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Preface

The proposed thesis presents selected results of the author’s research in the
area of similarity retrieval using feature signatures and adaptive distance
measures. The research has been carried out at the Faculty of Mathematics
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within the Siret Research Group (SRG)! lead by Associate Professor RNDr.
Tomés Skopal, Ph.D.

The results are presented as a collection of six selected papers [47, 53, 59,
86, 37, 49], where all of them focus on specific subproblems related to efficient
retrieval using models based on feature signatures. The papers are presented
in separate chapters (2-7) in their camera-ready forms (of the Lecture Notes
in Computer Science, the Information Systems journal, IEEE Transactions
on Knowledge and Data Engineering journal, and the Distributed and Par-
allel Databases journal), whereas the unifying commentary is provided in
Chapter 1. Prior to summarizing the papers, the commentary provides a
motivation, introduces the problematic and briefly surveys related state-of-
the-art results. We conclude and outline directions of our current and future
research in Chapter 8.

The research included in the selected papers has been supported by sev-
eral grants, namely GACR P202/11/0968, GACR P202/12/P297, GACR
201/09/0683 and GAUK 910913.

Prague, October 2015
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thttp:/ /siret.ms.mff.cuni.cz

vil



viii



Chapter 1

Commentary

1.1 Introduction

The volume, complexity and diversity of digital data that can be automati-
cally collected by devices measuring various physical effects (like sound, light,
temperature, preasure, etc.) increase every year with new advancements of
sensoring and recording technologies. The devices can work non-stop creat-
ing huge repositories of data collected with a specified recording precision,
providing a detailed record for an observed event. Especially, the volume of
the multimedia data like images and videos continuously grows exponentially
forming a significant part of the digital universe, where the overall volume
of the digital universe is reported to grow to 40,000 exabytes in 2020 [31].
The reason is that the multimedia data can be simply recorded and uploaded
online by billions of users. Furthermore, also various industrial [8] or medical
[50] projects start to include the data into their standard processes and work-
flows. However, the format of the collected multimedia data is quite simple,
without any structure or semantic information, where the storage format is
usually adapted just for displaying devices or limited storage capacity (e.g.,
JPEG compressed matrix of RGB pixels). Thus, the data comprising poten-
tially a lot of useful but hidden information represents a true challenge for
multimedia retrieval.

In order to design a successful multimedia retrieval system, the system
architects have to address two orthogonal directions — effectiveness and ef-
ficiency. The effectiveness, corresponding to the precision of the retrieval,
is probably the most crucial property of each retrieval system, because it



guarantees users a minimal level of relevancy of the results. The efficiency,
representing the speed of query evaluation, is gaining in importance with the
increasing size of the collections where sequential query evaluation can be
too time consuming. In cases when it is impossible to design a sufficiently
efficient solution, the systems often switch to approximate retrieval that can
trade the effectiveness for efficiency. However, such trade-off is possible only
if the effectiveness is not the most crucial part of the system.

Beside the classical trade-off between effectiveness and efficiency, the sys-
tems often rely on simple and intuitive query interfaces in order to let users
to conveniently query and browse a multimedia database. Some systems go
even further considering the entertainment of the retrieval, where the sys-
tems assume that some classes of users could spend more time on searching if
the retrieval process is entertaining. Especially novel devices equipped with
limited displays and control interfaces call for systems with simple, intuitive
and entertaining novel interfaces.

In the following sections, we present two general approaches that have
been successfully applied in the multimedia retrieval area during last decades.

1.1.1 Metadata-based retrieval

A popular option to search the multimedia data is by making use of meta-
data that can be associated with specific multimedia objects and thus the
retrieval can be accomplished by searching in the metadata files. Usually,
the metadata consist of keywords representing names or properties of po-
tentially searched items, and/or the metadata can form a hierarchical/graph
structure where data objects are linked to reference/relevant objects. The
most straightforward way to create such metadata is to employ users (or
domain experts in cases a deep domain knowledge is required) and let the
users to annotate the data. However, such approach is not always feasible.
Especially for immense collections and non-trivial annotation tasks a large
crowd of experienced annotators is necessary. On the other hand, for simple
annotation tasks (e.g., marking objects on photographs) there are already
well-established web portals considering crowdsourcing as a powerful way to
annotate data (e.g., the Amazon Mechanical Turk [77]). It has been also
shown, that the power of the crowd can help experts to be more effective and
efficient [28]. Furthermore, there are emerging specialized social networks
that can connect a large number of experts, allowing them to annotate and
discuss data related to their domain/expertise [88]. As a side effect, a lot of
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metadata can be extracted from such social networks, enabling various forms
of retrieval in the underlying multimedia data.

The World Wide Web, as one of the most general “social networks”,
is already effectively mined for automatic annotations of multimedia data
appearing on web pages. Google!, Bing?, Yahoo? and other titans of the
Internet searching have demonstrated that associating specific keywords from
the surrounding text with the multimedia data can be used for effective and
efficient retrieval (without analyzing the content of the data). As the most
popular search portals have millions of users, the portals also analyze the
behavior of the crowds during searching and use all the collected information
to improve the rankings of the results. Although this approach seems to be
promising for mainstream retrieval tasks where many users share the same
search intents over general datasets, for domain-specific data without any
preliminary annotations, with security restrictions, and without armies of
authorized experts searching the data every day, this general search-engine-
based approach cannot be employed.

1.1.2 Content-based retrieval

As an alternative to metadata-based retrieval approaches, content-based re-
trieval approaches try to analyze, understand and utilize raw contents of the
multimedia data for effective retrieval [25]. Since raw contents of the data
comprise just simple low level features (e.g., pixels), feature extraction tech-
niques are often employed to represent data in the form of so-called descrip-
tors that are more convenient for content-based multimedia retrieval. The
descriptors can be created for specific retrieval tasks using different types of
features present in raw data. For example, different descriptors are required
to search for images with similar global distribution of colors and texture, im-
ages containing objects of the same class (e.g., images of all dogs), paintings
of the same author (searching for a painting style), or medical images repre-
senting the same diagnosis. The descriptors for such tasks can be designed
manually by domain experts or learned from training data.

Given a suitable descriptor for a particular retrieval task, a multimedia
retrieval system has to provide a friendly and intuitive query formulation in-
terface. Many recent systems employ the query-by-example paradigm, where

Lwww.google.com
2www.bing.com
3www.yahoo.com



users provide a query object to enter their search intents. The systems trans-
form the query object into the descriptor which is employed in the retrieval
process. Since searched objects are usually represented by descriptors that
more or less differ from the query descriptor, similarity search using an ef-
fective similarity model is preferred.

The similarity model is defined as a pair (U, o), where U represents an
object descriptor universe and o represents a similarity measure o : Ux U —
R, assigning a numerical similarity value to each pair of descriptors. The
descriptor universe is usually determined by a feature extraction function
that extracts representative features from multimedia objects to a feature
space I and aggregates them. The similarity function is often modeled as a
distance function § : U x U — Ry, where the lower the distance between two
descriptors, the higher their similarity, and vice versa. The distance function
is used to rank and sort all database objects according to a query object
q € U, where the top ranked objects (i.e., objects o; € U with the lowest
distance to q) are usually returned as the answer of a similarity query*.

There are several sources, where users can take a query object repre-
senting their search intents. In hybrid systems combining metadata-based
and content-based retrieval, the query object can be obtained using previous
keyword-based search. The query object can be also painted as a sketch, or
uploaded by a user from his/her camera. In some retrieval scenarios, the
query object does not have to necessarily represent a clear search intents of
a user. For example, in multimedia exploration [11] users can just browse
and investigate an unknown data collection without any form of annotation.
In such scenarios, the query object can represent just a mediator (or link) to
quickly browse to another view of the data. In specific retrieval tasks, the
query can be formulated directly using descriptor features. Especially de-
scriptors that are designed as sets of features with clear semantics for users
can be used to formulate query sketches. For example, users may specify sim-
ple color regions in a key-frame sketch to search for key-frames (or a sequence
of key-frames) represented by position-color feature signatures [54, 18, 17].

The success of the similarity search approach in a multimedia retrieval
system depends on many factors, where the effectiveness of the employed
similarity model plays one of the most crucial roles. Despite subjectivity of

4Given dataset S C U, a query object ¢ € U and 7, € Rg, k € N, two frequently used
similarity queries are the range query R(q,rq) = {0 € S;d(q,0) < r,} and the k nearest
neighbor query kNN (q) = {XCS;|X|=kAVz e Xy e S—X: (g, x) <d(q,9)}

4



similarity perception, the effectiveness of a similarity model is often evaluated
automatically using ground-truth datasets (e.g., [67, 76, 26]) representing
specific retrieval tasks. Given a ground-truth dataset, the effectiveness of
a similarity model can be evaluated by various performance indicators, for
example, precision recall curve, top-k precision or mean average precision.
Such indicators are often used to compare the effectiveness of two different
similarity models on a particular ground truth dataset.

1.1.3 Thesis objectives

In this thesis, we investigate traditional approaches that model contents of
multimedia data using manually designed descriptors representing distribu-
tions of selected features and where the similarity between two multimedia
objects is modeled as a distance function on the distributions. The feature
distributions are usually aggregated into feature histograms with predefined
fixed bins. In this work, we focus on models based on more general feature sig-
natures that can flexibly represent contents of modeled multimedia objects,
depending on the complexity and specific contents of the objects. How-
ever, the flexibility comes at the cost of more expensive feature extraction
and similarity evaluation, compared to models based on feature histograms.
Therefore, the main objective of our work was to investigate and design novel
efficient approaches for models based on feature signatures. During last five
years, we have investigated methods for efficient extraction of feature sig-
natures and efficient similarity search algorithms using expensive adaptive
distance measures. The thesis is based on our 20 conference/journal papers
focusing on effective, efficient or entertaining retrieval using models based
on feature signatures, where four selected journal papers and two conference
papers form chapters of this thesis. Although we have primarily focused
on efficient multimedia retrieval using feature signatures, we have preferred
the design of more general methods that can be applied with other similar-
ity models. For example, for efficient query processing we have focused on
new metric indexing approaches [86, 59] that can be used for arbitrary de-
scriptors and metric distances. We have presented novel ptolemaic indexing
approaches [37] that can be used for models employing popular Quadratic
Form or Euclidean distance. We have investigated parallel processing using
many-core CPU and multi-core GPU platforms for efficient metric filtering
[49] and feature extraction based on k-means clustering [48]. We have also
investigated applications for models based on feature signatures — multime-



dia exploration [55, 57] and video retrieval [54, 18, 17]. Especially in the
video exploration and browsing area [81], we have demonstrated that feature
signatures can significantly enhance the performance of the state-of-the-art
approaches®.

1.2 Models based on feature signatures

Multimedia objects consist of elements with various features. For example, a
chromatic image consists of pixels, where each pixel contains position coordi-
nates, color information or more complex features based on texture/gradient
statistics from the neighborhood of the pixel. Considering traditional ap-
proaches to design object descriptors, a suitable set of features is usually
manually selected to form so-called feature space F for a particular retrieval
task. Given a suitable feature space, the elements of a multimedia object o
can be mapped and aggregated in the feature space, forming a feature signa-
ture function f°:F — RY. Generally, the feature signature function assigns
importance (in the form of weights w; € R{) to representatives r; € F to
model the contents of an object. Note that one object can be represented
by various feature signature functions, depending on feature sampling and
aggregation strategies. The concept of feature signatures is used in many
areas of multimedia retrieval under different terminology. In this text, the
terminology from works of Rubner et al. [78] and Beecks [7] is used.

The set of representatives with non-zero weights is usually restricted to
be finite. The following definition represents a compact form of feature sig-
natures where only representatives with non-zero weights are considered.

Definition 1 (Feature Signature) Given a feature space F, the feature
signature S° of a multimedia object o is defined as a finite set of tuples
{(r¢, w)}r_, from F x RT, consisting of representatives r{ € F and weights
wf € RY

The feature signatures enable modeling of multimedia objects using object-
specific representatives, resulting in a flexible representation of the contents
of the objects. However, the flexibility of the representation comes at the
cost of more complex feature extraction and similarity modeling. Therefore,

5Qur signature-based video browsing tool has won the Video Browser Showdown com-
petition (www.videobrowsershowdown.org) in 2014 and 2015.
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the multimedia objects are often modeled using a finite set of shared rep-
resentatives X C T obtained for a particular database in a preprocessing
phase. Given a set of shared representatives, each modeled object can be
aggregated into a fixed-length vector (histogram), where each vector bin ag-
gregates features aligned to one shared representative. Such representation
enables efficient similarity evaluation using cheap bin-to-bin distance mea-
sures, because the vectors representing objects have the same length and
corresponding bins have the same semantics.

Definition 2 (Feature Histogram) Given a feature space F and an or-
dered set of n shared representatives {r;}?_, = X C F, the feature histogram
h° of a multimedia object o is defined as a vector {w¢}_,, consisting of
weights w¢ € Ry, where each weight w¢ corresponds to one shared represen-
tative r;.

Both feature signatures and feature histograms represent a special case
of a general mapping f : F — R{. Furthermore, if the union of all represen-
tatives from all feature signatures for a given dataset is used as the shared
set of representatives, then the feature signatures can be represented as high-
dimensional sparse feature histograms. Contrary, sparse feature histograms
with zero bins can be represented in a compact form as feature signatures.
However, data representations, feature extraction approaches and similarity
measures for these two types of descriptors usually differ (see following sec-
tions). So which descriptor is a better choice? Generally, the number of
required shared representatives and the knowledge of the database matters.
If a small set of shared representatives is sufficient to create discriminative
descriptors for all database objects, then feature histograms are the preferred
efficient choice. If the number of shared representatives has to be too large
to fit the minimal level of necessary details in all database objects or the
dataset is dynamically changing over time, then the feature signatures can
be used to flexibly represent the contents of the objects using object specific
representatives.

The difference between feature histograms and feature signatures gets
remarkable in high-dimensional feature spaces. In Figure 1.1, there are
depicted three ways to represent an image using 7-dimensional position-
color-texture feature space — a feature signature (Figure 1.1a), compared to
feature histograms based on 10000 and 1000 shared representatives (Figure
1.1bc). Whereas feature signatures employing object-specific representatives
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a)

Figure 1.1: An image represented using position-color-texture feature space
and a) feature signature, compared to feature histograms based on b) 10000
and c¢) 1000 shared representatives (only representatives with a non-zero
weight are displayed).

can flexibly aggregate the contents of the original image, the expressiveness
of feature histograms can suffer from the usage of shared representatives, es-
pecially for unique images in the database. In Figure 1.1b, the expressiveness
of the feature histogram is improved at the cost of the high number of shared
representatives, while in Figure 1.1c, the original image contents is almost
lost when aggregated using the small number of shared representatives not
corresponding to the modeled image. For more details about models based
on feature signatures we refer readers to [78, 7).

1.2.1 Feature extraction

In order to create an object descriptor, a suitable feature extraction func-
tion aggregating extracted features has to be utilized. In the following, we
present just a basic introduction and terminology used by traditional feature
extraction approaches. For more advanced feature extraction techniques like
feature selection [34], feature learning [42] or novel deep learning techniques
[16, 45, 89], we refer readers to the corresponding literature.

When designing a feature extraction function, first a suitable feature space
has to be selected with respect to a particular retrieval task [27, 65]. For ex-
ample, when searching for color-specific images, the feature space could be
based on chromatic information obtained from pixels. If the color is not char-
acteristic for searched images, the feature space often considers other features
like texture [90], edges, shapes, pixel masks or complex summarizations of
gradient distributions around a selected set of salient points [62]. The feature

8



a)

Figure 1.2: Two dimensional feature space partitioning based on uniformly
distributed representatives a, b) and representatives corresponding to a
nonuniform data distribution c).

space can be also a composition of heterogeneous properties, for example, a
feature space modeling joint distribution of color and texture [21].

Given a suitable feature space, a set of descriptive representatives X C
F has to be selected for a modeled multimedia object. In case of feature
signatures, the set of representatives has to be detected for each multimedia
object separately, while in case of feature histograms the set of representatives
is obtained for a particular database in a preprocessing phase. Having the set
of representatives, a feature extraction function maps elements from modeled
multimedia objects to features f? € F° C F and aggregates them®. In order
to align and aggregate the extracted features to representatives r; € X, the
feature space is usually partitioned to subsets .S;. Such partitioning is denoted
as feature space dictionary. For example, each subset S; can be defined as a
Voronoi cell, considering seeds r; and a total feature space distance function
F x F — R}. Several feature space dictionaries employing different sets
of representatives and Euclidean distance are depicted in Figure 1.2. The
partitions can also overlap, which leads to a soft assignment coding [51].

Using the feature space dictionary over feature space [F, the extracted
features F° C F of multimedia object o are assigned to representatives r;,
where weight w; € R corresponds to |S; N F°|. In each object descriptor,
the weights are often normalized such that their sum is equal to one.

In the following two sections, similarity models based on feature his-
tograms and feature signatures are described in more detail.

SNote that the aggregation is meaningful only if the new aggregated features are still
discriminative.



1.2.2 Feature histograms

In order to extract a feature histogram for a multimedia object, a proper
shared feature space dictionary has to be selected or created. If a repre-
sentative subset of a multimedia database is available, the shared feature
space dictionary can be precomputed from features from the objects in a
preprocessing phase using a clustering technique (e.g., k-means). However,
for unknown or dynamically changing databases the feature histogram ex-
traction function can result in non-discriminative feature histograms. In such
cases, a domain knowledge is necessary to prepare a suitable shared feature
space dictionary, or object-specific dictionary has to be employed (see the
next section).

During last decades, there have been designed and even standardized
many types of similarity models based on feature histograms over various
feature spaces (e.g., the MPEG-7 standard [20, 66]). The similarity models
use either a linear combination of feature histograms modeling each feature
independently, or use a feature space dictionary corresponding to a joint dis-
tribution of features. The feature space dictionary is often used in computer
vision area to aggregate features in high-dimensional feature spaces (e.g.,
SIFT [62] or SURF [6] providing more descriptive local features for advanced
retrieval tasks like object detection or image registration). In the computer
vision area, the representation using the feature space dictionary is known
as bag of features model [83]. The bag of features model enables efficient
retrieval using inverted files, a well established technique in the text-based
retrieval area [100]. In the bag of features model, the precomputed fea-
ture space dictionary is called codebook, and the representatives are called
codewords. In the model, each multimedia object is represented as a fre-
quency histogram of codewords present in the object, where all the objects
in the database share one codebook. Whereas the efficiency of the bag of
features model is sufficient for large scale multimedia retrieval, the practical
effectiveness of the model is limited by the shared feature space dictionary.
Therefore, the bag of features model has been improved using more advanced
techniques like re-ranking using spatial information [76], semantic preserv-
ing models [97], Hamming embedding [40], compressed Fisher vectors [75] or
vectors of locally aggregated features [41]. We may observe that the general
trend is to use the bag of features model just for a preliminary filtering, while
more effective representations are considered for re-ranking of the results.

Given multimedia objects represented by feature histograms, a suitable
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distance measure has to be utilized to rank the similarity between each pair of
the objects. The distances utilize either a simple bin-to-bin matching strat-
egy or more complex bin-to-many-bins matching strategies considering also
perceptual relations between bins of a homogeneous domain. As probably
the most popular distance measures, Minkowski metrics

d

1

Ly(z,y) = (Z |z — uil”)7,
i=1

are the frequently used class of cheap bin-to-bin distances for d-dimensional
vectors z,y, given p € R,p > 1. The Minkowski metrics can perform well
as long as features from similar multimedia objects are aggregated to the
same histogram bins. However, if the features are aggregated among several
neighboring cells of the shared feature space dictionary, it may turn out that
two similar objects can have dissimilar feature histograms considering just
bin-to-bin distances. In such situations, the quadratic form distance

QFDa(z,y) = /(z — y)Alz — y)T,

using a d X d positive-definite correlation matrix A is employed to straighten
the ambiguity of the feature extraction process on homogeneous domains [35].
If the quadratic form distance is utilized just to model fixed correlations be-
tween the histogram bins (i.e., matrix A is fixed), the costly retrieval model
employing quadratic form distance can be transformed to an equivalent but
much cheaper retrieval model employing the euclidean distance [85]. The
quadratic form distance can be also used to model user preferences changing
over time [39], however, such a dynamic model can be efficiently indexed
just using spatial access methods [80] that can partition the descriptor space
independently of a distance measure. Another approach to model similarity
between two normalized feature histograms with correlated bins is the Earth
Mover’s Distance [79] that interprets the similarity as a transportation prob-
lem.

In the following section, we discuss models based on feature signatures
that adaptively represent contents of the multimedia objects. As demon-
strated in [9], models based on feature signatures can be an effective alter-
native to the bag of visual words approaches, especially in several retrieval
tasks.
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1.2.3 Feature signatures

Unlike feature histograms represented by simple vectors referring to a shared
feature space dictionary, each feature signature has its own object-specific
feature space dictionary enabling more flexible representation. On the other
hand, the object specific dictionary becomes the part of the descriptor and
the dictionary has to be determined for each multimedia object separately.

The feature signatures for a given feature space can be obtained using
various feature extraction techniques. For example, a position-color feature
signature for an image can be created using an image resize operation (a
convolution operation, respectively). In such case, each representative with a
constant weight corresponds to one pixel of the small image thumbnail, where
the resolution of the thumbnail has to be fixed in advance (see Figure 1.3c).
Another approach to extract a feature signature is the adaptive k-means
clustering of (sampled) pixels from an image (see Figure 1.3ab). Although the
adaptive k-means clustering can adaptively fit to the content of the image, the
clustering is costly operation and thus an efficient parallel implementation of
feature signature extraction is necessary for huge multimedia collections. Our
technique enabling extraction of thousands of position-color-texture feature
signatures per second is presented in Chapter 2.

0000000
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—

Figure 1.3: Examples of feature signature extraction techniques of an image —
a, b) two position-color-texture feature signatures obtained by two variants
of adaptive k-means clustering of the same set of sampled points and c)
position-color feature signature obtained by image resize operation.

In order to define a similarity model based on feature signatures, distance
measures capable to compare two feature signatures with different number
of representatives have to be employed. Such distances are denoted as adap-
tive distance measures. Let us note that since two feature signatures do not
(have to) share the same set of feature space representatives, the adaptive

12



distances have to consider all pairwise distances between all the representa-
tives, resulting in at least quadratic time complexity of similarity evaluation.
During last decades, there have been designed several adaptive distance mea-
sures like Hausdorff Distance [38], Earth Mover’s Distance [79], Perceptually
Modified Hausdorff Distance [73], Signature Quadratic Form Distance [14],
or recently introduced Signature Matching Distance [9], and there have been
also evaluated several studies comparing the distances [12, 9].

In our work, we have mainly focused on distance spaces based on the
Signature Quadratic Form Distance, because the distance spaces are effective
and also enable efficient indexing. The Signature Quadratic Form Distance
is defined as follows:

Definition 3 (Signature Quadratic Form Distance) Given two feature
signatures S° = {(r?,wi)}, and S? = {(r’, W)}, and a similarity func-
tion fs : FxF — R over a feature space F, the signature quadratic form
distance SQFD . between S° and SP is defined as:

SQFD,, (5%, 87) = \/ (wo | —w,) - Ay, - (w, | —uw,)7"

where Ay, € R m)x(ntm) s the similarity matriz arising from applying
the similarity function fs to the corresponding feature representatives, i.e.,
ai; = fs(ri,rj). Furthermore, w, = (w{,...,w?) and w, = (w},...,wk)
form weight vectors, and (w, | —w,) = (wf,...,wl, —wy,...,—wh) denotes

the concatenation of weight vectors w, and —w,.

To determine similarity values between all pairs of representatives from
the feature signatures, the Gaussian similarity function fyquss(ri, 7;) = e—ali(rir;)
or the Heuristic similarity function freuristic(7:,7;) = 1/(+ La(r;, 7;)) can be
utilized, where « is a parameter for controlling the precision, and Lo denotes
the Euclidean distance.

The Signature Quadratic Form Distance has not only proved to be an
effective distance measure, but also a distance suitable for efficient retrieval.
Although the distance has quadratic time complexity, the distance satisfies
metric/ptolemaic postulates necessary for efficient metric/ptolemaic indexing
[37]. Furthermore, the a parameter of the distance affects not only effective-
ness, but also the intrinsic dimensionality property’ of the corresponding

"The intrinsic dimensionality is a crucial property for efficiency of the metric/ptolemaic
indexing, for more details see Section 1.3.
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distance space [10]. Last but not least, we have also demonstrated that Sig-
nature Quadratic Form Distance represents a suitable task for GPU devices
46].

1.2.4 Discussion

The models based on feature signatures and feature histograms represent
traditional approaches with manually modeled descriptors. Although the re-
cent developments in machine learning seem to outperform the traditional
approaches in many classification tasks (e.g., image classification using con-
volutional neural networks in connection with deep learning [45]), we believe
that the traditional approaches can still find many applications. In the fol-
lowing, we present several arguments supporting models based on feature
signatures:

e The feature signatures in connection with adaptive distance measures
constitute a strong formal framework [78, 7], yet simple enough to
prove many properties analytically. The framework supports both flex-
ible representation of multimedia objects and also nontrivial perceptual
similarity measures. Compared to histogram-based approaches, the
framework has also demonstrated its effectiveness in several retrieval
tasks [60, 9, 30]. Recently, feature signatures have been employed also
for effective content-based near-duplicate video detection [92].

e The feature signatures can be used in combination with other retrieval
models [55, 60] as an alternative retrieval model or for re-ranking of the
results returned by a primary retrieval model. For example, images of
the same class returned by an effective model based on convolutional
neural networks (e.g., [45]) could be rearranged using a model based
on feature signatures that could distinguish minor differences between
the images.

e The feature signatures are intuitive enough to be used for simple sketch
based retrieval [54, 18] or multimedia exploration. For example, using
position-color feature signatures, users can utilize just a color distri-
bution of an image to control browsing of an unknown database [55].
More specifically, a user can select an actually displayed image of a
sunset to find an image of a fireplace representing different concept but
having similar feature signature.
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e The feature signatures can flexibly represent contents of multimedia
objects. Especially, in cases when a representative part of the database
cannot be analyzed beforehand to design a database-specific similar-
ity model, the feature signatures can be employed to design at least
descriptive object representations independent on the database.

e The feature signatures can be utilized for low resolution images often
comprising only limited number of features. An effective model for
small thumbnail images can be useful from both performance (faster
feature extraction and data transfers) and privacy issues (only low-
resolution images can be available, similarity search can be performed
in a cloud environment [44]).

However, the applicability of the models based on feature signatures is
still limited by at least quadratic time complexity of involved similarity mea-
sures and thus the main focus of our work was to find efficient retrieval
techniques for such models. Nevertheless, recent advancements presented in
the following section demonstrate that models based on feature signatures
could be utilized also in large-scale multimedia retrieval systems.
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1.3 Efficient retrieval using feature signatures

Given a similarity model (U, ) based on feature signatures and a similarity
search task defined by a query object ¢ € U and a query constraint ¢, there
can be utilized several orthogonal approaches to process such task more effi-
ciently than just simple sequential search using the original expensive model.
The approaches differ in assumptions about the similarity model and the
database, whether the model is static or dynamic (i.e., descriptors and the
distance can be changed), and whether the database is static or dynamic.
Also the number of query objects affects the choice of the optimal solution.
Despite their differences, most of the techniques share one principle for ef-
ficient filtering of non-relevant objects — lower-bounding principle, where a
lower-bound distance LB(6(q,0)) < §(q, 0) between a query object ¢ € U and
a database object o € U is expected to be much cheaper than the original
distance (g, 0). Using the lower-bound distance, the query can be processed
using a filter and refine approach, where the original distance is evaluated
only on a fraction of the database. The lower-bound distance can be approx-
imated, determined for a specific domains rigorously or determined using
general properties of the distance measure (e.g., metric/ptolemaic proper-
ties).

1.3.1 Distance-specific approaches

During the last decade, there have been presented many attempts to find
rigorously efficient lower-bound distances for various adaptive distance mea-
sures. However, many of the methods are usually restricted to feature his-
tograms or the lower-bound is not too tight.

For example, a simple and not too tight lower-bound for the Earth Mover’s
Distance is the Rubner filter [79] that evaluates the ground distance be-
tween mean centroids of two compared feature signatures S°, S?. The Rub-
ner filter holds only if the sum of weights is the same for both feature
signatures, otherwise, it becomes an approximate method. In [3, 4], the
authors have presented novel dimensionality reduction techniques for the
Earth Mover’s Distance in a two-step filter-and-refine architecture for effi-
cient exact search. However, the authors assume feature histograms and
metric ground distances. In [96], the authors utilized a dimensionality re-
duction technique to improve the time of Earth Mover’s Distance evaluation
and proved that Earth Mover’s Distance evaluated in a low-dimensional sub-
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space lower-bounds the Earth Mover’s Distance in the original space. Again,
the technique is restricted just to feature histograms. In [82], the authors
presented a linear-time algorithm for approximating the Earth Mover’s Dis-
tance for low-dimensional histograms using the sum of absolute values of
the weighted wavelet coefficients of the difference histogram. Recently, a
new lower-bound called Independent Minimization for Signatures [95, 94] has
been presented for more efficient retrieval using the Earth Mover’s Distance.

There have been also attempts to find cheap distances approximating the
Signature Quadratic Form Distance. In [15], the authors have demonstrated
that if similarity function fr,(r;,7;) = —L3(rs,7;)/2 is utilized, then the
Signature Quadratic Form Distance becomes Lo-Signature Quadratic Form
Distance suffering from worse effectiveness but computable in linear time.
In [13], the authors proposed a simple feature signature reduction technique
based on removal of tuples with small weights. The authors also defined a
signature quadratic form filter distance, applicable for approximate filter and
refine retrieval. The filter distance just evaluates the signature quadratic form
distance using reduced feature signatures. However, according to our results,
the filter distances do not provide too tight approximations of the lower-
bounds, because the reduction technique removing tuples with small weights
significantly deteriorates the original feature signatures. On the other hand,
the idea of feature signatures reduction is a general approach that enables
retrieval using an arbitrary adaptive distance measure.

Therefore, we have investigated advanced feature signature reduction
techniques that can significantly improve the efficiency of the retrieval® (see
Chapter 3). In [53], we have presented scalable feature signatures, a class
of feature signature reduction techniques based on agglomerative hierarchi-
cal clustering [33], [29]. We have experimentally demonstrated that feature
signatures can be significantly reduced at the cost of just a small loss of qual-
ity. In Figure 1.4, we may observe an example of a feature signature for the
image of a sunrise and corresponding reduced feature signatures. Whereas
the original feature signature flexibly approximates the contents of the orig-
inal image, the reduced feature signatures at least preserve the general color
layout of the image. Furthermore, the reduced feature signatures can be
compared with an arbitrary adaptive distance measure, in other words, this
approach is not restricted just to metric/ptolemaic distances discussed in the

8The time complexity of adaptive distance measures depends quadratically on the size
of the feature signature vocabulary, i.e., the number of tuples.
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following sections.

= A o8 o8

Figure 1.4: An example of a feature signature reduction, starting from left
— original image, original feature signature, and reduced feature signatures
comprising 32 and 16 tuples.

1.3.2 Metric indexing

In this section, we overview the metric space approach [23, 98, 80] that can
be used to efficiently process similarity queries employing similarity models
based on feature signatures and metric adaptive distance measures. In order
to process the queries efficiently, the metric space approach utilizes lower-
bounding techniques that employ precomputed distances between database
objects and a set of reference points p; € P C U, so-called pivots. The metric
space approach assumes that the utilized distance function satisfies reflex-
ivity, non-negativity, symmetry and triangle inequality axioms. Especially
the triangle inequality axiom (Vz,y,z € U : 6(z,y) < d(z,2) + 6(y, 2)) is
necessary for the correctness of the lower-bounding based on precomputed
distances. More precisely, given a query object ¢ € U, a database object
o € U and a pivot p € U, the lower-bound distance between o and ¢ can be
directly derived from the triangle inequality using precomputed distances as
LBA(6(q,0)) = |0(0,p) — (g, p)|, where 6(q, p) is evaluated just once before
query processing and d(o,p) is the precomputed distance stored in a metric
index (see Figure 1.5). Furthermore, the metric space approach provides
also partitioning mechanisms enabling grouping of similar objects into parti-
tions so the whole groups of objects can be filtered during query processing.
There have been designed a lot of indexing techniques for metric spaces, so-
called metric access methods [23, 98, 80], that differ in the way they partition
database objects, store precomputed distances and process similarity queries
(64, 24, 87, 91, 22, 2]. Furthermore, there still appear new approaches that
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Figure 1.5: Pivot-based lower-bounding using triangle inequality.

can be used to enhance many of the well-established metric access meth-
ods. For example, in [59] we have presented Cut-regions [59] that represent
compact metric regions suitable for more efficient indexing and retrieval (see
Chapter 4).

However, not only the metric axioms but also the distribution of the dis-
tances between database objects plays a significant role in the efficiency of the
metric space indexing. In [23], the authors have proposed the intrinsic dimen-
sionality measure that indicates whether the data can be efficiently indexed
using a given distance space. The lower values of intrinsic dimensionality
indicate that the data form clusters in the distance space and thus metric in-
dexes based on metric space partitioning can be utilized [68, 69, 61]. On the
other hand, high values of intrinsic dimensionality indicate no clusters, which
means only the sequential processing using just simple query-to-object lower-
bounding can be utilized to filter at least some costly distance computations
[64]. The problem of high intrinsic dimensionality can be also addressed by
approximate search strategies that can provide interesting precision-speedup
trade-offs [74, 84, 1, 70]. For example, the Signature Quadratic Form Dis-
tance trained for maximal effectiveness often suffers from high intrinsic di-
mensionality. Nevertheless, we have experimentally demonstrated [56] that
using approximate k-NN search strategies designed for M-Index [68, 69], the
effectiveness can be still competitive even if just a fraction of the database
is visited.

Although metric indexes can significantly speed up query processing, the
methods still assume that the number of query objects is high enough to
compensate the indexing costs. Furthermore, the techniques assume that
indexed data are not changed too often, so once data are indexed, they are
often queried. These assumptions are not always satisfied, considering for
example multimedia streams, where just few queries can be issued for data
stored in a search window. In such cases, the cost of updating the index
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would highly overcome the benefits of the indexing, while a sequential scan
using a multi-query processing strategy (e.g., [19]) could be more efficient. If
the queries are issued independently and no delays for query collection are
allowed, the D-Cache structure [86] can be used to efficiently process a few
number of independently issued similarity queries (see Chapter 5).

The structure of the D-Cache is simple — it is just a simple block of mem-
ory where distances evaluated during previous queries are hashed and stored.
As in other cache types (disk, processor), the space for cached distances is
limited and thus the new distances can replace the original ones. In order
to filter non-relevant objects, each actually processed query object ¢; con-
siders several previously issued query objects g;,j < ¢ as pivots, and thus
using 6(g;, q;) and d(og, ¢;) potentially stored in D-Cache, the lower-bound
LBA(0(ok,qi)) = |0(qi, q;)—6(0k, q;)| < 0(0k, ¢;) can be evaluated and used for
filtering. If 6(ok, ¢;) was not stored in the D-Cache or was already replaced,
distance (o, ¢;) has to be evaluated. Although the lower-bounding is the
same as the one used by metric access methods, the D-cache does not have to
create an index structure in advance, thus it can be used instantly and start-
ing from the second query object the metric filtering can be employed. The
D-Cache can be employed also for dynamically changing similarity models,
for example, if the alpha parameter of the Signature Quadratic Form Distance
is changed to improve efficiency of the filtering. We have also demonstrated
that standard metric access methods can be enhanced by D-Cache for more
efficient indexing and retrieval [86].

1.3.3 Ptolemaic indexing

The metric space approach is not the only way to efficiently index adaptive
distance measures. Recently, we have proved that the Signature Quadratic
Form Distance is a ptolemaic metric [37] (see Chapter 6), which means it
satisfies metric properties and also the ptolemaic inequality stating that for
any quadrilateral, the pairwise products of opposing sides sum to more than
the product of the diagonals. Formally, for any four points x, y, u, v € U,
we have the following:

d(z,v) - 6(y,u) <d(x,y) - 0(u,v) + d(z,u) - 5(y,v) (1.1)

As for the triangle inequality, the ptolemaic inequality can be used for
distance-based indexing to construct a pivot-based lower bound. For a query
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¢, object o, and pivots p and s, we get the candidate bound:

0(q,p) - 6(0,8) = d(q,5) - (0, p)]
(p, s)

dc(q,0,p,8) = (1.2)

For simplicity, we let dc(q,0,p,s) = 0 if d(p,s) = 0. As for triangular
lower-bounding, one would normally have a set of pivots P, and the bound
can then be maximized over all (ordered) pairs of distinct pivots drawn from
this set, giving us the final Ptolemaic bound [36, 58]:

(¢, 0) = LByai(0(g,0)) = max dc(q,0,p, 8) (1.3)

Using all pairs of pivots results in the optimal lower-bound for a given
set of pivots P, however, the quadratic time complexity (based on |P|) of
the lower-bound estimation can slow-down the retrieval, especially for cheap
distances. In order to avoid using all pairs of pivots, heuristics selecting
a specific set of pairs can be utilized. Given a ptolemaic metric, another
question is whether to use lower-bounding based on triangle inequality or
ptolemaic inequality. In other words, whether the ptolemaic lower bounding
can improve the triangle lower bounding, and vice versa.

In Figure 1.6, we have visualized points in 2D euclidean space, that can
be filtered just by LB (blue points), LBy (green points), by both lower
bounding techniques (gray points) and points that cannot be filtered by any
of the two techniques (white points). We may observe that both filtering
techniques can contribute to the filtering, where the filtering power of each
technique depends on the query radius and also on the constellation of pivots
and the query object. The filtering power of cheap triangle lower bounding
could be increased by higher number of pivots. On the other hand, the
ptolemaic lower bounding can improve the filtering power of a given pivot
set. Both techniques can be also combined, where first the cheap triangle
lower bound is evaluated and used for filtering. If the triangle lower bound
is not sufficient, more expensive ptolemaic lower bound is employed for a
given object. As for triangle lower-bounding, the ptolemaic lower bound can
be evaluated also for whole regions and thus, given a ptolemaic metric, the
filtering rules of many metric access methods can be simply extended [37].
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Figure 1.6: Triangle versus ptolemaic filtering in 2D euclidean space using
two pivots p, s and range query (g, r,), where the blue points can be filtered
just using LB, green points can be filtered just using LB, gray points
can be filtered by both techniques, while white points cannot be filtered by
neither of the two techniques.

1.3.4 Parallel computing

Although domain specific approaches, feature signature reduction techniques,
and distance based indexing methods can significantly improve the efficiency
of multimedia retrieval using feature signatures and adaptive distance mea-
sures, the techniques alone cannot make the model applicable for immense
databases comprising billions of multimedia objects. In such cases, ap-
proaches like distributed computing and/or massively parallel computing
have to be employed as well [5, 32, 63, 99]. For distributed computing,
there have been already developed several approaches that can be directly
applied for models based on feature signatures and metric adaptive distance
measures. For example, in [69] the authors propose a distributed metric in-
dex (M-Index) that can organize the database into a large number of nodes
according to a metric distance. The index is suitable both for exact and
approximate search, where especially the approximate search strategies can
prune a significant part of the searched database. Furthermore, each node
can utilize a centralized index structure and/or massively parallel computing
to improve the efficiency of the distributed index.

The parallel computing (especially new GPU architectures [72, 71]) rep-
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resents another promising approach for evaluation of costly adaptive distance
measures that constitute a serious bottleneck of a multimedia retrieval system
based on feature signatures. In recent days, novel many-core devices with spe-
cific hardware architectures are designed for various computing tasks. Hence,
one of the goals of the research in this area is to find suitable computation
tasks for existing many-core devices and to adapt the existing algorithms to
better utilize properties of the devices. The typical example are GPU cards
that provide thousands of cores. However, their hardware architecture and
programming model significantly differ from traditional CPUs. Especially
different memory organization and thread execution in GPU cards require
different algorithms. The CPU and GPU approaches can be also efficiently
combined in hybrid systems that better utilize available hardware.

In Chapter 7, we have focused on parallel processing of adaptive distances
and compared the efficiency of the retrieval when using two parallel environ-
ments with different architectures and also prices. More precisely, we have
compared a cheap desktop PC comprising two GPU cards with CUDA ar-
chitecture and an expensive high-end NUMA server. As parallel computing
tasks, we have investigated the efficiency of the retrieval when using parallel
computing for batches of distance computations, or even parallel process-
ing using a simple metric index structure [49]. More specifically, we have
designed two algorithms considering utilization balance between CPU and
many-core GPUs for efficient similarity search with the Signature Quadratic
Form Distance. We have shown how to process multiple distance computa-
tions and other parts of the search procedure (e.g., lower-bound estimation)
in parallel, achieving maximal performance of the combined CPU/GPU sys-
tem. We have experimentally demonstrated that using GPU cards for mod-
els based on feature signatures represents an order of magnitude faster and
cheaper solution than a high-end many core NUMA server, despite the mem-
ory organization and thread execution specifics of the GPU architectures.
Similar results have been achieved also for feature signature extraction pro-
cess, where we have reached the throughput of approximately 8000 extracted
feature signatures per second [47].
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1.4 Awuthor’s contributions

Reaching goals of the presented research could be compared to a puzzle,
where the way to solve the overall problem can be seen only after the problem
is solved. However, in practice there is no direct and clear way to solve such
complex tasks like content-based multimedia retrieval and it is also beyond
the skills of an individual to solve such problems. As a logic consequence,
usually only a joint research with the immense support of research insti-
tutions, hours of influential discussions with colleagues (including involved
students), brainstormings with members of particular teams, and weeks spent
with programming and running experiments can make any progress, and thus
can place a new puzzle piece at the correct place.

This is also the case of the presented work that is based on six papers
where five of them have more than one author. Furthermore, in three cases
the collaboration was international and thus also long email conversations
were the important part of the research process. Each of the authors has
significantly contributed to the papers, starting with influential discussions
forming the core of the contributions and ending with programming, running
experiments and writing the papers. Since it is hard to find clear borders
between particular contributions (all authors contribute to many subtasks
and influence each other), not to mention finding the author of the first idea
the contribution of each author of the presented papers can be just approx-
imately estimated as 1/z, where z is the number of authors of a particular

paper.
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Abstract. Recent popular applications like online video analysis or im-
age exploration techniques utilizing content-based retrieval create a serious
demand for fast and scalable feature extraction implementations. One of
the promising content-based retrieval models is based on the feature sig-
natures and the signature quadratic form distance. Although the model
proved its competitiveness in terms of the effectiveness, the slow feature
extraction comprising costly k-means clustering limits the model only for
preprocessing steps. In this paper, we present a highly efficient multi-GPU
implementation of the feature extraction process, reaching more than two
orders of magnitude speedup with respect to classical CPU platform and
the peak throughput that exceeds 8 thousand signatures per second. Such
an implementation allows to extract requested batches of frames or images
online without annoying delays. Moreover, besides online extraction tasks,
our GPU implementation can be used also in a traditional preprocessing
and training phase. For example, fast extraction allows indexing of huge
databases or inspecting significantly larger parameter space when search-
ing for an optimal similarity model configuration that is optimal according
to both efficiency and effectiveness.

Keywords: similarity search, feature extraction, GPU, parallel.

1 Introduction

The traditional approaches to the multimedia retrieval rely on the well-established
fulltext search. However, as the amount of new multimedia data grows immensely
nowadays, there often appear scenarios where data annotations cannot be provided
and so the content-based retrieval techniques in connection with the similarity
search paradigm is the only viable possibility for computer-aided image retrieval
[8]. The content-based retrieval approach requires an effective similarity model
that should mimic a user’s perception of which images are similar and which are
not [22]. More specifically, the similarity model consist of features extracted from
the original images (formed into image descriptors) and a total similarity function
(often modeled as a distance function) providing a similarity ranking (ordering) on
the descriptors. The similarity model is effective if the ranking corresponds to user
preferences, that are often provided in the form of so-called ground truth testbed.

S. Li et al. (Eds.): MMM 2013, Part II, LNCS 7733, pp. 446-456, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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For example, the ground truth can be represented as an annotated sample of the
database, and is often utilized to train or verify the similarity model [7].

While the traditional content-based retrieval applications use a slow prepro-
cessing phase to prepare feature representations, recent applications calls for
faster feature extraction tools enabling immediate online analysis of the picture
content. Examples of such systems can be, e.g., camera systems producing a lot
of video streams that have to be processed frame by frame or image exploration
techniques that create exploration structures from a given set of images during
the interaction with users [14]. Furthermore, the fast feature extraction can be
utilized also in traditional tasks, e.g., for fast indexing of huge datasets or for
training of similarity models, where significantly larger parameter space can be
considered and tested.

In this paper, we focus on the similarity models based on feature signa-
tures, that can be effectively compared via the signature quadratic form distance
(SQFD) [4,6]. This model is competitive in the terms of the effectiveness and at
the same time provides many parameters to tune. We provide efficient GPU im-
plementation of the expensive feature extraction process resulting in two orders
of magnitude speed up. The contributions of this paper can be summarized as:

e Description of the feature signatures extraction process with emphasis on
performance issues.

e Proposal of a fast GPU implementation of this extraction process.

e Experimental results expressing the power of our GPU feature extraction.

The paper is organized as follows. In Section 2, we describe the similarity model
based on feature signatures and the basics of feature extraction process. In Sec-
tion 3, we recall GPU platform basics and describe details of our GPU implemen-
tation of the feature extraction process. The experimental results are presented
and discussed in Section 4 and Section 5 concludes the paper.

2 Similarity Model Based on Feature Signatures

In this section, we sketch the recently studied similarity model based on feature
signatures and the Signature Quadratic Form Distance, that can be utilized to
solve the content-based image retrieval tasks [5,3]. Especially, we describe in
detail the employed feature extraction method, where we highlight parameters
influencing many aspects of the resulting similarity space. We also remember
recent works focusing on efficient query processing in this model — the metric
and ptolemaic indexing of the Signature Quadratic Form Distance.

2.1 Feature Signatures

The traditional object representation approaches utilizing feature histograms ag-
gregate features within predefined bins of fixed-sized vectors. Unlike the feature
histograms, the feature signatures allow a more flexible object representation
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within a utilized feature space [9,18,8], where the size of resulting feature signa-
tures is not fixed. Hence, complex multimedia objects can be represented by a
feature signature consisting of many centroids, while simple multimedia objects
have just few centroids in their feature signatures.

Definition 1 (Feature Signature). Given a feature space F, the feature sig-
nature S° of a multimedia object o is defined as a set of tuples from F x RT
consisting of representatives r° € F and weights w® € RT

In order to compare feature signatures, the SQFD, which is a generalization of
the conventional QFD, is employed. In contrast to the well-known Earth Mover’s
Distance, the SQFD makes it possible to balance the tradeoff between indexabil-
ity and retrieval quality [2]. The authors have demonstrated that the parameters
of the similarity functions affect the indexability of the underlying data space,
thus allowing to balance the tradeoff between indexability and retrieval quality.
It was shown that even a very simple metric pivot table approach [23] can reach
a speedup factor of up to 170 with respect to the sequential scan. In addition,
the combination of the SQFD and ptolemaic pivot tables has shown a speedup
factor of up to 300 [15]. In the meantime, Krulis et al. [13] came up with the
idea of processing the SQFD on many-core GPU architectures. By implement-
ing the query evaluation process on many-core GPUs and also multi-core CPUs,
they have shown a significant improvement in efficiency compared to the serial
approaches.

2.2 Extraction of the Feature Signatures

The feature extraction process determining a feature signature from an image
consists of several consecutive steps, each of them providing several options with
various sets of parameters. The basic overall schema for this process is depicted
in Figure 1. The image is preprocessed first by common image algorithms. After
that, a suitable sampling method is selected and several features are extracted for
every sampled point. Finally, all features are clustered via the k-means clustering.
In the following paragraphs, we explain details of the feature extraction and the
k-means algorithm used in our implementation.

In the feature extraction step, the sampled points are mapped into the re-
quested feature space . We utilize seven-dimensional representatives f? =
(v,y,L,a,b,c,e) € F C R7, where (z,y) are the coordinates of the sampled
point, (L, a, b) represent the color of the sampled point mapped into the CIE Lab
color space [12], and (c, e) are contrast and entropy values computed from the
neighborhood of the point in the corresponding gray-scale image. We compute
texture information from the gray level co-occurrence matrix G' [10] extracted
from the neighborhood of the point, where each point is assigned an intensity
i € I'. Since the value ranges of utilized features differ significantly, we also
normalize values from each dimension into [0, 1] interval.

! More specifically, the contrast ¢ and entropy e are evaluated as ¢ = Y. (i — j)? x
ijel
G(i,7)/mand e = — > (G(i,5)/n) x log(G(i,j)/n), where n = > G(i, ).

i,j€I i,j€I
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Fig. 1. Extraction schema for feature signatures

In the last step of the overall feature extraction process, all the extracted
representatives f? € F are aggregated using the k-means clustering algorithm
[17] employing the weighted L, norm distance. The weights change the impact
of each utilized feature and thus fundamentally influence the result of the clus-
tering. By setting a weight to zero, we can even totally ignore the effect of a
particular feature. The k-means clustering is an iterative method, where the
number of iterations is defined by the user. In each iteration, all representatives
f{ € F are distributed within the actual set of centroids r{ € IF of the clusters
C? C F. Then, for each cluster a new centroid is created by averaging all the
points in the cluster, which can be depicted as a shift of the old centroid to
the clusters center of gravity. When using an adaptive version of the k-means
clustering, we can also remove some too close or too small clusters and thus
influence the number of the resulting clusters. As a result of the k-means clus-
tering algorithm, the feature signature consisting of representatives r{ € [ and
weights w? € RY is created, where each representative r? € F corresponds to the
centroid of the cluster C{ C F obtained in the last iteration of the k-means, i.e.,

o _ 2rece ] [

o . . o _
= "lce] with relative frequency wy = 5. lee|-

3 Implementation

Before we introduce the details of our GPU extractor, let us briefly revise cur-
rent GPU architecture. Our implementation was developed and tested on the
NVIDIA Fermi architecture [20], however, it should work on the new Kepler
architecture as well as on the current AMD GPU devices. GPU architectures
differ from CPU architectures in multiple ways. The most important two are
rather specific thread execution model and complex memory model. The CPU
is designed so that each core process one independent thread at a time. Threads
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running on GPU all execute the same program and small groups of threads even
execute the same instruction at a time (Single Instruction Multiple Threads).

The GPU is a rather independent device, so it has its own memory. This
means that all input data must be transferred to the device and computed results
must be transferred back to memory of the host system. Furthermore, there are
multiple types of memories — the global memory (of several GBs), the local (or
shared) memory (tens of kBs), and the private memory (registers of each core).
Each memory has some specific limitations which are inevitably inherited from
the parallel nature of the architecture.

We would like to summarize some of the architecture implications and best
programming practices suggested by the vendor [19]:

e The latency of data transfers between the host system and the GPU devices
needs to be inhibited. Therefore, we should bulk the transfers and try to
overlap them with GPU computations.

e Data structures must be designed according to memory limitations of the
GPU. The data placement must be considered carefully as different types of
memories have different properties (especially the size and speed).

e The algorithm must embrace the SIMT execution model, at least for the
parts of the work being processed by one thread group. This usually requires
significant modifications of the algorithm or selection of a different algorithm
solving the same problem.

e A multitude of threads (at least thousands) needs to be spawned in order to
utilize all available cores and balance the load efficiently.

3.1 GPU Extractor

Our GPU extractor implementation is quite complex. In this section, we will
focus on the key details that allowed us to achieve such excellent performance.
The extractor exploits two approaches to parallelism. Each signature is com-
puted by a SIMT parallel algorithm and multiple signatures are computed con-
currently. The CPU code ensures the loading of images from persistent data
store, create blocks of images of appropriate size, and dispatch these blocks
to the available GPUs. Each block is transferred to the GPU, then the GPU
computes signatures for all images in the block, and the block of signatures is
transferred back to the host memory. The blocks are dispatched so there are
always two blocks assigned to one GPU. One block is being computed while the
data of the other block are transferred. Furthermore, there are two CPU threads
allocated for each GPU device. These threads are responsible for feeding the
GPU, waiting for the GPU to terminate, and consolidation of the results.
Images in the block are processed as depicted in Figure 2. Each thread group
(assigned to one SMP?) processes one image and all threads in the group synergi-
cally cooperates to compute the signature. The optimal block size was empirically
determined as 2x number of SMPs on the GPU (in our case 2 x 16 = 32).

2 Symmetric Multi-Processor unit, which contains 32 synchronously running cores.
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Host System
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Fig. 2. Schema of the extraction process of one image

Different approaches are clearly suboptimal. Computing multiple signatures
by one thread group would be highly complicated as the size of the local memory
is very limited and its utilization is very important to overall performance of both
feature extraction and k-means clustering. Computing one signature by multiple
groups would be even more complicated as the groups have limited means of
communication and synchronization.

Feature Extraction Process. The first phase of the signature creation is
the feature extraction and normalization process (see Section 2.2). The sam-
pling points (whole set) are provided by CPU and uploaded into constant global
memory before the extraction is started. The extraction of the first 5 dimensions
of the feature space (z,y, L, a, b) is quite straightforward. The (x,y) coordinates
are computed from the sampling points coordinates as a simple linear combina-
tion. The RGB value of the corresponding pixel is taken and converted into the
CIE Lab color space by transformation equations from the CIE Lab specification.

The computation of contrast and entropy features is slightly more compli-
cated. The bitmap is converted to gray-scale using all threads in the group. Since
each pixel is represented with only a few bits and the GPU natively processes
data in 32-bit words, we use simple bit-packing technique that stores multiple
pixels in one word. We convert the entire bitmap and keep it in the local memory
of the SMP for the sake of simplicity and parallelism even though only sampled
pixels and their surroundings are required for the computation.

To compute contrast and entropy, the co-occurrence matrix G must be con-
structed for each pixel. The matrix is rectangular || x |I|, where I is the set of
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possible intensities. Since we use 4-bit gray-scale in our experiments, the || = 16
and the matrix has 16 x 16 items. We allocate as many matrices as possible in the
local memory and assign one thread to each matrix. These threads iteratively
process initial points, construct corresponding co-occurrence matrices, and com-
pute contrast and entropy. The time complexity of this step depends on the size
of the matrix G and size of the neighborhood of the pixel, which are constant
for all points. Therefore, each thread performs almost the same amount of work.

Described algorithm was designed under the assumption that it is possible
to fit at least as many G matrices to local memory (along with the gs-bitmap),
as there are cores on SMP, or (better) as there are threads in the correspond-
ing group. This assumption holds in our case® as we are able to accommodate
approximately 150 matrices in the local memory. On the other hand, if we use
more bits per pixel in the gray-scale bitmap, the bitmap itself and the matrices
will be significantly larger and a different algorithm could be more suitable for
the problem.

K-means Clustering. The second phase is the k-means clustering performed
on the points from a feature space (see Section 2.2). Since the k-means algorithm
has many variations, we need to specify several details:

e We use fixed number of iterations and this number is a configurable pa-
rameter of the extractor. This way more complex images end up with more
centroids in their signatures than the simple images.

e The clusters that have centroids closer than specified threshold (which is
also a parameter) are merged together.

e After each iteration, clusters that are smaller than s x i, where i is the
number of the iteration and s is a parameter of the extractor, are thrown
away. Points from these clusters are not dismissed, but rather reassigned in
next iteration.

e Our algorithm does not care for the final assignment of points to clusters, but
only for the final centroids and weights (number of points in each cluster).

All the threads in the group follow the algorithm steps together waiting on an
explicit barrier after each step of the algorithm. One k-means iteration consists
of the following steps:

1. The closest centroid is found for each point and coordinates of the point are
atomically added to the new centroid coordinates (per dimension). Also the
weight of the closest centroid is atomically incremented.

2. New centroid coordinates are computed dividing sums from previous step by
number of points in the corresponding cluster (computing an average).

3. The clusters with centroids closer than joining threshold are merged.

4. The clusters smaller than s x i limit are disposed of.

First two steps are embarrassingly parallel. Each point may be processed inde-
pendently and we assume that there are more points than threads in a group.

3 SMP has 48 kB of local memory, thumbnails are 150 x 150 px in 4-bit gray-scale.



Efficient Extraction of Feature Signatures Using Multi-GPU Architecture 453

The only interesting issue is the optimal data representation. We represent each
set of N d-dimensional points* as d arrays of N values rather than an array of
N structures with d values. This representation better fits the properties of both
global memory and local memory where the points and centroids are stored.

It is possible to use kd-trees or other geometric data structures to accelerate
the nearest neighbour problem (the first step) [11]. We can also use an approxi-
mative approach to k-means [21]. However, these techniques are faster only for
large number of centroids, and kd-trees do not perform well in the GPU memory.
As we use only hundreds of centroids, empirical results show that it is better to
pursue raw power of parallelism with the simplest algorithm.

The third step tests the distance of every centroid pair. The centroid pairs are
iterated using the nested two-level for-loop, where only the inner loop is paral-
lelized and the explicit barrier synchronization is performed after each iteration
of the outer loop. This way the parallelism is slightly reduced, however, we do not
require any means of data synchronization. In order to avoid expensive merging
and array compacting, this step just sets the weight of one of the merged clusters
to 0, so the cluster will be disposed of by the last step. More elaborate methods
did not show any measurable speedup as the third step is significantly cheaper
than the remaining steps.

The last step filters out small clusters and compacts the set of centroids, so the
arrays does not contain empty elements. First, the compacting step computes
new offset for each nonempty element. The offsets are computed by standard
binary reduction tree algorithm performed by all available threads. Finally, all
nonempty elements are copied into new compacted array at their new positions.

4 Experimental Results

In the experiments we focused on the efficiency of the extraction and the MAP
evaluation process using GPU architecture, where we measured the speed up
according to the CPU platform.

4.1 The Testbed

The Thematic Web Images Collection (TWIC) database of 11,555 images di-
vided in 200 classes [16] was employed for basic experiments and approximately
17.5 mil. images from the profimedia dataset [1] were used for large-data tests.
Our experiments were performed on a server with special motherboard (FT72-
B7015) designed to embrace up to 8 GPUs. The server was equipped with Xeon
E5645 processor that contains 6 physical (12 logical) cores running at 2.4 GHz,
96 GB of DDR3-1333 RAM, and 4 NVIDIA Tesla M2090 GPU cards (Fermi
architecture). Each GPU chip has 512 cores (32 cores per 16 SMPs) and 6 GB of
memory. We also tested the implementation on commodity PC with two NVIDIA
GTX 580 which have also 512 cores, but only 1.5 GB of memory. We have found
that in our case the gaming GTX 580 cards have similar performance as the
much more expensive Tesla cards, thus we do not provide detailed comparison.

4 As described in 2.2, the d = 7 in our case.
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4.2 Performance Tests

Since the major contribution of this paper is a fast GPU extraction implementa-
tion, we provide performance test results and comparison to the CPU extractor.
All the times were measured using the system real-time clock. We are aware
that this method is not entirely precise and there are many both technical and
philosophical issues regarding performance benchmarks. However, these tests are
designed to give the reader a general idea about the performance rather than
provide an accurate comparison. All tests were conducted using parameters that
produced the highest precision results.

TWIC: feature extraction on CPU and GPU TWIC: speedup w.r.t. single-core CPU Profimedia: throughput of GPU w.r.t. CPU
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Fig. 3. Time, speedup, and throughput comparisons

Figure 3 summarizes the times and speedup of the experiments conducted on
CPU (using different numbers of threads) and GPU (using different numbers of
devices). The cpu t methods designate tests running on CPU with ¢ threads®
and the gpu d methods designate tests running on d GPU devices. The times
depicted in the first graph are separated into two columns — the extraction
process of 11, 555 images (TWIC dataset [16]), which we used for tests designed
to explore the parameter space of the extractor.

The tests were evaluated 233x faster on 4 GPUs than on single-core CPU
and 21.7x faster than on 12 core CPU. Thanks to this speedup, we were able to
conduct all experiments presented in previous section in the matter of hours. The
same experiments would take days on 12 CPU cores and weeks on single-core.

We have also considered using the GPU extractor for the indexing and video
stream processing techniques. For testing purposes, we have extracted a database
of 1,000,000 images [1] and created signature index by both GPU and CPU
extractors. The extractor running on 4 GPUs can extract 8244 signatures per
second while on 12 CPU cores the throughput is only 303 signatures per second.
These tests were conducted so that all images were pre-cached in RAM, hence
the extractor has not been slowed down by loading data from persistent storage.
Since each image has size of approximately 33.9 KB, the system would require a
persistent storage that is capable of reading data at the minimum rate of 273.3
MB/s, which cannot be easily achieved by common hard disk drives. Previous

5 The tests run up to 12 threads as we have 12 core CPU.
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tests were focused on the speed of the extractor. If the extractor is employed as
an indexing service, the performance of the persistent data storage cannot be
ignored. We have equipped our server with two RAID 0 arrays both containing
two common hard disks One array kept the input images and the other array
was used for storing signatures. We have used the same data source as for the
previous experiment, but we took 17.5 millions of images to ensure that the data
nor the result will fit the RAM. The throughput of the extractor is depicted in
the third graph of the Figure 3. The speed of the extractor has dropped to 3661
signatures per second on four GPUs. It is 2.25 x slower than previous experiment,
in which the images were cached in RAM (denoted gpu4* in the graph). Based
on the empirical data, we speculate that the feature extraction system would
require at least 4 modern SSD drives connected to RAID 0 in order to match
the speed of 4 GPU devices.

5 Conclusions

In this paper, we present a highly efficient GPU implementation of the feature
extraction of image signatures, reaching more than two orders of magnitude
speedup with respect to classical CPU platform. It also achieves a throughput of
8244 signatures per second, which is far beyond the throughput of common hard
drives or network devices. Fast feature extraction implementation is critical in
many recent applications like video stream processing or image exploration tech-
niques, where for user interaction scenarios the low response times are essential.
Our GPU implementation can be used also in traditional indexing or training
tasks, where huge datasets have to be extracted or broad parameter spaces have
to be inspected.

Acknowledgments. This research has been supported in part by Czech Science
Foundation projects P202/11/0968, P202/12/P297 and Charles University grant
agency (GAUK) project 277911.
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Abstract. The feature signatures in connection with the signature
quadratic form distance have become a respected similarity model for
effective multimedia retrieval. However, the efficiency of the model is
still a challenging task because the signature quadratic form distance has
quadratic time complexity according to the number of tuples in feature
signatures. In order to reduce the number of tuples in feature signatures,
we introduce the scalable feature signatures, a new formal framework
based on hierarchical clustering enabling definition of various feature
signature reduction techniques. As an example, we use the framework
to define a new feature signature reduction technique based on joining
of the tuples. We experimentally demonstrate our new feature signature
reduction technique can be used to implement more efficient yet effective
filter distances approximating the original signature quadratic form dis-
tance. We also show the filter distances using our new feature signature
reduction technique significantly outperform the filter distances based
on the related maximal component feature signatures.

Keywords: Similarity Search, Approximate Search, Content-based Re-
trieval, Signature Quadratic Form Distance, Scalable Descriptor.

1 Introduction and Related Work

The content-based multimedia retrieval [6] has become an integral part of vari-
ous information systems managing multimedia data (e.g., e-shops, image banks,
industry and medical systems), providing users an alternative to the keyword-
based retrieval approaches. In order to search the multimedia data in the content-
based way, the systems often employ a similarity model enabling ranking of the
database objects according to a query object, where the similarity model com-
prises multimedia data descriptors and a suitable similarity measure defined for
the utilized descriptors. The selection of a proper similarity model then belongs
among key tasks when designing an effective and efficient content-based multi-
media retrieval system. During the last decades, many types of similarity models

* This research has been supported by Czech Science Foundation project GACR
P202/12/P297.

C. Gurrin et al. (Eds.): MMM 2014, Part I, LNCS 8325, pp. 86-97, 2014.
© Springer International Publishing Switzerland 2014
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have been designed and even standardized for a particular multimedia retrieval
tasks (e.g., the MPEG-7 standard [15]). One of the most popular similarity mod-
els investigated during the last decade is the bag of visual words (BoVW) model
[18], utilizing a statically-created vocabulary of codewords, so called codebook.
In the BoVW model, each object is represented as a frequency histogram of
codewords present in the object, where all the objects in a database share one
codebook. Such representation enables efficient retrieval using inverted files, a
well established technique for the text-based retrieval area. Whereas the effi-
ciency of the BoVW model is sufficient for large scale multimedia retrieval, the
practical effectiveness of the model is still an open problem. While recent works
have tried to improve the effectiveness of the BoVW model using semantic pre-
serving models [19], Hamming embedding [10], compressed Fisher vectors [16]
or vectors of locally aggregated features [11], several new approaches have re-
laxed from a common static vocabulary and investigated more general similarity
models based on the feature signatures [17] and the adaptive distance measures
(e.g., Signature Quadratic Form Distance [3] or Signature Matching Distance
[1]). The signature-based models utilize an object specific vocabulary and thus
can flexibly represent the contents of an object. Hence, the feature signatures
can capture more disparities in the data, which can be beneficial in dynamic
databases rapidly changing in content (e.g., multimedia streams). As recently
shown, several signature-based models can outperform the BoVW approaches
in the terms of effectiveness [1], however, the efficiency of the signature-based
models is still a challenging task, especially for feature signatures comprising a
high number of tuples. In [9], the authors employ metric/ptolemaic indexing to
improve the efficiency of the retrieval, however, the approach is restricted only
to distances satisfying metric/ptolemaic postulates. In [13], the authors show
signature-based models can be utilized for effective re-ranking when obtaining a
candidate result set using an efficient model based on a subset of the MPEG-7
descriptors. In this paper, we focus on new feature signature reduction techniques
enabling more efficient yet still effective retrieval. Furthermore, we consider also
scalability of the reduction techniques enabling adjusting the size of the feature
signatures according to the actual system load. Let us now recall several basic
concepts and definitions referred in this paper.

1.1 Feature Signatures and Signature Quadratic Form Distance

Feature signatures [17] have been introduced to flexibly aggregate and represent
the contents of a multimedia object mapped into a feature space F. Whether
the requested feature space F comprises color, position, texture information,
SIFT gradient vectors or other complex features [7,14], the feature signatures
are often obtained by an adaptive variant of the k-means clustering selecting the
most significant centroids. In Figure 1, we depict an example of image feature
signatures according to a CPT feature space!. The feature signatures were ex-
tracted using the GPU extractor [12] employing an adaptive k-means clustering

! Color (L, a,b), position (x,y) and texture information (contrast, entropy), F C R'.
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Fig. 1. Example of feature signatures

algorithm, where the extraction of the first image in Figure 1 has put stress on
the color, while the extraction of the second image in the figure has put stress on
the position. The representatives r; € F corresponding to the selected centroids
are depicted by circles in the corresponding position and color, while the weights
w; € RT corresponding to the size of the cluster determine the diameter of the
circles (texture information is not depicted). Formally, the feature signatures are
defined as:

Definition 1 (Feature Signature). Given a feature space F, the feature sig-
nature S° of a multimedia object o is defined as a set of tuples {(r¢,w?)}r,
from F x RT, consisting of representatives r? € F and weights w§ € Rt

The number of tuples in a feature signature can vary depending on a com-
plexity of a corresponding multimedia object and the parameters used for the
extraction. As a consequence, a feature signature can comprise tens or hundreds
of tuples, which significantly affects the time for similarity computations. In [2],
the authors propose a simple feature signature reduction technique based on
maximal components of a feature signature O, where the maximal component
feature signature Op;¢ with ¢ components is defined as: Oy C O, |Opnc| = ¢,
such that V(r¢, w?) € One,¥(r§, w?) € O—Onc : wf > wf. In other words, the
maximal component feature signature contains c tuples with the highest weights.
The authors also define a signature quadratic form filter distance, applicable for
approximate filter and refine retrieval, where the filter distance just evaluates the
signature quadratic form distance using maximal component feature signatures.
In Figure 2, we depict an example of maximal component feature signatures with
10 and 20 components. We may observe the maximal component feature signa-
tures can omit representative tuples from the original feature signatures (the
rightmost signatures in Figure 2) when few maximal components are utilized.

Let us now shortly recall the Signature Quadratic Form Distance [3], an ef-
fective adaptive distance measure generalizing the quadratic form distance.

Definition 2 (SQFD). Given two feature signatures S° = {(r¢,w$)}7, and
SP = {(r,w?)}™ | and a similarity function fs:FxF — R over a feature space
I, the signature quadratic form distance SQFDy ~ between S° and S? is defined
as:

SQEFD, (5%, 57) = \/(wo | —w,) - Ay, - (1w, | —w,)T,
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where Ay, € R(vtm)x(ntm) s the similarity matriz arising from applying the
similarity function fs to the corresponding feature representatives, i.e., a;; =
[s(ri,7;). Furthermore, w, = (w9, ..., w8) and w, = (w,...,wk) form weight
vectors, and (w, | —wp) = (wf,...,wS, —wl, ..., —wk,) denotes the concatena-
tion of weight vectors w, and —wy.

To determine similarity values between all pairs of representatives from the
feature signatures, the Gaussian similarity function fyquss(ri,rj) = e—oL3(rirs)
or the Heuristic similarity function freyristic(7i,7;) = 1/(ac+ La(r;,7;)) can be
utilized, where « is a parameter for controlling the precision, and Ly denotes the
Euclidean distance. If we utilize similarity function fr,(r;,r;) = —L3(ri,7;)/2,
we obtain the Lo-Signature quadratic form distance [4] suffering from worse
effectiveness but computable in linear time.

The rest of the paper is structured as follows: we present the scalable feature sig-
natures and our new reduction technique in the following section, then we exper-
imentally demonstrate in section 3 our new reduction technique can be employed
for effective approximate search with the signature quadratic form distance, and
finally we conclude the paper and point on the future work in section 4.

2 Scalable Feature Signatures

In this section, we introduce the scalable feature signatures — a formal frame-
work based on hierarchical clustering enabling definition of sophisticated reduc-
tion strategies for feature signatures. The framework extends and generalizes
the maximal component feature signatures [2] primarily designed for approx-
imate filter and refine retrieval. As we experimentally demonstrate, the filter
signature quadratic form distance employing the maximal component feature
signatures does not approximate the original distance (or its lower bound) well,
and thus we focus on new filter distances using new feature signature reduction
techniques providing better approximations of the original feature signatures.
Unlike the maximal components approach that just removes tuples with small
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Fig. 3. Scaling feature signature

weights, our new approach aggregates the tuples during the reduction of the
feature signatures. Our new approach is motivated by the feature signature ex-
traction process [12], where the adaptive k-means clustering removes centroids
with small weights, while the points distributed within the removed centroids
are assigned to the remaining centroids. However, after the extraction process is
finished and new feature signatures are stored, the points are no longer available
and thus only information in the stored tuples can be used for the reduction of
feature signatures.

Before we proceed to formal definitions, let us describe a motivation example
depicted in Figure 3 where the feature signature F'S in Figure 3a is consecutively
reduced to the half of the original size in Figure 3c. If the maximal components
approach was used, the reduced feature signature would contain only two blue
tuples, which would not correspond to the original image. Therefore, instead of
removing tuples, we can join them using an aggregation function 7 to keep the
original information at least in the aggregated form. To determine which tuples
are joined in each step, we expect a total ordering > defined over all the tuples
in F x Rt and a mapping function ¢ defined for all tuples in F'S depicted
as gray arrows in Figure 3. Using a suitable >, ¢® and 7, we may observe the
reduced feature signature can be a good approximation of the original feature
signature (as depicted in Figure 3). Furthermore, if we store one of the original
tuples and a pointer to the joined tuple after each join operation, we can later
utilize a reverse split operation to reconstruct the original feature signature (or
just less reduced feature signature). Such scalability property of the descriptor
can be beneficial because we can balance the actual size of the feature signatures
according to actual performance needs of a multimedia retrieval system. Let us
also emphasize, the reduction process should be deterministic in order to enable
preprocessing optimizations for a particular distance functions.

In the following paragraphs we provide definitions formalizing the key con-
cepts described in the motivation example, starting with the definition of the
scalable feature signatures.

Definition 3 (Scalable Feature Signature). Given a feature signature F'S
over a feature space F, a total ordering > defined over all tuples in FxR™, a total
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mapping function ¢S : FS — FS and an aggregation function 7 : (F x R1)? —
F x R*, then the tuple (FS,>, (bFS,T) 1s called scalable feature signature.

In the following paragraphs, we show an example of the total ordering and
several examples of mapping and aggregation functions. Let F be the euclidean
space over field R™ and F'S be a feature signature over that feature space. We
can define a total ordering > using weights and the lexicographic ordering >jq,
over vectors in R™ as: V(r;, w;), (rj,w;) € F x R : (rj,w;) >y (rj,w;) if and
only if w; > w; V (wl =W; AT Slex Tj).

The mapping function ¢S can utilize the total ordering >,; and can be
defined for each tuple (r;, w;) € F'S as:

FS

min

i ((riywi)) = mins {(rj, wy) : (rj,w;) € FS A (rj,w;) >wi (ri, wi)}.

((ri,w;)) = (ri, w;) for (r;,w;) = maxs , F'S, and otherwise as:

The mapping function ¢ just maps each tuple from F'S to the first greater

tuple in F'S, except for the maximal tuple that is mapped to itself. The mapping
function can consider also a Minkowski distance L, between the representatives
in F'S as follows:

(bf—jf((ri,wi)) = (r;,w;) for (r;,w;) = maxs , F'S, and otherwise as:

¢f§(<n,wl>) = (rj,w;) such that (r;,w;) € FS A (rj,w;) >u (i, wi) A
(V(rg,w) € FS,k #1# j: (1, wr) > (Ti,wi) = (Lp(r5,73) < Lp(ri,73) V
(Lp(rj,mi) = Lp(re, 73) A (ri, W) >t (15, w5))))-

The aggregation operation 7 can be defined trivially as a projection:
Trirst (i, wi), (rj, ;) = (ri, wi),

or as a more complex aggregation:

Tavg ((ris wi), (rj, w)) = (ri - wi/ (Wi +w;) 475 - wi / (wi + w;), wi + wy).

Having defined scalable feature signature (F'S, >, ¢, 1), we can now define
an unary reduction operation that replaces the minimum (r,w) in F'S and the
corresponding tuple ¢ ({r,w)) by the join tuple 7((r, w), ¥ ((r,w))).

Definition 4 (Scalable Feature Signature Reduction). Given a scalable
feature signature SFS = (FS,>, ¢ 1), let (r,w) = mins F'S, let FS" = (FS—
{FS((r,w)), (r,w)}) and let (ry,, wi) = T(dFS((r,w)), (r,w)), then the reduction
of scalable feature signature SFS denoted as QSFS is defined as QSFS =
(FS,,>, ¢S 1), where FS, = FS'U{{rg,wi)} for (rg,wx) ¢ FS', and FS, =
FS" — {(rg,wg)} U{(rg,2 - wg)} otherwise.

Let as denote ¢ is defined in the same way as ¢S, but in the context of
new feature signature F.S,. We provide also a simple lemma to emphasize the
unary reduction operation creates another scalable feature signature. The lemma
is without proof because it is a direct consequence of the previous definitions.
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Fig. 4. Scalable feature signatures using gzbff and Taug

Lemma 1. Let (FS,>,¢"5 7) be a scalable feature signature over a feature
space F, then @(FS, >, $¥"%, 1) is also a scalable feature signature over the feature
space IF.

So far we have provided a formal framework enabling definition of vari-
ous feature signature reduction techniques. Using the framework, we can sim-
ply define our new reduction technique based on joining of the tuples as a
quintuplet (F'S, >, </>IZ2S , Tavg> @), consisting of the scalable feature signature
(FS,>uwis (;5525 , Tavg) and the reduction operation ®. In Figure 4, we may observe
our new reduction technique can approximate the distribution of the tuples in
the original feature signature well even for smaller number of tuples.

Let us now provide several notes, for the lack of the space without proofs.
First, the ®(FS, >, $I"¥, 7) can create new scalable feature signature with |FS],
|FS| — 1 or |F'S| — 2 tuples depending on the result of ¢ and 7. Second,
in case |F'S| = 1, the reduction operation does not have to be identity, for
example, if the aggregation function 7 penalizes one of the arguments. Third,
(FS, >, ¢52  Trirst) with the reduction operation ® corresponds, except for
minor differences?, to the maximal component feature signatures. However, in
the text we will strictly use the label maximal component feature signatures in
order to distinguish the related work from the scalable feature signatures based
on joining of the tuples.

Having defined an operation reducing the size of a scalable feature signature,
we can now proceed to the definition of a new signature quadratic form filter
distance, generalizing the filter signature quadratic form distance SQF D fjjer
defined in [2], where the filter distance is utilized for the approximate search in
a filter and refine architecture. In order to express multiple superpositions of the
unary operation ®, we use in the following definition ®"(FS, >, ¢*"%, 7) notation
as a shortcut for ® o @(FS, > ¢S 7).

n—times

2 The maximal component feature signatures do not assume a total ordering of the
tuples.
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Definition 5 (Signature Quadratic Form Filter Distance). Given two re-
duced scalable feature signatures (FS,.,, >, ¢S 1) = @FSil=n(FS) > ¢FS1 1)
and (FS,,, >, ¢ 1) = @FS21=7(F Sy, > ¢F'52 1) over a feature space F, and
let SQF D be the signature quadratic form distance, then the distance SQF D% =
SQFD(FS,,,FS,,) is called the signature quadratic form filter distance accord-
ing to SQFD(F Sy, FSs).

The filter distance just simply reduces the original scalable feature signatures
to a requested size and evaluates the original distance measure for the two re-
duced feature signatures. If we define the scalable feature signatures using >,
F2  and Trirst (which corresponds to the maximal component feature signa-
tures), then the signature quadratic form filter distance SQFD7} corresponds
to the filter distance SQF D yijer presented in [2]. The new signature quadratic
form filter distance can be also utilized for the approximate search in a filter
and refine schemes, where the reduced scalable feature signatures can be either
cached or evaluated every time the filter distance is requested. Furthermore, such
retrieval system can decide to temporarily use a reduced version of the scalable
feature signatures also for the refinement step. In order to prevent from storing
multiple versions of the scalable feature signatures, we can implement the reduc-
tion operation as a reversible update of the original scalable feature signatures
enabling to keep just one actual version of the scalable feature signatures.

For example, the reduction operation in Figure 3ab replaces ¢! f ((ra,wq)) =
(rs,ws) by (rs,wz) = Taug((r3, ws), (ra,ws)), removes (ry,ws), inserts pair
((ra,wy), pointer to (rs,ws/)) into a stack and sorts the tuples. The correspond-
ing reverse operation removes pair ({4, w4), pointer to (rs,, ws )) from the stack,

rev

inserts (ry,ws) into the feature signature, replaces (s, ws) by 700 ((r3, wa ),

(ra,ws)) = (r3,ws3) and sorts the tuples, where 775¢ is derived from 7., as:

Tavg (i wi), (rj,wy)) = ((rs — rj - wj/wi) - wi /(Wi — w;), w; — wy).

3 Experimental Evaluation

For the experiments, we make use of the three different datasets, each with dif-
ferent source of ground truth. Specifically, we use a subset of the ALOI dataset
[8] comprising 12,000 images divided into 1,000 classes, each class contain 12
images of a 3D object rotated by 30 degrees; a subset of the Profimedia dataset
[5] comprising 21,993 images divided into 100 classes, where the ground truth
was collected semi-automatically and verified by users; the TWIC dataset [13]
comprising 11,555 images forming 197 classes, where each class represents images
obtained by a keyword query to the google images search engine. Each TWIC
class was further manually filtered by users. The feature signatures were ex-
tracted using a GPU extractor tool [12]. For all three datasets we have used the
same extractor parameters except the multiplicative vector that was adjusted
to each dataset separately. The average number of tuples in feature signatures
was 33 for ALOI dataset and 66 for TWIC and Profimedia datasets. As the query



94 J. Lokoc

Table 1. The time (in milliseconds) needed to evaluate the filter distances using various
number of tuples (1, 2, 4, ..., 64) and the signature quadratic form distance (all)

1 2 4 8 16 32 64 al
Gaussian 0.0006 0.0007 0.0015 0.0039 0.013 0.050 0.193 0.205
Heuristic 0.0004 0.0006 0.0013 0.0031 0.010 0.038 0.149 0.159
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Fig. 5. Mean average precision of the filter distance SQF D;ize utilizing Gaussian sim-
ilarity function

objects, one representative from each class was selected for all three datasets?,
resulting in 1000 query objects for ALOI, 100 query objects for Profimedia and
197 query objects for TWIC. The experiments have run on 64-bit Windows
Server 2008 R2 Standard with Intel Xeon CPU X5660, 2.8 GHz.

In the experiments, we use (F'S, >wla¢m§na7—fzrst) as an implementation of
the maximal component feature signatures and compare them to the scalable
feature signatures using joining of the tuples (F'S, >, gbff, Tavg)- For each re-
duction technique, we utilize six variants of the filter distance SQFD;"Ze using
size € {1,2,4,8,16,32,64} and compare them to the original distance denoted

3 Profimedia dataset is already provided with a set of query objects.



Approximating the Signature Quadratic Form Distance 95

TWIC, Max. components FS TWIC, Scalable FS
o o
S| size=64 S| —— size=8 | |- size=64 _E- —+— size=8
|-&- size=all B RN% -&- size=4 |-&- size=all /Ox\v -8 size=1
—Oo— size=32 8\ —— size=2 —o— size=32 \9\ —A— size=4
SQ |- % size=16 \ YV |-e size=1| §@|-%- size=16 Vo l-4-- size=2
2o ¥ \ \ 20 X \
3 \ 5] ~ X
o o ! o / .
a - \ Io% /
0o 8/0 o g v [oX=} A4
jo Yoyl / AN = DN e
S 555 0\ ' So PPA4 K
¢ |87 o g gV X
gC: § \\\\0 %(; 0,’/ /dkg ‘olol\o-o-0
=3 - X=X \ =3 _O /
ES|x-x-x" X x ‘\ £SO OTx- X+
B x-x— 47 A + 2
_ -+ X\ AT %+ =8 v
é . -X—_A;uX § = § ﬁ\ B-n ;.—ﬁ-—é-—é.—ﬁ‘/ﬁ \sk\ \
=i £-b -'b-b- sg| g|PTF-T- A -h:i:g
° Toho " oko ' 200 1000 50! ° b2 "olto " ok 2ho |
0. 2 0.10 0.50  2.00 10.00 50.00 0.02 0.10 0.50  2.00 10.00 50.00
alpha alpha
Profimedia, Max. components FS Profimedia, Scalable FS
o o
I size=64 —— size=8 | |- size=64 —B— size=1
_|-& size=all -&- size=4 |- & size=all -+ size=8
—O— size=32 —— size=2 —O— size=32 —A— size=4
S &% size=16 g B~y -8 size=1| S |- % size=16 ’E‘V -4-- size=2
»o UN wo g
8 | / B v 3 |
a \ a
8 ¥ \ \ 1 \\
\ ¢ - ¥-0A\O-\D-0-0-0
5° £o-O< K v go ;
& - §= =8 O, ® s g e Y
c g 8< Ol c A
32| AN SECHR SON . N\
Ec s - x - X= X7 X=X VN Eo *_.x.\g:—%ﬂ/+' @- t- +. X\\
[, N (S 2O NN
& ‘=’=ﬂ g|r-r-reFT Sk RoN=gn
© T T T © T 1 T T ] T T T T
0.02 0.10 0.50 2.00 10.00 50.00 0.02 0.10 0.50  2.00 10.00 50.00
alpha alpha

Fig. 6. Mean average precision of the filter distance SQFD;"‘Ze utilizing Heuristic sim-
ilarity function

as size = all. Before we proceed to the experiments comparing the two reduc-
tion techniques, we present a table of average times (in milliseconds) needed to
evaluate the utilized filter distances and the original distance, measured for the
TWIC dataset for both Gaussian and Heuristic similarity functions. In Table
1, we may observe the Heuristic similarity function is slightly faster then the
Gaussian similarity function. We may also observe the expected quadratic time
dependency of the signature quadratic form filter distance on the number of
tuples in the reduced feature signatures.

Let us now proceed to the following two figures, where the filter distances
utilizing the Gaussian similarity function are depicted in Figure 5 and the filter
distances utilizing the heuristic similarity function are depicted in Figure 6. In
both figures, we have focused on the mean average precision (y-axis) measured
for varying parameter o (x-axis). The figures are organized into two columns,
where the first column contains results for the maximal component feature sig-
natures (denoted as Max. components FS), while the second column contains
the results for the scalable feature signatures using joining of the tuples (denoted
simply as Scalable FS). Let us also denote, we have unified the y-axis scaling for
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each row and thus the reader can directly compare the effectiveness of two corre-
sponding filter distances. In all the graphs we may observe the similar behavior
— when decreasing the size of the reduced feature signatures, the filter distances
using maximal component feature signatures loose the effectiveness more rapidly
than the filter distances using scalable feature signatures based on joining of the
tuples. For example, in the second row of Figure 5, we may observe a markable
difference between the corresponding pairs of filter distances for signatures com-
prising 32 and less tuples, where for scalable feature signatures using joining of
the tuples the mean average precision is over 30% even for just 16 tuples, while
for the same number of tuples and the maximal component feature signatures
the mean average precision is just 15%. From the experiments, we may conclude
the scalable feature signatures using joining of the tuples provide better filter
distances than the maximal component feature signatures.

4 Conclusions and Future Work

In this paper, we have introduced the scalable feature signatures, a formal frame-
work enabling definition of various reduction techniques for feature signatures.
As an example, we have defined a new feature signature reduction technique em-
ploying joining of the tuples and utilized the technique for definition of effective
signature quadratic form filter distances. We have also experimentally demon-
strated the filter distances using our new reduction technique significantly out-
perform the filter distances using maximal component feature signatures. In the
future, we plan to examine the scalable feature signatures with other adaptive
distance measures and measure the effectiveness of the corresponding similarity
models. We would also like to design more complex mapping and joining func-
tions in order to provide more options for the reduction of the scalable feature
signatures. We also plan to investigate the performance of the scalable feature
signatures on various different features extracted from the images (e.g., SIFT
or color SIFT descriptors). We would also like to utilize the scalable feature
signatures for more efficient retrieval using new filter and refine schemes or met-
ric/ptolemaic access methods.
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After two decades of research, the techniques for efficient similarity search in metric
spaces have combined virtually all the available tricks resulting in many structural index
designs. As the representative state-of-the-art metric access methods (also called metric
indexes) that vary in the usage of filtering rules and in structural designs, we could
mention the M-tree, the M-Index and the List of Clusters, to name a few. In this paper, we
present the concept of cut-regions that could heavily improve the performance of metric
indexes that were originally designed to employ simple ball-regions. We show that the
shape of cut-regions is far more compact than that of ball-regions, yet preserving simple
and concise representation. We present three re-designed metric indexes originating from
the above-mentioned ones but utilizing cut-regions instead of ball-regions. We show
that cut-regions can be fully utilized in the index structure, positively affecting not only
query processing but also the index construction. In the experiments we show that the
re-designed metric indexes significantly outperform their original versions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Although there have been many metric access methods
(or metric indexes) [1-4] developed in the past decades,
there still emerge new metric access method (MAM)
designs and other approaches addressing the problem of
efficient processing of similarity queries. In the last years
we observe a trend towards even more complex MAM
structures represented by, e.g., the M-Index [5], the D-file
[6], the pivot table (and all its variants) [7], the permuta-
tion indexes [8], and others that are often based on
transformation of the metric space model into another
geometric model. The “good old” indexing structures that
directly partition the metric space, e.g., the M-tree [9],
the (m)vp-tree, the GNAT [10,11], etc, are often

" This paper is an extended version of a previous paper by Loko¢ et al.,
[31].
* Corresponding author.
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skopal@ksi.mff.cuni.cz (T. Skopal).
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0306-4379/$ - see front matter © 2014 Elsevier Ltd. All rights reserved.
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outperformed by the new MAMs. From this perspective,
it might seem that the MAMs relying on direct hierarchical
partitioning of the metric space bring an unnecessary
overhead and so they should be abandoned. However,
although the partitioning-based MAMs exhibit worse
performance in traditional queries, such as the range
query or the k nearest neighbor query [6], for modern
retrieval modalities the compact hierarchies of metric
regions could perform much better. For instance, various
iterative queries within the multimedia exploration area
[12] could benefit from the native hierarchy of metric
regions where a continuous traversal in the metric space is
required. Another application proving the benefits of
metric partitioning is demonstrated by the M-Index that
efficiently combines partitioning with the iDistance [13]
mapping approach. Here a compact hierarchy is crucial if
the M-Index is distributed among many machines [14].
In this paper, we define a new formalism for construc-
tion of compact metric regions - the cut-regions. The
formalism enables to simplify the adaptation of complex
MAM algorithms using ball-regions to employ the cut-
regions instead. In particular, we show how the formalism
can be used for re-definition of the PM-tree structure and
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its construction algorithms. Based on the cut-regions
we introduce new PM-tree construction algorithm that
leads to more compact PM-tree hierarchies (and so faster
similarity search). Note that compact hierarchy of metric
regions is not only beneficial for efficiency of traditional
queries (range or k NN), but it can also better serve as a
hierarchy of clusters that can be used in exploration
queries, data mining, and other tasks. We also implement
cut-regions to other two state-of-the-art MAMs - the
M-Index and the List of Clusters.

1.1. Paper contributions

The paper contributions can be summarized into four
main points:

® The new cut-region formalism that is suitable for
simplified description of compact metric regions. Cut-
regions can be utilized in new or existing metric
indexing structures and algorithms, as demonstrated
on the PM-tree.

® New cheap dynamic construction techniques for the
PM-tree that can compete with expensive strategies of
the original PM-tree (e.g., multi-way leaf selection).

® Adaptation of M-Index and List of Clusters to operate
with cut-regions.

® Thorough experimental evaluation also including com-
parison with the state-of-the-art MAMs.

The rest of the paper is organized as follows. For
readers not familiar with the metric search approach we
provide a quick overview in Section 2. As the cut-region is
the key concept used in this paper, we precisely define the
cut-regions and basic operations on them in the following
Section 3. Then, we redefine the PM-tree index using cut-
regions in Section 4. In Section 5, we present new dynamic
PM-tree construction techniques, while in Section 6 we
describe other MAMs that can benefit from cut-regions.
We provide thorough experimental evaluation in Section 7
and, finally, we conclude the paper and sum up its main
contributions in Section 8.

2. Similarity search essentials

Having a collection of complex unstructured objects
(like multimedia documents, texts, time series, 3D models,
etc.), the search in such collection can hardly be based on
traditional query models that assume the user is familiar
with an explicit structure of the data (e.g., relational
schema used by SQL). Instead, the unstructured objects
have to be transformed into structured feature descriptors
(or descriptor objects)? by means of a feature extraction
procedure. In this step a similarity model is established,
consisting of a universe D of feature descriptors and a
function 6 for measuring dissimilarity/distance of any pair
of feature descriptors. Using a similarity model, the collec-
tion of descriptors can be searched using the query-by-

2 In the rest of the text the term object is used in the meaning of
descriptor object/feature descriptor.

example paradigm (e.g., return the 5 most similar images
to my image of a dog).

2.1. Similarity search

Similarity queries are an intuitive way of how to
express search intent on some objects in a given domain.
Usually, we want to find the k most similar objects to a
given query object g or just find all objects within a
distance r from the query object q. These types of queries
are called the k nearest neighbor (k NN) query and
the range query, respectively. Although different query
types were designed and utilized for image retrieval
problems (Section 1.4 in [2]), these two are the most
common ones.

Definition 1 (Range query). Let e D be a query object
and re Ry be a query radius (or a distance threshold).
Range query is defined as R(q,r) = {0 € X, 5(0, q) <}, where
§ is a distance function on domain D and X = D is a dataset
to be searched.

Definition 2 (k nearest neighbor query). Let qeD be
a query object and keN be a number of requested
nearest neighbors. The k nearest neighbor query is
defined as k—NN(@) ={R<X,|R|=kAVxeRyeX—R:
8(q,x) < 8(q,y)}, where § is a distance function on domain
D and X = D. If multiple such sets R exist, one is chosen
arbitrarily.

2.2. Metric space model for similarity search

In order to search the data collections efficiently
(quickly), the similarity function é in the similarity model
is often restricted to be a metric distance, hence obtaining
the metric space model (see Definition 3). The properties of
metric space enable to construct cheap lower bounds of
the original (computationally expensive) similarity func-
tion which, in turn, are the basis for efficient similarity
search. For more details on construction of lower bounds
and on principles of metric indexing in general we refer
the reader to a monograph [2] or survey [1].

Definition 3 (Metric space). Let D be a domain of feature
descriptors, 5: D x D—R a pairwise distance function on D.
Then M = (D, ) is called a metric space, if the following
postulates hold vx,y,ze D:

(p1) 8(x,x)=0 reflexivity

(p2) x#y = d(x,y) >0 positiveness

(p3) 8(x,y) = 8(y.x) symmetry

(p4) 8(x,2) < 6(x,y)+6(y,2) triangle inequality

Despite the restriction of the similarity function to a
metric distance the metric space model still remains
extensible enough to fit the needs of domain experts
(i.e., practitioners from various domains managing large
data volumes). The metric space approach enables to
utilize not only vector spaces for modeling data, but
also nonvectorial descriptor types, like strings, sets, time
series, etc, and appropriate nonvectorial distance
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functions. As popular distance functions we could name,
for example, traditional L, metrics (vectors), edit distance
(strings), Hausdorff distance (sets), Signature Quadratic
Form Distance (sets) [15] or variants of Jaccard's coefficient
(sets).> For our experiments we have chosen both, the
cheap L, metric (Euclidean distance) and the more expen-
sive Signature Quadratic Form Distance, applying them on
different domains. For more details about specific domains
(datasets), metric distances and experimental results, see
Section 7.

2.2.1. Ball-region

One of the most popular means of metric space region
description is a simple “ball” defined just by one object
and a radius, the same way as the range query is defined.
As the cut-region introduced in the following section is
based on “balls” as well, we define the ball-region and
thoroughly discuss its fundamental properties.

Definition 4 (Ball-region). Let o be an object in the
domain D and r, e Rj be a distance threshold (radius).
Then B = Ball(o, 1,) is called a ball-region. An object x € D is
covered by ball-region B (denoted as x e B) iff §(0,x) <r,.

The ball-region is a basic metric space unit - it can be
recognized in the definition of the two most popular
similarity queries and it is utilized as a data partitioning
technique in popular metric indexes (e.g., in M-tree,
PM-tree, M-Index and List of Clusters). To create a ball-
region partition Pg, the indexes use a preselected database
object o as the region center, while the radius r, is adjusted
according to the objects x; assigned to the partition Pg (i.e.,
8(0,x;) <T,, VX; € Pg). Since the partitions are often only
subsets of the corresponding ball-regions,” the ball-region
partitions are mainly used for efficient pruning of whole
groups of irrelevant objects when searching. The following
lemma guarantees the correctness of the ball-region based
filtering.

Lemma 1 (Overlap test of two ball-regions). Let B=
Ball(o,1,) and Q =R(q,rq) be two ball-regions. If 5(o,q) >
o +T14 then B and Q do not share any object. (Proof: Trivially
implied by metric postulates.)

For example of nonoverlapping ball-regions see Fig. 1.

2.3. Intrinsic dimensionality

Some topological properties (such as the metric postu-
lates, see Definition 3) satisfied by a distance measure are
necessary but not sufficient for design of a successful
access method. Other information based on statistical
analysis over a particular database is needed. The distribu-
tion of pair-wise distances between objects from the
database can reveal whether there exist clusters of objects
and how tight the clusters may be. The intrinsic dimension-
ality [1] can indicate efficiency limits of any access method

3 For more details see Section 1.3 in [2].
4 Ball-regions may overlap, thus not all objects lying inside a ball-
region B have to be stored within the corresponding data partition Pg.

and is defined as

2
_”
S =9

Basically, the intrinsic dimensionality of the data space is a
global characteristics related to the mean x and variance o
computed on the set of pair-wise distances within the data
space. A high intrinsic dimensionality of the data leads to
poor partitioning/indexing by any access method (result-
ing in slower searching), and vice versa. The problem
of high intrinsic dimensionality can be considered as a
generalization of the well-known curse of dimensionality
into metric spaces [16,1].

3. Cut-regions

The popular simple ball-regions, defined only by the
center object and the covering radius, have one main
drawback - they cannot cover tightly a cluster of similar
objects in a sparse metric space (see the sparse ball-region
(o,r) in Fig. 1). Moreover, for metric spaces suffering from
high intrinsic dimensionality [1], the ball-regions become
useless. The reason is simple - since only the center object
is considered as a reference object (pivot), there is no
additional information describing relations between the
remaining objects in the region. In consequence, in high-
dimensional spaces almost all non-empty balls overlap
each other,” so that efficient filtering using Lemma 1 is not
possible.

However, if a static set of k global pivot objects is
employed, the original ball-region can be further cut off by
rings (where a ring is an annulus centered in a pivot),
forming thus a cut-region. In particular, the ring for a given
pivot is determined by the distances from the closest and
the farthest objects in the ball-region to the pivot. The
definition can be further extended to support list of rings
for each pivot. An example of the difference between cut-
region and the ball-region is depicted in Fig. 3.

3.1. Definition of cut-region

The idea of cut-regions was first used in the PM-tree
[17,18], though there it was not described as a standalone
formalism but as a part of the PM-tree structure itself.
Since cut-regions with their operations can be utilized also
in other metric indexes, we have decided to separate this
compact metric unit from the PM-tree into the following
definition.

Definition 5 (Cut-Region). Let (D,5) be a metric space,
Ball(o,1,) be a ball-region, p;e P c D be k global pivots
from an ordered pivot set P, and hr be an ordered set of k
intervals hr; = ¢hri™, hr"™), the tuple CR(o,r,,P,hr) is
called a cut-region. An object x € D is covered by the cut-
region (denoted as xe CR(o,r,, P, hr)) iff x e Ball(o,1,) A
Vieﬂ,k) : 5(p,~,x) € hr,—.

> Note that in high-dimensional spaces almost all objects have the
same (large) distance to each other.
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If r,=0 then all the intervals hr are set to hr"™™ = hr™™*

and the cut-region represents only a simple point. Such
cut-region is denoted as CR(o, 0, P, hr®). For an illustration
of a cut-region see Fig. 2a.

Definition 6 (Minimal cut-region for a set X). Let X
be a subset of a database ScD. Then a cut-region
CR(o,10,P, hr) is called minimal cut-region for X (denoted
as CR(o, 1o, P, hr, X)) iff r, =max xcx{6(0,x)} A V; e(1,k):

hr;"m = miny c x{8(p;, X)) A hri"™™ = maxy c x{8(p;, X))

For an example of minimal cut-region for a set
X ={01,03,03,04,05} see Fig. 2b.

The cut-region in combination with an appropriate set
of global pivots is supposed to be a core representation
of a metric space region. First, the cut-region allows to
determine the center o of a cluster and to control mutual
proximity of the objects via the radius r,. Second, the cut-
region utilizes the rings to cut off the “empty space” of
the original ball-region. In the task of metric space cluster-
ing and indexing, the cut-region is a suitable unit for a
compact cluster description and representation. It is com-
parable to permutation-based regions, where the proxi-
mity of two objects is approximated by the similarity of
their permutations [8], however, the cut-region further
controls the object locality via the ball-region center o and
radius r,.

In the following paragraphs, we propose definitions
and lemmas enabling the formalization of index opera-
tions employing cut-regions. For correct filtering during

range or k NN query processing, we propose the following
lemma.

Lemma 2 (Overlap of cut-region and ball-region). Let
CR(o,1o,P,hr) be a cut-region and Ball(q,rq) be a ball-
region, if 5(0, q) > 1o +T14 or for some interval hr; it holds that
hri 0 (&(p;, q)—1q,5(p;, q)+14) =@ then the cut-region and
ball-region do not share any object (they do not overlap).
(Proof: Trivially implied by cut-region and ball-region defini-
tions, metric postulates.)

For an example of non-overlapping cut-region and ball-
region, see Fig. 3.

Note 1. The overlap test combines ball-region test and
pivot rings test with disjunction (logical OR). Therefore, in
some cases, we can successfully apply this filtering rule
without explicit evaluation of (o, q).

During indexing a database, new objects could be inserted
into existing cut-regions (into data buckets associated with
them, respectively). Since a new object represents a trivial
cut-region, the following definition formalizing the inclu-
sion of two cut-regions is proposed. Let us also note the
inclusion test (or a weaker form of the test) is necessary for
two nontrivial cut-regions (r > 0) in hierarchically organized
indexing structures.

P1

min
hry

h.Tl max

hrzmax hrzmin P2

Fig. 3. Overlap of cut-region and ball-region. The balls of cut- and ball-
region do overlap, but the actual regions cannot share any object because
of cut-region's hr, boundaries.

b

P2

O¢
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03

Fig. 2. (a) Cut-region and (b) minimal cut-region for a set X = {01, 03,03,04,05}.

P1
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X

p2

P1

b
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Fig. 4. In (a) CRg = CR4 but in (b) it is not. In (b), the condition with radii is fulfilled but hrfmin < hr’?min.

Definition 7 (Cut-regions inclusion). The cut-region CR4 =
CR(04,74, P, hr“) includes a cut-region CRp= CR(03,13,
P, hr®) iff 5(0a,08)+15 <Ta A Vicqu : hrf <hr? . Formally
we write CRg = CRa.

The cut-region inclusion is a geometric relation between
two cut-regions CR4 and CRp (depicted in Fig. 4 and imple-
mented in Algorithm 1).

Algorithml. CUTREGIONINCLUSION(CR,, CRg, pivotCount)—
bool.
1: if CR4.1, < 8(CR4.0, CRp.0)+CRp.1, then

2: return false//CRg is not inside CR,
3: end if

: for (i=0; i< pivotCount; i+ +) do

4
5:  if CR4.hr™"[i] > CRg.hr™"[i] or CR4.hr™™[i] < CRg.hr™™[i] then
6: return false//CRp is not inside CR,

7: end if
8: end for

9: return true  [/CRp is inside CRy

3.2. Operations on cut-regions

In this section we define two operations, the cut-region
extension and the cut-region reduction, that are supposed
to be frequently employed operations by dynamic index-
ing techniques.

At some point of indexing it is impossible to fit the
object into an existing cut-region. Then some suitable cut-
region has to be selected and extended by the new
inserted object (again treated as the cut-region) or even
by a new inserted cut-region in the case of a bulk-loading
operation. For such reasons, we define the cut-region
extension as follows.

Definition 8 (Cut-region extension). Let CRj = CR(04,74,
P,hrﬁ) and CRp = CR(0g, g, P,hrB) be cut-regions. Then
CRg = CR(04,TE, P, hrE), where g = max{5(04,0p)+7p, T4} A
Viedk : hrl-E = (min{hr?min,hrfmin}, max{hr{*max,

hr? max}) represents the extension of the cut-region CR4 by
the cut-region CRp. Formally, we write CRg = CRs & CRgp.

In Fig. 5 see an example of cut-region extension.

Note 2. The cut-region extension & is not a commutative
operation, as the ball-region of CRg is centered in 0,4. For
indexing purposes we expect that CR4 represents an index
node and CRp is absorbed by CRj.

The implementation of cut-region extension is des-
cribed in Algorithm 2.

Algorithm 2. CUTREGIONEXTENSION(CR,, CRp, pivotCount).
1: if CR4.1o < 5(CRy4.0,CRp.0)+CRp.T, then
2:  CRp.ro=5(CRy.0,CRp.0)+CRp.T,
3: end if

: for (i=0; i < pivotCount; i+ +) do

if CRy.hr™™[i] > CRg.hr™™"[i] then
CR4.hr™™[i] = CRg.hr™™[i]

end if

if CRy.hr™™[i] < CRp.hr™™[i] then

9: CR,.hr™™[i] = CRg.hr™™[i]

10: end if

11: end for

NS U A

The dynamic rearrangements of the objects within an
index can significantly improve the index performance.
For such reasons, some objects from a set X associated
with a cut-region can be removed and reinserted else-
where. Thus, we discuss also the cut-region reduction
operation. The reduction operation creates constructively
the reduced cut-region from the scratch.

Definition 9 (Cut-region reduction). Let CR(o,r,, P, hr,X)
be a minimal cut-region for a set X and Y c X be set of
objects to be excluded from X. Then CR(o,1,, P, hr,X—Y) is
called cut-region reduced by Y.
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Fig. 5. Cut-region extension of CR4 by CR,4 (i.e., CRy @ CRp).
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Fig. 6. (a) Minimal cut-region for {0,01,0,,03,04,05} and (b) cut-region reduced by {04, 0s}.

See an example of cut-region reduction in Fig. 6. In the
following definitions we describe “helper vectors” that
allow to quantify the differences between cut-regions.

Definition 10 (Change vector for cut-region extension).
Let CRy :CR(oA,rA,P,hrA) and CRp = CR(0g, T3, P,hrB) be
cut-regions. Then k+1 dimensional change vector cv, for
extension CRy @ CRp is defined as cve ={(max (5(04,08)+

rg—14,0), max(hr; ™" —hrf ™" 0)+max(hrf ™ — prf ™,
0), ..., max(hrf ™" — hrf ™" 0) 4 max(hrf ™ — hr{ ™ 0y).

Definition 11 (Change vector for cut-region reduction). Let
CR(o,14,P,hr,X) be minimal cut-region for a set X, Y c X
be set of objects to be excluded from X. Let CRg
be CR(o,ry,P,hr,X) reduced by Y. Then k+1 dimen-
sional change vector cv, for cut-region CR reduction is
defined as change vector cv, of the cut-region extension
CRg & CR.

The change vectors provide a basic quantitative infor-
mation about the transformation cost of a cut-region.
The first dimension refers to the change in the radius of

X P2
ChangeVector|[2]

CRy ChangeVector|[0]

Fig. 7. Change vector of the cut-region extension CR, = CR4 & CRg.

the ball-region, while the other k dimensions refer to the
change in intervals defining individual rings. Depending
on whether the change is extension (change from smaller
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cut-region to larger) or reduction (change from larger cut-
region to a smaller), the respective change vector is
applied. As an example of change vector for cut-region
extension see Fig. 7.

The change vector stores information useful for indexing
algorithms that need to select cut-regions based on some
criteria. The criteria are often based on an aggregation of the
change vector components. In Algorithm 3 we demonstrate
how to determine and aggregate (see line 12) the change
vector of the cut-region extension (to obtain a numeric
stat, e.g., the cut-region growth). The result can serve as a
criterion in node selection strategies, node split functions
using cut-regions, reinsertion strategies employing cut-
regions, etc.

Algorithm 3. GROWTHOFCUTR EGIONEXTENSION(CRy, CRp,
pivotCount, bestResultSoFar, agr)— Result.
1: Let CV be a (pivotCount+ 1) dimensional vector of zeros [/ CV is a
ChangeVector
2: if CRy.1o < 8(CRy.0,CRp.0)+CRp.1, then
3:  CV[0]=8(CR.0,CRp.0)+ CRp.To — CR4.T,
4: end if

5: for (i=0; i < pivotCount; i+ +) do

6: if CRy.hr™™[i] > CRy.hr™"[i] then

7: CV[i+ 1]+ = CRy.hr™"[i] — CRg.hr™"[i]
8: end if

9: if CRy.hr™™[i] < CRz.hr™™[i] then

10:  CV[i+1]+ = CRg.hr™™[i]— CRy.hr™™[i]
11:  end if

12:  Result = aggr(CV) || aggregate values of CV
13:  if Result > bestResultSoFar then

14: break
15:  end if
16: end for

17: return Result

4. Revisiting PM-tree

The PM-tree [17,18] is a metric index that conceptually
merges the pivot table [7] with the M-tree [9]. More
specifically, the PM-tree enhances the original M-tree
hierarchy by the information related to a static set of k
global pivots p; e P ¢ D. Thus, the ground entries (repre-
senting data) contain also distances to the global pivots,
while the original ball-region (inherited from M-tree) is
further cut off by a set of rings (centered in the global
pivots), so the region “volume” becomes more compact.
If we look carefully at the definition of the PM-tree routing
entry [17,18], we observe that the PM-tree has already
introduced the cut-regions, however, not as a formalism
for independent regions in metric space but as a part of
the PM-tree data structure itself.

In the following subsections we quickly review the
basic PM-tree principles and slightly redefine the structure
of the PM-tree routing and ground entries to comply with
the cut-region notation used in this paper. In the original
papers the PM-tree substructure representing the minimal
cut-region for a set X is defined as

CR(0) = [0, T, hr™" hr™™],

where o is the center object of the ball-region, r, is the
radius of ball-region constructed as maximal distance
5(0,%;), Vx; € X, and hr™"/hr™* are k-dimensional arrays
of min/max distances from x; to k global pivots. The set X is
supposed the contain objects of a PM-tree node (inner
node or leaf).

4.1. PM-tree structure

The PM-tree consists of inner nodes with routing entries
and leaf nodes with ground entries. A routing entry in a PM-
tree inner node is defined as

routpy(0) = [CR(0), 5(0, Par(0)), ptr(T(0))],

where CR(0) is minimal cut-region for objects stored in the
child node, (o, Par(0)) is the distance from o to the parent
routing object, and ptr(T(0)) is a pointer to the child node.
A ground entry in a PM-tree leaf is defined as

grndpy(0) = [CR(0), id(0), 5(0, Par(0))],

where CR(0) is a point cut-region,® 5(0, Par(0)) is the distance
from o to the parent routing object, and id(o) is a unique
identifier of object o. For a fragment of PM-tree hierarchy,
see Fig. 8.

The combination of all the k entries' ranges (stored
in the cut-regions) produces a k-dimensional minimum
bounding rectangle (MBR), and hence the global pivots
actually map the metric regions/data into a pivot space
of dimensionality k. The number of pivots can be defined
separately for routing and ground entries—we typically
choose fewer pivots for ground entries to reduce storage
cost (i.e., k = KinnerNode > KieafNode )- The pivot space mapping
abstraction is much like that one used in pivot tables [7];
however, in the PM-tree case the pivot space also includes
the hierarchy of MBRs (similar to R-tree).

4.2. PM-tree querying and construction

When issuing a range or k NN query, the query object
is mapped into the global pivot space—this requires p
extra distance computations §(q,p;), Vp; € P. The query
processing starts in the root node and checks all routing
entries' cut-regions for overlap with the query ball apply-
ing Lemma 2. If a cut-region cannot be filtered, the child
node of the corresponding routing entry is visited. If a leaf
node is reached, all stored cut-regions are checked using
Lemma 2 and all non-filtered objects are included in the
(candidate) result set. Besides Lemma 2, also the parent
filtering rule [9] can be utilized to improve the filtering
power of the PM-tree. Note that applying Lemma 2 does
not require many explicit distance computations, so the
PM-tree usually achieves significantly lower query cost
when compared with the M-tree [17-20].

The PM-tree construction algorithm is a simple exten-
sion of the original M-tree algorithm. The only difference
is the maintenance of the cut-region's hr’™"/hr™® arrays.

6 Minimal cut-region for set X = {o}.
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5. Improving the PM-tree construction

In this section, we apply the basic cut-region operations
to the new indexing techniques in PM-tree. This comprises
the cut-region inclusion, cut-region extension, reduction
and how to determine the change vector of the cut-region
extension (all defined in Section 3.2). Then we consecu-
tively introduce our new dynamic PM-tree construction
techniques that use the cut-regions (leaf selection strate-
gies, node splitting and forced reinsertions). Let us also
emphasize we consider the newly inserted object as a
point cut-region. The pivot count is an input parameter in
most of the algorithms, but it is supposed a static value for
the whole lifetime of the structure and cannot be dyna-
mically changed.

5.1. Leaf selection strategies using cut-regions

The PM-tree [18] is generally built in the bottom-up
manner, so a suitable leaf selection strategy has a crucial
impact on the quality of the resulting hierarchy as has
been shown for its predecessor M-tree in [21,22]. The
original PM-tree construction technique is very simple - as
in the original M-tree construction technique, the PM-tree
employs only the ball-regions determined by its routing
entries. In fact, the PM-tree construction algorithms ignore
the rings used to cut empty space in the covering ball-

routg(0,) Touty(os)

rout, (04)

‘ | [(‘u,r,,whrmi",hr'"“"],5(04, 03) | ‘

pir(T(o;)
)

[ [04,0,Ar™ = hr™e), 8(04, 04) | [03,0,hr™™ = hr™e],8(05, 04) | |

grnd(04) grnd(o3)

Fig. 8. Structure of PM-tree. The entry [o;, ru(,hr’”i", hr™™] refers to CR(0;).
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Fig. 9. Extension of a cut-region during single-way leaf selection strategy
- original approach using ball-regions (sw_BR arrow) and new method
using cut-regions (SW_CR arrow).
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regions, thus a newly inserted object can drastically
increase the volume of the corresponding cut-regions
(see sw_BR arrow in Fig. 9). Therefore, our new leaf
selection strategy considers also the rings delimiting the
borders of the cut-regions (see sw_CrR arrow in Fig. 9).
In other aspects, the new leaf selection strategy follows
the necessary rules that preserve the original PM-tree
invariants [18].

More specifically, the new technique utilizing the cut-
regions changes the notion of the “good” candidate node
for all variants of the leaf selection strategies (single/multi/
hybrid-way). For the single-way leaf selection strategy
(Fig. 10a), such node becomes the best candidate, the
parent routing cut-region of which covers the newly
inserted object (wrapped in the cut-region) and its routing
object is as close to the new object as possible. All covering
child nodes of the best candidate node are then followed
down to the next PM-tree level, while only the best one is
selected as the candidate node. After the pre-leaf level is
reached, the candidate pre-leaves are checked for the best
routing entry and the respective leaf is returned as the
finally selected leaf. In the situation when no candidate
node can be selected at a level (i.e., the new object is not
covered by any of the node's cut-regions), the technique
selects such node that guarantees the minimal extension
of its cut-region (for more details see Algorithm 4). For the
multi-way leaf selection strategy (Fig. 10b), more nodes
can become good candidates (cut-regions of their parent
routing entries cover the newly inserted object) and all
covering child nodes of the candidate nodes are then
followed down to the next PM-tree level. The multi-way
leaf selection leads to the optimal leaf node, however, for
much higher construction cost. For more details about the
multi/hybrid-way leaf node selection techniques see [22].

Algorithm 4. SINGLEWAYFORCUTREGIONS(PMTreelnner
Node, NewPointCR, pivotCount)— Leaf.
1:  candidate=null

|/first, we try to find node containing new CR
2: for each routingEntry in PMTreelnnerNode do

3: if
CuTREGIONINCLUSION(routingEntry.CR, NewPointCR, pivotCount)
and
S(routingEntry.CR.0, NewPointCR.0) is minimal then
4: candidate=routingEntry
5: end if
6: end for
6: //if we haven't found perfect candidate yet
7. if candidate is null then
8: bestResultSoFar=MAX_VALUE
9: for each routingEntry in PMTreelnnerNode do

leaves H

[

Fig. 10. (a) Single-way and (b) multi-way leaf selection strategies.
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P2

Fig. 11. Splitting overfull node using mCutReg strategy. In this case node
capacity is 5 objects and minimal node utilization is 2 objects. New
centers after split are 0, and o0s.

10: result = GRowTHOFCUTREGIONEXTENSION

(routingEntry.CR, NewPointCR,
pivotCount, bestResultSoFar, SUM)

11: if result < bestResultSoFar then
12: candidate=routingEntry

13: bestResultSoFar=result

14: end if

15: end for

16: end if

17:  CutRecioNExtension(candidate.CR, NewPointCR, pivotCount)

18: if candidate.Ptr(T(0)) is leaf then
19:  return candidate.Ptr(T(0))
20: end if

21: return SINGtEWavForCut Recions (candidate.Ptr(T(0)), NewPointCR,
pivotCount)

5.2. Node splitting using cut-regions

The new node split algorithm is based on the original
(P)M-tree splitting — the distance matrix is evaluated, two
new routing entries are selected from the overfull node
and all the remaining entries are distributed between
them. Similarly as in the leaf selection strategy, the original
(P)M-tree split algorithm considering only ball-regions
unnecessarily “inflates” (extends, in our notation) the
newly created cut-regions in the PM-tree. Hence, our
new split algorithm focuses on the “volume” of candidate
cut-regions. However, to create the candidate cut-regions
and check their properties is an expensive task. Therefore,
instead of all possible pairs of candidates only a fraction is
checked.

When assigning an entry e, from the overfull node
to a candidate routing entry cr;, a growth score func-
tion GS(cr;, e,) = GROWTHOFCUTREGIONEXTENSION(CT;, ey,
pivotCount, MAX_Value), SUM is used. Checking one can-
didate pair consists of two steps, both employing the
CutREGIONEXTENSION(...) operation. First, until the minimal
node utilization is reached, the entries e, with minimal
GS(cri,e) and GS(crj,ey) are alternatively distributed
between the two candidates cr; and cr; (cut-region exten-
sion operation is performed after each assignment). When
the minimal node utilization is reached, the entry e, is
assigned to cr; if GS(cry, ex) < GS(crj, ey), otherwise the entry
ey is assigned to cr;.

Finally, we select such candidate pair the greater cut-
region of which is minimal among all candidate pairs
(analogy to mMaxRad heuristic from (P)M-tree). The size

of cut-region is measured as a sum of all ring widths.
We denote the split heuristics as the mCutReg (see also
example in Fig. 11).

5.3. Reinsertion using cut-regions

When redesigning forced reinsertions for cut-regions, the
most important question is — which objects are optimal for
forced reinserting from an overfull node? Instead of con-
sidering only the most distant objects from the parent
routing object, the hr’™" and hr'™® distances to global pivots
also have to be taken into account. Trivially, for k reinserted
objects, all possible k-tuples of candidates can be checked
(i.e., removed from the cut-region while the resulting cut-
region is scored). To reduce an indisputable overhead of the
trivial solution, we propose a simple heuristics selecting sub-
optimal candidate tuple of objects for reinserting.

Let pi-nnerwf (p?u[erlef ) be the absolute value of differ-
ence of two closest (farthest) objects from pivot p; (see
Fig. 12). Then, each object o; closest (farthest) from pivot
pi can be assigned a value p!"™™"% (p?"**™P!. see the table
in Fig. 12. Such value can be utilized as a criterion for
reinserting - the value determines how much the cut-
region is reduced (according to the pivot p;). Moreover, if

. . innerDiff ,_outerDiff,
an object o; has assigned more p; Di ) values,
their sum determines the overall reduction of the cut-
region. Hence, we use this sum as a score function when
determining a k-tuple of objects that should be reinserted
- we reinsert k objects with the highest score. When
determining the final score from the set of partial scores,
we also consider 0°“®™ that represents the reduction of
the cut-region radius r, (o is the ball-region center), see

x
P2
innerDif f
P2, ) 01| 02| 03 | 04| 05| 06
03k et mnerif [0 [0 [0 [4 oo
pzouterlef D1 i
pouter2iff| o [0 [1,2[o [0 |0
04 N pomeriff|o o [2 [ofo|o
p. -
1 pzouterlef3 olo olo|o
01 oouterdiff [o [0 [2,500 o |0
/ /pl‘""""‘ff SCORE = SUM(...)
outerDiff
D1
Fig. 12. Forced reinsertion of objects from a cut-region.
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Fig. 13. Two objects from an overfull PM-tree node are reinserted
according to original (RI_BR) and new (RI_CR) reinsertion strategy.
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Fig. 14. (a) List of Clusters and (b) List of Cut-Regions.

the last row in the table of Fig. 12. The subsequent
reinsertion processing is the same as used in [21,22] for
forced reinsertions in the M-tree. In Fig. 13 see a compar-
ison of original reinserting strategy driven just by ball-
regions (see RI_BR arrow) and new strategy driven by cut-
regions (see RI_CR arrow). The new strategy leads to a
more compact cut-region. In both cases the operation of
cut-region reduction is utilized.

6. Revisiting MAMs employing ball-regions

In this section, the cut-regions are used to improve two
other popular MAMs utilizing ball-regions within their
structure - the M-Index [5] and the List of Clusters (LoC)
[23]. First, we describe the extension of the List of Clusters
to the List of Cut-Regions where cut-regions affect the
efficiency of both indexing and querying. Second, we
describe very straightforward extension of the M-Index,
where cut-regions reduce the internal cost of query
processing. In the following paragraphs, we shortly explain
the main concepts of the extended MAMs and put stress
mainly on the extensible parts of the indexes. To not
confuse the reader, we also remember that a cut-region
in the simple form of point can be used to represent
a single object mapped into the pivot space (pivot table
entry), which is again useful for formal and uniform
description of the structure and the algorithms.

6.1. List of Cut-Regions

In this section, we start with summary of the List of
Clusters and then we describe our new metric access
method - the List of Cut-Regions.

6.1.1. List of Clusters

The List of Clusters was designed as a simple memory-
based MAM consisting of the ordered list of entries
(representing metric ball-regions) each containing list of
data objects. The entry in the List of Clusters is defined as

entry;,c(0) =[0,1,,L],

where o is the center of the metric ball, r, is the radius
8(0,x;) <T,, VX; € L, where L is the list containing objects x;.
The main feature of the List of Clusters is that objects from
a possible intersection of two ball-regions represented by

two entries are deterministically stored in just one entry.
This property is achieved by a simple dynamic indexing
technique, where the algorithm strictly respects the order-
ing of the already created entries in the list. More speci-
fically, insertion of the new object x starts with the first
entry entry;,d0) and only if §(o,x) > r,, the second region
in the list is checked for placement and so on. If no ball-
region in the list spatially covers the new object, a new
entry is created and inserted to the end of the list. This
simple technique guarantees the deterministic location of
the objects belonging to possible “intersections” of all ball-
regions in the list. LoC can be constructed also in a static
way using range or k NN queries for creation of the entries.
For details of center selection strategies and how to set
their radii, see [23]. Let us also note more ball-regions
result in higher indexing cost, while for the query perfor-
mance there exists an optimal number of clusters.

The List of Clusters structure also determines the query
processing algorithm that can benefit from the cluster
ordering by a new stop condition - if the whole query ball
lies inside an actually processed cluster in the list, the
other clusters do not have to be processed. The stop
condition is demonstrated in Fig. 14a, where after checking
cluster pg the query qo processing can be stopped although
query qo intersects also with the ball of cluster p,. Besides
the stop condition, the range and k NN query processing
algorithms (recently improved in [24] for the price of
higher overhead of the heap operations) employ the
traditional ball-filtering rule (see Lemma 1).

6.1.2. List of Cut-Regions structure

The proposed List of Cut-Regions (LoCR) is a slight
modification of LoC where the ball-regions are replaced by
the cut-regions. The i-th entry in the List of Cut-Regions is
defined as

entry! ,cz(0) = [CR(0, T, P;, hr, L), L],

where CR(...) is the minimal cut-region for a set L that is
the set of objects stored in a data bucket associated with
the entry. In addition to this straightforward extension of
LoC, the List of Cut-Regions also assumes LoC-specific
schema for the selection of pivots p;eP;. Instead of
external selection of pivots, they are determined by the
list itself. Because an i-th entry in LoC can be only accessed
after the preceding i—1 clusters were accessed, the
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respective i—1 cluster centers could be used as the pivots
for the i-th Cut-Region. Hence, the LoCR entries do not
share the same set of pivots, but P cP, c--cP. To
reduce the number of pivots in P; (and thus reduce the
time complexity of the cut-region operations), we can
limit the maximal number of pivots for entries with large i.
For an example of the List of Cut-Regions see Fig. 14b.
Similarly as for point cut-regions in PM-tree ground
entries, the precomputed distances between data objects
and their pivots can be stored in List of Cut-Regions
as well.

The proposed extension of the LoC structure is straight-
forward, however, what makes the extension elegant
when using cut-regions is the implicit selection and usage
of pivots in the indexing and querying algorithms
described in the following two subsections.

6.1.3. List of Cut-Regions indexing

The dynamic indexing of List of Cut-Regions is similar
to the dynamic indexing of List of Clusters, where the
indexing respects the ordering of clusters, i.e., the entries
from the list are always sequentially processed in the
predefined order. If no entry contains new object within
its ball-region, a new entry is created and appended to the
end of the list. Hence, if the new object is inserted into the
i-th entry, i—1 distances to centers of previous (unsuc-
cessfully filtered) entries are known that can serve as i—1
pivots. Thus, i-th cut-region in the list can dynamically
maintain i—1 rings centered in the centers of previously
processed entries (for no additional cost).

Algorithm 5. CREATELISTOFCR(k, minUtil, ), maxPivot
Count, Data)~ List of Cut—Regions.

1: Let P and LoCR be two empty lists
2: pivotCount=0

3: while Data.Count() > 0 do

4:  CR=CreateNewCruster (k, minUtil, A, pivotCount, Data, P)
5:  LoCR.Add(CR)

6: pivotCount = MIN(LoCR.Count(), maxPivotCount)

7: end while

8: return LoCR

In the case a dataset is known beforehand, a bulk
loading algorithm can be designed to create a more
compact List of Cut-Regions. We propose a bulk-loading
algorithm employing k NN queries in Algorithm 5. The key
method used in this algorithm is CrearENEwCLUSTER(), see
Algorithm 6, that selects a new cluster center among
objects not yet indexed (see details in [23]), performs k
NN(newCenter) query and selects a subset from the query
result to form the new cut-region. Within the algorithm,
we propose two heuristics for object selection:

® The SimpleQuery heuristics just creates new cut-region
from all objects in the k NN query result.

® The CumulativeQuery heuristics processes objects
according to their distances to the newCenter, where
first minimal utilization of the cut-region is achieved.
Then the heuristics selects consecutively such objects

from the ordering so that the extension of cut-region
is limited by a threshold.” If some object extends the
actual cut-region beyond the predefined threshold,
the creation of cut-region is finished and all objects in
the new cut-region are excluded from the set of not
indexed objects.

The purpose of the CumulativeQuery heuristics is to
create more compact regions while, on the other hand, the
SimpleQuery heuristics creates smaller number of cut-
regions.

Algorithm 6. CREATENEWCLUSTER(k, minUtil, A, pivot
Count, Data, P)— Cut—Region.
newCenter=SeLecTOPTIMALCENTER (Data, P)

CR=new CutRecion(newCenter, pivotCount)
Data=Data.Remove(newCenter)

PAdd(newCenter)

AW N =

//additive creation of the new cluster

count=growth=growthSum=0

candidates =k-NN(newCenter from Data

while candidates.Count() > 0 do
obj=the closest object in candidates
candidates = candidates - obj

0: CRopj=new CutRecioN (obj, pivotCount)

S9RIU

11: if heuristic = SimpleQuery then
12: growth = GrowTHOFCUTREGIONEXTENSION(CR, CR,p;, pivotCount,
MAX_VALUE, SUM)

//stop condition for object deteriorating
//Cut-Region more than average case
13: if count > minUtil and count > 0 and
growthSum/count < growths\ and
heuristic=CumulativeQuery then

14: return CR
15: end if
16: end if

//insert new object into the cluster
17: CutREGIONEXTENSION(CR, CR,p;, pivotCount)
18: Data.Remove(obj)
19: count = count+1
20: growthSu = growthSum-+growth
21: end while

22: return CR

6.1.4. List of Cut-Regions query processing

As for indexing, also the query processing respects the
ordering of the clusters, furthermore, the List of Cut-Regions
uses more compact cluster representations. In general, when
processing a query in the i-th cluster, distances from the
query object to the previously processed i—1 centers of the
clusters are available, and so Lemma 2 could be applied
for query and the cut-region overlap check. Let us remember,
not all i—1 previously processed centers are considered as
pivots; only first maxPivotCount centers are employed as
pivots (to avoid very large pivot sets P;).

The cut-regions enable filtering without explicit eva-
luation of §(q, CR;.0) using the filter-and-refine schema. In
the filter step the distances &(q,CR;.0) are computed
(j < maxPivotCount) and such LoCR entries are filtered out
the cut-regions of which do not overlap with the query. In

7 The average size of the extension obtained so far can be utilized.
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the refine step each remaining non-filtered i-th LoCR entry
is checked by computing &(q, CR;.0) (if not already com-
puted, i.e., just for i > maxPivotCount).

6.2. M-Index revisited

The M-Index [5] is a dynamic and persistent MAM
combining almost all known metric filtering principles.
The principles can be divided into two orthogonal
approaches - metric space partitioning using a metric
cluster tree and the locality preserving mapping (based on
iDistance) of the database objects into keys in one-
dimensional real domain, so the data objects can be stored
in the B*-tree index. Using these two techniques, the data
objects/partitions that cannot be pruned by the cluster tree
can be at least quickly located and accessed in small blocks
using interval queries to the B*-tree. Both the locality-
preserving mapping and the cluster tree utilize only pre-
computed distances between database objects and a static
set of global pivots, so the indexing cost is just linear
according to the size of the database. Moreover, in the case
of an expensive distance function, the precomputed dis-
tances can be attached to the database objects stored in the
B -tree to reduce the number of explicit distance computa-
tions during query processing. From this point of view, the
M-Index can be considered as an I/O-cost optimized Pivot
Table implementation. Since the Pivot Table does not use
any kind of the partitioning, we cannot utilize the cut-
regions (except as a synonym for the Pivot Table entry) in
this part of the M-Index and we have to focus only on the
cluster tree.

The cluster tree utilizes the repetitive Voronoi parti-
tioning that organizes data objects into groups according
to their relation to the set of global pivots. This relation is
formalized using a distance permutation [8] representing
the ordering of the global pivots to the database object.
The grouping is then defined simply — two objects belong
to the same group if their corresponding distance permu-
tations (or their prefixes) are equal. Objects in each group
are further wrapped by the ring (two ball-regions) cen-
tered in the corresponding closest global pivot, where the
min/max radii of the ring are updated during indexing.
Having such data structure, the filtering based on the
hyperplane and ball partitioning can be utilized during
the query processing (see Fig. 15a). For such parts of the
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cluster tree that cannot be safely pruned, the query is
transformed to a series of interval queries into B*-tree
and, finally, the returned B -tree leaf nodes are sequen-
tially searched.

6.2.1. Cut-region extension of M-Index

To extend the M-Index, we just replace the ball-regions
in the cluster tree by the cut-regions, so the filtering power
of the cluster tree can be increased and thus the number
of B*-tree queries can be reduced. Furthermore, we can
define cut-regions also for lower levels of the cluster tree,
where the centers and radii of the cut-regions are the
same as centers and radii at higher levels, but the cut-
regions rings are more tight. The reason is that the clusters
contain less objects at the lower levels of the cluster tree
and thus the rings can better approximate the actual
“shape” of the sub-regions (see Fig. 15b). Since all informa-
tion for implementation of cut-regions is available (the
distances to all global pivots are evaluated for each
inserted object), the extension consists only of the main-
tenance of the cut-region rings in the cluster tree during
indexing and query processing (using Lemma 2).

7. Experimental evaluation

In this section, we extensively test the cut-region-
enhanced MAMs (PM-tree, M-Index and List of Cut-Regions)
and their original variants to examine the expected perfor-
mance gain in indexing and querying. As usual in papers
addressing metric searching, we mainly focus on the number
of distance computations spent by indexing and querying
because for expensive distances the number of distance
computations strongly correlates with the real time and at
the same time the number of distance computations is a
hardware and platform independent performance measure.
However, the number of distance computations is not deci-
sive enough in cases the utilized distance measure is cheap
(e.g., L, distances have just linear time complexity) and thus
for cheap distances we prefer to present both real time and
the number of distance computations.

7.1. The testbed

In order to examine cut-regions in very different
conditions, we have mainly used four different datasets
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Fig. 15. M-Index cluster tree without (a) and with cut-regions (b).
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Fig. 16. Distance distribution histograms for all used datasets.

(two real-world and two synthetic) and three different
distance measures. The respective distance distribution
histograms indicating the intrinsic dimensionality (see
Section 2.3) are depicted in Fig. 16. Specifically, we have
utilized:

® The ALOI database [25] comprising 72,000 images
extracted by the tool and settings presented in [26].
To compare two feature signatures from the ALOI
dataset, the Signature Quadratic Form Distance (SQFD)
using Gaussian Similarity Function was employed where
alpha was fixed to 0.01. The usage of alpha=0.01 results
in metric spaces with low intrinsic dimension (~4.3)
but slightly less precise search [27].

® A part of the CoPhIR [28] database comprising 250,000
76-dimensional feature vectors (12-dimensional color
layout and 64-dimensional color structure MPEG7
descriptors) extracted from selected images from
Flickr.com. The CoPhIR dataset is vectorial and the
Euclidean distance was employed to compare two
object descriptors. The intrinsic dimensionality of the
metric space is 6.1.

® A synthetic CLOUDS database comprising 100,000
clouds (sets of points), each containing up to 60
6-dimensional points from the unit hypercube. For each
cloud, its center was generated at random, while the 59
remaining points were generated under normal dis-
tribution around the center. To compare two clouds of
points from the CLOUDS dataset the Hausdorff distance
[29] employing Euclidean distance as the internal
point-to-point distance was used. The intrinsic dimen-
sionality of the metric space is 13.6.

® [n order to model a growing intrinsic dimensionality of
a distance space, we have also created a synthetic
UniformVectors dataset comprising 100,000 uniformly
distributed 10-dimensional vectors (employing the
Euclidean distance). We have used this dataset in the
very last experiment, where we have investigated the
index behavior under growing intrinsic dimensionality.

Whereas ALOI and CLOUDS datasets employ expensive
distance measures with quadratic time complexity
according to the number of centroids in a feature

Table 1
Abbreviations of the presented methods based on PM-tree.

Abbreviations SW, Single-Way leaf selection;
MW, Multi-Way leaf selection;

BR, ball-region; CR, cut-region

Method Description

SW(BR, BR) SW using BR for cand. selection and split
SW(BR, BR, BR) SW(BR, BR) + BR reinserting

MW(BR, BR) MW using BR for cand. selection and split
MW(BR, BR, BR) MW(BR, BR) + BR reinserting

SW(CR, BR) SW using CR for cand. selection, BR for split
SW(CR, BR, CR) SW(CR, BR) + CR reinserting

MW(CR, BR) MW using CR for cand. selection, BR for split
MW(CR, BR, CR) MW(CR, BR) + CR reinserting

SW(CR, CR) SW using CR for cand. selection and split
SW(CR, CR, CR) SW(CR, CR) + CR reinserting

MWI(CR, CR) MW using CR for cand. selection and split

MW(CR, CR, CR) MW(CR, CR) + CR reinserting

signature (or points in a cloud respectively), the CoPhIR
and UniformVectors datasets with the Euclidean distance
represent an example of a cheap distance space. For the
latter two datasets the number of spent distance com-
putations is not the main criterion for efficiency evalua-
tion. Hence, in the experiments with them we always
present graphs for both real time and the number of
distance computations, while in the experiments with
ALOI and CLOUDS datasets we present graphs with just
the number of distance computations (abbreviated
as DC).

Regarding the pivot sets used in cut-regions, we have
used simple random selection of pivots (from the respective
dataset). Although there have been many sophisticated pivot
selection strategies developed [30], their benefits over ran-
dom pivot selection are only significant for small numbers
of pivots (say up to a few tens), where the chance to select
a good pivot by random is lower. To measure the query
performance, we have used mainly 10NN queries, where the
query costs were always averaged for 100 randomly selected
query objects from the database (query objects were not
indexed). The tests ran on an Intel Core i7 920 3.4 GHz, 9 GB
RAM, Win 7 x 64.
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Fig. 17. PM-tree and expensive signature quadratic form distance - indexing and query costs depending on the growing number of global pivots. (a) ALOI,

(b) ALOI and c) ALOI, 40 pivots.
7.2. The results

In the first set of experiments, we have investigated
combinations of the new proposed construction techni-
ques for PM-tree and compared them with the original
PM-tree construction techniques. In the second set of
experiments, we have investigated new inner parameters
of the other extended MAMs and discussed their impact
on the index performance. Finally, we have compared
the cut-region-extended PM-tree, List of Cut-Regions and
M-Index all together with several other state-of-the-art
metric access methods, investigating also the impact of
growing intrinsic dimensionality.

7.2.1. PM-tree

The first set of the experiments focuses on all the
variants of the PM-tree using ball-regions or/and cut-
regions. For better orientation in the plenty of PM-tree
construction methods, we use abbreviations (see Table 1)
in the form of LeafSelection(CandidateSelection, SplitHeuristic,
Reinserting), where LeafSelection is either single-way (SW) or
multi-way (MW) leaf selection strategy, CandidateSelection
uses either the original ball-region (BR) or new cut-region
(CR) based heuristic for best candidate node selection,
SplitHeuristic uses either the original ball-region mMaxRad

or new cut-region mCutReg based node splitting strategy,
and finally, Reinserting is optional parameter using either
original ball-region (BR) or new cut-region (CR) based
reinserting heuristic (see Section 4). For reinserting, we
have set the recursion depth to 6 and the number of
removed entries to 1 [22]. We have set the capacity of the
PM-tree inner nodes to 20 entries, while the capacity of the
leaf nodes was dynamically computed in order to have the
same size for inner and leaf nodes. Let us note, for CoPhIR
dataset with relatively small vectorial data the capacity of
the leaf nodes ranged from 22 to 33 according to the
number of global pivots used. The minimal utilization of
the nodes was set to 40% and the same number of pivots
both for ground and routing entries was used.

In Fig. 17, we have measured the indexing and query costs
under varying number of global pivots that significantly
affects the index performance when expensive signature
quadratic form distance is used. Since the distance is quite
expensive and the distance space has low intrinsic dimen-
sionality, we have utilized construction methods involving
reinsertions that provide slightly better query performance
for some additional construction overhead. We may observe
that there is an optimal number of pivots (80) in the (a)
graph for all the compared methods when considering query
performance, while in the (b) graph for all the techniques the



indexing costs grow linearly (let us note there is a logarith-
mic scale on x-axis). We may also observe that using more
than 80 pivots negatively affects the query performance; the
initial query cost of mapping the query object to the pivot

space becomes significant.

In all the graphs, we may observe the standard trade-
off behavior of the original ball-region based leaf selection
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methods - either the indexing is cheap and query costs are
high or vice versa. However, on the ALOI dataset the cut-
region based leaf selection methods break this “rule” as
clearly shown in the (c) graph where the query and

construction costs are shown against each other in the
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Fig. 18. PM-tree and cheap Euclidean distance measure - indexing and querying costs depending on the growing number of global pivots. (a, b) CoPhIR,

(c,d) CoPhIR and (e) CoPhlIR, 10 pivots.
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index is located in the origin of the coordinate system.
In the graph the SW(CR, CR, CR) and MW(CR, CR, CR)
methods outperform all the other variants. We may
observe that the (otherwise expensive) multi-way leaf
selection strategies are cheap in this case, because the
more compact cut-regions limit the number of visited
routing entries during the leaf selection process, while
the more compact hierarchy neglects the additional costs
for the multi-way leaf selection method. Using the cut-
region based indexing strategies for the expensive SQFD
metric we obtain 2 x better query performance using the
cheap single-way leaf selection and also 7 x lower index-
ing costs for multi-way leaf selection strategies comparing
to the original ball-region based strategies.

In Fig. 18, we have again measured the indexing and
query costs for CoPhIR under varying number of global
pivots, however, now with the Euclidean distance. As the
distance is cheap and the intrinsic dimensionality of the
CoPhIR space is higher than that for ALOI, we do not
consider reinserting strategies that just slightly reduce
the number of distance computations spent by queries.
If we consider again just distance computations as a
performance measure, we may observe that the first two
graphs (first line in Fig. 18) resemble the first two graphs in
Fig. 17. Furthermore, increasing number of pivots con-
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stantly improves the query performance because the
intrinsic dimensionality of the CoPhIR dataset is higher,
queries more expensive (in terms of DC), and thus the
mapping of query object into the pivot space is not as
significant overhead.

However, if we consider the real time performance
measure in the next two graphs (second line in Fig. 18), we
may see the query processing and some cut-region based
construction methods are negatively affected by the grow-
ing number of global pivots. More specifically, the query
processing is deteriorated by the pivot-based lower bound
estimation which, in fact, has the same time complexity
(0O(n) where n is the number of pivots) as the utilized
Euclidean distance (also complexity O(n), but here n is
the number of dimensions). As a result, for more pivots
the query real time increases contrary to the number
of distance computations. The negative effect can be
observed also for the cheap metric indexing techniques
using cut-region based split heuristic mCutReg where for
growing number of pivots the SW(CR, CR) and MW(CR, CR)
become the most expensive techniques. This is caused by
the fact that mCutReg contains the CutRegionExtension
method (depending linearly on the number of pivots)
that has to be computed for all objects in the node for
each candidate pair. The best query performance of MW
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Fig. 19. List of Clusters/Cut-Regions - indexing and querying costs depending on the growing number of global pivots. (a) ALOI, (b) ALOI, 160 pivots and (c) CLOUDS.
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(BR, BR) can be explained by the fact that during indexing
there are many leaf nodes visited to locate the optimal
one (important especially for datasets with high intrinsic
dimensionality).

We may conclude that the cut-region based PM-tree
indexing strategies are good choices both for cheap and
expensive metrics. Furthermore, cut-regions reduce enor-
mous complexity differences between single-way and
multi-way leaf selection strategies and using cut-regions
both of the strategies are able to cheaply find good sub-
optimal leaf node in the PM-tree.

7.2.2. List of Cut-Regions

The second set of the experiments focuses on the List
of Clusters denoted as LoC and the List of Cut-Regions
denoted as LoCR (SimpleQuery heuristics used) or LoCR_C
(CumulativeQuery heuristics used). To create the clusters,
we have used 100NN queries and set the minimal capacity
to 20% and 1 to 1. The settings affected the number of
clusters for all used datasets. More specifically, the number
of clusters for LoC and LoCR was 600 for ALOI and 500 for
CLOUDS and CoPhIR datasets, while the number of clusters
for LoCR_C was 3-4 times higher. Let us note a higher
number of final clusters dramatically affects the indexing
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costs. Also note that here we have used reduced CoPhIR
and CLOUDS databases (only 50,000 objects).

In Fig. 19a the List of Cut-Regions outperforms the original
List of Clusters method, especially in case of LoCR_C that is
twice more efficient, although LoCR_C has 4 x more clusters
than LoC. The trade-off graph is depicted in Fig. 19b, aggre-
gating indexing and query costs together, where the best
index is in the origin of the coordinate system. In the graph
the LoCR method is clear winner over the LoC method, while
LoCR_C lies on the skyline. In Fig. 19¢, all the methods in
connection with the pivot table are depicted. Storing the pivot
table in the clusters reduces differences between the three
methods, however, the List of Cut-Regions still outperforms
the original List of Clusters method.

In Fig. 20 we may observe that using more pivots for
cheap metric distances decreases the number of distance
computations, however, it also results in worse query real
time as in the case of the PM-tree.

7.2.3. M-Index

The third set of the experiments focuses on the M-Index
where cut-regions do not reduce the number of distance
computations, but reduce the number of interval queries into
the B*-tree. We have used the dynamic M-Index in two
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Fig. 20. List of Clusters/Cut-Regions - indexing and querying costs depending on the growing number of global pivots. (a, b) CoPhIR (reduced size 50,000).
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Fig. 22. Inter-MAM comparison - indexing and querying costs depending on varying database size, growing query size and varying data dimensionality.
(a, b) ALOI, 20 pivots, (c) CLOUDS, 20 pivots and (d) UniformVectors, 10NN, 20 pivots.

variants differing in the level (maximal depth) of the cluster
tree — Level_2 and Level_3. The maximal capacity of the leaf
node of the dynamic cluster tree was set to 500.

In Fig. 21 the M-Index improved by cut-regions out-
performs the original variants in the number of B"-tree
queries. When considering the general M-Index behavior,
for the growing number of pivots the number of dis-
tance computations decreases, but the number of B* -tree
interval queries increases. In Fig. 21b the cut-regions
reduce the increase in interval queries significantly, where
the three-level M-Index using cut-regions outperforms
two-level M-Index without cut-regions (from 20 pivots on).
Let us note the small number of B*-tree queries can be
beneficial especially in the distributed version of the M-
Index [14], where the data partitions can be located on
different network nodes.

7.2.4. Overall comparison

In the last set of experiments, we have evaluated the
competitiveness of all used methods plus we have added
two other MAMs - M-tree [9] and Pivot table (LAESA) [7].
In the top part of Fig. 22, we may observe that MAMs
enhanced by cut-regions can compete with the currently
best MAM - the M-Index. We may also observe better

performance of the PM-tree for less selective queries (i.e.,
large query radius or many nearest neighbors) that is
caused by the use of many local pivots dynamically created
during PM-tree construction (see Fig. 22c). In the last
experiment in Fig. 22d, we have used synthetically created
UniformVectors dataset to measure index performance
under growing dimensionality of the distance space.®
We may observe that PMTree SW(CR, CR) using cut-
region construction strategy outperforms PMTree SW(BR,
BR) on lower dimensions, while on higher dimensions
(>9) the ball-region based strategies form more compact
metric hierarchies. This is probably caused by the fact that
in high-dimensional distance spaces the probability of
compact cut-regions decreases (i.e., all regions resemble
balls) and so simple heuristics considering only ball-
regions may be more suitable for leaf selection strategies
and node split operations. We may also observe that the
uniformly distributed data with no natural clusters are
more suitable for M-Index in lower dimensions, while the

8 For Euclidean spaces and uniformly distributed data, the intrinsic
dimensionality is roughly the same as the embedding (vectorial) dimen-
sionality, i.e., p ~D.
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List of Clusters/Cut-Regions become the best indexing
method for high-dimensional distance spaces.

8. Conclusion

In this paper we have presented the concept of cut-
regions that could heavily improve the performance of
metric indexes that were originally designed to employ
simple ball-regions. In the experiments, we have confirmed
that cut-regions improve the query performance of ball-
region based metric indexes. Furthermore, cut-regions sig-
nificantly cheapen the multi-way leaf selection strategy in
the PM-tree which makes this strategy applicable in real
problems. Although compact metric hierarchies can be
outperformed by new MAM designs (e.g., M-Index), they
can be still beneficial for modern retrieval modalities or in
data mining applications. We have also shown that cluster
tree hierarchy improved by cut-regions can reduce the
internal costs of the already superior M-Index, which is
beneficial for distributed environments.
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D-Cache: Universal Distance Cache
for Metric Access Methods

Tomas Skopal, Member, IEEE, Jakub Loko¢, and Benjamin Bustos

Abstract—The caching of accessed disk pages has been successfully used for decades in database technology, resulting in effective
amortization of 1/0 operations needed within a stream of query or update requests. However, in modern complex databases, like
multimedia databases, the I/O cost becomes a minor performance factor. In particular, metric access methods (MAMs), used for
similarity search in complex unstructured data, have been designed to minimize rather the number of distance computations than I/0
cost (when indexing or querying). Inspired by I/O caching in traditional databases, in this paper we introduce the idea of distance
caching for usage with MAMs—a novel approach to streamline similarity search. As a result, we present the D-cache, a main-memory
data structure which can be easily implemented into any MAM, in order to spare the distance computations spent by queries/updates.
In particular, we have modified two state-of-the-art MAMs to make use of D-cache—the M-tree and Pivot tables. Moreover, we present
the D-file, an index-free MAM based on simple sequential search augmented by D-cache. The experimental evaluation shows that
performance gain achieved due to D-cache is significant for all the MAMs, especially for the D-file.

Index Terms—Metric indexing, similarity search, distance caching, metric access methods, D-cache, MAM, index-free search.

1 INTRODUCTION

IN database technology, the majority of problems concerns
the efficiency issues, that is, the performance of a DBMS.
For decades, the number of accesses to disk (required by I/O
operations) was the dominant factor affecting the DBMS
performance. There were developed indexing structures [1],
[2], storage layouts [3], and also disk caching/buffering
techniques [4]; all of these designs aimed to minimize the
number of physical I/Os spent within a database transaction
flow. In particular, disk caching was proven to be extremely
effective in situations where access to some disk pages
happens repeatedly during a single runtime session.
However, the situation is dramatically different in
modern complex databases consisting of snapshots of
nature (i.e., images, sounds, or other signals), like multi-
media databases, bioinformatic databases, time series, etc.
Here, we often adopt the similarity search within the
content-based retrieval paradigm, where a similarity func-
tion (g, 0) serves as a measure saying how much a database
object o € S is relevant to a query object ¢ € U (where S is
the database and U is the object universe, S C U). To speed
up similarity search in such a database, there have been
many indexing techniques developed—some of them
domain specific and some others more general. Also, there
were distributed indexing techniques developed [5] that use
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parallelism to speed up similarity queries. An important
fact is that the retrieval performance of such a system is
more affected by CPU cost than by I/O cost. In particular, in
similarity-search community the computation of a single
value ¢ is employed as the logical unit for indexing/
retrieval cost, because of its dominant impact on the overall
performance [6], [7]. Thus, the I/O cost is mostly regarded
as a minor component of the overall cost. The number of
computations ¢ needed to answer a query (or to index a
database) is referred to as the computation cost.

Among general techniques, the metric access methods
(MAMs) are suitable in situations where the similarity
measure ¢ is a metric distance (in mathematical meaning).
The metric properties (1), (2), (3), (4) allow us to organize a
database S within equivalence classes, embedded in a data
structure which is stored in an index file

S(zy) = 0ez=y identity (1),
6(z,y) > 0< x#y  nonnegativity (2),
Sry) = 8(ye) symmetry (3).
6(z,y) +6(y,2) > 6(z,2) triangle inequal (4).

The index is later used to quickly answer typical
similarity queries—either a k-nearest neighbors (kNN) query
like “return the three most similar images to my image of a
horse,” or a range query like “return all voices more similar
than 80 percent to the voice of a nightingale.” In particular,
when issued a similarity query, the MAMs exclude many
nonrelevant equivalence classes from the search (based on
metric properties of §), so only several candidate classes of
objects have to be exhaustively (sequentially) searched. In
consequence, searching a small number of candidate classes
turns out in reduced computation cost of the query. For a
comprehensive survey on MAMs, we refer to [7], [8] or
monographs [6], [9]. Again, we have to emphasize the
assumption on computationally expensive distance metric 6
(i.e., >O(n), where n is the size of object 0;). In other words,

Published by the IEEE Computer Society
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the real time spent in distance computations is assumed to
dominate the real time spent in other parts of MAMs’
algorithms (including I/O cost).

1.1 Motivation for Distance Caching

Importantly, after a metric index is built, the existing MAMs
solve every query request separately, that is, every query is
evaluated as it would be the only query to be answered. In
general, no optimization for a stream of queries (query
requests spread in time) has been considered for MAMSs up
to date. Instead, huge efforts were given to “materializing”
the filtering knowledge into the index file itself.

In this paper, we change this paradigm and propose a
structure for caching distances computed during the current
runtime session. The distance cache ought to be an analogy
to the classic disk cache widely used in database manage-
ment to optimize I/O cost. Hence, instead of sparing I/Os,
the distance cache should spare distance computations. A
desired feature of distance cache should be its universal
usage with all MAMs, similarly like disk caching is
universal for standard I/O management. The main idea
behind the distance caching resides in approximating the
requested distances by providing their lower and upper
bounds “for free.” Since some “useful” distances could have
been computed during previous querying/indexing, such
distances could still “sit” in the distance cache and thus
could be used to infer (more or less tight) approximations of
distances we request.

1.2 Paper Contribution

We present D-cache (distance cache), a tool for general
metric access methods that helps to reduce the cost of both,
indexing and querying. The basic task of D-cache is to
cheaply determine tight lower- and upper bound of an
unknown distance between two objects, based on stored
distances computed during previous querying and/or
indexing. Although the D-cache was already introduced
in our preliminary work [10], it was applied in a more
narrowed context—as a tool for efficient index-free similar-
ity search (resulting in a new method, the D-file). Moreover,
in this paper we not only employ the D-cache in various
MAMs, but we present a completely redesigned D-cache
variant that is more effective (provides tighter lower/upper
bounds) and also more efficient (faster bound determina-
tion) than the previous version.

2 MEeTRIC ACCESS METHODS

In the following, we consider three out of dozens of existing
MAMs—the sequential file (a trivial MAM), the Pivot Tables,
and the M-tree. Later in the paper, we will consider
extensions of these MAMs by the announced D-cache
structure.

2.1 Sequential File

The sequential file is simply the original database, where any
query involves a sequential scan over all the database objects.
For a query object ¢ and every database object o;, a distance
6(g, 0;) must be computed (regardless of query selectivity).
Although this kind of “MAM” is not very smart, it does not
require any index (and no indexing), which can be useful in
many situations (as discussed in Section 4.1).

2.2 Pivot Tables

A simple but efficient solution to similarity search represent
methods called pivot tables (or distance matrix methods). In
general, a set of p objects (so-called pivots) is selected from
the database, while for every database object a p-dimen-
sional vector of distances to the pivots is created. The
vectors belonging to the database objects then form a
distance matrix—the pivot table. When performing a range
query (g,rad), a distance vector for the query object ¢ is
determined the same way as for a database object. From the
query vector and the query radius rad a p-dimensional
hypercube is created, centered in the query vector (query
point, actually) and with edges of length 2 rad. Then, the
range query is processed on the pivot table, such that
vectors of database objects that do not fall into the query
cube are filtered out from further processing. The database
objects that cannot be filtered have to be subsequently
checked by the usual sequential search.

There have been many MAMs developed based on pivot
tables. The AESA [11] treats all the database objects as
pivots, so the resulting distance matrix has quadratic size
with respect to the database size. Also, the search algo-
rithms of AESA are different, otherwise the determination
of a query vector would turn out in sequential scan of the
entire database. The advantage of AESA is empirical
average constant complexity of nearest neighbor search.
The drawback is quadratic space complexity and also
quadratic time complexity of indexing (creating the matrix)
and of the external CPU cost (loading the matrix when
querying). The LAESA [12] is a linear variant of AESA,
where the number of pivots is assumed far smaller than the
size of the database (so that query vector determination is
not a large overhead). The concept of LAESA was
implemented many times under different conditions, we
name, e.g.,, TLAESA [13] (pivot table indexed by GH-tree-
like structure), Spaghettis [14] (pivot table indexed by
multiple sorted arrays), OMNI family [15] (pivot table
indexed by R-tree), PM-tree [16] (hybrid approach combin-
ing M-tree and pivot tables). In the rest of the paper, we
consider the simplest implementation of pivot tables—the
original LAESA.

2.3 M-Tree

The M-tree [17] is a dynamic index structure that provides
good performance in secondary memory (i.e., in database
environments). The M-tree is a hierarchical index, where
some of the data objects are selected as centers (local pivots)
of ball-shaped regions, while the remaining objects are
partitioned among the regions in order to build up a
balanced and compact hierarchy of data regions, see Fig. 1.
Each region (subtree) is indexed recursively in a B-tree-like
(bottom-up) way of construction.

The inner nodes of M-tree store routing entries rout;(o;) =
[0i, rad,,, 6(0;, Par(o;)), ptr(T(0;))], where o; € S is a data
object representing the center of the respective ball region,
rad,, is a covering radius of the ball, 6(o;, Par(o;)) is the so-
called to-parent distance (the distance from o; to the object of
the parent routing entry), and finally ptr(7'(o;)) is a pointer to
the entry’s subtree. The data are stored in the leaves of M-tree.
Each leaf contains ground entries grnd(o;) = [0;, 6(0;, Par(0;))],
where o; € S is an indexed database object and 6(o;, Par(o;))
is, again, the to-parent distance.
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Fig. 1. M-tree (hierarchical space decomposition and the tree structure).

Range and kNN queries are implemented by traversing
the tree, starting from the root. Those nodes are accessed,
whose parent regions (described by the routing entries) are
overlapped by the query ball (¢, rad). In case of a kNN query
the radius rad is not known beforehand, so we have to
additionally employ a heuristics to dynamically decrease the
radius during the search (initially set to oo). The kNN
algorithm performs a best-first traversal of the index, where
regions are accessed in the order of increasing lower bound
distance to q.

2.3.1 M-Tree Construction

In the original M-tree proposal [17], the index was
constructed by multiple dynamic insertions, which con-
sisted of two steps. First, an appropriate leaf node for the
newly inserted object is found by traversing a single path in
the tree (so-called single-way leaf selection). Second, if a leaf
gets overfull after the insertion, it is split, such that two
objects from the split leaf are selected as centers of the new
two leafs, while the remaining objects within the split leaf
are distributed among the new leafs. Simultaneously, the
new centers form new routing entries that are inserted into
the parent node (if the parent gets overfull as well, the
splitting proceeds recursively).

In addition to the original M-tree, in this paper we
consider also recent advanced techniques of dynamic M-tree
construction [18]. In particular, we consider the multiway leaf
selection. Although the multiway selection is more expen-
sive than the single-way variant, the target leaf is more
appropriate for the newly inserted object. Specifically, a
point query is issued, such that from all the “touched” leaves
the selected one has its center closest to the newly inserted
object. Another improvement in M-tree construction is
adopting the well-known technique of forced reinsertions.
When a leaf is about to split after a new insertion, some
objects are removed from the leaf and inserted again into the
M-tree under the hope they will not all arrive into the same
leaf again (thus avoiding the split). Both of the advanced
construction techniques (multiway leaf selection and forced
reinsertions) lead to more compact M-tree hierarchies,
which, in turn, lead to faster query processing.

3 D-CACHE

We propose a nonpersistent (main-memory) structure called
D-cache (distance cache), that stores distances already
computed by a MAM. We consider a single runtime session
of a search engine, that is, a contiguous usage of a MAM for a
sequence of queries, insertions, or both. The track of distance
computations is stored as a set of triplets, each of form:

[id(oi)’ id(oj)v 6(01'7 OJ)L

where id(0;),id(0;) are unique identifiers of objects o;,0;,
and 6(0;,0;) is their distance.

To distinguish between the roles of “active and passive
objects,” we use the term runtime object, that denotes an object
that is currently subject to an operation on MAM (either
query or insertion). Once the operation is finished, the
respective object becomes past runtime object, meaning either
a regular database object (after an insertion) or a past query
object. All objects are uniquely identified, regardless of their
role (query, inserted object, database object). For instance, the
runtime objects could be identified by the order they enter
the index (forever, i.e., also for their past-runtime role),
where as “entering” we mean either an insertion or a query.

Instead of considering a set of triplet entries, we can view
the content of D-cache as a sparse matrix

01 09 03 ce. Op,
01 019 b3 ... on
02 0 Oon
b
D= 03
Om 6771,1 6m3

where the rows and columns refer to objects, and the cells
store the respective object-to-object distances. Naturally, as
new runtime objects appear during the session, the matrix
gets larger (in number of rows and/or columns). At the
beginning of the session the matrix is empty, while during
the session the matrix is being extended and filled. Note
that runtime objects do not have to be external, that is, a
runtime object could originate from the database (e.g., a
query or a reinserted object). From this point of view, an
object could have different roles at different moments,
however, the unique objects identification ensures the D-
cache content is correct.

Because of frequent insertions of triplets into D-cache,
the matrix should be efficiently updatable. Moreover, due
to operations described in the next section, we should be
able to quickly retrieve the value of a particular cell.

3.1 Principle of D-Cache
The desired functionality of D-cache is twofold:

First, given a pair runtime object/database object (r,0),
the D-cache should quickly determine the exact value 6(r, 0)
in case the distance is stored in the D-cache. However, as
the exact value could only be found when the actual
distance was already computed previously in the session,
this functionality is limited to rather special cases, like
reindexing of data objects (or index rearrangements),
repeated queries or querying by database objects.
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Fig. 2. Lower/upper bounds to 4(r, o).

The second functionality, which is the main D-cache
contribution, is more general. Given a runtime object ~ and
a database object o on input, the D-cache should quickly
determine the tightest possible lower or upper bound of 6(r, o)
without the need of an explicit distance computation. This
cheap determination of lower/upper bound distances then
serves a MAM in order to filter out a nonrelevant database
object or even a whole part of the index. Let us denote a
lower-bound distance of §(r,0) as 6.5(r,0) < 6(r,0) and an
upper-bound distance as éyp(r, 0) > 6(r, 0).

In order to facilitate the second functionality, we have to
feed the D-cache with relevant information about the
involved objects. In particular, we would like to know
distances to some past runtime objects dp] which are very
close to or very far from the current runtime r, thatis, suppose
for a while we know some 6(dp}, ), 8(dph, ), . ... These past
runtime objects will serve as dynamic pivots made-to-measure
tor. Formally defined, dp] € DP C PR C U, where PRis the
set of all past runtime objects within the current session and
DP is an actual set of selected dynamic pivots (see the next
section). Regarding the size of DP, we could choose either
DP = PR, or set a fixed size |DP| =k < |PR|. Note that
dynamic pivots could originate outside the database S
(necessary for queries and newly inserted objects).

Since the dynamic pivots are supposed either close to r
or far from 7, they should be effective for pruning by a
MAM (they provide tight approximations of 6(r,0;) dis-
tances). After the dynamic pivots are selected, the lower/
upper bound distances are constructed using the distances
8(dpy, o) still “sitting” in the D-cache matrix, where they
were inserted earlier during the session. In particular, with
respect to dp] and available distances 6(dp}, o) in the matrix,
mazqy {|6(dpj, 0) — 6(dp},r)|} is the tightest lower-bound
distance 6p(r,0). Similarly, ming,{6(dpj,o) + &(dpj,r)} is
the tightest upper-bound distance éyp(r,0). See the situa-
tion in Fig. 2.

3.1.1 Selection of Dynamic Pivots

In the past decade, there were many sophisticated techni-
ques for selection of effective pivots developed, allowing an
efficient similarity search [19], [20]. This classic approach
assumes the pivot selection procedure as a part of the
indexing/preprocessing phase (e.g., before the distance
matrix for pivot tables is established). However, in D-cache
the dynamic pivots have to be selected at the moment a
query or insertion starts. So, there is not much room for
preprocessing, such as an expensive pivot selection, even
though we select pivots from a rather small set of past
runtime objects. Hence, we propose the following cheap
pivot selection technique.

We need to choose some k runtime objects from all of the
past runtime objects before the current runtime processing
actually starts (i.e., before processing a query or insertion).
Based on observations taken from the preliminary work on
D-cache [10], we consider just the recent selection policy. That
is, the k most recent runtime objects are selected as dynamic
pivots, because it is more probable that recent runtime objects
have more distances stored in the D-cache than the older ones
(i.e., not replaced by other distances, see Section 3.3.2).

After the dynamic pivots are determined, their distances
to r have to be computed. Note that this is the only moment
where some extra distances are explicitly computed, that
would not be computed when not using D-cache.

3.2 Distance Matrix Structure

Because the main memory is always limited and the
distance matrix could expand to an enormous size, we
need to choose a compact data structure that consumes a
user-defined portion of main memory. In order to provide
also fast retrieval, the D-cache implements the distance
matrix as a linear hash table consisting of entries
[id1,id2, 6(0i41, 0ia2)]- The hash key (pointing to a position
in the hash table) is derived from the two ids of objects
whose distance is being retrieved or stored.

In addition, there is a constant-size collision interval
defined, that allows to move from the hashed position to a
more suitable one (due to replacement policies, see below).
However, in order to keep the D-cache as fast as possible, the
collision interval should be very small, preferably just one
position in the hash table (i.e., only the hashed position).

3.2.1 Hashing Function

To achieve uniform distribution of the hashed distances, we
consider two variants of hashing function f, both taking two
integer numbers id1,id2 as arguments (the ids of objects).

Simple. The faster variant of f multiplies the ids
(modulo the size D of hash table), ie., f(idl,id2) =
(idl -id2) mod D. The motivation here is that we expect
the ids entering the hashing function are random combina-
tions, so the simple multiplication should produce distribu-
tion uniform enough.

Universal. A slightly slower variant of f is based on the
Simple variant and on universal hashing [21]. Let p be a large
prime (p > D), and let a,b be two random integer numbers
smaller than p. All the numbers p,a,b are fixed during D-
cache lifetime. Then, the hashing function is defined as
f(idl,id2) = ((a - id1 - id2 + b) mod p) mod D.
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3.3 Operations on D-Cache

The D-cache is initialized by a MAM when loading the
index (the session begins). Besides the initialization, the D-
cache is also notified by a MAM whenever a new query/
insertion is to be started (the MAM calls method
StartRuntimeProcessing on D-cache). At that moment,
new runtime object r is announced to be processed, which
also includes the computation of distances from r to the
k actual dynamic pivots dp}.

3.3.1 Distance Retrieval

The main D-cache functionality is operated by methods
GetDistance and GetLowerBoundDistance,' see Algorithm 1.

Algorithm 1: (GetDistance, GetLowerBoundDistance)

double GetDistance(r, o;) {
let minld = min(id(r), id(0;)), maxld = max(id(r), id(o;))
let Cl = size of collision interval
let h = GetHash(minld, maxId) // hashing function f, see Sec. 3.2.1
fori=1toCl /I every + is modulo hash table size
if hashTable[h + i].id1 = minld and hashTable[h + i].id2 = maxId then
return hashTable[h + i].distance
return nil }

double GetLowerBoundDistance(r, o;) {

let k be the number of pivots to use
let D P be the set of k dynamic pivots and their distances to
if GetDistance(r, o;) # nil then

return GetDistance(r, o;)
let value = 0
for each p in DP do

if GetDistance(p, 0;) # nil then

value = maz(value, |GetDistance(p, o;) —d(r, p)|)

return value }

The number of dynamic pivots (k= |DP]|) used to
evaluate GetLowerBoundDistance is set by the user, while
this parameter is an exact analogy to the number of pivots
used by Pivot tables, e.g., LAESA. There exists no general
rule for the automatic determination of the number of
pivots [19], [20], especially when minimizing the real-time
cost rather than just the number of distance computations.
In general, the effective number of pivots depends on the
(expected) size of the database, its intrinsic dimensionality
(see Section 6.1.1), the computational complexity of the used
metric, the pivot set quality itself, etc. The same reasons
apply also for D-cache.

3.3.2 Distance Insertion

Every time a distance 6(r,0;) is computed by the MAM,
the triplet [id(r),id(0;),6(r, 0;)] is inserted into the D-cache
(the MAM calls method InsertDistance on D-cache). Since
the storage capacity of D-cache is limited, at some moment
the collision interval in the hash table for a newly inserted
distance entry is full. Then, some older entry within the
collision interval has to be replaced by the new entry. Or,
alternatively, if it turns out the newly inserted distance is
less useful than all the distances in the collision interval,
the insertion of the new distance is canceled.

Note that we should prioritize replacing of such entries
[id1,id2, 6(0iq1,0i02)] where none of the objects o0ja1, 042
belongs to the current set of £ dynamic pivots anymore.
Naturally, the distances of such obsolete entries cannot be
effectively utilized to determine a lower- or upper bound
distance, because for a current runtime r only the distances

1. GetUpperBoundDistance is similar, but the value is initialized to oo
and updated as value = min(value,GetDistance(p, ;) + 6(r, p)).

to the k most recent runtimes are useful. In particular, we
consider two policies for replacement by a new entry:

Obsolete. The first obsolete entry (i.e., not containing id
of a current dynamic pivot) in the collision interval is
replaced. In case none of the entries in the collision interval
is obsolete, the first entry is replaced by the new entry.

ObsoletePercentile. This policy includes two steps. First,
we try to replace the first obsolete entry as in the Obsolete
policy. If none of the entries is obsolete, we replace an entry
with the least useful distance. As we have mentioned in
Section 3.1, a good pivot is either very close to or very far
from the database objects. Because the entries in D-cache
consist of distances from dynamic pivots to database
objects, we should preserve entries with large and small
distances and get rid of those close to a “middle” distance.
Hence, among all entries in the collision interval the entry
that is closest to the “middle” distance is the least useful,
thus it is replaced. Of course, it might turn out the least
useful distance (closest to the “middle” distance) is that of
the newly inserted entry. In such case, the D-cache is not
updated by the new entry at all.

Ideally, the “middle” distance should be represented by
the median distance among objects in the database, that is, a
distance value d, where 50 percent of the computed
distances are greater and the other 50 percent distances
are smaller than d,,. However, it might turn out that an
optimal value for D-cache is not the median distance but a
distance belonging to another percentile. Hence, we relax
the term “middle” distance to allow not only the fixed
median distance (i.e., 50 percent percentile) but also a
distance belonging to a user-defined percentile.?

The method InsertDistance, including entry replacement,
is precisely described in Algorithm 2. The method IsObsolete
checks if either of the two ids appears in the actual set of k
dynamic pivots” ids (if not, it is an obsolete entry).

Algorithm 2: (InsertDistance)

InsertDistance(r, 0;, dnew) {
let minld = min(id(r), id(0;)), maxld = max(id(r), id(o;))
let Cl = size of collision interval
let d,,, be the distance belonging to a user-defined percentile
let h = GetHash(minld, maxId)
let finalH = h
if entry replacement heuristics is Obsolete then {
fori=1toCl // every + is modulo hash table size
if IsObsolete(hashTable[h+i]) then
finalH = h +1i
break for
} else if entry replacement heuristics is ObsoletePercentile then {
let fitness = 0
letdNew = |dy, — dnew
fori=1to Cl
if not IsObsolete(hashTable[h + i]) then
dOld = |d,,, — hashTable[h + i].distance|
if dNew > dOId and fitness < dNew — dOlId then

// every + is modulo hash table size

finalH=h +i
fitness = dNew — dOId /I the greater fitness, the better
else // obsolete entry found
finalH = h + i, fitness = 1
break for

if fitness = O then return } // do not replace (new distance is bad)
set hashTable[finalH] = [minld, max!d, dpew] } // finally, replace the entry

3.4 Filtering by D-Cache

The D-cache can be widely used with any metric access
method. In particular, MAMs index data either in ball-shaped
metric regions (e.g., (m)vp-tree, (P)M-tree, D-index) or in

2. The calculation of percentile distances d,, is obtained for free during
the indexing phase of a MAM, using the distance distribution histogram.
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Fig. 3. (a) Ball-ball overlap. (b) Hole-ball containment. (c) Halfspace-ball
overlap.

Voronoi-based regions (e.g., gh-tree, GNAT). Hence, there
are basically three low-level filtering predicates used by MAMs
to answer a query (or to insert new database object)}—two
predicates for ball-shaped and one for Voronoi-based
regions. The most common queries (range and kNN) have
also the shape of a ball.

When employing D-cache, the MAMs’ filtering predi-
cates can be weakened to be used with lower/upper bound
distances inferred from D-cache, instead of computing an
exact 6 distance. Generally, the predicates can be weakened
such that any form é(-,-) +--- < is turned into 6yp(-,-) +
---< and any 6(-,-) —---> into 6zp(-,-) —--->. This
adjustment is correct, since it underestimates the filtering
hits, that is, weakened form implies the original one, but not
vice versa (see Fig. 3).

3.4.1 Filtering of Ball-Shaped Regions

The ball-shaped regions are generally of two kinds—a
simple ball and/or a ring.

(A) Ball Data Regions

Querying. Having a query ball (¢q,rad,) and a ball-
shaped data region (o0;,7rad,), the data region can be
excluded (filtered) from the search if the two balls do not
overlap, that is, in case that predicate

6(q,0;) > rady + rad,,, (1)

is true (see Fig. 3a). Note that this simple predicate applies
also on filtering database objects themselves (rather than
regions), considering just DB object o;, i.e., rad,, = 0.

Indexing. Let us now consider ¢ as a new object to be
inserted and rad, = 0. Then the predicate (1) can be used to
filter a data region which cannot cover the new object
(without enlarging the radius rad,,).

D-cache usage. Prior to an application of predicate (1), a
MAM could use its weakened form

618(q, 0:) > rady + rad,,. (2)

Since D-cache provides the lower bound 6.5(q,0;) for
free, the index region (o;,rad,,) could be filtered out by
predicate (2) without the need of computing 6(q,0;)
otherwise required to apply predicate (1).

(B) Ring Data Regions

Some MAMs ((m)vp-tree, (P)M-tree, D-index) combine
two balls to form a ring, which is a pair of two concentric
balls—the smaller one is regarded as a hole in the bigger.

In order to determine an overlap with query ball (or
inserted object), the predicate (1) alone cannot be used to
determine that a query ball is entirely inside the hole.
Hence, we use predicate

6(q,0;) < rad,, — rady, (3)

to determine whether the query ball is entirely inside the
hole (see Fig. 3b). A query ball is not overlapped by a ring
region in case (1) is true for the bigger ball or (3) is true for
the smaller ball (hole). For insertion of a new database object
the predicates (1) and (3) are used in a similar way.

D-cache usage. Prior to an application of predicate (3), a
MAM could use its weakened form

bus(g, 0;) < rad, — rady. (4)

3.4.2 Filtering of Voronoi-Based Regions
Several MAMs (gh-tree, GNAT, M-index) partition the
metric space by use of a border composed of “Voronoi
hyperplanes.” Given m pivot objects, the border is formed
by all such points of the universe, which are equally distant
to two of the pivot objects and farther from the rest of objects.
A region assigned to pivot object p does not overlap a
query region (g, rady) if the following predicate is true

Yo; : 6(q,p) — rady > 6(q, 0;) + rady, (5)

where Vo; are the remaining pivot objects (see Fig. 3c).
D-cache usage. Prior to an application of predicate (5), a
MAM could use its weakened form

Yo, : 6rp(q,p) — rady > bup(q, 0;) + rad,. (6)

3.5 Use of D-Cache in Approximate Similarity
Search
In addition to exact search by MAMs, the D-cache may also
be used to improve the efficiency of approximate similarity
search techniques [22]. In these techniques, the search
algorithm saves search cost at the cost of possibly not
retrieving the exact answer (i.e., all relevant objects for the
given query). That is, they provide a tradeoff between the
efficiency and the effectiveness of the similarity search.
Similarly to search algorithms in MAMs, approximate
algorithms can take advantage of lower or upper bound
distance estimations to avoid distance computations. For
example, the probabilistic incremental search approach [23]
fixes a number of distance computations to be performed by
the search algorithm. Once a distance is computed, the
algorithm decides if it must continue searching or not in a
particular branch of the search hierarchy. By using D-cache,
the discarding process could be done without actually
computing that distance (using the returned lower bound
distance), thus saving it for further searching in the
hierarchy. This will improve the effectiveness of the search,
as more branches of the hierarchy will be visited.

3.6 Analysis of D-Cache Performance

A fast implementation of D-cache functionality is crucial for
its efficient employment by MAMs. Specifically, this require-
ment applies to the function GetLowerBoundDistance and
method InsertDistance due to their frequent use during
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querying/indexing. A D-cache-enhanced MAM would be
faster in real time only in case the D-cache overhead would
not be dominant. In particular, employing computationally
expensive distance functions § promises the speed up in real
time will approach the reduction in distance computations
(which is the theoretical speed-up maximum). Although the
mentioned functions donot compute even a single distance §,
for an improper parameterization their real-time overhead
might be significant. First of all, the overall cost of
GetLowerBoundDistance and InsertDistance is proportional
to the number of dynamic pivots k. Thus, to obtain effective
usage of D-cache, k must be reasonably small. Second, the size
of collision interval can heavily affect the D-cache perfor-
mance, because sequential processing of the collision interval
affects the real-time cost linearly. Although a large collision
interval usually leads to better replacement of distances, the
resulting heavy slowdown may not be a good tradeoff. Third,
the hashing function is called frequently in GetLowerBound-
Distance, so it should be as fast as possible but, at the same
time, providing good enough distribution of keys.

In the experimental evaluation, we present different
settings affecting the discussed performance issues. Basi-
cally, for smaller D-cache the collision interval of size 1 and
simple hashing is the best, while for larger D-cache the
interval of size 5 and universal hashing is slightly better.
Regarding the dynamic pivots, their optimal number is
heavily dependent on the database settings, while in our
experiments it turns out that several tens to a few hundred
pivots perform the best.

4 ENHANCING MAMs BY D-CACHE

In this section, we discuss the modifications of three MAMs
that take advantage of D-cache for both querying and
indexing.

4.1 Enhancing Sequential Search—the D-File

Although not a proper MAM, the sequential search over the
database can be enhanced by D-cache to speed the search. In
Algorithms 3 and 4 see the adjusted range and kNN query.

Algorithm 3: (D-file range query)

set ScanRangeQuery(q, rady) {
Dcache.StartRuntimeProcessing(q)
for each o; in database do
if Dcache.GetLowerBoundDistance(q, o;) < rad, then
compute é(q, 0;); Dcache.InsertDistance(q, 0;, 5(q, 0;))
if 6(q, 0;) < rad, then add o; to the query result }

/I D-cache filt.

// basic filtering

Algorithm 4: (D-file kNN query)

set KNNQuery(q, k) {
Dcache.StartRuntimeProcessing(q)
let NN be array of k pairs [0;, 5(q, 0;)] sorted asc. wrt §(q, 0;),
initialized to NN = [[—, oc], ..., [—, o0]]
let rad¢, denotes the actual distance component in NN[k]
for each o; in database do
if Dcache.GetLowerBoundDistance(q, 0;) < rad, then // D-cache filtering
compute §(q, o;); Dcache.InsertDistance(q, o;, 5(q, 0;))
if 5(q, 0;) < rad, theninsert [0;, 6(q, 0;)] into NN
return NN as result }

// basic filtering

We have to emphasize that the D-cache together with
sequential search could be used as a standalone metric
access method that requires no indexing at all. We call the

enhanced sequential search as the D-file, introduced
recently in its preliminary version as a tool for index-free
similarity search [10]. Hence, it could be used in situations
where indexing is not possible or too expensive. Generally,
any form of indexing requires at least linear time to
construct an index for a database (but typically more, e.g.,
O(n log n) or O(n?)). Thus, indexing is beneficial just in case
we assume many queries, so the indexing cost will be
amortized by the overall decreased query cost.

4.1.1 Motivation for Index-Free Similarity Search

In some scenarios, the indexing (and even dynamic
updates) represents an obstacle. In the following, we briefly
discuss three such scenarios.

“Changeable” databases. In many applications, we
encounter databases intensively changing over time, like
streaming databases, archives, logs, temporal databases,
where new data arrive and old data are discarded
frequently. Alternatively, we can view any database as
“changeable” if the proportion of changes to the database
exceeds the number of query requests. In highly changeable
databases, the indexing efforts lose their impact, since the
expensive indexing is compensated by just a few efficient
queries. In the extreme case (e.g., sensory-generated data),
the database could have to be massively updated in real
time, so that any indexing is unpractical.

Isolated searches. In complex tasks, e.g., in data mining,
a similarity query over a single-purpose database is used
just as an isolated operation in the chain of all required
operations to be performed. In such case, the database
might be established for a single or several queries and then
discarded. Hence, index-based methods cannot be used,
because, in terms of the overall costs (indexing+querying),
the simple sequential search would perform better.

Arbitrary similarity function. Sometimes the similarity
measure is not defined a priori and/or can change over the
time. This includes learning, user-defined, or query-defined
similarity. In such case, any indexing would lead to many
different indexes, or is not possible at all.

To address the three scenarios, the D-file, as the “founding
father” of index-free MAMSs, could be the solution. We also
emphasize that D-file should not be viewed as an index-
based MAM that just maintains its temporary index in main
memory. We see the difference between index-based and
index-free methods not only in the main-memory organiza-
tion, but mainly in the fragmentation of “indexing.” While
index-based MAMs cannot search the database before the
indexing is finished, the index-free MAMs are allowed to
search the database instantly. Moreover, as the “indexing
step” (updating the D-cache) is performed during the query,
the indexing versus query efficiency tradeoff remains
balanced at any time.

4.2 Enhancing Pivot Tables

When considering range queries in Pivot tables, like
LAESA, we have to discuss two steps (for details see
Section 2.2). First, there is filtering by pivots® performed,
where a query vector is computed, a query box is

3. Here, we consider regular (static) pivots of Pivots tables. Please, do not
confuse pivot tables’ (static) pivots with D-cache’s dynamic pivots.
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established, and all the distance matrix rows are checked if
they fall inside the query box. If not, these objects are
filtered out from further processing, while the nonfiltered
objects are processed in the second (refinement) step by
usual sequential search.

In the first step (filtering by pivots), the only moment of
computing § is the construction of query vector. Then, the
pivot table is checked against the query box which does not
require any distance computation. Hence, the D-cache is not
needed in the first step. On the other hand, it could be
utilized in the second (refinement) step when sequentially
searching the nonfiltered candidate objects. In fact, we can
view the set of nonfiltered objects as a (small) sequential
file, where the D-cache could be utilized the same way as in
the D-file.

Since the distance matrix consists of exact distance
values that are not repeating, the D-cache cannot be used
for indexing. We implemented the D-cache-enhanced
querying into Pivot tables and called the new MAM as D-
Pivot Tables (or D-PT).

4.3 Enhancing M-Tree

In M-tree, the cheap filtering step based on D-cache is
placed between the parent filtering (also cheap) and the basic
filtering (expensive), see Algorithm 5.

Algorithm 5: (D-M-tree range query)

D-MtreeRangeQuery(Node N, RQuery (g, radq)) {
let rout(p) be the parent routing entry of N
/l'if N is root then let § (o4, p)=3(p, q)=0
if NV is root then Dcache.StartRuntimeProcessing(q)
if NV is not a leaf then {
for each rout(o;) in N do
if [0(p, q) — 6(0i, p)| < radq + rad,, then /I parent filtering
/! D-cache filtering
if Dcache.GetLowerBoundDistance(q, 0;) < radq + rad,, then
compute 6(g, o;); Dcache.InsertDistance(q, o;, (g, 0;))
if §(0i, q) < radg + rad,, then // basic filtering
D-MtreeRangeQuery(ptr(T'(0:)), (¢, rady))
} else {
for each grnd(o;) in N do
if |6(p, q) — 8(0i,p)| < rad, then /I parent filtering
/I D-cache filtering
if Dcache.GetLowerBoundDistance(q, 0;) < rad, then
compute (g, o;); Dcache.InsertDistance(q, 0;, (g, 0;))
if 5(0;,q) < rad, then // basic filtering
add o; to the query result } }

Furthermore, the D-cache can be used also to speed up
the construction of M-tree, where we use both the exact
retrieval of distances (method GetDistance) and also the
lower-bounding functionality. The node splitting in M-tree
often uses the expensive mM_RAD heuristics, where a
distance matrix is computed for all pairs of node entries.
The values of this matrix can be stored in D-cache and some
of them reused later, when node splitting is performed on
the child nodes of the previously split node. Similarly, when
using forced reinsertions, the distances related to the
inserted objects reside in the D-cache and could be used
when reinserting some of the objects in the future. More-
over, when employing the expensive multiway insertion,
the D-cache could be used also in the “nonexact” way
(using lower bounds similarly as by querying). We
implemented the D-cache-enhanced indexing+querying
into M-tree and called the new MAM as D-M-tree.

5 RELATED WORK

To the best of our knowledge, there are no other approaches
to distance caching for general MAMs. The most similar
proposed approaches are in the line of bulk loading for
batch insertion or processing multiple queries at once.
However, in this case the data/queries need to be available
beforehand, i.e., we cannot consider a continuous stream of
queries or insertions. While in the literature it has been
proposed the use of different kinds of “caching” in the
context of multidimensional databases (e.g., caching in
distributed systems [24], or a “L2 cache conscious” main-
memory multidimensional index [25]), they do not take
advantage of the computed distances at query time to speed
up (future) similarity queries.

5.1 Caching Distances in M-Tree

One idea that actually uses cached distances for range
queries with an M-tree was proposed by Kailing et al. [26].
For each query, the distances computed from each routing
object to the query are cached. In this way, if there are
duplicated routing objects at different levels of the M-tree,
their distance to the query object will be computed only once.
As the memory cost of saving these distances is proportional
to the height of the tree, the extra space needed is “tolerable”
[26]. However, the computed distances at each node are
deleted from the cache once the recursive search function
leaves a node. Therefore, no distances are saved for future
queries, and they are only useful if the cached distance
between the same two objects needs to be computed again.
Moreover, as duplicate routing objects are rare in M-tree
(with respect to all examined objects), the savings in distance
computations are rather negligible.

5.2 Batch Indexing and Querying

The basic idea of bulk loading is to create the index from
scratch but knowing beforehand the database, thus some
optimizations may be performed to obtain a “good” index for
that database. Usually, the proposed bulk loading techniques
are designed for specific index structures, but there have
been proposals for more general algorithms. For example, in
[27] the authors propose two generic algorithms for bulk
loading, which were tested with different index structures,
like the R-tree and the Slim-tree. Note that the efficiency of
the index may degrade if new objects are inserted after its
construction. Recently, a parallel approach to insertion of a
batch of objects was proposed for the M-tree [28].

Another approach for improving the efficiency of MAMs
is the simultaneous processing of multiple queries [29].
Instead of issuing many single queries, the idea is to process
a batch of similarity queries aiming at reducing I/O cost
and computation cost. The proposed technique reduces the
I/0 cost by reading each disk page only once per batch of
similarity queries, and it reduces the CPU cost by avoiding
distance computations. An avoidable distance computation
is detected by computing the distances between query
objects and then using these distances, together with the
triangle inequality, to compute lower bounds of the
distances between queries and database objects. If the lower
bound distance is greater than a given tolerance radius for
the similarity search, then the distance calculation is
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avoidable. The proposed technique is general, and it can be
implemented based on a MAM or using a sequential file.
However, besides the requirement to know all the queries
beforehand, it also requires computing the distances
between each pair of query objects to reduce the CPU cost,
and it does not take advantage of distance computations
between queries and database objects.

In [30] an approach to compute the k nearest neighbor
graph in metric spaces was proposed, which is equivalent to
compute n kNN queries, in (empirical) subquadratic time.
However, the set of query objects was restricted to the
database objects, which is only marginally meaningful in
our framework.

5.3 Query Result Caching

In order to speed up the similarity searches, a recent
approach provides a mechanism of caching query results
[31], [32]. Basically, the metric cache stores a history of
similarity queries and their answers (ids and descriptors of
database objects returned by the query). When a next query
is to be processed, the metric cache either returns the exact
answer in case the same query was processed in the past
and its result still sits in the cache. Or, in case of a new
query, such old queries are determined from the metric
cache, that spatially contain the new query object inside
their query balls. If the new query is entirely bounded by a
cached query ball, a subset of the cached query result is
returned as an exact answer of the new query. If not, the
metric cache is used to combine the query results of
spatially close cached queries to form an approximate
answer. In case the approximate answer is likely to exhibit a
large retrieval error, the metric cache gives up and forwards
the query processing to the underlying retrieval system/
MAM (updating the metric cache by the query answer
afterward). We emphasize that metric cache is a higher level
concept that can be combined with any MAM employed in
a search engine. Hence, metric cache is just a standalone
front-end part in the whole retrieval system, while the
underlying MAM alone is not aware of the metric cache at
all. On the other hand, the following proposal of D-cache is
a low-level concept that plays the role of integral part of a
metric access method (that has to be adjusted to use D-cache
functionality). Nevertheless, both approaches could be
combined in the future (i.e., the metric cache in front of
D-cache-enhanced MAMs).

6 EXPERIMENTAL EVALUATION

We have extensively tested the D-cache-enhanced MAMs
(D-file, D-M-tree, and D-Pivot tables) and their noncached
counterparts (sequential search, M-tree, Pivot tables) to
examine the expected performance gain in indexing and
querying. A substantial attention in the experiments was
given to the D-file, which in some cases outperformed the
index-based MAMs. We have observed both the number of
distance computations as well as the real time spent by
indexing/querying.

6.1 The Testbed

In order to examine the D-cache in very different condi-
tions, we used four databases (two vector spaces, one string

space, and one set space) and four metric distances (three
expensive and one cheap), as follows:

1. A part of the CoPhIR [33] database (descriptors of
selected images from Flickr.com), namely, one
million 282-dimensional vectors (representing five
MPEGT? features), and the euclidean distance as the
similarity function (i.e., time complexity O(n)).

2. A database of Histograms (descriptors of images
downloaded from Flickr.com, but different to Co-
PhIR), namely, one million 512-dimensional histo-
grams, and the quadratic form distance [34] as the
similarity function (i.e., complexity O(n?)). As the
image representation we used the standard RGB
histogram of dimensionality 512, where the R, G, B
components were divided in 8 bins each, thus
8+8x8 = 512 bins. Each histogram was normalized
to have the sum equal to 1, while the value of each
bin was stored in a float. The similarity matrix used
for the quadratic form distance was computed as
described in [34], using similarity of colors in the CIE
Lab color space [35].

3. The Listeria [36] database, namely 20,000 DNA
sequences of Listeria monocytogenes of lengths
200-7,000, and the edit distance [37] as the similarity
(i-e., complexity O(n?)).

4. A synthetic Clouds database [38], namely 100,000
clouds (sets) of 60 6D points (embedded in a unitary
6D cube). For each cloud, its center was generated at
random, while the 59 remaining points were
generated under normal distribution around the
center (the mean and variance in each dimension
were adjusted to not generate points outside the
unitary cube). Usually, clouds of points are used for
simplified representations of complex objects or
objects consisting of multiple observations [39]. As
an appropriate distance metric, we used the sym-
metric Hausdorff distance [40] for measuring simi-
larity between sets (maximum distance between a
point in one cloud to the nearest point in the other
cloud). We used the euclidean distance as the
internal point-to-point distance within the Hausdorff
distance (hence, leading to overall complexity
O(n?)). The Clouds database was included into the
experiments in order to examine a nonvectorial
alternative to the usual synthetic database of
normally distributed vectors.

In experiments where the growing database size was
considered, the particular database subsets were sampled
from the respective largest database at random. In the other
experiments, we used the entire databases in the case of
Clouds and Listeria, and random subsets of size 100,000 in
the case of CoPhIR and Histograms. Unless otherwise
stated, each query cost was an average over 500 queries
using query objects not included in the database.

6.1.1 Database Indexability

As the fundamental assumption on metric access methods
is their universal applicability on various kinds of data, the
experimental databases were chosen to represent very
different metric spaces. In addition to employing cheap
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Fig. 4. Distance distribution in the databases.

(euclidean) and expensive (quadratic form, edit, Hausdorff)
distance functions, the databases also exhibited different
intrinsic dimensionalities. The intrinsic dimensionality [7] is a
concept generalizing the phenomenon of the curse of
dimensionality into metric spaces, and is defined as
p(8,6) = %, where p and o? are the mean and the variance
of the distance distribution in the database. Informally, a
database where most of the objects are far away from each
other exhibits high intrinsic dimensionality and so it is hard
to index by any MAM. Conversely, a database where some
of the objects are close and some are distant exhibits a low
intrinsic dimensionality (i.e., there exist distinct clusters). In
this case, the MAMs are able to better separate the data,
thus performing similarity queries in an efficient way.

The Clouds, CoPhIR, and Histograms databases exhib-
ited high intrinsic dimensionalities (11.64, 7.5, 7.56, respec-
tively), and the Listeria database exhibited low intrinsic
dimensionality (1.19). Fig. 4 shows the distance distribution
on each particular database, where a wide and left-shifted
“bell” means lower intrinsic dimensionality, and vice versa.
Since the intrinsically low-dimensional databases were
already efficiently indexed by the MAMs not enhanced by
D-cache, there was not as much room to improve the
indexing/search by the D-cache as in the case of the high-
dimensional databases.

6.1.2 MAM Settings

The M-tree, Pivot Tables, and sequential scan were tested
against their D-cache enhanced versions on all the data-
bases. For (D-)M-tree, the node degree was 25 in leaf nodes
and 24 in inner nodes, while for its construction the mM_RAD
node splitting [17] and various object insertion policies were
employed [18]. The static pivots of (D-)Pivot Tables were
selected from the respective database at random.

6.1.3 D-Cache Settings
Unless otherwise stated, the D-cache used 1,280,000 entries
(i.e., 19.5 MB of main memory) and 160 dynamic pivots for
the CoPhIR, Histograms, and Clouds databases, and it used
64,000 entries (i.e., 1 MB of main memory) and 50 dynamic
pivots for the Listeria database. When using the Obsolete-
Percentile replacement policy, the percentile was set to
36 percent for Clouds, 4 percent for Listeria, 15 percent for
Histograms, and 50 percent for CoPhIR (these values were
observed as optimal, as discussed later). The D-cache was
reset/initialized before every query batch was started.
Table 1 describes the labels of particular MAM and D-
cache configurations used in the following figures.

6.2 Indexing

Table 2 presents the index construction times for MAMs not
employing D-cache. As the sequential search and the D-file
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TABLE 1
Labels Used in the Figures
Label  Description
M-tree_SW  M-tree built using single-way insertion [18]
M-tree the same as M-tree_SW
M-tree_SW_RI  M-tree built using single-way insertion + forced reinsertions [18]
M-tree_ MW  M-tree built using multi-way insertion [18]
M-tree_MW_RI M-tree built using multi-way insertion + forced reinsertions [18]
PT_z  Pivot Tables using x static pivots
D-mam a particular MAM enhanced by D-cache (see Section 4)
Obs(cfg)  D-cache’s Obsolete replacing policy (see Section 3.3.2))
ObsPct(cfg) D-cache’s ObsoletePercentile policy (see Section 3.3.2)
cfg:
Cl=z: D-cache’s collision interval (see Section 3.2),
default is CI=5
H=Simple/Universal: D-cache’s hashing function (see Sec. 3.2.1),
default is H=Universal
Dc.size=x: size of D-cache in the number of distance entries
DB(xz)  database containing = objects

are index-free methods, they were not included in the
indexing experiments.

The index construction times for M-tree and D-M-tree
are presented in Fig. 5, showing the single-way leaf
selection variants (left figure) and multiway leaf selection
variants (right figure). The results show that larger D-cache
considerably speeds the M-tree construction (up to 1.7x).
Both of the D-M-tree variants use the GetDistance method
for indexing. Since the multiway leaf selection technique
issues a point query, it is reasonable to use also the
GetLowerBoundDistance in the D-M-tree. MW variant. Also
note that the D-M-tree_ SW_RI that uses extra forced
reinsertions is even faster than simple M-tree_SW.

6.3 Queries

The largest set of experiments was focused on kNN queries
under different D-cache and retrieval settings. Unless
otherwise stated, on databases that employed expensive
distances we present just the real times for queries, because
the numbers of distance computations followed exactly
the same proportion. In other words, when queried by the
expensive distance metrics, the real time spent outside the
code computing distances was negligible. Also note that
because the query objects were outside the database (i.e.,
unknown to D-cache), the speedup achieved by D-cache
was solely based on the lower bounding functionality (see
Section 3.3).

TABLE 2
Index Construction Times (D-Cache Not Used)

Database = MAM  Indexing time (seconds)

PT_1 248.
Clouds of points (100k) _10 8.03
M-tree 1509.17

PT_1 9
Histograms (100k) -10 307.23
M-tree 1724.84
Listeria 20k)  © -0 1277.88
M-tree 13050.98
CoPhIR (1M)  F1-10 88.75
M-tree 335.89
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Fig. 5. M-tree and D-M-tree construction, using single-way (left figure)
and multiway (right figure) leaf selection.

Table 3 shows the baseline real times when searching a
database sequentially, regardless of the query selectivity.
The results confirm that the euclidean distance (used on
CoPhlIR) is very efficient, while the edit distance used on the
long Listeria sequences is very expensive.

6.3.1 Database Size

The first querying experiment was focused on the growing
database size while fixing the size of the D-cache used (see
Fig. 6). We observe that for small databases there is enough
space in D-cache, so that distance replacements are not
often needed. However, for larger databases the D-cache
gets filled and the distance replacements are necessary. In
such case, for D-file the ObsPct replacement policy turns
out to be more effective for replacing “bad” distances,
which results in a better filtering and so in a faster query
processing. On the other hand, for the same D-cache size
but the D-M-tree, the filling of D-cache with distances is
slower (because of more aggressive filtering), so distance
replacements are not often.

6.3.2 Percentile Distances

In the second experiment, we have investigated the
percentile distances that optimize the replacement of
the least useful distances in the D-cache, see Fig. 7. Since
the Clouds database exhibits large intrinsic dimensional-
ity, the proportion of possibly “bad” distances that cannot
be used for effective lower-bound filtering is larger than in
the Histogram database. Hence, for Clouds database the
ObsPct replacement policy that prevents from storing the
bad distances leads to faster querying than the Obs policy.
This effect is even magnified for smaller D-cache sizes (up
to 2x query speed up).

6.3.3 D-Cache Size

Next, we performed experiments with growing D-cache
size for various replacement policies, collision intervals, and
hashing functions (see Fig. 8, where the D-cache size is the

TABLE 3
Real Times of Sequential Search

Database  Query time (seconds)
Histograms (100k) 29.03
Clouds (100k) 21.10
Listeria (20k) 134.53
CoPhIR (1M) 4.60
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Fig. 8. Impact of D-cache size on distance replacement.

number of distance entries allocated). Although for smaller
D-cache sizes the different settings lead to slightly different
querying performance, for larger D-cache sizes the differ-
ences are negligible. Nevertheless, the ObsPct(CI =5,H =
universal) policy performed well under all circumstances.

6.3.4 Number of Dynamic Pivots

Fig. 9 shows the impact of increasing number of dynamic
pivots used by D-cache. Instead of the usual 500 queries, we
present the averaged results over 1,000 queries for Clouds
and 2,500 queries for Histograms, in order to justify the
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larger numbers of dynamic pivots. Also note that in this
experiment, we present both the real time and the number
of distance computations.

The superiority of ObsPct replacement policy is here
confirmed. For a large number of dynamic pivots and when
replacing an entry in D-cache, the likelihood that the
collision interval contains an obsolete entry will be low
because most of the past runtime objects are still dynamic
pivots. In such a case when no obsolete entry is available,
the Obs policy just replaces the first entry found in the
collision interval. On the other hand, the ObsPct policy
replaces the least “useful” entry in the interval, based on the
selected percentile distance.

To mention also the negative results, with a growing
number of dynamic pivots the time complexity of the
methods GetLowerBoundDistance and InsertDistance in-
creases, resulting in increased real time spend for

In the last test we examined the “warming” of D-cache, that
is, how many queries are needed to populate the D-cache to
be useful enough for filtering. Fig. 12 shows the impact of
the growing query batch size, that is, the average cost of a
10NN query when running queries in differently sized
batches (each query batch runs as a single D-cache session).
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The trend is obvious: the more queries, the more distances
get into the D-cache which the subsequent queries can
benefit from. The difference is quite significant for the D-
file: the average cost of a query within a 2,500 queries batch
falls down to 70 percent of the average query cost within a
700 queries batch. Moreover, in the right graph of Fig. 12 see
the total query cost (not the average as usual) for differently
sized batches of queries, including also the indexing cost.
This test aims to show the overall cost when searching a
database for a limited number of queries. Obviously, when
only a small number of queries are needed, say up to 300,
the D-file is the clear winner because of its index-free
concept. On the other hand, when reaching a sufficiently
large number of queries, the index-based MAMs begin to
amortize the huge initial indexing cost by the efficient query
processing (but the D-file still keeps up with them). In case
of MAMs employing D-cache, the amortization is quicker.

6.4 Summary

We have shown that the D-cache accelerates the indexing of
M-tree significantly. When querying, the D-cached-enhanced
MAMs perform up to two times faster than their noncached
counterparts (up to 24 times in case of D-file).

A special attention should be devoted to the D-file,
which is not only the first index-free MAM, but it can
compete with efficient competitors like the Pivot tables or
the M-tree.

The D-cache proved its benefits in most of the experi-
ments. On the other hand, when a cheap metric distance is
used, the overhead of D-cache is too large. Regarding the D-
cache tuning, we observed that the ObsoletePercentile
replacement strategy works the best in most of the cases,
while the number of dynamic pivots ranging from tens to a
few hundreds is sufficient. When considering the D-file, the
size of employed D-cache should be proportional to the
database size (e.g., 10 percent) in order to achieve an
optimal performance.

7 CONCLUSIONS

In this paper we presented the D-cache, a main-memory data
structure which tracks computed distances while inserting
objects or performing similarity queries in the metric space
model. Since distance computations stored in the D-cache
may be reused in further database operations, it is not
necessary to compute them again. Also, the D-cache can be
used to estimate distance functions between new objects and
objects stored in the database, which can also avoid
expensive distance computations. The D-cache aims to
amortize the number of distance computations spent by
querying/updating the database, similarly like disk page
buffering in traditional DBMSs aims to amortize the I/O cost.

The D-cache structure is based on a hash table, thus
making efficient to retrieve stored distances for further usage.
Additionally, the D-cache maintains the set of previously
processed runtime objects (i.e., inserted or query objects),
while the most recent of them are used as dynamic pivots.
The D-cache supports three functions useful for metric access
methods (MAMs)—the GetDistance (returning the exact
distance between two objects, if available), the GetLower-
BoundDistance (returning the greatest lower-bound distance
between two objects, by means of the dynamic pivots), and
the GetUpperBoundDistance (returning the lowest upper-
bound distance). With these functions, the D-cache may be

used to improve the construction of MAMs’ index structures
and the performance of similarity queries.

Our depiction of the D-cache is general, and may be used
with any metric access method or even to aid a sequential
scan of the database—forming a brand new concept of
index-free MAM, the D-file. We have presented replace-
ment policies for the distances stored in the cache as well as
algorithms for the computation of the lower- and upper-
bound distances. We have also described in detail how to
enhance some of the existing metric access methods (M-tree,
Pivot tables) with the D-cache.

Finally, we presented the results of an experimental
evaluation with different databases using expensive and
cheap metric distance functions. When considering expen-
sive enough distance functions (>O(n?)), the D-cache
substantially improves the real times needed to query/
update metric databases.
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Metric indexing is the state of the art in general distance-based retrieval. Relying on the
triangular inequality, metric indexes achieve significant online speed-up beyond a
linear scan. Recently, the idea of Ptolemaic indexing was introduced, which substitutes
Ptolemy’s inequality for the triangular one, potentially yielding higher efficiency for the
distances where it applies. In this paper we have adapted several metric indexes to
support Ptolemaic indexing, thus establishing a class of Ptolemaic access methods
(PtoAM). In particular, we include Ptolemaic Pivot tables, Ptolemaic PM-Trees and the
Ptolemaic M-Index. We also show that the most important and promising family of
distances suitable for Ptolemaic indexing is the signature quadratic form distance, an
adaptive similarity measure which can cope with flexible content representations of
multimedia data, among other things. While this distance has shown remarkable
qualities regarding the search effectiveness, its high computational complexity under-
scores the need for efficient search methods. We show that these distances are
Ptolemaic metrics and present a study where we apply Ptolemaic indexing methods
on real-world image databases, resolving exact queries nearly four times as fast as the
state-of-the-art metric solution, and up to three orders of magnitude times as fast as
sequential scan.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

inevitably increasing masses, multimedia databases have
to manage data objects effectively and appropriately with

The explosive growth of complex multimedia data
including images, videos, and music challenges the effec-
tiveness and efficiency of today’s multimedia databases.
Supposed to provide users access and insight into these
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[1]. This research has been supported by the Research Council of Norway
project iAd (first author) and by the Czech Science Foundation projects
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beecks@cs.rwth-aachen.de (C. Beecks).
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respect to content access. When searching multimedia
databases in a content-based way, users issue similarity
queries by selecting multimedia objects or by sketching
the intended object contents. Given an example multi-
media object or sketch, the multimedia database searches
for the objects that are most closely related to the query
by measuring the similarity between the query and each
database object, frequently by means of a distance func-
tion. As a result, the multimedia objects with the lowest
distance to the query are returned to the user.

At present, the state-of-the-art query processing
method for general distance-based retrieval is metric
indexing [2,3]. By examining the distance relationships



990 M.L. Hetland et al. / Information Systems 38 (2013) 989-1006

between objects, metric indexing approaches use the
triangle inequality to speed up query processing. While
these approaches have been used for more than 20 years,
another promising approach has recently been intro-
duced, using the Ptolemaic inequality instead of the
triangular one [4]. In this paper, we examine the Ptole-
maic approach in depth, evaluating several data struc-
tures based on the principles of Ptolemaic indexing, and
discussing which distances are most relevant for this
method. The latter turns out to be a family of distances
known as signature quadratic form distance (SQFD) [5,6],
which combines high retrieval performance [7] and
indexability [8].

1.1. Paper contributions

In this paper, we use Ptolemaic Pivot table (PtoPT),
originally described by Hetland [4], as well as two other
new index structures employing the principles of Ptole-
maic indexing: the Ptolemaic PM-Tree (PtoPM-Tree) and
the Ptolemaic M-Index (PtoM-Index). With this set of
Ptolemaic indexes we establish the class of Ptolemaic
access methods—an alternative to metric access methods.
We apply the indexing methods to large multimedia
databases to achieve efficient content-based similarity
search. Ptolemaic indexing has been shown to be parti-
cularly efficient for quadratic form distances (QFDs).
Unfortunately, as the Ptolemaic approach suffers from a
high filtering cost, it is mainly suitable for expensive
distances, where this extra complexity becomes insignif-
icant. Hence, it may not be a feasible solution for one
particular kind of QFD: the cheap (weighted) Euclidean
distance. Moreover, it has recently been shown that for
indexing purposes, all static QFDs can be mapped to the
Euclidean case [9], so Ptolemaic indexing may not be
viable even for them.

However, the mapping to Euclidean case does not
effectively apply to the more expressive family of signa-
ture quadratic form distances (SQFD). In this paper we
show both that these distances are Ptolemaic, and that
Ptolemaic indexing is a clear improvement on the state of
the art [8] for indexing them. Summarizing, the main
contributions of this paper are:

e New heuristics for efficiently performing the Ptolemaic
filtering which lead to an improvement in the real-time
efficiency of querying.

Ptolemaic shell filtering for region-based indexes.
Detailed description of the Ptolemaic Pivot table.

The Ptolemaic PM-Tree.

The Ptolemaic M-Index.

A proof sketch that the SQFD is a Ptolemaic metric.
Empirical evidence that Ptolemaic access methods are
efficient indexes for the SQFD, also when combined
with metric principles.

The structure of this paper is as follows: In Sections 2
and 3, the basic principles of metric and Ptolemaic
indexing are discussed, respectively. Section 4 deals with
the Ptolemaic Pivot Table, the Ptolemaic PM-Tree, and the

Ptolemaic M-Index. Section 5 describes the signature
quadratic form distance in detail, as well as ways of
indexing it. Section 6 lays out our experimental results,
and finally Section 7 gives some conclusions.

2. Metric indexing

This section describes the basic principles of distance-
based indexing using the metric axioms. The fundamental
trick of these methods lies in using lower bounds that can
be used to filter out irrelevant object from the search
cheaply (i.e., without the need for actual distance compu-
tations). We also give a description of three metric
indexes (Pivot Table, PM-Tree, M-Index) that we adapt
to Ptolemaic indexes later in the paper.

A metric space (U,0) consists of a descriptor domain U
and a distance function 6 which has to satisfy the metric
postulates of identity, non-negativity, symmetry, and trian-
gle inequality defined vx,y,z € U as

0(xy)=0 <= x=y identity

Jd(x,y) >0 non-negativity

o(x,y)=0(y,X) symmetry

o(X,Y)+0(y,2) > d(x,z) triangle inequality

In this way, metric spaces allow domain experts to
model their notion of content-based similarity by an
appropriate descriptor representation and distance func-
tion serving as similarity measure. At the same time, this
approach allows database experts to design index struc-
tures, so-called metric access methods (or metric indexes)
[2,10-12], for efficient query processing of content-based
similarity queries in a database S c U. These methods
rely on the distance function J only, i.e., they do not
necessarily know the structure of the descriptor repre-
sentation of the objects.

Metric access methods organize database objects
(descriptors) o; € S by grouping them based on their
distances, with the aim of minimizing not only traditional
database costs like I/O but also the number of costly
distance function evaluations. For this purpose, nearly all
metric access methods apply some form of filtering based
on cheap lower bounds. These bounds are constructed
based on the fact that exact pivot-object distances are
pre-computed (where a pivot is either a static or a
dynamic reference object selected from the database).

We illustrate this fundamental principle in Fig. 1
where we depict the query object g € U, some pivot

Seao-

Fig. 1. The lower-bounding principle.
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Fig. 2. (a) Original space, (b) pivot space.

object p € S, and a database object 0 € S in some metric
space. Given a range query (q,r), we wish to estimate the
distance 6(q,0) by making use of d(q,p) and d(o,p), with the
latter already stored in the metric index. Because of the
triangle inequality, we can safely filter object o without
needing to compute the (costly) distance d(q,0) if the
triangular lower bound d1(q,0) = |5(q,p)—d(0,p)| is greater
than the query radius r. The fact that dr(q,0) < d(q,0) is
also known as the inverse triangle inequality [13, p. 674].

2.1. Pivot table as metric index

One of the most efficient (yet simple) metric indexes is
the Pivot Table [14], originally introduced as LAESA [15].
Basically, the structure of a pivot table is a simple matrix
of distances 4(0;,p;) between the database objects 0; € S
and a pre-selected static set of m pivots p; e P c S. For
querying, pivot tables allow us to perform cheap lower-
bound filtering by computing the maximum lower bound
d1 to 4(q,0) using all the pivots.

From a more intuitive perspective, pivot tables index
the database objects as m-dimensional vectors in a pivot
space. When querying, the range query ball (g,r) (or k NN
ball with the current radius) is mapped into the pivot
space, such that its center is (6(q,p;),9(q,p3), - - - ,0(q,Pm))-
An important property of the mapping is that ¢ in the
original space is lower-bounded by L., distance! in the
pivot space (i.e., it is a non-expansive mapping). The
query ball in the pivot space (i.e., the L.-ball of radius
r) can therefore be used to retrieve all the objects inside
the query ball in the original space, possibly with some
false positives that must be filtered out by 6 in a refine-
ment step. See Fig. 2 for an illustration of the pivot-based
mapping from the original space into the pivot space, and
the respective query balls.

2.2. PM-Tree

In addition to the pivot table where the metric lower-
bounding is performed directly, we also include the PM-
Tree—a metric index that conceptually merges the pivot
table (flat table of object-to-pivot distances) with the
M-Tree [16] (hierarchy of ball-shaped metric regions).

! The maximum absolute difference of two vectors’ coordinate
values.

The idea of PM-Tree [17,18] is to enhance the hier-
archy of M-Tree by an information related to a static set of
k global pivots p; e P c U. In a PM-Tree’s routing entry,
the original M-Tree-inherited ball region is further cut off
by a set of rings (centered in the global pivots), so the
region volume becomes more compact (see Fig. 3a).
Similarly, the PM-Tree ground entries are enhanced by
distances to the pivots, which are interpreted as rings as
well. Each ring stored in a routing/ground entry repre-
sents a distance range (bounding the underlying data)
with respect to a particular pivot.

A routing entry in a PM-Tree inner node is defined as

rOUtPM(y) = [eryvé(yv Par(y))vptr(T(,y))vHR]

where the first four are attributes inherited from the M-
Tree routing entry, namely, the routing object y, covering
radius ry, the distance from y to the parent routing object,
and a pointer to the child node. The new PM-Tree
attribute HR is an array of ky, intervals (ky, < k), where
the t-th interval HR, is the smallest interval covering
distances between the pivot p, and each of the objects
stored in leaves of T(y), i, HRp = (HRY™, HR}™),
HRE:‘“ =min{d(0;,p,)}, HR)™ =max{d(0;,p,)}, Voj € T).
The interval HR;, together with pivot p, define a ring
region (p;,HRy,); a ball region (p,,HR™) reduced by a
“hole” (p,,HR;™.
A ground entry in a PM-Tree leaf is defined as

grndpy(2) = [z,id(2),0(z,Par(2)),PD],

where the new PD attribute stands for an array of ppq
pivot distances (p,s<p) where the ¢-th distance
PDyp, = 6(y.py)-

The combination of all the k entries’ ranges produces a
k-dimensional minimum bounding rectangle (MBR), and
hence the global pivots actually map the metric regions/
data into a pivot space of dimensionality k (see Fig. 3b).
The number of pivots can be defined separately for
routing and ground entries—we typically choose fewer
pivots for ground entries to reduce storage costs (i.e.,
k = kp > kyq). The pivot space mapping abstraction is
much like that one used in pivot tables; however, in the
PM-Tree case the pivot space also includes the hierarchy
of MBRs (and so resembles R-tree partitioning to some
extent).

When issuing a range or k NN query, the query object
is mapped into the pivot space—this requires p extra
distance computations d(q,p;),vp; € P. The mapped query
ball (q,ry) forms a hyper-cube <{d(q,p;)—74,0(q,p1)+71q> %
-+ x {0(q,pr)—T¢,0(q,pr)+Tq > in the pivot space that is
repeatedly used to check for an overlap with routing/
ground entry’s MBRs (see Fig. 3a, b). If they do not
overlap, the entry is filtered out without any distance
computations; otherwise, the M-Tree’s filtering steps
(parent and basic filtering) are applied. Actually, the MBRs
overlap check can be also understood as L., filtering, that
is, if the L., distance from a PM-Tree region to the query
object q is greater than ry, the region is not overlapped by
the query. From the lower-bounding point of view, the
MBR filtering is nothing other than applying k lower-
bound tests to the closest possible object that might
appear in the MBR.
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Fig. 3. (a) PM-Tree using two pivots (p;, p2). (b) Projection of PM-Tree into the pivot space.

Note that the MBRs overlap check does not require an
explicit distance computation, so the PM-Tree usually
achieves significantly lower query costs when compared
with M-Tree—for more details, see previous work by
Skopal et al. [17-19].

2.3. The M-Index

The M-Index [20,21] employs practically all known
principles of metric space pruning and filtering. Inspired
by iDistance [22] (designed for high-dimensional vector
spaces), objects from the universe U are mapped into the
real domain, which can be effectively managed by a
Bt -tree. Assuming a normalized metric distance J, the
mapping function uses the set of global pivots py, ...,p,_1
and the corresponding Voronoi partitioning. More speci-
fically, each object is assigned a real-valued key, consist-
ing of the object’s distance to the closest pivot (the
fractional part of the key) and the index of an assigned
Voronoi partition (the integer part of the key). An exam-
ple of such mapping is depicted in Fig. 4a. To obtain more
partitions using the same number of pivots, repetitive
Voronoi partitioning can be used, resulting in multi-level
M-Index structure (see Fig. 4b). The key is computed as

-1
keyi(0) = 3(pg),,0)+ > _(on" '

i=1

where (), : {0, ...,n—1}+—{0,...,n—1} is a permutation of
indexes such that 6(p(),,0) < 6(p(1),,0) < - -+ <(Pn_1),,0), |
determines the [-prefix of the pivot permutation, 1 <l<n
(the size of the key domain is n').

min/max
“ distance
1 ring

T
CZ|
Fig. 4. (a) Mapping to the key domain (b) repetitive Voronoi partitioning
(c) minimal and maximal distance to the closest pivot.

The authors also proposed a dynamic variant of the
mapping where the tree of repetitively generated parti-
tions is not balanced—see Fig. 4, where only the cluster C,
assigned to pivot p, is further expanded to two clusters
Cyo and C,;. The dynamic variant better fits the distribu-
tion of objects in a database. The modified key function
for dynamic M-Index is

-1
key (0) = d(pp),.0) + Z(i)on"""r]’l
i=1

where the size of the I-prefix of the pivot permutation is
bounded by Inax value.

The query processing in the M-Index starts with mapping
of the query object to the pivot space. Due to the repetitive
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Voronoi partitioning, filtering of half-space regions can be
applied up to | times. Because the ring defined by the
distances minyeec,{0(p,0)} and Maxvoec, {6(p,0)} is stored in
the structure for each leaf cluster G (see Fig. 4c), filtering of
ball-shaped regions can also be employed. If none of the
previously mentioned rules filters out a processed cluster, an
interval of the searched key domain has to be determined
and inspected. Finally, because the distances from each
object to all global pivots are stored (determined during
indexing), the efficient pivot-based filtering can be used.

3. The principles of Ptolemaic indexing

In metric indexes, the triangle inequality is used to
construct lower bounds for the distance. Analogously, in
Ptolemaic indexing [4], Ptolemy’s inequality is used to
construct such lower bounds as well. A distance function
is called a Ptolemaic distance if it has the properties of
identity, non-negativity, and symmetry, and satisfies Ptol-
emy'’s inequality. If a Ptolemaic distance also satisfies the
triangle inequality, it is a Ptolemaic metric. Note that there
is no implication in either direction between metricity
and Ptolemaicity. A distance can be Ptolemaic without
being metric, and vice versa [4].

Ptolemy’s inequality states that for any quadrilateral,
the pairwise products of opposing sides sum to more than
the product of the diagonals. In other words, for any four
points x, y, u, v € U, we have the following:

I(x,v) - 0(y,u) < I(x,Y) - O(U,v)+d(x,U) - (Y, V) (1)

One of the ways the inequality can be used for indexing is
in constructing a pivot-based lower bound. For a query g,
object o, and pivots p and s, we get the candidate bound:

‘5(va) B 5(05)—5((1,5) ) (S(Ovp)‘

3®s) @

5C(qvovpvs) =

For simplicity, we let d¢(q,0,p,s) =0 if d(p,s)=0.2 As for
triangular lower-bounding, one would normally have a
set of pivots P, and the bound can then be maximized
over all (ordered)? pairs of distinct pivots drawn from this
set, giving us the final Ptolemaic bound [4]:

4(q,0) = 6p(q,0) = max 6c(q,0,p,8) 3

Just as for the triangular case, the Ptolemaic lower
bound Jp could be used to filter objects not contained in
the query ball, i.e., exclude those o; € S from search for
which 0p(q,0;) > . In order to demonstrate the expected
benefits of Ptolemaic filtering over the triangular, see an
example in Fig. 5 (Euclidean space). Given just two pivots
p, s, the Ptolemaic bound gives much tighter value than
any of the two triangular bounds.

2 This is simply so we do not have to treat p=s as a special case later
on.

3 Computing the absolute value is redundant when examining all
ordered pairs. It is, however, useful when only some pairs are examined,
as explained later.

--------------- °
LB,,(8(a,0) % O

(8. 5(0.0)

S °p
Fig. 5. Tightness of Ptolemaic bound LBy, vs. triangular bounds
LB s,LB p.

3.1. Ptolemaic shell filtering

Beyond the basic pivot filtering, Hetland [4] describes
how to derive bounds also when the exact pivot-object
distances are not known, such as for objects in shell
regions.* The more general bound given in his Theorem
3 can be instantiated with one lower bound r, on J(0,p)
and an upper bound r;t for J(o,s), for two pivots p and s,
and an object o, to yield the following:

3(q,0) = ((q,8) - T, =0(q,p) - T5")/0(p,S)

In other words, the bound uses the inner shell radius
around p and the covering radius for s. This means that for
any structure that maintains regions consisting of inter-
secting shells, the outer radius of one shell can be
combined with the inner radius of another to form a
query-region bound usable for filtering.

3.2. What is special about Ptolemaic distances?

Why focus on the Ptolemaic inequality and not some
other, arbitrary inequality? First, the inequality holds for
the well-known reference for all distance intuitions:
Euclidean distance. It also holds for the larger, important
family of quadratic form distances, and, as we show in
this paper, the recent (and more flexible) signature quad-
ratic form distances. While the metric axioms have rather
intuitive interpretations [24], the properties of Ptolemy’s
inequality are perhaps not quite as obvious. Even showing
that the inequality holds for the Euclidean plane can be
challenging—certainly more so than demonstrating trian-
gularity. The bound defined by Eq. (2) does, however,
seem to correspond to certain intuitions of distance or
dissimilarity. We can think of p and s as representatives
of, or proxies for, o and q, respectively. If 0 and g are close
to their respective proxies (indicating accuracy and
applicability of the bound) while far away from the other
proxy (indicating actual distance), the bound is high.
Contrast this with metric (triangle) lower-bounding,
where there is only one pivot, and the bound is high
when one of o and q is close, and the other is far away.

4 This is tentatively explored by Reksten in his Master’s thesis [23].
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If we could place the pivots closer together without
changing the other factors, we would reduce the divisor in
Eq. (2), thereby increasing the bound. This observation
seems to fly in the face of the proxy intuition; how can
placing the proxies for g and o closer together increase the
bound? This may not be as paradoxical as it seems,
though. The strength of the bound is based on the
differences in the distances from q and o to the two pivots.
The closer together the pivots are, the smaller we would
expect these differences to be.

Importantly, when using pivot-based lower-bounding
with a set of pivots P, the metric approach is limited to
just |P| triangle inequality tests, while the Ptolemaic
approach yields (“; ) candidate bounds (i.e., pairs of pivots
to apply in Ptolemy’s inequality).

The problem with Ptolemaic indexing is the small set
of practical distances known to obey the Ptolemy’s
inequality. From the few known ones used in multimedia
retrieval, we can name the quadratic form distance (and
therefore also Euclidean distance). Fortunately, the SQFD
is also a Ptolemaic metric, as we shown in Section 5.

3.3. Computing the bound efficiently

One of the most important sources of filtering power
for Ptolemaic lower-bounding is the increased number of
candidate bounds—quadratic in the number of pivots.
Although this is certainly an advantage for filtering, it can
significantly increase the computation time of the final
bound. Unless the distance calculation itself is very slow,
not many pivots are needed before the computation of the
bound becomes prohibitively expensive. One of the con-
tributions of this paper is a specific procedure for com-
puting the bound, which takes advantage of the Ptolemaic
filtering power and that is efficient (fast) in practice.

The idea is to perform online pivot selection, as used in
the original pivot table methods, AESA [25] and LAESA
[15], as well as in some more recent methods [26,27]. It is
a fair assumption that the candidate bounds will differ
significantly—this is the motivation for using multiple
pivots, after all. Our task is to find a good pivot pair, a
pair that will let us exclude an irrelevant object. Rather
than trying out every pivot pair in an arbitrary order
(which we refer to as the naive approach), we can perform
a heuristic search for the best ones. As long as the search
radius (or the current search radius, in a k NN search) is
available to us when computing the bound, we can
terminate as soon as the radius has been exceeded. With
a good heuristic ordering of the pairs, this will usually
allow us to terminate early.

A high-quality heuristic will not only allow us to
terminate the bound computation early when we are able
to discard an object; it will give us the confidence needed
to end our computation early by fiat. That is, if we know
the best candidate bounds are probably computed first,
and we are unable to eliminate an object early on, we
should probably give up. This “giving up point” can either
be set to a fixed number of candidate bounds or it can be
based on lack of improvement over a series of candidate
bounds.

3.3.1. Pivot permutations

Given the structure of the Ptolemaic lower bound (2),
it would seem reasonable to expect a good pivot pair to
consist of one object-like pivot p and one query-like
pivot s> This would minimize the subexpression
4(q,s) - 4(o,p), which would, all else being equal, maximize
the bound. The problem is, of course, that minimizing
these two distances will most likely change the rest of the
bound as well. For example, we would like p and s to be
far away from the query and the object, respectively,
while staying close to each other. Even so, we have
decided to use low values for d(q,s) and d(o,p) as the
heuristic guidelines in our search. In the heuristics, we
require an ordering of the pivots based on distance to a
particular object o (either a database or a query object).
For an object o we define a pivot permutation [28,29], as
follows.

Having a fixed set of m pivots P ={p;,p,,...,p;n} and
an object o€ U, let (),:{1,2,....m}—{1,2,...,m} be a
permutation such that Vijel,....m: (i), <(), <0
(D), 0) < 0(pg),,0) v (6(D,,0) = 5(p),,0) Al <j). Hence, the
sequence pg) .Dw),,---Pem, 1S ordered with respect to
distances between the pivots and object o.

In order to efficiently look for pivots that are close to
the query or to a given object, we need to precompute and
store the pivot permutations (-), for every object 0. We
also compute (-), at the beginning of the search. Using
these permutations, we generate a sequence of pivot pairs
(p,s), and these pivot pairs are used to create candidate
bounds.

3.3.2. An unbalanced heuristic

The simplest way of using these permutations is to
have two nested loops, each iterating over one of the
permutations (see Algorithm 3.1). With this unbalanced
heuristic, either the g-like pivots or the o-like pivots are
preferred.® In each iteration, the algorithm checks
whether it should terminate early, that is, before all pivot
pairs have been examined. This happens either if the
bound is large enough (dp > r) or if we have already tried
K pivot pairs, where k is a cut-off parameter.

Algorithm 3.1. UNBALANCEDFILTER(G,0,T,K) > Op
1: dp=c=0
fori=1tom
for j=1tom
Op —max{dp,0c(q,0.P), P, )}
c—c+1
ifop>rorc=x
return

Now AN

One seeming shortcoming of this procedure is that
every pair of pivots will be used twice (once with the roles
of p and s reversed). If both loops used the same
permutation, we could easily have avoided this by con-
straining the range of the inner loop; we could then have
taken the absolute value of d¢, and saved approximately

> That is, p and s are close to object and query, respectively.
6 Which permutation is assigned to the inner and outer loops does
not seem to matter much.
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half the bound calculations. It is, in fact, possible to avoid
such duplicate computation efficiently even when using
two different permutations, if the inverse permutations
are available. This complicates the code quite a bit,
though (and it is not at all clear that it improves
performance), so we have decided to use the simpler
version presented here.

3.3.3. A balanced heuristic

Giving preference to one of the permutations, as the
unbalanced heuristic does, will probably postpone unduly
pivot pairs that represent favorable tradeoffs between d(q,s)
and J&(o,p). In fact, even with random pivot permutations,
tentative experiments indicate that the naive heuristic is
worse than one that examines the pairs in random order.

To avoid focusing on one of the permutations, we
propose the balanced traversal heuristic (see Algorithm
3.2). This explores Cartesian product of (-), and (-); in a
breadth-first fashion, starting at ((1),,(1),). Every o-like
pivot (in order of distance from o) is combined with every
g-like pivot that is at least as good, i.e., with at most the
same rank in distance ordering from g, and vice versa. The
checks for early termination work like in the unbalanced
heuristic.

Algorithm 3.2. BALANCEDFILTER(q,0,T,K) > Op
dp=c=0
fori=1tom
for j=1toi
Op —max{dp,6¢(q,0,P), Py, )}
cec+1
if i#j
Op —max{dp,5c(q.0.P), iy, )}
cec+1
ifop>rorc>xk
0: return

—_

SR NN WY

Fig. 6 shows a comparison of the naive approach and
both heuristics in a Euclidean space (using 20 pivots
drawn from a 10D uniform unit cube distribution). As
expected, the balanced heuristic achieves a tight bound
faster than the unbalanced one: After examining 15 pivot
pairs the bound gets to 90% of the value obtained by
examining all 190 unique pivot pairs.

Bound computation heuristics
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Fig. 6. Pivot pair selection heuristics.

4. Ptolemaic access methods

We have shown and argued that the Ptolemy’s
inequality could be used, instead of the triangle inequal-
ity, to construct distance lower bounds. In this section we
present three Ptolemaic access methods (PtoAMs)—the
Ptolemaic Pivot table, the Ptolemaic PM-Tree, and the
Ptolemaic M-Index—we have adopted from the metric
originals (Pivot Table, PM-Tree, M-Index). The Ptolemaic
pivot table could be used solely with Ptolemy’s inequality,
so it might be used with metric or non-metric Ptolemaic
distances. The other two methods assume also the trian-
gle inequality to be satisfied due to metric partitioning of
the data space, i.e., they support Ptolemaic metrics only.

4.1. Ptolemaic pivot table

As mentioned in Section 2.1, the pivot table is a simple, yet
efficient and extensible metric access method. Moreover, it
was recently shown [4] that pivot table could also be used as
a Ptolemaic access method. In this paper we call this method
Ptolemaic Pivot Table, or PtoPT. Note that in addition to the
Ptolemaic lower bounds, the PtoPT can also employ the lower
bound provided by the triangle inequality (thus becoming a
Ptolemaic and/or metric access method). The data structure
needed in order to accommodate the new heuristics pre-
sented in Section 3.3 is described in the following.

4.1.1. The PtoPT index structure
The index structure of PtoPT consists of two components:

e The pivot file, storing the set [P of m pivots, and a pivot
distance matrix, storing the distances between all
distinct pairs of pivots from [P.

e The index file, storing the distances between each
database object 0 € S and all the pivots, the pivot
permutation for each object o, and the object o itself.
Formally, the index file consists of |S| entries, each
belonging to a database object o, as [0,(-)5,0(0,p (1))
5(0-p(2)0 )v s -5(Ovp(m)0)]'

The difference between the original pivot table and the
PtoPT is thus the extra information stored: the pivot
distance matrix and the pivot permutation for each object
o (used by the proposed heuristics).

Algorithm 4.1. PToPT RANGEQUERY(q,r,mode,K)+— Result

Result = 0
for eachoin S
if mode=triangle or mode =triangle + pto
if TriangleFilter(g,0,r) > 1
continue for
if mode =ptolemaic or mode=triangle +pto
if PtolemaicFilter(g,0,r, k) > 1
continue for
compute 4(q,0)
if (gq.0)<r
add o to Result

—_
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4.1.2. Querying the PtoPT
A similarity query is processed by traversing the index
file sequentially. However, for each database object o, we
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try to avoid computing d(q,0) by applying either triangle
or Ptolemaic lower-bounding (or both). For the imple-
mentation of the PtoPT range queries, see Algorithm 4.1.

Note that TriangleFilter and PtolemaicFilter compute
the lower bound to d(qg,0), including possible early
termination—either due to the current bound exceeding
the query radius r or the number of examined pivot pairs
exceeding the limit x. While the PtolemaicFilter function
refers to either UnbalancedFilter or BalancedFilter (see
Algorithms 3.1, 3.2), the TriangleFilter function just
applies the triangle inequality test for each pivot p € P,
as usual in the original pivot table.

As mentioned, the parameter k refers to the maximum
number of pivot pairs to be examined before giving up on
computing the bound. Although this parameter could be
left to the user, by setting x = || we obtain Ptolemaic
lower-bounding of the same time complexity as the
triangular one (i.e., O(|P))).

4.2. The Ptolemaic PM-Tree

As mentioned in Section 2.2, the PM-Tree is a dynamic,
persistent, paged and extensible metric access method
that synergically combines the basic principles of the M-
tree and the pivot table. In this paper we show that the
PM-Tree could be also used as a Ptolemaic metric access
method. We call this method Ptolemaic PM-Tree or PtoPM-
Tree. Note that in addition to the Ptolemaic lower bounds,
the PtoPM-Tree can also employ the lower bound pro-
vided by the triangle inequality, i.e., we can employ all
filtering conditions used in the original PM-Tree. The
following sections describe how some simple heuristics
can be used to compute the lower bound more efficiently.
The data structure needed in order to accommodate these
new heuristics is described in Section 4.2.1.

4.2.1. The PtoPM-Tree index structure
The index structure of PtoPM-Tree consists of two
components:

e The pivot file, storing the set [ of m pivots, and a pivot
distance matrix, storing the distances between all
distinct pairs of pivots from P.

e The index file, storing the PM-Tree index structure,
where only the ground entry is slightly changed—again
the pivot permutation is included. A ground entry in
PtoPM-Tree leaf is defined as grndpy(2) =[zid(2),
(-);,0(z,Par(2)),PD].

Algorithm 4.2. PToPM-TREE RANGEQUERY(q,r,TreeRout,
Result)— Result

1: if ptr(T(TreeRout)) is InnerNode
2: for each routingEntry in ptr(T(TreeRout))

3 if TriangleParentFilter(q,routingEntry.O,r) > r
4 continue for

5: if PtolemaicShellFilter(q,routingEntry.O,r) > r
6: continue for

7 compute d(q,routingEntry.O)

8 if TriangleFilter(q,routingEntry.O,r) > r

9: continue for

10: RangeQuery(q,r,routingEntry,Result)
11:

else

12: for each groundEntry in ptr(T(TreeRout))

13: /| triangle LB for parent object, hyperrings

14: if TriangleParentFilter(q,groundEntry.O,r) > r

15: continue for

16: /| Ptolemaic LB for parent object and a global pivot
17: if ExtraPivotPtolemaicFilter(q,groundEntry.O,r) > r
18: continue for

19: /| Ptolemaic LB for all tuples of global pivots

20: if PtolemaicFilter(q,groundEntry.O,r) > r

21: continue for

22: compute o(q,groundEntry.0)

23: if 5(q,groundEntry.0) <r

24: Result.Add(groundEntry.O)

4.2.2. Querying the PtoPM-Tree

Because the PM-Tree’s PD attribute stands for an array
of ppa pivot distances (p,q <p) where the t-th distance
PDp, =46(y,p,), we can use this information for basic
Ptolemaic filtering. The original PM-Tree structure (with-
out permutations) could be used in this way; however,
then only the naive heuristic could be employed. Besides
the basic Ptolemaic filtering applicable in the leaf level of
the PtoPM-Tree, there are two additional filtering meth-
ods applicable in the PtoPM-Tree, as discussed in the
following paragraphs.

e Extra pivot for Ptolemaic filtering in PM-Tree leaves: The
PtoPM-Tree leaf node represents a metric region with
the center object Par(z) stored in the parent routing
entry, while the ground entries in the leaf node store
the distance d(z,Par(z)). Par(z) can be considered as a
dynamically selected local pivot for objects in the leaf
node and thus could be used for Ptolemaic filtering. In
the case the leaf node contains object Par(z), the
distances between Par(z) and all global pivots can be
determined from PD stored in grndpy(z). Thus, the
Ptolemaic lower bound can be computed for all objects
in the leaf node using the additional pivot pairs (Par(z),
pi), where p; € P.

e Ptolemaic shell filtering in PM-Tree: Because the routing
entry routpy(y) contains hyper-ring (shell) information
stored in HR, the shell filtering described in Section 3.1
can be used for subtree elimination. Then the lower
bound between query object g and region formed by
the intersection of the hyper-rings HR is determined as

(8(q5) - HRP™—5(q.p) - HRI™) /5(p,s)

To get the greatest possible lower bound, all pivot pairs
p,s € P have to be checked.

For the range query details see Algorithm 4.2.

4.3. The Ptolemaic M-Index

As mentioned in Section 2.3, M-Index combines all
commonly used metric filtering principles; in particular, a
sort of pivot Table is stored in the M-Index buckets and
thus can be simply extended to the Ptolemaic version. In
this paper we call this method Ptolemaic M-Index, or
PtoM-Index.
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4.3.1. The PtoM-Index index structure

The data structure needed in order to accommodate
the Ptolemaic filtering is very similar to the original M-
Index structure. Again the pivot file, storing the set [® of m
pivots, and a pivot distance matrix, storing the distances
between all distinct pairs of pivots from [P, have to be
included. The second difference from the original M-Index
structure is the use of the Ptolemaic Pivot Table in the
buckets, i.e., with distances to pivots and the pivot
permutations stored for each object.

4.3.2. Querying the PtoM-Index

The query processing in the PtoM-Index consists of
two phases. First, the metric filtering in the cluster tree is
applied to determine buckets containing relevant objects
and, second, the parts of the Ptolemaic Pivot Table stored
in the buckets have to be sequentially processed. Hence,
the same principles as in Section 4.1.2 are employed. For
the range query details see thus again Algorithm 4.1.

5. Indexing the signature quadratic form distance

In this section, we review the utilized similarity model,
the SQFD on feature signatures, outline existing query
processing techniques, and explain the relationships
between Ptolemaic indexing and quadratic form distances
more in detail.

5.1. Ptolemaic norm metrics = QFDs

Before dealing with SQFDs, we first recall a result
about quadratic form distances (QFDs), due to Hetland
[4], a result that motivates the proof sketch in Section 5.4.

A distance can be metric without being Ptolemaic, and
vice versa—neither property implies the other [30].

However, it turns out that there is one class of metrics
that is a very natural example of Ptolemaicity,
namely QFDs.

A QFD can be expressed as follows:

dx,y) = J DO axi—yx-yy)

i=1j=1

In matrix notation, this becomes ~/z’Az, where x and y are
vectors, and z=x-y. The (symmetric) weight matrix
A=[a;] defines how related (or rather, unrelated) the
dimensions are [31]. If (and only if) A is positive-definite,
the distance is a metric.

There are, of course, an infinite number of Ptolemaic
metrics. For example, for any metric J(,-), the distance
\/0(-,-) will be a Ptolemaic metric (with an identical
distance ordering to that of the original), although in
general with a greatly increased intrinsic dimensiona-
lity [19], making indexing harder. There are also other,
specific examples, such as the discrete metric (d(x,y) =
1<x+#y) or the chordal metric on the unit Riemann
sphere [32]. However, none of these examples are actually
in use in similarity retrieval.

On the other hand, if we restrict our attention to the
relatively general case of normed vector spaces (X, - Il),
and norm metrics d(x,y) = llx—yll (that is, metrics induced

by the vector norm), we see that subset of these that are
Ptolemaic corresponds exactly to the set of quadratic form
distances:

Theorem 1 (Hetland [4]). A distance function is a quadratic
form metric if and only if it is a Ptolemaic norm metric.

In other words, not only are QFDs Ptolemaic; when
dealing with vector spaces and norm-induced distances—
an important case, for sure—they are the Ptolemaic
distances.

5.2. Measuring the similarity between feature signatures

The SQFD is an adaptive similarity measure defined for
the comparison of feature signatures. This type of feature
representation gathers object properties by individually
aggregating them in a compact way. Unlike conventional
feature histograms, feature signatures are frequently
obtained by clustering the objects’ properties, such as
color, texture, or other more complex features [33,34],
within a feature space and storing the cluster representa-
tives and weights. Thus, given a feature space [, the
feature signature S° of a multimedia object o is defined
as a set of tuples from F x R™ consisting of representa-
tives r° € F and weights w° e R™.

We depict an example of image feature signatures
according to a feature space comprising position and color
information, i.e. F < R°, in Fig. 7. For this purpose we
applied the k-means clustering algorithm [35] where each
representative r? € F corresponds to the centroid of the
cluster ¢} <F, ie, 0= Zfec;’f/‘cf , with relative fre-
quency w?=|C7|/>>;|C7|. We depict the feature signa-
tures’ representatives by circles in the corresponding
color. The weights are reflected by the diameter of the
circles. As can be seen in this example, feature signatures
adjust to individual image contents by aggregating the
features according to their appearance in the underlying
feature space. Beyond images, feature signatures can also
be applied to other kinds of multimedia data which fit
into this flexible feature representation form. In general,
there are no obstacles to using a non-vectorial feature
space [, so the SQFD has prospects of becoming a
universal distance for measuring locality-sensitive simi-
larity between any complex signatures consisting of local
features.

In order to compare feature signatures, we make use of
the SQFD which is a generalization of the conventional
quadratic form distance (QFD) [36]. In contrast to the well-
known earth mover’s distance (EMD) [37], the SQFD makes
it possible to balance the tradeoff between indexability
and retrieval quality [8]. Moreover, it has been recently
shown how to compare continuous probability distribu-
tions, such as mixtures of Gaussian densities, with the SQFD
[38,39]. Thus, the SQFD is able to successfully cope with a
broad range of feature representations of different struc-
ture and size. In this paper, however, we define the SQFD
for the comparison of feature signatures as follows.

Definition 1 (SQFD). Given two feature signatures
ST=(r{wiy_; and P = {<rf,wP >} | and a similarity
function f, : F x F— R over a feature space F, the signature
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Fig. 7. Three example images with their corresponding feature signature visualizations.

quadratic form distance SQFDy, between S? and S is
defined as

SQEDy, (5%,57) = \/(Wq| ~wp) - Ay, - (Wy|-wp),

where A;, € R®+™*("+™ g the similarity matrix arising
from applying the similarity function f; to the correspond-
ing representatives, ie., a;=f(rr;). Furthermore,
we =i, ..., w}) and w, =W, ..., wh) form weight vec-
tors, and (wq|-wp) =W, ... . wi,—wl,...,.—wh) denotes
the concatenation of weights wq and —w,.

As can be seen in Definition 1, the SQFD is defined by
means of a similarity function f; determining the similar-
ity relationship between any two representatives of the
feature signatures. Gathering all possible similarity rela-
tionships between and also within the feature signatures
defines the similarity matrix Ay. In fact, including self-
similarities, i.e. similarity values between representatives
from the same feature signature, is necessary to obtain
good retrieval results [40]. The similarity matrix has to be
determined for each distance computation individually.
Thus, the complexity of a single distance computation is
in O((n+m)? - ¢) where n and m denote the size of feature
signatures S? and SP, respectively, and ¢ denotes the
complexity of the similarity function f; over a feature
space F.

The choice of an appropriate similarity function
depends on the domain the SQFD is applied to. In
particular, the Gaussian similarity function fg(r;,rj)=
e~*L20o7)* with the Euclidean distance function L, shows
high retrieval performance in the image domain when
adapting the parameter & € R™ to the current multimedia
database [7]. Although more efficient similarity functions
exist, such as f_(r;,rj) = —L(r;,1;), the Gaussian similarity
function enables the SQFD to outperform the other
adaptive similarity measure as shown in [7] and recently

in [41]. Therefore, we use the Gaussian similarity function
throughout the experimental evaluation. We continue
with a description of SQFD-specific approaches to efficient
query processing with a particular focus on metric
indexing.

5.3. Metric indexing of the SQFD

Unlike previous approaches [42-44] focusing on
improvements in efficiency through speeding up the
sequential scan in an exact or approximate way, Beecks
et al. [8] exploit the indexability of the SQFD by investi-
gating the parameters of the similarity function and
indexing the data through simple pivot tables. They have
shown that the similarity functions’ parameters affect the
indexability of the underlying data space thus allowing to
balance the tradeoff between indexability and retrieval
quality. In fact, by adapting the parameter « of the
Gaussian similarity function fg(r;,rj) = e~*L20or)? | their
pivot table approach reached a speed-up factor of up to
170 when compared to the sequential scan. In addition,
the combination of the SQFD and Ptolemaic pivot tables
has shown a speed-up factor of up to 300 (see the
previous version [1] of this paper).

In the meantime, Krulis et al. [45,46] came up with the
idea of processing the SQFD on many-core GPU architec-
tures. By implementing the query evaluation process on
many-core GPUs and also multi-core CPUs, they have
shown a significant improvement in efficiency compared
to the non-parallelized approaches. Their approach is
complementary to the techniques proposed in this paper.

5.4. Signature QFDs are QFDs

This section outlines a proof sketch justifying the use
of Ptolemaic and metric indexing for the SQFD. The idea is
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simple: the SQFD is basically an efficient way of calculat-
ing the QFD between extremely sparse weight vectors.
Consider an ordinary QFD with vectors R". Assume that
for any dimension, at most one vector in the space has a
nonzero value. By assuming a representative for each
dimension, the similarity matrix for this space can be
computed exactly as in the SQFD. It should now be clear
that for the QFD over these vectors, most dimensions will
be irrelevant. Any dimension where both of the vectors
have a value of 0 will be eliminated from the inner
product, and we end up actually using a tiny portion of
the similarity matrix. This is exactly what is done in
the SQFD.

We can look at this the other way around, starting
with the SQFD signatures. We first embed the weight
vectors of feature signatures into R", where each dimen-
sion of each weight vector in the original feature space is
assigned to a separate dimension in RN, For simplicity, we
initially assume that we are working with a finite distance
space, and that all representatives are distinct. (These
assumptions will be relaxed later.)

The number of dimensions, N, is thus the sum of all
feature signature sizes in our original distance space.
Embedding a weight vector in R" simply involves padding
it with zeros on either end, so that its weights end up in the
correct dimensions (assuming that the dimensions, which
we are free to choose, are adjacent). Let w' € R" be the
embedded version of any weight vector w. We then have

(Wa|—wWp) =w,—wj,

Here, the embedding (Wq|—w;) € RN is taken to mean the
embedding that assigns the values from w, and w,, to the
same dimensions as the individual embeddings w; and w;.

We can now define a global similarity matrix A, using
the same similarity function as for the local matrices A .
We can then calculate the QFD between w;, and wj as
follows:

QFD(W, W}) = /(Wy—w}) - A - (wy—w})T

= \/(Wu ‘ -wp) -A- (Wa|_Wb)/T

In the matrix product x’Ax”, the extra dimensions
involved in the embedding are all zero, and do not
contribute at all (see Fig. 8). Only the original dimensions,
and the corresponding entries in A (which together form
As,), are used in computing the distance. Thus we have
QFD(wq',w},") = SQFD(a,b). If A is well-behaved (symmetric
positive definite), QFD is a Ptolemaicmetric [4]. Since the
mapping x— X’ is a distance-preserving isomorphism, the
same holds for SQFD.

Now, if two input signatures a and b both contain a
given representative, then that representative would be
represented by (at least) two different dimensions in R".
These two dimensions would then have identical rows
and columns in A, and the similarity between them would
be 1, which makes QFD a pseudometric.7 Note, however,
that because of the way the vectors in RN are constructed,

7 We could get zero distances between distinct objects.

(w), —wp)T

’ ’ A
Wq, — Wy

Fig. 8. Embedding SQFD vectors in a QFD space. Because of the zero
components of w,—w;, the gray areas of A will not affect the inner
product.

w, and wj will have zero components for one of these
dimensions each. In other words, a zero distance will only
occur between w; and w; if a=b.

The only unresolved issue is what happens if the
original distance space is infinite. We will then end up
with infinite-dimensional vector space. We can still define
an equivalent inner product < -, - >, extending the origi-
nal quadratic form, and the resulting (infinite-dimen-
sional) distance é(a’,b") = \/{W,—w},w,—w] > would still
be a Ptolemaicmetric [47]. Whether the infinite-dimen-
sional case fits under the common definition of a QFD is
perhaps debatable, but the main point here is that it is
still Ptolemaic, and can therefore be used with Ptolemai-
cindexing techniques.

6. Experimental evaluation

In this section, we evaluate the efficiency of search
under SQFD. We compare the PtoPT with the original pivot
tables, so far the state-of-the-art metric index applied to
SQFD. We also evaluate all the introduced variants of
PtoPM-Tree and compare them to the original PM-Tree.
Finally, we propose a first performance comparison of the
state-of-the-art metric and Ptolemaic access methods.

6.1. The Testbed

We made use of the two real databases—the MIR Flickr
database [48] including 25 000 web-images with textual
annotations, and the ALOI database [49] consisting of
72 000 images. The selected databases are not very large
but they provided a ground truth for evaluating the search
effectiveness. We also employed a larger synthetic dataset
CLOUDS representing 251 000 clouds of points.

We extracted feature signatures from the real data-
bases, based on seven-dimensional features (L,a,b,x,y,y,
n) € F including color (L,a,b), position (x,y), contrast y, and
coarseness 1 information. These features were extracted
for a randomly selected subset of pixels for each image
and then aggregated by applying an adaptive variant of
the k-means clustering algorithm described by Leow and
Li [50]. Thus, we obtained one feature signature for each
single image. The signatures varied in size between 5 and
115 feature representatives. On average, a feature
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signature consisted of 54 representatives (i.e., 432 num-
bers per signature).

The synthetic CLOUDS database was generated [51],
namely 1251 000 clouds (sets) of 20-40 10-dimensional
points (embedded in a unitary 10D cube). This database
was chosen as a set analogy to synthetic vector datasets
when evaluating vectorial similarity search. Moreover, the
cloud of points is common for simplified representations
of complex objects or objects consisting of multiple
observations [52]. Each point has assigned a weight where
the sum of all weights in the cloud was 10 000. For each
cloud, its center was generated at random, while other
10 000 points were generated under normal distribution
around the center (the mean and variance in each dimen-
sion were adjusted to not generate points outside the
unitary cube). Then an adaptive variant of the k-means
clustering [50] was used to create 20-40 centroids repre-
senting the original data. The weight of each centroid
corresponded to the number of points assigned to the
centroid in the last iteration of the k-means clustering. On
average, a feature signature consisted of 30 representa-
tives (centroids), i.e., 330 numbers per signature.

Table 1
Labels used in the figures.

Label Description

PT Pivot Table

PtoPT Ptolemaic Pivot Table
PtoPM-Tree Ptolemaic PM-Tree

PtoPM-Tree + E
PtoPM-Tree + E + SH

Ptolemaic PM-Tree using extra pivot
Ptolemaic PM-Tree using extra pivot
and shell filtering

PtoM-Index Ptolemaic M-Index

Tri(n)
Pto(n, U—B—N, k)
TriPto(n, U—B—N, k)

PtoPT using triangle mode

PtoPT using Ptolemaic mode

PtoPT using triangle+Ptolemaic mode

n is the number of pivots used

U—B—N stands for Unbalanced, Balanced
or Naive heuristics

K is the max. number of pivot pairs used

% of Tri(n) Performance related to query realtime
achieved by Tri(n)
Performance related to query realtime

achieved by PM-Tree

% of PM-Tree

iDIM for a particular alpha
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The remaining settings in our experiments were the
same as those used by Beecks et al. [8]. The tests ran on a
workstation 2x Intel Xeon X5660 2.8 GHz, 24 GB RAM,
Windows Server 2008 R2 64bit (non-virtualized). We
have used our own C++ implementation of PT, PtoPT,
PM-Tree and PtoPM-Tree index structures. For the M-
Index we have downloaded the original Java implementa-
tion [53]. In order to correctly compare the Java-based M-
Index and PtoM-Index with the C++-based indexes we
have used the number of evaluated distance computation
in Section 6.2.4 instead of real times. However, as SQFD is
an expensive distance, the real times strongly correlate
with the number of distance computations.

In Table 1, we summarize the description of labels
used within the following figures. We investigate all
heuristics proposed in Section 4.1.2 only using PtoPT so
we utilize special labels in Section 6.2.2. Note that Tri(. - )
denotes the original pivot tables used as a reference
metric access method, while the Pto(---) and TriPto(- - -)
labels refer to specific filtering modes for efficient Ptole-
maic lower-bound estimation (see Section 4.1.2).

6.2. The results

6.2.1. SQFD properties

We first present the SQFD properties in terms of
intrinsic dimensionality (iDim) [2] and mean average pre-
cision (MAP) values [54], as they indicate whether the
SQFD allows for efficient and effective indexing (see
Fig. 9). The crucial parameter alpha (denoted o in
Section 5.2) is applied inside the Gaussian similarity
function f; when computing the SQFD matrix, and it has
significant impact on iDim and MAP. For more about
tuning iDim and MAP using alpha, see the paper by Beecks
et al. [8].

Next, we study the increase in efficiency in terms of k
NN query response times. As the numbers of distance
computations perfectly correlate with the real response
times (because of SQFD’s computational cost), we present
mainly the real times in the figures. However, since we
have two different platforms for various PtoAMs/MAMs,
we present also distance computations as a platform
independent performance measure in Section 6.2.4. In
general, a single SQFD computation takes on average

MAP for a particular alpha
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Fig. 9. Intrinsic dimensionality vs. mean average precision.
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0.65 ms for the ALOI database, 0.79 ms for the MIR Flickr
database, and 0.25 ms for the CLOUDS database. The
number of distance computations could be reconstructed
using these values, as well as the real response times of
the sequential scan. The query costs were averaged for
100 different queries, while the query signatures were not
indexed.

6.2.2. Ptolemaic pivot tables

See Fig. 10 for the performance of k NN queries on the
ALOI database, 50 pivots, and alpha=0.32. The PtoPT is a
clear winner in all configurations, while the Balanced
heuristic always works best. Also note that the maximum
relative speed-up with respect to Tri(50) is achieved for
k=10-50.

The impact of the maximum number of pivot pairs
used in the Ptolemaic bound computation is presented in
Fig. 11. It shows that the Ptolemaic filtering is effective
even for a small number of pivot pairs (Pto), while it is
further improved when combined with the triangle filter-
ing (TriPto).

Fig. 12 shows the relative performance w.r.t. Tri(10)
for varying alpha. Note that for very small alpha also the
iDim is very small (~2), so that the triangle filtering
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using 50 pivots is efficient enough and leaves a relatively
smaller room for improvement. On the other hand, large
alpha leads to high iDim (= 20), as well as smaller dif-
ferences between triangular and Ptolemaic filtering—the
space is hard to index, whichever filtering is used. Con-
sidering 50 pivots, the best speed-up of PtoPT is achieved
for alpha=0.4 and ALOI (iDim ~4), alpha=0.1 and MIR
Flickr (iDim = 3). The results for k NN queries on the MIR
Flickr (see Fig. 13) are similar to those for ALOI (see
Fig. 10); however, the largest speed-up of PtoPT was
achieved for 1NN queries.

The results showing the varying number of pivot pairs
on the MIR Flickr (see Fig. 14) are also similar to those for
ALOI (see Fig. 11). Note that for a large enough number of
pivot pairs ( > 60) the Ptolemaic filtering works equally well
using only 10 pivots as does triangle filtering with 50 pivots.

6.2.3. Ptolemaic PM-Tree

In the following set of experiments, we have compared
the original PM-Tree to the proposed Ptolemaic variants. To
create PM-Tree, we have used 10 pivots both for ground and
routing entries, the capacity of leaf and inner nodes was set
to 21. To estimate the Ptolemaic lower bound, all possible
pivot pairs were used (naive heuristics). The experiments
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Fig. 11. Number of pivot pairs in PtoPT (ALOI).
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show that shell filtering significantly improves the PtoPM-
Tree performance for easy to index datasets (low alpha),
while the unique extra pivot employed in each leaf node
improves the index quality for less indexable datasets (see
Fig. 15). The PtoPM-Tree + E + SH variant reduces the costs
up to 50% of the original PM-Tree on the CLOUDS dataset and
up to 66% of the original PM-Tree on the ALOI dataset.

Similar behavior

bounding.

of pivot pairs

can be observed also for the
growing radius of the kNN query (Fig. 16), which
might be caused by better resistance of the Ptolemaic
lower-bounding to the growing radius of the query.
Moreover, for each dataset and alpha, we observe that
there is some optimal radius for Ptolemaic lower-
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6.2.4. MAMs and PtoAMs comparison the PtoPT and PtoM-Index are very efficient, while for
In the last set of experiments (see Fig. 17), we have large radii and high alpha the PtoPM-Tree becomes the
compared the state-of-the-art metric access methods best choice. Comparing to the sequential scan, the
with their corresponding Ptolemaic variants. We have PtoM-Index is even 1100 times faster. However, the
also added the M-Index and PtoM-Index (dynamic three orders of magnitude performance boost can be
variant, bucket size set to 500, max height of the achieved only for 1NN queries and alpha=0.01. For
cluster tree set to 6, and 10 pivots used). In all cases, growing radius or for growing alpha, metric index
the Ptolemaic variant results in a performance boost. performance decreases faster than for Ptolemaic

We can also observe that for small radii and low alpha, indexes.
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Fig. 17. Performance of all indexes (ALOI).

6.3. Discussion

In summary, we have experimentally proven that
Ptolemaic (metric) access methods can challenge any
metric access method when using SQFD. Even the very
simple PtoPT can be a superior solution for indexing SQFD
with low values of alpha, beating the state-of-the-art
metric indexes by responding 1NN queries almost four
times as fast compared to PT, three times as fast com-
pared to M-Index and 10 times as fast compared to PM-
Tree, respectively. When compared to the sequential scan,
the speed-up factor of three orders of magnitude is even
more remarkable. All Ptolemaic metric access methods
show better resistance on the growing query radius and
can be used for efficient similarity search in SQFD dis-
tance spaces with higher intrinsic dimensionality.

From another point of view, we have shown that the
Ptolemaic filtering in PtoPT achieves the same filtering
power as the triangle filtering in regular pivot tables using
only 20% of the pivots. Let us remember that PtoPT is used
also in PtoM-Index and is de facto part of PtoPM-Tree.® This
suggests that PtoAMs can be used as an economical solution
that needs only small time and space to construct an index,

8 The PD attribute in PtoPM-Tree ground entries stores distances to
all global pivots.

while achieving the same query efficiency as a metric index
that is five times as large and five times as slow to construct.

Moreover, our method uses a two-pivot online pivot
selection technique where the best pair of pivots is
heuristically chosen for every single query and database
object pair. In the metric indexing area this is the “holy
grail” of pivot selection techniques, as a good pivot should
be either close to the query or close to the database
object. Instead of selecting pivots from the database like
the offline techniques do, the pivot pairs are picked from a
pre-selected set of pivots. It seems that the effort usually
spent on the offline pivot selection process does not play
such an important role here, as the main pivot pair
selection procedure is performed online. The number of
candidate pairs grows quadratically with the number of
pivots, so even a pivot set that is bad from the metric
indexing point of view could provide good pivot pairs for
Ptolemaic filtering. However, additional analysis of this
hypothesis has to be done in the future.

7. Conclusions

In this paper we have applied the principles of Ptole-
maicindexing to existing metric indexing methods, yield-
ing Ptolemaic Pivot Tables, the Ptolemaic PM-Tree, and
the Ptolemaic M-Index. We have used these to index the
signature quadratic form distance (SQFD), and found
significant speed-up compared to the state-of-the-art
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metric indexing approach. Overall, our results have the
immediate benefit of making similarity search more
efficient for applications using the SQFD, but they are
also important for Ptolemaicindexing in general. At pre-
sent, the main family of Ptolemaicdistances of practical
importance is quadratic form distances (QFDs) [4].
Because QFDs are expensive to compute, the internal
overhead of Ptolemaicindexing is not an obstacle. How-
ever, as has been recently shown [9], static QFDs can be
mapped to Euclidean distance for the purpose of indexing,
making Ptolemaicindexing seemingly unfeasible. In this
paper we show that the more expressive SQFDs are, in
fact, equivalent to QFDs, except that their dynamic nature
precludes this form of preprocessing. This, together with
the increased performance over metric indexing, means
that the matching of Ptolemaicindexing and SQFDs is a
very natural and fruitful one.
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Abstract The Signature Quadratic Form Distance on feature signatures represents
a flexible distance-based similarity model for effective content-based multimedia re-
trieval. Although metric indexing approaches are able to speed up query processing
by two orders of magnitude, their applicability to large-scale multimedia databases
containing billions of images is still a challenging issue. In this paper, we propose a
parallel approach that balances the utilization of CPU and many-core GPUs for ef-
ficient similarity search with the Signature Quadratic Form Distance. In particular,
we show how to process multiple distance computations and other parts of the search
procedure in parallel, achieving maximal performance of the combined CPU/GPU
system. The experimental evaluation demonstrates that our approach implemented on
a common workstation with 2 GPU cards outperforms traditional parallel implemen-
tation on a high-end 48-core NUMA server in terms of efficiency almost by an order
of magnitude. If we consider also the price of the high-end server that is ten times
higher than that of the GPU workstation then, based on price/performance ratio, the
GPU-based similarity search beats the CPU-based solution by almost two orders of
magnitude. Although proposed for the SQFD, our approach of fast GPU-based simi-
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larity search is applicable for any distance function that is efficiently parallelizable in
the SIMT execution model.

Keywords Similarity search - Database indexing - Parallel computing - GPU - Pivot
table - Metric - Ptolemaic - Multimedia databases

1 Introduction

Multimedia retrieval systems frequently store billions of images and provide users
with different ways of searching and browsing (e.g., catalog-based or keyword-
based search). However, effective yet efficient techniques for content-based similarity
search are still a hot research topic. To this end, multimedia retrieval systems are de-
signed based on advanced similarity models consisting of image representations and
similarity/distance measures.

A flexible way to represent the content of an image is by means of feature sig-
natures [28]. In general, a feature signature of an image is a set consisting of mul-
tiple local image features, where the length of a feature signature is not fixed (to
distinguish images of different complexities). However, the comparison of feature
signatures requires more sophisticated and computationally expensive adaptive dis-
tance measures [4], such as the Earth Mover’s Distance (EMD) [28] or the Signature
Quadratic Form Distance (SQFD) [3, 5]. In this paper, we focus on the latter, as the
SQFD shows higher retrieval quality [4], higher stability [2], and lower time complex-
ity compared to the EMD (O(n?) vs. O(n*)). Nevertheless, the quadratic complexity
is still too high to use the SQFD for a sequential search of a large database. In order
to reduce the computational effort, indexing [31] approaches have been applied to
the SQFD. It has been shown that metric indexing [1] and ptolemaic indexing [19]
reach a speed-up of more than two orders of magnitude with respect to the sequential
scan. However, even when using indexing approaches, the speed-up is generally lim-
ited due to the high intrinsic dimensionality [31]. Thus, in order to use the SQFD for
large-scale image retrieval, we propose to parallelize the SQFD query processing.

Parallelization of data retrieval problems on many-core architectures has already
been addressed from many perspectives. For instance the KNN query algorithm which
is used in almost every data retrieval system has been successfully parallelized on
GPUs by Bustos et al. [7] and later by Garcia et al. [10]. Pan et al. [26] showed
that the solution can be improved even further using a hashing approach to compute
the approximate KNN on GPUs. Other similarity-based operations can benefit from
parallelization aswell. Lieberman et al. [18] suggested using GPUs for similarity join-
ing operations. All these solutions exploited the parallel nature of GPUs to achieve
significant speedup over CPU. However, the potential of the GPU lies especially in
numeric computations, thus we can utilize its power even more efficiently to compute
expensive distance functions that offer higher precision of the similarity search.

In this paper, we consider the combination of many-core GPU devices and multi-
core CPU processors for parallel SQFD query processing. While parallel CPU pro-
cessing is straightforward and supported by many development tools, designing effi-
cient algorithms for GPUs is a challenging task for content-based retrieval purposes.
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Although GPUs generally contain more cores than CPUs, they suffer from slow data
transfer rates and code execution restrictions. We discuss GPU processing limitations
and introduce two new schemes for efficient similarity search utilizing the combina-
tion of indexing approaches and the computational power of CPUs + GPUs.

The paper is organized as follows. Section 2 introduces the task of similarity
search, the motivation and definition of the SQFD, and also the indexing techniques
used for fast similarity search by the SQFD. Section 3 discusses the most impor-
tant aspects of GPU architectures. The contribution of the paper are two algorithms
addressing the implementation of similarity search on CPU and GPUs, described
in Sects. 4 and 5. The first algorithm (SQFD-only) utilizes the GPUs only to com-
pute the SQFD, leaving the other processing on CPU, while the second algorithm
(SQFD + LB) utilizes the GPUs also to compute lower bound distances used in index
pre-filtering. Section 6 presents the experimental results, and Sect. 7 concludes this

paper.

2 Similarity search in multimedia databases

When searching multimedia databases by content, users issue similarity queries by
selecting multimedia objects or by sketching the intended object contents. Given an
example multimedia object or sketch ¢, the multimedia database S C U (where U
is the object universe) is searched for the most related objects with respect to the
query by measuring the similarity between the query and each database object by
means of a distance function §. As a result, the multimedia objects with the lowest
distance to the query are returned to the user. In particular, a range query (q,r),
g € U, r € RT, reports all objects in S that are within a distance r to g, that is,
(g,r) ={x €S| 8(x,q) <r}. The subspace defined by ¢ and r is called the guery
ball. Another popular similarity query is the k nearest neighbors query (kNN). It
reports the k objects from S closest to g. That is, it returns the set C C S such that
ICl=kand Vx € C,y € S — C,§(x,q9) <8(y,q). The kNN query also defines a
query ball (g, r), but the distance r to the kth NN is not known in advance.

2.1 Model representation

When determining content-based similarity between two multimedia objects, the dis-
tance is evaluated on feature descriptors which aggregate the inherent properties
of the multimedia objects. The conventional feature descriptors aggregate and store
these properties in feature histograms, which can be compared by vectorial distances
[15, 27].

2.1.1 Feature signatures
Unlike conventional feature histograms, feature signatures are frequently obtained
by clustering the objects’ properties, such as color, texture, or other more complex

features [9, 23], within a feature space and storing the cluster representatives and
weights. Thus, given a feature space I, the feature signature S° of a multimedia
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Fig. 1 Three example images with their corresponding feature signature visualizations

object o is defined as a set of tuples from [F x R consisting of representatives r° € IF
and weights w® € RT.

We depict an example of image feature signatures according to a feature space
comprising position, color and texture information, i.e. F € R’, in Fig. 1. For this
purpose we applied the k-means clustering algorithm where each representative r{ €

) ) Yreco f . .
IF corresponds to the centroid of the cluster C? C T, i.e., r{ = %, with relative
i

co . ) , ) .
frequency w{ = Zli IlCl,f’I . We depict the feature signatures’ representatives by circles

in the corresponding color. The weights are reflected by the diameter of the circles.
As can be seen in this example, feature signatures adjust to individual image contents
by aggregating the features according to their appearance in the underlying feature
space.

2.1.2 Signature quadratic form distance

The Signature Quadratic Form Distance (SQFD) [3, 5] is an adaptive distance-based
similarity measure for the comparison of feature signatures, generalizing the classic
vectorial Quadratic Form Distance (QFD) [12]. It is defined as follows.

Definition 1 (SQFD) Given two feature signatures S9 = {(riq, wl‘.’) i, and §9 =

{{r?, w?)}?_, and a similarity function f; : F x F — R over a feature space F, the

signature quadratic form distance SQFD ;. between §7 and S is defined as:

SQFDfs (Sq’ So) = \/(wq | _wo) . Afs : (wq I _wo)T 5
where Ay, € ROH+m)x(n+m) g the similarity matrix arising from applying the simi-

larity function f; to the corresponding feature representatives, i.e., a;j = f5(ri,r}).
Furthermore, w, = (w?, ..., w})) and w, = (w?, ..., wY,) form weight vectors, and
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Fig. 2 The impact of « on the intrinsic dimensionality and mean average precision

(wy | —w,) = (w?, o wl —w{, ..., —wy,) denotes the concatenation of weights

wy and —w,.

The similarity function f; is used to determine similarity values between all pairs
of representatives from the feature signatures. In our implementation we use the sim-
ilarity function f;(r;,r;) = e~ aLa(rir .f>2, where « is a constant for controlling the
precision-indexability tradeoff, as investigated in our previous works [1, 19], and L,
denotes the Euclidean distance. In particular, lower values of the parameter « lead to
better indexability, that is, to a smaller intrinsic dimensionality 1iDIM) [8]. However,
lower values of the parameter « also decrease the retrieval effectiveness (frequently
measured in terms of mean average precision values), as can be seen in Fig. 2 for
the ALOI [11] and MIR Flickr [16] databases as examples. On the contrary, the best
mean average precision values can be reached using a large value of the parameter
o making the SQFD space no longer indexable. In such cases a parallel query pro-
cessing approach could be one feasible solution to significantly speedup the search
process. Nevertheless, before we proceed to the parallel implementation of the SQFD
query processing, we briefly summarize available indexing methods.

2.2 Indexing

When processing content-based similarity queries by the naive sequential scan, the
computation of the SQFD has to be carried out for each database object individually.
Unlike the cheap L, distances, the SQFD is of more than quadratic time complexity
(w.r.t. dimension), so the sequential scan, sometimes acceptable for L, distances,
is impractical for the SQFD even on a moderately sized database. Although it has
been shown that the SQFD is a generalization [5] of the well-known Quadratic Form
Distance [12], recent approaches indexing the data by a homeomorphic mapping into
the Euclidean space [30] can not be applied to the SQFD, as the similarity matrix
changes from computation to computation.

Nevertheless, recent papers showed that SQFD can be indexed by metric access
methods [1] and ptolemaic indexing [19], achieving a speed-up of up to two orders
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Fig. 3 Lower-bound distance e
computed using triangle ’
inequality and a single pivot

LB,(5(q.0))

o

of magnitude with respect to the sequential scan. In this section we review both ap-
proaches and detail the simplest and most intuitive metric/ptolemaic index: the pivot
tables.

2.2.1 Metric indexing

A metric space (U, §) consists of a feature descriptor domain U (in this paper, the set
of all possible signatures) and a distance function § which has to satisfy the metric
postulates: identity, non-negativity, symmetry, and triangle inequality. In this way,
metric spaces allow domain experts to model their notion of content-based similarity
by an appropriate feature representation and distance function serving as similarity
measure. At the same time, this approach allows database experts to design index
structures, so-called metric access methods (or metric indexes) [8, 13, 29, 31], for
efficient query processing of content-based similarity queries in a database S C U.
These methods rely on the distance function § only, i.e., they do not necessarily know
the structure of the feature representation of the objects.

Metric access methods (or metric indexes) organize database objects 0; € S by
grouping them based on their distances, with the aim of minimizing not only tra-
ditional database costs like I/O but also the number of costly distance function §
evaluations—in our case the number of SQFD evaluations. For this purpose, nearly
all metric access methods apply some form of filtering based on cheap computation
of lower bounds LB A(§(q, 0)). These bounds are based on the fact that exact pivot—
object distances are precomputed, where pivot is a suitable reference object selected
from the database S.

We illustrate this fundamental principle in Fig. 3 where we depict the query object
g € U, some pivot object p € S, and a database object 0 € S in some metric space.
Given a range query (g, r), we wish to estimate the distance §(¢q, 0) by making use
of §(¢g, p) and & (o, p), with the latter already stored in the metric index. Because of
the triangle inequality, we can safely filter object 0 without needing to compute the
(costly) distance §(q, o) if the triangular lower bound

LBA(8(q.,0)) =|8(g. p) — 8(0. p)|. (1)

also known as the inverse triangle inequality, is greater than the query radius r. The
SQFD has been proved [19] to be a metric distance, so metric indexing can be applied
for efficient similarity search using SQFD.
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Fig.4 Comparison of
triangle/Ptolemy’s lower-bound
distances computed for two
pivots

2.2.2 Ptolemaic indexing

In metric indexes, the triangle inequality is used to construct lower bounds for the
distance. Analogously, in Ptolemaic indexing [14, 19], Ptolemy’s inequality is used
to construct such lower bounds as well. A distance function is called a Prolemaic
distance if it has the properties of identity, non-negativity, and symmetry, and satisfies
Ptolemy’s inequality. If a Ptolemaic distance also satisfies the triangle inequality, it
is a Ptolemaic metric.

Ptolemy’s inequality states that for any quadrilateral, the pairwise products of op-
posing sides sum to more than the product of the diagonals. In other words, for any
four points x, y, u, v € U, we have the following:

§(x,v)-8(y,u) <8(x,y)-8(u,v) +8(x,u)-8(y,v) 2

One of the ways the inequality can be used for indexing is in constructing a pivot-
based lower bound. For a query ¢, object 0, and pivots p and s, we get the candidate
bound:
16(q, p) - 8(0,5) —8(q.s)-5(o, p)l
dc(g,0,p,s5)= 3)
8(p.s)

For simplicity, we let éc(q, 0, p,s) = 0 if §(p,s) = 0. As for triangular lower-
bounding, one would normally have a set of pivots P, and the bound can then be
maximized over all (ordered) pairs of distinct pivots drawn from this set, giving us
the final Ptolemaic bound [14, 19]:

8(q.0) > LByl (8(q,0)) = prrgegpcﬁc(q, 0,p,5) (4)

As for the triangular case, the Ptolemaic lower bound LBy could be used to
filter objects not contained in the query ball, i.e., exclude those o; € S from search for
which LBpo1(8(q, 0;)) > r.

Figure 4 illustrates a comparison (in two-dimensional Euclidean space) showing
that ptolemaic indexing could provide much tighter lower bounds. Having two pivots
s, p, both lower bounds constructed using triangle inequality would not filter the
object o from search, as the value is lower than a radius of the range query r. On
the other hand, the lower bound obtained using the ptolemaic approach leads to very
tight distance approximation, and so filtering the object o from search.
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Luckily, the SQFD has been proved [19] to be both a metric and a ptolemaic
distance, so ptolemaic indexing can be applied for efficient similarity search using
SQFD.

2.3 Pivot tables

One of the most efficient (yet simple) indexes for similarity search is the pivot ta-
ble [24], originally introduced as LAESA [22]. Basically, the structure of a pivot ta-
ble is a simple matrix of distances 8(o;, p;) between the database objects o; € S and
a pre-selected static set of m pivots p; € P C S. For querying, pivot tables allow us
to perform cheap lower-bound filtering by computing the maximum lower bound to
8(q, 0) using all the pivots. Moreover, the lowerbounding could be coupled with the
querying more tightly because of the monotonous increase of the lower bound dur-
ing its computation (i.e., usage of an additional pivot leads to possibly tighter/greater
value). In particular, if the actual value of the lower bound being computed exceeds
the radius of a query, the computation of the lower bound can be safely terminated
and the object filtered out from further processing (so-called early termination opti-
mization).

Although pivot tables have been introduced as a metric index, they could be used
beyond the context of the metric space model. In fact, the data structure is just a dis-
tance matrix, so there is no metric-specific aggregate information stored (unlike in hi-
erarchical metric indexes) that would prevent from usage elsewhere. In consequence,
the original filtering based on triangular lower bounds (1) can be easily extended to
the ptolemaic case using (4), or even combined. This extension was already presented
as ptolemaic pivot tables [14, 19]. Because in the ptolemaic case there are pairs of
pivots used in the lowerbounding, the quadratic size could lead to a large internal
overhead when filtering. Therefore, there were also heuristics proposed for reduction
of the set of pivot pairs yet preserving their filtering power [19]. It was experimen-
tally confirmed that ptolemaic indexing could speedup the SQFD similarity search
up to 4 times with respect to the metric case and up to 300 times with respect to the
sequential scan [19].

2.4 Motivation for parallel indexing

The feature signatures and SQFD have been proved as an elegant and effective model
for similarity search allowing to compare multimedia descriptors based on local fea-
tures. There was also substantial effort spent on speeding up the SQFD search using
the metric and ptolemaic indexing. However, despite these advances the SQFD simi-
larity search is still not prepared for large-scale applications. Let us now analyze the
empirical evidence. Depending on the parameter « of the internal SQFD’s similarity
function f;, where higher « lead to more precise but slower search, the single-core
query times on Intel Xeon X5660 using a 25,000 database range from 150 ms to
1 s per query (see [19]). Obviously, even when the search complexity was heavily
reduced by the ptolemaic indexing (two orders of magnitude), the practical perfor-
mance is still not sufficient. In order to achieve competitive performance, it seems
necessary to parallelize the approach and reduce the real times by another two orders
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of magnitude, yet keeping the hardware platform cheap (using common GPU cards).
Accomplishing this goal would enable searching databases comprising millions of
multimedia objects in real time.

In the rest of the paper we propose two algorithms. The SQFD-only algorithm par-
allelizes only the SQFD computation on GPU, leaving the other processing on CPU
(work dispatching, pivot table filtering, results aggregation). This approach is effi-
cient in case the workloads of SQFD computations and index filtering are balanced,
so that GPU need not to wait for CPU. However, advanced filtering techniques (e.g.,
ptolemaic indexing) reduce the workload of SQFD computations by pruning a num-
ber of candidates, thus shifting the workload from GPU to CPU. For such cases we
propose the SQFD + LB algorithm that precomputes on GPU the lower-bound values
used by candidate pre-filtering, reducing thus the workload of CPU.

3 GPU fundamentals

GPU architectures [25] differ from CPU architectures in multiple ways. In the re-
mainder of this section, we describe the GPU device architecture and its two major
aspects, the thread execution and the memory organization, which have direct impact
on the design of our framework and the SQFD implementation. The following de-
scription may be incomplete or simplified as we focus mainly on details important
for GPU programming.

3.1 GPU architecture

A GPU card is a peripheral device connected to the host system via the PCI-Express
(PClIe) bus. The device consist of a GPU processor and on-board memory modules.
The device also consists of other parts related to image processing, but they are out
of scope of our method.

The GPU processor (Fig. 5) consists of several symmetric multiprocessing units
(SMPs), while the SMPs share only the main memory bus and the L2 cache, other-
wise they are completely independent. Each SMP consists of multiple GPU cores,
single instruction decoder, L1 cache, and local memory. The GPU cores are tightly
coupled since they share SMP resources, even the instruction decoder. As a result, all
cores execute the same instruction at the same time. Each core has its own arithmeti-
cal units for integer and float operations and a private set of registers.

The most significant differences from the classic CPU architecture is the specific
instruction execution by multiple cores in SMP and also multiple types of memory.
Therefore, we address these issues in more detail in the following.

3.2 Thread execution

When it comes to parallel execution, we usually distinguish between two types of
parallelism—task parallelism and data parallelism. The task parallelism is usually
employed by CPUs as each core executes different code. In case of data parallelism,
all cores execute the same code but on different portions of data. The GPUs are tai-
lored to data parallelism since their original graphic-acceleration design is aimed at
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processing large number of geometric vertices or image fragments using the same
algorithm.

The portions of code that are executed on the GPU are called kernels. A kernel
is a procedure that is invoked multiple times simultaneously, thus spawning multiple
threads that execute the same code. Each spawned thread gets the same set of calling
arguments and a unique identifier which is used to select the proper parts of the
parallel work. The threads are organized into one-, two-, or three-dimensional array
and the thread identifier is an index into this array. The thread managing and context
switching capabilities of the GPU are very advanced. Thus, it is usually better to
create a multitude of threads, even if they execute only a few instructions each, in
order to optimize the load balancing. In addition, fast context switching capabilities
of the GPU are used to inhibit the latency of global memory transactions.

Threads are aggregated into small bundles called groups (Fig. 6). A group usually
contains tens to hundreds of threads which are mapped to one SMP unit, thus execut-
ing the kernel code in SIMT (Single Instruction Multiple Threads) or virtual SIMT
fashion. Usually, there are many more thread groups than SMPs, where the groups
are planned sequentially and non-preemptively on available multiprocessors. When
a group is assigned to an SMP, it must finish its execution before another group can
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be assigned to that SMP. Therefore, threads in one group must not wait for results of
another group, because such behavior could easily lead to a deadlock.

Threads in a group are divided into subgroups called warps (NVIDIA) or wave-
fronts (ATI/AMD). The number of threads in these subgroups is equal to the number
of GPU cores in SMPs, so threads in a subgroup run in real SIMT mode. Exactly one
subgroup is actually running while others are waiting. When a subgroup is forced to
wait (e.g., when transferring data from memory), SMP performs a fast context switch
so that another subgroup may compute meanwhile.

The SIMT execution suffers from branching problems. When different threads in
the group choose different branches—for instance when executing ‘if” statements—
all branches must be executed by all threads. Each thread masks instruction execution
according to local result of the condition to ensure correct results. Therefore, heavily
branched code or ‘while’ loops with highly different number of iterations will not
perform well on GPUs. On the other hand, the SIMT approach simplifies synchro-
nization within the group and allows threads to communicate and collaborate through
SMP’s shared local memory.

3.3 Memory organization

The second difference is the memory organization which is depicted in Fig. 7. As we
can observe, there are four types of memory:

e host memory (RAM),

e global memory (VRAM),

e local memory,

e and private memory (GPU core registers).

The host memory is the operational memory of the computer. It is directly accessi-
ble by the CPU, but it cannot be accessed by any peripheral devices such as the GPU.
Input data needs to be transferred from the host memory (RAM) to the graphic device
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Fig.7 Memory organization scheme of host and GPU device

@ Springer



190 Distrib Parallel Databases (2012) 30:179-207

global memory (VRAM), and the results need to be transferred back when the kernel
execution finishes. For the transfer the PCI-Express bus is used, which is rather slow
(8 GB/s) when compared to the internal memory buses.

The global memory is directly accessible from GPU cores, while input data and the
results computed by a kernel are stored here. The global memory bus shows both high
latency and high bandwidth. In order to access the global memory optimally, threads
in one group are encouraged to use coalesced loads. A coalesced load is performed
when all threads of a group load or store a contiguous memory area, so that each
thread transfers a single 4-byte word of this block.

The local memory is shared among threads within one group. It is very small (tens
of kB) but almost as fast as the GPU registers. The local memory can play the role of
a program-managed cache for global memory, or the threads may share intermediate
results in here while they cooperate on a task. The memory is divided into several
(usually 16 or 32) banks. Two subsequent 4-byte words are stored in two subsequent
banks (modulo number of banks). When two threads access the same bank (except
if they read the same address), the memory operations are serialized which creates
undesirable delay for all threads due to the SIMT execution model.

Finally, the private memory belongs exclusively to a single thread and corresponds
to the GPU core registers. Private memory size is very limited (tens to hundreds of
words), therefore it is suitable just for a few local variables.

3.4 Summary

Finally, we would like to summarize the implications for our implementation.

o The latency of data transfers between the host system and the GPU devices needs
to be inhibited. The best way is to form a pipeline so that one block of data is being
transferred to GPU, one block of data is being processed and one block of results
is being transferred from GPU at the same time. Furthermore, the processing of a
data block should take at least as much time as its transfer.

e Each algorithm being adapted for GPU must be carefully analyzed and its data
transfers must be planned according to memory limitations of the GPU. The uti-
lized data structures need to be designed with respect to the memory architecture,
so that data can be fetched by coalesced loads from global memory and bank con-
flicts do not occur when accessing data in local memory by individual threads.

e Furthermore, the algorithm must embrace the SIMT execution model, at least for
the parts of the work processed by one thread group. Usually, it is not feasible
to parallelize an algorithm by simply assigning its inner loop to every spawned
thread as the resources of the threads are limited. In such cases the algorithm must
be redesigned so that threads of one group collaborate more closely and share their
resources.

e Multitude of threads (at least thousands) needs to be spawned in order to utilize all
available cores and balance the load efficiently.
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4 Similarity search using GPU

The most time consuming operation in a search engine employing SQFD for simi-
larity search is the computation of a distance between two signatures. This operation
takes O((m + n)?) time, where m, n are the sizes of signatures being compared.
Even when using indexing techniques that massively reduce the number of SQFD
computations needed to compute, such as the pivot tables, there still remains a set of
candidate database signatures that has to be filtered using direct SQFD computations.

Therefore, our primary objective is to utilize the computational power of GPU
to calculate distances between query and database signatures in parallel. In our ap-
proach, we consider both the parallel execution of multiple SQFD computations dur-
ing the query evaluation as well as the parallel computation of a single SQFD between
two feature signatures.

4.1 Computing multiple distances in parallel

Since the SQFD is computed between the query signature and many database sig-
natures, it would be inefficient to execute each computation separately on the GPU
due to high latencies caused by data transfer and kernel executions. Therefore, we
perform a block-wise computation of multiple SQFDs in parallel. Each block con-
tains N + 1 feature signatures. The first feature signature is the query signature and
remaining N feature signatures are the database signatures, thus each block yields a
vector of N distances as a result. The choice of N is essential for good performance.
In general, a large number of N performs better.

The query processor treats the GPU implementation of the SQFD as an asyn-
chronous operation that does not block the CPU when started, so the system can wait
for its termination. The system may start as many operations as required, while the
operations are queued and distributed over available GPU devices equally.! Since the
architecture is flexible and leaves the CPU relatively low-utilized, it could be easily
used with a distance-based index implemented in the CPU part of the system.

4.2 Computing each distance in parallel

In case of multi-core CPUs, computing multiple distances in parallel would be suf-
ficient to achieve optimal speedup, since the number of distances computed vastly
exceeds the number of available cores. Unfortunately, the same approach is not feasi-
ble on GPUs. The signatures need to be cached in local memory of the SMP, which is
very limited, so they are able to accommodate just a few signatures. Furthermore, it
would produce very imbalanced tasks for the threads in one group, which are running

In theory, two subsequent blocks dispatched to the same GPU device may overlap in some operations.
Modern GPUs have independent units for host-device memory transfers, therefore it should be possible
to overlap data transfer and SQFD computation of two subsequent blocks. In order to do so, the size
of the block needs to be restricted so that at least two data blocks would fit the GPU device memory.
Unfortunately, we have encountered many technical problems when attempting to pipeline execution and
data transfers. It is our belief that these problems are caused by flaws in hardware drivers and/or OpenCL
implementation.
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Fig. 8 Work decomposition
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in SIMT fashion on one SMP. Hence, to efficiently utilize all the cores on the SMP
unit we need to compute each distance in parallel as well.

Each SQFD is computed by a group of 256 threads, thus 256 x N threads are
spawned for one block. The constant 256 was selected based on current hardware ca-
pabilities. We have assigned one thread group to compute a single SQFD in a block,
because these threads benefit from shared local memory, as the group does cache
the input data from global memory and keeps intermediate results. Using multiple
groups to compute one SQFD would be problematic as the groups do not have any
effective means of communication. The opposite approach (using one group to com-
pute multiple SQFDs) is feasible. However, in case of sufficient signature lengths,
the parallelism would not be exploited any further and many technical complications
would arise due to the limited size of local memory.

The SQFD between two feature signatures has been defined in Definition 1. For
the sake of parallelism, we compute the elements of the similarity matrix A s, con-
currently by available threads in the group. Each element of the matrix is multiplied
with the corresponding weights of w = (w, | —w,), so that new matrix A is created,
where A, j) = W(j)A ., j)W()- Finally, we compute a sum of every element in the
matrix A and we find its square root. These modifications are direct applications of
distributivity and associativity laws, thus the result will not be affected in any way.
The SQFD GPU implementation has the following phases:

1. Load feature signatures into local memory.

2. Compute the similarity matrix Ay, and multiply its elements by corresponding
elements in the weight vectors (creating A).

3. Sum up elements in the matrix A and yield the square root.

In the first phase, data are loaded into local memory as they are required multiple
times and it would be ineffective to load them from global memory each time. Fur-
thermore, the loading is more efficient when all threads cooperate in coalesced loads.
The similarity matrix has (m + n) x (m + n) entries, where m and n are the numbers
of feature representatives in S7 and S, respectively. Since m + n is usually smaller
than 256 and varies for each pair of feature signatures, we use an irregular mapping
of similarity matrix elements to threads. Figure 8 depicts the mapping scheme, where
each area represents elements being computed in parallel. The numbers indicate con-
secutive (serial) steps in which the element areas are processed. In the last step the
remaining area of the similarity matrix could be smaller than the total number of
threads. In such case some threads remain idle.

In the second phase the matrices are not stored in memory but rather computed
on-the-fly since only a sum of elements in A is required. When a thread computes a
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new element in the similarity matrix, its value is added to a partial sum and the ele-
ment itself is discarded. Even though this method requires significantly less memory,
it creates a synchronization problem as multiple elements are being computed and
added to the partial sum concurrently. To avoid explicit synchronization, every thread
is provided with its own instance of the partial sum.

When the second phase terminates, the total sum of the partial sums of each thread
is computed as the third phase of the algorithm. The total sum is only computed by
the first thread in the group, which is also responsible for determining the square root
and for writing the computed distance into the global memory. The total sum can also
be computed cooperatively by all threads using reduction tree of logarithmic depth.
However, such improvement has no measurable impact on the performance as the
time required by the second phase dominates significantly the time required by the
final summation.

4.3 The SQFD-only algorithm

The above described parallel computation of (multiple) SQFDs could be utilized in
query processing, either directly in sequential scan of the entire database, or with
the pivot table index. The SQFD-only algorithm utilizing the pivot table is depicted
in Fig. 9.2 When a query is started, the algorithm computes the SQFD distances
between query and pivot objects (signatures). These distances are used by the pivot
table for construction of lower bounds. Then, the pre-filtering based on the lower
bounds takes place, resulting in a set of remaining candidate objects that have to be
filtered using the expensively computed SQFDs. As depicted in the figure, only the
SQFD computations take place on the GPU, while the lower bound construction, pre-
filtering and filtering steps are performed on CPU. Since the computation of SQFDs
is assumed as the most expensive operation, the rest of the functionality is left to the
CPU. Moreover, because both the construction of lower bounds and the pre-filtering
steps are implemented together on CPU, the lower bound computation can benefit
from the early termination optimization (see Sect. 2.3).

In summary, the CPU iterates over the entire database, pre-filters the all the ob-
jects using the pivot table, and asynchronously dispatches blocks of candidate objects
(signatures) to the GPU. The GPU computes the distances for each block and sends
them back to CPU. Finally, the CPU compares the distances against the query range
and forms the results set of objects.

4.4 Integration to indexing and query processor

We have described how to compute distances between a query signature and a block
of database signatures on the GPU and also how to integrate such parallel compu-
tation of SQFD into a query algorithm using the pivot table index. In the remainder
of this section we detail how to integrate the SQFD-only algorithm into a database
indexer and query processor that evaluates range and kNN queries.

2We use a kind of schema together with a conceptual explanation of the algorithm, because a code listing
in parallel framework would be not as concise and easy to read.
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Fig. 9 Workflow of the SQFD-only algorithm

4.4.1 Computing pivot table

When a database of signatures is being indexed, a pivot table needs to be computed.
The pivot table consists of distances from selected pivots to all objects in the database.
Even though these distances are computed only when new objects are inserted, we
can easily modify the SQFD-only algorithm to construct the pivot table in parallel
as well. In order to do so, we disable the lower bound construction and pre-filtering
steps and execute a query for each pivot object. Moreover, no result set is formed in
the filtering step but the distances are saved into the pivot table instead.

4.4.2 Range query

The sequential range query algorithm (i.e., without an index) is easy to implement by
the SQFD-only algorithm. The database is divided into blocks of appropriate size?
and all blocks are enqueued for GPU processing. The system waits for all SQFD
computations to complete, and the computed distances are filtered on the CPU to
exclude objects outside of the query range. Hence, the lower bound construction and
pre-filtering steps are just omitted (all database objects are candidates).

When using the pivot table index (either metric or ptolemaic variant), the SQFD-
only algorithm is used as described. In the pre-filtering and filtering steps the actual

3 As mentioned before, the larger the better.
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radius of the range query is used. Concerning the blocks of signatures that are dis-
patched to GPU, block size of 128-256 for o = 0.01 and 1024-2048 for o = 0.2
were observed as empirically optimal (see Sect. 6.5.1).

4.4.3 kNN query

The kNN query evaluation is slightly more complicated. When no indexing is used,
it works very much like sequential range query. When the pivot table indexing is
employed, some additional modifications are required. The problem is that the kNN
query has no fixed query range for the pivot table pre-filtering, as this range is dy-
namically refined during the kNN query processing using heuristics. In order to adapt
to the heuristics, we limit the block size to a value between 64 and 512 (depending
on index type and « value). Also, there are at most as many blocks pending as there
are the GPU devices available. These constants have been chosen empirically* (see
Sect. 6.5.2). When the limit of pending blocks is reached, the system waits for the
first enqueued block to finish, its results are taken, and the query range is refined.
This way a pipeline effect is achieved, so that the CPU pre-filters the database ob-
jects and refines the resulting kNN set while the GPU computes the SQFD.

5 Moving the index to GPU

The design of the basic SQFD-only algorithm assumes that implementing SQFD
computation as an asynchronous operation performed on GPU leaves the CPU rather
low-utilized and so capable of performing other tasks like lower bound construction,
pre-filtering, and filtering. Although this holds true for the metric version of pivot
table, the lower bound construction step becomes quite expensive when using the
ptolemaic version (or combined ptolemaic and metric version). Instead of taking the
maximum value over the p lower bounds, in the ptolemaic case we need to maximize
over up to O( p2) bounds (see Sect. 2.3 for details). The SQFD-only algorithm, when
applied on the ptolemaic pivot table, cannot fully utilize the GPUs due to the CPU,
which is overloaded by the lower bound construction. In consequence, the CPU can-
not timely dispatch the blocks of signatures to GPUs and these must wait (see the
experiments for empirical evidence). To overcome this bottleneck, in this section we
propose the SQFD + LB algorithm that moves the lower bound construction to GPU,
thus reducing the computational load of CPU.

5.1 The SQFD + LB algorithm

The SQFD + LB algorithm is depicted in Fig. 10. The main difference is that the
query evaluation is divided into two stages. In the first (new) stage, the lower bound
construction step is moved to GPU. The second stage works as the original SQFD-
only algorithm, except that the CPU has much less work due to the lower bounds
constructed in the first stage.

4Actually, these constants are suitable only for « = 0.2 and « = 0.01. The value o = 3 requires the largest
possible blocks since it does not benefit much from indexing.
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Fig. 10 Workflow of the SQFD + LB algorithm

Despite the improvement in the GPUs/CPU load balance, moving the lower bound
construction to GPU brings also an unpleasant side effect. Because now the lower
bound construction and pre-filtering steps run separately and asynchronously (the
former on GPUs, the latter on CPU), the lower bound construction cannot benefit
from the early termination optimization anymore (Sect. 2.3), which makes the whole
computation less efficient. However, the sacrifice is worth the overall gain in better
utilized GPUs (as shown in the experiments). We must note that moving both of the
steps to GPU (also the pre-filtering) cannot help, because the CPU still has to dispatch
the blocks of candidate signatures to GPU (which is done together with pre-filtering).

Computing lower bounds for all the database objects on GPUs means the pivot
table as well as the query-to-pivot distances must be transferred to global memory of
the GPU (VRAM). In case the pivot table cannot fit the memory or in case we have
multiple GPU devices available, the table is divided into blocks which are as large
as possible.’ The lower bound construction is then performed in block-wise fashion
the same way as SQFD computation is performed on the blocks of signatures. In the

51t is safe to say that modern GPUs have sufficient memory capacity to accommodate pivot tables for
databases that fit the host memory of an ordinary server.
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following we take more detailed look at the parallel lower bounds construction on
GPU.

5.2 Pivot table representation

The most delicate issue of the lower bound construction is the memory representation
of the pivot table. A pivot table is two dimensional array that holds distances between
a small number of pivots to every object in the database. There are many ways how to
represent two-dimensional array in linear memory. However, both direct approaches
(row-wise or column-wise concatenation) are not suitable in our case. We need to
consider the following requirements:

e The pivot table must be divisible (with acceptable granularity) to blocks in case it
does not fit the VRAM or there are multiple GPU devices available.

e Pivot table fragment being processed by one thread group must be organized so
that the data transfers are performed in coalesced loads.

e Data required by threads of one group at the same time should be distributed into
the local memory banks as evenly as possible.

In order to meet these requirements, we have chosen a memory representation as
depicted in Fig. 11. The pivot table is divided into blocks of equal size. Each block
is assigned to one thread group so its size is determined accordingly. In our case the
block spans over 256 columns of the pivot table as we use 256 threads per group.

Each pivot table block is stored in a contiguous part of the memory, where dis-
tances to each particular pivot are stored consecutively. This representation is suitable
for a model where one thread computes lower bound value for one database object.
When a thread iterates over pivots, all threads in a group process distances to one
pivot at the same time. Therefore, the data loaded by the threads lie in aligned con-
tinuous range of memory. Furthermore, distances are evenly distributed over memory
banks as each distance is represented by one float value.

5.3 Computing lower bounds on the GPU
Given the pivot table memory representation described above, the GPU-based lower
bound construction is much simpler than the GPU-based SQFD computation. Each

thread computes the lower bound of one database object and each thread group op-
erates on one pivot table block. To compute a lower bound for a database object, a
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vector of query-to-pivot distances and the matrix of pivot-to-pivot distances is addi-
tionally required to be transferred and stored in the memory of GPUs.

In particular, the query-to-pivot distances are computed and stored into a buffer on
every GPU device available. It is cached in the local memory when the computation
starts. The pivot-to-pivot matrix could be extracted from pivot table, but for the sake
of simplicity and faster loading the data are duplicated so that all pivot-to-pivot dis-
tances are in one compact block. Also this matrix is cached in the local memory. The
corresponding pivot table block may be cached in the local memory too; however, on
the state-of-the-art GPUs we need not to cache it implicitly as the data is accessed in
such manner that they are cached in L1 and L2 automatically.

6 Experiments

In this section we evaluate the efficiency of parallel similarity search using the SQFD.
We have compared the performance of high-end multi-core CPU server with a com-
mon workstation that used one or two GPU cards. In the experiments we have ob-
served the behavior of the two proposed query algorithms under various parameters,
like the o used in SQFD computation, the type of lowerbounding used by pivot ta-
ble indexes, and the size of the blocks dispatched for parallel processing. The last
one in the list was especially important for the evaluation, as the block size heavily
determined the throughput of the system and the load balancing between CPU and
GPU. In all the experiments we measured just the real times, because other types
of cost, like the number of distance computations, were not affected by the parallel
processing.

6.1 Methodology and hardware setup

Each test was performed using 100 query signatures with different numbers of cen-
troids, while each query was measured five times and then the mean value was de-
termined by computing arithmetic average of the measured values. If any of the time
values deviated from the average more than 15 %, the value was discarded and the
test was repeated. In the results we show the mean value of the average times of all
100 queries.

Tests conducted on the GPU platform are denoted GPU1 and GPU2 in the fig-
ures, where the number refers to either on one or two GPU used. The workstation
was based on Intel Core 17 870 CPU clocked at 2.93 GHz, and was equipped with
16 GB of RAM and two NVIDIA GTX 580 GPU cards with 512 CUDA cores and
1.5 GB of RAM each. Tests conducted on the multi-core CPU server platform are de-
noted CPU48 in the figures. We used Dell M910 server with four six-core Intel Xeon
E7540 processors with hyper-threading (i.e., 48 logical cores) clocked at 2.0 GHz.
The server was equipped with 128 GB of RAM organized as 4-node cache coher-
ent NUMA. A RedHat Enterprise Linux 6 was used as operating system on both
machines.

In order to compare the proposed algorithms to the multi-core CPU platform
(CPU48), we have also modified the SQFD-only algorithm for pure CPU system
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by utilizing all available cores. Its architecture mimics the original SQFD-only algo-
rithm, where one CPU core performs the pre-filtering, block dispatching, and final
filtering, while the remaining cores compute SQFD distances in parallel instead of
the GPU.

6.2 Datasets

The experiments were conducted on one synthetic dataset representing clouds of
points and one real dataset consisting of feature signatures extracted from images.

A synthetic Clouds database was generated [20], namely 2,097,152 clouds (sets)
of 100-140 5-dimensional points (embedded in a unitary 5D cube). This database
was chosen as a set analogy to synthetic vector datasets when evaluating vectorial
similarity search. Moreover, the cloud of points is a common representation for sim-
plified representations of complex objects or objects consisting of multiple obser-
vations [21]. Each point has assigned a weight where the sum of all weights in the
cloud was 10,000. For each cloud, its center was generated at random, while another
10,000 points were generated under normal distribution around the center (the mean
and variance in each dimension were adjusted to not generate points outside the uni-
tary cube). Then an adaptive variant of the k-means clustering [17] was used to create
100-139 centroids representing the original data. The weight of each centroid cor-
responded to the number of points assigned to the centroid in the last iteration of
the k-means clustering. On average, a feature signature consisted of 120 representa-
tives (centroids), i.e., 720 numbers per signature. The distribution of the number of
representatives for Clouds is depicted on Fig. 12a.

As a dataset from the real world, we have extracted feature signatures from
950,000 images from the CoPhIR database [6]. The extraction was based on seven-
dimensional features (L; a; b; X; y; c; e)—color (L; a; b), position (X; y), contrast c,
and entropy e. These features were extracted for a randomly selected subset of pix-
els for each image and then again aggregated by applying the adaptive variant of the
k-means clustering algorithm. Thus, we have obtained one feature signature for each
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Fig. 12 Distribution of the number of signature centroids for (a) Clouds and (b) CoPhIR databases
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single image. These signatures vary in size between 15 and 215 feature representa-
tives (for more details about the size distribution see Fig. 12b). On average, a feature
signature consists of 75 representatives (i.e., 600 numbers per signature).

6.3 Index setup

For both the hardware platforms we have used a parallel implementation of the pivot
table index (see Sect. 2.3). In order to observe the difference between SQFD-Only
and SQFD + LB algorithm, we have used three types of lowerbounding in the pivot
table, the metric type using triangle inequality (denoted Tri in the figures), ptolemaic
type using Ptolemy’s inequality (denoted Pto), and both metric + ptolemaic type (de-
noted TriPto). In all experiments we used 32 pivots. Actually, we used as many pivots
as possible with respect to memory and cache sizes available on present hardware.
The limited number of pivots, however, is not crucial when using the ptolemaic pivot
tables, because ptolemaic filtering exploits every distinct pair of pivots (e.g., the num-
ber of pivots squared).

6.4 Sequential search and indexing

In the first set of tests we performed similarity search without the aid of an index, that
is, sequential search over the database, however, parallelized for both CPU48 and
GPU platforms. The overhead of particular query result construction is negligible,
thus we do not distinguish between range queries or kNN queries in sequential search.
Furthermore, all tests were conducted only for @ = 0.2 as different alpha values affect
only the efficiency of pivot table pre-filtering, but they have no measurable impact
on the speed of SQFD evaluation. Besides query processing, these tests can also be
interpreted as parallel construction of the pivot table, since the sequential search/pivot
table construction procedures are similar.

First, we will examine how the performance is affected by different block size
(Fig. 13). As there is no pre-filtering, this graph helps us determine the overhead of
block dispatching. The experimental results show that dispatching distance compu-
tations in blocks of at least 1024 signatures is sufficient for optimal performance.
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Fig. 14 Comparison of total GPU speedup over multi-core CPU server

However, this predicament holds only in case the CPU is capable of supplying GPU
steadily with data blocks.

Next, we compare the best possible result on GPU (using block size of 8,192 signa-
tures) against our CPU implementation running on 48 logical cores (Fig. 14). The best
speedup was achieved for Clouds database on 2 GPUs (1024 cores total)—10.08 x
w.r.t. to CPU 48 version. The Clouds dataset with signatures formed on average by
120 centroids shows better speedup than CoPhIR containing signatures formed on av-
erage by 75 centroids. Furthermore, we have observed that the CPU version has rather
higher variance of measured times since the SQFD computation depends heavily on
signature length which differs amongst the test queries. On the other hand, this ef-
fect is considerably reduced on GPU, where better speedup on larger signatures and
stronger resistance to length variance were observed, because the GPU utilized the
parallelism better on large signatures.

6.5 Index search

In the second set of tests, we executed queries on pivot table indexes. Three types of
pre-filtering were used in pivot table: the metric filter with triangular inequality (77i),
Ptolemaic filter (Pto) and combination of both (7riPto). We were testing both SQFD-
only and SQFD + LB algorithms. The results are shown for « = 0.01, which gave
us the best indexability, and for &« = 0.2, which gave us the best tradeoff between
performance and retrieval precision. Larger « values (such as o« = 3 which gave us
the best precision but worst indexability) did not benefit much from indexing, so the
results were similar to sequential search.

Furthermore, the SQFD + LB algorithm had preloaded the pivot table into the
GPU memory and the table was kept in the memory during the whole test so all
queries could use it. In our case the pivot table was small enough to not affect SQFD
computations in any way. The upload of the pivot table to GPU memory took 54 ms
for CoPhIR database and 118 ms for Clouds database.
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6.5.1 Range queries

In order to normalize sizes of query results, the range queries were designed to have
always the same selectivity (0.1 % of the database size). The results of tests per-
formed to determine the optimal block size for each method are shown in Fig. 15.

All results exhibit the same behavior. Unlike the sequential search, all methods
were parameterized by an optimal block size where the CPU workload, GPU work-
load, and overhead were in balance. Increasing the block size beyond the optimal
value did not help the performance, since it increased time periods when GPU waits
for CPU or vice versa.

On single GPU the SQFD + LB algorithm is slower than (o« = 0.01) or approx-
imately as fast as (¢ = 0.2) the SQFD-only algorithm. This result is caused by fact
that in case of single GPU, the CPU-GPU workload is almost in balance and the par-
allel lower bound construction does not completely make up for sacrifice of the early
termination optimization. However, as we can see from 2 GPU tests, the SQFD + LB
scales much better than SQFD-only algorithm and gives better results. In case of
o = 0.2, the SQFD + LB using TriPto index is by 21 % faster than SQFD-only al-
gorithm with the same parameters. We believe that on more GPUs the difference
between these two algorithms would be even greater.
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Fig. 15 The impact of the varying block size for range queries
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Fig. 16 Comparison of the best results on different architectures

Finally, we present comparison of best results for both algorithms employing
TriPto index and choosing optimal block size on GPU 1, GPU 2 and CPU 48
(Fig. 16). The CPU version ran solely the SQFD-only algorithm as the SQFD + LB
algorithm is not suitable for CPUs.

6.5.2 kNN queries

For the kNN queries we used £ = 100, so that 100 nearest neighbors of the query
object were selected. The kNN query differs from range query in fact that the query
radius, which was also used for the pre-filtering step, was refined during the com-
putation. Therefore, selecting appropriate block size was even more delicate than in
sequential search or range queries (Fig. 17).

The results indicate that even smaller blocks are required in order to achieve op-
timal performance, especially for o = 0.01. For most algorithms, the optimal block
size is 64—128 for « = 0.01 and about 256 for @ = 0.2.
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Fig. 17 The impact of the varying block size for kNN queries

As shown in range queries tests, the SQFD + LB algorithm was slightly slower in
case of o« = 0.01 on single GPU and slightly faster for « = 0.2. But most importantly,
it exhibits better speedup when comparing GPU1 and GPU2 results, thus provides
much better opportunities for scalability.

The overall comparison of kNN results is reviewed in the remaining set of graphs
(Fig. 18).

6.6 Summary

We have experimentally proved that our GPU-based algorithms are significantly
faster than multi-core CPU implementation in every type of query processing and
also in indexing. Furthermore, the SQFD + LB algorithm demonstrates great scalabil-
ity potential and offers better performance in case there is more GPU computational
power available.

7 Conclusion

We have proposed a parallel approach to fast similarity search using the Signature
Quadratic Form Distance (SQFD) on combined CPU and GPU architectures. In par-
ticular, we proposed two algorithms that adopt metric/ptolemaic indexing within a
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Fig. 18 Comparison of the best results on different architectures

parallel architecture, such that the query processing workload is split between the
CPU and multiple GPUs. The first algorithm utilizes the GPUs just by computation of
SQFDs batches, leaving the other processing on CPU. The second algorithm utilizes
the GPUs additionally by construction of lower-bound distances used in the index
pre-filtering, leading to better balance of workload between the CPU and GPUs when
expensive lower bound construction is used (such as the ptolemaic lowerbounding).
In experimental evaluation we have shown that our implementation on a common
workstation with just 2 GPU cards outperforms the traditional parallel implementa-
tion on a high-end 48-core server by up to an order of magnitude. If we consider
also the price of the high-end server which is ten times higher than the GPU work-
station, then based on price/performance ratio, the GPU-based similarity search beats
the CPU-based solution by almost two orders of magnitude.
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Chapter 8

Conclusions

During last five years, we have focused on efficient content-based similar-
ity search using models based on feature signatures. The feature signatures
enable flexible representation and effective retrieval of multimedia objects.
However, the efficiency of the retrieval using feature signatures still repre-
sents a challenge for large multimedia collections. Therefore, we have inves-
tigated parallel feature extraction techniques to speed up multimedia index-
ing phase and several approaches for efficient retrieval. More specifically, we
have demonstrated that metric/ptolemaic access methods can be employed
for efficient retrieval using metric/ptolemaic adaptive distance measures and
also that the distances represent a suitable task for parallel processing. Fur-
thermore, many of the presented techniques have been designed as general
approaches not restricted just to feature signatures and adaptive distance
measures. Generally, any similarity model with expensive distance measure
satisfying metric/ptolemaic properties could benefit from our new techniques.

In our work, we have focused also on applications of models based on
feature signatures. For example, we have shown that position-color-texture
feature signatures can be utilized for intuitive multimedia exploration, where
users can just browse an unknown database using actually visible multime-
dia objects. Another example is the video retrieval area, where position-
color-texture feature signatures can be used to represent contents of video
keyframes. Such representation enables the design of a simple and intu-
itive query formulation interface, where users can draw colored circles into
time ordered sketches. The effectiveness of such simple approach has been
demonstrated at two international video browsing competitions, where our
signature-based video browser has won twice in a row (years 2014 and 2015).
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8.1 Future research

The multimedia retrieval still represents a dynamically evolving area of re-
search, where new successful paradigms are emerging every five to ten years.
For example, in recent years we have observed the rise of deep learning ap-
proaches that demonstrate impressive effectiveness in various classification
tasks [16, 45, 89]. Nevertheless, we believe that there is not a universal sim-
ilarity model for all possible retrieval tasks and that each model can find its
applications. In the following, we present several research areas/questions
which we plan to investigate in the future.

e We would like to combine different orthogonal similarity models to
design effective multimedia exploration systems. For example, a cheap
model can be used to select a candidate set of images (e.g., text-based
search, caffe descriptors), while a model based on feature signatures
can be used for an interactive navigation in the candidate set.

e Actually, we work on new applications and domains for models based on
feature signatures. For example, the 3D object based retrieval where
feature signatures could be used to model surface parts of objects,
or, HTTPS traffic modeling where feature signatures could be used
to model communication properties between users and servers, now
employing statistical fingerprints [43]. Recently, feature signatures have
been employed as a spatio-temporal video representation approach [93]
that could be used in a future version of our signature-based video
browser.

e The success of deep learning and feature selection techniques logically
raises questions, whether feature signatures could be significantly im-
proved by selecting only specific sets of tuples for each multimedia ob-
ject. Another question is, whether feature signatures and/or perceptual
distances could improve the effectiveness of the actual state-of-the-art
deep learning architectures. Furthermore, the research in this area will
be probably again tightly coupled with the design of new algorithms
for GPU architectures.
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