if we significantly overestimate the parameter, then the
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Fig. 1. Nonlinear convection-diffusion model problem: Iteration counts for Unstr. GJ in de-
pendency of ω.

unstructured update may be very sparse since a smaller number of nonzeros can be
covered by Gauss–Jordan transforms. If we underestimate it, then the update may
be very sparse as well since we get only a small number of factors in the unstructured
update of the form (3.1). In our case we did not optimize its choice, but a value
tol = 0.1−0.4 for a reasonably scaled system matrix in order to keep only a few, say up
to k, nonzeros in a row, and thus to cover by the unstructured update approximately
k · n off-diagonal entries, is fine. This type of behavior is different from what we can
sometimes observe in the field of algebraic preconditioners. As for the choice of ω in
Algorithm 3.1, its value does not seem to have a crucial influence on the performance
of the update either. In Figure 1 we display the total number of BiCGSTAB iterations
needed to solve the whole sequence for different values of ω. If the values of ω are
smaller than 0.5, criterion (7′) of Algorithm 3.1 starts to overemphasize the weight of
the chosen candidate row, resulting in bad approximations of DU − B. In the other
experiments presented here, we always used the choice ω = 1.

In Table 2 the accuracies ‖A(i) − M+‖ (in the Frobenius norm) of the precon-
ditioners M+ for the individual strategies are displayed. For this sequence, where
stability of the preconditioners is not an issue, the accuracies correspond nicely to the
numbers of BiCGSTAB iterations. We also present some information about the qual-
ity of the approximations DU − B. Table 3 contains the values of the approximations
‖DU − B − DU − B‖ in the Frobenius norm for the considered update techniques.
Also these values correspond to the numbers of BiCGSTAB iterations.

In Table 4 we take a closer look at the various update techniques we introduced.
Whereas Table 1 suggests that structured updates provide more efficient precondition-
ers than unstructured updates, this is not apparent from Table 4. Here we use as initial
preconditioner the ILU implemented in MATLAB with drop tolerance 0.01. The tol-
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Table 2
Nonlinear convection-diffusion model problem, accuracies ‖A(i) − M+‖.

ILU(0), psize ≈ 24000

Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.

A(0) 28.5 28.5 28.5 28.5 28.5

A(1) 27.8 34.6 29.2 50.2 37.3

A(2) 26.8 42.3 41.7 51.0 42.1

A(3) 25.5 51.0 48.5 55.8 48.9

A(4) 24.1 60.4 55.8 64.0 56.5

A(5) 23.6 63.5 58.3 63.9 59.1

A(6) 23.1 66.6 60.6 64.9 61.6

A(7) 23.1 66.6 60.6 64.9 61.5

A(8) 23.1 66.5 60.6 64.9 61.5

A(9) 23.1 66.5 60.6 64.9 61.5

A(10) 23.1 66.5 60.6 64.9 61.5

Table 3
Nonlinear convection-diffusion model problem, approximation qualities ‖DU − B − DU − B‖.

ILU(0), psize ≈ 632000

Matrix Str. Unstr. GJ Unstr. Kr.

A(1) 13.89 37.01 18.19

A(2) 22.1 36 22.7

A(3) 29.78 40.1 30.34

A(4) 37.46 48.32 38.47

A(5) 39.92 47.39 41.2

A(6) 42.29 47.91 43.69

A(7) 42.27 47.9 43.66

A(8) 42.23 47.86 43.62

A(9) 42.23 47.86 43.63

A(10) 42.23 47.86 43.63

Table 4
Nonlinear convection-diffusion model problem with R = 50, n = 4900, nnz = 24220, ILU(0.01).

ILU(10−2), psize ≈ 52000

Matrix Freeze Unstr. GJ Struct Unstr. Kr.

A(0) 17 17 17 17

A(1) 34 57 21 48

A(2) 49 43 24 36

A(3) 77 39 34 33

A(4) 102 36 54 29

A(5) 140 37 69 28

A(6) 142 30 76 25

A(7) 154 35 77 28

A(8) 144 36 91 33

A(9) 152 35 91 29

A(10) 123 31 90 28

Overall time 14.5 s 7.5 s 9 s 9 s
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erance in Algorithms 3.1 and 3.2 for unstructured updates is 0.3. Clearly, unstructured
updates are more powerful than structured updates with this kind of initial factoriza-
tion. This is caused by the fact that the approximations DU − B in (2.6) cover more
large entries when we use unstructured updates. In the following we quantify this
property for a difference matrix B from the middle of the sequence, B = A(0) −A(4).
For other difference matrices from the sequence we would obtain similar numbers.
With B = A(0) − A(4), nonzero entries in DU − B are quite evenly distributed over
both triangular parts. We have ‖striu(DU − B)‖ ≈ 80 and ‖stril(DU − B)‖ ≈ 38
in the Frobenius norm. Here stril(·) and striu(·) denote the strict lower and upper
triangular matrix part, respectively. Hence the upper triangular part is dominat-
ing, but important entries may be found in the lower part, too, and they are lost
with structured updates. The unstructured updates take into account both trian-
gular parts. This is reflected by the Frobenius norms ‖striu(DU − B)‖ ≈ 70 and
‖stril(DU − B)‖ ≈ 16 for the approximation DU − B from Algorithm 3.1. With Al-
gorithm 3.2 we obtain ‖striu(DU − B)‖ ≈ 58 and ‖stril(DU − B)‖ ≈ 32. Note that
Algorithm 3.2 yields more nonzeros, which is explained by step (3) of the algorithm.
In this context, also note that the number of nonzeros of the initial factorization and
structured updates is about 52000, whereas unstructured updates have smaller num-
bers of nonzeros, about 39000–46000, which makes application of the unstructured
updated preconditioner less expensive. This is one of the reasons why the unstruc-
tured updates are competitive, even with respect to timing, with structured ones, in
spite of the time penalty to run Algorithm 3.1 or 3.2. The other reason is, of course,
lower BiCGSTAB iteration numbers.

In situations as in Table 1, recomputing preconditioners is outperformed by our
updates because of the high expenses of recomputing. When, on the other hand,
recomputation is straightforward, updates need not be more effective. An example
is given in Table 5 with as initial preconditioner the dual-threshold ILUT(0.1, 5) de-
composition, implemented in Fortran 90. The number of nonzeros in the incomplete
LU decomposition is about 38000 (slightly differing for different matrices). Here the
time spent for recomputation is very small due to the simple discretization stencil,
and by far the most time is spent while solving with BiCGSTAB. Still, concerning
iteration counts, the (adaptively chosen) structured updates perform only slightly
worse than recomputation. Note that there is a strong overlap between the location
of the nonzeros in B and in the preconditioner, but as above, we did not merge the
triangular parts of the updated preconditioner. Table 6 shows similar behavior for a
much larger problem with ILUT(0.1, 3) as initial decomposition. Here we discretized
(4.1) on a 282×282 grid, the matrices having dimension 79524. While evaluating Ta-
bles 5 and 6, it is important to realize that the timings may provide here only partial
information. In case of matrix-free implementation we typically need to estimate the
matrices first using, for example, graph coloring techniques [18], [49]. Our matrices
have five diagonals and this implies that they can be estimated by at most seven
matvecs. Namely, the number of matvecs corresponds to the number of colors needed
to color the undirected graph of ATA, the so-called intersection graph. Computing
some of the standard preconditioners both directly and efficiently based on matvecs is
a state-of-the-art challenging problem and can be very time-consuming. When using
updates in a matrix-free environment, only part of the difference matrix needs to be
estimated. In our cases the needed part of the difference matrix was always available
from at most three matvecs, because the intersection graph of the (possibly permuted)
triangular part of the matrix could be colored by only three colors.
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Table 5
Nonlinear convection-diffusion model problem with R = 50, n = 4900, nnz = 24220, ILUT(0.1, 5).

ILUT(0.1, 5), timep ≈ 0.01, psize ≈ 38000

Matrix Recomp Freeze Struct. update

A(0) 25 25 25

A(1) 25 33 26

A(2) 23 47 27

A(3) 19 58 27

A(4) 18 83 27

A(5) 17 88 28

A(6) 16 119 28

A(7) 16 114 27

A(8) 17 107 27

A(9) 17 111 28

A(10) 17 123 27

Overall time 0.20 s 0.78 s 0.25 s

Table 6
Nonlinear convection-diffusion model problem with R = 50, n = 79524, nnz = 615997,

ILUT(0.1, 3).

ILUT(0.1, 3), timep ≈ 0.05, psize ≈ 632000

Matrix Recomp Freeze Struct. update

A(0) 82 82 82

A(1) 86 85 82

A(2) 73 97 82

A(3) 72 91 76

A(4) 66 97 73

A(5) 68 113 77

A(6) 71 140 75

A(7) 68 139 70

A(8) 70 137 76

A(9) 69 136 83

A(10) 65 217 72

Overall time 17.4 s 31.0 s 19.4 s

In addition to the experiments presented here we also performed some experi-
ments where the nonlinear problems were discretized by upwind schemes, leading to
triangular difference matrices. As one can guess from the pattern, the results for
solving the linear problems were rather good, but we typically needed more nonlinear
iterations. Consequently, discretization by central differences was preferable.

Our second test problem is a smaller but rather difficult problem of dimension
2500. It consists of the two-dimensional driven cavity problem of the form

ΔΔu+R

(
∂u

∂y

∂Δu

∂x
− ∂u

∂x

∂Δu

∂y

)
= 0

on the unit square, discretized by 13-point finite differences on a shifted uniform grid
with 50 × 50 inner nodes [30]. The boundary conditions are given by u = 0 on ∂Ω
and ∂u(0, y)/∂x = 0, ∂u(1, y)/∂x = 0, ∂u(x, 0)/∂x = 0, and ∂u(x, 1)/∂x = 1. The
initial approximation is the discretization of u0(x, y) = 0.

For the same reason as before, we choose modest Reynolds numbers. Even with
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Table 7
Driven cavity problem with R = 50, n = 2500, nnz = 31504, ILU(0.01).

ILU(0.01), psize ≈ 47000

Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.

A(0) 93 93 93 93 93

A(1) 269 93 88 337 81

A(2) > 500 > 500 156 324 58

A(3) > 500 164 179 265 60

A(4) > 500 288 298 206 74

A(5) > 500 > 500 144 184 71

A(6) > 500 > 500 132 190 70

Overall time ∞ ∞ 8 s 17 s 6.5 s

Table 8
Driven cavity problem with R = 10, n = 2500, nnz = 31504, ILU(0.01).

ILU(0.01), psize ≈ 47000

Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.

A(0) 84 84 84 84 84

A(1) 84 87 95 91 91

A(2) 312 183 119 95 113

A(3) 261 198 119 103 134

A(4) 352 > 500 190 149 164

A(5) 259 > 500 163 204 164

A(6) 291 183 150 217 144

Overall time 12.5 s ∞ 7 s 12 s 11 s

modest Reynolds numbers we obtain sequences of linear systems that are hard to solve
for the BiCGSTAB accelerator. As system matrices have 31504 nonzeros, we needed
a relatively dense initial ILU preconditioner with 47000 nonzeros and with drop tol-
erance 0.01 from MATLAB to be able to solve the linear systems at all. Sparser
preconditioners caused BiCGSTAB to stagnate for the initial linear system. In Ta-
bles 7 and 8 we show experiments executed in MATLAB with the initial ILU(0.01)
preconditioner for R = 50 and R = 10, respectively. As before, by “overall time” we
mean the time needed to solve the whole sequence, including preconditioner compu-
tations. In the columns “Unstr.” we display the performance of unstructured updates
computed with Algorithm 3.1 (tol = 0.05 for R = 50 and tol = 0.02 for R = 10) and
Algorithm 3.2 (tol = 0.7 for R = 50 and tol = 0.02 for R = 10).

This problem represents the case where recomputing should be avoided for stabil-
ity reasons. For instance, with R = 50, the recomputation of the incomplete factor-
ization failed for the last 5 linear systems (giving the MATLAB warning “Incomplete
upper triangular factor had 1 zero diagonal replaced by local drop tolerance”). In or-
der to quantify instability we computed estimates of the 2-norms of the inverses of the
factors of the used factorizations. For the initial decomposition we have ‖U−1‖2 ≈ 41
and ‖(LD)−1‖2 ≈ 264, but these norms grow rapidly for subsequent recomputed fac-
torizations. In the second column of Table 9 the norms for (LD)−1 are displayed;
norms for U−1 grow similarly. Clearly, forward and backward substitution have be-
come unstable. In the columns corresponding to updated factorizations we estimated
‖(LD − B)−1‖2. We see that higher estimates correspond in the majority of cases to
higher iteration numbers. In the frozen preconditioner strategy, however, instability
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Table 9
Driven cavity problem with R = 50, estimated Euclidean norms of inverses of first factor.

ILU(0.01), psize ≈ 47000

Matrix Recomp Freeze Str. Unstr. GJ Unstr. Kr.

A(0) 264 264 264 264 264

A(1) 2 · 103 264 203 1069 185

A(2) 9 · 105 264 227 99 101

A(3) 8 · 104 264 326 291 130

A(4) 3 · 105 264 327 290 131

A(5) 2 · 105 264 327 290 131

A(6) 4 · 105 264 327 290 131

is not the cause of stagnation. We guess the frozen preconditioner fails to provide the
structural information contained in updated factorizations. The results for R = 10
reflect similar phenomena in a weaker form. Structured and unstructured updates
from Algorithm 3.2 yield the best results. In the case R = 50 the optimal choice
tol = 0.7 results in particularly good performance of Algorithm 3.2, with respect to
both time and iteration count.

We conclude this section with an application which leads to very large sequences
of linear systems. They arise from numerical computation of steady vertical air flow
through a level tunnel at a low Mach number subject to the gravitational force.
The domain is a two-dimensional longitudinal section of the tunnel with the pres-
sure and density varying only in the horizontal direction such that the gravitational
term is balanced out by the pressure gradient. Neumann boundary conditions and
Lax–Friedrichs fluxes were used. The gravitation term and the Euler equations were
separated by a first-order operator splitting. For the discretization, the implicit Euler
method combined with the first-order finite volume discretization in space was used.
In every time step, one Newton step is performed in the flow solver only. More details
can be found in [10], in particular in section 6.2. Our results were very similar for
more variations of the problem.

Table 10 contains the results for two sequences from the linear systems for the
described problem with a relatively coarse discretization grid. We used the dual-
threshold ILUT(0.001, 5) preconditioner, where the parameters were chosen in order
to have a preconditioner size (that is, number of nonzeros) close to the size of the
original matrix and such that the total number of matvecs (two in each iteration) to
solve the initial system is reasonably small.

Here we show results only for some linear systems from the beginning of the
sequences (as given by the superscripts); the whole sequence has more than 1000
linear systems. Three preconditioning strategies were tested: recomputation, freezing
and updating. Updates were always related to the first matrix of the sequence. In
the first sequence of Table 10, the preconditioner that is being frozen or updated
was computed for the matrix A(0), and in the second sequence it was taken from the
30th linear system. The update strategy was implemented as a black-box routine
which decides which of the updates (unstructured update from Algorithm 3.1 or 3.2,
structured update based on the upper triangular part of the difference matrix, or
structured update based on the lower triangular part of the difference matrix) is
used, based on the sum of magnitudes of strong matrix entries. The structured
updates store the update separately, although merging with the decomposition could
provide even better timings. The results are characterized by the number of iterations
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Table 10
Air flow in a tunnel, n = 4800, nnz = 138024, ILUT(0.001, 5).

ILUT(0.001, 5), timep ≈ 0.05, psize ≈ 135798

Matrix Recomp Freeze Update

Its Time Its Time Its Time

A(5) 29 0.57 19 0.33 19 0.34

A(10) 30 0.55 17 0.27 17 0.27

A(15) 33 0.64 21 0.39 19 0.34

A(20) 32 0.64 19 0.34 17 0.31

A(25) 33 0.56 20 0.33 19 0.33

A(30) 34 0.66 24 0.44 21 0.34

A(35) 33 0.66 23 0.42 19 0.36

A(40) 39 0.72 31 0.52 24 0.39

A(45) 44 0.78 33 0.55 27 0.45

A(50) 40 0.75 39 0.63 24 0.44

A(55) 40 0.74 47 0.78 25 0.42

A(60) 47 0.85 80 1.41 31 0.56

A(65) 47 0.80 107 1.64 27 0.42

A(70) 38 0.75 72 1.28 28 0.51

A(75) 114 2.03 230 4.06 105 1.96

A(80) 63 1.19 87 1.51 80 1.42

A(35) 33 0.66 36 0.63 35 0.67

A(40) 39 0.72 37 0.64 35 0.59

A(45) 44 0.78 42 0.67 35 0.59

A(50) 40 0.75 43 0.67 29 0.45

A(55) 40 0.74 57 0.95 31 0.53

A(60) 47 0.85 84 1.37 33 0.54

A(65) 47 0.80 102 1.55 34 0.52

A(70) 38 0.75 87 1.47 34 0.58

A(75) 114 2.03 163 2.65 147 2.45

A(80) 63 1.19 81 1.38 93 1.64

of the BiCGSTAB method and by the timings of the preconditioned iterative method
required to solve the individual linear systems, including the time required to compute
the preconditioner. The average time to compute the preconditioner is denoted by
timep, and its average number of nonzeros is denoted by psize. These last two
characteristics differ slightly in individual computations of a sequence of problems.
Note that preconditioning this problem was necessary; the unpreconditioned method
worked rather poorly.

From Table 10 we can see once more that freezing the preconditioner may not
be enough for getting efficiently preconditioned iterative methods for all the systems.
Freezing with updating is typically better in terms of the number of matvecs. The
additional solve with the update may add a time penalty, but its influence seems to be
limited. Clearly, by changing the matrix more and more the gap between the efficiency
of freezing and updating gets larger up to some point where, of course, also the update
is not sufficient anymore. We included this point in our table, but in practice this
would be the moment to recompute a factorization. As in the previous problem, it
seems that the update is even more powerful than the recomputed preconditioners in
the sense of giving the smallest number of iterations among all three preconditioning
strategies. This must be mainly caused by the fact that recomputation becomes less
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stable as the sequence proceeds, as can be seen from the iteration numbers around the
75th linear system. However, the role of additional structural information provided
by updates should not be underestimated. In Table 12 we will consider a sequence
without instability regions where updates are still more powerful than recomputed
factorizations.

Table 11
Air flow in a tunnel, n = 9600, nnz = 277224, ILUT(10−7, 30).

ILUT(10−7, 30), timep ≈ 0.1, psize ≈ 283751

Matrix Recomp Freeze Update

Its Time Its Time Its Time

A(0) 3 0.13 3 0.13 3 0.13

A(5) 3 0.13 3 0.03 3 0.03

A(10) 4 0.15 4 0.05 5 0.05

A(15) 4 0.15 5 0.06 6 0.06

A(20) 5 0.15 6 0.06 7 0.09

A(30) 7 0.18 7 0.08 8 0.11

A(40) 8 0.23 14 0.16 14 0.17

A(45) 9 0.23 18 0.17 20 0.23

A(46) 11 0.24 22 0.23 16 0.18

A(47) 11 0.23 18 0.19 16 0.18

A(48) 15 0.29 23 0.25 22 0.26

A(49) 15 0.30 23 0.25 22 0.29

A(50) 16 0.33 24 0.23 19 0.23

A(51) 27 0.48 31 0.38 25 0.33

A(52) 47 0.69 33 0.34 27 0.31

A(53) 44 0.73 33 0.39 23 0.29

A(54) 67 1.12 54 0.61 32 0.43

A(55) 92 1.49 196 2.23 56 0.84

A(56) 76 1.21 131 1.48 40 0.54

A(57) 79 1.33 81 1.05 51 0.80

A(58) 52 0.91 45 0.59 34 0.51

A(59) 50 1.02 40 0.63 38 0.65

A(60) 32 0.74 961 15.3 440 7.98

Table 11 presents qualitatively the same results for a larger matrix. As above, a
powerful ILUT preconditioner was chosen in order to provide small iteration counts
and to have the number of nonzeros of the preconditioner similar to the number of
nonzeros of the original matrix. Note that for most of the more difficult problems,
the time needed to solve the linear system is the best for our updates. While, as
above, there is a similar behavior of the iteration counts we also show results for more
matrices around the point where the original frozen preconditioner stops being useful.
Note that for some matrices the updated preconditioner behaves much better than
the other strategies.

In Table 12 we consider discretization leading to matrices of a dimension about
60000. Most of the remarks on the previous two tables can be made here too, though
we note that there are no instability regions anymore. As before, updates achieve
an acceleration compared to recomputing of up to 90%. The relation to the freez-
ing strategy is the same as for the corresponding problems of smaller dimension. A
noteworthy difference with smaller dimensions is that the ratio of the average time to
recompute the preconditioner (“timep”) the time to solve the systems is much larger.
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Hence avoiding recomputation becomes more important with larger dimensions. To
conclude, let us mention the problem of recomputing related to a different precondi-
tioner. This large air flow problem with the standard AINV(0.1) preconditioner with
a number of nonzeros close to the number of nonzeros in the first matrix of the se-
quence converges in 12 iterations on average, the time to compute the preconditioner
is 1.67 s, and time for the BiCGSTAB iterations is 0.25 s! We may assume that the
role of avoiding frequent recomputations will be significantly increased in this case,
but we did not follow this line.

Table 12
Air flow in a tunnel, n = 59392, nnz = 1127211, ILUT(10−8, 8).

ILUT(10−8, 8), timep ≈ 0.45, psize ≈ 1307000–1490000

Matrix Recomp Freeze Update

Its Time Its Time Its Time

A(0) 24 1.25 24 1.25 24 1.25

A(2) 21 1.13 27 0.95 23 0.88

A(4) 22 1.15 27 0.90 23 0.89

A(6) 21 1.15 27 0.90 23 0.90

A(8) 21 1.14 26 0.93 23 0.89

A(10) 22 1.15 26 0.91 23 0.91

A(12) 24 1.23 27 0.97 23 0.88

A(14) 23 1.20 27 1.01 23 0.90

A(16) 24 1.23 27 0.95 22 0.89

A(18) 24 1.27 27 0.92 22 0.89

A(20) 25 1.23 28 0.90 21 0.83

A(22) 25 1.24 28 0.92 22 0.86

A(24) 26 1.29 28 0.98 22 0.84

A(26) 29 1.60 28 1.00 22 0.85

A(28) 30 1.43 29 0.95 22 0.84

A(30) 28 1.37 28 0.97 23 0.89

A(32) 31 1.53 33 1.06 22 0.81

A(34) 28 1.42 28 0.95 23 0.89

A(36) 31 1.51 30 1.02 22 0.91

A(38) 30 1.51 29 1.01 23 0.95

5. Conclusions. In this paper we proposed a couple of algebraic procedures
which may be useful for solving sequences of systems of linear equations. The nu-
merical experiments show that our updated preconditioners can be rather successful
in practice, and the updates can often replace recomputation of preconditioners. In
many cases, one would like to make the overall number of operations smaller with
simple updates, and our experiments confirm that this is possible. In particular, the
preconditioner update seems to be more advantageous than the other approaches if
one of the following cases applies: if preconditioner computation is not cheap, if its
recomputation is unstable, or if the update is structurally dominant, that is, if it
covers a significant part of the difference matrices from subsequent problems. Never-
theless, there can be also different, and sometimes very strong, reasons for avoiding
preconditioner recomputations. In matrix-free and/or parallel environments, which
are currently quite common, any recomputation of a preconditioner may be expensive.
This is especially true for strong algebraic preconditioners which are used for solving
difficult problems. We intentionally used structured updates based on only one trian-
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gular part. Part of our motivation was that we concentrated on finding methods for
problems where the nonsymmetry is apparent. In addition, we are interested in the
structured update since we expect possible cheap estimation of sparsified triangular
matrices. This may be important in a matrix-free environment. Note that our un-
structured updates are very close to permuted (and sparsified) triangular updates. We
intend to present fully matrix-free results in the near future. Another issue which we
are currently investigating is combination of approximate factorizations with various
Gauss–Seidel type preconditioners to define updates.

An interesting problem which we would like to consider in the future is to find
first a nonsymmetric permutation that transforms the system matrices into a form
more suitable for one particular structured or unstructured update. In particular, this
permutation may make one triangular part of the matrices heavier (in the sense of
the sum of magnitudes of its entries) than the other triangular part. This may have a
connection to the combinatorial method in Algorithm 3.2 for finding an unstructured
update. The use of a weighted spanning tree strongly brings to mind the popular
strategy of matchings-based nonsymmetric permutations which has significantly im-
proved algebraic preconditioning in recent years [23], [5].
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Abstract

This paper deals with solving sequences of nonsymmetric linear systems with a block structure arising from compressible
flow problems. The systems are solved by a preconditioned iterative method. We attempt to improve the overall solution process
by sharing a part of the computational effort throughout the sequence. Our approach is fully algebraic and it is based on updating
preconditioners by a block triangular update. A particular update is computed in a black-box fashion from the known preconditioner
of some of the previous matrices, and from the difference of involved matrices. Results of our test compressible flow problems show,
that the strategy speeds up the entire computation. The acceleration is particularly important in phases of instationary behavior
where we saved about half of the computational time in the supersonic and moderate Mach number cases. In the low Mach number
case the updated decompositions were similarly effective as the frozen preconditioners.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Finite volume methods are standard discretization schemes for both stationary and instationary problems in aero-
dynamics. As the CFL condition puts a severe restriction on the time step of explicit methods, time integration is
often done implicitly. Using Newton’s method for the appearing nonlinear equation systems, the problem of solving
a partial differential equation numerically is transformed into the problem of solving a sequence of linear equation
systems. In general, up to 80% of the CPU time for a flow solver is spent solving the linear systems. Thus, the major
bottleneck in numerical simulation is the solution of the sequence of linear systems and there is a continuous demand
to improve upon the existing methods.

Popular methods used in solving the large and sparse linear systems involved here include multigrid methods
and Krylov subspace methods. Multigrid methods use multiple discretization levels and combine several techniques
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on the different levels (see, e.g. [23]). For some important classes of problems they are asymptotically optimal,
but they can also be sensitive to changes of the problem [10]. Krylov subspace methods are based on project-
ing the large linear system to subspaces of small dimension (see, e.g. [21]). The subspaces are generated through
multiplication of vectors by the system matrix, thus enabling exploitation of sparsity. In favorable cases, domi-
nant properties become apparent at an early stage of computation and a satisfactory approximation to the solution
can be obtained in a relatively small number of iterations. In practice, one often combines multigrid methods with
Krylov subspace methods by using a method of one class as a preconditioner for a method of the other class
(see, e.g. [26]). We will consider here Krylov subspace methods, but the techniques we describe may also be ap-
plied to other solvers. For the nonnormal linear systems that we have to solve, basically two classes of Krylov
subspace methods may be used. In the first class, whose main representative is the GMRES method [22], we
find methods that reduce residual norms in every iteration, but that must be restarted for reasons of storage and
computational costs. The second class contains methods like BiCGSTAB [24], working with short recurrences
but without guarantee that the process does not start to oscillate or does not break down. Often more important
than the choice of the specific Krylov subspace method used is the choice of the preconditioner for the linear
systems. For our problems, incomplete factorizations lead to good results that are in many cases hard to im-
prove.

In order to speed up the solution process of the linear systems arising in CFD problems, we will not search for new
and even more sophisticated linear solvers or preconditioners in this paper. Instead, we will try to accelerate the exist-
ing methods by considering the whole sequence of linear systems and by trying to share some of the computational
effort throughout the sequence. In stationary and instationary problems linear systems are often close during many
subsequent iterations of the nonlinear process. A well-known way to exploit this is by skipping some evaluations of
the Jacobian in Newton’s method, changing only the right-hand sides. Unfortunately, this leads to weaker convergence
of the nonlinear process. Concerning preconditioning, closeness of system matrices has been taken advantage of only
in a rather naive way. Very often, a preconditioner is recomputed periodically with some heuristic choice of period,
and at a certain point it may be completely frozen [16].

In recent years, a few attempts to update preconditioners for large sparse systems have been made in the numerical
linear algebra community. The main idea is to derive efficient preconditioners from previous systems of the sequence
in a cheap way, thus avoiding the expensive computation of a new preconditioner. For instance, in case of a sequence
of linear systems from a quasi-Newton method, straightforward approximate small rank updates can be useful (this
is shown in the SPD case in [18,5]). SPD matrices and updates of incomplete Cholesky preconditioners are consid-
ered in [17]. In [2,6] approximate diagonal and tridiagonal preconditioner updates were introduced for sequences of
parametric complex symmetric linear systems. This technique was generalized to approximate (possibly permuted)
triangular updates for nonsymmetric sequences in [9]. Finally, recycling of Krylov subspaces by using adaptive infor-
mation generated during previous runs has been used to update both preconditioners and Krylov subspace iterations
(see [20,13,19] and [1]). Note that from the mentioned techniques only the last two are designed for sequences of
nonsymmetric linear systems.

In this paper we investigate the effect of updating preconditioners on the speed of the solution process for some
model problems from CFD. These are chosen from a broad range of Mach numbers to represent different well-known
types of problems. The model problems lead to nonsymmetric linear systems and we will update the corresponding
preconditioners based on the technique proposed in [9]. To our knowledge, this kind of strategy is applied to the CFD
model problems for the first time. We will describe how we adapted the original technique in order to be used for
the model problems. Then we demonstrate that the technique is able to speed up the solution of the involved linear
systems, with an acceleration being particularly significant in phases with important changes between subsequent sys-
tem matrices. In the next section we address the governing equations and the discretization we used for the numerical
solution process. In Section 3 we say some words about solving the linear systems in general and then concentrate on
the update technique. Among others, we present some new theoretical results and a detailed overview of the modifi-
cations for block systems. In Section 4 we display and discuss the results of numerical experiments with the model
problems. Unless otherwise stated, ‖ · ‖ denotes an arbitrary matrix norm.
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2. Governing equations and finite volume discretization

2.1. The Euler equations

The equations governing our model problems are the 2D Euler equations. These consist of the conservation laws
of mass, momentum and energy, closed by an equation of state. Given an open domain D ⊂ R2, the equations can be
expressed as

∂tu +
2∑

j=1

∂xj
fj (u) = 0 in D × R+,

where u = (ρ,m1,m2, ρE)T represents the vector of conserved variables. The flux functions fj are given by

fj (u) =
⎛
⎜⎝

mj

mjv1 + δ1jp

mjv2 + δ2jp

Hmj

⎞
⎟⎠ , j = 1,2,

with δij denoting the Kronecker symbol. The quantities ρ, v = (v1, v2)
T , m = (m1,m2)

T , E and H = E + p
ρ

describe
the density, velocity, momentum per unit volume, total energy per unit mass and total enthalpy per unit mass, respec-
tively. The pressure is defined by the equation of state for a perfect gas p = (γ − 1)ρ(E − 1

2 |v|2), where γ denotes
the ratio of specific heats, taken as 1.4 for air.

2.2. The finite volume method

We will use here a finite volume discretization. As this approach is covered extensively in the literature [12,15]
we will give only a short summary of the specific concepts used. Our spatial discretization of the time independent
physical domain into control volumes or cells σi is constructed as a secondary mesh from an underlying Delaunay-
triangularization, see Fig. 1 (left). For a control volume σi with volume |σi |, let N(i) denote the set of its neighbors.
Then integration of the Euler equations over σi and the divergence theorem results in (see Fig. 1 (right) for the
notation)

d

dt
ui (t) = − 1

|σi |
∑

j∈N(i)

2∑
k=1

∫

lkij

2∑
�=1

f�(u)nk
ij,� ds. (1)

We now consider the mean value ui (t) := 1
|σi |

∫
σi

udx in each cell. The line integrals are computed using a second

order Gaussian quadrature rule with Gauss point xk
ij and a numerical flux function H, which we have chosen to be

Fig. 1. Triangularization and boxes (left). Geometry between boxes (right).
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AUSMDV from [25] or for low Mach numbers a Lax–Friedrichs-type flux developed for these cases [14]. Then, we
obtain the following evolution equation for the cell averages on σi :

d

dt
ui (t) = − 1

|σi |
∑

j∈N(i)

2∑
k=1

|lkij |H
(
ui (t),uj (t);nk

ij

)
. (2)

To obtain higher order, we use a linear reconstruction technique, combined with the Barth–Jespersen-limiter to
reduce the order where necessary.

Implicit time stepping schemes inherently fulfill the CFL stability condition, since the numerical domain of de-
pendence always covers the physical one. In the numerical experiments we will consider the computation of steady
states via timestepping with large time steps. Therefore, we employ the implicit Euler scheme and obtain the nonlinear
system

�un+1 = �un + �tH(un+1),

where u is the vector of the conservative variables from all cells. Correspondingly, H(u) denotes an evaluation of
the numerical flux function on the whole grid. � is the diagonal matrix of the volumes of the cells, corresponding
to the variables in u. This equation is solved approximately using one step of Newton’s method, which is sufficient
for steady state problems. For unsteady problems more steps are often required and the extension of the method is
straightforward. The starting value here is un and the corresponding linear system of equations can be written as
(see (2))

A�u = rhs(un), where A =
[
� + �t

∂H(u)

∂u

]
un

, (3)

with the update un+1 = un+�u. The matrix A = (Aij ) has a block structure, where each element Aij ∈ R4×4 vanishes
if the corresponding control volumes σi and σj are not adjacent. Clearly, A represents a large and sparse matrix. As
the involved grid is in general unstructured, so is the sparsity pattern of A. Note that the sparsity pattern of these
matrices remains the same during all time steps. Whereas in some cases at least the pattern is symmetric, usually the
matrix itself is nonsymmetric. From (3) we can deduce that the matrix is close to a block diagonal matrix for small
time steps and small derivatives of H(u). Diagonal dominance implies some attractive properties of preconditioners
and iterative solvers; however, in our problems the dominance is too weak to take advantage of.

3. Iterative solution of the involved systems

3.1. Preconditioned Krylov subspace methods

As we mentioned in the introduction, we will solve the linear systems from (3) with Krylov subspace methods.
For simplicity of notation, we denote linear systems from (3) by Ax = b. For the nonsymmetric matrices we have
here, the choices of robust Krylov subspace methods are somewhat limited. A popular and efficient method with low
demands on storage costs is the BiCGSTAB method [24]. Whereas the similarly popular GMRES method [22] has
some other advantages that we explained in the introduction, we concentrate here on BiCGSTAB because for our
finite volume scheme it has turned out to be slightly faster than GMRES. Of major importance for the performance
of Krylov subspace methods is the choice of the preconditioner. From experience, right preconditioning seems to be
the better choice in the context of compressible flows. Therefore, from now on we assume M is a right preconditioner
approximating A which is applied as

AM−1xP = b, x = M−1xP .

An overview of preconditioners with special emphasis on application in flow problems can be found in [16] and [7].
In our context, the most appropriate class of preconditioners is that of incomplete LU (ILU) decompositions. Here we
focus on ILU(0), which has no additional level of fill beyond the sparsity pattern of the original matrix A. This has the
obvious advantage that it enables straightforward a priori allocation, and its memory demands are more predictable
than for some other incomplete decompositions. Though ILU(0) may not be powerful enough for some difficult prob-
lems, for an important number of applications from CFD, including our model problems, it is efficient. In fact, as most
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problems have a block structure, the used preconditioner is a block ILU(0) decomposition (BILU(0)) where pointwise
operations are replaced by blockwise operations in the Gaussian elimination process. In our model problems, the
blocks correspond to the 4 × 4 units the Jacobian consists of (see (3)). For the involved BILU(0) decompositions we
use the following notation. We assume they are computed rowwise, hence the result is a block lower triangular factor
denoted by L with 4 × 4 identity matrices on the main diagonal and a block upper triangular factor UD with arbitrary
nonsingular 4 × 4 matrices on the main diagonal. In addition, we denote by D the block diagonal part of UD and let U
be the matrix UD scaled by D−1, i.e. U = D−1UD. Then U has, like L, 4 × 4 identity matrices on its main diagonal.

The main focus of this paper is efficient preconditioning of the sequences of linear systems arising from the scheme
described above. Some strategies to share part of the computational effort throughout a sequence were mentioned
in the introduction. The two tools we will use here are periodic recomputation of preconditioners combined with
approximate updating. The idea of periodic recomputation is clear: Computing the preconditioner for every new
linear system is time-consuming and unnecessary when the system matrices change slowly. Therefore, we will freeze
preconditioners while solving several subsequent systems. Here we will not consider the problem of finding optimal
recomputation periods or sophisticated strategies to adapt periods dynamically. This decision is supported by a set of
experiments in which we failed to improve a fixed period for recomputation of the frozen preconditioner by simple
adaptation guided by a reference number of iterations. The reason was that by simple adaptation to the iteration
counts of our preconditioned iterative method we may fail to distinguish what are small/large numbers of iterations
with respect to different phases of the problem. Different phases, which may be induced not only by the physics,
but also by other adaptive procedures (e.g. for timestepping) may have completely different convergence properties.
Therefore, dynamic strategies for preconditioner recomputations should be rather sophisticated. Instead, we will use
periodically recomputed frozen preconditioners, which we found to perform rather well.

Our contribution concentrates on a way to update the frozen preconditioners to enhance their power. We believe that
our strategy is easy to implement, parameter-free and with a small overhead. The technique we base our updates on is
described in [9]. In the next section we have reformulated this strategy for the type of decomposition used here. We
present several theoretical statements on the efficiency of the updates for the BILU(0) preconditioning. Furthermore,
we give a detailed description of some implementation aspects which are relevant when applying the updates to our
applications.

3.2. Preconditioner updates

In addition to a system Ax = b with preconditioner M = LUD = LDU, let A+x+ = b+ be a system of the same
dimension arising later in the sequence and denote the difference matrix A − A+ by B . We search for an updated
preconditioner M+ for A+x+ = b+. We have

‖A − M‖ = ∥∥A+ − (M − B)
∥∥,

hence the level of accuracy of M+ ≡ M − B for A+ is the same, in the chosen norm, as that of M for A. The update
techniques from [9] are based on the ideal updated preconditioner M+ = M−B. If we would use it as a preconditioner,
we would need to solve systems with M−B as system matrix in every iteration of the linear solver. Clearly, for general
difference matrices B the ideal updated preconditioner cannot be used in practice since the systems would be too hard
to solve. We will consider cheap approximations of M − B instead.

If M − B is nonsingular, we approximate its inverse by a product of factors which are easier to invert. The approx-
imation consists of two steps. First, we approximate M − B as

M − B = L(UD − L−1B) ≈ L(UD − B), (4)

or by

M − B = (LD − BU−1)U ≈ (LD − B)U. (5)

Next we replace UD − B or LD − B by a nonsingular and easily invertible approximation. In [9] several options are
proposed. We have here modified the first option in order to apply it to BILU(0) preconditioners and will approximate
as

UD−B ≈ btriu(UD − B),
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or as

LD − B ≈ btril(LD − B),

where btriu and btril denote the block upper and block lower triangular parts (including the main diagonal), respec-
tively. Putting the two approximation steps together, we obtain updated preconditioners in the form

M+ = L
(
UD − btriu(B)

)
(6)

and

M+ = (
LD − btril(B)

)
U. (7)

They can be obtained very cheaply. They ask only for subtracting block triangular parts of A and A+ (and for saving
the corresponding block triangular part of A). In addition, as the sparsity patterns of the factors from the BILU(0)
factorization and from the block triangular parts of A (and A+) are identical, both backward and forward substitution
with the updated preconditioners are as cheap as with the frozen preconditioner LUD = LDU.

It is clear from the two approximations we make, that the distance of the proposed updated preconditioners (6)
and (7) to the ideal preconditioner is mainly influenced by the following two properties. The first is closeness of L or
U to the identity. If matrices have a strong diagonal, the diagonal dominance is in general inherited by the factors L
and U [4,2], yielding reasonable approximations of the identity. The second property that helps in approximating the
ideal preconditioner is a block triangular part containing significantly more relevant information than the other part.
In one of our model problems we emphasize one triangular part by using a numbering of grid cells corresponding to
the direction of the flow characteristics. Summarizing, one may expect updates of the form (6) or (7) to be accurate
whenever btril(B) or btriu(B) is a useful approximation of B and when the factor L or U is close to the identity
matrix. The following lemma suggests that under the mentioned circumstances, the updates have the potential to be
more accurate than the frozen or any other (possibly recomputed) preconditioner for A+.

Lemma 1. Let ‖A − LDU‖ = ε‖A‖ < ‖B‖ for some ε > 0. Then the preconditioner from (7) satisfies

‖A+ − M+‖ � ‖U‖‖bstriu(B)‖ + ‖U − I‖‖B‖ + ε‖A‖
‖B‖ − ε‖A‖ · ‖A+ − LDU‖, (8)

where bstriu denotes the block strict upper triangular part.

This result is a straightforward modification of Lemma 2.1 in [9]; a similar statement can be obtained for updates
of the form (6). Having a reference preconditioner LDU which is not too weak we may assume that ε‖A‖ is small.
Then the multiplication factor before ‖A+ − LDU‖ in (8) is dominated by the expression ‖U‖‖bstriu(B)‖

‖(B)‖ + ‖U − I‖,
which may become smaller than one when btril(B) contains most of B and when U is close to the identity matrix.
It is possible to show that also the stability of the updates benefits from situations where btril(B) contains most of B
and where U is close to identity. In our context, the stability is measured by the distance of the preconditioned matrix
to identity. This conforms to the treatment of the stability in [8]. Note that the problem of stability in ILU-type of
preconditioners was introduced in the classical paper [11]. It was shown in [3] how this problem can be alleviated by
some matrix reorderings. Theorem 2.2 in [9], which addresses this stability, can easily be adopted for our case with
preconditioning from the right instead of from the left and with block-wise factorization.

The next result is more specific to the situation we are interested in here. It presents a simple sufficient condition for
superiority of the update in the case where the frozen preconditioner is a BILU(0) factorization. The result exploits the
fact that the BILU(0) preconditioner is an exact decomposition with the sparsity pattern of the matrix it preconditions.
It is formulated here for the update (6), but has, of course, an analogue for (7). The matrix E denotes the error
E ≡ A − LDU of the BILU(0) preconditioner and ‖ · ‖F stays for the Frobenius norm.

Lemma 2. If√
‖E‖2

F + ∥∥bstril(B)
∥∥2

F
<

1 − ‖I − L‖2
F

2‖I − L‖F

∥∥btriu(B)
∥∥

F
, (9)

where bstril denotes the block strict lower triangular part of a matrix, then the accuracy of the updated preconditioner
‖A+ − L(DU − btriu(B))‖F is higher than the accuracy ‖A+ − LDU‖F of the frozen preconditioner.
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Proof. We have

∥∥A+ − L
(
DU − btriu(B)

)∥∥2
F

= ∥∥A − LDU − B + L · btriu(B)
∥∥2

F

= ∥∥E − bstril(B) − (I − L)btriu(B)
∥∥2

F
�

(∥∥E − bstril(B)
∥∥

F
+ ∥∥(I − L)btriu(B)

∥∥
F

)2

= ∥∥E − bstril(B)
∥∥2

F
+ 2

∥∥E − bstril(B)
∥∥

F

∥∥(I − L)btriu(B)
∥∥

F
+ ∥∥(I − L)btriu(B)

∥∥2
F
.

Note that the sparsity patterns of A and E are disjoint. Hence, with the assumption (9),

∥∥E − bstril(B)
∥∥2

F
+ 2

∥∥E − bstril(B)
∥∥

F

∥∥(I − L)btriu(B)
∥∥

F
+ ∥∥(I − L)btriu(B)

∥∥2
F

�
∥∥E − bstril(B)

∥∥2
F

+ 2
∥∥E − bstril(B)

∥∥
F

∥∥(I − L)
∥∥

F
‖btriu(B)

∥∥
F

+ ∥∥(I − L)
∥∥2

F

∥∥btriu(B)
∥∥2

F

<
∥∥E − bstril(B)

∥∥2
F

+ (
1 − ‖I − L‖2

F

)∥∥btriu(B)
∥∥2

F
+ ∥∥(I − L)

∥∥2
F

∥∥btriu(B)
∥∥2

F

<
∥∥E − bstril(B)

∥∥2
F

+ ∥∥btriu(B)
∥∥2

F

= ‖A+ − LDU‖ − ∥∥btriu(B)
∥∥2

F
+ ∥∥btriu(B)

∥∥2
F

= ‖A+ − LDU‖. �
Lemmas 1 and 2 may be used in practice to predict what type of update, (6) or (7), will perform better. For example,

one may compare the multiplication factor before ‖A+ −LDU‖ in (8) when using (6) or (7) or compare the differences
between the left and right hand side in (9) for the choice (6) and the choice (7). However, inequality (9) cannot be
satisfied when the numerator is negative, which is very probable in large dimensions. Also, our experience is that the
factor before ‖A+ − LDU‖ in (8) is larger than one in many cases.

Because of this we present a result which is based on the same idea as (9) but it is stronger. The price for getting a
significantly tighter bound is using a less transparent assumption. The result also reveals that the quality of the updates
is influenced by further, and more subtle properties than only by closeness of triangular factors to the identity matrix
and by the dominance of one triangular part of B.

Lemma 3. Let

ρ = ‖btril(B)(I − U)‖F (2 · ‖E − bstriu(B)‖F + ‖btril(B)(I − U)‖F )

‖btril(B)‖2
F

< 1.

Then the accuracy ‖A+ − (LD−btril(B))U‖F of the updated preconditioner (7) is higher than the accuracy of the
frozen preconditioner ‖A+ − LDU‖2

F with

∥∥A+ − (
LD − btril(B)

)
U

∥∥
F

�
√

‖A+ − LDU‖2
F − (1 − ρ)

∥∥btril(B)
∥∥2

F
. (10)

Proof. We have, by assumption,

∥∥A+ − (
LD − btril(B)

)
U

∥∥2
F

= ∥∥A − LDU − B + btril(B)U
∥∥2

F

= ∥∥E − bstriu(B) + btril(B)(I − U)
∥∥2

F

�
(∥∥E − bstriu(B)

∥∥
F

+ ∥∥btril(B)(I − U)
∥∥

F

)2

= ∥∥E − bstriu(B)
∥∥2

F
+ ρ

∥∥btril(B)
∥∥2

F
.

Because the sparsity patterns of A and E are disjoint,
∥∥E − bstriu(B)

∥∥2
F

+ ∥∥btril(B)
∥∥2

F
= ‖E‖2

F + ‖B‖2
F = ‖E − B‖2

F = ‖A+ − LDU‖2
F .

Hence∥∥E−bstriu(B)
∥∥2

F
+ ρ

∥∥btril(B)
∥∥2

F
= ‖A+ − LDU‖2

F − (1 − ρ)
∥∥btril(B)

∥∥2
F
. �
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With (10), the value of ρ may be considered a measure for the superiority of the updated preconditioner over the
frozen preconditioner. However, interpretation of the value of ρ is not straightforward. We may write ρ as

ρ =
(‖btril(B)(I − U)‖F

‖btril(B)‖F

)2

+ 2
‖E − bstriu(B)‖F

‖btril(B)‖2
F

, (11)

where the ratio

‖btril(B)(I − U)‖F

‖btril(B)‖F

(12)

shows an interesting dependence of ρ on the extent to which btril(B) is reduced after its postmultiplication by (I − U).
This is something slightly different from the dependence of the quality of the update on the closeness of U to identity.
In general, also the second term in (11) should be taken into account; only when the lower triangular part clearly
dominates and when LDU is a powerful factorization, one may concentrate on (12). Computation of ρ is not feasible
in practice because of the expensive product in ‖btril(B)(I − U)‖F but it offers some insight in what really influences
the quality of the update. As the proof of the lemma uses only one inequality, one may expect (10) to be a tight bound.
We confirm this in the section with numerical experiments.

We will now describe how we exploit updated preconditioners of the form (6) and (7) in the solution process of the
problems introduced in the previous section. A first issue is the choice between (6) and (7). We can use some of the
previous lemmas to make this choice but we prefer simpler strategies. Just as the ideal preconditioner is approximated
in two steps, there are basically two types of simple criteria that can be used. The first criterion compares the closeness
of the factors to identity, namely the norms ‖L − I‖ and ‖U − I‖. If the former norm is smaller, then we may expect
the approximation made in (4) is better than the one in (5) and we prefer to update the upper triangular part of the
decomposition as given in (6); if, on the contrary, U is closer to identity in some norm, we update the lower triangular
part according to (7). Note that a factor close to identity also leads to stable back or forward substitution with the factor.
Therefore, an important consequence of choosing the factor which is closest to identity is that we keep, in the update,
the more stable part of the initial decomposition. Due to the lack of diagonal dominance in our applications, stability
of the factors is a relevant issue. We call this criterion the stable update criterion. On the other hand, it is clear that the
quality of the approximation UD −btriu(B) of UD −B (or LD−btril(B) of LD−B ) may have a decisive influence on
the power of the preconditioner. The second criterion consists of comparing of ‖btril(B)‖ and ‖btriu(B)‖. We assume
the most important information is contained in the dominating block triangular part and therefore we update with (6)
if btriu(B) dominates btriu(B) in an appropriate norm. Otherwise, (7) is used. This rule is denoted by information
flow criterion. Note that in our implementation we always used the Frobenius norm to evaluate the criteria.

Our model problems lead to systems with a block structure and for efficiency reasons, this block structure should
be exploited whenever possible. In order to solve linear systems blockwise and, in particular, work with BILU(0)
decompositions, we have adapted the original updating technique to updates of the form (6) and (7). Blockwise
decompositions, however, make the switch between (6) and (7) a slightly more complicated than in the case of classical
pointwise decompositions. Using the update (6) is straightforward but note that in order to obtain U and to apply (7)
we need to scale UD by D−1, as we explained in Section 3.1. Scaling with inverse block diagonal matrices does have,
in contrast with inverse diagonal matrices, some influence on overall performance and should be avoided as much as
possible. Note that our stable update criterion compares ‖L − I‖ with ‖U − I‖ where both factors L and U have a
block diagonal consisting of identity blocks. This means that in order to use the criterion we need to scale UD, even if
the criterion decides for (6) and scaling would not have been necessary. We may circumvent this possible inefficiency
by considering UD and LD instead of U and L . More precisely, we would compare ‖D − UD‖ with ‖LD − D‖. We
call this third criterion the unscaled stable update criterion.

A related issue is the frequency of deciding about the update type based on the chosen criterion. On one hand, there
may be important differences in the performance of (6) and (7); on the other hand, switching between the two types
implies some additional costs like, for instance, storage of both triangular parts of B. Consequently, we believe that
the criterion query should not be repeated too often. We adopted the following strategy. After every recomputation of
the BILU(0) decomposition, which takes place periodically, we perform one query and then use the chosen type of
update throughout the whole period. With the information flow criterion we compare ‖btril(B)‖ with ‖btriu(B)‖ for
the first difference matrix B generated after recomputation, i.e. just before solving the system following the system for
which we used a new BILU(0) decomposition. For the two stable update criteria we may decide immediately which
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update type should be used for the next couple of iterations as soon as the new BILU(0) decomposition was computed.
Note that as soon as the update type is chosen, we need to store only one triangular part of the old reference matrix A
(and two triangular factors of the reference decomposition).

Another property of the applications we are interested in here, is that the solution process typically contains heavily
instationary phases followed by long nearly stationary phases. This is reflected by parts of the sequence of linear
systems with large entries in the difference matrices and other parts where system matrices are very close. Obviously,
in the latter parts we may expect a frozen preconditioner to be powerful for many subsequent systems. Our experiments
confirm this: In stationary phases we typically observe a deterioration of only 2 to 5 iterations with respect to the
iterations needed to solve the system for which the frozen preconditioner was used. Updating the frozen preconditioner
in these cases would be counterproductive; it would add some overhead which cannot be compensated by the few
savings of iterations. In fact, in these cases there is even a risk that updates produce more iterations, especially when
the frozen preconditioner is particularly stable. We therefore apply a very simple technique to avoid unnecessary
updating. We start every period by freezing the preconditioner. Denote the number of iterations of the linear solver
needed to solve the first system of the period by iter0. If for the (j +1)st system the corresponding number of iterations
iterj satisfies

iterj > iter0 + k, (13)

with some threshold k ∈ N , then we use updates for all remaining systems of the period. In accordance with our
observations, we used k = 3. To get a clearer impression of the code decisions to be made we have added a flow
diagram. Here, p denotes the recomputation period and m = 0,1,2, . . . .

Flow diagram—preconditioner update decisions after recomputation.

4. Numerical experiments

In this section we demonstrate the behavior of the update technique on some well known steady state test cases.
The corresponding linear equation systems are solved until the initial residual has dropped by a factor of 107. We
always compare periodic refactorization without updating to periodic refactorization with updating, where also the
three criteria for deciding whether to use upper or lower updating are compared. The total number of BiCGSTAB
iterations as well as the total CPU time for the whole run are recorded. Our primary indicator to evaluate performance
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is the CPU time, as a small number of BiCGSTAB iterations may be due to the block preconditioner that takes
tremendous amount of computational time. All computations were performed on a Pentium IV with 2.4 GHz.

4.1. Supersonic flow past a cylinder

The first model problem is frontal flow at Mach 10 around a cylinder, which leads to a steady state. 3000 steps of
the implicit Euler method are performed. The grid consists of 20 994 points, whereby only a quarter of the domain
is discretized, and system matrices are of dimension 83 976. The number of nonzeroes is about 1.33 × 106 for all
matrices of the sequence. For the initial data, freestream conditions are used. Thus, in the beginning, a strong shock
detaches from the cylinder, which then slowly moves backward through the domain until reaching the steady state
position. Therefore, the linear systems are changing only very slowly during the last 2500 time steps and all important
changes take place in the initial phase of 500 time steps. The initial CFL number is 5, which is increased up to 7
during the iteration. The solution is shown in Fig. 2.

As the flow is supersonic, the characteristics point mostly in one direction. The performance of the linear equation
solver can be improved by choosing a numbering of the grid cells that respects the direction of the flow, thereby
making the matrix more triangular in nature. This is achieved by numbering first the cells from the inflow boundary,
then the cells in direction of the characteristics and by continuing in this manner repeatedly, see [16]. Renumbering
reduces the total number of BiCGSTAB iterations by about thirty percent. Furthermore, dominance of one of the two
triangular parts is exactly the situation in which we expect the update technique to work well. Recall that Lemmas 1,
2 and 3 all suggest that the updated preconditioner is favorably influenced by matrices with a dominating triangular
part. In Fig. 2 excellent performance of the updates is shown for the initial unsteady phase of the first 500 time
steps. As subsequent linear systems change heavily, frozen preconditioners produce rapidly deteriorating numbers
of BiCGSTAB iterations (with decreasing peaks demonstrating the convergence to steady state). Updating, on the
other hand, yields a nearly constant number of iterations per time step. The recomputing period here is thirty and the
criterion used is the stable update criterion but other periods and criteria give a similar result. With freezing, 5380
BiCGSTAB iterations are performed in this part of the solution process, while the same computation with updating
needs only 2611 iterations.

In Table 1 we explain the superior performance of the updates with the quantities from Lemma 3 for the very first
time steps; they demonstrate the general trend for the whole instationary phase. Here, M(i) denotes the update (7) for
the ith linear system. As the upper bound (10) on the accuracy of the updates is very tight, we conclude that in this
problem the power of the updates is essentially due to the small values of ρ.

In Table 2 we display the performance of the updates for the whole sequence. To evaluate the results, first note
that the reduction of the BiCGSTAB iterations happens primarily in the first 500 time steps. After 500 time steps,

Fig. 2. Pressure isolines (left) and BiCGSTAB iterations per time step (right) for the cylinder problem.
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Table 1
Accuracy of the preconditioners and theoretical bounds

i ‖A(i) − LDU‖F ‖A(i) − M(i)‖F Bound from (10) ρ from (10)

2 37.454 34.277 36.172 0.571
3 37.815 34.475 36.411 0.551
4 42.096 34.959 36.938 0.245
5 50.965 35.517 37.557 0.104
6 55.902 36.118 38.308 0.083

Table 2
Total iterations and CPU times for supersonic flow example

Period No updating Stable update Unscaled stable update Information flow

Iter. CPU in s Iter. CPU in s Iter. CPU in s Iter. CPU in s

10 10683 7020 11782 7284 11782 7443 11782 7309
20 12294 6340 12147 6163 12147 6300 12147 6276
30 13787 7119 12503 5886 12503 5894 12503 5991
40 15165 6356 12916 5866 12916 5835 12916 5856
50 16569 6709 13139 5786 13139 5715 13139 5740

freezing is a very efficient strategy and actually gains again on updating. Thus the visual success of updating is
somewhat damped by the long stationary tail of this model problem. The different updating strategies lead to nearly
identical results, whereby the stable update criterion is the best, except for the last two periods. As expected, the
update criterions all choose to update the lower triangular part according to (7), as the upper triangular part is close
to identity due to the numbering of the unknowns and the high Mach number. Therefore, they all obtain the same
iteration numbers. Updating is clearly better than freezing if the recomputing period is at least 20. For recomputing
periods of 30 or greater, the performance of the updating strategy does not much depend on the period. The CPU time
is decreased by about 10% in general; with the recomputing period 50 it reaches up to 20%. For longer recomputing
periods, the number of iterations is reduced by even more than 20%. For the period 10 the frozen preconditioner does
not deteriorate very much during the periods and achieves lower overall numbers of iterations (and timings) than any
updates. This must be caused by the fact that the frozen preconditioner is more stable than the updates. However, the
recomputing period 10 is easily beaten by longer periods. If the BILU(0) decomposition would have been recomputed
in every step, only 11 099 BiCGSTAB iterations would be needed, but 28 583 seconds of CPU time.

4.2. Flow past a NACA0012 airfoil

The second model problem corresponds to the NACA0012 profile at an angle of attack of two degrees on a grid
with 4605 cells at different Mach numbers. System matrices are of dimension 18 420 and the number of nonzeroes is
about 5 × 105 for all matrices of the sequence. For the initial data, freestream conditions are used.

At first we consider a reference Mach number of M = 0.8. 1000 steps of the implicit Euler method are performed.
The initial CFL number is 5, which is increased up to 30 during the process. For the solution, see Fig. 3 (left).
Transition to steady state is such that after the shock on the airfoil has formed, the rate of convergence slows down,
even though the CFL number is increased. Similarly as in the supersonic model, the equation systems differ much
from step to step at first, but are very close towards the end. In fact, this behavior is here even more extreme: With
decisions based on (13), updating is applied during the very first period only. To illustrate this, Fig. 3 (right) compares,
for recomputation with a period of 30 time steps, classical freezing with our strategy. Clearly, increasing BiCGSTAB
iteration numbers of the frozen preconditioner can be corrected with the updates. But after the first period, there is no
need to correct anymore.

The entire process is shown in Table 3. As we can see, the number of iterations decreases if the recomputation
period is shortened. This is not true for the CPU time, as recomputations are costly. For the strategy without updat-
ing, the CPU time decreases at first, but increases again, as the benefit of fewer recomputations is balanced by the
increase in BiCGSTAB iterations. As for the different updating strategies, all lead to both fewer iterations and shorter
computing times. As we explained before, the reduction of iterations must be solely due to the very first time steps
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Fig. 3. Pressure isolines and grid (left) and BiCGSTAB iterations per time step (right) for NACA profile with Mach 0.8.

Table 3
Total iterations and CPU times for transonic flow example

Period No updating Stable update Unscaled stable update Information flow

Iter. CPU in s Iter. CPU in s Iter. CPU in s Iter. CPU in s

10 5375 543 5336 498 5336 494 5336 483
20 5454 497 5364 469 5364 468 5364 459
30 5526 491 5379 464 5379 467 5379 453
40 5558 491 5411 456 5411 462 5411 452
50 5643 525 5413 466 5413 470 5413 448

where updates are applied. The information flow criterion provides the fastest results, whereas the stable update cri-
terion and the unscaled stable update criterion lead to somewhat higher total timings, but still faster than without any
updates. All three criterions lead to an identical number of BiCGSTAB iterations, because they always choose the
same triangular part to update. If the BILU(0) decomposition would have been recomputed in every step, only 5333
BiCGSTAB-iterations would be needed, but 964 seconds of CPU time. Thus the number of iterations with updating
often comes close to the number with refactorization in every single step. The differences in CPU time come from the
cost of selecting the appropriate triangular part and all in all, the computation of the steady state is improved up by
about 7 to 15%. Note that again, the CPU time depends less on the choice of the recomputation period with updates
than is the case without updating.

In the last test case we use a Mach number of M = 0.001. This problem is much more stiff than the transonic
problem. Consequently, the linear systems are harder to solve. Furthermore, for the same CFL number, the time steps
should be much smaller due to the larger maximum eigenvalues of the involved matrices. We computed 750 time
steps, starting with the CFL number of 0.5, which was increased to its final value equal to two. For the solution, see
Fig. 4, for the comparison of updating techniques see Table 4. In this case, the linear systems do not differ very much
among the time steps, not even in the beginning. Thus, the freezing strategy works well and the number of iterations
needed increases very slowly in one recomputation cycle. Therefore, even if updating is used, the criterion (13) is
seldom fulfilled and the updating strategy has only a small effect in decreasing the iteration numbers, but essentially
none on the CPU time. Nevertheless, it is not worse than the classic strategy, which is mainly due to the inclusion of
criterion (13): Otherwise, the method would compute an update in every step to no effect. Note that if the BILU(0)
decomposition would have been recomputed in every step, 19 609 BiCGSTAB-iterations would be needed, but 1437
seconds of CPU time.
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Fig. 4. Pressure isolines and Grid for NACA profile at Mach 0.001.

Table 4
Total iterations and CPU times for low Mach flow example

Period No updating Stable update Unscaled stable update Information flow

Iter. CPU in s Iter. CPU in s Iter. CPU in s Iter. CPU in s

10 19444 1189 19288 1158 19398 1121 19289 1129
20 19584 1105 19492 1135 19451 1117 19375 1094
30 19641 1144 19412 1122 19531 1158 19544 1112
40 19622 1104 19521 1112 19594 1114 19523 1107
50 19622 1127 19265 1129 19339 1086 19396 1139

5. Conclusions

We employed an updating method for block ILU preconditioners for sequences of nonsymmetric linear systems in
the context of compressible flow. The updating method was motivated by the need to improve frozen preconditioners
in order to obtain preconditioners similarly powerful as if they would have been recomputed. For the model problems
considered here we showed that as soon as the frozen preconditioners yield high numbers of iterations of the linear
solver, the updates indeed succeed in reducing the number to the normal level. Whereas the derivation of the updates
assumes diagonal dominance of system matrices, the present experiments imply the technique is efficient with rather
poor diagonal dominance as well. Note that the success of the new strategy may be significantly enhanced if the time
for recomputations becomes prohibitive, which was not our case.

Based on the number of Krylov subspace method iterations, our implementation decides whether updating is neces-
sary. In this way we obtained a preconditioning strategy that is faster than the standard strategy of periodic recomputing
for well-known test cases and it is even close to recomputing in every step with respect to iteration numbers. In contrast
to periodic recomputations without updates, our method is rather insensitive to the chosen recomputation period.

The method is particularly successful in the phases where the solution process exhibits some kind of instationary
behavior and thus it is promising for the computation of instationary flows. In our tables we willingly chose to display
results for the whole solution process including long stationary phases of the problems. If we would restrict ourselves
to the phases where the updates were actually applied, the results would be even more convincing.
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[4] M. Benzi, M. Tůma, Orderings for factorized sparse approximate inverse preconditioners, SIAM J. Sci. Comput. 21 (2000) 1851–1868.
[5] L. Bergamaschi, R. Bru, A. Martínez, M. Putti, Quasi-Newton preconditioners for the inexact Newton method, ETNA 23 (2006) 76–87.
[6] D. Bertaccini, Efficient preconditioning for sequences of parametric complex symmetric linear systems, Electron. Trans. Numer. Math. 18

(2004) 49–64.
[7] A. Chapman, Y. Saad, L. Wigton, High-order ILU preconditioners for CFD problems, Int. J. Numer. Methods Fluids 33 (2000) 767–788.
[8] E. Chow, Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J. Comp. Appl. Math. 86 (1997) 387–414.
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SUMMARY

We present two new ways of preconditioning sequences of nonsymmetric linear systems in the special
case where the implementation is matrix free. Both approaches are fully algebraic, they are based on the
general updates of incomplete LU decompositions recently introduced in (SIAM J. Sci. Comput. 2007;
29(5):1918–1941), and they may be directly embedded into nonlinear algebraic solvers. The first of the
approaches uses a new model of partial matrix estimation to compute the updates. The second approach
exploits separability of function components to apply the updated factorized preconditioner via function
evaluations with the discretized operator. Experiments with matrix-free implementations of test problems
show that both new techniques offer useful, robust and black-box solution strategies. In addition, they
show that the new techniques are often more efficient in matrix-free environment than either recomputing
the preconditioner from scratch for every linear system of the sequence or than freezing the preconditioner
throughout the whole sequence. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the solution of sequences of linear systems

A(i)x=b(i), i=1, . . . , (1)
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where A(i) ∈Rn×n are general nonsingular sparse matrices and b(i) ∈Rn are corresponding right-
hand sides. Such sequences arise in numerous industrial and scientific computations, for example,
when a system of nonlinear equations is solved by a Newton or Broyden-type method [1, 2]. Krylov
subspace methods are among the most successful approaches for solving the linear systems. These
methods have the property that the system matrix is needed only in the form of matrix-vector
products, and the explicit representation of the matrix is not necessary. If the system matrix is not
represented explicitly, we often say that the method is matrix free.

It is widely recognized that in most cases of practical interest, Krylov subspace methods must
be preconditioned in order to be efficient and robust. However, most of the strong preconditioners
either require the system matrix explicitly, or their computation may be rather expensive. In
order to reduce the costs of the computation of preconditioners, we may reuse a preconditioner
over more systems of the given sequence of systems of linear equations. The quality of the
reused preconditioner may be enhanced through updates containing information extracted from
the sequence of matrices, or from the previous application of the Krylov subspace method. Owing
to the costs that are related to the fact that the system matrix is not given explicitly, and which
may be magnified in a parallel computing environment, avoiding frequent recomputations of the
preconditioner from scratch seems to be very important in matrix-free environment.

In this paper we address the problem of solving a sequence of general nonsymmetric systems
in matrix-free environment by Krylov subspace methods with preconditioners that are based on
incomplete LU decompositions and that are updated with general rank-n approximate modifications.
In the next paragraph, we briefly summarize the basic lines of previous research on matrix-free
preconditioning and on solving sequences of systems of linear equations with preconditioner
updates, that is, on the two subproblems which we face. As far as we know, the combination
of these subproblems has never been solved in the past. We propose two ways to do this by
overcoming both theoretical and practical obstacles. These ways differ by the necessary sizes of
intermediate memory and they can be useful in different applications.

Let us first mention several preconditioning strategies designed for or related to matrix-free
environment. First, the preconditioners can correspond to a discretized operator, which is simpler
than the discretized operator for evaluating the sparse system matrix, see, e.g. [3–8]. Successful
preconditioners derived directly from the advection–diffusion operators were also proposed for
solving problems in applications that provide rather dense Jacobian matrices [9, 10]. All these
physics-based preconditioners are often used in matrix-free environment. Second, a preconditioner
can be algebraic. The lack of explicit availability of the system matrix then often implies that the
preconditioner is rather simple and/or sparse. In some of such situations, the preconditioner is the
matrix diagonal or its approximation. In other situations, preconditioning employs more complex
stationary iterative methods, fast FFT-based solvers, ADI methods, inner–outer schemes, etc., in
order to be easily applied in matrix-free environment. An early important paper which explicitly
targets preconditioning in matrix-free environment is [11] with results for a model nonlinear
boundary value problem, see also the applications in CFD [12]. For details on the important
class of Jacobian-free Newton–Krylov methods (JFNK) that combine a matrix-free approach with
nonsymmetric Krylov subspace methods and for modifications of this class, see the overview in [7],
but also in [3].

Preconditioner updates used for solving system sequences are traditionally based on modifications
by matrices of small rank. Early work that uses the Broyden formula to update the preconditioner
was introduced in [13]. Other updates based on matrices of small rank were considered in [14–16]
and in limited-memory variable metric methods [17] for smooth optimization, to name just of few.
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An important class of algebraically motivated strategies to accelerate the convergence of precon-
ditioned iterative methods is based on constructing or improving the preconditioner by adaptive
spectral information obtained directly from the Krylov subspace methods, see, e.g. [18–25]. All
of these techniques have a significant potential to be applied in the form of preconditioner updates
for solving sequences of systems [26–28]. These strategies are often problem specific, but they
are in general compatible with matrix-free implementations.

Although it is possible to analyze the spectral properties of sequences of preconditioned matrices
in some important cases, in other situations we know much less. Preconditioner updates of small
rank are often restricted to specific classes of problems or nonlinear schemes as well. Therefore,
cheap and generally rank-n preconditioner updates are strongly needed. Recently, some new
approaches to approximate preconditioner updates were introduced, see, e.g. [29]. The authors
in [30] propose approximate diagonal updates to solve parabolic PDEs, see also [31]. Nonsymmetric
updates of general incomplete LU decompositions were considered in [32, 33], see also some
results in solving real-world problems in [34]. So far, neither of these approaches have addressed
the challenges related to preconditioner updates in the matrix-free environment. Some of the
mentioned preconditioner updates may not even be compatible with matrix-free environment.

This paper deals with matrix-free algorithms to solve the sequences of linear systems with
the general triangular preconditioner updates introduced in [32]. Its adaptation for matrix-free
environment is not straightforward and we propose two new approaches to do this. The first of
them is based on an efficient matrix estimation technique. More precisely, a new partial estimation
procedure is proposed. The second matrix-free approach applies the updates via modified forward
or backward solves with the preconditioner, inside the iterative method. It is shown that both
approaches may be robust in matrix-free environment. The paper is organized as follows. In
Section 2 the general algorithmic framework for the updates is briefly summarized and some
preliminary terminology for the two basic approaches in matrix-free environment is introduced.
The first new approach is presented in detail in Section 3 and the second strategy is described in
Section 4. Section 5 discusses numerical experiments for both approaches. The paper is finalized
by some concluding remarks.

2. BASIC UPDATE TECHNIQUE AND MATRIX-FREE COMPUTATIONS

The triangular preconditioner updates for nonsymmetric sequences from [32] are defined with the
help of the difference between the matrix from the first (reference) linear system of a sequence and
the current system matrix. Let A be the system matrix of the reference system and let A+ be the
current system matrix. If LDU is an incomplete triangular decomposition of A and B= A−A+ is
the difference matrix, then the basic triangularly updated preconditioners for the current system
are defined as

(LD− tril(B))U or L(DU− triu(B)), (2)

where tril and triu denote, respectively, lower and upper triangular part of a matrix. We assume
that (LD− tril(B)) or (DU− triu(B)), respectively, is nonsingular. Table I compares the costs and
memory for one step of a preconditioned iterative method when one recomputes the preconditioner
for the linear system of a sequence, denoted as ‘Recomp’, with the costs and memory when
using the first update in (2), denoted as ‘Update’. With the recomputation strategy, we denote the
approximate LU factors of A+ by L+, D+ and U+. The table shows that applying the updates

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:997–1019
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Table I. Cost comparison between recomputed and updated preconditioning.

Type Initialization Solve step Memory

Recomp A+ ≈L+D+U+ Solves with L+D+, U+ A+, L+D+, U+
Update — Solves with LD, U , tril(B) A+, tril(A), LD, U

is only slightly more expensive and needs a little more memory than recomputing, but of course
it saves all factorization costs (initialization). The table provides only a rough comparison; in
particular, the amount of overlap between the sparsity patterns of LD and tril(B) may have an
important influence on the storage and application costs. When the overlap is important it makes
sense to merge LD and tril(B), i.e. compute the difference LD− tril(B) and perform forward solves
with it. Otherwise, separate solves with LD and tril(B) (where only the entries on the main diagonal
are merged) are usually more convenient for implementation reasons. In some cases A and A+
may not have only somewhat different sparsity patterns, but also completely different sizes (i.e.
numbers of nonzero entries).

The simple updates (2) can be expected to be efficient when the dominant information in the
difference matrix B is contained in one triangular part, like for instance with upwind/downwind
finite difference discretizations. However,we showed in [32–34] that the updates, possibly combined
with improvements such as specific reorderings, Gauss–Jordan transforms or Gauss–Seidel-type
extensions, are beneficial for amuch broader spectrum of problems (including someCFD simulations
discretized with finite volumes or elements). One remarkable feature is that the updates seem to
yield powerful preconditioning not only, as one would expect from the definition (2), when the
system matrices are changing slowly. In [34] the updates are most efficient in the transient phase
of the simulation where turbulence causes large differences between system matrices. This may
be explained by the fact that we take into account part of the large differences through the matrix
B in (2). In addition, a part of the structure of A and A+ is contained in the updates.
The goal of this paper is not so much to show that preconditioner updates of the type (2) can

yield a strong acceleration as compared with other preconditioning strategies. For examples where
this is the case we refer to [32–34]. The aim of the paper is to introduce techniques that enable
efficient usage of these updates in matrix-free environment and that can be applied as a black-box
strategy. Because of the latter aim, our experiments often span whole nonlinear processes, even
when we know that we could obtain a more profound effect by concentrating on transient phases
of the nonlinear solvers. Without loss of generality, we will use the first type of update in (2) in
our exposition. In practice, the type of update is chosen dynamically [33, 34].

The updates (2) are based on an incomplete reference factorization LDU. In many applications
preconditioners which are simple, as those mentioned in the introduction, and thus naturally
matrix free, are not powerful enough due to linear or sub-linear convergence of the corresponding
Krylov subspace method. Instead, strong and robust algebraic preconditioners such as some type
of incomplete decomposition must be used. They require, however, to be stored explicitly and,
in order to be computed, they need the explicit entries of the matrix that they precondition. This
means that the system matrix has to be estimated with the help of matrix-vector multiplications
(matvecs). Let us shortly describe the standard matrix estimation strategy that is very often used
in matrix-free nonlinear solvers or numerical optimization packages.

The matrix estimation problem is the problem to estimate a sparse matrix, given its sparsity
structure, by a small number of well-chosen matvecs. Curtis et al. [35] were the first to demonstrate

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:997–1019
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that all nonzero entries of a sparse matrix can be estimated using a number of matvecs that are often
much smaller than the matrix dimension. Estimation of the entries of a generally nonsymmetric
matrix B can be formulated as the following problem.

Problem 2.1
Given the sparsity pattern of B find vectors d1, . . . ,dp such that for each nonzero entry bij of B
there is a vector dk,1�k�p, satisfying (Bdk)i =bij(dk) j .

In practice, we need to have p as small as possible so that the number of matvecs needed
to obtain all nonzero entries is minimal. Coleman and Moré [36] demonstrated the relation of
the matrix estimation Problem 2.1 to the vertex coloring of a related graph G by a minimum
number of colors. This minimum number is called the chromatic number of G. The so-called
direct methods for solving the matrix estimation problem for a matrix B described in Problem
2.1 use as G the intersection graph of B, that is the adjacency graph G(BTB) of BTB. Note
that for an (undirected) adjacency graph G(C) of a square and symmetric matrix C , we define its
set of vertices as V (G(C))={1, . . . ,n} and its set of edges as E(G(C))={{i, j} | cij is nonzero}.
A vertex coloring of the intersection graph labels every vertex with a color in such a way that no
two adjacent vertices have the same color. The number of groups of vertices of the related graph
with the same color then corresponds to the number of matvecs needed to estimate all entries
of the matrix. A recent survey of theoretical results and techniques in this field is Gebremedhin
et al. [37] where one can find details on many standard matrix estimation strategies.

In matrix-free environment, the factorization LDU in (2) has in general been obtained through
estimating the reference matrix A, and it is stored explicitly. The update needs in addition a
part of the difference matrix B, which is not given explicitly (only A has been estimated). As
the straightforward estimation of the difference matrix by applying Problem 2.1 to A+ may be
expensive, one possible strategy that we propose is based on modified matrix estimation that is
reasonably cheap. In this case we use a new enhanced partial and approximate matrix estimation.
This approach is described in Section 3. As in any matrix-free implementation that uses matrix
estimation, we will assume that the sparsity pattern of A and A+ is given. Note that very often
the sparsity pattern can be obtained from the subroutine that performs the matvec: The variables
involved in the definition of the kth entry of the output vector yield the sparsity pattern of the kth
row of the system matrix.

The idea of estimating an implicitly given system matrix, which may or may not be easily
available, is frequently used in practice. Straightforward reasons to do so are, for instance, the need
to avoid analytical computation of the system matrix, saving the storage costs for the system matrix
or simply the fact that the preconditioners which do not need the matrix explicitly, may be weak.
However, estimation based on Problem 2.1 needs some intermediate memory, and memory issues
are often crucial in matrix-free environment and storage costs related to incomplete factorizations
should be kept as low as possible. In Section 4 we describe a strategy to use the triangular updates
(2) in matrix-free environment without running any matrix estimation procedure other than for
the reference matrix. Then the difference matrix B does not need to be stored. The costs of the
technique depend on the degree of separability of the function components of the function that
performs the matvec. Let us explain in the subsequent paragraph what we mean by separability in
our case (cf. the concept of partial separability in optimization, e.g. in [38]).

Consider a Krylov subspace method where the product of the system matrix A with a vector
v is replaced by the value of a function F evaluated at v. We say that F is separable if the
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evaluation of F can be easily separated in the evaluation of its function components. That is, the
function F is well separable if the components of the function F :Rn →Rn can be written as
Fi :Rn →R, where eTi F(v)=Fi (v), and computing Fi (v) costs about an nth part of the full
function evaluationF(v). Note that in some cases, as they arise in complicated computations based
on finite volumes or finite elements, the contributions for each volume or element are computed
simultaneously, and in this case, the evaluation of a single function component costs more.

The next section presents our first technique, which is based on solving new matrix estimation
problems, to apply the updates in matrix-free environment. Section 4 describes the second technique
that fully avoids matrix estimation and assumes separability of the function components.

3. MATRIX-FREE TRIANGULAR UPDATES VIA PARTIAL MATRIX ESTIMATION

This section describes our first proposal for computing and applying the triangular updates for
a sequence of linear systems in matrix-free environment. As mentioned above, in general, it is
possible to obtain a system matrix by solving the matrix estimation problem, i.e. Problem 2.1. We
will see that we can efficiently estimate only a part of a given matrix, that is, we will solve a
partial matrix estimation problem [37, 39].

Using the notation from above, consider matrices A and A+ from a sequence. If we need to
compute a preconditioner directly from A+, then a straightforward strategy is to estimate A+
entirely. When the sparsity patterns of A+ and A are the same, we can use the same graph G to
find, let us say, p color groups for both matrices (note that we typically use only approximate
algorithms for graph coloring since the related decision problem is NP-complete [40]), and the
graph coloring algorithm does not need to be rerun to estimate A+ if we have estimated A. In
this way, we need p matvecs for each estimation. If the matrix patterns in the sequence differ too
much, we may need to run the graph coloring algorithm for A+ as well, but its running time is
typically smaller than the time needed for the matvecs. It was demonstrated in [39] that for A+ we
can use the results of the graph coloring algorithm for a matrix with a ‘slightly different’ sparsity
pattern.

In order to use the triangular updates described above, we only have to estimate, in addition
to A which was estimated earlier, the upper or the lower triangular part of A+. This leads to a
special partial matrix estimation problem. Without loss of generality, consider estimation of the
lower triangular part tril(A+) of A+. We will formulate this problem as a standard graph coloring
problem (called 1-distance graph coloring problem; the problem can also be formulated differently
using a different vertex coloring paradigm) for a graph which is different from the intersection
graph of A+. The following theorem describes this graph.

Theorem 3.1
Consider the graph

GT (B)=G(tril(B)Ttril(B))∪GK ,

where G(tril(B)Ttril(B))=(V,E) is the intersection graph of the lower triangular part of the
matrix B and GK is defined as

GK =
n⋃

i=1
Gi , Gi =(Vi ,Ei )=(V, {{k, j}| bik �=0∧bij �=0∧k�i< j}).
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If the graph GT (B) can be colored by p colors, then the entries of the lower triangular part tril(B)

of B can be computed by p matvecs of B with vectors d1, . . . ,dp such that for each nonzero entry
bij of tril(B) there is a vector dk,1�k�p, satisfying (Bdk)i =bij(dk) j .

Proof
First note that the theorem gives necessary conditions to solve a modified Problem 2.1 in which
we have to estimate only the entries of tril(B) via matvecs with B. The intersection graph
G(tril(B)Ttril(B)) prohibits the vectors d1, . . . ,dp to contain in any component a sum of two or
more nonzero entries from tril(B). The graph GK then prohibits to have in any of these vectors a
component which would add a nonzero entry of tril(B) with one or more nonzero entries of the
strict upper triangular part of the adjacency graph G(BTB) of B. Note that the role of the index i
in the definition of GK restricts the adjacency of the entries bik and bij just to the cases when the
former is from tril(B) and the latter from the strict upper triangular part of B.

Assume now that GT (B) was colored by p colors. Define the vectors as usual in matrix
estimation problems, that is dk,1�k�p, such that

(dk) j =
{
1 if the vertex j has the color k,

0 otherwise.

Consider a nonzero entry bij of tril(B). There are edges {i, l} in GT (B) for each 1�l�n such that
bil is nonzero and their existence is a sufficient condition for separate computability of the entries
of tril(B). Note that this would not necessarily hold for a nonzero entry of B outside tril(B). It
also need not to be the case if GK would be missing as we explained in this proof above. Then
we have (Bdk)i =bij for some k and we have the result. �

Note that the graph GT (B) contains only a subset of edges of the adjacency graph G(BTB),
which should be considered to solve Problem 2.1. Consequently, in order to estimate only a
triangular part of A+, we may need a smaller number of matvecs than in the case of estimation
of the whole A+ (and subsequent extraction of the desired triangular part). We will show this in
the following example.

Example 3.1
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The graph GT (B(1)) for the estimation of the lower triangular part can be colored with two
colors, but the graph G((B(1))TB(1)) for estimating the whole matrix needs all four colors. Hence
in general, the lower triangular part of an n-dimensional matrix with the sparsity pattern of B(1)

can always be estimated with two colors, whereas estimating the whole matrix will require n
colors.

This extreme situation will not arise often in practice, but nevertheless one can save an important
amount of matvecs by restricting estimation to one triangular part. In order to enhance this effect,
we also propose to perform a prefiltration that decreases the size of GT . The prefiltration is based
on the sparsity pattern of the reference matrix. We summarize the two crucial points of the approach
we propose, i.e. partial estimation and prefiltration, in the algorithm below. The final matrix-free
preconditioned iterative method with the updates to solve a sequence of linear systems needs to
estimate the reference matrix as well as the triangular parts of the remaining matrices, so that
they could be used in the updates. The following algorithm describes how these two tasks can be
performed.

Algorithm 3.1
PARTIAL MATRIX ESTIMATION FOR TRIANGULAR PRECONDITIONER UPDATES. Input:Matrix
sequence A(0), A(1), . . . , A(n) and the sparsity pattern S(A(0)).

1. Estimation. Estimate A(0) using S(A(0)).

2. Initial factorization. Factorize A(0) such that A(0) ≈ LDU.

3. Sparsification. Filtrate A(0) to get A(0) and its sparsity pattern S(A(0)).

4. for i=0, . . . ,n
Estimate the lower triangular part tril(A(i)) of A(i) using the coloring of GT (A(0))

and matrix-vector products with A(i). Then for i�1, the lower triangular part of
the difference matrix, tril(A(0))− tril(A(i)), is used for the updates of the form (2).

end for

Note that the lower triangular part tril(A(0)) of A(0) is estimated twice. First, it is estimated as
part of the whole matrix with the original sparsity pattern. Second, in Step 4 of Algorithm 3.1, the
filtrated pattern S(A(0)) is used. Based on our experiments, the updates use just the latter quantity,
that is, the updates use the lower triangular parts tril(B(i))= tril(A(0))− tril(A(i)), for i=1, . . . ,n,
which were all computed with the filtrated and approximate sparsity pattern S(A(0)). Since the
estimation adds some error to the computed matrix entries, it is important to distribute this error
in all the approximate matrices in the same way. This explains our choice and the fact that the
loop in Step 4 starts from 0. As for the sequential graph coloring heuristic, it tries to balance
the error among the groups of columns of the same color as proposed in [39], see also [41].
Table II displays the costs and memory for one step of an iterative method preconditioned through
recomputation and update, respectively, in matrix-free environment where updating is based on the
approach from this section. We denote matrix estimations by est(·). We see that in the initialization
we save not only all factorization costs, but also estimation costs by solving a partial estimation
problem.

An interesting aspect of the estimation of a triangular part of a matrix is that the number of
colors depends on the matrix reordering since the graph construction depends on it. This is in
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Table II. Cost comparison with matrix-free updates based on Algorithm 3.1.

Type Initialization Solve step Memory

Recomp est(A+), A+ ≈L+D+U+ Solves with L+D+, U+ L+D+, U+
Update est(tril(A+)) Solves with LD, U , tril(B) tril(A+), tril(A), LD, U

contrast with the standard matrix estimation for the whole matrix explained in the previous section.
It is easy to see this from Example 3.2, where we show the arrow matrix B(1) from Example 3.1
and its reordering B(2) together with the corresponding graphs GT (B(1)) and GT (B(2)). We have
chosen this simple example to show the contrast between the Cuthill–McKee (CM) and the reverse
Cuthill–McKee reorderings (RCM) [42]. While GT (B(1)) reminds a part of the recursive structure
which we get from the CM algorithm, GT (B(2)) shows a typical structure after reversing the
sequence. The following theorem shows that sometimes we can enhance our chances to decrease
the number of matvecs needed for the estimation of a triangular part of the matrix by an appro-
priate ordering of the matrix. Counterintuitively, the reverse CM reordering may not be generally
recommended.

Example 3.2

Theorem 3.2
Assume that the irreducible matrix B with symmetric sparsity pattern was reordered by the CM
reordering. Further assume that the following condition applies: if bij �=0 for some i, j , 1� j�i�n,
then blj �=0 for all l, j�l�i (envelope assumption). Denote by B̂ the matrix which we obtain from
B by reversing the order of rows and columns with respect to B, that is, B̂ corresponds to the
original matrix reordered by the related RCM reordering. Then the chromatic number of GT (B)

is not larger than the chromatic number GT (B̂).

Proof
We will use induction on i . Let us first define fi =min{ j |bij �=0} for 1�i�n. If B is reordered
by the CM reordering then we know that fi� f j if 1�i� j�n (monotone envelope property) and
fi<i for 1<i�n [43].
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Figure 1. Matrix B after the Cuthill–McKee reordering for which its graph GT (B) needs more colors
than the graph GT (B̂), where we get B̂ from B after the symmetric reversal of its columns and rows.

The assertion is trivially valid for i=1. Consider i>1. Assume that we border the matrix of
dimension i−1 by a row i from the bottom and a column i from the right. Let j be the minimum
index such that bij �=0. The nonzero entries in the i th row induce a complete subgraph in GT (B).
Because of the envelope assumption, this complete subgraph must be in GT (B̂) as well since the
nonzeros blj for j�l�i induce a clique. Consequently, GT (B̂) has all edges from GT (B) and its
chromatic number is not smaller than the chromatic number of GT (B). �

Note that CM/RCM reorderings are often used to preprocess a matrix of linear systems solved by
preconditioned iterative methods. One motivation in the nonsymmetric case is that such reorderings
may be very beneficial for the stability of the incomplete decomposition [44]. Further note that
Theorem 3.2 is not valid without the envelope assumption. Figure 1 shows an example of a matrix
B after the CM reordering. The chromatic number of GT (B) is five. B reordered by the related
RCM needs only four colors. Despite this artificial counterexample, Theorem 3.2 points out that
the CM reordering may generally be preferable when estimating the lower triangular part of a
matrix.

4. MATRIX-FREE UPDATES VIA IMPLICIT BACK- OR FORWARD SOLVES

This section describes an approach for applying the triangular preconditioner updates (2) in matrix-
free environment which is principally different from the previous one. Whereas in the previous
section we focused on efficient estimation of matrix entries, here we will avoid estimation as
much as possible. We will show that we can apply the updates without knowledge and storage
of the entries of the difference matrix B. This approach is therefore closer to the philosophy of
matrix-free environment than the approach of the latest section. The price we pay for the reduced
storage costs are forward or backward solves based on function evaluations while applying the
updated preconditioner. The resulting increase in computational costs depends on the price of the
function evaluation and on the degree of separability of the components of the function as defined
in Section 2.

Assume for the moment that the triangular part of the matrix A and its incomplete LU decom-
position are available explicitly (for simplicity, we hide the diagonal factor D of the decomposition
in L). In practice, these quantities are computed for the reference system of the sequence. Let
the current matrix A+ be given implicitly in the form of its action on vectors, expressed by the
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function evaluation F+(·), where F+ :Rn →Rn and let F+
i be the i th component of F+. The

strategy to apply the updated preconditioner

(L− tril(B))U (3)

which we propose when the function components are separable is summarized in Algorithm 4.1.

Algorithm 4.1
APPLICATION OF TRIANGULAR PRECONDITIONER UPDATES WITH MIXED EXPLICIT-IMPLICIT

SOLVES. Input: Explicitly stored matrices L , U and tril(A) and the function components of F+
which represent A+ implicitly.

1. Initialization. Find the main diagonal {a+
11, . . . ,a

+
nn} of A+ before running the iterative

method. It can be found by computing

a+
ii =F+

i (ei ), 1�i�n.

2. Forward solve in each iteration. Use the following mixed explicit–implicit strategy: Split
the lower triangular matrix of (3) as L− tril(B)=E+ tril(A+). That is, E≡ L− tril(A) is
stored explicitly, and the implicit part tril(A+) contains entries of the new system matrix. We
then have to solve triangular systems of the form

(E+ tril(A+))z= y,

which yields the forward solve loop

zi =
yi −∑

j<i eijz j −
∑

j<i a
+
ij z j

eii+a+
ii

, i=1,2, . . . ,n. (4)

Note that the values eii and a+
ii in the denominator are known. In the numerator of (4), the

first sum can be computed explicitly and the second sum can be computed with the function
component evaluation

F+
i ((z1, . . . , zi−1,0, . . . ,0)

T)≈eTi A
+(z1, . . . , zi−1,0, . . . ,0)

T= ∑
j<i

a+
ij z j . (5)

3. Backward solve in each iteration. This is a trivial step since the matrix U in (3) has been
stored explicitly.

The costs to find the main diagonal in Step 1 (initialization) correspond approximately to the
costs of one full function evaluation if the function components are well separable. Step 1 needs
to be performed only once, before the preconditioned Krylov subspace method is started. Note
that the diagonal of B= A−A+ is known in advance in some applications. In particular, if the
diagonal does not change, diag(B) is the zero matrix. In Step 2, the whole forward-solve loop
requires n partial evaluations (5). In total, this gives approximately the cost of one additional full
function evaluation per solve step of the preconditioned iterative method.

We assumed above that the triangular part tril(A) of the reference matrix is stored explicitly. We
mention that if the estimation of A has not been efficient or if the sparsity patterns of tril(A) and
L differ so much that the storage costs would grow unacceptably, one may also use the function
components of F, corresponding to A, to replace operations with tril(A) in the forward solve.
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Table III. Costs comparison with matrix-free updates based on Algorithm 4.1.

Type Initialization Solve step Memory

Recomp est(A+), A+ ≈ L+U+ Solves with L+, U+ L+, U+
Update est(diag(A+)) Solves with L , U , eval(F,F+) L , U

Then tril(A) does not need to be stored and, formally, the explicit part E of the forward solve
consists of L only. Then in (4) there are three sums of which the last two are computed implicitly:

zi =
yi −∑

j<i eijz j −
∑

j<i aijz j −
∑

j<i a
+
ij z j

eii+aii+a+
ii

, i=1,2, . . . ,n, (6)

where aij represents entries of the reference matrix A. The sum
∑

j<i aijz j is computed as

Fi ((z1, . . . , zi−1,0, . . . ,0)
T).

The whole forward solve would then cost about two full function evaluations in total.
Let us compare the approach of this section with the strategy that recomputes the preconditioner

for each system of a given sequence. With updates applied according to Algorithm 4.1, only the
main diagonal of A+ needs to be estimated (in the initialization). If we would recompute the
preconditioner, on the other hand, we would have to estimate the whole matrix A+, and, mainly,
to compute the incomplete factorization. However, application of the update using Algorithm 4.1
could be more expensive than applying a new factorization if we would need a similar number
of iterations since at least an extra full function evaluation in each forward solve is needed. Note
that with the strategy of this section the memory costs for updating can be kept as low as they are
for recomputing. The previous observations are displayed schematically in Table III for the case
where forward solves are performed according to (6). We denote function evaluations by eval(·).

5. NUMERICAL EXPERIMENTS

This section is devoted to numerical experiments illustrating the techniques from Sections 3 and 4.
The main focus is not to show that the considered preconditioner updates can be very beneficial as
compared with freezing or recomputing preconditioners; this has been shown elsewhere [32–34].
Here we present experiments with the new algorithms proposed for matrix-free environment. We
focus on illustrating the aspects of the proposed matrix-free implementation techniques and, in
addition, the experiments show that updating is a robust alternative to freezing or recomputa-
tion in the matrix-free environment. We attempted to use a variety of ILU decompositions and
we performed tests with GMRES as well as with BiCGSTAB. In all experiments we consider
minimization of functions with Newton-type methods and we use, to avoid storing Jacobians, the
standard difference approximation of the Jacobian of the function F that is to be minimized. More
precisely, a matvec with the Jacobian, Av, is replaced by

F(v)≡ F(x+�·v/‖v‖)−F(x)

�
, (7)

for some small �>0, where x is the point (vector) at which the Jacobian is approximated.
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We will consider two test problems. The first problem results from a Newton-type method
with a flexible stopping criterion for the linear system solution. Here the preconditioners with the
triangular updates were fully embedded into the nonlinear solver. The next problem considers,
on the other hand, a fixed sequence of linear systems generated from a nonlinear solver. All
experiments were implemented in Fortran 95 on Intel Pentium-based machines.

5.1. Test problem 1

In this first example we minimize a function with easily separable components resulting from a two-
dimensional nonlinear convection–diffusion model problem with finite difference discretization.
The convection–diffusion model problem has the form (see, e.g. [1])

−�u+Cu

(
�u
�x

+ �u
�y

)
= f (x, y), f (x, y)=2000x(1−x)y(1− y), (8)

where C>0 is the Reynolds number, and it is discretized on the unit square. The standard five-point
discretization stencil (central differences) results in a function F to minimize with components of
the simple form

Fk(x)≡ 4xk−xk−1−xk+1−xk+N −xk−N

h2
+Cxk

xk+1−xk−1+xk+N −xk−N

h
− fk,

for 1�k�n, where fk is the discretization of f and N is the number of inner nodes. To solve F(x)=0
we use an inexact Newton–Krylov method where the Krylov subspace method is BiCGSTAB and
the stopping criterion of the iterative method is chosen adaptively. Newton’s method is combined
with a line-search technique for global convergence; the used method is described in detail on [45,
p. 215], see method DNS. The final matrix-free solver was embedded into the UFO-software [46]
for nonlinear problems. The initial approximation is the discretization of u0(x, y)=0.

The preconditioner we use in the experiments is ILUT, see [47], and for our implementation we
used Saad’s ILUT code. We considered changes in the number of additional nonzeros allowed in
the factorization, ranging from ILUT(tol,0)≡ ILU(0) with the same sparsity pattern as the system
matrix, to ILUT(tol,5). The drop tolerance was always tol=0.01.

The ILUT factorizations are computed from the estimations of Jacobians obtained by running
a graph coloring algorithm and performing matvecs corresponding to the obtained color groups.
The graph coloring algorithm (which is based on a simple heuristic) yields between 5 and 7
colors; hence, the matrix is estimated with about 5–7 matvecs calculated through means of function
evaluations of the form (7). When, for the updates, we run Algorithm 3.1 and estimate only one
triangular part of the system matrices A+, then this always yields 5 colors and thus it will require
5 matvecs. In other words, the graph GT (A+) of Theorem 3.1 has approximately as many edges
as the intersection graph G((A+)T A+) of the whole matrix in this example (in the other test
problem the situation is different). This is due to the structure of the system matrices and to the
fact that the filtration in Step 3 of Algorithm 3.1 does not sparsify the initial matrix (which is just
a Laplacian). Of course, with the update strategy of Algorithm 4.1, the triangular parts of A+ need
not be computed at all.

In Figures 2, 3 and 4 we display results for several types of ILUT and different grid sizes. More
precisely, Figures 2, 3 and 4 present experiments with the dimensions 62 500, 96 100 and 204 100,
respectively, and for each dimension preconditioning with ILUT(0.01, f ) for the fill parameters
f =0,1, . . . ,5 is tested (see the x-axes of the graphs). Each figure contains two graphs where
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Figure 2. BiCGStab iterations and CPU-times to solve problem (8) with C=500 on a 250×250 grid
(dimension 62 500) with varying sizes of ILUT-factorizations (depending on the fill parameter) for freezing
(dashed lines), recomputing (dash-dotted lines), updating with Algorithm 3.1 (solid lines) and updating

with Algorithm 4.1 (dotted lines).

the first graph displays the number of BiCGSTAB iterations needed to reduce ‖F(x)‖ to the
value 10−15 and the second graph gives the needed CPU-time. The Reynolds number is chosen as
C=500, which yields sequences of about 10–12 linear systems. With this Reynolds number, ILU(0)
is in general not the most efficient preconditioner; preconditioners with a number of nonzeros
clearly larger than the system matrix yield less BiCGSTAB iterations (in this series of experiments,
ILUT(0.01,5) has about three times as many nonzeros as the system matrix). The graphs compare
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Figure 3. BiCGStab iterations and CPU times to solve problem (8) with C=500 on a 310×310 grid
(dimension 96 100) with varying sizes of ILUT-factorizations (depending on the fill parameter) for freezing
(dashed lines), recomputing (dash-dotted lines), updating with Algorithm 3.1 (solid lines) and updating

with Algorithm 4.1 (dotted lines).

four ways to precondition the sequences of linear systems: Dashed lines represent freezing of the
preconditioner computed for the initial linear system, dash-dotted lines represent preconditioner
recomputation for every linear system of the sequence, solid lines represent matrix-free updating
based on (2) applied with Algorithm 3.1 and dotted lines represent matrix-free updating based
on (2) applied with Algorithm 4.1. The choice between the two update types in (2) was made
adaptively according to the triangular part of B1= A0−A1 with the entries largest in magnitude
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Figure 4. BiCGStab iterations and CPU-times to solve problem (8) with C=500 on a 490×490 grid
(dimension 240 100) with varying sizes of ILUT-factorizations (depending on the fill parameter) for
freezing (dashed lines), recomputing (dash-dotted lines), updating with Algorithm 3.1 (solid lines) and

updating with Algorithm 4.1 (dotted lines).

(as proposed in [32]). This was always the upper triangular part, hence we always updated this
triangular part.

The first observation which we get from the figures is that the total number of BiCGSTAB
iterations needed to solve (8) is lowest when we recompute from scratch. However, updating based
on (2) follows the curves for recomputing at close distance. As one would expect, the difference
between using Algorithm 3.1 and Algorithm 4.1 for updating is marginal because they are just
different implementations (i.e. based on different matrix-free computation techniques) of the same
updated preconditioner. The number of iterations needed with the frozen preconditioner deteriorates
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soon during the solution of the sequence and is rather unpredictable. In particular, there is no clear
dependence on the fill parameter f of the ILUT(0.01, f ) factorization. The plus ‘+’ in Figure 4
indicates that the corresponding frozen ILUT factorization was too weak to solve the sequence
arising from the nonlinear problem (8) at all.

The situation is quite different when we consider CPU-time. The repeated computation of the
ILUT factorization is relatively expensive in this example of a matrix-free implementation and
therefore the recomputation strategy is in general clearly less time efficient than updating. An
exception is given by the case of ILU(0) factorizations, which are, of course, cheap to (re)compute.
For example, for the first series of tests with dimension n=62500 the average time to compute
ILU(0) is 1.5 s and the average computation times of ILUT(0.01,1), ILUT(0.01,2), ILUT(0.01,3),
ILUT(0.01,4) and ILUT(0.01,5) are, respectively, 1.8, 2.6, 3.3, 3.7 and 4.3 s. Seen the length of
the linear system sequence, this represents a considerable part of the total solution time when we use
the recomputation strategy. For larger factorizations we observe that recomputing takes longer for
denser factorizations, whereas updating is the faster the denser is the factorization. Algorithm 3.1
is more time efficient than Algorithm 4.1; this is what one expects as Algorithm 4.1 requires about
one additional function evaluation per backward solve with the updated preconditioner, hence two
more function evaluations per BiCGSTAB iteration (in BiCGSTAB the preconditioner is applied
twice in every iteration). On the other hand, Algorithm 4.1 has the advantage that no triangular
parts of the current system matrices need to be stored (or estimated). If we would perform the
forward solves according to (6), then we would not even need to store the lower triangular part
of the reference system matrix, but the whole computation would be slower than when using
Algorithm 4.1. The freezing strategy performs in general worst of all. This is explained by the
deteriorating number of BiCGSTAB iterations, but note that in Figure 4 the timing of freezing and
recomputing is the same though freezing needs much more BiCGSTAB iterations for convergence
(this shows the high costs of recomputing).

5.2. Test problem 2

The second set of experiments is devoted to solving a sequence of linear problems arising during
the computation of a constitutive model from structural mechanics provided by Karsten Quint.
More precisely, a small strain metal viscoplasticity model was developed for a rectangular plate of
length 100, width 21.2 and height 9.62 cm with a hole in the middle. The discretization used 1 350
quadratic elements in most of the domain with a somewhat finer grid in the center. When applying
the Multilevel-Newton algorithm, every time step contains an inner loop that requires the solution
of nonlinear systems, which in turn leads to a sequence of linear systems. For more details on the
parameters of the material and of the Multilevel-Newton algorithm which were used, we refer to
the description of the first application in [48]. We consider here a sequence of linear systems from
a randomly chosen time-step in the middle of the simulation process. This sequence consists of 8
linear systems of dimension 4 936 with matrices containing about 315 000 nonzeros. To solve the
sequence, we use the GMRES(40) method preconditioned by ILUT. The (fixed) stopping criterion
for GMRES is relative reduction of the residual norm below the level 10−6. We again present
results of several experiments differing in parameters provided to the preconditioner. In particular,
we would like to show that the matrix-free updating strategies are successful over large variations
in the preconditioner density.

Tables IV–VIII present the results in terms of number of GMRES iterations and needed
matrix-vector multiplications (that is, the function evaluations (7)). We compare again the four
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Table IV. Number of iterations and function evaluations for solving preconditioned linear systems from
the structural mechanics problem with ILUT(0.01,5).

Recomp Freeze Update (Algorithm 3.1) Update (Algorithm 4.1)

Matrix its est. fevals its est. fevals its est. fevals its est. fevals

ILUT(0.01,5), Psize≈260000

A(0) 343 89 343 89 343 89+25 343 89
A(1) 172 89 623 0 237 25 237 0
A(2) 201 89 694 0 298 25 298 0
A(3) 294 89 723 0 285 25 285 0
A(4) 298 89 799 0 334 25 334 0
A(5) 386 89 708 0 320 25 320 0
A(6) 348 89 714 0 318 25 318 0
A(7) 317 89 717 0 318 25 318 0
overall fevals 3071 5410 2742 4652

Table V. Number of iterations and function evaluations for solving preconditioned linear systems from
the structural mechanics problem with ILUT(0.001,20).

Recomp Freeze Update (Algorithm 3.1) Update (Algorithm 4.1)

Matrix its est. fevals its est. fevals its est. fevals its est. fevals

ILUT(0.001,20), Psize≈404000

A(0) 187 89 187 89 187 89+25 187 89
A(1) 89 89 393 0 146 25 146 0
A(2) 126 89 448 0 182 25 182 0
A(3) 221 89 480 0 184 25 184 0
A(4) 234 89 513 0 190 25 190 0
A(5) 193 89 487 0 196 25 196 0
A(6) 178 89 521 0 196 25 196 0
A(7) 246 89 521 0 196 25 196 0
overall fevals 2186 3639 1766 2856

computational strategies: preconditioner recomputation by matrix estimation for each system
(Recomp), preconditioner computation only for the reference matrix (Freeze), and preconditioning
with the triangular updates based on Algorithm 3.1 and on Algorithm 4.1. Let us remind that
Algorithm 3.1 evaluates in its loop also a less accurate approximation of the triangular part of
A(0) using the filtrated pattern S(A(0)), which we use to compute the updates, although we have
a more accurate A(0) available. A(0) was filtrated in Algorithm 3.1 such that all the entries with
magnitude smaller than half of the magnitude of the largest entry in their rows were dropped.

The average number of nonzeros of the factorizations is denoted with ‘Psize’. The column
‘est. fevals’ gives the number of function evaluations (fevals) needed for matrix estimation and
‘overall fevals’ present the total number of fevals needed to solve the sequence. The two ‘est.
fevals’ numbers for A(0) in the column ‘Update (Algorithm 3.1)’ correspond to its estimation
with full and filtrated pattern. The other ‘est. fevals’ numbers in this column give the number
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Table VI. Number of iterations and function evaluations for solving preconditioned linear systems from
the structural mechanics problem with ILUT(10−4,30).

Recomp Freeze Updated (Algorithm 3.1) Updated (Algorithm 4.1)

Matrix its est. fevals its est. fevals its est. fevals its est. fevals

ILUT(10−4,30), Psize≈550000
A(0) 85 89 85 89 85 89+25 85 89
A(1) 59 89 233 0 78 25 78 0
A(2) 72 89 313 0 84 25 84 0
A(3) 78 89 344 0 85 25 85 0
A(4) 78 89 289 0 108 25 108 0
A(5) 78 89 289 0 108 25 108 0
A(6) 79 89 318 0 108 25 108 0
A(7) 86 89 318 0 108 25 108 0
overall fevals 1327 2278 1053 1532

Table VII. Number of iterations and function evaluations for solving preconditioned linear systems from
the structural mechanics problem with ILUT(10−5,50).

Recomp Freeze Updated (Algorithm 3.1) Updated (Algorithm 4.1)

Matrix its est. fevals its est. fevals its est. fevals its est. fevals

ILUT(10−5,50), Psize≈812000
A(0) 65 89 65 89 65 89+25 65 89
A(1) 31 89 128 0 52 25 52 0
A(2) 35 89 163 0 45 25 45 0
A(3) 35 89 237 0 45 25 45 0
A(4) 37 89 167 0 52 25 52 0
A(5) 38 89 169 0 51 25 51 0
A(6) 37 89 168 0 51 25 51 0
A(7) 50 89 168 0 51 25 51 0
overall fevals 1040 1354 701 848

of matvecs needed to estimate only the triangular part of the current system matrix. To compute
‘overall fevals’ we counted one function evaluation per GMRES iteration, as there is one matvec
with the system matrix in every iteration of the GMRES method. In the ‘Update (Algorithm 4.1)’
strategy, however, every application of the updated preconditioner requires an additional function
evaluation. Therefore we counted two function evaluations per GMRES iteration for this strategy.

The first fact which we observe is that the updating strategy works very well in terms of iteration
counts and, in contrast with the previous test problem, it is from this point of view only slightly
worse than recomputing. Consequently, it is clear that the updates are very often able to recover
a lot of the information missing in the LU decomposition of the reference matrix. Second we
observe that in terms of function evaluations, updating with Algorithm 3.1 is always the cheapest
of all strategies. This is for an important part due to the difference between estimating the whole
matrix and estimating only one triangular part.
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Table VIII. Number of iterations and function evaluations for solving preconditioned linear systems from
the structural mechanics problem with ILUT(10−6,70).

Recomp Freeze Updated (Algorithm 3.1) Updated (Algorithm 4.1)

Matrix its est. fevals its est. fevals its est. fevals its est. fevals

ILUT(10−6,70), Psize≈950000
A(0) 32 89 32 89 32 89+25 32 89
A(1) 21 89 78 0 54 25 54 0
A(2) 28 89 88 0 38 25 38 0
A(3) 24 89 101 0 39 25 39 0
A(4) 26 89 92 0 38 25 38 0
A(5) 26 89 87 0 38 25 38 0
A(6) 26 89 86 0 38 25 38 0
A(7) 28 89 86 0 38 25 38 0
overall fevals 923 739 604 687

Updating with Algorithm 4.1 requires less function evaluations than recomputing only for
the densest factorizations in our series of experiments. It requires always more function evalua-
tions than with Algorithm 3.1 (though the difference becomes smaller with more powerful initial
factorizations). In addition, separate computation of the function components as needed in (5) is
rather expensive due to the given finite volume implementation. This is the price we pay for the
lower memory demands when using Algorithm 4.1. By using Algorithm 4.1 we save the storage of
triangular parts of the size of about 160.000 nonzeros. Note that there may be applications where
one cannot afford to store tril(B) or triu(B) in addition to the factors L and U at all and using the
mixed explicit-implicit solves of Algorithm 4.1 would be the only feasible updating option. Both
recomputation and updates are in general much better than the freezing strategy. An exception
is given in Table VIII where the ILUT(10−6,70) factorization gives such low GMRES iteration
counts that the estimation and recomputation costs start to dominate; here freezing is cheaper than
recomputing.

As this sequence is a fixed sequence extracted from a structural mechanics problem solver
and the experiments were not embedded in the solver, we do not present CPU timings and use
just the number of function evaluations to get an idea of the computational effort. Note however,
that if recomputing gives numbers of GMRES iterations close to updating, then its total timing,
including factorization times, must necessarily be much worse. Let us also remind the experimental
dependence of timings and iteration counts presented for the triangular updates in [32] if we
assume similar sizes of preconditioners used in the compared strategies.

6. CONCLUSIONS

We have presented theoretical results and numerical experiments related to matrix-free strategies
for solving sequences of linear systems by preconditioned iterative methods. In particular, we
introduced two new approaches to apply triangular updates for enhancing the linear solver of
the sequences. The experiments in matrix-free environment seem to confirm that the proposed
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strategies are typically the best of all compared possibilities. Moreover, the updates can be easily
embedded into matrix-free nonlinear solvers.
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Abstract

Classification based on Fisher’s linear discriminant analysis (FLDA) is challenging when the number of variables largely exceeds
the number of given samples. The original FLDA needs to be carefully modified and with high dimensionality implementation issues
like reduction of storage costs are of crucial importance. Methods are reviewed for the high dimension/small sample size problem
and the one closest, in some sense, to the classical regular approach is chosen. The implementation of this method with regard to
computational and storage costs and numerical stability is improved. This is achieved through combining a variety of known and
new implementation strategies. Experiments demonstrate the superiority, with respect to both overall costs and classification rates,
of the resulting algorithm compared with other methods.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Linear discriminant analysis; Numerical aspects of FLDA; Small sample size problem; Dimension reduction; Sparsity

1. Introduction

Fisher’s linear discriminant analysis (FLDA) takes as one of the basic and first methods a prominent place in
supervised classification tasks. Even in the presence of more advanced and sophisticated classification techniques and
today’s necessity to handle high dimensional data, FLDA has not left the minds of researchers. In this paper we address
FLDA for the case where the number of variables largely exceeds the number of objects. In the literature this case has
several names; in the pattern recognition community one mostly calls it the “small sample size” problem (see, e.g. Chen
et al., 2000; Howland et al., 2006), in more general statistical literature like Hastie and Tibshirani (2003) we rather
find the expression “p > n” or even “p?n” problem. To emphasize that the problem lies in the combination of many
variables and few samples, we will here use “high dimension/small sample size” problem. Many classification strategies
like nearest neighbor or support vector machines can be used to solve high dimension/small sample size problems.
In this paper we restrict ourselves to FLDA-based approaches with emphasis on computational aspects. Generally,
choosing the proper classification method is a state-of-the-art problem of analysis practise which we consider out of
the scope of this paper. Also, we are aware of the general theoretical questions on applicability common to all methods
for the high dimension/small sample size case that cope with singularity of covariance matrices. For these issues
we refer the interested reader in the first place to Friedman (1989) and also to Hoffbeck and Landgrebe (1996) and
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Bensmail and Celeux (1996) for regularized discriminant analysis and related strategies to solve the classical tasks of
linear and quadratic discriminant analysis in the high dimension/small sample size case. For FLDA in particular we
refer to the paper by Krzanowski et al. (1995).

Assuming we have decided to use an FLDA-based approach (a good reason may be FLDA’s relative simplicity), we
will first compare various criteria used to adapt FLDA to the high dimension/small sample size problem. Then the main
part of the paper addresses implementation of the chosen criterion with emphasis on computational and storage costs.
With high dimensional data, these issues are of crucial importance for the efficiency of the whole process; improved
implementation may change a seemingly uncomputable problem to a perfectly solvable one. In addition, numerical
stability plays an important role in the high dimension/small sample size case. We will propose an algorithm that
exploits all advantageous implementation strategies we know of and we add some new ones. Our experiments show
that, when thus implemented, FLDA has the potential to solve classification tasks with very high dimensional data.

In the remainder of this section we briefly recall original FLDA. Section 2 compares some of the best-known modifi-
cations of FLDA for the high dimension/small sample size problem. It concludes with the choice of the one we consider
closest to the original FLDA. In Section 3 we present a very detailed description of our improved implementation.
Numerical examples comparing it with other implementations are given in Section 4.

1.1. Classical FLDA

Consider a classification task with g groups, g�2, and assume that n training objects (xi, yi) with xi ∈ Rp and
yi ∈ {1, . . . , g} are available. Using the mean vector x̄ = (1/n)

∑n
i=1xi and denoting by Nj the index set of objects in

group j, by nj the size of group j and by x̄j = (1/nj )
∑

i∈Nj
xi the corresponding group’s mean vector, the between-

and within-group covariance matrix B and W, respectively, are defined by

B = 1

g − 1

g∑
j=1

nj (x̄j − x̄)(x̄j − x̄)T, (1)

W = 1

n − g

g∑
j=1

∑
i∈Nj

(xi − x̄j )(xi − x̄j )
T. (2)

The rank of B is at most min(g − 1, p), the rank of W is at most min(n, p).
Let us assume for the moment that p < n. Then Fisher’s criterion (see, e.g. Duda et al., 2000; Ripley, 1996, originally

Fisher, 1936) is to find, subsequently, at most g − 1 transformation vectors c that have maximal separation ratio by
solving the maximization problem

max
c∈Rp, c �=0

cTBc

cTWc
. (3)

It can be translated to finding the largest eigenpairs of the generalized eigenproblem

(B − �W)c = 0, (4)

which, in turn, can be transformed to a standard eigenproblem, for example (W−1B − �I)c = 0. Then the FLDA-
reduced space of dimension i, i < g, is spanned by the eigenvectors corresponding to the i largest eigenvalues. They are
ordered decreasingly according to the eigenvalues and are orthogonal to each other (see, e.g. Guo et al., 2003). Many
applications just aim at dimension reduction and stop after mapping onto the FLDA-reduced space. In the original
classification process, the simplest and most frequent way to classify is by assigning to the group j of the transformed
group mean vector (c1, . . . , ci)

Tx̄j which is closest in the L2-norm.

2. Fisher’s criterion for the high dimension/small sample size problem

2.1. The p > n case

When p > n the covariance matrix W from (2) is singular. This makes the classical FLDA process we describe above
hard to perform. The main problem is solving the generalized eigenproblem (4). We cannot transform it to a standard
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eigenproblem anymore. This paper addresses cases where even p?n. Then the problem will be challenging to solve
also with respect to storage and computational costs. These numerical aspects will be considered in Section 3.

With singular covariance matrices, the generalized eigenproblem can be ill-posed itself. We recall some facts from
linear algebra to explain this (see, e.g. Bai et al., 2000). Eigenvectors c of (4) satisfy Bc = �Wc, for some value �. If c
lies in the null space of B but not of W, then � is a zero eigenvalue. On the other hand, if c lies in the null space of W
but not of B, then we say � is an infinite eigenvalue. If c does not lie in the null space of B and neither in the null space
of W, then � must be finite and nonzero. If c lies in the common null space of B and W, any value � is an eigenvalue!
In fact, in this case corresponding eigenvectors are not even defined (Bai et al., 2000). The presence of a common null
space will make solving the eigenproblem (4) very challenging. For example, it is well known that the QZ-algorithm
(Moler and Stewart, 1973) may solve generalized eigenproblems with singular matrices but suffers from numerical
instability precisely with a common null space. Unfortunately, the covariance matrices W and B must have a common
null space as soon as n + g − 1 < p.

Apart from the difficulties of solving (4), with a singular covariance matrix W Fisher’s criterion itself to some extent
loses its meaning: Transformation vectors c in the null space of W would lead to division by zero in (3). Here we focus
on interpretation and modification of Fisher’s criterion (3) in the p?n case. Papers that address these issues include
Chen et al. (2000), Cheng et al. (1992), Hong and Yang (1991), Howland et al. (2006), Li et al. (1999), Krzanowski
et al. (1995) andYang et al. (2000). We will briefly review and compare some of the most popular methods described in
these papers. This will motivate our choice of the one modified criterion whose implementation we address afterwards.

2.2. Perturbation methods

One type of methods tries to transform (4) to a standard eigenproblem by overcoming the singularity of W. A way
to achieve this is by perturbation of the singular values of W. More precisely, let W = QSQT be the singular value
decomposition (SVD) of W (because W is symmetric it coincides with a spectral decomposition). Then the matrix of
singular values S is replaced by S + D where D is a diagonal matrix of small norm such that S + D is nonsingular.
Several choices of D are described in Cheng et al. (1992), Hong and Yang (1991), and Krzanowski et al. (1995). When
W̃ is the nonsingular matrix obtained by this kind of perturbation, then these methods determine the FLDA-vectors c
by transforming the eigenproblem (B − �W̃)c = 0 to a standard eigenproblem. Working with the perturbed matrix W̃
implies solving the modified criterion

max
c∈Rp, c �=0

cTBc

cTW̃c
. (5)

Apart from the fact that it is not clear whether this method manages to solve Fisher’s original criterion (3), it has the
disadvantage that an optimal choice of the perturbation matrix D has to be determined, for example by cross-validation.
While computing the spectral decomposition QSQT of W, the method asks for solving a symmetric p-dimensional
eigenproblem with computational costs of order O(p3) and storage costs of order O(p2).

2.3. Methods exploiting the Moore–Penrose pseudo-inverse

A different way to obtain a standard eigenproblem results from considering the truncated SVD of W. This method
is mentioned, among others, in Cheng et al. (1992), Hong and Yang (1991), and Krzanowski et al. (1995), and
is implemented in the statistical software R-environment (R Development Core Team, 2005) by the lda-function
(see also Ripley, 1996; Venables and Ripley, 2002). Let the SVD of W be

W = Q diag(s1, . . . , sp)QT, (6)

and let |si |�ε for i > r and some small tolerance ε > 0. Then if Qr consists of the first r columns of Q and �r =
diag(s1, . . . , sr ), the truncated SVD of W is W̃ = Qr�rQT

r . Instead of solving (4), these methods try to transform

(B − �Qr �rQT
r )c = 0 (7)



426 J. Duintjer Tebbens, P. Schlesinger / Computational Statistics & Data Analysis 52 (2007) 423– 437

to a standard eigenproblem by multiplication with the Moore–Penrose pseudo-inverse Qr �−1
r QT

r of W̃. They solve,
for example, the symmetric eigenproblem

(�−1/2
r QT

r BQr�
−1/2
r − �I)c∗ = 0, (8)

where the desired eigenvectors c are obtained from

c = Qr�
−1/2
r c∗ (9)

and �−1/2
r = diag(1/

√
s1, . . . , 1/

√
sr ). The eigenproblem (8) is in general not equivalent to (7) because QrQT

r �= I.

Instead, the eigenvectors c obtained from solving (8) and (9) satisfy the equality (�−1/2
r QT

r BQrQT
r − ��1/2

r QT
r )c = 0,

hence by multiplying with Qr�
1/2
r we have

(QrQT
r BQrQT

r − �Qr �rQT
r )c = 0,

and one maximizes

cTQrQT
r BQrQT

r c

cTQr �rQT
r c

.

Here again, we do not know to what extent the original problem (3) is maximized. All we can do is measure the quality
of the vectors c as approximate eigenvectors for the original eigenproblem (4).

Proposition 2.1. Let us assume that si = 0 for all i > r in the SVD (6) of W and let the last p − r columns of Q,
corresponding to zero singular values, be denoted by Qz. Then the eigenpairs {�, c} defined through (8) and (9) satisfy,
in the Euclidean norm,

‖Bc − �Wc‖ = ‖QT
z Bc‖.

Proof. We have

Bc − �Wc = Bc − �Qr�rQT
r c = BQr�

−1/2
r c∗ − �Qr�

1/2
r c∗.

As (Qr , Qz) is an orthonormal matrix,

‖Bc − �Wc‖ =
∥∥∥∥
(

QT
r

QT
z

)
(BQr�

−1/2
r c∗ − �Qr�

1/2
r c∗)

∥∥∥∥
=
∥∥∥∥
(

�1/2
r �−1/2

r QT
r

QT
z

)
(BQr�

−1/2
r c∗ − �Qr�

1/2
r c∗)

∥∥∥∥
=
∥∥∥∥
(

�1/2
r (�−1/2

r QT
r BQr�

−1/2
r c∗ − �c∗)

QT
z BQr�

−1/2
r c∗

)∥∥∥∥=
∥∥∥∥
(

0
QT

z Bc

)∥∥∥∥ . �

A similar result can easily be proven for perturbation methods. The previous proposition shows that methods exploit-
ing the pseudo-inverse of W offer no room for improving the computed FLDA-vectors, their quality is fully determined
by ‖QT

z Bc‖. But they have the advantage they do not need to determine optimal perturbation parameters (only the
truncation parameter ε is needed). Note that in (8) we solve an eigenproblem of dimension r, which is in general
significantly less than p. However, the whole method asks for an initial p-dimensional spectral decomposition of W
with computational costs of order O(p3) and storage costs of order O(p2).

2.4. A method based on the GSVD

Both types of methods we have described so far suffer from potential deterioration of the original eigenproblem
(4) and hence Fisher’s original criterion (3). A method that does not modify eigenproblem (4) is the LDA/GSVD
(generalized singular value decomposition) method from Howland and Park (2004), Howland et al. (2003,2006)
and Kim et al. (2005). It extracts the eigenvectors of (4) needed for FLDA. This is achieved by using the GSVD
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(Paige and Saunders, 1981; Golub and van Loan, 1996). Leaving aside the details, with a numerically stable algorithm
for the GSVD we can find diagonal matrices with nonnegative entries S� =diag(�1, . . . , �t ) and S� =diag(�1, . . . , �t )

and a nonsingular matrix C ∈ Rp×p such that

B = C−T
(

S� 0
0 0

)
C−1, W = C−T

(
S� 0
0 0

)
C−1,

with S� + S� = It and t �n + g. This implies the first t columns ci of C are eigenvectors for (4) and satisfy

�iBci = �iWci .

If �i is zero, the eigenvectors lie in the null space of W but not in the null space of B. Then the within-group variance
cT
i Wci is zero and hence minimal. For this reason, the LDA/GSVD method chooses these vectors as the leading

FLDA-transformation vectors. The remaining ones are chosen according to the ratio �i/�i ; those for which

�i

�i

= cT
i Bci

cT
i Wci

is largest are chosen first. This corresponds to Fisher’s original criterion (3). The last p − t columns of C span the
common null space of B and W. In the common null space both between-group and within-group variance are zero.
Therefore, no vectors from this space are used. The LDA/GSVD method can be implemented attractively by exploiting
the special structure of the covariance matrices (we explain this in Section 3). This causes computational costs to be
reduced to O(pn2)+O(n3) and storage costs to O(p(n+g)). In addition, the method offers a mathematical framework
that helps in better understanding the high dimension/small sample size problem, see, e.g. Howland et al. (2003).

2.5. The null space method

We see that in the LDA/GSVD method the criterion (3) is modified by separating vectors for which cT
i Wci is zero

from those that yield a finite ratio (cT
i Bci)/(c

T
i Wci). The classical null space method (see, e.g. Chen et al., 2000 or

the so-called zero-variance discrimination method in Krzanowski et al., 1995) fully concentrates on the null space of
W. As in LDA/GSVD, this is motivated by the fact that in this space within-group variance is minimal. The null space
method simply modifies (3) as

max
c∈Rp, Wc=0

cTBc. (10)

Of course, we maximize over vectors c with unit norm. The criterion leads to a standard eigenproblem in the null
space of W. It should be noticed that this null space has large dimension if p?n. As the rank of W is at most n, the
null space has dimension at least p − n, which is just a little less than p. Therefore, this method finds, in addition to
the spectral decomposition of W, another large spectral decomposition and may be very time-consuming. Dominating
computational costs are of order O(p3); storage costs are of order O(p2).

2.6. An intuitively reasonable criterion

Of all methods we discussed, Fisher’s original idea to minimize within-group variance and maximize between-group
variance seems best realized by the criterion (10). However, the null space method may choose vectors from the common
null space where cTBc is zero as well: We look for g − 1 transformation vectors in total and the number of vectors in
the null space of W that are not in the common null space can be less than g − 1. We avoid this by using a combined
criterion that can be described as follows.

Transformation vectors from the null space of W give the “maximal” ratio cTBc/cTWc=∞. As in the previous two
methods, we choose them as leading transformation vectors because their within-group variance cTWc=0 is minimal.
We order them according to their between-group variance, i.e. we use the criterion from the null space method,

max
c∈Rp, Wc=0

cTBc. (11)
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However, transformation vectors for which the maximum in (11) is zero are not interesting anymore; their between-
group variance is minimal, hence they do not contribute to discrimination. Therefore, we select with criterion (11)
only transformation vectors with nonzero between-group variance. If this does not yield enough (mutually orthogonal)
transformation vectors, we leave the null space of W and select the next transformation vectors in the complement of
the null space of W. Here of course, the ratio cTBc/cTWc is always finite and we can use the original criterion

max
c∈Rp, Wc �=0

cTBc

cTWc
. (12)

The intuitively reasonable, combined criterion (11–12), which follows logically from the previously considered
criteria, has been proposed, for example, in Yang and Yang (2003). We believe it reproduces Fisher’s original idea best
and we will use it in our implementation too. Our experiments seem to indicate that it leads to at least as powerful
discrimination as other criteria.

3. Efficient implementation

The main focus of this paper is efficient implementation of (11) and (12). We have tried to combine as many clever
strategies that are known as possible in order to minimize the overall costs and reduce numerical instability. In addition,
we introduce some new ideas that make the algorithm even faster. We begin with two commonly used tools: Writing
B and W as products of rectangular matrices and elimination of the common null space.

3.1. Exploiting the special structure of covariance matrices

The within-group and between-group covariance matrices W and B are both full matrices of dimension p. In many
applications p is just too large to be able to store 2p2 matrix entries. For example, when p = 10 000, which is realistic
among others in modern document classification tasks, then B and W take already 1.6 GB to be stored in double
precision arithmetic. Also, computations with these large matrices are rather expensive. In order to work efficiently
with covariance matrices one commonly takes advantage of the fact that they can be written as a product of one and
the same rectangular matrix. Let X ∈ Rn×p be the sample matrix whose ith row contains the ith training object and
let 1n = (1, 1, . . . , 1)T ∈ Rn. Furthermore, let M ∈ Rg×p be the group mean matrix whose jth row contains x̄T

j and

let G ∈ Rn×g be the group coding matrix. If the ith object belongs to group j, Gi,j = 1 and Gi,k = 0 for k �= j . Then
(see, e.g. Venables and Ripley, 2002),

W = 1

n − g

g∑
j=1

∑
i∈Nj

(xi − x̄j )(xi − x̄j )
T = (X − GM)T(X − GM)

n − g
. (13)

The matrix B can be written as

B = 1

g − 1

g∑
j=1

nj (x̄j − x̄)(x̄j − x̄)T = (GM − 1nx̄T)T(GM − 1nx̄T)

g − 1
(14)

and also as (see, e.g. Kim et al., 2005)

B = (D̃(M − 1gx̄
T))TD̃(M − 1gx̄

T)

g − 1
, (15)

where D̃= diag(1/n1, . . . , 1/ng).
In all cases a covariance matrix is decomposed into two rectangular matrices that are each others transposed. The

number of rows of the right rectangles n (or even g for (15)) is by assumption much smaller than the number of columns
p. It is advantageous to store only one rectangular part and replace computations with the covariance matrices by
computations with their rectangles. A very simple example is the product z = Wv of W with a vector v. It can be
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computed by first forming the n-dimensional vector y = (X − GM)v and then putting

z = (X − GM)Ty

n − g
.

As the direct product z = Wv costs 2p2 floating point operations and the small products cost 2pn operations
each, computational costs are reduced as soon as n < p/2. We consider efficient multiplications more in detail in
Section 3.4. If we manage to restrict all computations needed with B and W to their rectangular factors in similar
ways, we avoid storing B and W. This has been successfully accomplished in the LDA/GSVD method and in the
lda()-function implemented in the R-environment (R Development Core Team, 2005). Our implementation will also
take advantage of the special structure of the covariance matrices.

3.2. Elimination of the common null space

A technique that has many advantages in FLDA-based computations is elimination of the common null space of B
and W. It is justified by the fact that vectors c in the common null space do not contribute to discrimination because
cTBc = 0 = cTWc (see, e.g. Yang and Yang, 2003). The common null space can be eliminated very efficiently by
considering the total covariance matrix. This matrix is defined as

T = 1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)T = 1

n − 1
(XT − x̄1T

n)(X − 1nx̄T). (16)

The following relation between the covariance matrices holds:

(n − 1)T = (g − 1)B + (n − g)W,

see, e.g. Howland et al. (2003). If we drop the denominators in (13), (14) and (16), the relation translates to

T = B + W. (17)

Discarding the denominators has no influence on the computations we perform. Hence from now on we consider
unscaled covariance matrices for simplicity. As a consequence of (17) we have the following well-known lemma
(Yang and Yang, 2003). For completeness we also give its proof.

Lemma 1. The common null space of B and W is the null space of T.

Proof. A vector v ∈ Rp lies in the null space of T if and only if vTTv = 0. This is readily seen from

vTTv = 0 ⇒ vT(XT − x̄1T
n)(X − 1nx̄T)v = 0 ⇒ ‖(X − 1nx̄T)v‖2 = 0,

the other direction is trivial. The same holds for W and B because they can be written as (13) and (14), respectively
(here without the denominators). With (17) and the fact that W and B are positive semi-definite we have

vTTv = 0 ⇔ vT(B + W) v = 0 ⇔ vTBv = 0 and vTWv = 0. �

In other words, the complement of the common null space of B and W is spanned by the eigenvectors of T which
correspond to nonzero eigenvalues of T. We show below that these eigenvectors can be computed inexpensively.
Note that restriction to the eigenvectors of nonzero eigenvalues of T is nothing but performing a classical PCA as
a preprocessing step and including all principal components explaining the full 100% of total variability (Yang and
Yang, 2003).

If the total covariance matrix T has rank q where q �n, this preprocessing reduces the original p-dimensional problem
to the dimension q. As we assume p?n, the benefit is considerable. Another important advantage of elimination of the
common null space is that it enhances numerical stability of algorithms for generalized eigenproblems, see for example
Parlett (1998).
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The eigenvectors of T corresponding to nonzero eigenvalues can be computed very efficiently with the following
lemma.

Lemma 2. Let Z ∈ Rn×p with n < p, let the diagonal matrix D1 contain the nonzero eigenvalues of ZZT ∈ Rn×n and
let the columns of V1 contain the corresponding eigenvectors. Then the normalized eigenvectors for nonzero eigenvalues
of ZTZ ∈ Rp×p are given by the columns of ZTV1D−1/2

1 .

Proof. See Johnson and Wichern (1998). �

This lemma is widely used in PCA computations. It says we can extract eigenvectors of the p-dimensional matrix
T = (XT − x̄1T

n)(X − 1nx̄T) by forming the n-dimensional spectral decomposition

(X − 1nx̄T)(XT − x̄1T
n) = VDVT, (18)

where D is a diagonal matrix containing the eigenvalues in decreasing order. Let it have the form

D =
(

D1 0
0 0

)
,

where D1 ∈ Rq×q is nonsingular. If we collect in V1 the eigenvectors of V corresponding to the nonzero eigenvalues
then the complement of the null space of T is spanned by the q orthonormal columns of

(XT − x̄1T
n)V1D−1/2

1 . (19)

Note that the only computation depending on p needed to find the complement of the common null space (19) is
multiplication with (XT − x̄1T

n). In Section 3.4 we show how to circumvent the high costs of this multiplication.

3.3. Efficient computations in the complement of the common null space

We denote the projections of the matrices B, W and T onto the complement of the common null space, which is
spanned by the columns of (19), by B, W and T, respectively. We now show how we solve (4) in the complement of the
common null space. To facilitate computations we use the following simple lemma from linear algebra (Bai et al., 2000).

Lemma 3. Any generalized eigenvector c satisfying Yc = �(Y + Z)c for some eigenvalue � ∈ R satisfies Yc =
(�/(1 − �))Zc, where the corresponding eigenvalue is infinite if � = 1.

Hence with T = B + W, any eigenvector c with

Bc = �Tc (20)

satisfies

Bc = �Wc, (21)

where � = �/(1 − �). This means that the eigenvectors of (20) are the same as those of (21). As we need in FLDA only
the eigenvectors, we can solve (20) instead of (21), provided we select the eigenvectors correctly. Infinite eigenvalues
of (21) take the value 1 in (20) and finite eigenvalues change to eigenvalues that are smaller than 1.

Using (20) instead of (21) has been proposed among others in Cheng et al. (1992), and Hong and Yang (1991) in
order to modify Fisher’s criterion. We are here interested in two important implementational advantages which to our
knowledge the literature is not fully aware of. The first one is that T is nonsingular because it is the restriction of T to the
complement of its own null space. Hence (20) can be transformed to a standard eigenproblem. The second advantage
is that (20) takes a particularly simple form.

Lemma 4. The projection T of T to the complement of the common null space is the nonsingular diagonal matrix D1.
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Proof. Using (19), we have

T = ((XT − x̄1T
n)V1D−1/2

1 )TT((XT − x̄1T
n)V1D−1/2

1 )

= D−1/2
1 VT

1 (X − 1nx̄T)(XT − x̄1T
n)(X − 1nx̄T)(XT − x̄1T

n)V1D−1/2
1 .

From (18) we obtain (X − 1nx̄T)(XT − x̄1T
n)V1 = V1D1 and T simplifies to the diagonal matrix D1. �

Hence we do not need to compute T at all. For B, we have

B = ((XT − x̄1T
n)V1D−1/2

1 )TB((XT − x̄1T
n)V1D−1/2

1 ).

As in (14), we can write B as B = BT
1 B1 where

B1 = (GM − 1nx̄T)(XT − x̄1T
n)V1D−1/2

1 .

Thus (20) takes the form

(BT
1 B1 − �D1)c = 0. (22)

In our implementation we will transform (22) to the symmetric standard eigenproblem

(D−1/2
1 BT

1 B1D−1/2
1 )c∗ = �c∗, c = D−1/2

1 c∗. (23)

We emphasize that transformation to this standard eigenproblem is possible because we base our computations on (20)
instead of (21). Note that we are not interested in all q eigenpairs but only in the g − 1 leading ones.

The next and last step is solving the maximization problems (11) and (12) from Section 2.6 in the complement of
the common null space. In contrast with other implementations (see, e.g. Yang and Yang, 2003) we do not solve these
maximization problems separately but we extract all the needed vectors from (22). This makes the implementation
faster and simpler. As explained by Lemma 3, eigenvalues � = 1 for (20) are infinite eigenvalues � for (21). Hence the
corresponding eigenvectors lie in the null space of W and we will use them to solve the first part (11) of our criterion

max
c∈Rp, Wc=0

cTBc. (24)

The computed eigenvectors for � = 1 necessarily form a basis for this null space because of the following lemma.

Lemma 5. The null space of W has dimension at most g − 1.

Proof. Assume the dimension of the null space of W is larger than g − 1. Then there exists at least one vector v in this
null space with vTBv = 0 because the rank of B is at most g − 1. Hence v lies in the common null space, which is a
contradiction to the definition of the null space of W. �

To solve the maximization problem (24) correctly we need an orthogonal basis of the null space of W. Let us collect
computed eigenvectors for � = 1 in a matrix V2. Then we propose to compute the reduced QR-decomposition

V2 = QR,

i.e. Q is orthogonal and rectangular, R is upper triangular and square with dimension equal to the number of columns
of V2. This QR-decomposition is very cheap because V2 has few columns (namely, less than g). The columns of Q
form an orthogonal basis of the null space of W and we compute the eigenvectors c̃ of QTBT

1 B1Q. Then the (ordered)
vectors Qc̃ maximize cTBc subject to Wc = 0.

For the second part (12) of our criterion, we consider the remaining eigenvalues from (22). They satisfy � < 1 and
are finite eigenvalues � for (21). The corresponding eigenvectors lie in the complement of the null space of W and
maximize Fisher’s original criterion

cTBc

cTWc
. (25)

in the complement of the common null space.
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If we store first the vectors obtained from (24) and then those from (25) in a matrix C, we return to the ori-
ginal p-dimensional space by multiplying C with (X − 1nx̄T)TV1D−1/2

1 from (19) and thus obtain the final FLDA-
transformation vectors. The overall algorithm has the following form.

Algorithm 1. A fast algorithm to solve the FLDA-based criterion (11)–(12).

(1) Compute the spectral decomposition of (X − 1nx̄T)(XT − x̄1T
n); store the nonzero eigenvalues in the diagonal

matrix D1 and the corresponding eigenvectors in V1.
(2) Compute B1 = ((GM − 1nx̄T)(XT − x̄1T

n))V1D−1
1 .

(3) Compute the eigenvectors of the g − 1 largest eigenvalues of BT
1 B1 and multiply them with D−1/2

1 .
(4) If any, collect the eigenvectors for the eigenvalue 1 in V2 and

(a) compute the reduced QR-decomposition V2 = QR;
(b) compute the eigenvectors of QTD1/2

1 BT
1 B1D1/2

1 Q;
(c) multiply them with Q and substitute the eigenvectors for the eigenvalue 1 from step (3) with these vectors.

(5) Multiply the vectors obtained from step (3) and possibly step (4) with (XT − x̄1T
n)V1D−1/2

1 and normalize them.

3.4. Remarks on the algorithm

Here we address two more issues that may accelerate the overall algorithm: Clever multiplication of matrices and the
usage of so-called sparse methods to solve the eigenproblems. We consider here the possibilities offered by MATLAB
(MathWorks, Inc., 1984–2005). Sufficient experience with LAPACK (Anderson et al., 2000) and similar packages
to implement our algorithm seems unrealistic for the average statistician. On the other hand, the relatively simple
programming language of MATLAB has an advantage over the R-environment (R Development Core Team, 2005) that
is important in the context of FLDA-based classification: Working with sparse matrices is very well-integrated. Storage
of matrices in sparse format is possible without loading special packages and, more important, MATLAB contains
so-called sparse algorithms for eigenvalue computations with sparse matrices. Such algorithms are not yet available in
the R-environment.

MATLAB basically offers two functions to solve eigenproblems numerically: The command eig uses a so-called
direct method and eigs uses a sparse method. At the end of the computation, a direct method has found all eigenpairs,
but no eigenpairs are available during the process. Computational costs are of order m3 if m is the dimension of the
eigenproblem. Direct methods are backward stable, i.e. the computed pairs are exact eigenpairs for a different yet close
eigenproblem. Accuracy of an eigenvector is endangered only when the corresponding eigenvalue lies close to other
eigenvalues. Sparse methods, on the other hand, are advantageous if multiplication of vectors with the involved matrix
is inexpensive and if we need only a few eigenvalues and eigenvectors. They compute one eigenvalue at a time and
can be stopped after a predefined number of eigenpairs has been found. Computational costs depend on the sparsity of
the matrix and the number of eigenvalues that is needed. They are not backward stable and convergence of computed
eigenpairs to the wanted eigenpairs is not guaranteed.

In our algorithm we solve eigenproblems in steps (1), (3) and (4b). The first and third one need all eigenpairs,
hence we recommend to use the eig command to solve them. In step (3) we need the leading g − 1 eigenpairs of a
q-dimensional problem. If the dimension q of the common null space is clearly larger than g −1, using a sparse method
with eigs is in general much faster than using eig. In our implementation we used a sparse method in step (3).

To further reduce computational and storage costs we propose to perform the multiplications of p × n matrices in
Algorithm 1 as follows. In step (1) we recommend to directly form the sum XXT − Xx̄1T

n − 1nx̄TXT + ‖x̄‖21n1T
n . If

we would form the factor (X − 1nx̄T) we would create an additional p × n matrix to be stored; in our case we store
only matrices of dimension n. Because x̄ = XT1n/n we need to compute only X̃ ≡ XXT and the vector X̃1 ≡ X̃1n;
then the wanted sum is

X̃ − (X̃11T
n)/n − (1nX̃T

1 )/n + ‖x̄‖21n1T
n . (26)

It is easy to see that ‖x̄‖2 can be computed as 1T
nX̃1n divided by n2. Computational costs are dominated by the

computation of X̃. Although in general this computation involves 2n2p operations (Golub and van Loan, 1996), here it
may be significantly reduced because in many applications (protein fold prediction, text document classification, etc.)
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the sample matrix X has many zero entries. If we store it as a sparse matrix and the number of nonzero entries in row i
is denoted by nnzi , then forming the matrix vector product Xv for some vector v ∈ Rp costs 2

∑n
i=1 nnzi operations in

MATLAB. With nnz =∑n
i=1 nnzi the total costs of computing X̃ are 2nnzn at most and can be significantly less than

2n2p.
Similarly, it is important to compute B1 efficiently in step (2). Again, if we would form (X − 1nx̄T)TV1D−1/2

1 we
would create an additional p × n matrix to be stored. This is avoided by computing first the product

(GM − 1nx̄T)(XT − x̄1T
n) = GMXT − GMx̄1T

n − (1nX̃T
1 )/n + ‖x̄‖21n1T

n ,

which is a sum of n×n matrices. Note that the last two terms have been computed already in step (1) in (26). Moreover,
the group coding matrix G is always sparse and we can write M as M = D̃GTX with the diagonal matrix D̃ from (15).
With M1 ≡ D̃GTX̃ we have

(GM − 1nx̄T)(XT − x̄1T
n) = G(M1(I − 1n1T

n/n)) − (1nX̃T
1 )/n + ‖x̄‖21n1T

n .

Finally, we need in step (5) the product (XT − x̄1T
n)V1D−1/2

1 . For the same reasons as in step (2), it is best
computed as

XT

(
V1D−1/2

1 − 1n

(
1T
nV1D−1/2

1

n

))
.

All together, we see that we do not even need to store the rectangular factors of the covariance matrices. It suffices
to store X , X̃, X̃1 , G and M1.

3.5. Concluding remarks

We conclude this section with a brief summary of the influence on overall costs of the techniques discussed here. In
our algorithm, computational costs are dominated by the products with p × n matrices and the eigenproblem in step
(1). In general the products ask for O(pn2) operations. In many cases, however, the data matrix is sparse and the costs
will be of order O(nnzn), where nnz is the number of nonzero entries in X. The eigenproblem in step (1) needs O(n3)

operations. We have to store only one p × n matrix, namely X. The final FLDA-transformation vectors can be stored
in the first columns of X. Hence memory requirements are of order O(pn).

The methods from Section 2 can partially profit from our implementation strategies too. This would give the following
rough costs for the individual methods. Perturbation methods can take advantage of the structure of covariance matrices
and of a sparse method to find the g −1 largest eigenvalues. For dense sample matrices this gives a complexity of order
O(p2n); storage costs are of order O(p2). Methods exploiting the Moore–Penrose pseudo-inverse can be implemented
with elimination of the common null space, making usage of the special structure of covariance matrices and a sparse
method for the eigenproblem in the complement of the null space of W. This gives main computational costs of order
O(pn2) for a dense sample matrix and storage costs of order O(pn). We used the optimized implementation of the
LDA/GSVD method (Kim et al., 2005), with costs mentioned in Section 2.4. Finally, the null space method with taking
advantage of the structure of covariance matrices can be implemented with order O(p2n) computational costs and order
O(p(p − r)) storage costs (p − r is the dimension of the null space of W).

4. Experiments

4.1. Data description

In this section we test our algorithm on two data sets where the number of variables largely exceeds the sample size.
We compare it with the methods described in Section 2. All methods were implemented with the most advantageous
choice of strategies as described in Section 3.5.

The first data set is taken from the gene expression data studied in Tibshirani et al. (2002), available as Khan data
in the pamr package for the R-environment. It consists of n = 63 measurements of p = 2308 genes belonging to g = 4
groups. We divided the objects by choosing randomly from every group, one half as training and one half as test set.
This gave a training sample matrix of dimension 32 × 2308. For these data the sample matrix is dense.
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The MEDLINE data (see http://www.ncbi.nlm.nih.gov/PubMed) has been used several times, among others, in the
context of dimension reduction with the LDA/GSVD method (see, e.g. Howland et al., 2003; Kim et al., 2005). We
use here the same data as in Kim et al. (2005), which is available at http://www-users.cs.umn.edu/∼hpark/data.html.
It studies the classification of documents into five groups. All groups are represented homogenously, e.g. there are 500
documents of each group. After applying a preprocessing technique we obtain p =22 095 distinct terms as explanatory
variables. The corresponding object vectors have a large number of zero-entries and resulting sample matrices are
sparse. We use a training set and test set with the same number of examples n = 1250; the number of nonzeroes of the
1250 × 22 095 training sample matrix is 99 765.

Note that for both data sets the cited publications are freely available and give, among others, information on the
performance of non-LDA-based methods. Thus the performance of our generalization of FLDA to the high dimen-
sion/small sample size problem can be compared with other classification methods like shrunken centroids, support
vector machine, nearest neighbor methods, etc.

4.2. Results

We are here primarily interested in the costs of individual methods and in how successful they are in satisfying
Fisher’s criterion. We therefore compare overall time costs (measured at a server with 2 Dual Core AMD OpteronTM

Processor 275 at 2191 MHz with 10 179 288 kB of memory) and the obtained between- and within-group covariance
matrices. Secondarily, we add the rates of successful classification of the test data set. We used the classical and most
current classification based on assigning to the class of the nearest transformed class centroid in the L2-norm.

4.3. Gene expression data

Table 1 displays the timings of the methods we described in Section 2 and our method for the gene expression data.
In the perturbation method we perturbed with the matrix εI where ε = 10−5. MP denotes the method based on the
Moore–Penrose pseudo-inverse and GSVD the method from Section 2.4. In the Moore–Penrose method there was
a clear gap between nonzero singular values and singular values zero to machine precision, hence the choice of a
truncation parameter was trivial. Alg1 denotes our algorithm implemented as described in Section 3.4.

As we have here p=2308?n=63, the acceleration with restriction to the q-dimensional complement of the common
null space (q < n) is remarkable. The perturbation and null space methods are slow because they do not allow such a
restriction. In the first case we compute g − 1 = 3 leading p-dimensional eigenvectors, in the second case we need at
least p − n eigenvectors to span the null space of W. This explains the inferior performance of the latter method.

In Tables 2 and 3 we show the traces of between- and within-group covariance matrices from the individual methods.
The null space of W has dimension larger than 3. Hence all methods find LDA-transformation vectors in this null
space, except for the Moore–Penrose method which is defined on the complement of the null space. As for the traces
of the between-group covariance matrices, we see that the criterion (11) is fully satisfied only by the perturbation and

Table 1
Gene expression data: overall computational time (in seconds) for the methods from Section 2 and our algorithm

Perturbation MP GSVD Null space Alg1

2.9 0.025 0.024 8.6 0.024

Table 2
Gene expression data: traces of between-group covariance matrices (cTBc) achieved by the methods of Section 2 and our algorithm with growing
number of transformation vectors (dimension)

Dimension Perturbation MP GSVD Null space Alg1

1 794 183 602 794 794
2 1405 331 1148 1405 1405
3 1829 391 1715 1829 1829
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Table 3
Gene expression data: traces of within-group covariance matrices (cTWc) achieved by the methods of Section 2 and our algorithm with growing
number of transformation vectors (dimension)

Dimension Perturbation MP GSVD Null space Alg1

1 0 15 0 0 0
2 0 32 0 0 0
3 0 43 0 0 0

Table 4
Gene expression data: successful classification rates with L2-norm similarity

Dimension Perturbation (%) MP (%) GSVD (%) Null space (%) Alg1 (%)

1 74.2 51.6 51.6 74.2 74.2
2 93.6 77.4 96.8 93.6 93.6
3 96.8 83.9 96.8 96.8 96.8

null space methods and our method. The Moore–Penrose method particularly clearly fails to maximize between-group
variance. In the LDA/GSVD method the failure is much less pronounced.

Table 4 displays the successful classification rates obtained with the individual methods. They correspond more or
less to the relation between the traces of Tables 2 and 3. This shows that Fisher’s idea to minimize within-group variance
and maximize between-group variance makes sense for classifying these data.

4.4. Medline data

The dimensions for the Medline data are much larger than for the previous data as here p = 22 095 and n = 1250.
This allows us to demonstrate the benefits of our implementation compared with other fast methods that eliminate
the common null space. However, we were not able to execute the perturbation and null space methods: With about
O(p2) storage costs we ran out of memory. For the remaining methods the overall costs, expressed by their tim-
ings, are displayed in Table 5. The table also addresses implementations of our algorithm which do not make use of
the acceleration techniques from Section 3.4. The third column contains the timing for our algorithm with a direct
method for the eigenproblem in step (3) and the fourth column with the product of step (2) formed as B1 = (GM −
1nx̄T)((XT−x̄1T

n)V1D−1
1 ). Clearly, the contribution from the issues from Section 3.4 to the high speed of our algorithm is

considerable.
To explain the relatively high costs of the LDA/GSVD method we must realize that the sample matrix X is in this

problem sparse. The LDA/GSVD method cannot profit from the sparsity; it needs the full orthogonal matrix Q of a
QR-decomposition (Kim et al., 2005), giving computational costs of order O(pn2). The other two methods project
onto the complement of the common null space and exploit the sparsity of X which yields main computational costs
of order nnzn where nnz = 99 765, see Section 3.4. The Moore–Penrose method is slower because it needs a full
spectral decomposition of W in the complement of the common null space, which has dimension q = 1245 for the
given data.

The performance of the methods concerning approximation of Fisher’s criteria can be taken from Tables 6 and 7.
By definition, the Moore–Penrose method does not look for eigenvectors in the null space of W. This prevents the
method from maximizing between-group variance in this example. The two other methods, on the contrary, first detect
the two-dimensional null space and then proceed to its complement. The main difference between LDA/GSVD and
our algorithm can be observed in Table 6: In the first dimension the value of cTBc is maximized only by our algorithm
whereas LDA/GSVD takes “any” proper vector from the null space without taking into account cTBc. However, at
the second dimension (after adding the last vector from the null space of W) the trace of cTBc has been corrected.
Table 8 displays the successful classification rates for the considered methods.
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Table 5
Medline data: overall computational time (in seconds) for the Moore–Penrose method (MP), the LDA/GSVD method (GSVD) and three variants of
our algorithm

MP GSVD Alg1, direct method Alg1, slow product Alg1

81 150.5 60.5 71.5 33

Table 6
Medline data: traces of between-group covariance matrices (cTBc) achieved by the Moore–Penrose method (MP), the LDA/GSVD method (GSVD)
and our algorithm with growing number of transformation vectors (dimension)

Dimension MP GSVD Alg1

1 0.58 0.53 0.74
2 0.66 0.91 0.91
3 0.70 1.08 1.08
4 0.78 1.12 1.12

Table 7
Medline data: traces of within-group covariance matrices (cTWc) achieved by the Moore–Penrose method (MP), the LDA/GSVD method (GSVD)
and our algorithm with growing number of transformation vectors (dimension)

Dimension MP GSVD Alg1

1 4.72e − 06 0 0
2 1.07e − 05 0 0
3 4.13e − 04 4.72e − 06 4.72e − 06
4 7.61e − 04 1.06e − 05 1.06e − 05

Table 8
Medline data: successful classification rates with L2-norm similarity

Dimension MP (%) GSVD (%) Alg1 (%)

1 51.0 31.9 48.5
2 50.2 54.6 55.0
3 63.4 74.6 74.6
4 86.7 87.5 87.5

5. Conclusions

We studied implementation of an FLDA-based classification method for the high dimension/small sample size case.
We showed and confirmed with experiments that this method is closer to original FLDA than other popular FLDA-based
methods. We optimized its implementation with regard to computational and storage costs using many tools, among
others elimination of the common null space and sparse numerical algorithms. The resulting algorithm is prepared to be
applied to very high dimensional data. It is especially fast with a sparse sample matrix. We demonstrated on examples
the accelerating effect of the tools we used and we showed our implementation is faster than that of other reference
methods. If the sample matrix is dense, feasibility of our algorithm depends on whether it can cope with multiplication
of full p × n matrices with each other. For sample matrices that are sparse enough, the only bottleneck is the solution
of a symmetric n × n eigenproblem.
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