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Preface

This cumulative habilitation thesis presents the work done in 14 research articles and one survey
chapter. The summary has two parts. The first one introduces the mathematical background of
the subject and contains a historical survey of decomposition techniques in the frame of function
spaces and an overview of the techniques of sparse recovery. After that, in the second part, the
results of the above mentioned papers are discussed. Although I tried to comment also on the
proofs of the results and put them into the historical perspective given before, I would like to
point the reader to the original papers for full proofs and further references.
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Part I

Introduction

The main subject of this habilitation thesis is to follow the historical path from decomposition
techniques in function spaces to sparse decompositions and sparse recovery, which finally resulted
into the novel area of compressed sensing. We start with a brief historical overview of function
spaces and their decomposition properties, which we use also to introduce some basic notation.
As we are not able to cover all the topics of the theory of function spaces in this short survey,
we refer to [2, 3, 65, 75, 76, 102, 88, 107] for much more details and further references. Our
selection of the topics is mainly governed by our interest in decomposition techniques. In the
second part, we sketch the basic aspects of the area of compressed sensing. The material in
these two parts is by no means new and is essentially taken over from [117] and [14].

Decomposition techniques

The very first traces of the study of function spaces may be found already in the second half
of eighteen century. This period was devoted to the study of classical spaces of continuous and
continuously differentiable functions. A new era of function spaces started with the pioneering
work of Sobolev [99, 100, 101] (with some forerunners [53, 94]). The theory of distributions
became an essential tool, which allowed to achieve new results (e.g. embedding theorems)
applicable in the study of partial differential equations.

In later years, the area became an object of a vastly growing interest. More and more function
spaces were defined with the help of explicit norms. In the parallel, the advantages of the
techniques of Fourier analysis (like Littlewood-Paley theory) became evident. In this connection,
the Hardy spaces Hp(∆) (cf. Section 1.2) played a crucial role.

During the 60’s and 70’s of the last century, the well structured scales of Besov and Triebel-
Lizorkin spaces, cf. Definition 1.1, emerged from the variety of function spaces available so far.
They exhibit several advantages. Many classical spaces may be identified as Besov or Triebel-
Lizorkin spaces for a special choice of parameters. Furthermore, their definition is given in
terms of distributions and Fourier analysis and these spaces have “good” properties from the
Fourier-analytic point of view, cf. [108, Section 2.2.3]. Also the spaces with fractional (or even
negative) smoothness could be incorporated easily into these two scales. On the other hand, the
definition of Besov and Triebel-Lizorkin spaces involves a certain smooth dyadic decomposition
of unity, which makes it look much more complicated than that of Sobolev spaces.

Further essential breakthrough was achieved in the work of Frazier and Jawerth [51] and [52]
(with an important forerunner being [28]). It was discovered that spaces of functions and
distributions may be characterized in terms of their decomposition properties. They considered
the decomposition formula f =

∑
Q〈f, ϕQ〉ψQ for all f ∈ S′(Rd), where Q runs over all dyadic

cubes of Rd and ϕQ and ψQ are shifts of dilations of special functions ϕ and ψ.

A similar approach was then followed in all other decomposition techniques, which appeared
afterwards. They all say, roughly speaking, that a function (or a distribution) f belongs to a
certain function space (say Bs

p,q(Rd)) if, and only if, it may be written in a form

f =
∑
j,m

λj,maj,m, (0.1)

where λj,m are (real or complex) scalars and aj,m are certain special building blocks. Fur-
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thermore, the (quasi-)norm of f in the given function space is in some sense equivalent to the
(quasi-)norm of the sequence λ = (λj,m)j,m in an appropriate sequence space (i.e. bsp,q in the
case of Besov spaces).

Of course, the formula (0.1) gives arise to many questions, like the uniqueness of the decompo-
sition or the linearity of the dependence of λ on f . For example, in the decomposition of Frazier
and Jawerth the mapping f → {〈f, ϕQ〉}Q is linear, but it is not an isomorphism between the
given function space and the corresponding sequence space.

But three properties of the building blocks aj,m appearing already in [51] and [52] are common
to most of all the known decomposition techniques. Those are smoothness, vanishing moment
conditions and localization.

• Quite naturally, the basic building blocks are supposed to exhibit at least the same degree of
smoothness as the functions (or distributions) in the function space under consideration. Due
to the very weak convergence of (0.1) (which is usually assumed to converge in S′(Rd)), the
smoothness of the building blocks is not limited from above. As the classical Haar wavelets are
not even continuous, the question of minimal smoothness required in (0.1) has also been studied,
cf. [110].

• The necessity of the moment conditions becomes clear when dealing with singular distributions.
Therefore, the number of moment conditions needed grows with s (the smoothness of the space)
decreasing, cf. Theorem 1.8. Let us point out that one possible way how to achieve (even an
infinite number of) vanishing moments is to work with a function, whose Fourier transform has
its support bounded away from zero.

• Finally, the localization of the building blocks is also necessary. One may observe that for
p > 1 overlapping building blocks would allow to consider decompositions of f with arbitrarily
small norm of the sequence of coefficients λ = (λj,m)j,m. This corresponds to no localization
conditions needed in the decomposition theorem of Hp(Rd), 0 < p ≤ 1 of Coifman [28], cf.
Theorem 1.4.

During last two decades, various different decomposition techniques appeared. They are usually
named after the building blocks used, so that we speak about atomic, molecular, quarkonial
or wavelet decomposition. Furthermore, these decompositions were adapted to a number of
different function spaces (anisotropic spaces, spaces with dominating mixed smoothness, spaces
of Morrey and Campanato type, . . . ). Last, but not least, the methods were adapted to spaces
on domains.

We want to point out, how the theory of decomposition techniques is helping to deal with
problems in the theory of function spaces. It turns out (and it has been like that since the work
of Frazier and Jawerth) that many classical problems may be much more easily formulated and
handled in the language of sequence spaces. We shall deal here mainly with Sobolev and trace
embeddings of function spaces and their properties.

Sparse recovery

The huge interest in these techniques was driven by the large number of applications based on
or making a use of them, i.e. signal processing in many disciplines (like medicine or geology),
algorithm design, data compression or numerical analysis to name at least a few of them. Actu-
ally, the theory of decompositions developed into a subject on its own under the term of “frame
theory”. The corresponding tools became more and more important with another driving force
of applied science - the growing dimensionality of the problems we deal with nowadays. The
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necessity of processing larger and larger data sets (which can be often interpreted as larger and
larger decompositions of continuous objects) lead to the development of special techniques. The
most important tools in this area make a heavy use of the following observations: Although
the dimensionality of the underlying problem grows rapidly with our ability to measure more
and more data, its intrinsic dimension stays low. The highdimensional data sets are therefore
well structured - and the most simple structural assumption on a vector in Rn is that most of
its coordinates are zero, or at least very small. This observation is nowadays a basis for many
algorithms in electric engineering, including the well known JPEG2000 format.

The real breakthrough in this field came with the advent of theory of compressed sensing of
Donoho [41] and Candés, Romberg, and Tao [17, 19], cf. also [18]. In its most simple form,
this theory proves that a sparse vector x ∈ Rn can be recovered effectively (i.e. in the polyno-
mial time) from a small number m of carefully chosen linear and non-adaptive measurements
〈ai, x〉, i = 1, . . . ,m, where m grows only linearly in the number of non-zero components of x
and logarithmically in the dimension n. Furthermore, the recovery is stable with respect to noise
and to small defects of sparsity, cf. [16, 20]. And last, but not least, the recovery is provided
by the very well known LASSO algorithm of Tibshirani [105]. The methods used in this area
combine powerful techniques of concentration of measure [67], geometry of Banach spaces [68],
optimization theory and linear programming [54]. Following our survey chapter [14], we give
more details on compressed sensing in Section 2.

The plan of this survey is as follows. In Section 1, we present a historically oriented overview of
decomposition techniques in function spaces, Section 2 introduces the basic concepts of sparse
recovery and compressed sensing. Finally, Section 3 discusses the results of the papers, which
are part of this cumulative thesis. As mentioned already above, the material in the Sections 1
and 2 is essentially taken over from [117] and [14].

1 Decomposition techniques in function spaces

1.1 Definitions and basic notation

In this section we give the necessary notation and the definitions of the function spaces considered
in this work.

We denote by R the set of all real numbers and by Rd the d-dimensional Euclidean space.
Furthermore, N stands for the set of all natural numbers, Z for the set of all integers and C for
the set of all complex numbers.

We denote by S(Rd) the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions equipped with the usual topology and its dual by S′(Rd).
The Fourier transform of ϕ ∈ S(Rd) is given by

Fϕ(ξ) =
1

(2π)d/2

∫
Rd
ϕ(x)e−iξ·xdx, ξ ∈ Rd

with ins inverse denoted by

F−1ϕ(ξ) =
1

(2π)d/2

∫
Rd
ϕ(x)eiξ·xdx, ξ ∈ Rd.

Both F and F−1 are extended to S′(Rd) by duality. We often write ϕ̂ as a shortcut for Fϕ and
ϕ∨ for F−1ϕ.

Although we are mainly interested in function spaces of Besov and Triebel-Lizorkin type (as
defined in Section 1.1.2), we first collect the definitions of (some of) the classical function spaces.
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1.1.1 Classical spaces

(i) The space of all complex-valued bounded and uniformly continuous functions is denoted
by C(Rd) and is equipped with the norm ‖f |C(Rd)‖ = supx∈Rd |f(x)|.
Let m ∈ N. Then we denote by Cm(Rd) the space of all functions on Rd, such that Dαf ∈
C(Rd) for all multiindices α with |α| ≤ m. The norm is then given by ‖f |Cm(Rd)‖ =
max|α|≤m ‖Dαf |C(Rd)‖.

(ii) The Lebesgue spaces Lp(Rd), 0 < p ≤ ∞ are spaces of measurable functions, for which

‖f |Lp(Rd)‖ :=


(∫

Rd
|f(x)|pdx

)1/p

, if 0 < p <∞

ess supx∈Rd |f(x)|, if p =∞

is finite. Sometimes, we write only ‖f‖p instead of ‖f |Lp(Rd)‖ for short.

(iii) Let 1 ≤ p ≤ ∞ and k ∈ N0. Then the Sobolev space W k
p (Rd) is defined by

W k
p (Rd) = {f ∈ S′(Rd) : Dαf ∈ Lp(Rd) if |α| ≤ k}.

Here, the derivatives are interpreted in the distributional sense. One of the cornerstones of
the theory of Sobolev spaces is the embedding property (usually called Sobolev embedding)

W k0
p0 (Rd) ↪→W k1

p1 (Rd) (1.1)

if 0 ≤ k1 ≤ k0 are non-negative integers, 1 ≤ p0 ≤ p1 <∞ and

k0 −
d

p0
= k1 −

d

p1
. (1.2)

When considering the spaces on domains, then (under conditions which we shall discuss
in detail later) (1.1) becomes even compact.

(iv) An essential effort was devoted to the extension of the theory of function spaces also to
spaces with fractional (or even negative) smoothness. One of the reasons for that is hidden
already in (1.2) - for given p0, p1 and k0, the optimal k1 may be a fractional real number.
The classical way is represented by Hölder spaces Cs(Rd). Let s > 0 be not an integer.
Then we define

Cs(Rd) =

{
f ∈ C [s](Rd) : (1.3)

‖f |Cs(Rd)‖ := ‖f |C [s](Rd)‖+
∑
|α|=[s]

sup
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|{s}

<∞

}
.

Here, s = [s] + {s} with 0 ≤ {s} < 1 is a decomposition of s into its integer and fractional
part.

The closely related Zygmund spaces Cs(Rd) are obtained by replacing the first order by
second order differences in (1.3). The definition of the (classical) Besov spaces reflects a
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similar idea. It works with the decomposition of the smoothness parameter s = [s]−+{s}+,
where 0 < {s}+ ≤ 1. Let s > 0 and 1 ≤ p, q <∞. Then

Λsp,q(Rd) =

{
f ∈W [s]−(Rd) : ‖f |Λsp,q(Rd)‖ := ‖f |W [s]−(Rd)‖ (1.4)

+
∑
|α|=[s]−

(∫
Rd
|h|−{s}+q‖∆2

hD
αf‖qp

dh

|h|d

)1/q

<∞

}
, (1.5)

where ∆2
hg are the usual second order differences of g. If q =∞, only notational changes

are necessary. Let us refer to [108, Section 2.2] for other spaces (i.e. Slobodeckij spaces
and Bessel potential spaces) with fractional smoothness.

1.1.2 Besov and Triebel-Lizorkin spaces

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on the
so-called smooth dyadic resolution of unity. Let ϕ ∈ S(Rd) with

ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 3

2
. (1.6)

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x) for j ∈ N and x ∈ Rd. This leads to the
identity

∞∑
j=0

ϕj(x) = 1, x ∈ Rd.

Definition 1.1. (i) Let s ∈ R and 0 < p, q ≤ ∞. Then Bs
pq(Rd) is the collection of all f ∈ S′(Rd)

such that

‖f |Bs
pq(Rd)‖ =

( ∞∑
j=0

2jsq‖(ϕj f̂)∨|Lp(Rd)‖q
)1/q

(1.7)

is finite (with the usual modification for q =∞).

(ii) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Then F spq(Rd) is the collection of all f ∈ S′(Rd) such
that

‖f |F spq(Rd)‖ =

∥∥∥∥( ∞∑
j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(Rd)
∥∥∥∥ (1.8)

is finite (with the usual modification for q =∞).

Remark 1.2. (i) The spacesBs
pq(Rd) and F spq(Rd) are independent on the choice of the function

ϕ as soon as it satisfies (1.6). Unfortunately, if p =∞ in the F -case (which was excluded
in Definition 1.1), then this is no longer true and a different approach is necessary. We
shall not go into details and refer to the recent monograph [120].

(ii) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Then the embedding

Bs
p,min(p,q)(R

d) ↪→ F sp,q(Rd) ↪→ Bs
p,max(p,q)(R

d).

is an easy consequence of the Definition 1.1.
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(iii) Let −∞ < s1 < s0 <∞, 0 < p0 < p1 <∞, 0 < q0 ≤ q1 ≤ ∞ with

s0 −
d

p0
= s1 −

d

p1
.

Then the classical Sobolev embedding (1.1) has its counterpart also for Besov and Triebel-
Lizorkin spaces

Bs0
p0,q0(Rd) ↪→ Bs1

p1,q1(Rd) and F s0p0,∞(Rd) ↪→ F s1p1,q0(Rd). (1.9)

Furthermore, the Jawerth-Franke embedding [50, 59] states that

F s0p0,∞(Rd) ↪→ Bs1
p1,p0(Rd) and Bs0

p0,p1(Rd) ↪→ F s1p1,q0(Rd). (1.10)

(iv) The books [108, 88, 13] describe the stage of the theory of function spaces of Besov and
Triebel-Lizorkin type as it stood in the late 1970’s. For the more modern aspects of this
theory we refer to the books of Triebel [109, 112, 113] and to [120].

(v) We use this place to introduce the symbols

σp = max(1/p− 1, 0), σpq = max(1/p− 1, 1/q − 1, 0)

and
σdp = dmax(1/p− 1, 0), σdpq = dmax(1/p− 1, 1/q − 1, 0).

These quantities play an important role in the theory of this spaces and shall be used
frequently later on.

(vi) Definition 1.1 covers many of the classical spaces defined by derivatives and/or differences
(cf. Section 1.1.1 for some examples). Especially,

Bs
∞,∞(Rd) = Cs(Rd) if s > 0,

Bs
∞,∞(Rd) = Cs(Rd) if s > 0, s 6∈ N,

Bs
p,q(Rd) = Λsp,q(Rd) if s > 0, 1 ≤ p <∞, 1 ≤ q ≤ ∞,

F sp,2(Rd) = W s
p,2(Rd) if s > 0, s ∈ N, 1 < p <∞.

(vii) Definition 1.1 of isotropic Besov and Triebel-Lizorkin spaces has numerous modifications
and extensions, which lead to specific function spaces, for example anisotropic spaces,
spaces of generalized smoothness or spaces of variable smoothness and/or integrability.

1.2 Hardy spaces

The history of atomic decompositions is closely related to Hardy spaces Hp. In its original form,
the Hardy space Hp(∆) is a space of holomorphic functions on the unit disc ∆ := {z ∈ C : |z| <
1} satisfying

‖f |Hp(∆)‖ := sup
0<r<1

(
1

2π

∫ 2π

0
|f(reit)|pdt

)1/p

<∞.

This definition (which goes back to F. Riesz) was extended to functions of real variables by C.
Fefferman and E. M. Stein in [46]. The space Hp(Rd), 0 < p ≤ ∞ is a space of f ∈ S′(Rd), such
that

(MΦf)(x) := sup
t>0
|(f ∗ Φt)(x)|, x ∈ Rd

11



is in Lp(Rd). Here Φ ∈ S(Rd) with
∫
Rd Φ(x)dx = 1 is arbitrary and Φt(x) = t−dΦ(x/t).

Furthermore,
‖f |Hp(Rd)‖ := ‖MΦf |Lp(Rd)‖

is a quasinorm on Hp(Rd). Different choices of Φ lead to equivalent quasinorms. If 1 < p <∞,
then Hp(Rd) coincides with Lp(Rd). But for 0 < p ≤ 1, one obtains new function spaces of
distributions on Rd.
The first atomic decomposition of Hp(Rd) with d = 1 and 0 < p ≤ 1 was given in [28] and
generalized to d > 1 in [66]. It uses the notion of p-atoms on the real line.

Definition 1.3. Let 0 < p ≤ 1. A p-atom is a real-valued function b on R such that∫∞
−∞ b(x)xkdx = 0, 0 ≤ k ≤ [1/p] − 1, k ∈ N0, and the support of which is contained in an

interval I for which supx∈R |b(x)| ≤ |I|−1/p.

The quantity [1/p] is the integer part of 1/p. The corresponding decomposition theorem then
takes the following form.

Theorem 1.4. ([28]) A distribution f lies in Hp(R), 0 < p ≤ 1 if, and only if, it can be written
in the form

f =
∞∑
i=0

αibi,

where αi are in R, bi are p-atoms for i ∈ N and

A‖f |Hp(R)‖p ≤
∞∑
i=0

|αi|p ≤ B‖f |Hp(R)‖p.

Here the constants A,B > 0 depend only on p.

1.3 Besov and Triebel-Lizorkin spaces

M. Frazier and B. Jawerth extended in [51, 52] the method of Coifman to a huge variety of other
function spaces. They studied the decomposition formula f =

∑
Q〈f, ϕQ〉ψQ for f ∈ S′(Rd).

Here, Q runs over all dyadic cubes of Rd and ϕQ and ψQ arise through shifting and dilating of
special functions ϕ and ψ. These functions are smooth, rapidly decreasing and possess compactly
supported Fourier transform. The mapping

Sϕ : f → (〈f, ϕQ〉)Q

is called ϕ-transform. Theorem 2.2 of [52] then states that Sϕ maps the homogenous Triebel-
Lizorkin space Ḟ sp,q(Rd) into a special sequence space ḟsp,q, which is defined through the (quasi)norm

‖λ|ḟsp,q‖ :=

∥∥∥∥∥∥∥
∑

Q

(|Q|−s/n−1/2|λQ|)qχQ(·)

1/q
∥∥∥∥∥∥∥
p

,

where the sum runs again over all dyadic cubes of Rd, |Q| stands for the Lebesgue measure of
Q and χQ is the characteristic function of Q.

Furthermore, the inverse ϕ-transform defined as

Tψ : λ = (λQ)Q →
∑
Q

λQψQ

maps ḟsp,q onto Ḟ sp,q(Rd) and Tψ ◦ Sϕ is the identity on Ḟ sp,q(Rd).
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Remark 1.5. • Frazier and Jawerth worked mainly with the homogenous function spaces
and stated only in Section 12 of [52] the necessary modifications needed to deal with
inhomogeneous spaces.

• Unfortunately, the ϕ-transform Sϕ is no isomorphism between Ḟ sp,q(Rd) and ḟsp,q, i.e. Sϕ

does not map Ḟ sp,q(Rd) onto ḟsp,q. This was essentially improved using the theory of
wavelets.

• The theory of [52] applies exactly to those function spaces which admit some sort of
Littlewood-Paley characterization. This is in a very good agreement with the the obser-
vation of Triebel (see [108, Section 2.2.3]), who divided the function spaces into good and
bad spaces according to their Fourier-analytic properties. Let us mention on this place
that some prominent function spaces (like L1(Rd), L∞(Rd) or C(Rd)) are considered as
bad function spaces from this point of view.

• The condition on vanishing moments of Coifman is incorporated in [52] through the as-
sumption, that the support of the Fourier transform of ϕ and ψ stays away from zero.
The new condition of [52] is that the building blocks ψQ are essentially localized on the
dyadic cube Q (i.e. rapidly decreasing outside Q). This is reflected in all other decompo-
sition techniques which involve both the vanishing moments condition and some kind of
localization of the building blocks.

The central role in the theory of decomposition of function spaces is played by the atomic
decomposition. We give the version as presented by Triebel in Section 1.5 of [112]. First, we
define the corresponding building blocks. Let us observe that in contrast with Definition 1.3,
the localization of the atoms is required.

Definition 1.6. (i) Let ν ∈ N0 and m ∈ Zd. Then we denote by Qνm the closed cube in
Rd with sides parallel to the coordinate axes, centered at 2−νm, and with side-length 2−ν+1.
Furthermore, cQνm stands for the cube in Rd concentric with Qνm and with side length c 2−ν+1.

(ii) Let K ∈ N0 and c ≥ 1. A continuous function a : Rd → C for which there exist all derivatives
Dαa if |α| ≤ K is called a 1K-atom if

supp a ⊂ cQ0,m for some m ∈ Zd

and
|Dαa(x)| ≤ 1 for |α| ≤ K. (1.11)

(iii) Let K ∈ N0, L ≥ 0, and c ≥ 1. A continuous function a : Rd → C for which there exist all
derivatives Dαa if |α| ≤ K is called an (K,L)-atom if

supp a ⊂ cQνm for some ν ∈ N,m ∈ Zd,

|Dα(x)a| ≤ 2|α|ν for |α| ≤ K, (1.12)

and ∫
Rd
xβa(x)dx = 0 for |β| < L.

Also the sequence spaces used in the frame of Besov and Triebel-Lizorkin spaces are somewhat
more complicated compared to Theorem 1.4. We present a version, which reflects all the three
parameters of the corresponding function spaces.
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Definition 1.7. If 0 < p, q ≤ ∞, s ∈ R and

λ = {λνm ∈ C : ν ∈ N0,m ∈ Zd} (1.13)

then we define

bspq =

{
λ : ‖λ|bspq‖ =

( ∞∑
ν=0

2
ν(s− d

p
)q
( ∑
m∈Zd

|λνm|p
)q/p)1/q

<∞
}

(1.14)

and

fspq =

{
λ : ‖λ|fspq‖ =

∥∥∥∥( ∞∑
ν=0

∑
m∈Zd

|2νsλνmχνm(·)|q
)1/q

|Lp(Rd)
∥∥∥∥ <∞} (1.15)

with the usual modification for p and/or q equal to ∞. Here χνm stands for the characteristic
function of Qνm.

The atomic decomposition of Besov and Triebel-Lizorkin spaces is then given very much in the
spirit of Theorem 1.4 and it goes back in a similar form to [51] and [52].

Theorem 1.8. ([112], Theorem 1.19) (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. Let
K ∈ N0, L ≥ 0 with

K > s and L > σdp − s

be fixed. Then f ∈ S′(Rd) belongs to Bs
p,q(Rd) if, and only if, it can be represented as

f =
∞∑
ν=0

∑
m∈Zd

λνmaνm, unconditional convergence being in S′(Rd), (1.16)

where for fixed c ≥ 1, aνm are 1K-atoms (ν = 0) or (K,L)-atoms (ν ∈ N) and λ ∈ bspq.
Furthermore,

‖f |Bs
p,q(Rd)‖ ≈ inf ‖λ|bspq‖

are equivalent quasi-norms where the infimum is taken over all admissible representations (1.16).
(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R. Let K ∈ N0, L ≥ 0 with

K > s and L > σdpq − s

be fixed. Then f ∈ S′(Rd) belongs to F sp,q(Rd) if, and only if, it can be represented by (1.16),
where for fixed c ≥ 1, aνm are 1K-atoms (ν = 0) or (K,L)-atoms (ν ∈ N) and λ ∈ fsp,q.
Furthermore,

‖f |F sp,q(Rd)‖ ≈ inf ‖λ|fspq‖
are equivalent quasi-norms where the infimum is taken over all admissible representations (1.16).

Nowadays, a large variety of decomposition techniques is available in the literature. We shall
present (a variant of) one of the most important one - the wavelet decomposition theorem. It
removes some of the obstacles of Theorem 1.8. The first is the implicit definition of atoms - atoms
are building blocks satisfying certain properties but may vary from one function to the other.
The other sometimes inconvenient feature of Theorem 1.8 is the dependence of the coefficients
λ in the optimal decomposition (1.16) on the distribution f . Due to some applications it would
be desirable that this dependence is linear. Unfortunately, this does not follow from the theory
of atomic decompositions.

We do not aim to give an overview of the vast area of wavelets. We recall only the minimum
needed later on and point to [36, 77, 118] as standard references. The following theorem of
Daubechies ensures the existence of compactly supported wavelets.
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Theorem 1.9. ([35, 36]) For any k ∈ N there are real-valued compactly supported functions

ψ0, ψ1 ∈ Ck(R)

satisfying ∫
R
tαψ1(t)dt = 0, α = 0, 1, . . . , k − 1,

such that
{2ν/2ψνm : ν ∈ N0,m ∈ Z}

with

ψνm(t) =

{
ψ0(t−m) if ν = 0,m ∈ Z,
2−

1
2ψ1(2ν−1t−m) if ν ∈ N,m ∈ Z

is an orthonormal basis in L2(R).

Wavelets on Rd may be obtained as tensor products of one-dimensional wavelets. With their
help we obtain the following characterization of Besov and Triebel-Lizorkin spaces.

Theorem 1.10. ([111], Theorem 19) Let 0 < p, q ≤ ∞, s ∈ R and k ∈ N with k >
max(s, σdp−s). Let ψ0, ψ1 be the Daubechies wavelets of smoothness k. Let E = {0, 1}d\(0, . . . , 0).
For e = (e1, . . . , ed) ∈ E let

Ψe(x) =
d∏
j=1

ψej (xj), x = (x1, . . . , xd) ∈ Rd.

(i) Then 
Ψ(x−m) =

d∏
j=1

ψ0(xj −mj) m = (m1, . . . ,md) ∈ Zd,

2
ν−1
2
dΨe(2

ν−1x−m) e ∈ E, ν ∈ N,m ∈ Zd

is an orthonormal basis in L2(Rd).
(ii) Let f ∈ S′(Rd). Then f ∈ Bs

pq(Rd) if, and only if, it can be represented as

f =
∑
m∈Zd

λmΨ(x−m) +
∑
ν∈N

∑
e∈E

∑
m∈Zd

λeνm2−νd/2Ψe(2
ν−1x−m), convergence in S′(Rd) (1.17)

with

‖λ|bspq‖ =
( ∑
m∈Zd

|λm|p
) 1
p

+

( ∞∑
ν=1

2
ν(s− d

p
)q
∑
e∈E

( ∑
m∈Zd

|λeνm|p
) q
p

) 1
q

<∞

appropriately modified if p = ∞ and/or q = ∞. The representation in (1.17) is unique, the
complex coefficients (λm)m∈Zd and (λeνm)e∈E,ν∈N0,m∈Zd depend linearly on f and the mapping,

which associates to f ∈ Bs
pq(Rd) the sequence of coefficients, is an isomorphic map of Bs

pq(Rd)
onto bspq.

(iii) Let f ∈ S′(Rd). Then f ∈ F spq(Rd) if, and only if, it can be represented as

f =
∑
m∈Zd

λmΨ(x−m) +
∑
ν∈N

∑
e∈E

∑
m∈Zd

λeνm2−νd/2Ψe(2
ν−1x−m), convergence in S′(Rd) (1.18)
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with

‖λ|fspq‖ =
( ∑
m∈Zd

|λm|p
) 1
p

+

∥∥∥∥∥∥∥
 ∞∑
ν=1

2
ν(s− d

p
)q
∑
e∈E

∑
m∈Zd

|λeνm|qχνm(x)

1/q
∥∥∥∥∥∥∥
p

<∞

appropriately modified if p = ∞ and/or q = ∞. The representation in (1.18) is unique, the
complex coefficients (λm)m∈Zd and (λeνm)e∈E,ν∈N0,m∈Zd depend linearly on f and the mapping,

which associates to f ∈ F spq(Rd) the sequence of coefficients, is an isomorphic map of F spq(Rd)
onto fspq.

Remark 1.11. The wavelet decomposition has several very convenient advantages. The decompo-
sition (1.17) is unique and its coefficients depend in a linear way on f . Furthermore, it provides
an isomorphism between the corresponding function and sequence spaces. On the other hand,
the structure of the compactly supported wavelets from Theorem 1.9 is rather complicated. For
example, it is known that the their support must grow linearly with k. In particular, there are
no compactly supported infinitely differentiable wavelets.

1.4 Spaces on domains

Let Ω be a bounded domain. Then one may easily modify the definitions given in Section 1.1.1 to
obtain function spaces on Ω. Unfortunately, Definition 1.1 relies essentially on the use of Fourier
transform and does not allow such an easy modification. Therefore, the Besov and Triebel-
Lizorkin spaces on Ω are usually defined by restriction. Let D(Ω) = C∞0 (Ω) be the collection of
all complex-valued infinitely-differentiable functions with compact support in Ω and let D′(Ω)
be its dual - the space of all complex-valued distributions on Ω.

Let g ∈ S′(Rd). Then we denote by g|Ω its restriction to Ω:

(g|Ω) ∈ D′(Ω), (g|Ω)(ψ) = g(ψ) for ψ ∈ D(Ω).

Definition 1.12. Let Ω be a bounded domain in Rd. Let s ∈ R, 0 < p, q ≤ ∞ with p < ∞ in
the F -case. Let Aspq stand either for Bs

pq or F spq. Then

Aspq(Ω) = {f ∈ D′(Ω) : ∃g ∈ Aspq(Rd) : g|Ω = f}

and
‖f |Aspq(Ω)‖ = inf ‖g|Aspq(Rd)‖,

where the infimum is taken over all g ∈ Aspq(Rd) such that g|Ω = f.

Although Definition 1.12 is an easy and convenient way how to define function spaces on domains,
an intrinsic characterization of these spaces is necessary on many occasions. It turns out that
under only minor regularity assumptions on Ω (i.e. Lipschitz boundary), the spaces may be
characterized by differences (in a fashion similar to Section 1.1.1). As this will not be needed in
the sequel, we only refer to [112, Section 1.11] for details and further references.

We shall later need the existence of a universal extension operator as it was given by Rychkov
[96]. This result (with many forerunners for which we refer to references given in [96]) states,
that if Ω has Lipschitz boundary then there is a common bounded linear extension operator Ext :
Asp,q(Ω)→ Asp,q(Rd) for all admissible s, p and q. Another important fact will be the existence of
atomic and wavelet decomposition techniques adapted to function spaces on domains. We shall
return to this point in Section 1.2.
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2 Sparse recovery and compressed sensing

2.1 Introduction and notation

Compressed sensing is a novel method of signal processing, which was introduced in [41] and
[18] and which profited from its very beginning from fruitful interplay between mathematicians,
applied mathematicians, and electrical engineers. The mathematical concepts are inspired by
ideas from a number of different disciplines, including numerical analysis, stochastic, combina-
torics, and functional analysis. On the other hand, the applications of compressed sensing range
from image processing [42], medical imaging [72], and radar technology [12] to sampling theory
[80, 114], and statistical learning.

In this section we collect the basic mathematical ideas from numerical analysis, stochastic, and
functional analysis used in the area of compressed sensing to give an overview of basic notions,
including the Null Space Property and the Restricted Isometry Property, and the relations be-
tween them. Most of the material in this section can be proven with elementary methods from
approximation theory and stochastic and we refer to [14] for details. We hope that this presenta-
tion will make the mathematical concepts of compressed sensing appealing and understandable
both to applied mathematicians and electrical engineers. In this and that form, similar material
appeared already in many one-semester courses around the world, including my lectures given
in Berlin and Prague. Let us stress that the material presented in this section is by no means
new or original, actually it is nowadays considered classical, or “common wisdom” throughout
the community.

We refer also to more extensive summaries of compressed sensing [34, 48, 49] for more details
and further references.

As the mathematical concepts of compressed sensing rely on the interplay of ideas from linear
algebra, numerical analysis, stochastic, and functional analysis, we start with an overview of
basic notions from these fields. We shall restrict ourselves to the minimum needed in the sequel.

By `np we denote the space Rn equipped with the (quasi-)norm

‖x‖p =


( n∑
j=1

|xj |p
)1/p

, p ∈ (0,∞);

max
j=1,...,n

|xj |, p =∞.
(2.1)

If x ∈ Rn, we can always find a permutation σ : {1, . . . , n} → {1, . . . , n}, such that the nonin-
creasing rearrangement x∗ ∈ [0,∞)n of x, defined by x∗j = |xσ(j)| satisfies

x∗1 ≥ x∗2 ≥ · · · ≥ x∗n ≥ 0.

If T ⊂ {1, . . . , n} is a set of indices, we denote by |T | the number of its elements. We shall
complement this notation by denoting the size of the support of x ∈ Rn by

‖x‖0 = | supp(x)| = |{j : xj 6= 0}|.

Note, that this expression is not even a quasinorm. The notation is justified by the observation,
that

lim
p→0
‖x‖pp = ‖x‖0 for all x ∈ Rn.

Let k be a natural number at most equal to n. A vector x ∈ Rn is called k-sparse, if ‖x‖0 ≤ k
and the set of all k-sparse vectors is denoted by

Σk = {x ∈ Rn : ‖x‖0 ≤ k}.
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Finally, if k < n, the best k-term approximation σk(x)p of x ∈ Rn describes, how well can x be
approximated by k-sparse vectors in the `np -norm. This can be expressed by the formula

σk(x)p = inf
z∈Σk

‖x− z‖p =


( n∑
j=k+1

(x∗j )
p
)1/p

, p ∈ (0,∞);

x∗k+1, p =∞.
(2.2)

Linear operators between finite-dimensional spaces Rn and Rm can be represented with the help
of matrices A ∈ Rm×n. The entries of A are denoted by aij , i = 1, . . . ,m and j = 1, . . . , n. The
transpose of a matrix A ∈ Rm×n is a matrix AT ∈ Rn×m with entries (AT )ij = aji. The identity
matrix in Rn×n or Cn×n will be denoted by I.

There is a number of ways how to discover the landscape of compressed sensing. The point of
view, which we shall follow in this section, is that we are looking for sparse solutions x ∈ Rn of a
system of linear equations Ax = y, where y ∈ Rm and the m× n matrix A are known. We shall
be interested in underdetermined systems, i.e. in the case m ≤ n. Intuitively, this corresponds
to solving the following optimization problem

min
z
‖z‖0 subject to y = Az. (P0)

Unfortunately, it can be shown that this problem is numerically intractable if m and n are
getting larger. Then we introduce the basic notions of compressed sensing, showing that for
specific matrices A and measurement vectors y, one can recover the solution of (P0) in a much
more effective way.

2.2 Basis pursuit

The minimization problem (P0) can obviously be solved by considering first all index sets T ⊂
{1, . . . , n} with one element and employing the methods of linear algebra to decide if there is
a solution x to the system with support included in T . If this fails for all such index sets, we
continue with all index sets with two, three, and more elements. The obvious drawback is the
rapidly increasing number of these index sets. Indeed, there is

(
n
k

)
index sets T ⊂ {1, . . . , n}

with k elements and this quantity grows (in some sense) exponentially with k and n.

We shall start our tour through compressed sensing by discussing that even every other al-
gorithm solving (P0) suffers from this drawback. This will be formulated in the language of
complexity theory as the statement, that the (P0) problem is NP-hard. Before we come to that,
we introduce the basic terms used in the sequel. We refer for example to [6] for an introduction
to computational complexity.

The P-class (“polynomial time”) consists of all decision problems that can be solved in polyno-
mial time, i.e. with an algorithm, whose running time is bounded from above by a polynomial
expression in the size of the input.

The NP-class (“nondeterministic polynomial time”) consists of all decision problems, for which
there is a polynomial-time algorithm V (called verifier), with the following property. If, given
an input α, the right answer to the decision problem is “yes”, then there is a proof β, such that
V (α, β) = yes. Roughly speaking, when the answer to the decision problem is positive, then the
proof of this statement can be verified with a polynomial-time algorithm.

Let us reformulate (P0) as a decision problem. Namely, if the natural numbers k,m, n, m × n
matrix A and y ∈ Rm are given, decide if there is a k-sparse solution x of the equation Ax = y.
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It is easy to see that this version of (P0) is in the NP-class. Indeed, if the answer to the problem
is “yes” and a certificate x ∈ Rn is given, then it can be verified in polynomial time if x is
k-sparse and Ax = y.

A problem is called NP-hard if any of its solving algorithms can be transformed in polynomial
time into a solving algorithm of any other NP-problem. We shall rely on a statement from
complexity theory, that the following problem is both NP and NP-hard.

Exact cover problem
Given as the input a natural number m divisible by 3 and a system {Tj : j = 1, . . . , n} of
subsets of {1, . . . ,m} with |Tj | = 3 for all j = 1, . . . , n, decide, if there is a subsystem of
mutually disjoint sets {Tj : j ∈ J}, such that

⋃
j∈J Tj = {1, . . . ,m}. Such a subsystem is

frequently referred to as exact cover.

Let us observe, that for any subsystem {Tj : j ∈ J} it is easy to verify (in polynomial time) if
it is an exact cover or not. So the problem is in the NP-class. The non-trivial statement from
computational complexity is that this problem is also NP-hard. The exact formulation of (P0)
looks as follows.

`0-minimization problem
Given natural numbers m,n, an m × n matrix A and a vector y ∈ Rm as input, find the
solution of

min
z
‖z‖0 s.t. y = Az.

Theorem 2.1. The `0-minimization problem is NP-hard.

The `0-minimization problem is NP-hard, if all matrices A and all measurement vectors y are
allowed as inputs. The theory of compressed sensing shows nevertheless, that for special matrices
A and for y = Ax for some sparse x, the problem can be solved efficiently.

In general, we replace the ‖z‖0 in (P0) by some ‖z‖p for p > 0. To obtain a convex problem, we
need to have p ≥ 1. To obtain sparse solutions, p ≤ 1 is necessary, cf. Figure 1.

z1

z2

Az = y

S1

z1

z2

Az = y

S2

Figure 1: Solution of Sp = argmin
z∈R2

‖z‖p s.t. y = Az for p = 1 and p = 2

We are therefore naturally led to discuss under which conditions the solution to (P0) coincides
with the solution of the following convex optimization problem called basis pursuit

min
z
‖z‖1 s.t. y = Az, (P1)
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which was introduced in [25]. But before we come to that, let us show, that in the real case
this problem may be reformulated as a linear optimization problem, i.e. as the search for the
minimizer of a linear function over a set given by linear constraints, whose number depends
polynomially on the dimension. We refer to [54] for an introduction to linear programming.

Indeed, let us assume that (P1) has a unique solution, which we denote by x ∈ Rn. Then the
pair (u, v) with u = x+ and v = x−, i.e. with

uj =

{
xj , xj ≥ 0,

0, xj < 0,
and vj =

{
0, xj ≥ 0,

−xj , xj < 0,

is the unique solution of

min
u,v∈Rn

n∑
j=1

(uj + vj) s.t. Au−Av = y and uj ≥ 0 and vj ≥ 0 for all j = 1, . . . , n. (2.3)

If namely (u′, v′) is another pair of vectors admissible in (2.3), then x′ = u′−v′ satisfies Ax′ = y
and x′ is therefore admissible in (P1). As x is the solution of (P1), we get

n∑
j=1

(uj + vj) = ‖x‖1 < ‖x′‖1 =

n∑
j=1

|u′j − v′j | ≤
n∑
j=1

(u′j + v′j).

If, on the other hand, the pair (u, v) is the unique solution of (2.3), then x = u− v is the unique
solution of (P1). If namely z is another admissible vector in (P1), then u′ = z+ and v′ = z− are
admissible in (2.3) and we obtain

‖x‖1 =
n∑
j=1

|uj − vj | ≤
n∑
j=1

(uj + vj) <
n∑
j=1

(u′j + v′j) = ‖z‖1.

Very similar argument works also in the case when (P1) has multiple solutions.

2.3 Null Space Property

If T ⊂ {1, . . . , n}, then we denote by T c = {1, . . . , n} \ T the complement of T in {1, . . . , n}.
If furthermore v ∈ Rn, then we denote by vT either the vector in R|T |, which contains the
coordinates of v on T , or the vector in Rn, which equals v on T and is zero on T c. It will be
always clear from the context, which notation is being used.

Finally, if A ∈ Rm×n is a matrix, we denote by AT the m × |T | sub-matrix containing the
columns of A indexed by T . Let us observe, that if x ∈ Rn with T = supp(x), that Ax = ATxT .

We start the discussion of the properties of basis pursuit by introducing the notion of Null Space
Property, which first appeared in [26].

Definition 2.2. Let A ∈ Rm×n and let k ∈ {1, . . . , n}. Then A is said to have the Null Space
Property (NSP) of order k if

‖vT ‖1 < ‖vT c‖1 for all v ∈ ker A \ {0} and all T ⊂ {1, . . . , n} with |T | ≤ k. (2.4)

Remark 2.3. (i) The condition (2.4) states that vectors from the kernel of A are well spread, i.e.
not supported on a set of small size. Indeed, if v ∈ Rn \ {0} is k-sparse and T = supp(v), then
(2.4) shows immediately, that v can not lie in the kernel of A.
(ii) If we add ‖vT c‖1 to both sides of (2.4), we obtain ‖v‖1 < 2‖vT c‖1. If then T are the
indices of the k largest coordinates of v taken in the absolute value, this inequality becomes
‖v‖1 < 2σk(v)1.
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Theorem 2.4. Let A ∈ Rm×n and let k ∈ {1, . . . , n}. Then every k-sparse vector x is the
unique solution of (P1) with y = Ax if, and only if, A has the NSP of order k.

Remark 2.5. Theorem 2.4 states that the solutions of (P0) may be found by (P1), if A has the
NSP of order k and if y ∈ Rm is such that, there exists a k-sparse solution x of the equation
Ax = y. Indeed, if in such a case, x̂ is a solution of (P0), then ‖x̂‖0 ≤ ‖x‖0 ≤ k. Finally, it
follows by Theorem 2.4, that x̂ is also a solution of (P1) and that x = x̂.

In the language of complexity theory, if we restrict the inputs of the `0-minimization problem to
matrices with the NSP of order k and to vectors y, for which there is a k-sparse solution of the
equation Ax = y, the problem belongs to the P-class and the solving algorithm with polynomial
running time is any standard algorithm solving (P1), or the corresponding linear problem (2.3).

2.4 Restricted Isometry Property

Although the Null Space Property is equivalent to the recovery of sparse solutions of under-
determined linear systems by basis pursuit in the sense just described, it is somehow difficult
to construct matrices satisfying this property. We shall therefore present a sufficient condition
called Restricted Isometry Property, which was first introduced in [18], and which ensures that
the Null Space Property is satisfied.

Definition 2.6. Let A ∈ Rm×n and let k ∈ {1, . . . , n}. Then the restricted isometry constant
δk = δk(A) of A of order k is the smallest δ ≥ 0, such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all x ∈ Σk. (2.5)

Furthermore, we say that A satisfies the Restricted Isometry Property (RIP) of order k with the
constant δk if δk < 1.

Remark 2.7. The condition (2.5) states that A acts nearly isometrically when restricted to
vectors from Σk. Of course, the smaller the constant δk(A) is, the closer is the matrix A to
isometry on Σk. We will be therefore later interested in constructing matrices with small RIP
constants. Finally, the inequality δ1(A) ≤ δ2(A) ≤ · · · ≤ δk(A) follows trivially.

The following theorem shows that RIP of sufficiently high order with a constant small enough
is indeed a sufficient condition for NSP.

Theorem 2.8. Let A ∈ Rm×n and let k be a natural number with k ≤ n/2. If δ2k(A) < 1/3,
then A has the NSP of order k.

Combining Theorems 2.4 and 2.8, we obtain immediately the following corollary.

Corollary 2.9. Let A ∈ Rm×n and let k be a natural number with k ≤ n/2. If δ2k(A) < 1/3,
then every k-sparse vector x is the unique solution of (P1) with y = Ax.

2.5 RIP for random matrices

From what was said up to now, we know that matrices with small restricted isometry constants
fulfill the null space property, and sparse solutions of underdetermined linear equations involving
such matrices can be found by `1-minimization (P1). We discuss in this chapter a class of matrices
with small RIP constants. It turns out that the most simple way is to construct these matrices
by taking its entries to be independent standard normal variables.
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We denote until the end of this section

A =
1√
m

 ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn

 , (2.6)

where ωij , i = 1, . . . ,m, j = 1, . . . , n, are i.i.d. standard normal variables. We shall show that
such a matrix satisfies the RIP with reasonably small constants with high probability.

2.5.1 Concentration inequalities

If ω1, . . . , ωm are (possibly dependent) standard normal random variables, then E(ω2
1 + · · · +

ω2
m) = m. If ω1, . . . , ωm are even independent, then the value of ω2

1 + · · ·+ω2
m concentrates very

strongly around m. This effect is known as concentration of measure, cf. [67, 68, 79].

Lemma 2.10. Let m ∈ N and let ω1, . . . , ωm be i.i.d. standard normal variables. Let 0 < ε < 1.
Then

P(ω2
1 + · · ·+ ω2

m ≥ (1 + ε)m) ≤ e−
m
2

[ε2/2−ε3/3]

and
P(ω2

1 + · · ·+ ω2
m ≤ (1− ε)m) ≤ e−

m
2

[ε2/2−ε3/3].

Using 2-stability of the normal distribution, Lemma 2.10 shows immediately that A defined as
in (2.6) acts with high probability as isometry on one fixed x ∈ Rn.

Theorem 2.11. Let x ∈ Rn with ‖x‖2 = 1 and let A be as in (2.6). Then

P
(∣∣∣‖Ax‖22 − 1

∣∣∣ ≥ t) ≤ 2e−
m
2

[t2/2−t3/3] ≤ 2e−Cmt
2

(2.7)

for 0 < t < 1 with an absolute constant C > 0.

Remark 2.12. (i) Observe, that (2.7) may be easily rescaled to

P
(∣∣∣‖Ax‖22 − ‖x‖22∣∣∣ ≥ t‖x‖22) ≤ 2e−Cmt

2
, (2.8)

which is true for every x ∈ Rn.
(ii) A slightly different proof of (2.7) is based on the rotational invariance of the distribution
underlying the random structure of matrices defined by (2.6). Therefore, it is enough to prove
(2.7) only for one fixed element x ∈ Rn with ‖x‖2 = 1. Taking x = e1 = (1, 0, . . . , 0)T to be the
first canonical unit vector allows us to use Lemma 2.10 without the necessity of applying the
2-stability of normal distribution.

2.5.2 RIP for random Gaussian matrices

The proof of restricted isometry property of random matrices generated as in (2.6) is based on
two main ingredients. The first is the concentration of measure phenomenon described in its
most simple form in Lemma 2.10, and reformulated in Theorem 2.11. The second is the following
entropy argument, which allows to extend Theorem 2.11 and (2.7) from one fixed x ∈ Rn to the
set Σk of all k-sparse vectors.

Lemma 2.13. Let t > 0. Then there is a set N ⊂ Sn−1 = {x ∈ Rn : ‖x‖2 = 1} with
(i) |N | ≤ (1 + 2/t)n and
(ii) for every z ∈ Sn−1, there is a x ∈ N with ‖x− z‖2 ≤ t.
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With all these tools at hand, we can now state the main theorem of this section, whose proof
follows closely the arguments of [7].

Theorem 2.14. Let n ≥ m ≥ k ≥ 1 be natural numbers and let 0 < ε < 1 and 0 < δ < 1 be
real numbers with

m ≥ Cδ−2
(
k ln(en/k) + ln(2/ε)

)
, (2.9)

where C > 0 is an absolute constant. Let A be again defined by (2.6). Then

P
(
δk(A) ≤ δ

)
≥ 1− ε.

2.5.3 Lemma of Johnson and Lindenstrauss

Concentration inequalities similar to (2.7) play an important role in several areas of mathematics.
We shall present their connection to the famous result from functional analysis called Johnson-
Lindenstrauss lemma, cf. [60]. The lemma states that a set of points in a high-dimensional
space can be embedded into a space of much lower dimension in such a way that the mutual
distances between the points are nearly preserved. The connection between this classical result
and compressed sensing was first highlighted in [7], cf. also [64].

Lemma 2.15. Let 0 < ε < 1 and let m,N and n be natural numbers with

m ≥ 4(ε2/2− ε3/3)−1 lnN.

Then for every set {x1, . . . , xN} ⊂ Rn there exists a mapping f : Rn → Rm, such that

(1− ε)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22, i, j ∈ {1, . . . , N}. (2.10)

2.6 Stability and robustness

The ability to recover sparse solutions of underdetermined linear systems by quick recovery al-
gorithms as `1-minimization is surely a very promising result. On the other hand, two additional
features are obviously necessary to extend this results to real-life applications, namely

• Stability: We want to be able to recover (or at least approximate) also vectors x ∈ Rn,
which are not exactly sparse. Such vectors are called compressible and mathematically they
are characterized by the assumption that their best k-term approximation decays rapidly
with k. Intuitively, the faster the decay of the best k-term approximation of x ∈ Rn is,
the better we should be able to approximate x.

• Robustness: Equally important, we want to recover sparse or compressible vectors from
noisy measurements. The basic model here is the assumptions that the measurement
vector y is given by y = Ax+ e, where e is small (in some sense). Again, the smaller the
error e is, the better we should be able to recover an approximation of x.

We shall show that the methods of compressed sensing can be extended also to this kind of
scenario. There is a number of different estimates in the literature, which show that the technique
of compressed sensing is stable and robust. We will present only one of them. Its proof is a
modification of the proof of Theorem 2.8, and follows closely [16].

23



Inspired by the form of the noisy measurements just described, we will concentrate on the
recovery properties of the following slight modification of (P1). Namely, let η ≥ 0, then we
consider the convex optimization problem

min
z∈Rn

‖z‖1 s.t. ‖Az − y‖2 ≤ η. (P1,η)

If η = 0, (P1,η) reduces back to (P1).

Theorem 2.16. Let δ2k <
√

2− 1 and ‖e‖2 ≤ η. Then the solution x̂ of (P1,η) satisfies

‖x− x̂‖2 ≤
Cσk(x)1√

k
+Dη, (2.11)

where C,D > 0 are two universal positive constants.

2.7 Optimality of bounds

When recovering k-sparse vectors one obviously needs at least m ≥ k linear measurements. Even
when the support of the unknown vector would be known, this number of measurements would
be necessary to identify the value of the non-zero coordinates. Therefore, the dependence of
the bound (2.9) on k can possibly only be improved in the logarithmic factor. Theorem 2.18
that even that is not possible and that this dependence is already optimal as soon as a stable
recovery of k-sparse vectors is requested. The approach presented here is essentially taken over
from [49].

The proof is based on the following combinatorial lemma, which plays also a fundamental role
in coding theory.

Lemma 2.17. Let k ≤ n be two natural numbers. Then there are N subsets T1, . . . , TN of
{1, . . . , n}, such that

(i) N ≥
( n

4k

)k/2
,

(ii) |Ti| = k for all i = 1, . . . , N and

(iii) |Ti ∩ Tj | < k/2 for all i 6= j.

The following theorem shows that any stable recovery of sparse solutions requires at least m
measurements, where m is of the order k ln(en/k).

Theorem 2.18. Let k ≤ m ≤ n be natural numbers, let A ∈ Rm×n be a measurement matrix,
and let ∆ : Rm → Rn be an arbitrary recovery map such that for some constant C > 0

‖x−∆(Ax)‖2 ≤ C
σk(x)1√

k
for all x ∈ Rn. (2.12)

Then
m ≥ C ′k ln(en/k) (2.13)

with some other constant C ′ depending only on C.
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Part II

Results of the thesis

After giving the general background in the first part, we discuss in the second part the results
of the thesis. Essentially, we browse through the included publications one after another and
comment on its main results. Due to the amount of the material, we shall be very brief and
refer to the original publications for details.

For better readability, the results are grouped into four areas, namely

• Function spaces

• Compressed sensing and related topics

• Ridge functions

• Applications in machine learning

3 Results on function spaces

The results in this section deal with function spaces, mostly with its decomposition techniques.
They were published in the following works:

[P1] J. Vyb́ıral, A new proof of Jawerth-Franke embedding, Rev. Mat. Complut. 21 (2008),
75–82.

[P2] J. Vyb́ıral, Widths of embeddings in function spaces, J. Compl. 24 (2008), 545–570.

[P3] J. Vyb́ıral, Sobolev and Jawerth embeddings for spaces with variable smoothness and
integrability, Ann. Acad. Sci. Fenn. Math. 34:2 (2009), 529–544.

[P4] C. Schneider and J. Vyb́ıral, Non-smooth atomic decompositions, traces on Lipschitz do-
mains, and pointwise multipliers in function spaces, J. Funct. Anal. 264 (5) (2013),1197–
1237

[P5] H. Kempka and J. Vyb́ıral, Spaces of variable smoothness and integrability: Characteriza-
tions by local means and ball means of differences, J. Fourier Anal. Appl. 18 (4) (2012),
852–891.

3.1 A new proof of Jawerth-Franke embedding

The classical Sobolev embedding (1.9) is in this frame of function spaces complemented by
the Jawerth-Franke embedding (1.10), which describes the B to F and F to B embedding
in the limiting case. The classical proofs of Jawerth and Franke [50, 59] used heavily the
interpolation theory. We provided an alternative proof. Based on isomorphisms between function
and sequence spaces, it is a straightforward observation that (1.10) holds if, and only if, the same
is true for the sequence spaces bsp,q and fsp,q.

The proof given in [P1] is largely self-contained, without any interpolation theory. The main
ingredient is the fact that the sequence spaces bsp,q and fsp,q have the lattice structure. Namely,

if (λν,m)ν,m and (λ′ν,m)ν,m are two sequences with |λν,m| ≤ |λ′ν,m| for all ν ∈ N0 and m ∈ Zd,
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then ‖λ|bsp,q‖ ≤ ‖λ′|bsp,q‖. This observation allows to use techniques like the non-increasing
rearrangement of a sequence or function.

The main advantage of this technique seems to be its universality. Since its introduction in [P1],
the same approach was used to provide Jawerth-Franke type embeddings for function spaces of
dominating mixed smoothness [55], function spaces defined by their subatomic decompositions
[98] and to spaces built upon Morrey spaces [56].

3.2 Widths of embeddings in function spaces

To describe the properties of infinite-dimensional objects (like function spaces, or operators
between them), one may use several different tools. The prominent role among them is played
by the theory of s-numbers as developed by Pietsch, cf. [92]. Roughly speaking, one associates
to every linear operator T from one (quasi-)Banach space X into another (quasi-)Banach space
Y a (non-increasing) sequence of non-negative real numbers sn(T ). The properties of T are
then reflected in the speed of the decay of sn(T ). This approach takes it motivation from
approximation theory, where it was intuitively used already in the nineteenth century. We refer
to [92, 23] for further details.

Let Ω be a bounded Lipschitz domain and let 0 < p1, p2, q1, q2 ≤ ∞ and s1, s2 ∈ R be real
numbers with

s1 − s2 > d
( 1

p1
− 1

p2

)
+
. (3.1)

Then the embedding
Id : Bs1

p1q1(Ω)→ Bs2
p2q2(Ω) (3.2)

is compact. Using Theorem 1.10 and the existence of a universal extension operator due to
Rychkov [96], the question may be reduced to the corresponding problem on the sequence space
level. We obtain

sn(Id : Bs1
p1q1(Ω)→ Bs2

p2q2(Ω)) ≈ sn(id : bs,Ωpq → bs,Ωpq ), (3.3)

where bs,Ωpq is a certain variant of the spaces bspq as described in Theorem 1.10 adapted to function
spaces on domains.

The discretization technique was used in connection with s-numbers and embeddings of function
spaces already in [73] and [71]. We refer also to [69] and [93] for the survey of the state of the
art as it was in the second half of 1980’s and to [70] for a more modern presentation. The
main aim of the presented paper [P2] was to collect the known facts, to extend the results
to the case of quasi-Banach spaces and to fill some minor gaps left up to that time. Finally,
we remark that the behavior of s-numbers in connection with function spaces with dominating
mixed smoothness was studied in the classical book of Temlyakov [103] and in the more recent
papers [10, 11, 43, 44].

Before we discuss the results, let us define the three most important s-numbers, namely the
approximation, Kolmogorov and Gelfand numbers.

The approximation numbers of the operator T describe, how well may this operator be approx-
imated (in the operator norm) be finite rank operators.

Definition 3.1. Let X,Y be two quasi-Banach spaces and let T ∈ L(X,Y ).

• For n ∈ N, we define the nth approximation number by

an(T ) = inf{‖T − L‖ : L ∈ L(X,Y ), rank(L) < n}. (3.4)
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• For n ∈ N, we define the nth Kolmogorov number by

dn(T ) = inf{‖QYNT‖ : N ⊂⊂ Y, dim(N) < n}. (3.5)

Here, QYN stands for the natural surjection of Y onto the quotient space Y/N .

• For n ∈ N, we define the nth Gelfand number by

cn(T ) = inf{‖TJXM‖ : M ⊂⊂ X, codim(M) < n}. (3.6)

Here, JXM stands for the natural injection of M into X.

This definition goes back to Pietsch [91] and Tikhomirov [106].

Paper [P2] uses the wavelet decomposition techniques to reduce the question to the sequence
space level, cf. (3.3), and the known results on these widths on the sequence space level to
provide asymptotic behaviour of widths of (3.2). As the results depend typically on a number
of parameters, we do not present them here and refer to [P2] for details.

3.3 Sobolev and Jawerth embeddings for spaces with variable smoothness
and integrability

Paper [P3] studies the spaces of variable smoothness and integrability as introduced recently by
L. Diening, P. Hästö, and S. Roudenko in [40].

The definition of these spaces is based on the Lebesgue spaces of variable integrability. The
modern era of interest in these spaces dates back essentially to the paper by Kováčik and
Rákosńık [63].

Definition 3.2. Let p : Rd → (0,∞) be a measurable function. Then the space Lp(·)(Rd)
consists of all measurable functions f : Rd → [−∞,∞] such that ‖f |Lp(·)(Rd)‖ <∞, where

‖f |Lp(·)(Rd)‖ = inf{λ > 0 :

∫
Rd

(
|f(x)|
λ

)p(x)

dx ≤ 1}

is the Minkowski functional of the set {f :
∫
Rd |f(x)|p(x)dx ≤ 1}.

To ensure that Lp(·)(Rd) are quasi-Banach spaces, we assume that

p− := inf
x∈Rd

p(x) > 0.

Furthermore, to avoid the known difficulties of the Triebel-Lizorkin scale for p =∞, we require
also that

p+ = sup
x∈Rd

p(x) <∞,

hence we assume that

0 < p− := inf
z∈Rd

p(z) ≤ p(x) ≤ sup
z∈Rd

p(z) =: p+ <∞, x ∈ Rd. (3.7)

This allows to define Triebel-Lizorkin spaces of variable smoothness and integrability by assum-
ing that s, p and q in Definition 1.1 are (locally integrable) functions of x.
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Definition 3.3. Let s : Rd → R, p : Rd → (0,∞) and q : Rd → (0,∞] be measurable functions.

Then F
s(·)
p(·),q(·)(R

d) is the collection of all f ∈ S′(Rd) such that

‖f |F s(·)p(·),q(·)(R
d)‖ =

∥∥∥∥( ∞∑
j=0

2js(·)q(·)|(ϕj f̂)∨(·)|q(·)
)1/q(·)

|Lp(·)(Rd)
∥∥∥∥ <∞ (3.8)

(with the usual modification for q(x) = ∞). Here, the sequence (ϕj)j∈N0 is the decomposition
of unity used in Definition 1.1.

This definition places (almost) no conditions on the functional parameters s, p and q. Unfor-
tunately, in that case the spaces may depend on the choice of the decomposition of unity - an
effect very well from the theory of F s∞,q-spaces, cf. [120]. Therefore we pose some regularity
restrictions (identical to those made in [40]).

Definition 3.4. Let g be a continuous function on Rd.
(i) We say that g is 1-locally log-Hölder continuous, abbreviated g ∈ C log

1−loc(R
d), if there exists

c > 0 such that

|g(x)− g(y)| ≤ c

log(e+ 1/‖x− y‖∞)
for all x, y ∈ Rd with ‖x− y‖∞ ≤ 1.

Here, ‖z‖∞ = max{|z1|, . . . , |zd|} denotes the maximum norm of z ∈ Rd.

(ii) We say that g is locally log-Hölder continuous, abbreviated g ∈ C log
loc (Rd), if there exists c > 0

such that
|g(x)− g(y)| ≤ c

log(e+ 1/|x− y|)
, x, y ∈ Rd.

(iii) We say that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rd), if it is locally
log-Hölder continuous and there exists c > 0 and g∞ ∈ R such that

|g(x)− g∞| ≤
c

log(e+ |x|)
, x ∈ Rd.

Definition 3.5. (Standing assumptions of [40]). Let p and q be positive functions on Rd

such that 1
p ,

1
q ∈ C

log(Rd) and let s ∈ C log
loc (Rd) with s(x) ≥ 0 and let s(x) have a limit at infinity.

Remark 3.6. Our approach in [P3] was based on the results of [40]. Especially, to ensure that the
norm (3.8) does not depend on the choice of the decomposition of unity, it was necessary to pose
the standing assumptions throughout. Later on, Kempka [62] proved that (3.8) gives equivalent
quasi-norms for different decompositions of unity also for a wider range of parameters.

We introduce the sequence spaces associated with the Triebel-Lizorkin spaces of variable smooth-
ness and integrability. We shall use again the notation of the dyadic cubes as given in Definition
1.6. If

γ = {γjm ∈ C : j ∈ N0,m ∈ Zd},

−∞ < s(x) <∞, 0 < p(x) <∞ and 0 < q(x) ≤ ∞ for all x ∈ Rd, we define

‖γ|fs(·)p(·),q(·)‖ =

∥∥∥∥( ∞∑
j=0

∑
m∈Zd

2js(·)q(·)|γjm|q(·)χjm(·)
)1/q(·)

|Lp(·)(Rd)
∥∥∥∥ (3.9)

=

∥∥∥∥ ∞∑
j=0

∑
m∈Zd

2js(·)|γjm|χjm(·)|Lp(·)(`q(·))
∥∥∥∥.
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Establishing the connection between the function spaces F
s(·)
p(·),q(·)(R

d) and the sequence spaces

f
s(·)
p(·),q(·) was the main aim of [40]. Following [51] and [52], these authors investigated the prop-

erties of the ϕ-transform (as discussed briefly in Section 1.3 and denoted by Sϕ) and obtained
the following result.

Theorem 3.7. ([40], Corollary 3.9) Under the Standing assumptions of [40]

‖f |F s(·)p(·),q(·)(R
d)‖ ≈ ‖Sϕf |fs(·)p(·),q(·)‖

with constants independent of f ∈ F s(·)p(·),q(·)(R
d).

Although the technique of non-increasing rearrangement fails in many aspects in the frame of
variable-exponent Lebesgue spaces, it was possible to use some ideas from [P1] and to prove
the embedding theorem for the sequence spaces. If the first summability index q(·) should be
replaced by ∞ (as one would guess from (1.9)), we have to assume that s0(x) is strictly larger
than s1(x), i.e. infx∈Rd(s0(x)− s1(x)) > 0.

Theorem 3.8. ([P3], Theorems 3.1 and 3.2) Let −∞ < s1(x) ≤ s0(x) < ∞, 0 < p0(x) ≤
p1(x) <∞ for all x ∈ Rd with 0 < p−0 ≤ p

+
1 <∞. Let s0,

1
p0
∈ C log

1−loc(R
d) and

s0(x)− d

p0(x)
= s1(x)− d

p1(x)
, x ∈ Rd.

(i) Let q(x) =∞ for all x ∈ Rd or 0 < q− ≤ q(x) <∞ for all x ∈ Rd. Then

f
s0(·)
p0(·),q(·) ↪→ f

s1(·)
p1(·),q(·).

(ii) Let

ε := inf
x∈Rd

(s0(x)− s1(x)) = d inf
x∈Rd

(
1

p0(x)
− 1

p1(x)

)
> 0. (3.10)

Then, for every 0 < q ≤ ∞,

f
s0(·)
p0(·),∞ ↪→ f

s1(·)
p1(·),q.

Using the theory of [40], our results can be translated immediately into embeddings of function
spaces.

Theorem 3.9. ([P3], Theorem 3.4) Let s0, s1, p0, p1, q, q0 and q1 be continuous functions
satisfying the Standing assumptions of [40] with s0(x) ≥ s1(x) and p0(x) ≤ p1(x) for all x ∈ Rd
and

s0(x)− d

p0(x)
= s1(x)− d

p1(x)
, x ∈ Rd.

(i) Then

F
s0(·)
p0(·),q(·)(R

d) ↪→ F
s1(·)
p1(·),q(·)(R

d).

(ii) If moreover

inf
x∈Rd

(s0(x)− s1(x)) = d inf
x∈Rd

( 1

p0(x)
− 1

p1(x)

)
> 0,

then
F
s0(·)
p0(·),q0(·)(R

d) ↪→ F
s1(·)
p1(·),q1(·)(R

d).
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The proof of Theorem 3.9 follows directly from the corresponding estimates on the sequence
space level (cf. Theorem 3.8) and the properties of the ϕ-transform (cf. Theorem 3.7). One
may observe that the conditions posed on the sequence space level are much milder than those
of Theorem 3.7.

Let us remark that using the recent results of Kempka [62], one can obtain a connection between

F
s(·)
p(·),q(·)(R

d) and f
s(·)
p(·),q(·) for a larger set of parameters, which would then lead to an improvement

of Theorem 3.9.

3.4 Non-smooth atomic decompositions, traces on Lipschitz domains, and
pointwise multipliers in function spaces

There are several definitions of Besov spaces Bs
p,q(Rn) to be found in the literature. Two of

the most prominent approaches are the Fourier-analytic approach using Fourier transforms on
the one hand and the classical approach via higher order differences involving the modulus of
smoothness on the other. These two definitions are equivalent only with certain restrictions on
the parameters, in particular, they differ for 0 < p < 1 and 0 < s ≤ n(1

p − 1), but may otherwise
share similar properties.
In [P4] we focused on the classical approach, which introduces Bs

p,q(Rn) as those subspaces of
Lp(Rn) such that

‖f |Bs
p,q(Rn)‖r = ‖f |Lp(Rn)‖+

(∫ 1

0
t−sqωr(f, t)

q
p

dt

t

)1/q

is finite, where 0 < p, q ≤ ∞, s > 0, r ∈ N with r > s, and ωr(f, t)p is the usual r-th modulus
of smoothness of f ∈ Lp(Rn). Choosing different values of r > s leads to the same space in
the sense of equivalent quasi-norms. These spaces occur naturally in nonlinear approximation
theory, especially in the case p < 1 where they are needed in the description of approximation
classes for the classical methods such as rational approximation and approximation by splines
with free knots.

We developed the so-called non-smooth atomic decompositions of these spaces, where the con-
ditions (1.11) and (1.12) get replaced by the less restrictive ‖a(2−j ·)|Bσ

p (Rn)‖ ≤ 1.

This allowed us to prove

Theorem 3.10. Let n ≥ 2, 0 < p, q ≤ ∞, 0 < s < 1, and let Ω be a bounded Lipschitz domain
in Rn with boundary Γ. Then the operator

tr : B
s+ 1

p
p,q (Ω) −→ Bs

p,q(Γ) (3.11)

is linear and bounded.

Theorem 3.11. Let n ≥ 2 and Ω be a bounded Lipschitz domain with boundary Γ. Then for
0 < s < 1 and 0 < p, q ≤ ∞ there is a bounded (non-linear) extension operator

Ẽxt : Bs
p,q(Γ) −→ B

s+ 1
p

p,q (Ω). (3.12)

The existence of non-smooth atomic decompositions was then further used to characterize the
trace space also in the limiting cases and to derive statements about pointwise multipliers. We
refer to [P4] for details.

30



3.5 Spaces of variable smoothness and integrability: Characterizations by
local means and ball means of differences

If

s > σp = n

(
1

min(p, 1)
− 1

)
(3.13)

in the B-case and

s > σp,q = n

(
1

min(p, q, 1)
− 1

)
(3.14)

in the F -case, Besov and Triebel-Lizorkin spaces with constant indices may be characterized
by expressions involving only the differences of the function values without any use of Fourier
analysis. Paper [P5] shows that the same is true also for spaces with variable indices. Let us
first give the necessary notation.

Let f be a function on Rn and let h ∈ Rn. Then we define

∆1
hf(x) = f(x+ h)− f(x), x ∈ Rn.

The higher order differences are defined inductively by

∆M
h f(x) = ∆1

h(∆M−1
h f)(x), M = 2, 3, . . .

This definition also allows a direct formula

∆M
h f(x) :=

M∑
j=0

(−1)j
(
M

j

)
f(x+ (M − j)h). (3.15)

By ball means of differences we mean the quantity

dMt f(x) = t−n
∫
|h|≤t
|∆M

h f(x)|dh =

∫
B
|∆M

thf(x)|dh,

where B = {y ∈ Rn : |y| < 1} is the unit ball of Rn, t > 0 is a real number and M is a natural
number.

Let us now introduce the (quasi-)norms, which shall be the main subject of our study. We define

‖f |F s(·)p(·),q(·)(R
n)‖∗ := ‖f |Lp(·)(Rn)‖ (3.16)

+

∥∥∥∥∥
(∫ ∞

0
t−s(x)q(x)

(
dMt f(x)

)q(x) dt

t

)1/q(x) ∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
and its partially discretized counterpart

‖f |F s(·)p(·),q(·)(R
n)‖∗∗ := ‖f |Lp(·)(Rn)‖ (3.17)

+

∥∥∥∥∥∥
( ∞∑
k=−∞

2ks(x)q(x)
(
dM2−kf(x)

)q(x)

)1/q(x) ∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
= ‖f |Lp(·)(Rn)‖+

∥∥∥∥(2ks(x)dM2−kf(x)
)∞
k=−∞

∣∣∣∣Lp(·)(`q(·))∥∥∥∥ .
The norm ‖f |F s(·)p(·),q(·)(R

n)‖∗∗ admits a direct counterpart also for Besov spaces, namely

‖f |Bs(·)
p(·),q(·)(R

n)‖∗∗ := ‖f |Lp(·)(Rn)‖+

∥∥∥∥(2ks(x)dM2−kf(x)
)∞
k=−∞

|`q(·)(Lp(·))
∥∥∥∥ , (3.18)
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where `q(·)(Lp(·)) is the (quasi-)Banach space of sequences of functions introduced in [5].

Using the notation introduced above, we may now state the main result of [P5].

Theorem 3.12. (i) Let p, q ∈ P log(Rn) with p+, q+ < ∞ and s ∈ C log
loc (Rn). Let M ∈ N with

M > s+ and let

s− > σp−,q− ·
[
1 +

clog(s)

n
·min(p−, q−)

]
. (3.19)

Then
F
s(·)
p(·),q(·)(R

n) = {f ∈ Lp(·)(Rn) ∩ S ′(Rn) : ‖f |F s(·)p(·),q(·)(R
n)‖∗ <∞}

and ‖ · |F s(·)p(·),q(·)(R
n)‖ and ‖ · |F s(·)p(·),q(·)(R

n)‖∗ are equivalent on F
s(·)
p(·),q(·)(R

n). The same holds for

‖f |F s(·)p(·),q(·)(R
n)‖∗∗.

(ii) Let p, q ∈ P log(Rn) and s ∈ C log
loc (Rn). Let M ∈ N with M > s+ and let

s− > σp− ·
[
1 +

clog(1/q)

n
+
clog(s)

n
· p−

]
. (3.20)

Then
B
s(·)
p(·),q(·)(R

n) = {f ∈ Lp(·)(Rn) ∩ S ′(Rn) : ‖f |Bs(·)
p(·),q(·)(R

n)‖∗∗ <∞}

and ‖ · |Bs(·)
p(·),q(·)(R

n)‖ and ‖ · |Bs(·)
p(·),q(·)(R

n)‖∗∗ are equivalent on B
s(·)
p(·),q(·)(R

n).

Remark 3.13. Let us comment on the rather technical conditions (3.19) and (3.20).

• If min(p−, q−) ≥ 1, then (3.19) becomes just s− > 0. Furthermore, if p, q and s are
constant functions, then (3.19) coincides with (3.14).

• If p− ≥ 1, then (3.20) reduces also to s− > 0 and in the case of constant exponents we
again recover (3.13).

We refer to [P5] for the proof of this assertion. We only mention that it is based on the local
mean characterization. In the isotropic case, this tool goes back to Rychkov [95], for spaces with
variable indices it was developed in [P5].

4 Compressed sensing and related topics

In this part we review the results of this thesis, which are connected directly to the theory of
compressed sensing. They were published in one survey chapter and four research papers:

[P6] H. Boche, R. Calderbank, G. Kutyniok, and J. Vyb́ıral, A Survey of Compressed Sensing,
First chapter in Compressed Sensing and its Applications, Birkäuser, Springer, 2015

[P7] A. Hinrichs and J. Vyb́ıral, Johnson-Lindenstrauss lemma for circulant matrices. Random
Struct. Algor. 39(3) (2011), 391–398

[P8] J. Vyb́ıral, A variant of the Johnson-Lindenstrauss lemma for circulant matrices, J. Funct.
Anal. 260(4) (2011), 1096–1105

[P9] J. Vyb́ıral, Average best m-term approximation, Constr. Approx. 36 (1) (2012), 83–115

[P10] M. Fornasier, J. Haškovec, and J. Vyb́ıral, Particle systems and kinetic equations mod-
eling interacting agents in high dimension, SIAM: Multiscale Modeling and Simulation,
9(4)(2011), 1727–1764
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4.1 A Survey of Compressed Sensing

In December 2013, Holger Boche (Technical University Munich), Robert Calderbank (Duke
University), Gitta Kutyniok and Jan Vyb́ıral (both Technical University Berlin) organized the
Matheon workshop on Compressed Sensing and its Applications (CSA2013). The proceedings
of this workshop with contributions from the plenary and invited speakers were then published
by Birkhäuser, Springer. This chapter was the introductory one, its main aim was to present the
most important aspects of the theory of compressed sensing with self-contained proofs, accessible
also to non-mathematicians. This chapter was mainly based on the book [49] and the course
on the subject given by the last author at TU Berlin. We followed this chapter closely in our
introduction of compressed sensing in Section 2.

4.2 Johnson-Lindenstrauss lemma for circulant matrices

In papers [P7] and [P8] we studied the possibility of using circulant matrices in the random
dimensionality reduction as described by the Johnson-Lindenstrauss lemma 2.15.

The original proof of Johnson and Lindenstrauss [60] uses (up to a scaling factor) an orthogonal
projection onto a random k-dimensional subspace of Rd. We refer also to [33] for a beautiful
and self-contained proof. Later on, this lemma found many applications, especially in design
of algorithms, where it sometimes allows to reduce the dimension of the underlying problem
essentially and break the so-called “curse of dimension”, cf. [57] or [58].

The evaluation of f(x), where f is a projection onto a random k dimensional subspace, is a very
time-consuming operation. Therefore, a significant effort was devoted to

• minimize the running time of f(x),

• minimize the memory used,

• minimize the number of random bits used,

• simplify the algorithm to allow an easy implementation.

There has been an enormous effort to provide improved constructions of Johnson-Lindenstrauss
mappings [1, 4, 74, 15] and references therein. Let us recall that the close connection between
Johnson-Lindenstrauss lemma and the Restricted Isometry Property is nowadays well under-
stood, cf. [7] and [64].

Papers [P7] and [P8] investigated the possibility of using structured random matrices for di-
mensionality reduction. Let us give the necessary definitions and the statement of the theorem
proven in [P7].

Let a = (a0, . . . , ad−1) be independent identically distributed random variables. We denote by
Ma,k the partial circulant matrix

Ma,k =


a0 a1 a2 . . . ad−1

ad−1 a0 a1 . . . ad−2

ad−2 ad−1 a0 . . . ad−3
...

...
...

. . .
...

ad−k+1 ad−k+2 ad−k+3 . . . ad−k

 .
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Furthermore, if κ = (κ0, . . . ,κd−1) are independent Bernoulli variables, we put

Dκ =


κ0 0 . . . 0
0 κ1 . . . 0
...

...
. . .

...
0 0 . . . κd−1

 .

The main result of [P7] was then the following statement.

Theorem 4.1. Let x1, . . . , xn be arbitrary points in Rd, let ε ∈ (0, 1
2) and let k = Ω(ε−2 log3 n)

be a natural number. Let a = (a0, . . . , ad−1) be independent Bernoulli variables or independent
normally distributed variables. Let Ma,k and Dκ be as above and put f(x) = 1√

k
Ma,kDκx.

Then with probability at least 2/3 the following holds

(1− ε)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22, i, j = 1, . . . , n.

The proof is based on decoupling the dependencies of the randomness used in the entries.
Obviously, the main disadvantage of Theorem 4.1 is the high dependence of k on n. This
was improved in [P8], where a similar theorem was proven with k = Ω(ε−2 log2 n). The proof
techniques used in [P8] differ essentially, and are of more geometric nature.

4.3 Average best m-term approximation

The concept of best m-term approximation was defined in (2.2) and is the main prototype of
non-linear approximation, cf. [104, 37]. Moreover for 0 < p ≤ q ≤ ∞, we introduce the best
m-term approximation widths

σp,qm := sup
x:‖x‖p≤1

σm(x)q.

The use of this concept goes back to Schmidt [97] and after the work of Oskolkov [87], it was
widely used in the approximation theory, cf. [32, 38]. It is well known that

2−1/p(m+ 1)1/q−1/p ≤ σp,qm ≤ (m+ 1)1/q−1/p, m = 0, 1, 2, . . . . (4.1)

The proof of (4.1) is based on the simple fact that (roughly speaking) the best m-term approx-
imation error of x ∈ `p is realized by subtracting the m largest coefficients taken in absolute
value. Hence,

σm(x)q =


(∑∞

j=m+1(x∗j )
q

)1/q

, 0 < q <∞,

x∗m+1 = supj≥m+1 x
∗
j , q =∞,

where x∗ = (x∗1, x
∗
2, . . . ) denotes the so-called non-increasing rearrangement [12] of the vector

(|x1|, |x2|, |x3|, . . . ).
Let us recall the proof of (4.1) in the simplest case, namely q = ∞. The estimate from above
then follows by

σm(x)∞ = sup
j≥m+1

x∗j = x∗m+1 ≤
(

(m+ 1)−1
m+1∑
j=1

(x∗j )
p

)1/p

≤ (m+ 1)−1/p‖x‖p. (4.2)

The lower estimate is supplied by taking

x = (m+ 1)−1/p
m+1∑
j=1

ej , (4.3)
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where {ej}∞j=1 are the canonical unit vectors.

For general q, the estimate from above in (4.1) may be obtained from (4.2) and Hölder’s in-
equality

‖x‖q ≤ ‖x‖θp · ‖x‖1−θ∞ , where
1

q
=
θ

p
. (4.4)

The estimate from below follows for all q’s by simple modification of (4.3).
The discussion above exhibits two effects.

(i) Best m-term approximation works particularly well, when 1/p− 1/q is large, i.e. if p < 1
and q =∞.

(ii) The elements used in the estimate from below (and hence the elements, where the best
m-term approximation performs at worse) enjoy a very special structure.

Therefore, there is a reasonable hope that the best m-term approximation could behave better,
when considered in a certain average case. We now present the definition of the so-called average
best m-term widths, which were the main subject of our study in [P9].

First, we observe that

σm((x1, . . . , xn))q = σm((ε1x1, . . . , εnxn))q = σm((|x1|, . . . , |xn|))q

holds for every x ∈ Rn and ε ∈ {−1,+1}n. Also all the measures, which we shall consider, are
invariant under any of the mappings

(x1, . . . , xn)→ (ε1x1, . . . , εnxn), ε ∈ {−1,+1}n

and therefore we restrict our attention only to Rn+ in the following definition.

Definition 4.2. Let 0 < p ≤ q ≤ ∞ and let n ≥ 2 and 0 ≤ m ≤ n− 1 be natural numbers.

(i) We set

∆n
p =

{
{(t1, . . . , tn) ∈ Rn+ :

∑n
j=1 t

p
j = 1}, p <∞,

{(t1, . . . , tn) ∈ Rn+ : maxj=1,...,n tj = 1}, p =∞.

(ii) Let µ be a Borel probability measure on ∆n
p . Then

σp,qm (µ) =

∫
∆n
p

σm(x)qdµ(x)

is called average surface best m-term width of id : `np → `nq with respect to µ.

(iii) Let ν be a Borel probability measure on [0, 1] ·∆n
p . Then

σp,qm (ν) =

∫
[0,1]·∆n

p

σm(x)qdν(x)

is called average volume best m-term width of id : `np → `nq with respect to ν.

Following the classical works from geometry of Banach spaces [8, 9, 47, 78, 79, 81, 82] we were
able to characterize these widths for classical measures on ∆n

p including the normalized Lebesgue
measure, the n − 1 dimensional Hausdorff measure restricted to the surface of ∆n

p , and for the
so-called cone measure. We refer to [P9] for the detailed statements of the results.
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4.4 Particle systems and kinetic equations modeling interacting agents in
high dimension

The starting point of [P10] is the well-known Cucker-Smale model, introduced and analyzed in
[30, 31], which is described by

ẋi = vi ∈ Rd, (4.5)

v̇i =
1

N

N∑
j=1

g(‖xi − xj‖`d2)(vj − vi), i = 1, . . . , N. (4.6)

The function g : [0,∞)→ R is given by g(s) = G
(1+s2)β

, for β > 0, and bounded by g(0) = G > 0.

This model describes the emerging of consensus in a group of interacting agents, trying to align
(also in terms of abstract consensus) with their neighbors. One of the motivations of the model
from Cucker and Smale was to describe the formation and evolution of languages [31, Section
6], although, due to its simplicity, it has been eventually related mainly to the description of
the emergence of flocking in groups of birds [30]. In the latter case, in fact, spatial and velocity
coordinates are sufficient to describe a pointlike agent (d = 3 + 3), while for the evolution of
languages, one would have to take into account a much broader dictionary of parameters, hence
a higher dimension d � 3 + 3 of parameters, which is in fact was the case of our interest in
[P10].

We investigated dynamical systems of the type

ẋi(t) = fi(Dx(t)) +
N∑
j=1

fij(Dx(t))xj(t), (4.7)

where we use the following notation:

• N ∈ N - number of agents,

• x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , where xi : [0, T ]→ Rd, i = 1, . . . , N ,

• fi : RN×N → Rd, i = 1, . . . , N,

• fij : RN×N → R, i, j = 1, . . . , N ,

• D : Rd×N → RN×N , Dx := (‖xi − xj‖`d2)Ni,j=1 is the adjacency matrix of the point cloud x.

We assumed that the governing functions fi and fij are Lipschitz. The system (4.7) describes
the dynamics of multiple complex agents x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , interacting on
the basis of their mutual “social” distance Dx(t), and its general form includes several models
for swarming and collective motion of animals and micro-organisms, aggregation of cells, etc.
Several relevant effects can be included in the model by means of the functions fi and fij , in
particular, fundamental binary mechanisms of attraction, repulsion, aggregation and alignment
[22, 30, 31, 86, 61].

In [P10] we applied the following strategy for dimensionality reduction of such dynamical sys-
tems. To decide if some effects occurred during the evolution of the dynamical system, it is
often not necessary to know the full trajectory of the system. For the Cucker-Smale system we
might be interested, if flocking occurred or not - but this can be very well guessed also from
any lowdimensional projection of the system. We therefore first apply Johnson-Lindenstrauss
embedding of the initial data and then calculate the solution path in the lower dimension. It
turns out that (at least for small period of time) the result of this lies close to the projection of
the solution of the original (highdimensional) dynamical system.
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5 Ridge functions

It is very well known, cf. [83], that approximation of smooth functions is (at least in some
settings) intractable in high dimensions. Therefore, the aim of the next group of papers was to
study approximation of well structured multivariate functions, which take a form of a ridge, i.e.

f(x) = g(a · x), x ∈ Rd, x ∈ Ω. (5.1)

Here, one assumes that both the ridge vector a ∈ Rd and the univariate function g (sometimes
also called ridge profile) are unknown. Although the formula (5.1) is rather simple, it revealed
couple of features:

(i) Typical structural assumptions posed on multivariate functions are linear (i.e. the function
belongs to some Banach space, which is of course linear). In contrary, (5.1) is non-linear
and may serve as a prototype of non-linear function classes useful for multivariate problems.

(ii) Although the formula (5.1) is rather simple, the tractability of the approximation of ridge
functions runs through several of the tractability classes considered in the field of Infor-
mation Based Complexity, cf. [84, 85], depending on the assumptions made on a and g
(and on the domain Ω).

(iii) For certain assumptions on a, the theory of compressed sensing comes in as an useful tool.

The results reported in this section were based on [27, 39, 119] and were published in the
following papers.

[P11] M. Fornasier, K. Schnass, and J. Vyb́ıral, Learning functions of few arbitrary linear pa-
rameters in high dimensions, Found. Comput. Math. 12 (2) (2012), 229–262

[P12] A. Kolleck and J. Vyb́ıral, On some aspects of approximation of ridge functions, J. Appr.
Theory 194 (2015), 35–61

[P13] S. Mayer, T. Ullrich, and J. Vyb́ıral, Entropy and sampling numbers of classes of ridge
functions, Constr. Appr. 42 (2) (2015), 231–264

5.1 Learning functions of few arbitrary linear parameters in high dimensions

Paper [P11] exploited the straightforward formula

∂f

∂ϕ
(ξ) = [g′(a · ξ)]a · ϕ (5.2)

to get the access to scalar products of a with carefully chosen directional vectors ϕ. Furthermore,
replacing derivatives with first-order differences allowed for a sampling algorithm based on ran-
domly chosen sampling points and polynomial or even logarithmic complexity in the dimension
d.

To be more precise we define two sets X ,Φ of points. The first

X = {ξj ∈ Sd−1 : j = 1, . . . ,mX }, (5.3)
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contains the mX sampling points and is drawn at random in Sd−1 according to the probability
measure µSd−1 . For the second, containing the mΦ derivative directions, we have

Φ =

{
ϕi ∈ BRd(

√
d/
√
mΦ) : ϕi` =

1√
mΦ

{
1, with probability 1/2,
−1, with probability 1/2,

i = 1, . . . ,mΦ, and ` = 1, . . . , d} . (5.4)

Actually we identify Φ with the mΦ × d matrix whose rows are the vectors ϕi. To write the
mX ×mΦ instances of (5.2) in a concise way we collect the directional derivatives g′(a · ξj)a,
j = 1, . . . ,mX as columns in the d×mX matrix X, i.e.,

X = (g′(a · ξ1)aT , . . . , g′(a · ξmX )aT ), (5.5)

and we define the mΦ ×mX matrices Y and E entrywise by

yij =
f(ξj + εϕi)− f(ξj)

ε
, (5.6)

and
εij =

ε

2
[ϕTi ∇2f(ζij)ϕi]. (5.7)

We denote by yj the columns of Y and by εj the columns of E , j = 1, . . . ,mX . With these
matrices we can write the following factorization

ΦX = Y − E . (5.8)

Under the additional assumptions that a ∈ Rd is sparse, (5.8) may be interpreted as compressive
measurements of a with noise, and it is therefore possible to use the methods of sparse recovery
to approximate a. We therefore proposed the following algorithm.

Algorithm:

• Given mΦ,mX , draw at random the sets Φ and X as in (5.3) and (5.4), and
construct Y according to (5.6).

• Set x̂j = ∆(yj) := arg minyj=Φz ‖z‖`d1 .

• Find
j0 = arg max

j=1,...,mX
‖x̂j‖`d2 . (5.9)

• Set â = x̂j0/‖x̂j0‖`d2 .

• Define ĝ(y) := f(âT y) and f̂(x) := ĝ(â · x).

Using recent Chernoff bounds for sums of positive-semidefinite matrices, and classical stability
bounds for invariant subspaces of singular value decompositions, we were able to provide (prob-
abilistic) guarantees on the performance of this algorithm in approximating ridge function (5.1).
Furthermore, the general case f(x) = g(Ax), where A ∈ Rk×d is a matrix, was also considered.

5.2 On some aspects of approximation of ridge functions

In [P12] we addressed several issues of analysis of ridge functions, which were left open in the
previous works. The first aspect was the change of the domain from unit ball to unit cube, i.e.
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we considered functions
f(x) = g(〈a, x〉), x ∈ [−1, 1]d.

As the unit cube is much larger than the unit ball (a fact which is described in many ways in the
analysis of convex bodies) it is usually much more difficult to approximate a function on a unit
cube than on a unit ball. With the non-linear class of ridge functions the situation is different -
the larger domain can be used to learn the ridge direction a more accurately. The crucial notion
of our analysis was the sign of a vector sign(x), which is taken componentwise. Although this
mapping is not continuous, its scalar product with the vector x itself not only gives the `1-norm
of the original vector, but the mapping y → 〈y, sign(x)〉 becomes continuous at x.

The second issue discussed in [P12] was the subject of noisy sampling. As the methods used so far
were based on first order differences, their stability was an important question. We proposed an
algorithm, which involves the Dantzig selector of Candés and Tao [21]. This recovery algorithm
can deal with random noise much more effectively than the classical `1-norm minimization.
Especially, the effect of noise folding is completely avoided with this approach. As intuitively
expected, the distance parameter of the first order differences has to be optimized - if it is too
small, any small perturbation of the function values affects heavily the differences. If it is too
large, the first order differences do not approximate the first derivatives well any more.

Finally, we considered the class of shifted radial functions f(x) = g(‖a − x‖22). It turned out
that the approach developed so far can easily be translated to this setting.

5.3 Entropy and sampling numbers of classes of ridge functions

The paper [P13] discussed the approximation of ridge functions from the point of view of Infor-
mation Based Complexity, paying attention to optimality of the known algorithms and to lower
bounds on the error of approximation. We considered ridge functions defined on the unit ball

Ω = B̄d
2 = {x ∈ Rd : ‖x‖2 ≤ 1}.

Let α > 0 denote the order of Lipschitz smoothness. Further, let 0 < p ≤ 2. We define the class
of ridge functions with Lipschitz profiles as

Rα,pd =
{
f : Ω→ R : f(x) = g(a · x), ‖g‖Lipα[−1,1] ≤ 1, ‖a‖p ≤ 1

}
. (5.10)

In addition, we define the class of ridge functions with infinitely differentiable profiles by

R∞,pd =
{
f : Ω→ R : f(x) = g(a · x), ‖g‖C∞[−1,1] ≤ 1, ‖a‖p ≤ 1

}
.

The concept of entropy numbers is central to this work. They can be understood as a measure
to quantify the compactness of a set w.r.t. some reference space. For a detailed exposure and
historical remarks, we refer to the monographs [23, 45]. The k-th entropy number ek(K,X) of
a subset K of a (quasi-)Banach space X is defined as

ek(K,X) = inf
{
ε > 0 : K ⊂

2k−1⋃
j=1

(xj + εB̄X) for some x1, . . . , x2k−1 ∈ X
}
. (5.11)

Note that ek(K,X) = inf{ε > 0 : Nε(K,X) ≤ 2k−1} holds true, where

Nε(K,X) := min
{
n ∈ N : ∃x1, . . . , xn ∈ X : K ⊂

n⋃
j=1

(xj + εB̄X)
}

(5.12)
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denotes the covering number of the set K in the space X, which is the minimal natural number
n such that there is an ε-net of K in X of n elements. We can introduce entropy numbers for
operators, as well. The k-th entropy number ek(T ) of an operator T : X → Y between two
quasi-Banach spaces X and Y is defined by

ek(T ) = ek(T (B̄X), Y ). (5.13)

The main result on entropy numbers of classes of ridge functions obtained in [P13] was the
following theorem.

Theorem 5.1. Let d be a natural number and α > 0. For the entropy numbers of Rα,2d in
L∞(Ω) we have

max(k−α, 2−k/d) . ek(Rα,2d , L∞) .

{
1 : k ≤ cαd log d,

k−α : k ≥ cαd log d ,
(5.14)

for some universal constant cα > 0 which does not depend on d.

As the decay of these entropy numbers resembles very much the behaviour of the entropy
numbers of univariate Lipschitz functions, we can conclude that, when speaking in terms of
entropy, classes of ridge functions with Lipschitz profile are essentially as compact as the class
of univariate Lipschitz functions. Consequently, these classes must be much smaller than the
class of multivariate Lipschitz functions.

The situation changes dramatically, when we come from entropy numbers to the so-called sam-
pling numbers. These numbers describe the minimal worst-case error when approximating func-
tions from a certain class using only a limited budget of function values, which we are allowed
to take. It turned out that without any additional assumptions on g and a, the problem is
intractable. Interestingly, when changing the assumptions on a and g, the problem belongs to a
number of different tractability classes considered in Information Based Complexity. Assuming,
on the other hand, that |g′(0)| ≥ κ > 0 allows to use the techniques of compressed sensing and
restore tractability.

6 Applications in machine learning

[P14] A. Kolleck and J. Vyb́ıral, Non-asymptotic analysis of `1-Support Vector Machines, sub-
mitted

[P15] L. M. Ghiringhelli, J. Vyb́ıral, S. V. Levchenko, C. Draxl, and M. Scheffler, Big data of
materials science - Critical role of the descriptor, Phys. Rev. Lett. 114, 105503 (2015)

6.1 Non-asymptotic analysis of `1-Support Vector Machines

Support vector machines (SVM) are a group of popular classification methods in machine
learning. Their input is a set of data points x1, . . . , xm ∈ Rd, each equipped with a label
yi ∈ {−1,+1}, which assigns each of the data points to one of two groups. SVM aims for binary
linear classification based on separating hyperplane between the two groups of training data,
choosing a hyperplane with separating gap as large as possible.

Since their introduction by Vapnik and Chervonenkis [115], the subject of SVM was studied
intensively. We will concentrate on the so-called soft margin SVM [29], which allow also for
misclassification of the training data and are the most used version of SVM nowadays.

40



In its most common form (and neglecting the bias term), the soft-margin SVM is a convex
optimization program

min
w∈Rd
ξ∈Rm

1

2
‖w‖22 + λ

m∑
i=1

ξi subject to yi〈xi, w〉 ≥ 1− ξi

and ξi ≥ 0 (6.1)

for some tradeoff parameter λ > 0 and so called slack variables ξi. It will be more convenient
for us to work with the following equivalent reformulation of (6.1)

min
w∈Rd

m∑
i=1

[1− yi〈xi, w〉]+ subject to ‖w‖2 ≤ R, (6.2)

where R > 0 gives the restriction on the size of w.

The aim of [P14] was to analyze the `1-based variant of SVM, which was introduced in [121]
and which performs well when looking for sparse classifiers, i.e. when w ∈ Rd is supposed to
have only few non-zero coordinates. Hence, we denote by â the minimizer of

min
w∈Rd

m∑
i=1

[1− yi〈xi, w〉]+ subject to ‖w‖1 ≤ R. (6.3)

The setting of our work, which we will later on refer to as “Standing assumptions”, was the
following.

Standing assumptions:

(i) a ∈ Rd is the true (nearly) sparse classifier with ‖a‖2 = 1, ‖a‖1 ≤ R, R ≥ 1, which
we want to approximate;

(ii) xi = rx̃i, x̃i ∼ N (0, Id), i = 1, . . . ,m are i.i.d. training data points for some constant
r > 0;

(iii) yi = sgn(〈xi, a〉), i = 1, . . . ,m are the labels of the data points;

(iv) â is the minimizer of (6.3);

(v) Furthermore, we denote

K = {w ∈ Rd | ‖w‖1 ≤ R}, (6.4)

fa(w) =
1

m

m∑
i=1

[1− yi〈xi, w〉]+, (6.5)

where the subindex a denotes the dependency of fa on a (via yi).

Using the methods of concentration of measure and of probability theory in Banach spaces
[67, 68], we could estimate the performance of (6.3) under the “Standing assumptions”.

Theorem 6.1. Let d ≥ 2, 0 < ε < 0.18, r >
√

2π(0.57 − πε)−1 and m ≥ Cε−2r2R2 log(d) for
some constant C. Under the “Standing assumptions” it holds∥∥∥a− â

‖â‖2

∥∥∥
2

〈a, â
‖â‖2 〉

≤ C ′
(
ε+

1

r

)
(6.6)
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with probability at least

1− γ exp
(
−C ′′ log(d)

)
(6.7)

for some positive constants γ,C ′, C ′′.

If a ∈ Rd is s-sparse, then (simply by Hölder’s inequality) ‖a‖1 ≤
√
s and we may take R =

√
s

in Theorem 6.1. The logarithmic dependence of m on d and the linear dependence of m on s
are the main achievements of Theorem 6.1 and explain the practical success of `1-SVM in many
different areas. On the other hand, we conjecture that the dependence of m on ε and r is not
optimal and could be improved by more detailed analysis.

6.2 Big data of materials science - Critical role of the descriptor

The last paper selected for this cumulative thesis arose from the collaboration with colleagues
from Fritz-Haber Institute in Berlin. They have been interested in speeding up the discovery of
new materials. Nowadays, important material properties may be calculated ab initio from the
known molecular structure of the material. Essentially, the only inputs of these calculations are
the nuclear numbers of the atoms in the molecule. Nevertheless, any such calculation takes quite
long amount of time. As the number of potential new materials is in thousands (and hundreds
of thousands), it is not feasible to calculate all of them through.

Instead of that, we would be interested in a very quick (but inaccurate) calculation of such
properties, which could (at least roughly) predict, were the interesting materials are to be found.
Afterwards, these preselected materials could indeed be treated by the full scale computation.

As a model example we have chosen the prediction of the crystal structure of binary compound
semiconductors, which are known to crystallize in zincblende (ZB), wurtzite (WZ), or rocksalt
(RS) structures. In 1970 Phillips and van Vechten (Ph-vV) [116, 90] analyzed the prediction or
classification challenge and came up with a two-dimensional descriptor, i.e., two numbers that
are related to the dielectric constant and the nearest-neighbor distance in the crystal [116, 90].
Figure 2 shows their conclusion. Clearly, in this representation ZB/WZ and RS structures
separate nicely: Materials in the upper left part crystallize in the RS structure, those in the
lower right part are ZB/WZ. Thus, based on the ingenious descriptor d = (Eh, C) one can predict
the structure of unknown compounds without the need of performing explicit experiments or
calculations. Several authors have taken up the Ph-vV challenge and identified alternative
descriptors [122, 89, 24].

We have therefore selected N = 82 binary compounds and calculated the property P - the
difference in LDA energy (∆E) between RS and ZB for the given atom pair AB. Then we
were searching for a descriptor that minimizes the Root Mean Square Error (RMSE), given by√

(1/N)‖P−Dc‖22. The order is such that element A is the one with the smallest electronega-
tivity EN, defined according to Mulliken: EN = 1/2 (IP+EA). IP and EA are atomic ionization
potential and electron affinity evaluated as the energy of the half-occupied Kohn-Sham orbital
in the half positively and half negatively charged LDA atom, respectively. For systematically
constructing the feature space, i.e., the candidate components of the descriptor, and then select-
ing the most relevant of them, we implement an iterative approach. We start from 7 atomic
features for atom A: IP(A) and EA(A), H(A) and L(A), the energies of the highest-occupied and
lowest-unoccupied Kohn-Sham (KS) levels, as well as rs(A), rp(A), and rd(A), i.e., the radius
where the radial probability density of the valence s, p, and d orbital is maximal. Besides,
information regarding the isolated AA, BB, and AB dimers was added to the list, namely their
equilibrium distance, binding energy, and HOMO-LUMO KS gap (a total of 9 more features).
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Figure 2: Ground-state structures of 68 octet binary compounds, arranged according to the
two-dimensional descriptor introduced by Phillips and van Vechten [116, 90]. Both descriptors
and classification derive from experimental data. Because of visibility reasons only 10 materials
are labeled for each structure.

Figure 3: Calculated energy differences of the 82 octet binary materials, arranged according
to our optimal two-dimensional descriptor. For visibility reasons, not all materials are labeled.
Seven ZB materials with predicted ∆E > 0.5 eV are outside the shown window.

Next, we define rules for linear and non-linear combinations of the just mentioned 23 starting
features. One can easily generate a huge number of candidate descriptors, e.g., all thinkable
but not violating basic physical rules. In the present study we used about 10 000 candidates
subdivided such to be used in different iterations, where we refined the feature space.

We form (non-)linear combinations of the starting features, which we expect to be potentially
of some causal significance. In the language of kernel ridge regression we design a kernel and
we do it by using physical insight. In this way we can check new mechanisms that are tested
one against each other. Due to the limited set of data points, the list cannot be exhaustive
because LASSO (and actually any other method) has difficulties in selecting between two highly
correlated features. In our case, for instance, rs and rp for the same atom have a large correlation
(Pearson’s index larger than 0.95, in other words the two 82-dimensional vectors of the feature
rs and rp are almost collinear).
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Figure 4: Error of a linear fit for Zunger’s descriptors (left figure) and for our best pair (right
figure). Each symbol represents one material, which was left out from training and afterwards
forecasted by the description found. Especially materials with high ∆ELDA are predicted by
our method with much higer accuracy (see the right-bottom zoom of the figures).

Our procedure identifies as best (i.e., yielding the lowest RMSE) one-, two-, and three-dimensional
(1D, 2D, and 3D) descriptors. These are the first, the first two, and all three of the following
features:

IP(B)− EA(B)

rp(A)2
,
|rs(A)− rp(B)|

exp(rs(A))
,
|rp(B)− rs(B)|

exp(rd(A) + rs(B))
.

The extensions of this method to problems closer to real-life questions is currently the subject
of further research.
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[73] V. E. Măıorov, Discretization of the problem of diameters, Uspekhi Mat. Nauk 30, No. 6
(1975), 179–180.

48
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We present an alternative proof of the Jawerth embedding

F s0
p0q(Rn) ↪−→ Bs1

p1p0(R
n),

where

−∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, 0 < q ≤ ∞

and
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= s1 −
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.

The original proof given in [3] uses interpolation theory. Our proof relies on
wavelet decompositions and transfers the problem from function spaces to se-
quence spaces. Using similar techniques, we also recover the embedding of
Franke [2].
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Introduction

Let Bspq(Rn) and F spq(Rn) denote the Besov and Triebel-Lizorkin function spaces,
respectively. The classical Sobolev embedding theorem can be extended to these two
scales.

Theorem 0.1. Let −∞ < s1 < s0 <∞ and 0 < p0 < p1 ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
. (1)

(i) If 0 < q0 ≤ q1 ≤ ∞, then

Bs0p0q0(Rn) ↪−→ Bs1p1q1(Rn).

(ii) If 0 < q0, q1 ≤ ∞ and p1 <∞, then

F s0p0q0(Rn) ↪−→ F s1p1q1(Rn). (2)

We observe that there is no condition on the fine paramters q0, q1 in (2). This
surprising effect was first observed in full generality by Jawerth, [3]. Using (2), we
may prove

F s0p0q(R
n) ↪−→ F s1p1p1(Rn) = Bs1p1p1(Rn)

and

Bs0p0p0(Rn) = F s0p0p0(Rn) ↪−→ F s1p1q(R
n)

for every 0 < q ≤ ∞. But Jawerth [3] and Franke [2] showed that these embeddings
are not optimal and may be improved.

Theorem 0.2. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, and 0 < q ≤ ∞ with (1).

(i) Then
F s0p0q(R

n) ↪−→ Bs1p1p0(Rn). (3)

.

(ii) If p1 <∞, then
Bs0p0p1(Rn) ↪−→ F s1p1q(R

n). (4)

The original proofs (see [2, 3]) use interpolation techniques. We rely on a differ-
ent method. First, we observe that using (for example) the wavelet decomposition
method, (3) and (4) are equivalent to

fs0p0q ↪−→ bs1p1p0 and bs0p0p1 ↪−→ fs1p1q (5)
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under the same restrictions on parameters s0, s1, p0, p1, q as in Theorem 0.2. Here,
bspq and fspq stands for the sequence spaces of Besov and Triebel-Lizorkin type. We
prove (5) directly using the technique of non-increasing rearrangement on a rather
elementary level.

All the unimportant constants are denoted by the letter c, whose meaning may
differ from one occurrence to another. If {an}∞n=1 and {bn}∞n=1 are two sequences of
positive real numbers, we write an . bn if, and only if, there is a positive real number
c > 0 such that an ≤ c bn, n ∈ N. Furthermore, an ≈ bn means that an . bn and
simultaneously bn . an.

1. Notation and definitions

We introduce the sequence spaces associated with the Besov and Triebel-Lizrokin
spaces. Let m ∈ Zn and ν ∈ N0. Then Qν m denotes the closed cube in Rn with
sides parallel to the coordinate axes, centred at 2−νm, and with side length 2−ν . By
χν m = χQν m we denote the characteristic function of Qν m. If

λ = {λν m : ν ∈ N0,m ∈ Zn },

−∞ < s <∞, and 0 < p, q ≤ ∞, we set

‖λ | bspq‖ =
( ∞∑
ν=0

2ν(s−
n
p )q
( ∑
m∈Zn

|λν m|p
) q
p

) 1
q

,

appropriately modified if p =∞ and/or q =∞. If p <∞, we define also

‖λ|fspq‖ =
∥∥∥∥( ∞∑

ν=0

∑
m∈Zn

|2νsλν mχν m(·)|q
)1/q ∣∣∣∣ Lp(Rn)

∥∥∥∥.
The connection between the function spaces Bspq(Rn), F spq(Rn) and the sequence
spaces bspq, f

s
pq may be given by various decomposition techniques, we refer to [7, chap-

ters 2 and 3] for details and further references.
As a result of these characterizations, (3) is equivalent to (5).
We use the technique of non-increasing rearrangement. We refer to [1, chapter 2]

for details.

Definition 1.1. Let µ be the Lebesgue measure in Rn. If h is a measurable function
on Rn, we define the non-increasing rearrangement of h through

h∗(t) = sup{λ > 0 : µ{x ∈ Rn : |h(x)| > λ} > t }, t ∈ (0,∞).

We denote its averages by

h∗∗(t) =
1
t

∫ t

0

h∗(s) ds, t > 0.
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We shall use the following properties. The first two are very well known and their
proofs may be found in [1, Proposition 1.8 in chapter 2, Theorem 3.10 in chapter 3].

Lemma 1.2. If 0 < p ≤ ∞, then

‖h | Lp(Rn)‖ = ‖h∗ | Lp(0,∞)‖

for every measurable function h.

Lemma 1.3. If 1 < p ≤ ∞, then there is a constant cp such that

‖h∗∗ | Lp(0,∞)‖ ≤ cp‖h∗ | Lp(0,∞)‖

for every measurable function h.

Lemma 1.4. Let h1 and h2 be two non-negative measurable functions on Rn. If
1 ≤ p ≤ ∞, then

‖h1 + h2 | Lp(Rn)‖ ≤ ‖h∗1 + h∗2 | Lp(0,∞)‖.

Proof. The proof follows from Theorems 3.4 and 4.6 in [1, chapter2].

2. Main results

In this part, we present a direct proof of the discrete versions of Jawerth and Franke
embedding. We start with the Jawerth embedding.

Theorem 2.1. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, and 0 < q ≤ ∞. Then

fs0p0q ↪−→ bs1p1p0 if s0 −
n

p0
= s1 −

n

p1
.

Proof. Using the elementary embedding

fspq0 ↪−→ fspq1 if 0 < q0 ≤ q1 ≤ ∞ (6)

and the lifting property of Besov and Triebel-Lizorkin spaces (which is even simpler
in the language of sequence spaces), we may restrict ourselves to the proof of

fsp0∞ ↪−→ b0p1p0 , where s = n
( 1
p0
− 1
p1

)
.

Let λ ∈ fsp0∞ and set

h(x) = sup
ν∈N0

2νs
∑
m∈Zn

|λν m|χν m(x).
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Hence
|λν m| ≤ 2−νs inf

x∈Qν m
h(x), ν ∈ N0, m ∈ Zn.

Using this notation,
‖λ | fsp0∞‖ = ‖h | Lp0(Rn)‖

and

‖λ | b0p1p0‖
p0 ≤

∞∑
ν=0

2−νn
( ∑
m∈Zn

inf
x∈Qνm

h(x)p1
)p0/p1

≤
∞∑
ν=0

2−νn
( ∞∑
k=1

h∗(2−νnk)p1
)p0/p1

.

Using the monotonicity of h∗ and p0 < p1 we get

‖λ | b0p1p0‖
p0 .

∞∑
ν=0

2−νn
( ∞∑
l=0

2nl · (2n − 1) · h∗(2−νn2nl)p1
)p0/p1

.
∞∑
ν=0

2−νn
∞∑
l=0

2nl
p0
p1 h∗(2−νn2nl)p0 .

We substitute j = l − ν and obtain

‖λ | b0p1p0‖
p0 .

∞∑
j=−∞

∞∑
ν=−j

2−νn2n(ν+j)
p0
p1 h∗(2jn)p0

=
∞∑

j=−∞
2nj

p0
p1 h∗(2jn)p0

∞∑
ν=−j

2nν
(
p0
p1
−1
)

≈
∞∑

j=−∞
2njh∗(2nj)p0 ≈ ‖h∗ | Lp0(0,∞)‖p0 = ‖h | Lp0(Rn)‖p0 .

If p1 =∞, only notational changes are necessary.

Theorem 2.2. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 <∞, and 0 < q ≤ ∞. Then

bs0p0p1 ↪−→ fs1p1q if s0 −
n

p0
= s1 −

n

p1
.

Proof. Using the lifting property and (6), we may suppose that s1 = 0 and
0 < q < p0.

By Lemma 1.4, we observe that

‖λ|f0
p1q‖ =

∥∥∥∥( ∞∑
ν=0

∑
m∈Zn

|λνm|qχνm(x)
)1/q ∣∣∣∣ Lp1(Rn)

∥∥∥∥

79
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may be estimated from above by

∥∥∥∥ ∞∑
ν=0

∞∑
m=0

λ̃qνmχ̃νm(·)
∣∣∣∣ L p1

q
(0,∞)

∥∥∥∥1/q

, (7)

where λ̃ν = {λ̃νm}∞m=0 is a non-increasing rearrangement of λν = {λνm}m∈Zn and
χ̃νm is a characteristic function of the interval (2−νnm, 2−νn(m+ 1)).

Using duality, (7) may be rewritten as

sup
g

(∫ ∞
0

g(x)
( ∞∑
ν=0

∞∑
m=0

λ̃qνmχ̃νm(x)
)
dx

)1/q

= sup
g

( ∞∑
ν=0

∞∑
m=0

2−νnλ̃qνmgνm

)1/q

, (8)

where the supremum is taken over all non-increasing non-negative measurable func-
tions g with ‖g | Lβ(0,∞)‖ ≤ 1 and gνm = 2νn

∫
g(x)χ̃νm(x) dx. Here, β is the

conjugated index to p1
q . Similarly, α stands for the conjugated index to p0

q .

We use twice Hölder’s inequality and estimate (8) from above by

( ∞∑
ν=0

2−νn
( ∞∑
m=0

λ̃p0νm

) p1
p0

)1/p1

· sup
g

( ∞∑
ν=0

2−νn
( ∞∑
m=0

gανm

) β
α

) 1
βq

(9)

Since s0 = n
(

1
p0
− 1

p1

)
and p1

(
s0 − n

p0

)
= −n, the first factor in (9) is equal to

‖λ | bs0p0p1‖. To finish the proof, we have to show that there is a number c > 0 such
that ( ∞∑

ν=0

2−νn
( ∞∑
m=0

gανm

) β
α

) 1
βq

≤ c (10)

holds for every non-increasing non-negative measurable functions g with ‖g | Lβ(0,∞)‖
≤ 1. We fix such a function g. Using the monotonicity of g, we get

∞∑
m=0

gανm =
∞∑
l=0

2(l+1)n∑
m=2ln−1

(
2νn

∫ 2−νn(m+1)

2−νnm

g(x) dx

)α

.
∞∑
l=0

2ln
(

2νn
∫ 2−νn2ln

2−νn(2ln−1)

g(x) dx

)α
≤
∞∑
l=0

2ln(g∗∗)α(2(l−ν)n).
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We use 1 < β < α, Lemma 1.3 and obtain( ∞∑
ν=0

2−νn
( ∞∑
m=0

gανm

) β
α

)1/β

≤

( ∞∑
ν=0

2−νn
( ∞∑
l=0

2ln(g∗∗)α(2(l−ν)n)
) β
α

)1/β

≤
( ∞∑
ν=0

2−νn
∞∑
l=0

2ln
β
α (g∗∗)β(2(l−ν)n)

)1/β

≤
( ∞∑
k=−∞

2kn
β
α

∞∑
ν=−k

2νn( βα−1)(g∗∗)β(2kn)
)1/β

.

( ∞∑
k=−∞

2kn(g∗∗)β(2kn)
)1/β

. ‖g∗∗ | Lβ(0,∞)‖ ≤ c ‖g | Lβ(0,∞)‖ ≤ c.

Taking the 1
q -power of this estimate, we finish the proof of (10).

The Theorems 2.1 and 2.2 are sharp in the following sense.

Theorem 2.3. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, and 0 < q0, q1 ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
.

(i) If
fs0p0q0 ↪−→ bs1p1q1 , (11)

then q1 ≥ p0.

(ii) If p1 <∞ and
bs0p0q0 ↪−→ fs1p1q1 , (12)

then q0 ≤ p1.

Remark 2.4. Using (any of) the usual decomposition techniques, the same statements
hold true also for the function spaces. These results were first proved in [4].

Proof. (i) Suppose that 0 < q1 < p0 <∞ and set

λνm =

{
ν−

1
q1 2ν(

n
p1
−s1) if ν ∈ N and m = 0,

0, otherwise.

A simple calculation shows that ‖λ | fs0p0q0‖ < ∞ and ‖λ | bs1p1q1‖ = ∞. Hence, (11)
does not hold.

(ii) Suppose that 0 < p1 < q0 ≤ ∞ and set
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λνm =

{
ν−

1
p1 2ν(

n
p1
−s1) if ν ∈ N and m = 0,

0, otherwise.

Again, it is a matter of simple calculation to show, that ‖λ | bs0p0q0‖ < ∞ and
‖λ | fs1p1q1‖ =∞. Hence, (12) is not true.
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Abstract

We study the approximation, Gelfand and Kolmogorov numbers of embeddings in function spaces of
Besov and Triebel-Lizorkin type. Our aim here is to provide sharp estimates in several cases left open in the
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1. Introduction

Let � ⊂ Rd be a bounded domain, 1�p�∞ and let k be a natural number. We denote by
Wk

p(�) the Sobolev spaces of functions from Lp(�) with all distributive derivatives of order
smaller or equal to k in Lp(�). If

k1 − k2 �d

(
1

p1
− 1

p2

)
+

, (1.1)

and the boundary of � is Lipschitz then W
k1
p1(�) is continuously embedded into W

k2
p2 (�). This

theorem goes back to Sobolev [55].
If the inequality in (1.1) is strict, the embedding is even compact, cf. [48,31]. During the

second half of the last century, this fact (and its numerous generalizations) found its applications
in many areas of modern analysis, especially in connection with partial differential (and pseudo-
differential) equations.
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Later on, mathematicians started to be interested in measuring the quality of compactness of
the embedding

I : Wk1
p1

(�) ↪→ Wk2
p2

(�).

The very first question is, of course, how to measure compactness. During the years, several
methods were developed. The most popular one assigns to I a non-increasing sequence of non-
negative real numbers, say {sn(I )}n∈N, often based on specific approximation quantities, and
measures the decay of sn as n tends to infinity.

Let us present this approach on the following example. Let X and Y be Banach spaces and let
T : X→ Y be a bounded linear operator between them. Then the nth approximation number of
T is defined by

an(T ) = inf{‖T − L‖ : L ∈ L(X, Y ), rank (L) < n}, n ∈ N, (1.2)

where L(X, Y ) is the space of all bounded linear operators mapping X into Y endowed with the
classical operator norm and rank L denotes the dimension of L(X). Hence, we measure how well
the operator T may be approximated by finite rank operators. If limn→∞ an(T ) = 0, then T is
compact. And in some sense, the faster the sequence {an(T )}n∈N tends to zero, the more compact
T is.

There are many other ways, how to define a sequence {sn(T )}n∈N for an operator T ∈ L(X, Y )

such that the decay of {sn} describes in some sense the compactness of T; we refer to [43,44,6],
where the axiomatic theory of the so-called s-numbers can be found.

It was observed by many authors, that even in the most simple case

id : �m
p1
→ �m

p2
, m ∈ N

it is surprisingly difficult to calculate (or at least estimate) the approximation numbers, as well as
the other s-numbers, corresponding to id. The complexity of the problem may be demonstrated
by the fact that in several cases the proofs are based on probabilistic arguments and no optimal
constructive approximation procedure is known up to now.

As a part of the good news is that these results may be combined with the discretization
technique of Maı̆orov [37] to get direct counterparts for embeddings between function spaces.
Nowadays, there are many discretization techniques well known and studied in the literature. Let
us mention at least spline and wavelet decompositions and the �-transform, cf. [8,7,49,64,23,11,
16,17].

The research in this area was complicated also by another regretful phenomena, namely com-
munication problems between several groups working on the field. This effect was already pointed
out by Caetano [4] and Pietsch [45, Section 6.2.6]. Also the separation of the Russian mathemat-
ical school causes some obstacles. Many breakthroughs achieved by Kashin, Gluskin and others
were published in Russian. The nicely written dissertation of Lubitz [36] was written in German,
never translated into English and never published.

The aim of this paper is rather extensive. We wish to

• give an overview of known results in this area,
• collect some historical references,
• close several minor gaps left open until now,
• present the power of the discretization method, but also its limits,
• provide an easy reference to the results about function spaces.
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Several overviews may already be found in the literature, cf. [46,34,35,45]. Unfortunately, they
sometimes restrict themselves to d = 1, state the results only implicitly, or deal only with integer
smoothness parameters s1, s2 ∈ N. Here, leaded by the needs of possible applications, we shall
study three types of s-numbers, namely approximation, Kolmogorov and Gelfand numbers, with
respect to embeddings of function spaces defined on Lipschitz domains. This generalization is
not particularly interesting from the standpoint of functional analysis, but is of course crucial as
far as the applications are concerned.

2. Function and sequence spaces

2.1. Notation

We use standard notation: N denotes the collection of all natural numbers, Z the collection
of all integers, Rd is the Euclidean d-dimensional space, where d ∈ N, and C stands for the
complex plane. Let S(Rd) be the Schwartz space of all complex-valued rapidly decreasing,
infinitely differentiable functions on Rd and let S′(Rd) be its dual, the space of all tempered
distributions.

Furthermore, Lp(Rd) with 0 < p�∞ are the classical Lebesgue spaces endowed with the
(quasi-)norm

‖f |Lp(Rd)‖ =
⎧⎨⎩
(∫

Rd |f (x)|pdx
)1/p

, 0 < p <∞,

ess sup
x∈Rd

|f (x)|, p = ∞.

For � ∈ S(Rd) we denote by

�̂(�) = (F�)(�) = (2�)−d/2
∫

Rd
e−i<x,�>�(x) dx, x ∈ Rd ,

its Fourier transform and by �∨ or F−1� its inverse Fourier transform. Through duality, F and
F−1 are extended to S′(Rd).

If {an}∞n=1 and {bn}∞n=1 are two sequences of non-negative real numbers, we write an�bn if
there is a constant c > 0, such that an �c bn for all natural numbers n. The symbols an�bn and
an ≈ bn are defined similarly.

2.2. Function spaces

We give a Fourier-analytic definition of Besov and Triebel-Lizorkin spaces, which relies on the
so-called smooth dyadic resolution of unity. Let � ∈ S(Rd) with

�(x) = 1 if |x|�1 and �(x) = 0 if |x|� 3
2 . (2.1)

We put �0 = � and �j (x) = �(2−j x) − �(2−j+1x) for j ∈ N and x ∈ Rd . This leads to the
identity

∞∑
j=0

�j (x) = 1, x ∈ Rd .
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Definition 2.1. (i) Let s ∈ R, 0 < p, q �∞. Then Bs
pq(Rd) is the collection of all f ∈ S′(Rd)

such that

‖f |Bs
pq(Rd)‖ =

⎛⎝ ∞∑
j=0

2jsq‖(�j f̂ )∨|Lp(Rd)‖q
⎞⎠1/q

<∞ (2.2)

(with the usual modification for q = ∞).
(ii) Let s ∈ R, 0 < p < ∞, 0 < q �∞. Then F s

pq(Rd) is the collection of all f ∈ S′(Rd)

such that

‖f |F s
pq(Rd)‖ =

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2jsq |(�j f̂ )∨(·)|q
⎞⎠1/q

|Lp(Rd)

∥∥∥∥∥∥∥ <∞ (2.3)

(with the usual modification for q = ∞).

Remark 2.2. We recommend [40,59,60,51,61] as standard references with respect to these classes
of distributions. Extensive historical overviews, remarks and comments may be found in [60,
Chapter 1], [61, Chapter 1] and [45, Chapter 6.7]. Let us mention that the spaces Bs

pq(Rd) and

F s
pq(Rd) do not depend on the choice of � in the sense of equivalent (quasi-)norms. Many classical

function spaces are included in these two scales.

1. If 1 < p <∞, then the Littlewood–Paley theorem states that

F 0
p2(R

d) = Lp(Rd).

2. Let 1 < p <∞ and s ∈ N. Then

F s
p2(R

d) = Ws
p(Rd)

are the classical Sobolev spaces.
3. Let s > 0, s 
∈ N. Then

Bs∞∞(Rd) = Cs(Rd)

are the Hölder–Zygmund spaces.

On the other hand, many important function spaces (especially L1(R
d), L∞(Rd), BV (R)—the

space of functions with bounded variation and Ck(Rd)—the space of functions with all partial
derivatives of order smaller or equal to k uniformly continuous and bounded) are not included.

If X andY are two topological vector spaces, we write X ↪→ Y if X is continuously embedded in
Y. The following embeddings describe the interplay between these function spaces and the Besov
scale.

B0
11(R

d) ↪→ L1(R
d) ↪→ B0

1∞(Rd),

B0
∞1(R

d) ↪→ C(Rd) ↪→ L∞(Rd) ↪→ B0∞∞(Rd),

Bk
∞1(R

d) ↪→ Ck(Rd) ↪→ Bk∞∞(Rd). (2.4)

In many cases it will be possible to use the Fourier-analytical methods in the framework of Besov
spaces and afterwards, simply by applying these simple continuous embeddings, to derive the
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same results also for the “bad” spaces L1(R
d), L∞(Rd) and Ck(Rd). The same procedure may

be used also for the Triebel-Lizorkin scale because of

Bs
p,min(p,q)(R

d) ↪→ F s
pq(Rd) ↪→ Bs

p,max(p,q)(R
d). (2.5)

Remark 2.3. If 0 < p1 �p2 �∞, 0 < q1, q2 �∞ and s2 �s1, then the following version of the
Sobolev embedding is true, see [2], [40, Chapters 3 and 11] and [58, Section 2.8.1]:

Bs1
p1,q1

(Rd) ↪→ Bs2
p2,q2

(Rd), if s1 − d

p1
> s2 − d

p2
.

There are several modifications of this embedding, which result in compact mappings. The first
possibility is to restrict to function spaces on smooth bounded domains, the second involves
weighted spaces and another one considers the so-called radial spaces, i.e. spaces of radial sym-
metric functions. We concentrate on the first possibility and refer to [61, Chapter 6], [54] for the
second and third approach.

Let � be a bounded domain. Let D(�) = C∞0 (�) be the collection of all complex-valued
infinitely differentiable functions with compact support in � and let D′(�) be its dual—the space
of all complex-valued distributions on �.

Let g ∈ S′(Rd). Then we denote by g|� its restriction to �:

(g|�) ∈ D′(�), (g|�)(�) = g(�) for � ∈ D(�).

Definition 2.4. Let � be a bounded domain in Rd . Let s ∈ R, 0 < p, q �∞ with p <∞ in the
F-case. Let As

pq stand either for Bs
pq or F s

pq . Then

As
pq(�) = {f ∈ D′(�) : ∃g ∈ As

pq(Rd) : g|� = f }
and

‖f |As
pq(�)‖ = inf ‖g|As

pq(Rd)‖,

where the infimum is taken over all g ∈ As
pq(Rd) such that g|� = f .

Intrinsic characterization of Bs
p,q(�), s > �p = d

(
1

p
− 1

)
+
= d max

(
1

p
− 1, 0

)
are

known to exist in case of Lipschitz domains, see [12–14] and [61, Section 1.11.9].

2.3. Sequence spaces

In this section we comment on the discretization techniques mentioned in the Introduction.
First, we describe the situation on Rd . Therefore, we introduce the sequence spaces bs

pq and

give a wavelet decomposition theorem for Besov spaces on Rd . Good references in our context
are [8,11,23,38,39,63,64].

Second, we deal with bounded domains � ⊂ Rd . The wavelet decomposition techniques may
be adapted also to these function spaces, cf. [9,61], but unfortunately, there are still open problems
in this setting. To avoid these gaps, we use the theory on Rd and combine it with suitable extension
and restriction operators.
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Theorem 2.5. For any k ∈ N there are real-valued compactly supported functions

�0, �1 ∈ Ck(R)

satisfying∫
R

t��1(t) dt = 0, � = 0, 1, . . . , k − 1,

such that

{2�/2��m : � ∈ N0, m ∈ Z}
with

��m(t) =
{

�0(t −m) if � = 0, m ∈ Z,

2− 1
2 �1(2

�−1t −m) if � ∈ N, m ∈ Z

is an orthonormal basis in L2(R).

Remark 2.6. This theorem was first proven by Daubechies in [10]. The functions �0 and �1 are
therefore usually called Daubechies wavelets. We refer to [63, Theorem 19] for the proof of the
next theorem.

Theorem 2.7. Let 0 < p, q �∞, s ∈ R and k ∈ N with k > max(s, �p − s). Let �0, �1 be the
Daubechies wavelets of smoothness k. Let E = {0, 1}d \ (0, . . . , 0). For e = (e1, . . . , ed) ∈ E let

�e(x) =
d∏

j=1

�ej
(xj ), x = (x1, . . . , xd) ∈ Rd .

(i) Then⎧⎪⎨⎪⎩�(x −m) =
d∏

j=1
�0(xj −mj), m = (m1, . . . , md) ∈ Zd ,

2
�−1

2 d�e(2�−1x −m), e ∈ E, � ∈ N, m ∈ Zd

is an orthonormal basis in L2(R
d).

(ii) Let f ∈ S′(Rd). Then f ∈ Bs
pq(Rd) if, and only if, it can be represented as

f =
∑

m∈Zd

	m�(x −m)+
∑
�∈N

∑
e∈E

∑
m∈Zd

	e
�m2−�d/2�e(2

�−1x −m) (2.6)

with

‖	|bs
pq‖ =

⎛⎝ ∑
m∈Zd

|	m|p
⎞⎠

1
p

+
⎛⎜⎝ ∞∑

�=1

2�(s− d
p

)q
∑
e∈E

⎛⎝ ∑
m∈Zd

|	e
�m|p

⎞⎠
q
p

⎞⎟⎠
1
q

<∞

appropriately modified if p = ∞ and/or q = ∞. The representation in (2.6) is unique,
the complex coefficients {	m}m∈Zd and {	e

�m}e∈E,�∈N0,m∈Zd depend linearly on f and the
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mapping, which associates to f ∈ Bs
pq(Rd) the sequence of coefficients, is an isomorphic

map of Bs
pq(Rd) onto bs

pq .

2.4. s-Numbers

Given p ∈ (0, 1], we say that the quasi-Banach space Y is a p-Banach space if the inequality

‖x + y|Y‖p �‖x|Y‖p + ‖y|Y‖p, x, y ∈ Y

is satisfied.
We recall a few basic facts of the theory of s-numbers. We refer to [44,6] for further details. In

this theory, one associates to every linear operator T : X → Y (X and Y quasi-Banach spaces) a
sequence of scalars

s1(T )�s2(T )� · · · �0.

Let W, X, Y, Z be (quasi-)Banach spaces and let Y be a p-Banach space, 0 < p�1. If the rule
s : T → {sn(T )}n∈N satisfies

(S1) ‖T ‖ = s1(T )�s2(T )� · · · �0.
(S2) s

p

m+n−1(S + T )�s
p
m(T )+ s

p
n (S) for all S, T ∈ L(X, Y ) and m, n ∈ N.

(S1) sn(ST U)�‖S‖sn(T )‖U‖ for all U ∈ L(W, X), T ∈ L(X, Y ), S ∈ L(Y, Z) and n ∈ N.
(S4) If rank T < n, then sn(T ) = 0.
(S5) sn(I : �2(n)→ �2(n)) = 1

then the sn(T ) are called s-numbers of the operator T.
Let us point out, that we shall not use (S4) and (S5) in what follows. Hence, our approach applies

also to rules s : T → {sn(T )}n∈N which satisfy only (S1)–(S3). Such rules are called pseudo-s-
numbers in [43, Chapter 12] and cover also the concept of entropy numbers with ‖T ‖�s1(T ) in
(S1).

Let

Id : Bs1
p1q1

(�)→ Bs2
p2q2

(�) (2.7)

be compact, i.e.

s1 − s2 > d

(
1

p1
− 1

p2

)
+

. (2.8)

We denote by

ext : Bs1
p1q1

(�)→ Bs1
p1q1

(Rd) (2.9)

a bounded linear extension operator. A convenient reference for this is Rychkov, cf. [52], but
see also the references given there. Here we use the Lipschitz smoothness of ��. The natural
restriction will be denoted by

re : Bs2
p2q2

(Rd)→ Bs2
p2q2

(�).

Clearly, it also represents a bounded linear operator.
Let k > max(s1, �p1 − s1, s2, �p2 − s2) be a natural number and let W be the mapping which

associates to each f ∈ B
s1
p1q1(R

d) its wavelet coefficients with respect to the Daubechies wavelets
of smoothness k, as described in Theorem 2.7. Our choice of k ensures that Theorem 2.7 may
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be applied to both, B
s1
p1q1(R

d) and B
s2
p2q2(R

d), simultaneously and that W−1 is a bounded linear
operator, which maps bs2

p2q2
isomorphically onto B

s2
p2q2(R

d).

Finally, we adapt the sequence spaces bs
pq to the function spaces on domains.

Definition 2.8. (i) Let M = {M�}∞�=0 be a sequence of non-negative integers. We say that M is
admissible, if there is some �0 ∈ N0 and two positive real constants c1, c2 such that

M� = 0 for all � < �0

and

c12�d �M� �c22�d , ���0.

(ii) If 0 < p, q �∞, s ∈ R, E = {0, 1}d \ (0, . . . , 0), M = {M�}∞�=0 is an admissible sequence
and

	 = {	k : k = 1, . . . , M0} ∪ {	e
�k : e ∈ E, � ∈ N, k ∈ M�},

we set

‖	|bs,M
pq ‖ =

⎛⎝M0∑
k=1

|	k|p
⎞⎠

1
p

+
⎛⎜⎝ ∞∑

�=1

2�(s− d
p

)q
∑
e∈E

(
M�∑
k=1

|	e
�k|p

) q
p

⎞⎟⎠
1
q

, (2.10)

again appropriately modified if p = ∞ and/or q = ∞.

Let now � be a bounded Lipschitz domain in Rd and let the number k ∈ N describing the
smoothness of the wavelets be fixed. Then we collect those wavelets, whose support intersects �:

M� =
{ {m ∈ Zd : supp �(· −m) ∩ � 
= ∅} if � = 0,

{m ∈ Zd : ∃e ∈ E : supp �e(2�−1 · −m) ∩ � 
= ∅} if ��1.

We observe that the sequence M = {M�}∞�=0 with

M� = #(M�) = number of elements of M�, � ∈ N0

is an admissible sequence in the sense of Definition 2.8.
With a slight abuse of notation, there is a natural projection operator P : bs

pq → bs,M
pq and a

natural embedding operator Q : bs,M
pq → bs

pq .
Using the weak multiplicativity property (S3) of s-numbers and the commutative diagram

B
s1
p1q1(�)

ext−−−−→ B
s1
p1q1(R

d)
W−−−−→ bs1

p1q1

P−−−−→ bs1,M
p1q1

Id

⏐⏐� ⏐⏐�id

B
s2
p2q2(�)

re←−−−− B
s2
p2q2(R

d)
W−1←−−−− bs2

p2q2

Q←−−−− bs2,M
p2q2

we conclude that

sn(Id)�sn(id), n ∈ N.
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To obtain the reverse inequality, we first set

M′
� =

{ {m ∈ Zd : supp �(· −m) ⊂ �} if � = 0,

{m ∈ Zd : ∀e ∈ E : supp �e(2�−1 · −m) ⊂ �} if ��1.
(2.11)

Again, we observe that the sequence M ′ = {M ′�}∞�=0 with

M ′� = #(M′
�) = number of elements of M′

�, � ∈ N0

is an admissible sequence in the sense of Definition 2.8.
If we use (S3) and

bs1,M
′

p1q1

Q′−−−−→ bs1
p1q1

W−1−−−−→ B
s1
p1q1(R

d)
re−−−−→ B

s1
p1q1(�)

id ′
⏐⏐� ⏐⏐�Id

bs2,M
′

p2q2

P ′←−−−− bs2
p2q2

W←−−−− B
s2
p2q2(R

d)
ext←−−−− B

s2
p2q2(�),

we get the inequality.

sn(id
′)�sn(Id), n ∈ N.

Hence

sn(id
′)�sn(Id)�sn(id), n ∈ N. (2.12)

It tells us, roughly speaking, that we may restrict ourselves to sequence spaces and all the results
translate also into the language of function spaces. Before we start with the study of sn(id) and
sn(id

′), we make another simplification. The (finite) sum over e ∈ E in (2.10) comes from the
theory of multivariate wavelet decompositions, but has no influence on the s-numbers.

If M = {M�}∞�=0 is an admissible sequence, we set

‖	|bs,M
pq ‖ =

⎛⎜⎝ ∞∑
�=0

2�(s− d
p

)q

(
M�∑
k=1

|	�k|p
) q

p

⎞⎟⎠
1
q

.

It follows that

sn(Id : Bs1
p1q1

(�)→ Bs2
p2q2

(�)) ≈ sn(id : bs,M
pq → bs,M

pq )

≈ sn(id : bs,M
pq → bs,M

pq ). (2.13)

Remark 2.9. Formulas (2.12) and (2.13) represent the main result of this section and is of a crucial
importance for our study of s-numbers of (2.7). We have proved (2.13) under the assumption that
� is a bounded domain in Rd with Lipschitz boundary. Using more sophisticated tools from
the theory of function spaces, it may be proven that (2.13) holds also for more general classes
of domains, at least under some restrictions on the parameters s1, s2, p1, p2, q1, q2. A detailed
inspection of our proof shows that (2.13) is true anytime there is a bounded linear extension
operator (2.9) and its counterpart for B

s2
p2q2(�). We refer to [62, Section 4.3.4] for a detailed

treatment of these questions.
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3. Approximation numbers

Definition 3.1. Let X, Y be two quasi-Banach spaces and let T ∈ L(X, Y ). For n ∈ N, we define
the nth approximation number by

an(T ) = inf{‖T − L‖ : L ∈ L(X, Y ), rank(L) < n}.
In the setting of Banach spaces, this definition goes back to Pietsch [41] and Tikhomirov [57].
The generalization to quasi-Banach spaces may be found in [15, Section 1.3.1]. In this section,
we characterize the approximation numbers of (2.7) with (2.8).

First, we recall some lemmas which we shall need on the sequence space level. Lemma 3.2
is taken from [22] and Lemma 3.3 in the case 1�p2 �p1 �∞ may be found in [43, Section
11.11.5]. The proof may be directly generalized to the quasi-Banach setting 0 < p2 �p1 �∞.

For 0 < p�∞, we set

p′ =

⎧⎪⎨⎪⎩
p

p − 1
if 1 < p <∞,

1 if p = ∞,

∞ if 0 < p�1.

Lemma 3.2. For 1�n�m <∞ and 1�p1 < p2 �∞, we define

�(m, n, p1, p2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
min{1, m

1
p2 n− 1

2 }
) 1

p1
− 1

p2

1
2 − 1

p2 if 2�p1 < p2 �∞,

max{m 1
p2
− 1

p1 , min{1, m
1

p2 n− 1
2 } ·

√
1− n

m
} if 1�p1 < 2�p2 �∞,

max{m 1
p2
− 1

p1 ,
√

1− n
m

1
p1
− 1

p2

1
p1
− 1

2 } if 1�p1 < p2 �2

and

�(m, n, p1, p2) :=
{

�(m, n, p1, p2) if 1�p1 < p2 �p′1,
�(m, n, p′2, p′1) if max(p1, p

′
1) < p2 �∞.

Then if 1�p1 < p2 �∞ and (p1, p2) 
= (1,∞)

an(id : �m
p1
→ �m

p2
) ≈ �(m, n, p1, p2), 1�n�m <∞.

The constants of equivalence may depend on p1 and p2 but are independent of m and n.

Lemma 3.3. If 1�n�m <∞ and 0 < p2 �p1 �∞, then

an(id : �m
p1
→ �m

p2
) = (m− n+ 1)

1
p2
− 1

p1 .

Lemma 3.4. Let 0 < p�1.

(i) Let 0 < 	 < 1. Then there is a number c	 > 0 such that

an(id : �m
p → �m∞)� c	√

n
(3.1)

holds for all natural numbers n and m with m	 < n�m.
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(ii) There is a number c > 0 such that

an(id : �2n
p → �2n∞)� c√

n
, n�1. (3.2)

Proof. Let A = (ai,j )
m
i,j=1 be an m×m matrix. Then

‖A|L(�m
1 , �m∞)‖ = ‖A|L(�m

p , �m∞)‖ = max
i,j=1,...,m

|ai,j |

for every 0 < p�1. Hence, the approximation numbers of id : �m
p → �m∞ do not depend on

0 < p�1 and it is enough, when we prove Lemma 3.4 only for p = 1.
The first part follows from a combinatorial result of Kashin, cf. [26,27] and [43, Section

11.11.11]:
Let 0 < 	 < 1 and m	 �n�m be natural numbers. Then there are m �n

2-unit vectors {fi}mi=1 ⊂
Rn, such that

|(fi, fj )|� c	√
n

if i 
= j.

We set A = (ai,j )
m
i,j=1 with ai,j = (fi, fj ). Then A is a matrix with rank A�n and ‖I −

A|L(�m
1 , �m∞)‖� c	√

n
.

The proof of the second part follows trivially from the result of Stechkin, cf. [56] and [43,
Section 11.11.8]:

an(id : �m
1 → �m

2 ) =
(

m− n+ 1

m

)1/2

and

‖id : �m∞ → �m
2 ‖ =

√
m. �

Theorem 3.5. Let −∞ < s2 < s1 <∞ and 0 < p1, p2, q1, q2 �∞ with (2.8). Let � ⊂ Rd be
a bounded Lipschitz domain. Then (2.7) is compact and for n ∈ N

an(Id) ≈ n
− s1−s2

d
+
(

1
p1
− 1

p2

)
+ if

⎧⎨⎩
either 0 < p1 �p2 �2,

or 2�p1 �p2 �∞,

or 0 < p2 �p1 �∞,

(3.3)

an(Id) ≈ n
− s1−s2

d
+ 1

p
− 1

2 if 0 < p1 < 2 < p2 <∞
and

s1 − s2

d
>

1

p
= max

(
1− 1

p2
,

1

p1

)
, (3.4)

an(Id) ≈ n

(
− s1−s2

d
+ 1

p1
− 1

p2

)
·min(p′1,p2)

2 if
s1 − s2

d
<

1

p
= max

(
1− 1

p2
,

1

p1

)
and either 1 < p1 < 2 < p2 = ∞
or 0 < p1 < 2 < p2 <∞, (3.5)

an(Id) ≈ n
− s1−s2

d
+ 1

p1
− 1

2 if 0 < p1 �1 < p2 = ∞. (3.6)
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Proof. Approximation numbers form an additive and multiplicative scale of s-numbers. This fact
may be verified directly, or the reader may consult [43, Section 11.2] in the Banach space settings
and [15, Section 1.3] for the extension to quasi-Banach spaces.

Hence (2.12) applies to approximation numbers and we may restrict ourselves to sequence
spaces.

The estimates covered by (3.3)–(3.5) are known. We refer to [15, Section 3.3.4] and [4]. The
proof given in [15] is rather complicated, but [4] uses an approach very similar to ours.

It remains to prove the only missing case (3.6). We use Lemma 3.4 to estimate the approximation
numbers of

id : bs1,M
p1q1
= �q1(2

�(s1− d
p1

)
�M�
p1

)→ �q2(2
�s2�M�∞ ) = bs2,M∞ q2

,

where M = {M�}∞�=0 is an admissible sequence. Let

id� : 2�(s1− d
p1

)
�M�
p1
→ 2�s2�M�∞ , � = 0, 1, 2, . . .

denote the identity operator between the finite dimensional building blocks of the considered
sequence spaces. With a slight abuse of notation, we get

id =
∞∑

�=0

id�, (3.7)

which, combined with the additivity of approximation numbers, leads to

a

n′(id)�

N1∑
�=0

a

n�

(id�)+
N2∑

�=N1+1

a

n�

(id�)+
∞∑

�=N2+1

‖id�‖
,

where N1 < N2 are natural numbers, n′ − 1 =∑N2
�=0(n� − 1) and 
 = min(1, q2). We set

n� =
{

M� + 1 if 0���N1,

n1+�2−��d if N1 + 1���N2,

where

0 < � < 2

(
s

d
− 1

p1

)
(3.8)

and

N1 =
[

log2 n

d

]
, N2 =

[
s
d
− 1

p
+ 1

2
s
d
− 1

p

· log2 n

d

]
�N1.

Here, [a] denotes the integer part of a real number a.
For this choice we get

n′ =
N2∑
�=0

(n� − 1)+ 1 ≈ 2�N1d +N1+�
1 2−��d ≈ n.
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A simple calculation shows that there is a number 	 > 0 such that M	
� �n� �M�. Hence

an�(id�)�

⎧⎨⎩ 0 if 0���N1,
c	√
n�

2
−�(s− d

p1
)

if N1 + 1���N2

and
N1∑
�=0

a

n�

(id�) = 0,

N2∑
�=N1+1

a

n�

(id�)�
N2∑

�=N1+1

c

	√
n


�
�cn−

1+�
2 


N2∑
�=N1+1

2
−�d
( s

d
− 1

p1
− �

2 )�n
−


(
s
d
− 1

p1
+ 1

2

)
,

∞∑
�=N2+1

‖id�‖
 �
∞∑

�=N2+1

2
−�
(s− d

p1
)�n
−


(
s
d
− 1

p1
+ 1

2

)
.

It follows, that there is a constant c > 0 such that

acn(id)�n
−
(

s
d
− 1

p1
+ 1

2

)
, n�1,

which is equivalent to

an(id)�n
−
(

s
d
− 1

p1
+ 1

2

)
, n�1. (3.9)

The proof of the reverse inequality to (3.9) follows easily from the second part of Lemma 3.4.
Let M ′ = {M ′�}∞�=0 be an admissible sequence. Then, for ���0

an(id)�an(id�)�2
−�(s− d

p1
) · 1√

n

if n =
[

M�
2

]
. This leads to

an(id)�n
−
(

s
d
− 1

p1
+ 1

2

)
, n =

[
M�

2

]
, ���0

and by means of the monotonicity of the approximation numbers the result follows. �

Remark 3.6. We have used the open case (3.6) to demonstrate the typical use of the wavelet
decomposition method and (2.12). Also (3.3)–(3.5) could be proven exactly in the same manner.
For example, the proof of (3.5) in [4] follows along this line.

Remark 3.7. Although the results were stated only for Besov spaces, with the aid of (2.4) and
(2.5) we may extend them also to Triebel-Lizorkin spaces, Sobolev and Lebesgue spaces and
C(�), L1(�) and L∞(�). We return to this point later on.

Remark 3.8. The first estimates on approximation numbers of Sobolev embeddings of function
spaces were obtained by Kolmogorov [30], who dealt with the Hilbert space case p1 = q1 = p2 =
q2 = 2. Later on, Birman and Solomyak [3] studied the embeddings of Sobolev spaces. Finally,
Kashin [29] observed the effect of “small smoothness" expressed by (3.5). In the framework of
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Besov spaces the results are contained in [15,4]. Nowadays, the proof of (3.3)–(3.5) could be done
very similar to the proof of (3.6), only using Lemmas 3.2 and 3.3 instead of Lemma 3.4.

4. Kolmogorov and Gelfand numbers

In this chapter we deal with Kolmogorov and Gelfand numbers. To begin with we recall their
definition and describe their decay in connection with Sobolev embeddings of Besov spaces. We
use the symbol A ⊂⊂ B if A is a closed subspace of a topological vector space B.

Definition 4.1. Let X, Y be two quasi-Banach spaces and let T ∈ L(X, Y ).

(i) For n ∈ N, we define the nth Kolmogorov number by

dn(T ) = inf{‖QY
NT ‖ : N ⊂⊂ Y, dim(N) < n}.

Here, QY
N stands for the natural surjection of Y onto the quotient space Y/N .

(ii) For n ∈ N, we define the nth Gelfand number by

cn(T ) = inf{‖T JX
M‖ : M ⊂⊂ X, codim(M) < n}.

Here, JX
M stands for the natural injection of M into X.

Clearly, the notion dimension of a subspace is purely algebraic and may be freely used also in
the setting of quasi-Banach spaces. We refer to [50, Section 1.40] for the definition of a quotient
subspace in the framework of general topological vector spaces (including quasi-Banach spaces
as a special case). Finally, the codimension of a subspace may be defined as the dimension of the
quotient space.

Both, Gelfand and Kolmogorov numbers, are additive and multiplicative s-scales. This follows
directly from Definition 4.1, but the reader may wish to consult [44, Sections 2.4, 2.5] for the
proof in the Banach space case. The generalization to p-Banach spaces is obvious and causes no
complications. Also the following relations are trivial:

cn(T )�an(T ), dn(T )�an(T ), n ∈ N. (4.1)

The Gelfand and Kolmogorov numbers are dual to each other in the following sense, cf. [44,
Section 11.7.6-7]: If X and Y are Banach spaces, then

cn(T
∗) = dn(T ) (4.2)

for all compact operators T ∈ L(X, Y ) and

dn(T
∗) = cn(T ) (4.3)

for all T ∈ L(X, Y ).
The following result is due to Gluskin, cf. [21,22] with [56,24,26,27] as forerunners. It gives a

very precise information on the behaviour of dn(id : �m
p1
→ �m

p2
) in the Banach space setting.
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Lemma 4.2. For 1�n�m <∞ and 1�p1, p2 �∞, we define

�(m, n, p1, p2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m− n+ 1)
1

p2
− 1

p1 if 1�p2 �p1 �∞,

(
min{1, m

1
p2 n− 1

2 }
) 1

p1
− 1

p2

1
2 − 1

p2 if 2�p1 < p2 �∞,

max{m 1
p2
− 1

p1 ,
√

1− n
m

1
p1
− 1

p2

1
p1
− 1

2 } if 1�p1 < p2 �2,

max{m 1
p2
− 1

p1 , if 1�p1 < 2 < p2 �∞.

min{1, m
1

p2 n− 1
2 } ·

√
1− n

m
}

Then

dn(id : �m
p1
→ �m

p2
) ≈ �(m, n, p1, p2), 1�n�m <∞,

if p2 <∞. The constants of equivalence may depend on p1 and p2 but are independent of m and
n.

Furthermore, there are two constants cp1 and Cp1 such that

cp1�(m, n, p1,∞)�dn(id : �m
p1
→ �m∞)�Cp1�(m, n, p1,∞)

(
log

(em

n

))3/2

for 1�p1 �∞.

Again we shall add some estimates which apply to quasi-Banach spaces.

Lemma 4.3. If 0 < p2 �p1 �∞, then there is a constant c > 0 such that

d[cn]+1(�
2n
p1

, �2n
p2

)�n
1

p2
− 1

p1 , n ∈ N,

where [cn] denotes the upper integer part of cn.

Proof. If p2 �1, then the result is a special case of [43, Section 11.11.4], which states that

dn(�
m
p1

, �m
p2

) = (m− n+ 1)
1

p2
− 1

p1 , 1�n�m.

Let us mention that (in contrast to Lemmas 3.3 and 4.8) the estimate

dn(�
m
p1

, �m
p2

) = (m− n+ 1)
1

p2
− 1

p1 , 1�n�m�∞
is not true for Kolmogorov numbers if 0 < p2 �p1 �∞ and p2 < 1. Simple counterexamples
can be constructed directly.

If p2 < 1 the proof is based on an inequality between entropy numbers and Kolmogorov
numbers. First, we recall the basic facts about entropy numbers. Let T : X → Y be a bounded
linear operator between two quasi-Banach spaces X and Y and let UX and UY be the unit ball of X
and Y, respectively. If k ∈ N, we define the kth entropy number ek(T ) as the infimum of all � > 0
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such that

T (UX) ⊂
2k−1⋃
j=1

(yj + �UY ) for some y1, . . . , y
2k−1 ∈ Y.

We refer to [43,15] for detailed discussions of this concept, its history and further references.
The following Lemma may be found in [1], cf. also [5] and [47, Section 5].

Lemma 4.4. If � > 0 and 0 < p < 1, then there is a constant c�,p > 0 such that for all
p-Banach spaces X and Y, all linear mappings T : X→ Y and all n ∈ N we have

sup
k �n

k�ek(T )�c�,p sup
k �n

k�dk(T ).

We apply this lemma to T = id : �2n
p1
→ �2n

p2
and combine it with the estimate (cf. [53])

ek(T )�2−
k

4n (2n)
1

p2
− 1

p1 , k, n ∈ N.

This leads to

n�n
1

p2
− 1

p1 � sup
k �n

k�dk(T ).

Hence, for every n ∈ N there is a kn �n such that

n�n
1

p2
− 1

p1 �k�
ndkn(T )�k�

n(2n)
1

p2
− 1

p1 . (4.4)

We conclude that there is a constant 1�c > 0 such that n�kn �cn for all n ∈ N. Finally, we
insert this estimate into (4.4) and the result follows. �

It is an obvious fact that the convex hull of the unit ball of �m
p , 0 < p < 1, is the unit ball of

�m
1 . This can be combined with the following simple observation, cf. [35, Section 13.1].

Lemma 4.5. Let X be a Banach space and let K ⊂ X. We define by

dn(K, X) = inf

{
sup
x∈K

inf
y∈N ‖x − y‖ : N ⊂⊂ Y, dim(N) < n

}
the nth Kolmogorov number of the set K.

Then

dn(K, X) = dn(conv K, X),

where conv K is the convex hull of K.

Theorem 4.6. Let −∞ < s2 < s1 <∞ and 0 < p1, p2, q1, q2 �∞ with (2.8). Let � ⊂ Rd be
a bounded Lipschitz domain. Then (2.7) is compact and for n ∈ N

dn(Id) ≈ n
− s1−s2

d
+
(

1
p1
− 1

p2

)
+ if

{
either 0 < p1 �p2 �2,

or 0 < p2 �p1 �∞,
(4.5)
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dn(Id) ≈ n−
s1−s2

d if 2 < p1 �p2 �∞

and
s1 − s2

d
>

1

2

1
p1
− 1

p2

1
2 − 1

p2

, (4.6)

dn(Id) ≈ n
p2
2

(
− s1−s2

d
+ 1

p1
− 1

p2

)
if 2 < p1 �p2 �∞

and
s1 − s2

d
<

1

2

1
p1
− 1

p2

1
2 − 1

p2

, (4.7)

dn(Id) ≈ n

(
− s1−s2

d
+ 1

p1
− 1

2

)
if 0 < p1 < 2 < p2 �∞
and

s1 − s2

d
>

1

p1
, (4.8)

dn(Id) ≈ n
p2
2

(
− s1−s2

d
+ 1

p1
− 1

p2

)
if 0 < p1 < 2 < p2 <∞
and

1

p1
− 1

p2
<

s1 − s2

d
<

1

p1
. (4.9)

Proof. Lubitz [36] used the results of [21] and was able to prove (4.5)–(4.9) if 1�p1, p2 �∞ up
to a certain logarithmic gap. This gap originates from using only the weaker results of [21] instead
of the sharp inequalities in [22]. Using [22] and the method of Lubitz (which is very similar to
the discretization method presented above), the proof of (4.5)–(4.9) in the Banach space setting
follows immediately.

Hence, we concentrate on the proof of

(♣) (4.5) if 0 < p2 �p1 �∞ and 0 < p2 < 1,
(♥) (4.5) if 0 < p1 < p2 �2 and 0 < p1 < 1,

(♠) (4.8) if 0 < p1 < 1, 2 < p2 �∞ and
s1 − s2

d
>

1

p1
,

(♦) (4.8) if 0 < p1 < 1, 2 < p2 <∞ and
1

p1
− 1

p2
<

s1 − s2

d
<

1

p1
.

Let us mention that all the estimates from above follow from the estimates given in Theorem 3.5
and (4.1). We shall give the proof of the estimates from below in following three steps.

Step 1: Proof of (♣).
The proof of (4.5) can be finished in the same manner as in the proof of Theorem 3.5. Namely,

if M ′ = {M ′�}∞�=0 is an admissible sequence, we get for ���0

dn(id)�dn(id�)�2
−�(s1−s2− d

p1
+ d

p2
) ·M

1
p2
− 1

p1
�

for n =
[ c

2
·M ′�

]
, where c is the constant from Lemma 4.3. This leads to

dn(id)�n−
s1−s2

d , n =
[ c

2
·M ′�

]
, ���0.

Again the monotonicity of the Kolmogorov numbers completes the proof.
Step 2: Proof of (♠) and (♦).
It follows from Lemma 4.5, that if 0 < p1 < 1 and 2 < p2 �∞

dn(�
m
p1

, �m
p2

) = dn(�
m
1 , �m

p2
), 1�n�m <∞. (4.10)
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The proof of (♠) follows from (4.10), (4.2), Lemma (4.2) and the choice n =
[
M ′�
2

]
.

The proof of (♦) follows in the same way, but with n =
[(

M ′�
) 2

p2

]
.

Step 3: Proof of (♥).
We generalize the idea of Lemma 4.5 to p-Banach spaces, namely we show that for 0 < p1 <

p2 �2

dn(�
m
p1

, �m
p2

) = dn(�
m
min(1,p2)

, �m
p2

), 1�n�m <∞. (4.11)

If p2 �1, this follows immediately from Lemma 4.5. If p2 �1, we show that

dn(�
m
p1

, �m
p2

)�dn(Em, �m
p2

)�dn(�
m
p2

, �m
p2

). (4.12)

Here, Em = {ei}mi=1 ⊂ Rm and ei = (0, . . . , 0, 1, 0, . . . , 0) are the canonical unit vectors having
all but one components 0 and the ith component 1.

Of course, (4.12) implies one half of (4.11), the second one being obvious. From (4.12), only
the second inequality needs a proof. Let N ⊂⊂ �m

p2
= Y be such that

sup
i=1,...,n

inf
y∈N ‖ei − y‖p2 �(1+ �)dn(Em, �m

p2
)

with dim N < n. Hence, to every ei ∈ Em there is an fi ∈ N such that

‖ei − fi‖Y �(1+ �)2dn(Em, �m
p2

).

To every x ∈ �m
p2

, x =
m∑

i=1
xiei with

m∑
i=1

|xi |p2 �1 we associate x̃(x) =
m∑

i=1

xifi ∈ N . The

estimate

dn(id: �m
p2
→ �m

p2
)p2 � sup

‖x‖p2 �1
inf
y∈N ‖x − y‖p2

p2

� sup
‖x‖p2 �1

‖x − x̃(x)‖p2
p2 = sup

‖x‖p2 �1

∥∥∥∥∥
m∑

i=1

xi(ei − fi)

∥∥∥∥∥
p2

p2

� sup
‖x‖p2 �1

m∑
i=1

‖xi(ei − fi)‖p2
p2 = sup

‖x‖p2 �1

m∑
i=1

|xi |p2‖ei − fi‖p2
p2

� sup
‖x‖p2 �1

m∑
i=1

|xi |p2(1+ �)2p2dn(Em, �m
p2

)p2

� (1+ �)2p2dn(Em, �m
p2

)p2

finishes the proof of (4.12).
The proof of (♥) follows in the same way as in the first and the second step. �

Now, we turn our attention to Gelfand numbers. First, we collect some information about
cn(id: �m

p1
→ �m

p2
), cf. [22], (4.2) and (4.3).
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Lemma 4.7. For 1�n�m <∞ and 1�p1, p2 �∞, we define

�(m, n, p1, p2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m− n+ 1)
1

p2
− 1

p1 if 1�p2 �p1 �∞,

(
min{1, m

1− 1
p1 n− 1

2 }
) 1

p1
− 1

p2

1
p1
− 1

2 if 1 < p1 < p2 �2,

max{m 1
p2
− 1

p1 ,
√

1− n
m

1
p1
− 1

p2

1
2 − 1

p2 } if 2�p1 < p2 �∞,

max{m 1
p2
− 1

p1 ,

min{1, m
1− 1

p1 n− 1
2 } ×

√
1− n

m
} if 1 < p1 �2 < p2 �∞.

Then, if p1 > 1,

cn(id: �m
p1
→ �m

p2
) ≈ �(m, n, p1, p2), 1�n�m <∞.

Furthermore, there are two constants cp2 and Cp2 such that

cp2�(m, n, p2)�cn(id: �m
1 → �m

p2
)�Cp2�(m, n, p2)

(
log

(em

n

))3/2
,

where

�(m, n, p2) :=

⎧⎪⎨⎪⎩
n

1− 1
p2 if 1 < p2 �2,

min

{
1, max

{
m

1− 1
p2 , m− 1

2

√
m
n
− 1

}}
if 2�p2 �∞.

The proof of this lemma follows by (4.2) or (4.3) and Lemma 4.2.

Lemma 4.8. If 0 < p2 �p1 �∞, then

cn(�
m
p1

, �m
p2

) = (m− n+ 1)
1

p2
− 1

p1 .

The proof of this lemma follows literally [44, Section 11.11.4].

Lemma 4.9. Let 0 < p < 1. Then there is a real constant c > 0 such that

cn(id: �m
p → �m

2 )�c

[
n

log
(
1+ m

n

)] 1
2− 1

p

, 1�n�m <∞.

Proof. This lemma slightly generalizes a result of Kashin [28], which was later improved by
Gluskin [22] and Garnaev and Gluskin [20]. We closely follow the presentation given in [35,
Chapter 14].
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Let y = (y1, . . . , yn) be a multivector, with y1, . . . , yn ∈ Sm−1, the unit sphere of Rm. We set

Fm,n(x, y) = |(x, y1)| + · · · + |(x, yn)|
n

, x ∈ Rm.

We equip the space

�m,n = Sm−1 × · · · × Sm−1︸ ︷︷ ︸
n times

with the natural rotation invariant probability measure P. Then (cf. [35, Lemma 4.1, Chapter 14])
we have the following.

Lemma 4.10. For any x ∈ Sm−1 and m, n�2

P

{
y ∈ �m,n:

1

8
√

m
�F(x, y)� 3√

m

}
>

{
1− e−n, n > 2,
1

2
, n = 2.

Let l and m be natural numbers with 1� l�m. Let bm
p denote the unit ball of �m

p . We denote by

b
m,l
p the subset of all vectors from bm

p whose coordinates are of the form k
l
, k ∈ Z. Then there is

a real constant c̃ > 0 such that for any natural number n�m with

l =
⎡⎢⎣ 1

2c̃

⎛⎜⎝ n

log
(

1+ m

n

)
⎞⎟⎠

1/p⎤⎥⎦ �1

there exists a multivector y = (y1, . . . , yn) such that for all x ∈ b
m,l
p

1

8
√

m
‖x‖2 �F(x, y)� 3√

m
‖x‖2. (4.13)

To prove it, we need to estimate the number of the elements of b
m,l
p from above. It could be done

directly, but we prefer to use known results. Observe that the mutual �m∞ distance of the points in
b

m,l
p is at least 1

l
. Hence, if M

m,l
p = #b

m,l
p (i.e. the number of elements of b

m,l
p ) is greater than 2n

for some natural number n, then

en(id: �m
p → �m∞)� 1

2l
. (4.14)

But, according to [53] and [15, Section 3.2.2], there is a constant c̃ such that

en(id: �m
p → �m∞)� c̃

⎛⎜⎝ log
(

1+ m

n

)
n

⎞⎟⎠
1/p

, 1�n�m. (4.15)

Note that according to [65], this estimate is known to be even an equivalence if log m�n�m.
From (4.14) and (4.15), it follows that if

1

2l
> c̃

⎛⎜⎝ log
(

1+ m

n

)
n

⎞⎟⎠
1/p

,
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then M
m,l
p �2n < en. This, combined with Lemma 4.10 ensures the existence of the

multivector y.
Let b

m,l
p be as above and let bm∞ be a unit ball of �m∞. Let V

m,l
p = b

m,l
p ∩ ( 1

l
bm∞) be the set of

all vectors in Rm with the �m
p -quasi-norm at most one and with components in {0,± 1

l
}. Then we

claim that

bm
p ∩

(
1

l
bm∞

)
= convp(V m,l

p ) ⊂ conv(V m,l
p ), (4.16)

where convp(V
m,l
p ) is the so-called p-convex hull of V

m,l
p . We refer to [18,19,25] for the notion of

p-convexity, p-extreme points and the quasi-convex variant of the Krein–Milman theorem, which
gives the identity in (4.16). The inclusion is a simple consequence of the fact that p < 1.

To prove Lemma 4.9, we need to find N ⊂⊂ Rm of codimension at most n such that for each
point x ∈ N ∩ bm

p we have ‖x‖2 �cl
p
2−1.

Let y be one multivector with (4.13). We set

N = {
x ∈ Rm: F(x, y) = 0

}
.

Let x ∈ N∩bm
p and let x′ ∈ b

m,l
p be the closest point to x, hence ‖x−x′‖∞� 1

l
. We set x′′ = x−x′.

Then

‖x′′‖2 �‖x′′‖
p
2
p · ‖x′′‖1−

p
2∞ � l

p
2−1. (4.17)

It remains to estimate ‖x′‖2. This will be done by estimating the value of F(x′, y). The estimate

F(x′, y)� 1

8
√

m
‖x′‖2 (4.18)

follows from (4.13) and the fact that x′ ∈ b
m,l
p . On the other hand, because of x ∈ N and F is

subadditive,

F(x′, y)�F(x, y)+ F(x′′, y) = F(x′′, y). (4.19)

For all x̃ ∈ V
m,l
p ⊂ b

m,l
p , we have

F(x̃, y)� 3√
m
‖x̃‖2 �3m−

1
2 l

p
2−1 (4.20)

and by subadditivity of F and (4.16), the same holds also for x′′ ∈ bm
p ∩

(
1
l
bm∞

)
.

We insert (4.20) into (4.19) and (4.18) and get ‖x′‖2 �24l
p
2−1, and together with (4.17),

‖x‖�25l
p
2−1. �

Following lemma follows from Lemma 4.9 by interpolation.

Lemma 4.11. Let 0 < p1 < 1 and p1 < p2 �∞. Then there is a real constant c > 0 such that

cn(id: �m
p1
→ �m

p2
)�c

⎡⎢⎣ n

log
(

1+ m

n

)
⎤⎥⎦

1
min(p2,2)

− 1
p1

, 1�n�m <∞.
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Theorem 4.12. Let −∞ < s2 < s1 < ∞ and 0 < p1, p2, q1, q2 �∞ with (2.8). Let � ⊂ Rd

be a bounded Lipschitz domain. Then (2.7) is compact and for n ∈ N

cn(Id) ≈ n
− s1−s2

d
+
(

1
p1
− 1

p2

)
+ if

{
either 2�p1 < p2 �∞,

or 0 < p2 �p1 �∞,
(4.21)

cn(Id) ≈ n−
s1−s2

d if 0 < p1 < p2 �2

and
s1 − s2

d
>

1

2

1
p1
− 1

p2

1
p1
− 1

2

, (4.22)

cn(Id) ≈ n

p′1
2

(
− s1−s2

d
+ 1

p1
− 1

p2

)
if 1 < p1 < p2 �2

and
s1 − s2

d
<

1

2

1
p1
− 1

p2

1
p1
− 1

2

, (4.23)

cn(Id) ≈ n

(
− s1−s2

d
+ 1

2− 1
p2

)
if 0 < p1 < 2 < p2 �∞
and

s1 − s2

d
> 1− 1

p2
, (4.24)

cn(Id) ≈ n

p′1
2

(
− s1−s2

d
+ 1

p1
− 1

p2

)
if 1 < p1 < 2 < p2 �∞
and

1

p1
− 1

p2
<

s1 − s2

d
< 1− 1

p2
. (4.25)

Proof. As Gelfand numbers are multiplicative and additive s-numbers, we may invoke (2.12)
and restrict again to sequence spaces. Then, the method of the proof of Theorem 3.5 applies. The
estimates on the sequence space side are given by Lemma 4.2 and (4.2). This approach finishes
the proof in case 1�p1, p2 �∞.

In the cases, when p1 < 1 and/or p2 < 1, (4.2) and (4.3) fail and Lemma 4.2 does not provide
suitable estimates for cn(id: �m

p1
→ �m

p2
). Hence, we are forced to treat these cases separately.

(♣) (4.21) if 0 < p2 �p1 �∞ and 0 < p2 < 1,

(♥) (4.22) if 0 < p1 < p2 �2 and 0 < p1 < 1,

(♠) (4.24) if 0 < p1 < 1 and 2 < p2 �∞.

Step 1: Proof of (♣).
The proof of the estimate from below in (♣) follows exactly as in the proof of Theorem 4.6

with Lemma 4.3 replaced by Lemma 4.8.
The estimate from above in (♣) is provided by the corresponding statement about approximation

numbers, cf. Theorem 3.5 and (4.1).
Step 2: Proof of the estimates from below in (♥) and (♠).
If 1�p2 �∞, we use the estimate

cn(id: �m
1 → �m

p2
)�‖id: �m

1 → �m
p1
‖ · cn(id: �m

p1
→ �m

p2
) (4.26)

and if p2 < 1, we use the estimate

cn(id: �m
p2
→ �m

p2
)�‖id: �m

p2
→ �m

p1
‖ · cn(id: �m

p1
→ �m

p2
). (4.27)
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This leads to

cn(id: �2n
p1
→ �2n

p2
)�

{
n

1
2− 1

p1 if 2�p2 �∞,

n
1

p2
− 1

p1 if 0 < p2 �2
(4.28)

and the proof of the estimates from below included in (♥) and (♠) may be again finished as in
the proof of Theorem 4.6.

Step 3: Proof of the estimates from above in (♥) and (♠).
Again, the knowledge of the behaviour of cn(id: �m

p1
→ �m

p2
) is of a crucial importance. Lemma

4.11 contains already the necessary information and the proof can be finished using the standard
discretization method. �

5. Conclusion

In Theorems 3.5, 4.6 and 4.12 we gave an overview of the behaviour of approximation, Kol-
mogorov and Gelfand numbers of

Id: Bs1
p1q1

(�)→ Bs2
p2q2

(�),

where � is a bounded domain in Rd with smooth (i.e. Lipschitz) boundary and the parameters
satisfy

s1 − s2 > d

(
1

p1
− 1

p2

)
+

.

The reader has surely noticed that all the obtained results about the asymptotic decay of an(Id),
dn(Id) and cn(Id) do not depend on the fine parameters 0 < q1, q2 �∞. This is of course no
coincidence. The reason lies in the roots of the method we have used, namely in (3.7).

Nevertheless, the presented bounds from above and from below coincide in all “non-limiting”
cases. Unfortunately, this method has also its natural bounds. For example, if 0 < p1 < 2 <

p2 �∞ and s1 − s2 = d max(1 − 1
p2

, 1
p1

), then Theorem 3.5 fails to characterize the decay of

an(Id). One observes that in this case both (3.4) and (3.5) meet at n− 1
2 , but (in general) this is not

the exact speed of the decay of an(Id). It was shown by Kulanin [33], that additional logarithmic
factors come into play. Their exact order seems to be unknown, but we believe that it depends
on q1 and q2. So, for principle reasons, the decomposition method cannot be extended to this
“limiting” case.

Using the elementary embeddings (2.4), we conclude that all the results hold for Triebel-
Lizorkin spaces, Lebesgue spaces, Sobolev spaces, Bessel potential spaces and Hölder–Zygmund
spaces as well.

For example, Theorem 3.5 may be stated in the framework of Bessel potential spaces and their
embeddings into C(�) and L∞(�).

Theorem 5.1. Let 1�p�∞, s > d
p

and let � ⊂ Rd be a bounded Lipschitz domain. Then the
embeddings

Id1: Hs
p(�)→ C(�), (5.1)

Id2: Hs
p(�)→ L∞(�) (5.2)
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are compact and

an(Id1) ≈ an(Id2) ≈ n
− s

d
+ 1

p if 2�p�∞,

an(Id1) ≈ an(Id2) ≈ n
− s

d
+ 1

p̃
− 1

2 if 0 < p < 2 and
s

d
>

1

p̃
= max

(
1,

1

p

)
,

an(Id1) ≈ an(Id2) ≈ n

(
− s

d
+ 1

p

)
· p′2 if 1 < p < 2 and

1

p
<

s

d
< 1.
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Note added in proof

Recently, it was brought to our attention, that Gelfand numbers play an interesting role in
Compressed Sensing. For example, our Lemma 4.9 covers the contents of Theorem 1 in [66].
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Abstract. We consider the Triebel–Lizorkin spaces F
s(·)
p(·),q(·)(R

n) of variable smoothness and
integrability as introduced recently by Diening, Hästö and Roudenko in [9]. Under certain regularity
conditions on the function parameters involved we show that

F
s0(·)
p0(·),q(·)(R

n) ↪→ F
s1(·)
p1(·),q(·)(R

n)

if
s0(x) ≥ s1(x) and s0(x)− n

p0(x)
= s1(x)− n

p1(x)
for all x ∈ Rn

with embeddings of Sobolev and Bessel potential spaces included as special cases.
If inf

x∈Rn
(s0(x)− s1(x)) > 0 we recover also the analogue of the Jawerth embedding

F
s0(·)
p0(·),q0(·)(R

n) ↪→ F
s1(·)
p1(·),q1(·)(R

n)

for any q0, q1.
The proofs are based on the decomposition techniques of [9] and work exclusively with the

associated sequence spaces f
s(·)
p(·),q(·).

1. Introduction

The interplay between smoothness and integrability constitutes one of the corner
stones of the theory of function spaces. It can be traced back as far as to Hardy and
Littlewood [17, 18], but the decisive breakthrough was achieved by Sobolev [33], who
proved the famous embedding

(1.1) Wm
p (Ω) ↪→ Lq(Ω),

where Ω ⊂ Rn is a bounded domain with Lipschitz boundary, Lq(Ω) stands for the
usual Lebesgue space and Wm

p (Ω) denotes the Sobolev space of functions with all
distributive derivatives of order smaller or equal to m bounded in the Lp(Ω) norm.
The crucial relation between the involved parameters m ∈ N, 1 < p < n/m and
1 < q < ∞ is

(1.2)
1

q
=

1

p
− m

n
.

During the last seventy years, many scales of spaces of smooth functions were defined
using various techniques (e.g. derivatives, differences, Fourier coefficients or Fourier
transform) with the corresponding analogues of (1.1) and (1.2) playing usually an
important role in most of the applications. Actually, it seems that any new scale

2000 Mathematics Subject Classification: Primary 46E35, 46E30.
Key words: Triebel–Lizorkin spaces, variable smoothness, variable integrability, Jawerth em-

bedding, Sobolev embedding.
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of spaces of smooth functions needs to exhibit some kind of interaction between
smoothness and integrability to be accepted by the mathematical audience.

In recent years there has been a growing interest in function spaces describing
local regularity properties of functions. The first spaces of this type are the spaces of
variable integrability, which were introduced by Orlicz [27] already in 1931 and stud-
ied in detail by Kováčik and Rákosník [24] in 1991 together with the corresponding
Sobolev spaces of variable integrability. During 1990’s these spaces found appli-
cations in the study of variational integrals with non-standard growth, but it was
probably the work of R užička [29, 30, 31] on electrorheological fluids what promoted
an enormous interest in these spaces. Since then, more than one hundred papers on
this topic appeared. We refer to [8] for a brief overview and an extensive collection
of references.

Another way how to describe the local properties of a function was outlined
already by Peetre in [28, p. 266] in Chapter 12 named “Some strange new spaces”
and resulted in the concept of 2-microlocal spaces, cf. [5] and [20]. Along a different
line of study, Leopold [25] introduced spaces of Besov-type with variable smoothness,
but constant integrability. This approach was further developed by Besov [3, 4].

The Sobolev embedding for the spaces with variable integrability was addressed
already by Kováčik and Rákosník [24] and later on by R užička [31]. But their results
failed to cover the optimal exponent according to (1.1). Edmunds and Rákosník
[10, 11] proved the optimal Sobolev embedding theorem under Lipschitz and Hölder
continuity of the exponents, cf. also [13]. Finally, Diening [7] and Samko [32] showed,
that log-Hölder continuity is sufficient.

The embeddings of Besov and Triebel–Lizorkin spaces of variable smoothness
were obtained by Besov [4] in a fairly general form. It seems that Leopold [26]
was the only one up to now who tried to connect the function spaces with variable
smoothness with spaces of variable integrability. Unfortunately, he also failed to
recover the optimal exponent.

The last step (up to now) was done by Diening, Hästö and Roudenko in [9]. These
authors combined the concept of spaces with variable integrability of Orlicz, Kováčik
and Rákosník with the concept of variable smoothness of Leopold and Besov (which
is in some sense very similar to the ideas of Peetre, Bony and Jaffard) and proposed
the function spaces of Triebel–Lizorkin type of variable smoothness and integrability,
cf. Definition 2.5. They proved (under some restrictions on the function parameters
involved), that these spaces include the Lebesgue and Sobolev spaces of variable
integrability and the spaces of variable smoothness as special cases. They proved
also a certain version of the atomic decomposition theorem, which is a well known
tool in the theory of function spaces of Besov and Triebel–Lizorkin type. Finally,
they proved an analogue of the usual trace theorem, which exhibits the interplay
between smoothness and integrability. The reader may consult also [12], [19] and
references given there for other versions of the trace embedding theorem for Sobolev
spaces with varying integrability.

Although mentioned on several places in [9] (and even in the abstract), the au-
thors have not presented any version of Sobolev embedding, which would not only
result in a generalization of (1.1) with (1.2) holding pointwise, but would (in the sense
described above) help to justify the existence of this scale of function spaces—at least
until this promising line of research finds any applications.
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Our aim is to fill this gap. In the frame of Triebel–Lizorkin spaces with constant
parameters, the following analogue of Sobolev embedding is true.

Theorem 1.1. (Jawerth, [21]) Let

(1.3) −∞ < s1 < s0 < ∞, 0 < p0 < p1 < ∞, 0 < q ≤ ∞
with

(1.4) s0 − n

p0

= s1 − n

p1

.

Then

(1.5) F s0
p0,∞(Rn) ↪→ F s1

p1,q(R
n).

The remarkable effect, which was first observed by Jawerth and which is in some
sense unique to the Triebel–Lizorkin spaces, is the improvement in the third fine
parameter q > 0, which may be chosen arbitrarily small. Of course, (1.5) holds only
for q = ∞ if s0 = s1 (or, equivalently, p0 = p1). If the smoothness and integrability
parameters s and p become functions of x ∈ Rn, then it seems to be appropriate to
assume that (1.4) holds pointwise, i.e.,

(1.6) s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn

and if the improvement in the fine parameter is to be achieved, that also

(1.7) inf
x∈Rn

(s0(x)− s1(x)) = n inf
x∈Rn

( 1

p0(x)
− 1

p1(x)

)
> 0.

We prove that these “natural” assumptions (combined with appropriate regularity
conditions) are really sufficient. We show, that if s1(x) ≤ s0(x) and p0(x) ≤ p1(x)
with (1.6) and 0 < q(x) ≤ ∞ for all x ∈ Rn, then

(1.8) F
s0(·)
p0(·),q(·)(R

n) ↪→ F
s1(·)
p1(·),q(·)(R

n).

If also (1.7) is satisfied, then even

F
s0(·)
p0(·),∞(Rn) ↪→ F

s1(·)
p1(·),q(·)(R

n)

holds.

2. Preliminaries

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing, in-
finitely differentiable functions on Rn and let S ′(Rn) be its dual—the space of all
tempered distributions. For f ∈ S ′(Rn) we denote by f̂ = Ff its Fourier transform
and by f∨ or F−1f its inverse Fourier transform. We give a Fourier-analytic defi-
nition of Triebel–Lizorkin spaces, which relies on the so-called dyadic resolution of
unity. Let ϕ ∈ S(Rn) with

(2.1) ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 3

2
.

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx)− ϕ(2−j+1x) for j ∈ N and x ∈ Rn. This leads
to the identity

∞∑
j=0

ϕj(x) = 1, x ∈ Rn.
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Definition 2.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞. Then F s
pq(R

n) is the
collection of all f ∈ S ′(Rn) such that

(2.2) ||f |F s
pq(R

n)|| =
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(R
n)

∣∣∣∣
∣∣∣∣ < ∞

(with the usual modification for q = ∞).

Remark 2.2. (i) These spaces have a long history. In this context we recommend
[28, 34, 35, 37] as standard references. We point out that the spaces F s

pq(R
n) are

independent of the choice of ϕ in the sense of equivalent (quasi-)norms. Special cases
of this scale include Lebesgue spaces, Sobolev spaces and inhomogeneous Hardy
spaces.

(ii) Interchanging the order of Lp and `q norm in (2.2) would lead to the Fourier-
analytic definition of Besov spaces. Unfortunately, they seem to be less convenient
for describing local regularity properties of distributions, because they lack the so-
called localization principle, cf. [35, Theorem 2.4.7]. Hence (also in correspondence
with [9]) we study only the F -scale.

Next, we introduce the Lebesgue spaces of variable integrability.

Definition 2.3. Let p : Rn → (0,∞) be a measurable function. Then the
space Lp(·)(Rn) consists of all measurable functions f : Rn → [−∞,∞] such that
||f |Lp(·)(Rn)|| < ∞, where

||f |Lp(·)(R
n)|| = inf{λ > 0 :

∫

Rn

( |f(x)|
λ

)p(x)

dx ≤ 1}

is the Minkowski functional of the absolutely convex set {f :
∫
Rn |f(x)|p(x) dx ≤ 1}.

Remark 2.4. (i) One could also consider (and it was done so already by Kováčik
and Rákosník in [24]) that p(x) = ∞ on a set of a positive measure. But Definition 2.3
is already sufficient for our purpose, cf. also Remark 2.6.

(ii) If p(x) ≥ 1 for all x ∈ Rn, then Lp(·)(Rn) are Banach spaces. To ensure, that
Lp(·)(Rn) are at least quasi-Banach spaces, we assume that

p− := inf
x∈Rn

p(x) > 0.

The generalization of Definition 2.1 to the setting of variable smoothness and
integrability as it was given by [9] is surprisingly simple.

Definition 2.5. Let −∞ < s(x) < +∞, 0 < p(x) < ∞, 0 < q(x) ≤ ∞. Then
F

s(·)
p(·),q(·)(R

n) is the collection of all f ∈ S ′(Rn) such that

(2.3) ||f |F s(·)
p(·),q(·)(R

n)|| =
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

2js(·)q(·)|(ϕj f̂)∨(·)|q(·)
)1/q(·)

|Lp(·)(R
n)

∣∣∣∣
∣∣∣∣ < ∞

(with the usual modification for q(x) = ∞).

Remark 2.6. This definition introduces the Triebel–Lizorkin spaces of variable
smoothness, integrability and summability under almost no conditions on s(·), p(·)
and q(·). Unfortunately, these spaces may depend on the choice of the function ϕ
as described in (2.1). This is the case already when s and q < ∞ are constant and
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p = ∞. We refer to [34, Chapter 2.3.4] for a detailed discussion of related aspects.
So, a first natural restriction seems to be the condition

p+ = sup
x∈Rn

p(x) < ∞.

Together with Remark 2.4(ii) this leads to

(2.4) 0 < p− := inf
z∈Rn

p(z) ≤ p(x) ≤ sup
z∈Rn

p(z) =: p+ < ∞, x ∈ Rn.

Next we present the regularity assumptions of [9].

Definition 2.7. Let g be a continuous function on Rn.
(i) We say, that g is 1-locally log-Hölder continuous, abbreviated g ∈ C log

1−loc(R
n),

if there exists c > 0 such that

|g(x)− g(y)| ≤ c

log(e + 1/||x− y||∞)
for all x, y ∈ Rn with ||x− y||∞ ≤ 1.

Here, ||z||∞ = max{|z1|, . . . , |zn|} denotes the maximum norm of z ∈ Rn.

(ii) We say, that g is locally log-Hölder continuous, abbreviated g ∈ C log
loc (R

n), if
there exists c > 0 such that

|g(x)− g(y)| ≤ c

log(e + 1/|x− y|) , x, y ∈ Rn.

(iii) We say, that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn),
if it is locally log-Hölder continuous and there exists c > 0 and g∞ ∈ R such that

|g(x)− g∞| ≤ c

log(e + |x|) , x ∈ Rn.

Remark 2.8. (i) The conditions (ii) and (iii) are overtaken literally from [9] and
we shall need them only for the transference of our results from sequence spaces to
function spaces. It is the less restrictive condition (i), which we shall involve in our
proofs.

(ii) The condition (i) is very similar to the original condition of Diening used in
[6] to show the boundedness of the maximal operator.

We shall use the property (i) in the form formulated in next Lemma. We leave
out the trivial proof.

Lemma 2.9. Let g ∈ C log
1−loc(R

n). Then there exists a constant c > 0 such that
for every j ∈ N0 and every x, y ∈ Rn with ||x− y||∞ ≤ 2−j the following inequalities
hold:

1

c
≤ 2−j|g(x)−g(y)| ≤ 2j(g(x)−g(y)) ≤ 2j|g(x)−g(y)| ≤ c.

Definition 2.10. (Standing assumptions of [9]) Let p and q be positive functions
on Rn such that 1

p
, 1

q
∈ C log(Rn) and let s ∈ C log

loc (R
n) ∩ L∞(Rn) with s(x) ≥ 0 and

let s(x) have a limit at infinity.

Remark 2.11. (i) Let us note, that the standing assumptions imply in particular
(2.4) and a similar chain of inequalities for q(x).

We introduce the sequence spaces associated with the Triebel–Lizorkin spaces of
variable smoothness and integrability. Let j ∈ N0 and m ∈ Zn. Then Qjm denotes
the closed cube in Rn with sides parallel to the coordinate axes, centered at 2−jm,
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and with side length 2−j. By χjm = χQjm
we denote the characteristic function of

Qj m. If
γ = {γjm ∈ C : j ∈ N0,m ∈ Zn},

−∞ < s(x) < ∞, 0 < p(x) < ∞ and 0 < q(x) ≤ ∞ for all x ∈ Rn, we define

||γ|f s(·)
p(·),q(·)|| =

∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2js(·)q(·)|γjm|q(·)χjm(·)
)1/q(·)

|Lp(·)(R
n)

∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣
∞∑

j=0

∑
m∈Zn

2js(·)|γjm|χjm(·)
∣∣∣∣Lp(·)(`q(·))

∣∣∣∣
∣∣∣∣.

(2.5)

Establishing the connection between the function spaces F
s(·)
p(·),q(·)(R

n) and the
sequence spaces f

s(·)
p(·),q(·) was the main aim of [9]. Following [14] and [15], these

authors investigated the properties of the so-called ϕ-transform (denoted by Sϕ) and
obtained the following result.

Theorem 2.12. Under the standing assumptions of [9]

||f |F s(·)
p(·),q(·)(R

n)|| ≈ ||Sϕf |f s(·)
p(·),q(·)||

with constants independent of f ∈ F
s(·)
p(·),q(·)(R

n).

Remark 2.13. (i) The assumptions on s in the Theorem 2.12 seem to be too
restrictive. It seems, that several authors now try to prove similar results also for
s(x), which are not necessarily positive or convergent at infinity. We refer at least to
[23] and [39].

From this reason we formulate the theorems of embeddings of sequence spaces
under minimal assumptions, which shall really be needed in the proof. If later on
any improved version of Theorem 2.12 should appear, the results may then be easily
taken over.

(ii) We shall use only a corollary of Theorem 2.12, namely that (under the stand-
ing assumptions) the space F

s(·)
p(·),q(·)(R

n) is isomorphic to a subspace of f
s(·)
p(·),q(·) via

the Sϕ transform.

3. Main results

First, we state the results in the form of embeddings of sequence spaces under
those assumptions really needed in the proof. Later on, we combine those with the
standing assumptions of [9] and obtain similar results also for the embeddings of
function spaces. Finally, we state separately the embeddings of Sobolev and Bessel
potential spaces.

Theorem 3.1. Let −∞ < s1(x) ≤ s0(x) < ∞, 0 < p0(x) ≤ p1(x) < ∞ for all
x ∈ Rn with 0 < p−0 ≤ p−1 ≤ p+

1 < ∞ and

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

Let q(x) = ∞ for all x ∈ Rn or 0 < q− ≤ q(x) < ∞ for all x ∈ Rn and s0,
1
p0
∈

C log
1−loc(R

n). Then
f

s0(·)
p0(·),q(·) ↪→ f

s1(·)
p1(·),q(·).
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Proof. Step 1. q(x) = ∞ for all x ∈ Rn. We set

(3.1) h(x) = sup
j,m

2js0(x)|γjm|χjm(x), x ∈ Rn.

Here, and later on, the supremum is taken over all j ∈ N0 and m ∈ Zn. Then by
(2.5),

(3.2) ||γ|f s0(·)
p0(·),∞|| = ||h|Lp0(·)(R

n)||
and trivially

(3.3) 2js0(x)|γjm| ≤ h(x), x ∈ Qjm,

which leads to

(3.4) |γjm| ≤ inf
x∈Qjm

2−js0(x)h(x), j ∈ N0, m ∈ Zn.

Using consequently (2.5), (3.4) and Lemma 2.9 for s0 we may estimate

||γ|f s1(·)
p1(·),∞|| =

∣∣∣∣
∣∣∣∣sup

j,m
2js1(x)|γjm|χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣sup

j,m
2js1(x)

(
inf

y∈Qjm

2−js0(y)h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣sup

j,m
2j(s1(x)−s0(x))

(
inf

y∈Qjm

2j(s0(x)−s0(y))h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣sup

j,m
2

jn
(

1
p1(x)

− 1
p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣.

Let A−1 ⊂ Rn stand for those x, where

(3.5) sup
j,m

2
jn

(
1

p1(x)
− 1

p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x) = 0.

For each x ∈ Rn \ A−1 we denote by J = Jx ∈ N0 the smallest non-negative integer
such that

sup
j,m

2
jn

(
1

p1(x)
− 1

p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x)

≤ 2 · 2Jn
(

1
p1(x)

− 1
p0(x)

) ∑
m∈Zn

(
inf

y∈QJm

h(y)
)
χJm(x).

(3.6)

We may assume, that for almost all x ∈ Rn the left-hand side of (3.5) is finite.
Otherwise h(x) = ∞ on a set of positive measure and there is nothing to prove.
Furthermore, we denote by AJ ⊂ Rn those x with Jx = J ∈ N0.

Let λ > 0 be a positive real number such that

1 ≥
∫

Rn

(
h(x)

λ

)p0(x)

dx =
∞∑

J=−1

∫

AJ

(
h(x)

λ

)p0(x)

dx

≥
∞∑

J=0

∑
m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

(3.7)
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We set

hjm :=

inf
y∈Qjm

h(y)

λ
, j ∈ N0, m ∈ Zn

and show, that there is a constant C > 0 such that
∫

Rn

(
C−1 sup

j,m
2

jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx ≤ 1.

We split the integration over Rn into integrals over AJ and use (3.6).
∫

Rn

(
C−1 sup

j,m
2

jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx

≤
∞∑

J=0

∫

AJ

(
(C/2)−1

∑
m∈Zn

2
Jn

(
1

p1(x)
− 1

p0(x)

)
hJmχJm(x)

)p1(x)

dx

=
∞∑

J=0

∑
m∈Zn

∫

AJ

(
(C/2)−12

Jn
(

1
p1(x)

− 1
p0(x)

)
hJm

)p1(x)

χJm(x) dx

=
∞∑

J=0

∑
m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx

(3.8)

Let us fix (J,m) ∈ N0 × Zn. We shall distinguish two cases.
1. case: hJm ≤ 1. Then (as p0(x) ≤ p1(x))

2
Jn

(
1− p1(x)

p0(x)

)
≤ 1

and
h

p1(x)
Jm ≤ h

p0(x)
Jm .

Hence for C ≥ 2 we obtain∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx ≤

∫

AJ∩QJm

h
p0(x)
Jm dx

≤
∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

(3.9)

2. case: hJm > 1. Then

1 ≥
∫

QJm

(
h(x)

λ

)p0(x)

dx ≥
∫

QJm

h
p0(x)
Jm dx ≥ 2−Jnh

pJm
0

Jm ,

where pJm
0 = inf

x∈QJm

p0(x) > 0. Hence

(3.10) 1 < hJm ≤ 2Jn/pJm
0 .

We rewrite the integrals in (3.8) as∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx

=

∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)−p0(x)
Jm︸ ︷︷ ︸

(?)

h
p0(x)
Jm dx

(3.11)
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and show that the estimate (?) ≤ 1 for C ≥ 2 large enough and x ∈ QJm finishes
immediately the proof. By (3.9) and (3.11) combined with (?) ≤ 1 and (3.7)

∞∑
J=0

∑
m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx =

∑

(J,m):hJm≤1

· · ·+
∑

(J,m):hJm>1

. . .

≤
∑

(J,m):hJm≤1

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx +
∑

(J,m):hJm>1

∫

AJ∩QJm

h
p0(x)
Jm dx

≤
∞∑

J=0

∑
m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx ≤ 1.

Hence, it remains to prove that (?) ≤ 1 for all x ∈ QJm. By (3.10), it is enough to
show that

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
· 2Jn· p1(x)−p0(x)

pJm
0 ≤ 1

or, equivalently,

2
Jn[p1(x)−p0(x)]·[ 1

pJm
0

− 1
p0(x)

] ≤ (C/2)p1(x).

Using Lemma 2.9 for 1
p0

(with constant 2clog), this follows from

2
n[1− p0(x)

p1(x)
]·clog ≤ C/2.

As 0 ≤ 1− p0(x)
p1(x)

≤ 1, we may choose C = 2nclog+1 ≥ 2.

Step 2. 0 < q(x) < ∞ for all x ∈ Rn. Let λ > 0 be a positive real number with

(3.12)
∫

Rn

( ∞∑
j=0

∑
m∈Zn

2js0(x)q(x)|γjm|q(x)λ−q(x)χjm(x)
)p0(x)/q(x)

dx ≤ 1.

We have to show that there is a constant C > 0 independent of {γjm}, such that

(3.13)
∫

Rn

( ∞∑
j=0

∑
m∈Zn

2js1(x)q(x)|γjm|q(x)(Cλ)−q(x)χjm(x)
)p1(x)/q(x)

dx ≤ 1.

We show, that under (3.12) the following inequality holds for almost all x ∈ Rn

( ∞∑
j=0

∑
m∈Zn

2js1(x)q(x) |γjm|q(x)

(Cλ)q(x)
χjm(x)

)p1(x)

≤
( ∞∑

j=0

∑
m∈Zn

2js0(x)q(x) |γjm|q(x)

λq(x)
χjm(x)

)p0(x)

.

(3.14)

Obviously, (3.14) implies (3.13).
For almost every x ∈ Rn and every j ∈ N0, there is exactly one m = m(j) ∈ Zn

such that x ∈ Qj,m(j). We fix one such an x. Then (3.14) reads like
∞∑

j=0

2js1(x)q(x)|γj,m(j)|q(x)(Cλ)−q(x)

≤
( ∞∑

j=0

2js0(x)q(x)|γj,m(j)|q(x)λ−q(x)
)p0(x)/p1(x)

.

(3.15)
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We set

αj := 2js0(x) |γj,m(j)|
λ

, j ∈ N0

and rewrite (3.15) once again. It now becomes

(3.16)
∞∑

j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

(αj/C)q(x) ≤
( ∞∑

j=0

α
q(x)
j

)p0(x)/p1(x)

.

Using (3.12) and Lemma 2.9 for s0, we get

1 ≥
∫

Qj,m(j)

(
2js0(y)q(y)|γj,m(j)|q(y)λ−q(y)

)p0(y)/q(y)

dy

=

∫

Qj,m(j)

(
2js0(y)|γj,m(j)|λ−1

)p0(y)

dy

=

∫

Qj,m(j)

(
2j(s0(y)−s0(x))2js0(x)|γj,m(j)|λ−1

)p0(y)

dy

≥
∫

Qj,m(j)

(
c 2js0(x)|γj,m(j)|λ−1

)p0(y)

dy

=

∫

Qj,m(j)

(
c αj

)p0(y)
dy.

If cαj > 1, we may further estimate

1 ≥ 2−jn
(
c αj

)infz∈Qj,m(j)
p0(z)

,

or, equivalently,

(3.17) c αj ≤ 2
jn

infz∈Qj,m(j)
p0(z)

= 2
jn

p0(x) 2
jn

infz∈Qj,m(j)
p0(z)

− jn
p0(x) ≤ c′2

jn
p0(x)

and this estimate holds true also if c αj ≤ 1.

If
∞∑

j=0

α
q(x)
j ≤ 1, then (3.16) follows by monotonicity and p0(x) ≤ p1(x) for any

C ≥ 1. If
∞∑

j=0

α
q(x)
j = ∞, then there is nothing to prove. In the remaining case

1 <

∞∑
j=0

α
q(x)
j < ∞ we find a non-negative integer J ∈ N0 such that

(3.18) 2
Jnq(x)
p0(x) <

∞∑
j=0

α
q(x)
j ≤ 2

(J+1)nq(x)
p0(x) .
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We split the sum over j ∈ N0 into two parts, apply (3.17) in the first part and use
the inequality p0(x) ≤ p1(x) together with (3.18) in the second part.

∞∑
j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

α
q(x)
j

=
J∑

j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

α
q(x)
j +

∞∑
j=J+1

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

α
q(x)
j

≤ cq(x)

J∑
j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

2
jnq(x)
p0(x) + 2

(J+1)n
(

1
p1(x)

− 1
p0(x)

)
q(x)

∞∑
j=J+1

α
q(x)
j

≤ cq(x)

J∑
j=0

2
jnq(x)
p1(x) + 2

(J+1)nq(x)
p1(x) ≤ c

q(x)
1 2

(J+1)nq(x)
p1(x)

≤ c
q(x)
1 2

nq(x)
p1(x)

( ∞∑
j=0

α
q(x)
j

) p0(x)
p1(x) ≤ Cq(x)

( ∞∑
j=0

α
q(x)
j

) p0(x)
p1(x)

.

In the last line, we used 0 < p−1 ≤ p+
1 < ∞ and again (3.18). This finishes the proof

of (3.16) and consequently of the whole Step 2. ¤

Theorem 3.2. Let −∞ < s1(x) < s0(x) < ∞ and 0 < p0(x) < p1(x) < ∞ for
all x ∈ Rn with 0 < p−0 < p+

1 < ∞,

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn

and

(3.19) ε := inf
x∈Rn

(s0(x)− s1(x)) = n inf
x∈Rn

(
1

p0(x)
− 1

p1(x)

)
> 0.

Let s0,
1
p0
∈ C log

1−loc(R
n). Then, for every 0 < q ≤ ∞,

f
s0(·)
p0(·),∞ ↪→ f

s1(·)
p1(·),q.

Proof. We use again the notation of (3.1)–(3.4).

||γ|f s1(·)
p1(·),q|| =

∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2js1(x)q|γj m|qχj m(x)

)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2js1(x)q
(

inf
y∈Qjm

2−js0(y)h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2j(s1(x)−s0(x))q
(

inf
y∈Qjm

2j(s0(x)−s0(y))h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣

(3.20)

≤ c

∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2
jn

(
1

p1(x)
− 1

p0(x)

)
q
(

inf
y∈Qjm

h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣.
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Let again λ > 0 be a positive real number, such that

(3.21)
∫

Rn

(h(x)

λ

)p0(x)

dx ≤ 1.

For almost every x ∈ Rn and every j ∈ N0 there is exactly one m = m(j) such that
x ∈ Qj,m(j). Fix one such x ∈ Rn and set

αj :=

inf
y∈Qj,m(j)

h(y)

λ
.

Then {αj}∞j=0 is a non-decreasing sequence of non-negative real numbers with α :=

lim
j→∞

αj ≤ h(x)

λ
.

Let first α ≤ 1. Then we use the monotonicity of {αj}, (3.19) and obtain for
Cq ≥ (1− 2−nεq)−1

( ∞∑
j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

j

)p1(x)/q

≤
( ∞∑

j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

)p1(x)/q

=

( ∞∑
j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q

)p1(x)/q

· αp1(x) ≤ αp0(x) ≤
(h(x)

λ

)p0(x)

.

(3.22)

Let us now consider the case α > 1. By (3.21), we get

1 ≥
∫

Rn

(h(x)

λ

)p0(x)

dx ≥
∫

Qj,m(j)

α
p0(x)
j dx.

If αj > 1, we may further estimate

1 ≥ 2−jnα
infy∈Qj,m(j)

p0(y)

j .

We apply Lemma 2.9 for 1
p0

to obtain an analogue of (3.17)

(3.23) αj ≤ 2
jn

infy∈Qj,m(j)
p0(y)

= 2
jn

p0(x) · 2
jn

infy∈Qj,m(j)

− jn
p0(x) ≤ clog 2

jn
p0(x)

and this estimate holds true also for αj ≤ 1.
We show, that for C > 0 large enough (cf. (3.16))

(3.24)
∞∑

j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

j ≤ α
qp0(x)
p1(x) .

As α = ∞ implies h(x) = ∞ and this happens only for a set of x ∈ Rn with measure
zero, we may choose for almost every x ∈ Rn a non-negative integer J ∈ N0 such
that

(3.25) 2
Jn

p0(x) < α ≤ 2
(J+1)n
p0(x)

and split
∞∑

j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

j =
J∑

j=0

. . .

︸ ︷︷ ︸
I

+
∞∑

j=J+1

. . .

︸ ︷︷ ︸
II

.
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By (3.23) and (3.25)

I =
J∑

j=0

C−q2
jnq

p1(x) · 2− jnq
p0(x) · αq

j ≤
J∑

j=0

C−qclog2
jnq

p1(x) ≤ c−12
(J+1)nq

p1(x) ≤ 2
Jnq

p1(x) ≤ α
qp0(x)
p1(x) .

The monotonicity of {αj} and (3.25) lead to

II ≤
∞∑

j=J+1

2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

jC
−q ≤ αqC−q

∞∑
j=J+1

2
jn

(
1

p1(x)
− 1

p0(x)

)
q

≤ αqC−q2
Jn

(
1

p1(x)
− 1

p0(x)

)
q ≤ αqC−q

(
αp0(x)2−n

)( 1
p1(x)

− 1
p0(x)

)
q

= α
qp0(x)
p1(x) C−q2

n
(

1
p0(x)

− 1
p1(x)

)
q ≤ α

qp0(x)
p1(x)

This finishes the proof of (3.24). Now (3.20), (3.22), (3.24) with (3.21) gives

||γ|f s1(·)
p1(·),q|| ≤ C||γ|f s0(·)

p0(·),∞||. ¤
Remark 3.3. The original proof of Jawerth of Theorem 1.1 used the technique

of a distribution function, which fails for Lp(·)(Rn). Another proof was given by
Johnsen and Sickel [22] and relied on an inequality of Plancherel–Pólya–Nikol’skij
type. Its classical proof [34, Chapter 1.3] is based on dilation arguments and (at
least to our knowledge) there is still no analogue of these inequalities for Lp(·)(Rn)
up to now.

Our proofs of Theorems 3.1 and 3.2 were motived by [38]. An essential tech-
nique used there was the concept of non-increasing rearrangement. Unfortunately, it
fails completely in the case of variable integrability exponents p0(x) and p1(x). To
avoid this obstacle, we had to employ the somehow artificial inequality (3.24)—or its
analogue (3.16). To motivate this step, let us consider the interpolation inequality
between Lorentz spaces

(3.26) ||f |Lp1,q(0, 1)|| ≤ c ||f |Lp0,∞(0, 1)||θ · ||f |L∞(0, 1)||1−θ

with

0 < p0 < p1 < ∞,
1

p1

=
θ

p0

+
1− θ

∞ , 0 < θ < 1

and its discrete version
( ∞∑

j=0

2
−jnq( 1

p0
− 1

p1
)
f ∗(2−jn)q

)1/q

≤ c
(

sup
j∈N0

2−jn/p0f ∗(2−jn)
)1− p0

p1 ·
(

sup
j∈N0

f ∗(2−jn)
) p0

p1 .

We refer to [2, Chapter 2] as a standard reference for non-increasing rearrangements
and to [2, Chapter 4.4] for the notation connected with Lorentz spaces. We leave the
details to the reader. The reader may also observe some similarities between (3.26)
and the inequality (4) of [22].

Using Theorem 2.12, we obtain immediately following

Theorem 3.4. Let s0, s1, p0, p1 and q be continuous functions satisfying the
standing assumptions of [9]. Let s0(x) ≥ s1(x) and p0(x) ≤ p1(x) for all x ∈ Rn

with
s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.
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Then
F

s0(·)
p0(·),q(·)(R

n) ↪→ F
s1(·)
p1(·),q(·)(R

n).

We denote by W k
p(·)(R

n) the Sobolev space of functions form Lp(·)(Rn), such that
all its distributional derivatives of order smaller or equal to k exist and belong to
Lp(·)(Rn). Furthermore, we introduce the Bessel potential spaces of variable integra-
bility introduced by Almeida and Samko [1] and by Gurka, Harjulehto and Nekvinda
[16]. Let σ ∈ R and let Bσ = F−1(1 + |ξ|2)−σ/2F be the Bessel potential operator.
We set

Lσ
p(·)(R

n) = {Bσf : f ∈ Lp(·)(R
n)}

and equip this space with norm ||f |Lσ
p(·)(R

n)|| = ||B−σf |Lp(·)(Rn)||.
Let p ∈ C log(Rn) with 1 < p− ≤ p+ < ∞ and σ ∈ [0,∞). It was shown in

[9, Theorem 4.5] that F σ
p(·),2(R

n) ∼= Lσ
p(·)(R

n) in the sense of equivalent norms. If
moreover σ ∈ N0, then F σ

p(·),2(R
n) ∼= W σ

p(·)(R
n).

Hence setting q = 2 implies embeddings of Bessel potential spaces.

Theorem 3.5. Let 0 ≤ s1 ≤ s0 < ∞ and p0, p1 ∈ C log(Rn) with 1 < p−0 ≤
p0(x) ≤ p1(x) ≤ p+

1 < ∞ for all x ∈ Rn. If

s0 − n

p0(x)
= s1 − n

p1(x)
, x ∈ Rn,

then
Ls0

p0(·)(R
n) ↪→ Ls1

p1(·)(R
n).

If s1 ∈ N0, then Ls1

p1(·)(R
n) may be replaced by W s1

p1(·)(R
n) and similarly for s0.

Remark 3.6. Let us only mention, that if 1 < p− ≤ p+ < ∞, then p ∈ C log(Rn)
if, and only if, 1

p
∈ C log(Rn). So the standing assumptions on p0 and p1 are satisfied

and the proof becomes trivial.

Theorem 3.7. Let s0, s1, p0, p1, q0, q1 be continuous functions satisfying the stand-
ing assumptions of [9] with

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn

and

inf
x∈Rn

(s0(x)− s1(x)) = n inf
x∈Rn

( 1

p0(x)
− 1

p1(x)

)
> 0.

Then
F

s0(·)
p0(·),q0(·)(R

n) ↪→ F
s1(·)
p1(·),q1(·)(R

n).

Proof. By monotonicity and using Theorem 3.2, we obtain

f
s0(·)
p0(·),q0(·) ↪→ f

s0(·)
p0(·),∞ ↪→ f

s1(·)
p1(·),q−1

↪→ f
s1(·)
p1(·),q1(·)

and Theorem 2.12 finishes the proof. ¤
Finally, we may combine our embedding results with the trace results of [9] and

obtain the following Sobolev embeddings for traces. We state it for Sobolev spaces,
but a similar assertion holds also for Bessel potential spaces and Triebel–Lizorkin
spaces.



Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability 543

Theorem 3.8. Let k ∈ N and 1 < p− ≤ p+ < n
k
with 1

p
∈ C log(Rn). Then

W k
p(·)(R

n) ↪→ L (n−1)p(·)
n−kp(·)

(Rn−1).

Proof. By Theorem 3.13. of [9], we have

tr W k
p(·)(R

n) → F
k− 1

p(·)
p(·),p(·)(R

n−1),

which may be combined with Theorem 3.7

F
k− 1

p(·)
p(·),p(·)(R

n−1) ↪→ F 0
p̃(·),2(R

n−1) = Lp̃(·)(R
n−1)

for p̃(·) given by

k − 1

p(·) −
n− 1

p(·) = −n− 1

p̃(·) .

This finishes the proof. ¤
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Abstract

We provide non-smooth atomic decompositions for Besov spaces Bs
p,q (Rn), s > 0, 0 < p,q � ∞, de-

fined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of
bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the
parameters p,q. We conclude with some more applications in terms of pointwise multipliers.
© 2012 Elsevier Inc.

Keywords: Lipschitz domains; Besov spaces; Differences; Real interpolation; Atoms; Traces; Pointwise multipliers

0. Introduction

Besov spaces – sometimes briefly denoted as B-spaces in the sequel – of positive smoothness,
have been investigated for many decades already, resulting, for instance, from the study of partial
differential equations, interpolation theory, approximation theory, harmonic analysis.

There are several definitions of Besov spaces Bs
p,q(Rn) to be found in the literature. Two of

the most prominent approaches are the Fourier-analytic approach using Fourier transforms on
the one hand and the classical approach via higher order differences involving the modulus of
smoothness on the other. These two definitions are equivalent only with certain restrictions on
the parameters, in particular, they differ for 0 < p < 1 and 0 < s � n( 1

p
− 1), but may otherwise

share similar properties.
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In the present paper we focus on the classical approach, which introduces Bs
p,q(Rn) as those

subspaces of Lp(Rn) such that

∥∥f
∣∣Bs

p,q

(
R

n
)∥∥

r
= ∥∥f

∣∣Lp

(
R

n
)∥∥ +

( 1∫
0

t−sqωr(f, t)
q
p

dt

t

)1/q

is finite, where 0 < p,q � ∞, s > 0, r ∈ N with r > s, and ωr(f, t)p is the usual r-th modulus
of smoothness of f ∈ Lp(Rn).

These spaces occur naturally in non-linear approximation theory. Especially important is the
case p < 1, which is needed for the description of approximation classes of classical methods
such as rational approximation and approximation by splines with free knots. For more details
we refer to the introduction of [7].

For our purposes it will be convenient to use an equivalent characterization for the classical
Besov spaces, cf. [16], [43, Sect. 9.2], and also [33, Th. 2.11], relying on smooth atomic decom-
positions. They allow us to characterize Bs

p,q(Rn) as the space of those f ∈ Lp(Rn) which can
be represented as

f (x) =
∞∑

j=0

∑
m∈Zn

λj,maj,m(x), x ∈ R
n, (0.1)

with the sequence of coefficients λ = {λj,m ∈C: j ∈ N0, m ∈ Z
n} belonging to some appropriate

sequence space bs
p,q , where s > 0, 0 < p,q � ∞, and with smooth atoms aj,m(x).

It is one of the aims of the present paper to develop non-smooth atomic decompositions for
Besov spaces Bs

p,q(Rn), cf. Theorem 2.6 and Corollary 2.8. We will show that one can relax
the assumptions on the smoothness of the atoms aj,m used in the representation (0.1) and, thus,
replace these atoms with more general ones without loosing any crucial information compared
smooth atomic decompositions for functions f ∈ Bs

p,q(Rn).
There are only few forerunners dealing with non-smooth atomic decompositions in function

spaces so far. We refer to the papers [42,25,4], all mainly considering the different Fourier-
analytic approach for Besov spaces and having in common that they restrict themselves to the
technically simpler case when p = q . Our approach generalizes and extends these results and
seems to be the first one covering the full range of indices 0 < p,q � ∞. The reader may also
consult [30] for another generalization of the classical atomic decomposition technique using
building blocks of limited smoothness.

The additional freedom we gain in the choice of suitable non-smooth atoms aj,m for the
atomic decompositions of f ∈ Bs

p,q(Rn) makes this approach well suited to further investigate
Besov spaces Bs

p,q(Ω) on non-smooth domains Ω and their boundaries Γ . In particular, we
shall focus on bounded Lipschitz domains and start by obtaining some interesting new properties
concerning interpolation and equivalent quasi-norms for these spaces as well as an atomic de-
composition for Besov spaces Bs

p,q(Γ ), defined on the boundary Γ = ∂Ω of a Lipschitz domain.
But the main goal of this article is to demonstrate the strength of the newly developed non-

smooth atomic decompositions in view of trace results. The trace is taken with respect to the
boundary Γ of bounded Lipschitz domains Ω . Our main result reads as

Tr B
s+ 1

p
p,q (Ω) = Bs

p,q(Γ ),
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where n � 2, 0 < s < 1, and 0 < p,q � ∞, cf. Theorem 4.11. Its proof reveals how well suited
non-smooth atoms are in order to tackle this problem. The limiting case s = 0 is also considered
in Corollary 4.13.

In the range 0 < s < 1, our results are optimal in the sense that there are no further restrictions
on the parameters p, q . The fact that we now also cover traces in Besov spaces Bs

p,q(Rn) with
p < 1 could be of particular interest in non-linear approximation theory.

Moreover, as a by-product we obtain corresponding trace results on Lipschitz domains for
Triebel–Lizorkin spaces, defined via atomic decompositions.

The papers [32] and [33], dealing with traces on hyperplanes and smooth domains, respec-
tively, might be considered as forerunners of the trace results established in this paper. Neverthe-
less, the methods we use now are completely different.

The same question for s � 1 was studied in [19]. It turns out that in this case the func-
tion spaces on the boundary look very different and also the extension operator must be
changed. Moreover, based on the seminal work [18], traces on Lipschitz domains were studied
in [21, Th. 1.1.3] for the Fourier-analytic Besov spaces with the natural restrictions

(n − 1)max

(
1

p
− 1,0

)
< s < 1 and

n − 1

n
< p. (0.2)

Our Theorem 4.11 actually covers and extends [21, Th. 1.1.3], as for the parameters restricted
by (0.2) the Besov spaces defined by differences coincide with the Fourier-analytic Besov spaces.

In contrast to MAYBORODA we make use of the classical Whitney extension operator and the
cone property of Lipschitz domains in order to establish our results instead of potential layers and
interpolation. Moreover, the extension operator we construct is not linear – and in fact cannot be
whenever 0 < s < (n− 1)max( 1

p
− 1,0) – compared to the extension operator in [21, Th. 1.1.3].

Let us recall that the importance of non-linear extension operators is known in the theory of
differentiable spaces since the pioneering work of Gagliardo [13], cf. also [2, Chapter 5].

Finally, we shall use the non-smooth atomic decompositions again to deal with pointwise
multipliers in the respective function spaces. Let Bs

p,q,selfs(R
n) denote the self-similar spaces

introduced in Definition 5.1 and M(Bs
p,q(Rn)) the set of all pointwise multipliers of Bs

p,q(Rn).
We prove for s > 0, 0 < p,q �∞ in Theorem 5.4 the relationship

⋃
σ>s

Bσ
p,q,selfs

(
R

n
) ⊂ M

(
Bs

p,q

(
R

n
))

↪→ Bs
p,q,selfs

(
R

n
)
. (0.3)

Additionally, if 0 < p � 1, one even has a coincidence in terms of M(Bs
p,p(Rn)) = Bs

p,p,selfs(R
n).

Our results generalize the multiplier assertions from [42] to the case when p �= q . Moreover, they
extend previous results to classical Besov spaces with small parameters s and p. In this context
we refer to [22–24], where pointwise multipliers in Besov spaces with p,q � 1 and p = q were
studied in detail.

We conclude using (0.3) in order to discuss under which circumstances the characteristic
function χΩ of a bounded domain Ω in R

n is a pointwise multiplier in Bs
p,q(Rn) – establishing

a connection between pointwise multipliers and certain fundamental notion of fractal geometry,
so-called h-sets, cf. Definition 5.6. In particular, if a boundary Γ = ∂Ω is an h-set satisfying

sup
j∈N0

∞∑
k=0

2kσq

(
h(2−j )

h(2−j−k)
2−kn

)q/p

< ∞,
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where σ > 0, 0 < p < ∞, and 0 < q � ∞, then Theorem 5.8 shows that

χΩ ∈ Bσ
p,q,selfs

(
R

n
)
.

The present paper is organized as follows: Section 1 contains notation, definitions, and pre-
liminary assertions on smooth atomic decompositions. The main investigation starts in Section 2,
where we construct non-smooth atomic decompositions for the spaces under focus. Afterwards
Section 3 provides new insights (and helpful results) concerning function spaces on Lipschitz
domains and their boundaries. These powerful techniques are then used in Section 4 in order to
compute traces on Lipschitz domains – the heart of this article. Finally, we conclude with some
further applications of non-smooth atomic decompositions in terms of pointwise multipliers in
Section 5.

1. Preliminaries

We use standard notation. Let N be the collection of all natural numbers and let N0 =
N ∪ {0}. Let Rn be euclidean n-space, n ∈ N, C the complex plane. The set of multi-indices
β = (β1, . . . , βn), βi ∈ N0, i = 1, . . . , n, is denoted by N

n
0, with |β| = β1 + · · · + βn, as usual.

Moreover, if x = (x1, . . . , xn) ∈ R
n and β = (β1, . . . , βn) ∈ N

n
0 we put xβ = x

β1
1 · · ·xβn

n .
We use the symbol ‘�’ in

ak � bk or ϕ(x) �ψ(x)

always to mean that there is a positive number c1 such that

ak � c1bk or ϕ(x) � c1ψ(x)

for all admitted values of the discrete variable k or the continuous variable x, where {ak}k , {bk}k
are non-negative sequences and ϕ, ψ are non-negative functions. We use the equivalence ‘∼’ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

for

ak � bk and bk � ak or ϕ(x) � ψ(x) and ψ(x) � ϕ(x).

If a ∈R, then a+ := max(a,0) and [a] denotes the integer part of a.
Given two (quasi-) Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural

embedding of X into Y is continuous. All unimportant positive constants will be denoted by c,
occasionally with subscripts. For convenience, let both dx and | · | stand for the (n-dimensional)
Lebesgue measure in the sequel. Lp(Rn), with 0 < p � ∞, stands for the usual quasi-Banach
space with respect to the Lebesgue measure, quasi-normed by

∥∥f
∣∣Lp

(
R

n
)∥∥ :=

( ∫
Rn

∣∣f (x)
∣∣p dx

) 1
p
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with the appropriate modification if p = ∞. Throughout the paper Ω will denote a domain in R
n

and the Lebesgue space Lp(Ω) is defined in the usual way.
We denote by CK(Rn) the space of all K-times continuously differentiable functions f :

R
n → R equipped with the norm

∥∥f
∣∣CK

(
R

n
)∥∥ = max

|α|�K
sup
x∈Rn

∣∣Dαf (x)
∣∣.

Additionally, C∞(Rn) contains the set of smooth and bounded functions on R
n, i.e.,

C∞(
R

n
) :=

⋂
K∈N

CK
(
R

n
)
,

whereas C∞
0 (Rn) denotes the space of smooth functions with compact support.

Furthermore, B(x0,R) stands for an open ball with radius R > 0 around x0 ∈ R
n,

B(x0,R) = {
x ∈ R

n: |x − x0| < R
}
. (1.1)

Let Qj,m with j ∈ N0 and m ∈ Z
n denote a cube in R

n with sides parallel to the axes of coordi-
nates, centered at 2−jm, and with side length 2−j+1. For a cube Q in R

n and r > 0, we denote
by rQ the cube in R

n concentric with Q and with side length r times the side length of Q.
Furthermore, χj,m stands for the characteristic function of Qj,m.

Let G ⊂ R
n and j ∈ N0. We use the abbreviation

∑
m∈Zn

G,j =
∑

m∈Zn,Qj,m∩G�=∅
, (1.2)

where G will usually denote either a domain Ω in R
n or its boundary Γ .

1.1. Smooth atomic decompositions in function spaces

We introduce the Besov spaces Bs
p,q(Ω) through their decomposition properties. This pro-

vides a constructive definition expanding functions f via smooth atoms (excluding any moment
conditions) and suitable coefficients, where the latter belong to certain sequence spaces denoted
by bs

p,q(Ω) defined below.

Definition 1.1. Let 0 < p,q � ∞, s ∈ R. Furthermore, let Ω ⊂ R
n and λ = {λj,m ∈ C: j ∈ N0,

m ∈ Z
n}. Then

bs
p,q(Ω) =

{
λ:

∥∥λ
∣∣bs

p,q(Ω)
∥∥ =

( ∞∑
j=0

2j (s− n
p

)q

( ∑
m∈Zn

Ω,j |λj,m|p
)q/p

)1/q

< ∞
}

(with the usual modification if p = ∞ and/or q = ∞).

Remark 1.2. If Ω = R
n, we simply write bs

p,q and
∑

m instead of bs
p,q(Ω) and

∑Ω,j
m , respec-

tively.
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Now we define the smooth atoms.

Definition 1.3. Let K ∈ N0 and d > 1. A K-times continuously differentiable complex-valued
function a on R

n (continuous if K = 0) is called a K-atom if for some j ∈ N0

suppa ⊂ dQj,m for some m ∈ Z
n, (1.3)

and

∣∣Dαa(x)
∣∣ � 2|α|j for |α| � K. (1.4)

It is convenient to write aj,m(x) instead of a(x) if this atom is located at Qj,m according
to (1.3). Furthermore, K denotes the smoothness of the atom, cf. (1.4).

We define Besov spaces Bs
p,q(Ω) using the atomic approach.

Definition 1.4. Let s > 0 and 0 < p,q � ∞. Let d > 1 and K ∈N0 with

K �
(
1 + [s])

be fixed. Then f ∈ Lp(Ω) belongs to Bs
p,q(Ω) if, and only if, it can be represented as

f (x) =
∞∑

j=0

∑
m∈Zn

Ω,j
λj,maj,m(x), (1.5)

where the aj,m are K-atoms (j ∈ N0) with

suppaj,m ⊂ dQj,m, j ∈ N0, m ∈ Z
n,

and λ ∈ bs
p,q(Ω), convergence being in Lp(Ω). Furthermore,

∥∥f
∣∣Bs

p,q(Ω)
∥∥ := inf

∥∥λ
∣∣bs

p,q(Ω)
∥∥, (1.6)

where the infimum is taken over all admissible representations (1.5).

Remark 1.5. According to [43], based on [16], the above defined spaces are independent of d

and K . This may justify our omission of K and d in (1.6).
Since the atoms aj,m used in Definition 1.4 are defined also outside of Ω , the spaces Bs

p,q(Ω)

can as well be regarded as restrictions of the corresponding spaces on R
n in the usual interpreta-

tion, i.e.,

Bs
p,q(Ω) = {

f ∈ Lp(Ω): there exists g ∈ Bs
p,q

(
R

n
)

with g|Ω = f
}
,

furnished with the norm

∥∥f
∣∣Bs

p,q(Ω)
∥∥ = inf

{∥∥g
∣∣Bs

p,q

(
R

n
)∥∥ with g|Ω = f

}
,
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where g|Ω = f denotes the restriction of g to Ω . Therefore, well-known embedding results for
B-spaces defined on R

n carry over to those defined on domains Ω . Let s > 0, ε > 0, 0 < q,u �
∞, and q � v � ∞. Then we have

Bs+ε
p,u (Ω) ↪→ Bs

p,q(Ω) and Bs
p,q(Ω) ↪→ Bs

p,v(Ω),

cf. [17, Th. 1.15], where also further embeddings for Besov spaces may be found.

Classical approach Originally Besov spaces were defined merely using higher order differences
instead of atomic decompositions. The question arises whether this classical approach coincides
with our atomic approach. This might not always be the case but is true for spaces defined on R

n

and on so-called (ε, δ)-domains which we introduce next.

Recall that domain always stands for open set. The boundary of Ω is denoted by Γ = ∂Ω .

Definition 1.6. Let Ω be a domain in R
n with Ω �= R

n. Then Ω is said to be an (ε, δ)-domain,
where 0 < ε < ∞ and 0 < δ < ∞, if it is connected and if for any x ∈ Ω , y ∈ Ω with |x −y| < δ

there is a curve L ⊂ Ω , connecting x and y such that |L| � ε−1|x − y| and

dist(z,Γ )� ε min
(|x − z|, |y − z|), z ∈ L. (1.7)

Remark 1.7. All domains we will be concerned with in the sequel are (ε, δ)-domains. In partic-
ular, the definition includes minimally smooth domains in the sense of Stein, cf. [37, p. 189], and
therefore bounded Lipschitz domains (as will be considered in Section 3).

Furthermore, the half-space R
n+ := {x: x = (x′, xn) ∈ Rn, x′ ∈ Rn−1, xn > 0} is another

example.

It is well-known that (ε, δ)-domains play a crucial role concerning questions of extendability.
It is precisely this property which was used in [33, Th. 2.10] to show that for (ε, δ)-domains
the atomic approach for B-spaces is equivalent to the classical approach (in terms of equivalent
quasi-norms), which introduces Bs

p,q(Ω) as the subspace of Lp(Ω) such that

∥∥f
∣∣Bs

p,q(Ω)
∥∥

r
= ∥∥f |Lp(Ω)

∥∥ +
( 1∫

0

t−sqωr(f, t,Ω)
q
p

dt

t

)1/q

(1.8)

is finite, where 0 < p,q � ∞ (with the usual modification if q = ∞), s > 0, r ∈ N with r > s.
Here ωr(f, t,Ω)p stands for the usual r-th modulus of smoothness of a function f ∈ Lp(Ω),

ωr(f, t,Ω)p = sup
|h|�t

∥∥�r
hf (·,Ω)

∣∣ Lp(Ω)
∥∥, t > 0, (1.9)

where

�r
hf (x,Ω) :=

{
�r

hf (x), x, x + h, . . . , x + rh ∈ Ω,

0, otherwise.
(1.10)
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This approach for the spaces Bs
p,q(Ω) was used in [8]. The proof of the coincidence uses the

fact that the classical and atomic approach can be identified for spaces defined on R
n, which

follows from results by Hedberg and Netrusov [16] on atomic decompositions and by Triebel
[43, Section 9.2] on the reproducing formula.

The classical scale of Besov spaces contains many well-known function spaces. For example,
if p = q = ∞, one recovers the Hölder–Zygmund spaces Cs(Rn), i.e.,

Bs∞,∞
(
R

n
) = Cs

(
R

n
)
, s > 0. (1.11)

Later on we will need the following homogeneity estimate proved recently in [35, Th. 2] based
on [3].

Theorem 1.8. Let 0 < λ � 1 and f ∈ Bs
p,q(Rn) with suppf ⊂ B(0, λ). Then

∥∥f (λ·)∣∣Bs
p,q

(
R

n
)∥∥ ∼ λs−n/p

∥∥f
∣∣Bs

p,q

(
R

n
)∥∥. (1.12)

2. Non-smooth atomic decompositions

Our aim is to provide a non-smooth atomic characterization of Besov spaces Bs
p,q(Rn), i.e.,

relaxing the assumptions about the smoothness of the atoms aj,m in Definition 1.3. Note that
condition (1.4) is equivalent to

∥∥a
(
2−j ·)∣∣CK

(
R

n
)∥∥ � 1. (2.1)

We replace the CK -norm with K > s by a Besov quasi-norm Bσ
p,p(Rn) with σ > s or in case of

0 < s < 1 by a norm in the space of Lipschitz functions Lip(Rn).
The following non-smooth atoms were introduced in [41]. They will be very adequate when

considering (non-smooth) atomic decompositions of spaces defined on Lipschitz domains (or on
the boundary of a Lipschitz domain, respectively).

Definition 2.1.

(i) The space of Lipschitz functions Lip(Rn) is defined as the collection of all real-valued func-
tions f :Rn → R such that

∥∥f
∣∣Lip

(
R

n
)∥∥ = max

{
sup
x

∣∣f (x)
∣∣, sup

x �=y

|f (x) − f (y)|
|x − y|

}
< ∞.

(ii) We say that a ∈ Lip(Rn) is a Lip-atom, if for some j ∈N0

suppa ⊂ dQj,m, m ∈ Z
n, d > 1, (2.2)

and

∣∣a(x)
∣∣ � 1,

∣∣a(x) − a(y)
∣∣� 2j |x − y|. (2.3)
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Remark 2.2. One might use alternatively in (2.3) that∥∥a
(
2−j ·)∣∣Lip

(
R

n
)∥∥� 1. (2.4)

We use the abbreviation

Bs
p

(
R

n
) = Bs

p,p

(
R

n
)

with 0 < p � ∞, s > 0.

In particular, in view of (1.11),

Cs
(
R

n
) = Bs∞

(
R

n
)
, s > 0,

are the Hölder–Zygmund spaces.

Definition 2.3. Let 0 < p �∞, σ > 0 and d > 1. Then a ∈ Bσ
p(Rn) is called a (σ,p)-atom if for

some j ∈N0

suppa ⊂ dQj,m for some m ∈ Z
n, (2.5)

and ∥∥a
(
2−j ·)∣∣Bσ

p

(
R

n
)∥∥� 1. (2.6)

Remark 2.4. Note that if σ < n
p

then (σ,p)-atoms might be unbounded. Roughly speaking, they
arise by dilating Bσ

p-normalized functions. Obviously, the condition (2.6) is a straightforward
modification of (2.1) and (2.4).

In general, it is convenient to write aj,m(x) instead of a(x) if the atoms are located at Qj,m

according to (2.2) and (2.5), respectively. Furthermore, σ denotes the ‘non-smoothness’ of the
atom, cf. (1.4).

The non-smooth atoms we consider in Definition 2.3, are renormalized versions of the non-
smooth (s,p)σ -atoms considered in [42] and [46], where (2.6) is replaced by

a ∈ Bσ
p

(
R

n
)

with
∥∥a

(
2−j ·)∣∣Bσ

p

(
R

n
)∥∥� 2j (σ−s),

resulting in corresponding changes concerning the definition of the sequence spaces bs
p,q used

for the atomic decomposition.
However, the function spaces we consider are different from the ones considered there. Fur-

thermore, for our purposes (studying traces later on) it is convenient to shift the factors 2j (s− n
p

)

to the sequence spaces.

We wish to compare these atoms with the smooth atoms in Definition 1.3.

Proposition 2.5. Let 0 < p � ∞ and 0 < σ < K . Furthermore, let d > 1, j ∈ N0, and m ∈ Z
n.

Then any K-atom aj,m is a (σ,p)-atom.

Proof. Since the functions aj,m(2−j ·) have compact support, we obtain

∥∥aj,m

(
2−j ·)∣∣Bσ

p

(
R

n
)∥∥�

∥∥aj,m

(
2−j ·)∣∣CK

(
R

n
)∥∥� 1,
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with constants independent of j , giving the desired result for non-smooth atoms from Defini-
tion 2.3. �

The use of atoms with limited smoothness (i.e. finite element functions or splines) was studied
already in [26], where the author deals with spline approximation (and traces) in Besov spaces.

The following theorem contains the main result of this section. It gives the counterpart of
Definition 1.4 and provides a non-smooth atomic decomposition of the spaces Bs

p,q(Rn).

Theorem 2.6. Let 0 < p,q � ∞, 0 < s < σ , and d > 1. Then f ∈ Lp(Rn) belongs to Bs
p,q(Rn)

if, and only if, it can be represented as

f =
∞∑

j=0

∑
m∈Zn

λj,maj,m, (2.7)

where the aj,m are (σ,p)-atoms (j ∈ N0) with suppaj,m ⊂ dQj,m, j ∈ N0, m ∈ Zn, and λ ∈
bs
p,q , convergence being in Lp(Rn). Furthermore,

∥∥f
∣∣Bs

p,q

(
R

n
)∥∥ = inf

∥∥λ
∣∣bs

p,q

∥∥, (2.8)

where the infimum is taken over all admissible representations (2.7).

Proof. We have the atomic decomposition based on smooth K-atoms according to Defini-
tion 1.4. By Proposition 2.5 classical K-atoms are special (σ,p)-atoms. Hence, it is enough
to prove that

∥∥f
∣∣Bs

p,q

(
R

n
)∥∥�

( ∞∑
k=0

2k(s− n
p

)q

( ∑
l∈Zn

|λk,l |p
)q/p

)1/q

(2.9)

for any atomic decomposition

f =
∞∑

k=0

∑
l∈Zn

λk,la
k,l, (2.10)

where ak,l are (σ,p)-atoms according to Definition 2.3.
For this purpose we expand each function ak,l(2−k·) optimally in Bσ

p(Rn) with respect to

classical K-atoms b
j,w
k,l where σ < K ,

ak,l
(
2−kx

) =
∞∑

j=0

∑
w∈Zn

η
k,l
j,wb

j,w
k,l (x), x ∈R

n, (2.11)

with

suppb
j,w
k,l ⊂ Qj,w,

∣∣Dαb
j,w
k,l (x)

∣∣ � 2|α|j , |α| � K, (2.12)
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and

( ∞∑
j=0

2j (σ− n
p

)p
∑

w∈Zn

∣∣ηk,l
j,w

∣∣p) 1
p

= ∥∥ηk,l
∣∣bσ

p,p

∥∥ ∼ ∥∥ak,l
(
2−k·)∣∣Bσ

p

(
R

n
)∥∥� 1. (2.13)

Hence,

ak,l(x) =
∞∑

j=0

∑
w∈Zn

η
k,l
j,wb

j,w
k,l

(
2kx

)
,

where the functions b
j,w
k,l (2k·) are supported by cubes with side lengths ∼ 2−k−j . By (2.12) we

have ∣∣Dαb
j,w
k,l

(
2kx

)∣∣ = 2k|α|∣∣(Dαb
j,w
k,l

)(
2kx

)∣∣ � 2(j+k)|α|.

Replacing j + k by j and putting d
j,w
k,l (x) := b

j−k,w
k,l (2kx), we obtain that

ak,l(x) =
∞∑

j=k

∑
w∈Zn

η
k,l
j−k,wd

j,w
k,l (x), (2.14)

where d
j,w
k,l are classical K-atoms supported by cubes with side lengths ∼ 2−j . We insert (2.14)

into the expansion (2.10). We fix j ∈N0 and w ∈ Z
n, and collect all non-vanishing terms d

j,w
k,l in

the expansions (2.14). We have k � j . Furthermore, multiplying (2.11) if necessary with suitable
cut-off functions it follows that there is a natural number N such that for fixed k only at most
N points l ∈ Z

n contribute to d
j,w
k,l . We denote this set by (j,w, k). Hence its cardinality is at

most N , where N is independent of j,w, k. Then

dj,w(x) =
∑

k�j

∑
l∈(j,w,k) η

k,l
j−k,w · λk,l · dj,w

k,l (x)∑
k�j

∑
l∈(j,w,k) |ηk,l

j−k,w| · |λk,l |

are correctly normalized smooth K-atoms located in cubes with side lengths ∼ 2−j and centered
at 2−jw. Let

νj,w =
∑
k�j

∑
l∈(j,w,k)

∣∣ηk,l
j−k,w

∣∣ · |λk,l |. (2.15)

Then we obtain a classical atomic decomposition in the sense of Definition 1.4

f =
∑
j

∑
w

νj,wdj,w(x),

where dj,w are K-atoms and ∥∥f
∣∣Bs

p,q

(
R

n
)∥∥�

∥∥ν
∣∣bs

p,q

∥∥.
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Therefore, in order to prove (2.9), it is enough to show, that∥∥ν
∣∣bs

p,q

∥∥ �
∥∥λ

∣∣bs
p,q

∥∥ (2.16)

if (2.13) holds.
Let 0 < ε < σ − s. Then we obtain by (2.15) that (assuming p < ∞)

|νj,w|p �
∑
k�j

∑
l∈(j,w,k)

2(j−k)pε
∣∣ηk,l

j−k,w

∣∣p|λk,l |p, (2.17)

where we used the bounded cardinality of the sets (j,w, k).
This gives for q/p � 1

∥∥ν
∣∣bs

p,q

∥∥q =
∞∑

j=0

2j (s−n/p)q

( ∑
w∈Zn

|νj,w|p
)q/p

�
∞∑

j=0

2j (s−n/p)q

( ∑
w∈Zn

j∑
k=0

∑
l∈(j,w,k)

2(j−k)pε
∣∣ηk,l

j−k,w

∣∣p|λk,l |p
)q/p

�
∞∑

j=0

2j (s−n/p)q

j∑
k=0

( ∑
w∈Zn

∑
l∈(j,w,k)

2(j−k)pε
∣∣ηk,l

j−k,w

∣∣p|λk,l |p
)q/p

=
∞∑

k=0

∞∑
j=k

2j (s−n/p)q

( ∑
w∈Zn

∑
l∈(j,w,k)

2(j−k)pε
∣∣ηk,l

j−k,w

∣∣p|λk,l |p
)q/p

=
∞∑

k=0

∞∑
j=0

2(j+k)(s−n/p)q

( ∑
w∈Zn

∑
l∈(j+k,w,k)

2jpε
∣∣ηk,l

j,w

∣∣p|λk,l |p
)q/p

=
∞∑

k=0

2k(s−n/p)q
∞∑

j=0

2j (s−σ+ε)q

( ∑
w∈Zn

∑
l∈(j+k,w,k)

2j (σ−n/p)p
∣∣ηk,l

j,w

∣∣p|λk,l |p
)q/p

�
∞∑

k=0

2k(s−n/p)q

( ∞∑
j=0

∑
w∈Zn

∑
l∈(j+k,w,k)

2j (σ−n/p)p
∣∣ηk,l

j,w

∣∣p|λk,l |p
)q/p

�
∞∑

k=0

2k(s−n/p)q

( ∞∑
j=0

∑
w∈Zn

∑
l∈Zn

2j (σ−n/p)p
∣∣ηk,l

j,w

∣∣p|λk,l |p
)q/p

=
∞∑

k=0

2k(s−n/p)q

( ∑
l∈Zn

|λk,l |p
∞∑

j=0

∑
w∈Zn

2j (σ−n/p)p
∣∣ηk,l

j,w

∣∣p)q/p

�
∞∑

k=0

2k(s−n/p)q

( ∑
l∈Zn

|λk,l |p
)q/p

= ∥∥λ
∣∣bs

p,q

∥∥q
.

We have used (2.13) in the last inequality.
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If q/p > 1, we shall use the following inequality, which holds for every non-negative se-
quence {γj,k}0�k�j<∞, every α � 1 and every ε > 0

∞∑
j=0

(
j∑

k=0

2−(j−k)εγj,k

)α

� cα,ε

∞∑
k=0

( ∞∑
j=k

γj,k

)α

. (2.18)

If α = ∞, (2.18) has to be modified appropriately. To prove (2.18) for α < ∞, we use Hölder’s
inequality and the embedding �1 ↪→ �α

∞∑
j=0

(
j∑

k=0

2−(j−k)εγj,k

)α

�
∞∑

j=0

(
j∑

k=0

2−(j−k)εα′
)α/α′(

j∑
k=0

γ α
j,k

)α/α

�
∞∑

j=0

j∑
k=0

γ α
j,k =

∞∑
k=0

∞∑
j=k

γ α
j,k �

∞∑
k=0

( ∞∑
j=k

γj,k

)α

.

We use (2.17) and (2.18) with p(σ − s − ε) instead of ε and α = q/p > 1,

∥∥ν
∣∣bs

p,q

∥∥q

�
∞∑

j=0

2j (σ− n
p

)q

( ∑
w∈Zn

j∑
k=0

∑
l∈(j,w,k)

2(j−k)pε
∣∣ηk,l

j−k,w

∣∣p|λk,l |p
)q/p

=
∞∑

j=0

(
j∑

k=0

2−(j−k)p(σ−s−ε)
∑

w∈Zn

∑
l∈(j,w,k)

2k(s−n/p)p2(j−k)(σ− n
p

)p
∣∣ηk,l

j−k,w

∣∣p|λk,l |p
)q/p

�
∞∑

k=0

( ∞∑
j=k

∑
w∈Zn

∑
l∈(j,w,k)

2k(s−n/p)p2(j−k)(σ− n
p

)p
∣∣ηk,l

j−k,w

∣∣p|λk,l |p
)q/p

=
∞∑

k=0

2k(s−n/p)q

( ∞∑
j=0

∑
w∈Zn

∑
l∈(j+k,w,k)

2j (σ− n
p

)p
∣∣ηk,l

j,w

∣∣p|λk,l |p
)q/p

=
∞∑

k=0

2k(s−n/p)q

( ∑
l∈Zn

∞∑
j=0

∑
w∈Zn:l∈(j+k,w,k)

2j (σ− n
p

)p
∣∣ηk,l

j,w

∣∣p|λk,l |p
)q/p

�
∞∑

k=0

2k(s−n/p)q

( ∑
l∈Zn

|λk,l |p
∞∑

j=0

∑
w∈Zn

2j (σ− n
p

)p
∣∣ηk,l

j,w

∣∣p)q/p

�
∞∑

k=0

2k(s−n/p)q

( ∑
l∈Zn

|λk,l |p
)q/p

= ∥∥λ
∣∣bs

p,q

∥∥q
.

The proof of (2.16) is finished. We again used (2.13) in the last inequality. If p and/or q are
equal to infinity, only notational changes are necessary. �
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Remark 2.7. Our results generalize [42, Th. 2] and [46, Th. 2.3], where non-smooth atomic
decompositions for spaces Bs

p,p(Rn) with s > max(n(1/p − 1),0) can be found, to Bs
p,q(Rn)

with no restrictions on the parameters. In particular, the case when p �= q is completely new.

Using the Lip-atoms from Definition 2.1 and the embedding

Lip
(
R

n
)
↪→ B1∞

(
R

n
)
,

cf. [40, pp. 89, 90], as a corollary we now obtain the following non-smooth atomic decomposition
for Besov spaces with smoothness 0 < s < 1.

Corollary 2.8. Let 0 < p,q � ∞, 0 < s < 1, and d > 1. Then f ∈ Lp(Rn) belongs to Bs
p,q(Rn)

if, and only if, it can be represented as

f =
∞∑

j=0

∑
m∈Zn

λj,maj,m, (2.19)

where the aj,m are Lip-atoms (j ∈ N0) with suppaj,m ⊂ dQj,m, j ∈ N0, m ∈ Z
n, and λ ∈ bs

p,q ,
convergence being in Lp(Rn). Furthermore,

∥∥f
∣∣Bs

p,q

(
R

n
)∥∥ = inf

∥∥λ
∣∣bs

p,q

∥∥, (2.20)

where the infimum is taken over all admissible representations (2.19).

3. Spaces on Lipschitz domains and their boundaries

We call a one-to-one mapping Φ : Rn → R
n, a Lipschitz diffeomorphism, if the components

Φk(x) of Φ(x) = (Φ1(x), . . . ,Φn(x)) are Lipschitz functions on R
n and

∣∣Φ(x) − Φ(y)
∣∣ ∼ |x − y|, x, y ∈R

n, |x − y|� 1,

where the equivalence constants are independent of x and y. Of course the inverse of Φ−1 is also
a Lipschitz diffeomorphism on R

n.

Definition 3.1. Let Ω be a bounded domain in R
n. Then Ω is said to be a Lipschitz domain, if

there exist N open balls K1, . . . ,KN such that
⋃N

j=1 Kj ⊃ Γ and Kj ∩ Γ �= ∅ if j = 1, . . . ,N ,

with the following property: for every ball Kj there are Lipschitz diffeomorphisms ψ(j) such
that

ψ(j) : Kj −→ Vj , j = 1, . . . ,N,

where Vj := ψ(j)(Kj ) and

ψ(j)(Kj ∩ Ω) ⊂R
n+, ψ(j)(Kj ∩ Γ ) ⊂R

n−1.
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Remark 3.2. The maps ψ(j) can be extended outside Kj in such a way that the extended vector
functions (denoted by ψ(j) as well) yield diffeomorphic mappings from R

n onto itself (Lipschitz
diffeomorphisms).

There are several equivalent definitions of Lipschitz domains in the literature. Our approach
follows [5]. Another version as can be found in [37], which defines first a special (unbounded)
Lipschitz domain Ω in R

n as simply the domain above the graph of a Lipschitz function h :
Rn−1 −→ R, i.e.,

Ω = {(
x′, xn

)
: h

(
x′) < xn

}
.

Then a bounded Lipschitz domain Ω in R
n is defined as a bounded domain where the boundary

Γ = ∂Ω can be covered by finitely many open balls Bj in R
n with j = 1, . . . , J , centered at Γ

such that

Bj ∩ Ω = Bj ∩ Ωj for j = 1, . . . , J,

where Ωj are rotations of suitable special Lipschitz domains in R
n.

We shall occasionally use this alternative definition, in particular, since it usually suffices to
consider special Lipschitz domains in our proofs (the related covering involves only finitely many
balls), simplifying the notation considerably.

Consider a covering Ω ⊂ K0 ∪ (
⋃N

j=1 Kj), where K0 is an inner domain with K0 ⊂ Ω . Let

{ϕj }Nj=0 be a related resolution of unity of Ω , i.e., ϕj are smooth non-negative functions with
support in Kj additionally satisfying

N∑
j=0

ϕj (x) = 1 if x ∈ Ω. (3.1)

Obviously, the restriction of ϕj to Γ is a resolution of unity with respect to Γ .

3.1. Atomic decompositions for Besov spaces on boundaries

The boundary ∂Ω = Γ of a bounded Lipschitz domain Ω will be furnished in the usual
way with a surface measure dσ . The corresponding complex-valued Lebesgue spaces Lp(Γ ),
0 < p � ∞, are normed by

∥∥g|Lp(Γ )
∥∥ =

(∫
Γ

∣∣g(γ )
∣∣p dσ(γ )

)1/p
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(with obvious modifications if p = ∞). We require the introduction of Besov spaces on Γ . We
rely on the resolution of unity according to (3.1) and the local Lipschitz diffeomorphisms ψ(j)

mapping Γj = Γ ∩ Kj onto Wj = ψ(j)(Γj ), recall Definition 3.1. We define

gj (y) := (ϕjf ) ◦ (
ψ(j)

)−1
(y), j = 1, . . . ,N,

which restricted to y = (y′,0) ∈ Wj ,

gj

(
y′) = (ϕjf ) ◦ (

ψ(j)
)−1(

y′), j = 1, . . . ,N, f ∈ Lp(Γ ),

makes sense. This results in functions gj ∈ Lp(Wj ) with compact supports in the (n − 1)-
dimensional Lipschitz domain Wj . We do not distinguish notationally between gj and (ψ(j))−1

as functions of (y′,0) and of y′.
Our constructions enable us to transport Besov spaces naturally from R

n−1 to the boundary Γ

of a (bounded) Lipschitz domain via pull-back and a partition of unity.

Definition 3.3. Let n� 2, and let Ω be a bounded Lipschitz domain in R
n with boundary Γ , and

ϕj , ψ(j), Wj be as above. Assume 0 < s < 1 and 0 < p,q �∞. Then we introduce

Bs
p,q(Γ ) = {

f ∈ Lp(Γ ): gj ∈ Bs
p,q(Wj ), j = 1, . . . ,N

}
,

equipped with the quasi-norm ‖f |Bs
p,q(Γ )‖ := ∑N

j=1 ‖gj |Bs
p,q(Wj )‖.

Remark 3.4. The spaces Bs
p,q(Γ ) turn out to be independent of the particular choice of the

resolution of unity {ϕj }Nj=1 and the local diffeomorphisms ψ(j) (the proof is similar to the proof
of [40, Prop. 3.2.3(ii)], making use of Propositions 3.11 and 3.12 below). We furnish Bs

p,q(Wj )

with the intrinsic (n − 1)-dimensional norms according to Definition 1.4. Note that we could
furthermore replace Wj in the definition of the norm above by R

n−1 if we extend gj outside Wj

with zero, i.e.,

∥∥f
∣∣Bs

p,q(Γ )
∥∥ ∼

N∑
j=1

∥∥gj

∣∣Bs
p,q

(
R

n−1)∥∥. (3.2)

In particular, the equivalence (3.2) yields that characterizations for B-spaces defined on R
n−1

can be generalized to B-spaces defined on Γ . This will be done in Theorem 3.8 for non-smooth
atomic decompositions and is very likely to work as well for characterizations in terms of differ-
ences.

Atomic decompositions for Bs
p,q(Γ ) Similarly to the non-smooth atomic decompositions con-

structed in Section 2 we now establish corresponding atomic decompositions for Besov spaces
defined on Lipschitz boundaries. They will be very useful when investigating traces on Lipschitz
domains in Section 3.

The relevant sequence spaces and Lipschitz-atoms on the boundary Γ we shall define next are
closely related to the sequence spaces bs

p,q(Ω) and Lip-atoms used for the non-smooth atomic
decompositions as used in Corollary 2.8.
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Definition 3.5. Let 0 < p,q � ∞, s ∈ R. Furthermore, let Γ be the boundary of a bounded
Lipschitz domain Ω ⊂R

n, and λ = {λj,m ∈C: j ∈ N0, m ∈ Z
n}. Then

bs
p,q(Γ ) =

{
λ:

∥∥λ
∣∣bs

p,q(Γ )
∥∥ =

( ∞∑
j=0

2j (s− n−1
p

)q

( ∑
m∈Zn

Γ,j |λj,m|p
)q/p

)1/q

< ∞
}

(with the usual modification if p = ∞ and/or q = ∞).

Definition 3.6. Let j ∈ N0, m ∈ Z
n, d > 1, and let Γ be the boundary of a bounded Lipschitz

domain Ω ⊂R
n. Put QΓ

j,m := dQj,m ∩ Γ �= ∅. A function a ∈ Lip(Γ ) is a LipΓ -atom, if

suppa ⊂ QΓ
j,m, d > 1,

∥∥a|L∞(Γ )
∥∥ � 1 and sup

x,y∈Γ,
x �=y

|a(x) − a(y)|
|x − y| � 2j . (3.3)

Remark 3.7. Note that if we put 2jΓ := {2j x: x ∈ Γ }, we can state (3.3) like
‖a(2−j ·)|Lip(2jΓ )‖� 1.

The theorem below provides atomic decompositions for the spaces Bs
p,q(Γ ).

Theorem 3.8. Let Ω ⊂ R
n be a bounded Lipschitz domain and let 0 < s < 1, 0 < p,q � ∞.

Then f ∈ Lp(Γ ) belongs to Bs
p,q(Γ ) if, and only if,

f =
∑
j,m

λj,maj,m,

where aj,m are LipΓ -atoms with suppaj,m ⊂ QΓ
j,m and λ ∈ bs

p,q(Γ ), convergence being in
Lp(Γ ). Furthermore, ∥∥f

∣∣Bs
p,q(Γ )

∥∥ = inf
∥∥λ

∣∣bs
p,q(Γ )

∥∥,

where the infimum is taken over all possible representations.

Proof. Step 1: Fix f ∈ Bs
p,q(Γ ). For simplicity, we suppose that suppf ⊂ {x ∈ Γ : ϕl(x) = 1}

for some l ∈ {1,2, . . . ,N}. If this is not the case the arguments have to be slightly modified to
incorporate the decomposition of unity (3.1). To simplify the notation we write ϕ instead of ϕl

and ψ instead of ψ(l).
Then we obtain ∥∥f

∣∣Bs
p,q(Γ )

∥∥ = ∥∥f ◦ ψ−1
∣∣Bs

p,q

(
R

n−1)∥∥.

We use Corollary 2.8 with n replaced by n − 1 to obtain an optimal atomic decomposition

f ◦ ψ−1 =
∑
j,m

λj,maj,m where
∥∥f ◦ ψ−1

∣∣Bs
p,q

(
R

n−1)∥∥ ∼ ∥∥λ
∣∣bs

p,q

(
R

n−1)∥∥. (3.4)
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For j ∈ N0 and m ∈ Z
n−1 fixed, we consider the function aj,m(ψ(x)). Due to the Lipschitz

properties of ψ , this function is supported in QΓ
j,l for some l ∈ Z

n and we denote it by aΓ
j,l(x).

Furthermore, we set λ′
j,l = λj,m. This leads to the decomposition

f =
∑
j,l

λ′
j,la

Γ
j,l . (3.5)

It is straightforward to verify that aΓ
j,l are LipΓ -atoms since ‖aΓ

j,l |L∞(Γ )‖ � ‖aj,m|L∞(Wl)‖�1
and

|aΓ
j,l(x) − aΓ

j,l(y)|
|x − y| = |aj,m(x′) − aj,m(y′)|

|ψ−1(x′) − ψ−1(y′)| ∼ |aj,m(x′) − aj,m(y′)|
|x′ − y′| � 2j , x, y ∈ Γ.

Furthermore, we have the estimate∥∥f
∣∣Bs

p,q(Γ )
∥∥ = ∥∥f ◦ ψ−1

∣∣Bs
p,q

(
R

n−1)∥∥ ∼ ∥∥λ
∣∣bs

p,q

(
R

n−1)∥∥ = ∥∥λ′∣∣bs
p,q(Γ )

∥∥.

Step 2: The proof of the opposite direction follows along the same lines. If f on Γ is given by

f =
∑
j,l

λ′
j,la

Γ
j,l,

then f ◦ ψ−1 = ∑
j,m λj,maj,m, where aj,m(x) = aΓ

j,l(ψ
−1(x)) and λj,m = λ′

j,l for suitable

m ∈ Z
n−1. Again it follows that aj,m are Lip-atoms on R

n−1 and∥∥f
∣∣Bs

p,q(Γ )
∥∥ = ∥∥f ◦ ψ−1

∣∣Bs
p,q

(
R

n−1)∥∥�
∥∥λ

∣∣bs
p,q

(
R

n−1)∥∥ = ∥∥λ′∣∣bs
p,q(Γ )

∥∥.

Step 3: The convergence in Lp(Γ ) of the representation f = ∑j,Γ
j,m λj,maΓ

j,m, follows for
p � 1 by ∥∥∥∥∑

j,m

j,Γ
λj,maΓ

j,m

∣∣Lp(Γ )

∥∥∥∥
p

�
∑
j,m

j,Γ |λj,m|p∥∥aΓ
j,m

∣∣Lp(Γ )
∥∥p

�
∑
j

2−j (n−1)
∑
m

j,Γ |λj,m|p = ∥∥λ
∣∣b0

p,p(Γ )
∥∥p

�
∥∥λ

∣∣bs
p,q(Γ )

∥∥p (3.6)

and using ∥∥∥∥∑
j,m

j,Γ
λj,maΓ

j,m

∣∣Lp(Γ )

∥∥∥∥ �
∑
j

∥∥∥∥∑
m

j,Γ
λj,maΓ

j,m

∣∣Lp(Γ )

∥∥∥∥
�

∑
j

2−j (n−1)/p

(∑
m

j,Γ |λj,m|p
)1/p

= ∥∥λ
∣∣b0

p,1(Γ )
∥∥ �

∥∥λ
∣∣bs

p,q(Γ )
∥∥ (3.7)

for p > 1. �
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3.2. Interpolation results

Interpolation results for Bs
p,q(Rn) as obtained in [7, Cor. 6.2, 6.3] carry over to the spaces

Bs
p,q(Γ ), which follows immediately from their definition and properties of real interpolation.

Theorem 3.9. Let Ω be a bounded Lipschitz domain with boundary Γ .

(i) Let 0 < p,q, q0, q1 �∞, s0 �= s1, and 0 < si < 1. Then

(
Bs0

p,q0
(Γ ),Bs1

p,q1
(Γ )

)
θ,q

= Bs
p,q(Γ ),

where 0 < θ < 1 and s = (1 − θ)s0 + θs1.
(ii) Let 0 < pi, qi � ∞, s0 �= s1 and 0 < si < 1. Then for each 0 < θ < 1, s = (1 − θ)s0 + θs1,

1
p

= 1−θ
p0

+ θ
p1

, and for 1
q

= 1−θ
q0

+ θ
q1

we have

(
Bs0

p0,q0
(Γ ),Bs1

p1,q1
(Γ )

)
θ,q

= Bs
p,q(Γ ),

provided p = q .

Proof. By definition of the spaces Bs
p,q(Γ ) we can construct a well-defined and bounded linear

operator

E : Bs
p,q(Γ ) −→

⊕
1�j�N

Bs
p,q

(
R

n−1),
(Ef )j := (ϕjf ) ◦ ψ(j)−1

on R
n−1, 1 � j � N,

which has a bounded and linear left inverse given by

R :
⊕

1�j�N

Bs
p,q

(
R

n−1) −→ Bs
p,q(Γ ),

R
(
(gj )1�j�N

) :=
N∑

j=1

Ψj (gj ◦ ψj) on Γ,

where Ψj ∈ C∞
0 (Rn), suppΨj ⊆ Kj , Ψ ≡ 1 in a neighborhood of suppϕj .

A straightforward calculation shows for f ∈ Bs
p,q(Γ )

(R ◦ E)f = R(Ef ) = R
((

(ϕjf ) ◦ ψ(j)−1)
1�j�N

) =
N∑

j=1

Ψjϕjf =
N∑

j=1

ϕjf = f,

i.e.,

R ◦ E = I, the identity operator on Bs
p,q(Γ ).
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One arrives at a standard situation in interpolation theory. Hence, by the method of retraction–
coretraction, cf. [39, Sect. 1.2.4, 1.17.1], the results for Bs

p,q(Rn−1) carry over to the spaces
Bs

p,q(Γ ). Therefore, (i) and (ii) are a consequence of [7, Cor. 6.2, 6.3]. �
Furthermore, we briefly show that the interpolation results for Besov spaces Bs

p,q(Rn) also
hold for spaces on domains Bs

p,q(Ω). This is not automatically clear in our context since the
extension operator

Ex : Bs
p,q(Ω) −→ Bs

p,q

(
R

n
)

constructed in [8] is not linear. The situation is different for spaces Bs
p,q(Ω). Here Rychkov’s

(linear) extension operator, cf. [29], automatically yields interpolation results for B-spaces on
domains.

Theorem 3.10. Let Ω be a bounded Lipschitz domain.

(i) Let 0 < p,q, q0, q1 � ∞, s0 �= s1, and 0 < si < 1. Then

(
Bs0

p,q0
(Ω),Bs1

p,q1
(Ω)

)
θ,q

= Bs
p,q(Ω),

where 0 < θ < 1 and s = (1 − θ)s0 + θs1.
(ii) Let 0 < pi, qi � ∞, s0 �= s1 and 0 < si < 1. Then for each 0 < θ < 1, s = (1 − θ)s0 + θs1,

1
p

= 1−θ
p0

+ θ
p1

, and for 1
q

= 1−θ
q0

+ θ
q1

we have

(
Bs0

p0,q0
(Ω),Bs1

p1,q1
(Ω)

)
θ,q

= Bs
p,q(Ω),

provided p = q .

Proof. In spite of our remarks before the theorem, we can nevertheless use the extension operator

Ex : Bs
p,q(Ω) −→ Bs

p,q

(
R

n
)

constructed in [8] to show that interpolation results for spaces Bs
p,q(Rn) carry over to spaces

Bs
p,q(Ω). Let Xi(Ω) := Bsi

pi ,qi
(Ω). By the explanations given in [8, p. 859] we have the estimate

K
(
f, t,X0(Ω),X1(Ω)

) ∼ K
(
Exf, t,X0

(
R

n
)
,X1

(
R

n
))

(3.8)

although the operator Ex is not linear. Let Bθ (Ω) := (Bs0
p0,q0(Ω),Bs1

p1,q1(Ω))θ,q with the given
restrictions on the parameters given in (i) and (ii), respectively. We have to prove that

Bθ (Ω) = Bs
p,q(Ω),

but this follows immediately from [7, Cor. 6.2, 6.3] using (3.8), since

∥∥f
∣∣Bθ (Ω)

∥∥ ∼ ∥∥Exf
∣∣Bθ

(
R

n
)∥∥ ∼ ∥∥Exf

∣∣Bs
p,q

(
R

n
)∥∥ ∼ ∥∥f

∣∣Bs
p,q(Ω)

∥∥. �
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3.3. Properties of Besov spaces on Lipschitz domains

The non-smooth atomic decomposition enables us to generalize [32, Prop. 2.5] and obtain
new results concerning diffeomorphisms and pointwise multipliers in Bs

p,q(Rn) in the following
way. For related matters we also refer to [21, Th. 3.3.3].

Proposition 3.11. Let 0 < p,q �∞, 0 < s < 1 and σ > s.

(i) (Diffeomorphisms) Let ψ be a Lipschitz diffeomorphism. Then f −→ f ◦ ψ is a linear and
bounded operator from Bs

p,q(Rn) onto itself.
(ii) (Pointwise multipliers) Let h ∈ Cσ (Rn). Then f −→ hf is a linear and bounded operator

from Bs
p,q(Rn) into itself.

Proof. Concerning (i), we make use of the atomic decomposition as in (2.19) with the Lip-atoms
from Definition 2.1. Then we have

f ◦ ψ =
∞∑

j=0

∑
m∈Zn

λj,maj,m ◦ ψ

and a ◦ ψ is a Lip-atom based on a new cube, and multiplied with a constant depending on ψ ,
since

∣∣(aj,m ◦ ψ)(x) − (aj,m ◦ ψ)(y)
∣∣ � 2j

∣∣ψ(x) − ψ(y)
∣∣ � 2j |x − y|.

To prove (ii) we argue as follows. First, we may suppose that 0 < s < σ < 1. Furthermore, we
choose a real parameter σ ′ with s < σ ′ < σ . We take the smooth atomic decomposition (1.5) with
K-atoms aj,m, where K = 1. Multiplied with h ∈ Cσ , it gives a new (non-smooth) atomic de-
composition of hf . Its convergence in Lp(Rn) follows from the convergence of (1.5) in Lp(Rn)

and the boundedness of h.
It remains to verify, that haj,m are non-smooth (σ ′,p)-atoms. The support property follows

immediately from the support property of aj,m. We use the bounded support of (haj,m)(2−j ·)
and the multiplier assertion for Bσ∞(Rn) as presented in [28, Section 4.6.1, Theorem 2] to get

∥∥(haj,m)
(
2−j ·)∣∣Bσ ′

p

(
R

n
)∥∥ �

∥∥(haj,m)
(
2−j ·)∣∣Bσ∞

(
R

n
)∥∥

= ∥∥h
(
2−j ·) · aj,m

(
2−j ·)∣∣Bσ∞

(
R

n
)∥∥

�
∥∥h

(
2−j ·)∣∣Bσ∞

(
R

n
)∥∥ · ∥∥aj,m

(
2−j ·)∣∣Bσ∞

(
R

n
)∥∥.

The last product is bounded by a constant due to the inequality

∥∥h
(
2−j ·)∣∣Bσ∞

(
R

n
)∥∥�

∥∥h
∣∣Bσ∞

(
R

n
)∥∥, j ∈ N0,

which may be verified directly (or found in [1, Section 1.7] or [10, Section 2.3.1]), combined
with the fact that aj,m are K-atoms for K = 1. �

Furthermore, we establish an equivalent quasi-norm for Bs
p,q(Ω).
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Proposition 3.12. Let 0 < p,q � ∞, 0 < s < 1, and Ω be a bounded Lipschitz domain. Then

∥∥ϕ0f
∣∣Bs

p,q

(
R

n
)∥∥ +

N∑
j=1

∥∥(ϕjf )
(
ψ(j)(·))−1∣∣Bs

p,q

(
R

n+
)∥∥ (3.9)

is an equivalent quasi-norm in Bs
p,q(Ω).

Proof. Let Ω1 be a bounded domain with

Ω1 ⊂
{

x ∈ R
n:

N∑
j=0

ϕj (x) = 1

}

and Ω ⊂ Ω1. Let f ∈ Bs
p,q(Ω). If we restrict the infimum in (1.5) to g ∈ Bs

p,q(Rn) with

g|Ω = f and suppg ⊂ Ω1, (3.10)

then we obtain a new equivalent quasi-norm in Bs
p,q(Ω). This follows from Proposition 3.11(ii)

if one multiplies an arbitrary element g ∈ Bs
p,q(Rn) with a fixed infinitely differentiable func-

tion �(x) with

�(x) = 1 if x ∈ Ω and supp� ⊂ Ω1.

For elements g ∈ Bs
p,q(Rn) with (3.10),

N∑
k=0

∥∥ϕkg
∣∣Bs

p,q

(
R

n
)∥∥

is an equivalent quasi-norm. This is also a consequence of Proposition 3.11(ii). Applying part (i)
of that proposition to g(x) → g(ψ(j)(x)), we see that

∥∥ϕ0g
∣∣Bs

p,q

(
R

n
)∥∥ +

N∑
k=1

∥∥(ϕkg)
(
ψ(k)(·))−1∣∣Bs

p,q

(
R

n
)∥∥

is an equivalent quasi-norm for all g ∈ Bs
p,q(Rn) with (3.10). But the infimum over all admissi-

ble g with (3.10) yields (3.9). �
4. Trace results on Lipschitz domains

Now we can look for traces of f ∈ Bs
p,q(Ω) on the boundary Γ . We briefly explain our

understanding of the trace operator since when dealing with Lp(Rn) functions the pointwise
trace has no obvious meaning.

Let Y(Γ ) denote one of the spaces Bσ
u,v(Γ ) or Lu(Γ ). Since S(Ω) is dense in Bs

p,q(Ω) for
0 < p,q < ∞ (both spaces can be interpreted as restrictions of their counterparts defined on R

n),
one asks first whether there is a constant c > 0 such that∥∥Trϕ

∣∣Y(Γ )
∥∥� c

∥∥ϕ
∣∣Bs

p,q(Ω)
∥∥ for all ϕ ∈ S(Ω), (4.1)
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where S(Ω) stands for the restriction of the Schwartz space S(Rn) to a domain Ω . If this is the
case, then one defines Trf ∈ Y(Γ ) for f ∈ Bs

p,q(Ω) by completion and obtains

∥∥Trf
∣∣Y(Γ )

∥∥� c
∥∥f

∣∣Bs
p,q(Ω)

∥∥, f ∈ Bs
p,q(Ω),

for the linear and bounded trace operator

Tr : Bs
p,q(Ω) ↪→ Y(Γ ).

Remark 4.1. We can extend (4.1) to spaces Bs
p,q(Ω) with p = ∞ and/or q = ∞ by using embed-

dings for B- and F-spaces from [17,31]. The results stated there can be generalized to domains Ω ,
since the spaces Bs

p,q(Ω) are defined by restriction of the corresponding spaces on Rn, cf. Re-
mark 1.5.

If p = ∞, we have that Bs∞,q (Ω) with s > 0 is embedded in the space of continuous functions
and Tr makes sense pointwise. If q = ∞,

Bs
p,∞(Ω) ↪→ Bs−ε

p,1 (Ω) for any ε > 0.

Let s > 1
p

and ε > 0 be small enough such that one has

s > s − ε >
1

p
.

Since by [44, Rem. 13] traces are independent of the source spaces and of the target spaces one
can now define Tr for Bs

p,∞(Ω) by restriction of Tr for Bs−ε
p,1 (Ω) to Bs

p,∞(Ω). Hence (4.1) is
always meaningful.

4.1. Boundedness of the trace operator

Now we are able to state and prove our first main theorem concerning traces of Besov spaces
on Lipschitz domains.

Theorem 4.2. Let n � 2, 0 < p,q � ∞, 0 < s < 1, and let Ω be a bounded Lipschitz domain
in Rn with boundary Γ . Then the operator

Tr : B
s+ 1

p
p,q (Ω) −→ Bs

p,q(Γ ) (4.2)

is linear and bounded.

Proof. The linearity of the operator follows directly from its definition as discussed above. To

prove the boundedness, we take an optimal representation of a smooth function f ∈ B
s+ 1

p
p,q (Ω) as

described in (1.5), i.e.,

f =
∞∑

j=0

∑
m∈Zn

j,Ω
λj,maj,m with

∥∥f
∣∣Bs+ 1

p
p,q (Ω)

∥∥ ∼ ∥∥λ
∣∣bs+ 1

p
p,q (Ω)

∥∥. (4.3)
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We put

Trf :=
(∑

j,m

j,Ω
λj,maj,m

)∣∣∣∣
Γ

=
∑
j,m

j,Γ
λj,maj,m

∣∣∣∣
Γ

=
∑
j,m

j,Γ
λj,maΓ

j,m. (4.4)

The proof follows by Theorem 3.8 and the following four facts:

(i) aΓ
j,m are LipΓ -atoms,

(ii) ‖λ|bs
p,q(Γ )‖ � ‖λ|bs+ 1

p
p,q (Ω)‖,

(iii) the decomposition (4.4) converges in Lp(Γ ),
(iv) the trace operator Tr coincides with the trace operator discussed above.

To prove the first point, we observe that

suppaΓ
j,m ⊆ suppaj,m ∩ Γ ⊆ QΓ

j,m.

Furthermore, we have ‖aΓ
j,m|L∞(Γ )‖ � ‖aj,m|L∞(dQj,m)‖� c and

sup
x,y∈QΓ

j,m

x �=y

aΓ
j,m(x) − aΓ

j,m(y)

|x − y| � sup
x,y∈dQj,m

x �=y

aj,m(x) − aj,m(y)

|x − y| � 2j .

The proof of the second point follows directly by

∥∥λ
∣∣bs

p,q(Γ )
∥∥ =

(∑
j

2j (s− n−1
p

)q

(∑
m

j,Γ |λj,m|p
)q/p)1/p

�
(∑

j

2j [(s+ 1
p

)− n
p

]q
(∑

m

j,Ω |λj,m|p
)q/p)1/p

= ∥∥λ
∣∣bs+ 1

p
p,q (Ω)

∥∥.

The proof of the third point follows in the same way as the proof in Step 3 of Theorem 3.8.
The proof of (iv) is based on the fact that for f ∈ S(Ω) there is an optimal atomic decomposi-

tion (4.3) which converges also pointwise. This may be observed by a detailed inspection of [16].
Therefore also the series (4.4) converges pointwise and the trace operator Tr may be understood
in the pointwise sense for smooth f . �
4.2. Extension of atoms

In order to compute the exact trace space we still need to construct an extension operator

Ext : Bs
p,q(Γ ) −→ B

s+ 1
p

p,q (Ω)

and show its boundedness. The main problem will be to show that we can extend the LipΓ -atoms
from the source spaces in a nice way to obtain suitable atoms for the target spaces. We start with
a simple variant of the Gagliardo–Nirenberg inequality, cf. [27, Chapter 5].
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Lemma 4.3. Let 0 < s0, s1 < ∞, 0 < p0,p1, q0, q1 � ∞ and 0 < θ < 1. Put

s = (1 − θ)s0 + θs1,
1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
. (4.5)

Then ∥∥f
∣∣Bs

p,q(Ω)
∥∥ �

∥∥f
∣∣Bs0

p0,q0
(Ω)

∥∥1−θ · ∥∥f
∣∣Bs1

p1,q1
(Ω)

∥∥θ (4.6)

for all f ∈ Bs0
p0,q0(Ω) ∩ Bs1

p1,q1(Ω).

Proof. The straightforward proof uses the characterization of B-spaces through differences and
Hölder’s inequality. �

Our approach is based on the classical Whitney decomposition of Rn \Γ and the correspond-
ing decomposition of unity. We summarize the most important properties of this method in the
next lemma and refer to [37, pp. 167–170] and [19, pp. 21–26] for details and proofs.

Lemma 4.4. 1. Let Γ ⊂R
n be a closed set. Then there exists a collection of cubes {Qi}i∈N, such

that

(i) R
n \ Γ = ⋃

i Qi .
(ii) The interiors of the cubes are mutually disjoint.

(iii) The inequality

diamQi � dist(Qi,Γ ) � 4 diamQi

holds for every cube Qi . Here diamQi is the diameter of Qi and dist(Qi,Γ ) is its distance
from Γ .

(iv) Each point of Rn \Γ is contained in at most N0 cubes 6/5 ·Qi , where N0 depends only on n.
(v) If Γ is the boundary of a Lipschitz domain then there is a number γ > 0, which depends

only on n, such that σ(γQi ∩ Γ ) > 0 for all i ∈N.

2. The are C∞-functions {ψi}i∈N such that

(i)
∑

i ψi(x) = 1 for every x ∈R
n \ Γ .

(ii) suppψi ⊂ 6/5 · Qi .
(iii) For every α ∈ N

n
0 there is a constant Aα such that |Dαψi(x)| � Aα(diamQi)

−|α| holds for
all i ∈ N and all x ∈R

n.

If a is a Lipschitz function on the Lipschitz boundary Γ of Ω , then the Whitney extension
operator Ext is defined by

Exta(x) =
{

a(x), x ∈ Γ,∑
i μiψi(x), x ∈ Ω,

(4.7)

where we use the notation of Lemma 4.4 and μi := 1
σ(γQi∩Γ )

∫
γQi∩Γ

a(y)dσ(y) with the num-
ber γ > 0 as described in Lemma 4.4. It satisfies Tr◦Exta = a for a Lipschitz continuous on Γ .
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This follows directly from the celebrated Whitney’s extension theorem (cf. [19, p. 23]) as Γ is a
closed set if Ω is a bounded Lipschitz domain.

Lemma 4.5. Let a be a Lipschitz function on the Lipschitz boundary Γ of Ω . Then Exta ∈
C∞(Ω) and

max|α|=k

∣∣Dα Exta(x)
∣∣� ckδ(x)1−k · ∥∥a|Lip(Γ )

∥∥, k ∈N, x ∈ Ω. (4.8)

Here, δ(x) is the distance of x to Γ and ck depends only on k and Ω .

Proof. First, let us note that

Dα Exta(x) =
∑

i

μiD
αψi(x), x ∈ Ω, α ∈N

n
0, |α| = k.

By Lemma 4.4 we have for every x ∈ Ω

∣∣Dαψi(x)
∣∣ � ckδ(x)−k, |α| = k,

and

∑
i

Dαψi(x) = Dα
∑

i

ψi(x) = 0.

Furthermore, the Lipschitz continuity of a implies

|μi − μj |� δ(x) · ∥∥a|Lip(Γ )
∥∥ (4.9)

for x ∈ suppψi ∩ suppψj . To justify (4.9), we consider natural numbers i and j with x ∈
suppψi ∩ suppψj , choose any xi ∈ γQi ∩ Γ and xj ∈ γQj ∩ Γ and calculate

|μi − μj |�
∣∣∣∣ 1

σ(γQi ∩ Γ )

∫
γQi∩Γ

a(x)dσ(x) − a(xi)

∣∣∣∣ + ∣∣a(xi) − a(xj )
∣∣

+
∣∣∣∣a(xj ) − 1

σ(γQj ∩ Γ )

∫
γQj ∩Γ

a(x)dσ(x)

∣∣∣∣
�

∥∥a|Lip(Γ )
∥∥ · {diam(γQi ∩ Γ ) + |xi − xj | + diam(γQj ∩ Γ )

}
�

∥∥a|Lip(Γ )
∥∥ · {diam(Qi) + |xi − x| + |x − xj | + diam(Qj )

}
� δ(x) · ∥∥a|Lip(Γ )

∥∥.

Let us now fix x ∈ Ω and let us denote by {i1, . . . , iN }, N � N0, the indices for which x lies
in the support of ψi . Then we write
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∣∣∣∣∣
N∑

j=1

μij D
αψij (x)

∣∣∣∣∣ �
∣∣∣∣∣

N∑
j=1

(μij − μi1)D
αψij (x)

∣∣∣∣∣ +
∣∣∣∣∣

N∑
j=1

μi1D
αψij (x)

∣∣∣∣∣
�

N∑
j=1

|μij − μi1 | ·
∣∣Dαψij (x)

∣∣ � δ(x)1−k · ∥∥a|Lip(Γ )
∥∥. �

Remark 4.6. Let a be a function defined on Γ as in Lemma 4.5 with diam(suppa) � 1. Then
the extension operator from Lemma 4.5 may be combined with a multiplication with a smooth
cut-off function. This ensures, that (4.8) still holds and, in addition, diam(supp Exta) � 1.

The following lemma describes a certain geometrical property of Lipschitz domains, which
shall be useful later on. It resembles very much the notion of Minkowski content, cf. [11].

Lemma 4.7. Let Ω be a bounded Lipschitz domain and let k ∈N. Let h ∈R
n with 0 < |h| � 1 and

put Ωh = {x ∈ Ω: [x, x + kh] ⊂ Ω}. Furthermore, for j ∈ N0 we define Ωh
j = {x ∈ Ωh: 2−j �

miny∈[x,x+kh] δ(y) � 2−j+1}, where δ(y) = dist(y,Γ ). Then

∣∣Ωh
j

∣∣� 2−j (4.10)

with a constant independent of j and h.

Proof. To simplify the notation, we shall assume that Ω is a simple Lipschitz domain of the
type Ω = {(x′, xn) = (x1, . . . , xn−1, xn) ∈ R

n: xn > ψ(x′), |x′| < 1}, where ψ is a Lipschitz
function, and we identify Γ with {(x′, xn): xn = ψ(x′), |x′| < 1}.

Step 1: First, let us observe that

dist(x,Γ ) ≈ (
xn − ψ

(
x′)) for x = (

x′, xn

) ∈ Ω (4.11)

and the constants in this equivalence depend only on the Lipschitz constant of ψ . The sim-
ple proof of this fact is based on the inner cone property of Lipschitz domains. We refer to
[37, Chapter VI, Section 3.2, Lemma 2] for details.

Step 2: Let j ∈N0 and 0 < |h| � 1 be fixed and let

y = (
y ′, yn

) ∈ Ωh
j

and let also

ỹ = (
y′, ỹn

) ∈ Ωh
j

with ỹn > yn.
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As ỹ ∈ Ωh
j , there is a t0 ∈ [0, k] such that dist(ỹ + t0h,Γ ) � 2−j+1.

Then we use ψ(y′ + t0h) < t0hn + yn (which follows from y ∈ Ωh and y + t0h ∈ Ω) and
(4.11) to get

ỹn − yn = [
ỹn + t0hn − ψ

(
y′ + t0h

′)] + [
ψ

(
y′ + t0h

′) − t0hn − yn

]
� dist(ỹ + t0h,Γ ) � 2−j . (4.12)

Step 3: Using (4.12), we observe that the set Ω(x′) = {xn ∈ R: (x′, xn) ∈ Ωh
j } has for every

|x′| < 1 length smaller than c2−j . From this, the inequality (4.10) quickly follows. �
We shall use this geometrical observation together with the extension operator (4.7) to prove

the following.

Lemma 4.8. Let Ω be a bounded Lipschitz domain and let Γ be its boundary. Let a be a Lipschitz
function on Γ . Let 0 < p � ∞ and 0 < s < k for some k ∈ N with k < 1/p + 1. Then the
extension operator defined by (4.7) satisfies∥∥Exta

∣∣Bs
p,p(Ω)

∥∥ �
∥∥a|Lip(Γ )

∥∥ (4.13)

with the constant independent of a ∈ Lip(Γ ).

Proof. Using the characterization by differences, we obtain

∥∥Exta
∣∣Bs

p,p(Ω)
∥∥ �

∥∥Exta
∣∣Bs′

p,∞(Ω)
∥∥

�
∥∥Exta|Lp(Ω)

∥∥ + sup
0<|h|�1

|h|−s′∥∥�k
h Exta(·,Ω)|Lp(Ω)

∥∥,

for s′ > 0 with s < s′ < k. Furthermore, we observe that one may modify the definition of
�r

hf (x,Ω) given in (1.10) to be zero also if the whole segment [x, x + kh] is not a subset
of Ω . This follows by a detailed inspection of [40, Section 2.5.12] as well as [9] and [8], which
are all based on the integration in cones.
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Using the definition of μi , the first term may be estimated easily as∥∥Exta|Lp(Ω)
∥∥ �

∥∥Exta|L∞(Ω)
∥∥ �

∥∥a|L∞(Γ )
∥∥.

To estimate the second term, we shall need the following relationship between differences and
derivatives. If f ∈ Ck(Rn) and x,h ∈R

n, we put g(t) = f (x + th) for t ∈R and obtain

�k
hf (x) = �k

1g(0) =
k∫

0

g(k)(t)Bk(t)dt, (4.14)

where Bk is the standard B spline of order k, i.e. the k-fold convolution of χ[0,1] given
by Bk = χ[0,1] ∗ · · · ∗ χ[0,1]. Although (4.14) is a classical result of approximation theory (cf.
[6, Section 4.7]), let us give a short proof using Fubini’s theorem and induction over k:

�k+1
1 g(0) = �k

1g(1) − �k
1g(0) =

k∫
0

(
g(k)(t + 1) − g(k)(t)

)
Bk(t)dt

=
k∫

0

Bk(t)

t+1∫
t

g(k+1)(u)dudt =
k+1∫
0

g(k+1)(u)

u∫
u−1

Bk(t)dt du

=
k+1∫
0

g(k+1)(u)Bk+1(u)du.

Hence if [x, x + kh] ⊂ Ω for some x ∈ Ω , we obtain

∣∣�k
h Exta(x,Ω)

∣∣� |h|k
k∫

0

max|α|=k

∣∣Dα Exta(x + th)
∣∣ · Bk(t)dt

� |h|k · ∥∥a|Lip(Γ )
∥∥ ·

k∫
0

δ(x + th)1−k · Bk(t)dt.

Let us fix h ∈ R
n with 0 < |h| � 1 and let us denote Ωh = {x ∈ Ω: [x, x + kh] ⊂ Ω} as in

Lemma 4.7. We obtain

|h|−s′∥∥�k
h Exta(·,Ω)|Lp(Ω)

∥∥
� |h|k−s′∥∥a|Lip(Γ )

∥∥( ∫
Ωh

( k∫
0

δ(x + th)1−k · Bk(t)dt

)p

dx

)1/p

�
∥∥a|Lip(Γ )

∥∥( ∫
Ωh

max
y∈[x,x+kh] δ(y)(1−k)p dx

)1/p
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�
∥∥a|Lip(Γ )

∥∥( ∞∑
j=0

2−j (1−k)p
∣∣Ωh

j

∣∣)1/p

.

This, together with Lemma 4.7 and with k < 1/p + 1 finishes the proof. �
Lemma 4.9. Let 0 < s′ < 1 be fixed. There is a non-linear extension operator (denoted by Ext),
which extends LipΓ -atoms aj,m to (s′ + 1/p,p)-atoms on R

n.

Proof. As the definition of LipΓ -atoms as well as the definition of (s′ + 1/p,p)-atoms works
with aj (2−j ·), by homogeneity arguments it is enough to prove

∥∥Exta0,m

∣∣Bs′+1/p
p,p

(
R

n
)∥∥�

∥∥a0,m|Lip(Γ )
∥∥ (4.15)

for LipΓ -atoms aj,m with j = 0. First we show that

∥∥Exta0,m

∣∣Bs′+1/p
p,p (Ω)

∥∥ �
∥∥a0,m|Lip(Γ )

∥∥ (4.16)

for the extension operator constructed in (4.7). Let 0 < s′ < 1 and 0 < p � ∞. We observe, that
Lemma 4.8 implies (4.16) for all 0 < s′ < 1 for which there is a k ∈N0 with

s′ + 1/p < k < 1 + 1/p.

In the diagram below these points correspond to all (s′, 1
p
) in the gray-shaded triangles.

Then Lemma 4.3 yields (4.16) for all 0 < s′ < 1 and 0 < p � ∞ with s0 = s1 = s′ and
p0 < p < p1 chosen in an appropriate way, see the attached diagram.

Finally, by Remark 1.5, we know that there is a function (denoted by Exta0,m), such that

∥∥Exta0,m

∣∣Bs′+1/p
p,p

(
R

n
)∥∥�

∥∥Exta0,m

∣∣Bs′+1/p
p,p (Ω)

∥∥.

This together with (4.16) finishes the proof of (4.15). �
We are now able to complete the proof of the missing part of the trace theorem.
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Theorem 4.10. Let n � 2 and Ω be a bounded Lipschitz domain with boundary Γ . Then for
0 < s < 1 and 0 < p,q � ∞ there is a bounded non-linear extension operator

Ext : Bs
p,q(Γ ) −→ B

s+ 1
p

p,q (Ω). (4.17)

Proof. Let f ∈ Bs
p,q(Γ ) with optimal decomposition in the sense of Theorem 3.8

f (x) =
∞∑

j=0

∑
m∈Zn

λj,maΓ
j,m(x), (4.18)

where aΓ
j,m are LipΓ -atoms, (4.18) converges in Lp(Γ ), and ‖f |Bs

p,q(Γ )‖ ∼ ‖λ|bs
p,q(Γ )‖.

We use the extension operator constructed in Lemma 4.9 and define by

Extf :=
∞∑

j=0

∑
m∈Zn

λj,m

(
ExtaΓ

j,m

)∣∣∣
Ω

(4.19)

an atomic decomposition of f in the space Bs+1/p
p,q (Ω) with non-smooth (s′ + 1/p,p)-atoms

ExtaΓ
j,m, where s < s′ < 1. The convergence of (4.19) in Lp(Ω) follows in the same way as in

the proof of Step 3 of Theorem 3.8.
Together with ‖λ|bs

p,q(Γ )‖ ∼ ‖λ|bs+1/p
p,q (Ω)‖, this shows that

∥∥Extf
∣∣Bs+1/p

p,q (Ω)
∥∥ �

∥∥λ
∣∣bs+1/p

p,q (Ω)
∥∥ ∼ ∥∥λ

∣∣bs
p,q(Γ )

∥∥ < ∞

is bounded. �
Theorems 4.2 and 4.10 together now allow us to state the general result for traces on Lipschitz

domains without any restrictions on the parameters s,p and q .

Theorem 4.11. Let n � 2 and Ω be a bounded Lipschitz domain with boundary Γ . Then for
0 < s < 1 and 0 < p,q � ∞,

Tr B
s+ 1

p
p,q (Ω) = Bs

p,q(Γ ). (4.20)

The above theorem extends the trace results obtained in [33, Th. 3.4] from Ck domains with
k > s + 1

p
to Lipschitz domains.

Furthermore, the trace results for spaces of Triebel–Lizorkin type carry over as well to the case
of Lipschitz domains. The proof follows [33, Th. 2.6] where the independence of the trace on q

was established for F-spaces. Let us mention that the sequence spaces f s
p,q(Ω) are defined simi-

larly as bs
p,q(Ω), cf. Definition 1.1, with �p and �q summation interchanged. The corresponding

function spaces (denoted by Fs
p,q(Ω)) are then defined as in Definition 1.4.

The main ingredient in the study of traces for Triebel–Lizorkin spaces Fs
p,q(Ω) is then the

fact that the corresponding sequence spaces f s
p,q(Γ ) are independent of q ,

f s
p,q(Γ ) = bs

p,p(Γ ). (4.21)
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A proof may be found in [43, Prop. 9.22, p. 394] for Γ being a compact porous set in R
n

with [12] as an important forerunner. In [45, Prop. 3.6] it is shown that the boundaries ∂Ω = Γ

of (ε, δ)-domains Ω are porous. Therefore, this result is also true for boundaries of Lipschitz
domains.

For completeness we state the trace results for F-spaces below.

Corollary 4.12. Let 0 < p < ∞, 0 < q � ∞, 0 < s < 1, and let Ω ⊂R
n be a bounded Lipschitz

domain with boundary Γ . Then

TrF
s+ 1

p
p,q (Ω) = Bs

p,p(Γ ). (4.22)

4.3. The limiting case

We briefly discuss what happens in the limiting case s = 0. In [34, Th. 2.7] traces for Besov
and Triebel–Lizorkin spaces on d-sets Γ , 0 < d < n, were studied. In particular, it was shown
that for 0 < p < ∞ and 0 < q � ∞,

Tr B
n−d
p

p,q

(
R

n
) = Lp(Γ ), 0 < q � min(1,p), (4.23)

and

TrF
n−d
p

p,q

(
R

n
) = Lp(Γ ), 0 < p � 1. (4.24)

Since the boundary Γ of a Lipschitz domain Ω is a d-set with d = n−1 the results follow almost
immediately from these previous results, using the fact that the B- and F-spaces on domains Ω

are defined as restrictions of the corresponding spaces on R
n, cf. Remark 1.5.

Corollary 4.13. Let Ω be a bounded Lipschitz domain with boundary Γ . Furthermore, let 0 <

p < ∞ and 0 < q � ∞.

(i) Then

Tr B
1
p
p,q(Ω) = Lp(Γ ), 0 < q � min(1,p). (4.25)

(ii) Furthermore,

TrF
1
p
p,q(Ω) = Lp(Γ ), 0 < p � 1. (4.26)

5. Pointwise multipliers in function spaces

As an application we now use our results on non-smooth atomic decompositions to deal with
pointwise multipliers in the respective function spaces.

A function m in Lloc
min(1,p)(R

n) is called a pointwise multiplier for Bs
p,q(Rn) if

f → mf
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generates a bounded map in Bs
p,q(Rn). The collection of all multipliers for Bs

p,q(Rn) is denoted
by M(Bs

p,q(Rn)). In the following, let ψ stand for a non-negative C∞ function with

suppψ ⊂ {
y ∈R

n: |y| � √
n

}
(5.1)

and

∑
l∈Zn

ψ(x − l) = 1, x ∈ R
n. (5.2)

Definition 5.1. Let s > 0 and 0 < p,q � ∞. We define the space Bs
p,q,selfs(R

n) to be the set of

all f ∈ Lloc
min(1,p)(R

n) such that

∥∥f
∣∣Bs

p,q,selfs

(
R

n
)∥∥ := sup

j∈N0, l∈Zn

∥∥ψ(· − l)f
(
2−j ·)∣∣Bs

p,q

(
R

n
)∥∥ (5.3)

is finite.

Remark 5.2. The study of pointwise multipliers is one of the key problems of the theory of
function spaces. As far as classical Besov spaces and (fractional) Sobolev spaces with p > 1 are
concerned we refer to [22–24]. Pointwise multipliers in general spaces Bs

p,q(Rn) and F s
p,q(Rn)

have been studied in great detail in [28, Ch. 4].
Self-similar spaces were first introduced in [42] and then considered in [43, Sect. 2.3]. Corre-

sponding results for anisotropic function spaces may be found in [25]. We also mention their
forerunners, the uniform spaces Bs

p,q,unif(R
n), studied in detail in [28, Sect. 4.9]. As stated

in [20], for these spaces it is known that

M
(
Bs

p,q

(
R

n
)) = Bs

p,q,unif

(
R

n
)
, 1 � p � q � ∞, s >

n

p
,

cf. [36] concerning the proof. Self-similar spaces are also closely connected with pointwise mul-
tipliers. We shall use the abbreviation

Bs
p,selfs

(
R

n
) := Bs

p,p,selfs

(
R

n
)
.

One can easily show

Bs
p,q,selfs

(
R

n
)
↪→ L∞

(
R

n
)
. (5.4)

To see this applying homogeneity gives

∥∥ψ(· − l)f
(
2−j ·)∣∣Bs

p,q

(
R

n
)∥∥ ∼ 2j n

p
∥∥ψ

(
2j · −l

)
f

∣∣Lp

(
R

n
)∥∥

+ 2−j (s− n
p

)

( 1∫
0

t−sqωr

(
ψ

(
2j · −l

)
f, t

)
p

q dt

t

)1/q
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uniformly for all j ∈N0 and l ∈ Z
n. Consequently,

2jn

∫
Rn

∣∣ψ(
2j y − l

)∣∣p∣∣f (y)
∣∣p dy � c

∥∥f
∣∣Bs

p,q,selfs

(
R

n
)∥∥p

. (5.5)

Thus, the right-hand side of (5.5) is just a uniform bound for |f (·)|p at its Lebesgue points, cf.
[38, Cor., p. 13], which proves the desired embedding (5.4).

Definition 5.3. Let s > 0 and 0 < p,q � ∞. We define

Bs+
p,q,selfs

(
R

n
) :=

⋃
σ>s

Bσ
p,q,selfs

(
R

n
)
.

We have the following relation between pointwise multipliers and self-similar spaces.

Theorem 5.4. Let s > 0 and 0 < p,q �∞. Then

(i) Bs+
p,q,selfs(R

n) ⊂ M(Bs
p,q(Rn)) ↪→ Bs

p,q,selfs(R
n).

(ii) Additionally, if 0 < p � 1,

M
(
Bs

p

(
R

n
)) = Bs

p,selfs

(
R

n
)
.

Proof. We first prove the right-hand side embedding in (i). Let m ∈ M(Bs
p,q(Rn)). An applica-

tion of the homogeneity property from Theorem 1.8 yields

∥∥ψ(· − l)m
(
2−j ·)∣∣Bs

p,q

(
R

n
)∥∥ ∼ 2−j (s− n

p
)
∥∥ψ

(
2j · −l

)
m

∣∣Bs
p,q

(
R

n
)∥∥

� 2−j (s− n
p

)
∥∥m

∣∣M(
Bs

p,q

(
R

n
))∥∥ · ∥∥ψ

(
2j · −l

)∣∣Bs
p,q

(
R

n
)∥∥

= 2−j (s− n
p

)
∥∥m

∣∣M(
Bs

p,q

(
R

n
))∥∥ · ∥∥ψ

(
2j ·)∣∣Bs

p,q

(
R

n
)∥∥

∼ ∥∥m
∣∣M(

Bs
p,q

(
R

n
))∥∥∥∥ψ

∣∣Bs
p,q

(
R

n
)∥∥�

∥∥m
∣∣M(

Bs
p,q

(
R

n
))∥∥

for all l ∈ Z
n, j ∈N0, and hence,

∥∥m
∣∣Bs

p,q,selfs

(
R

n
)∥∥ = sup

j∈N0, l∈Zn

∥∥ψ(· − l)m
(
2−j

)∣∣Bs
p,q

(
R

n
)∥∥

�
∥∥m

∣∣M(
Bs

p,q

(
R

n
))∥∥.

We make use of the non-smooth atomic decompositions for Bs
p,q(Rn) from Theorem 2.6 in order

to prove the first inclusion in (i). Let m ∈ Bσ
p,q,selfs with σ > s. Let f ∈ Bs

p,q(Rn) with optimal
smooth atomic decomposition

f =
∞∑

j=0

∑
l∈Zn

λj,laj,l with
∥∥f

∣∣Bs
p,q

(
R

n
)∥∥ ∼ ∥∥λ

∣∣bs
p,q

∥∥, (5.6)
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where aj,m are K-atoms with K > σ . Then

mf =
∞∑

j=0

∑
l∈Zn

λj,l(maj,l), (5.7)

and we wish to prove that, up to normalizing constants, the maj,l are (σ,p)-atoms. The support
condition is obvious:

suppmaj,l ⊂ suppaj,l ⊂ dQj,l, j ∈N0, l ∈ Z
n.

If l = 0 we put aj = aj,l . Note that

suppaj

(
2−j

) ⊂
{
y: |yi | � d

2

}

and we can assume that

ψ(y) > 0 if y ∈ {
x: |xi | � d

}
.

Then – using multiplier assertions from [33, Prop. 2.15(ii)] – we have for any g ∈ Bσ
p,q(Rn),

∥∥aj

(
2−j

)
ψ−1g

∣∣Bσ
p,q

(
R

n
)∥∥�

∥∥aj

(
2−j

)
ψ−1

∣∣CK
(
R

n
)∥∥∥∥g

∣∣Bσ
p,q

(
R

n
)∥∥

�
∥∥g

∣∣Bσ
p,q

(
R

n
)∥∥

and hence ∥∥aj

(
2−j

)
ψ−1

∣∣M(
Bσ

p,q

(
R

n
))∥∥� 1, j ∈ N0. (5.8)

By (5.8) and the homogeneity property we then get, for any σ > σ ′ > s and j ∈ N0,∥∥(maj )
(
2−j ·)∣∣Bσ ′

p

(
R

n
)∥∥�

∥∥m
(
2−j ·)aj

(
2−j ·)∣∣Bσ

p,q

(
R

n
)∥∥

�
∥∥aj

(
2−j ·)ψ−1

∣∣M(
Bσ

p,q

(
R

n
))∥∥∥∥m

(
2−j ·)ψ∣∣Bσ

p,q

(
R

n
)∥∥

�
∥∥m

(
2−j ·)ψ∣∣Bσ

p,q

(
R

n
)∥∥. (5.9)

In the case of aj,l with l ∈ Z
n one arrives at (5.9) with aj,l and ψ(· − l) in place of aj and ψ ,

respectively. Hence∥∥maj,l

(
2−j ·)∣∣Bσ ′

p

(
R

n
)∥∥ � sup

j,l

∥∥m
(
2−j ·)ψ(· − l)

∣∣Bσ
p,q

(
R

n
)∥∥

= ∥∥m
∣∣Bσ

p,q,selfs

(
R

n
)∥∥, j ∈N0, l ∈ Z

n, (5.10)

and therefore, maj,l is a (σ ′,p)-atom where σ ′ > s. By Theorem 2.6, in view of (5.7), mf ∈
Bs

p,q(Rn) and∥∥mf
∣∣Bs

p,q

(
R

n
)∥∥ �

∥∥λ
∣∣bs

p,q

∥∥∥∥m
∣∣Bσ

p,q,selfs

(
R

n
)∥∥ ∼ ∥∥f

∣∣Bs
p,q

∥∥∥∥m
∣∣Bσ

p,q,selfs

(
R

n
)∥∥,

which completes the proof of (i).
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We now prove (ii). Restricting ourselves to p = q , let now m ∈ Bs
p,selfs(R

n). We can mod-
ify (5.9) by choosing σ ′ = σ = s,

∥∥(maj )
(
2−j ·)∣∣Bs

p

(
R

n
)∥∥ = ∥∥m

(
2−j ·)aj

(
2−j ·)∣∣Bs

p

(
R

n
)∥∥

�
∥∥aj

(
2−j ·)ψ−1

∣∣M(
Bs

p

(
R

n
))∥∥∥∥m

(
2−j ·)ψ∣∣Bs

p

(
R

n
)∥∥

�
∥∥m

(
2−j ·)ψ∣∣Bs

p

(
R

n
)∥∥, (5.11)

yielding for general atoms aj,l ,

∥∥maj,l

(
2−j ·)∣∣Bs

p,

(
R

n
)∥∥ � sup

j,l

∥∥m
(
2−j ·)ψ(· − l)

∣∣Bs
p

(
R

n
)∥∥

= ∥∥m
∣∣Bs

p,selfs

(
R

n
)∥∥, j ∈ N0, l ∈ Z

n. (5.12)

Since p � 1, we have that Bs
p(Rn) is a p-Banach space. From (5.6), using (5.7) and (5.12), we

obtain

∥∥mf
∣∣Bs

p

(
R

n
)∥∥p �

∞∑
j=0

∑
l∈Zn

|λj,l |p2j (s− n
p
)p2−j (s− n

p
)p

∥∥maj,l

∣∣Bs
p

(
R

n
)∥∥p

∼ ∥∥λ
∣∣bs

p,p

∥∥p∥∥(maj,l)
(
2−j ·)∣∣Bs

p

(
R

n
)∥∥p

�
∥∥λ

∣∣bs
p,p

∥∥p∥∥m
∣∣Bs

p,selfs

(
R

n
)∥∥p

. (5.13)

Hence m ∈ M(Bs
p(Rn)) and, moreover, Bs

p,selfs(R
n) ↪→ M(Bs

p(Rn)). The other embedding fol-
lows from part (i). �
Remark 5.5. It remains open whether it is possible or not to generalize Theorem 5.4(ii) to the
case when p �= q . The problem in the proof given above is the estimate (5.13), which only holds
if p = q .

Characteristic functions as multipliers The final part of this work is devoted to the question
in which function spaces the characteristic function χΩ of a domain Ω ⊂ R

n is a pointwise
multiplier. We contribute to this question mainly as an application of Theorem 5.4. The results
shed some light on a relationship between some fundamental notion of fractal geometry and
pointwise multipliers in function spaces. For complementary remarks and studies in this direction
we refer to [42].

There are further considerations of a similar kind in the literature, asking for geometric condi-
tions on the domain Ω such that the corresponding characteristic function χΩ provides multiplier
properties, cf. [14,15,12], and [28, Sect. 4.6.3].

Definition 5.6. Let Γ be a non-empty compact set in R
n. Let h be a positive non-decreasing

function on the interval (0,1]. Then Γ is called an h-set, if there is a finite Radon measure
μ ∈ Rn with

suppμ = Γ and μ
(
B(γ, r)

) ∼ h(r), γ ∈ Γ, 0 < r � 1. (5.14)
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Remark 5.7. A measure μ with (5.14) satisfies the so-called doubling condition, meaning there
is a constant c > 0 such that

μ
(
B(γ,2r)

)
� cμ

(
B(γ, r)

)
, γ ∈ Γ, 0 < r < 1. (5.15)

We refer to [42, p. 476] for further explanations.

Theorem 5.8. Let Ω be a bounded domain in Rn. Moreover, let σ > 0, 0 < p < ∞, 0 < q � ∞,
and let Γ = ∂Ω be an h-set with

sup
j∈N0

∞∑
k=0

2kσq

(
h(2−j )

h(2−j−k)
2−kn

)q/p

< ∞ (5.16)

(with the usual modifications if q = ∞). Let Bσ
p,q,selfs(R

n) be the spaces defined in (5.3). Then

χΩ ∈ Bσ
p,q,selfs

(
R

n
)
.

Proof. It simplifies the argument, and causes no loss of generality, to assume diamΩ < 1. We
define

Ωk = {
x ∈ Ω: 2−k−2 � dist(x,Γ )� 2−k

}
, k ∈ N0.

Moreover, let

{
ϕk

l : k ∈N0, l = 1, . . . ,Mk

} ⊂ C∞
0 (Ω)

be a resolution of unity,

∑
k∈N0

Mk∑
l=1

ϕk
l (x) = 1 if x ∈ Ω, (5.17)

with

suppϕk
l ⊂ {

x:
∣∣x − xk

l

∣∣ � 2−k
} ⊂ Ωk

and

∣∣Dαϕk
l (x)

∣∣ � 2|α|k, |α| � K,

where K ∈ N with K > σ . It is well known that resolutions of unity with the required properties
exist. We now estimate the number Mk in (5.17). Combining the fact that the measure μ satisfies
the doubling condition (5.15) together with (5.14) we arrive at

Mkh
(
2−k

)
� 1, k ∈N0. (5.18)
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Since the ϕk
l in (5.17) are K-atoms according to Definition 1.3, we obtain

∥∥χΩ

∣∣Bσ
p,q

(
R

n
)∥∥q �

∞∑
k=0

2k(σ−n/p)qM
q/p
k �

∞∑
k=0

2kσq

(
2−kn

h(2−k)

)q/p

< ∞. (5.19)

This shows that χΩ ∈ Bσ
p,q(Rn). We now prove that χΩ ∈ Bσ

p,q,selfs(R
n). We consider the non-

negative function ψ ∈ C∞(Rn) satisfying (5.1) and (5.2). By the definition of self-similar spaces,
it suffices to consider

χΩ

(
2−j ·)ψ,

assuming in addition that 0 ∈ 2jΓ = {2j γ = (2j γ1, . . . ,2j γn): γ ∈ Γ }, j ∈ N. Let μj be the
image measure of μ with respect to the dilations y → 2j y. Then we obtain

μj
(
B(0,

√
n ) ∩ 2jΓ

) ∼ h
(
2−j

)
, j ∈N0.

We apply the same argument as above to B(0,
√

n ) ∩ 2jΩ and B(0,
√

n ) ∩ 2jΓ in place of Ω

and Γ , respectively. Let M
j
k be the counterpart of the above number Mk . Then

M
j
k h

(
2−j−k

)
� h

(
2−j

)
, j ∈N0, k ∈ N0,

is the generalization of (5.18) we are looking for, which completes the proof. �
In view of Theorem 5.4 we have the following result.

Corollary 5.9. Let Ω be a bounded domain in R
n. Moreover, let σ > 0, 0 < p < ∞, 0 < q � ∞,

and let Γ = ∂Ω be an h-set satisfying (5.16). Then

χΩ ∈ M
(
Bs

p,q

(
R

n
))

for 1 < p < ∞, 0 < s < σ,

and

χΩ ∈ M
(
Bσ

p

(
R

n
))

for 0 < p � 1.

Remark 5.10. As for the assertion (5.16) we mention that

sup
j∈N0, k∈N0

2kσ

(
h(2−j )

h(2−j−k)
2−kn

)1/p

< ∞

is the adequate counterpart for Bσ
p,∞(Rn). In the special case of d-sets, which corresponds to

h(t) ∼ td , the condition (5.16) therefore corresponds to

σ <
n − d

p
or σ = n − d

p
and q = ∞.
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For bounded Lipschitz domains Ω , i.e., d = n − 1, Theorem 5.8 therefore yields χΩ ∈
Bσ

p,q,selfs(R
n) if

σ <
1

p
or σ = 1

p
and q = ∞. (5.20)

These results are sharp since there exists a Lipschitz domain Ω in R
n such that

χΩ ∈ B
1
p

p,∞,selfs

(
R

n
)

and χΩ /∈ B
1
p
p,q

(
R

n
)

if 0 < q < ∞.

In order to see this let Ω = [− 1
2 , 1

2 ]n. Observing that

ωr(χΩ, t)p � t
1
p

one calculates

( 1∫
0

t−σqωr(χΩ, t)
q
p

dt

t

)1/q

�
( 1∫

0

t
( 1

p
−σ)q dt

t

)1/q

which is finite if, and only if, σ satisfies (5.20). Therefore, in view of Theorem 5.4, concerning
Lipschitz domains there is an

alternative s.t. either the trace of Bσ
p,q(Rn) on Γ exists or χΩ is a pointwise multiplier

for Bσ
p,q(Rn),

as was conjectured for F-spaces in [41, p. 36]: For smoothness σ > 1
p

we have traces according

to Theorem 4.11 whereas for σ < 1
p

we know that χΩ is a pointwise multiplier for Bσ
p,q(Rn).

The limiting case σ = 1
p

needs to be discussed separately: according to Corollary 4.13 we have

traces for B-spaces with q � min(1,p), but χΩ is (possibly) only a multiplier for B1/p
p,∞(Rn).

There remains a ‘gap’ for spaces

B1/p
p,q

(
R

n
)

when min(1,p) < q < ∞.
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1 Introduction

Function spaces of variable integrability appeared in a work by Orlicz [41] already
in 1931, but the recent interest in these spaces is based on the paper of Kováčik and
Rákosnik [32] together with applications in terms of modelling electrorheological
fluids [45]. A fundamental breakthrough concerning spaces of variable integrability
was the observation that, under certain regularity assumptions on p(·), the Hardy-
Littlewood maximal operator is also bounded on Lp(·)(Rn), see [14]. This result has
been generalized to wider classes of exponents p(·) in [11, 40] and [15].

Besides electrorheological fluids, the spaces Lp(·)(Rn) possess interesting appli-
cations in the theory of PDE’s, variational calculus, financial mathematics and image
processing. A recent overview of this vastly growing field is given in [17].

Sobolev and Besov spaces with variable smoothness but fixed integrability have
been introduced in the late 60s and early 70s in the works of Unterberger [57], Višik
and Eskin [58], Unterberger and Bokobza [56] and in the work of Beauzamy [7].
Leopold studied in [33] Besov spaces where the smoothness is determined by a sym-
bol a(x, ξ) of a certain class of hypoelliptic pseudodifferential operators. In the spe-
cial case a(x, ξ) = (1 + |ξ |2)σ(x)/2 these spaces coincide with spaces of variable
smoothness B

σ(x)
p,p (Rn).

A more general approach to spaces of variable smoothness are the so-called
2-microlocal function spaces Bw

p,q(Rn) and Fw
p,q(Rn). Here the smoothness in these

spaces gets measured by a weight sequence w = (wj )
∞
j=0. Besov spaces with such

weight sequences appeared first in the works of Peetre [42] and Bony [9]. Estab-
lishing a wavelet characterization for 2-microlocal Hölder-Zygmund spaces in [24]
it turned out that 2-microlocal spaces are well adapted in connection to regularity
properties of functions [25, 35, 37]. Spaces of variable smoothness are a special case
of 2-microlocal function spaces and in [34] and [8] characterizations by differences
have been given for certain classes of them.

The theories of function spaces with fixed smoothness and variable integrability
and function spaces with variable smoothness and fixed integrability finally crossed
each other in [16], where the authors introduced the function spaces of Triebel-
Lizorkin type with variable smoothness and simultaneously with variable integra-
bility. It turned out that many of the spaces mentioned above are really included in
this new structure, see [16] and references therein. The key point to merge both lines
of investigation was the study of traces. From Theorem 3.13 in [16]

trRn−1F
s(·)
p(·),q(·)

(
R

n
) = F

s(·)−1/p(·)
p(·),p(·)

(
R

n−1)

one immediately understands the necessity to take all exponents variable assuming
p(·) or s(·) variable. So the trace embeddings may be described in a natural way in
the context of these spaces. Furthermore, this was complemented in [59] by showing,
that the classical Sobolev embedding theorem

F
s0(·)
p0(·),q(·)

(
R

n
)
↪→ F

s1(·)
p1(·),q(·)

(
R

n
)
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holds also in this scale of function spaces if the usual condition is replaced by its
point-wise analogue

s0(x) − n/p0(x) = s1(x) − n/p1(x), x ∈ R
n.

Finally, Almeida and Hästö managed in [1] to adapt the definition of Besov spaces to
the setting of variable smoothness and integrability and proved the Sobolev and other
usual embeddings in this scale.

The properties of Besov and Triebel-Lizorkin spaces of variable smoothness and
integrability known so far give a reasonable hope that these new scales of function
spaces enjoy sufficiently many properties to allow a local description of many ef-
fects, which up to now could only be described in a global way. Subsequently, for
the spaces F

s(·)
p(·),q(·)(Rn) there is a characterization by local means given in [30]. This

characterization still works with Fourier analytical tools but the analyzing functions
k0, k ∈ S(Rn) are compactly supported in the time-domain and we only need local
values of f around x ∈ R

n to calculate the building blocks k(2−j , f )(x). This is in
sharp contrast to the definition of the spaces by the decomposition of unity, cf. Def-
initions 1 and 3. For the spaces B

s(·)
p(·),q(·)(Rn) we will prove a local means assertion

of this type in Sect. 3 which will be helpful later on.
The main aim of this paper is to present another essential property of the func-

tion spaces from [16] and [1]. We prove the surprising result that these spaces
B

s(·)
p(·),q(·)(Rn) and F

s(·)
p(·),q(·)(Rn) with variable smoothness and integrability do also

allow a characterization purely in the time-domain by classical ball means of differ-
ences.

The paper is organized as follows. First of all we provide all necessary nota-
tion in Sect. 2. Since the proofs for spaces of variable smoothness and 2-microlocal
function spaces work very similar (see Remark 2) we present our results for both
scales. The proof for the local means characterization will be given in Sect. 3 in
terms of 2-microlocal function spaces and we present the version for spaces of vari-
able smoothness in Sect. 3.2. In Sect. 4 we prove the characterization by ball means
of differences for B

s(·)
p(·),q(·)(Rn) and F

s(·)
p(·),q(·)(Rn) and the version for 2-microlocal

function spaces will be given in Sect. 4.5.

2 Notation

In this section we collect all the necessary definitions. We start with the vari-
able Lebesgue spaces Lp(·)(Rn). A measurable function p : R

n → (0,∞] is
called a variable exponent function if it is bounded away from zero, i.e. if p− =
ess-infx∈Rn p(x) > 0. We denote the set of all variable exponent functions by P (Rn).
We put also p+ = ess-supx∈Rn p(x).

The variable exponent Lebesgue space Lp(·)(Rn) consists of all measurable func-
tions f for which there exist λ > 0 such that the modular

�Lp(·)(Rn)(f/λ) =
∫

Rn

ϕp(x)

( |f (x)|
λ

)
dx
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is finite, where

ϕp(t) =

⎧
⎪⎨

⎪⎩

tp if p ∈ (0,∞),

0 if p = ∞ and t ≤ 1,

∞ if p = ∞ and t > 1.

If we define R
n∞ = {x ∈ R

n : p(x) = ∞} and R
n
0 = R

n \ R
n∞, then the Luxemburg

norm of a function f ∈ Lp(·)(Rn) is given by
∥∥f |Lp(·)

(
R

n
)∥∥

= inf
{
λ > 0 : �Lp(·)(Rn)(f/λ) ≤ 1

}

= inf

{
λ > 0 :

∫

R
n
0

(
f (x)

λ

)p(x)

dx < 1 and
∣∣f (x)

∣∣ < λ for a.e. x ∈ R
n∞

}
.

If p(·) ≥ 1, then it is a norm otherwise it is always a quasi-norm.
To define the mixed spaces �q(·)(Lp(·)) we have to define another modular. For

p,q ∈ P (Rn) and a sequence (fν)ν∈N0 of Lp(·)(Rn) functions we define

��q(·)(Lp(·))(fν) =
∞∑

ν=0

inf

{
λν > 0 : �Lp(·)(Rn)

(
fν

λ
1/q(·)
ν

)
≤ 1

}
. (1)

If q+ < ∞, then we can replace (1) by the simpler expression

��q(·)(Lp(·))(fν) =
∑

ν

∥∥|fν |q(·)|Lp(·)
q(·)

∥∥.

The (quasi-)norm in the �q(·)(Lp(·)) spaces is defined as usual by
∥∥fν |�q(·)(Lp(·))

∥∥ = inf
{
μ > 0 : ��q(·)(Lp(·))(fν/μ) ≤ 1

}
.

It is known, cf. [1, 31], that �q(·)(Lp(·)) is a norm if q(·) ≥ 1 is constant almost
everywhere (a.e.) on R

n and p(·) ≥ 1, or if 1/p(x) + 1/q(x) ≤ 1 a.e. on R
n, or if

1 ≤ q(x) ≤ p(x) ≤ ∞ a.e. on R
n. Surprisingly enough, it turned out in [31] that

the condition min(p(x), q(x)) ≥ 1 a.e. on R
n is not sufficient for �q(·)(Lp(·)) to be

a norm. Nevertheless, it was proven in [1] that it is a quasi-norm for every p,q ∈
P (Rn).

For the sake of completeness, we state also the definition of the space Lp(·)(�q(·)),
which is much more intuitive then the definition of �q(·)(Lp(·)). One just takes the
�q(x) norm of (fν(x))ν∈N0 for every x ∈ R

n and then the Lp(·)-norm with respect to
x ∈ R

n, i.e.
∥∥fν |Lp(·)(�q(·))

∥∥ = ∥∥∥∥fν(x)|�q(x)

∥∥∣∣Lp(·)
∥∥.

It is easy to show [16] that Lp(·)(�q(·)) is always a quasi-normed space and it is a
normed space, if min(p(x), q(x)) ≥ 1 holds point-wise.

The summation in the definition of the norms of �q(·)(Lp(·)) and Lp(·)(�q(·)) can
also be taken for ν ∈ Z. It always comes out of the context over which interval the
summation is taken. Occasionally, we may indicate it by ‖(fν)

∞
ν=−∞|�q(·)(Lp(·))‖.
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By f̂ = F f and f ∨ = F −1f we denote the usual Fourier transform and its inverse
on S(Rn), the Schwartz space of smooth and rapidly decreasing functions, and on
S ′(Rn), the dual of the Schwartz space.

2.1 Spaces B
s(·)
p(·),q(·)(Rn) and F

s(·)
p(·),q(·)(Rn)

The definition of Besov and Triebel-Lizorkin spaces of variable smoothness and in-
tegrability is based on the technique of decomposition of unity exactly in the same
manner as in the case of constant exponents.

Definition 1 Let ϕ0 ∈ S(Rn) with ϕ0(x) = 1 for |x| ≤ 1 and suppϕ0 ⊆ {x ∈ R
n :

|x| ≤ 2}. For j ≥ 1 we define

ϕj (x) = ϕ0
(
2−j x

) − ϕ0
(
2−j+1x

)
.

One may verify easily that

∞∑

j=0

ϕj (x) = 1 for all x ∈ R
n.

The following regularity classes for the exponents are necessary to make the defini-
tion of the spaces independent on the chosen decomposition of unity.

Definition 2 Let g ∈ C(Rn).

(i) We say that g is locally log-Hölder continuous, abbreviated g ∈ C
log
loc (Rn), if

there exists clog(g) > 0 such that

∣∣g(x) − g(y)
∣∣ ≤ clog(g)

log(e + 1/|x − y|) (2)

holds for all x, y ∈ R
n.

(ii) We say that g is globally log-Hölder continuous, abbreviated g ∈ Clog(Rn), if g

is locally log-Hölder continuous and there exists g∞ ∈ R such that

∣∣g(x) − g∞
∣∣ ≤ clog

log(e + |x|)
holds for all x ∈ R

n.

Remark 1 With (2) we obtain
∣∣g(x)

∣∣ ≤ clog(g) + ∣∣g(0)
∣∣, for all x ∈ R

n.

This implies that all functions g ∈ C
log
loc (Rn) always belong to L∞(Rn).

If an exponent p ∈ P (Rn) satisfies 1/p ∈ Clog(Rn), then we say it belongs to the
class P log(Rn). We recall the definition of the spaces B

s(·)
p(·),q(·)(Rn) and F

s(·)
p(·),q(·)(Rn),

as given in [16] and [1].



J Fourier Anal Appl

Definition 3 (i) Let p,q ∈ P log(Rn) with 0 < p− ≤ p+ < ∞, 0 < q− ≤ q+ < ∞
and let s ∈ C

log
loc (Rn). Then

F
s(·)
p(·),q(·)

(
R

n
) = {

f ∈ S ′(
R

n
) : ∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥

ϕ
< ∞}

,

where
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥

ϕ
= ∥∥2js(·)(ϕj f̂ )∨|Lp(·)(�q(·))

∥∥.

(ii) Let p,q ∈ P log(Rn) and let s ∈ C
log
loc (Rn). Then

B
s(·)
p(·),q(·)

(
R

n
) = {

f ∈ S ′(
R

n
) : ∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥

ϕ
< ∞}

,

where
∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥

ϕ
= ∥∥2js(·)(ϕj f̂ )∨|�q(·)(Lp(·))

∥∥.

The subscript ϕ at the norm symbolizes that the definition formally does depend
on the resolution of unity. From [30] and [1] we have that the definition of the spaces
F

s(·)
p(·),q(·)(Rn) and B

s(·)
p(·),q(·)(Rn) is independent of the chosen resolution of unity if

p,q ∈ P log(Rn) and s ∈ C
log
loc (Rn). That means that different start functions ϕ0 and

ϕ̃0 from Definition 1 induce equivalent norms in the above definition. So we will
suppress the subscript ϕ in the notation of the norms.

Let us comment on the conditions on p,q ∈ P log(Rn) for the Triebel-Lizorkin
spaces. The condition 0 < p− ≤ p+ < ∞ is quite natural since there exists also the
restriction p < ∞ in the case of constant exponents, see [51] and [63]. The second
one, 0 < q− ≤ q+ < ∞, is a bit unnatural and comes from the use of the convolution
Lemma 21 [16, Theorem 3.2]. There is some hope that this convolution lemma can
be generalized and the case q+ = ∞ can be incorporated in the definition of the
F -spaces.

The Triebel-Lizorkin spaces with variable smoothness have first been introduced
in [16] under much more restrictive conditions on s(·). These conditions have been
relaxed in [30] in the context of 2-microlocal function spaces (see the next subsec-
tion).

Besov spaces with variable p(·), q(·) and s(·) have been introduced in [1].
Both scales contain as special cases a lot of well known function spaces. If s,p and

q are constants, then we derive the well known Besov and Triebel-Lizorkin spaces
with usual Hölder and Sobolev spaces included, see [51] and [52]. If the smoothness
s ∈ R is a constant and p ∈ P log(Rn) with p− > 1, then F s

p(·),2(Rn) = Ls
p(·)(Rn)

are the variable Bessel potential spaces from [2] and [23] with its special cases
F 0

p(·),2(Rn) = Lp(·)(Rn) and Fk
p(·),2(Rn) = Wk

p(·)(Rn) for k ∈ N0, see [16].
Taking s ∈ R and q ∈ (0,∞] as constants we derive the spaces F s

p(·),q(Rn) and
Bs

p(·),q(Rn) studied by Xu in [61] and [62].

Furthermore it holds F
s(·)
p(·),p(·)(Rn) = B

s(·)
p(·),p(·)(Rn) and B

s(·)∞,∞(Rn) equals the

variable Hölder-Zygmund space Cs(·)(Rn) introduced in [3, 4] and [44] with 0 <

s− ≤ s+ ≤ 1, see [1].
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2.2 2-Microlocal Spaces

The definition of Besov and Triebel-Lizorkin spaces of variable smoothness and in-
tegrability is a special case of the so-called 2-microlocal spaces of variable integra-
bility. As some of the results presented here get proved in this more general scale, we
present also the definition of 2-microlocal spaces. It is based on the dyadic decom-
position of unity as presented above combined with the concept of admissible weight
sequences.

Definition 4 Let α ≥ 0 and let α1, α2 ∈ R with α1 ≤ α2. A sequence of non-negative
measurable functions w = (wj )

∞
j=0 belongs to the class W α

α1,α2
if and only if

(i) there exists a constant C > 0 such that

0 < wj(x) ≤ Cwj (y)
(
1 + 2j |x − y|)α for all j ∈ N0 and all x, y ∈ R

n

(ii) and for all j ∈ N0 and all x ∈ R
n we have

2α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x).

Such a system (wj )
∞
j=0 ∈ W α

α1,α2
is called an admissible weight sequence.

Finally, here is the definition of the spaces under consideration.

Definition 5 Let w = (wj )j∈N0 ∈ W α
α1,α2

. Further, let p,q ∈ P log(Rn) (with
p+, q+ < ∞ in the F -case), then we define

Bw
p(·),q(·)

(
R

n
) = {

f ∈ S ′(
R

n
) : ∥∥f |Bw

p(·),q(·)
(
R

n
)∥∥

ϕ
< ∞}

,

where
∥∥f |Bw

p(·),q(·)
(
R

n
)∥∥

ϕ
= ∥∥wj(ϕj f̂ )∨|�q(·)(Lp(·))

∥∥

and

Fw
p(·),q(·)

(
R

n
) = {

f ∈ S ′(
R

n
) : ∥∥f |Fw

p(·),q(·)
(
R

n
)∥∥

ϕ
< ∞}

,

where
∥∥f |Fw

p(·),q(·)
(
R

n
)∥∥

ϕ
= ∥∥wj(ϕj f̂ )∨|Lp(·)(�q(·))

∥∥.

The independence of the decomposition of unity for the 2-microlocal spaces from
Definition 5 follows from the local means characterization (see [30] for the Triebel-
Lizorkin and Sect. 3 for the Besov spaces).

The 2-microlocal spaces with the special weight sequence

wj(x) = 2js
(
1 + 2j |x − x0|

)s′
with s, s′ ∈ R and x0 ∈ R

n (3)

have first been introduced by Peetre in [42] and by Bony in [9]. Later on, Jaffard
and Meyer gave a characterization in [24] and [25] with wavelets of the spaces
C

s,s′
x0 = Bw∞,∞(Rn) and H

s,s′
x0 = Bw

2,2(R
n) with the weight sequence (3). It turned

out that spaces of this type are very useful to study regularity properties of functions.
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Subsequently, Lévy-Véhel and Seuret developed in [35] the 2-microlocal formalism
and studied the behavior of cusps, chirps and fractal functions with respect to the
spaces C

s,s′
x0 .

A first step to a more general weight sequence w has been taken by Moritoh and
Yamada in [38] and wider ranges of function spaces have been studied by Xu in [60]
and by Andersson in [5].

The above definition for 2-microlocal weight sequences was presented by Besov
in [8] and also in [30] by Kempka.

A different line of study for spaces of variable smoothness—using different
methods—are the spaces of generalized smoothness introduced by Goldman and
Kalyabin in [20, 21, 26] and [27]. A systematic treatment of these spaces based on
differences has been given by Goldman in [22], see also the survey [29] and refer-
ences therein.

Later on, spaces of generalized smoothness appeared in interpolation theory and
have been investigated in [10, 36] and [39]. For further information on these spaces
see the survey paper [19] where also a characterization by atoms and local means for
these spaces is given.

From the definition of admissible sequences, d1σj ≤ σj+1 ≤ d2σj , it follows di-

rectly that the spaces of generalized smoothness B
(σj )
p,q (Rn) and F

(σj )
p,q (Rn) of Farkas

and Leopold [19] and B
(s,�)
p,q (Rn) and F

(s,�)
p,q (Rn) from Moura [39] are a special

subclass of 2-microlocal function spaces with 2α1 = d1, 2α2 = d2 and α = 0.
In a different approach Schneider in [48] studied spaces of varying smoothness.

Here the smoothness at a point gets determined by a global smoothness s0 ∈ R and
a local smoothness function s(·). These spaces can not be incorporated into the scale
of 2-microlocal function spaces, but there exist some embeddings.

Remark 2 Surprisingly, these 2-microlocal weight sequences are directly connected
to variable smoothness functions s : R

n → R if we set

wj(x) = 2js(x). (4)

If s ∈ C
log
loc (Rn) (which is the standard condition on s(·)), then w = (wj (x))j∈N0 =

(2js(x))j∈N0 belongs to W α
α1,α2

with α1 = s− and α2 = s+. For the third index α we
use Lemma 19 with m = 0 and obtain α = clog(s), where clog(s) is the constant for
s(·) from (2). That means that spaces of variable smoothness from Definition 3 are a
special case of 2-microlocal function spaces from Definition 5. Both types of function
spaces are very closely connected and the properties used in the proofs are either

2k|s(x)−s(y)| ≤ c or
wk(x)

wk(y)
≤ c (5)

for |x − y| ≤ c2−k . This property follows directly either from the definition of s ∈
C

log
loc (Rn) or from Definition 4.

Nevertheless there exist examples of admissible weight sequences which can not
be expressed in terms of variable smoothness functions. For example the important
and well studied case of the weight sequence w from (3) can not be expressed via (4)
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if s′ �= 0. Another example are the spaces of generalized smoothness which can not
be identified as spaces of variable smoothness.

Since spaces of variable smoothness are included in the scale of 2-microlocal func-
tion spaces all special cases of the previous subsection can be identified in the defini-
tion of 2-microlocal spaces.

Although the 2-microlocal spaces include the scales of spaces of variable smooth-
ness, we will give some of our proofs in the notation of variable smoothness, since
this notation is more common. We will then reformulate the results in terms of
2-microlocal spaces, the proof works then very similar; we just have to use (5).

3 Local Means Characterization

The main result of this section is the local means characterization of the spaces
Bw

p(·),q(·)(Rn). For the spaces Fw
p(·),q(·)(Rn) there already exists a local means char-

acterization [30, Corollary 4.7]. We shall first give the full proof for the 2-microlocal
spaces and later on (in Sect. 3.2) we restate the result also for spaces B

s(·)
p(·),q(·)(Rn)

and F
s(·)
p(·),q(·)(Rn).

The crucial tool will be the Peetre maximal operator, as defined by Peetre in [42].
The operator assigns to each system (�k)k∈N0 ⊂ S(Rn), to each distribution f ∈
S ′(Rn) and to each number a > 0 the following quantities

(
�∗

k f
)
a
(x) := sup

y∈Rn

|(�k ∗ f )(y)|
1 + |2k(y − x)|a , x ∈ R

n and k ∈ N0. (6)

We start with two given functions ψ0,ψ1 ∈ S(Rn). We define

ψj (x) = ψ1
(
2−j+1x

)
, for x ∈ R

n and j ∈ N.

Furthermore, for all j ∈ N0 we write �j = ψ̂j . The main theorem of this section
reads as follows.

Theorem 6 Let w = (wk)k∈N0 ∈ W α
α1,α2

, p,q ∈ P log(Rn) and let a > 0, R ∈ N0 with
R > α2. Further, let ψ0,ψ1 belong to S(Rn) with

Dβψ1(0) = 0, for 0 ≤ |β| < R, (7)

and
∣∣ψ0(x)

∣∣ > 0 on
{
x ∈ R

n : |x| < ε
}
, (8)

∣∣ψ1(x)
∣∣ > 0 on

{
x ∈ R

n : ε/2 < |x| < 2ε
}

(9)

for some ε > 0. For a >
n+clog(1/q)

p− + α and all f ∈ S ′(Rn) we have

∥
∥f |Bw

p(·),q(·)
(
R

n
)∥∥ ≈ ∥

∥(�k ∗ f )wk|�q(·)(Lp(·))
∥
∥ ≈ ∥

∥(
�∗

k f
)
a
wk|�q(·)(Lp(·))

∥
∥.
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Remark 3

(i) The proof relies on [46] and will be shifted to the next section. Moreover, The-
orem 6 shows that the definition of the 2-microlocal spaces of variable integra-
bility is independent of the resolution of unity used in the Definition 5.

(ii) The conditions (7) are usually called moment conditions while (8) and (9) are
the so called Tauberian conditions.

(iii) If R = 0, then there are no moment conditions (7) on ψ1.
(iv) The notation clog(1/q) stands for the constant from (2) with 1/q(·).

Next we reformulate the abstract Theorem 6 in the sense of classical local means
(see Sects. 2.4.6 and 2.5.3 in [52]). Since the proof is the same as the one from
Theorem 2.4 in [30] we just state the result.

Corollary 1 There exist functions k0, k ∈ S(Rn) with suppk0, suppk ⊂ {x ∈ R
n :

|x| < 1} and Dβk̂(0) = 0 for all 0 ≤ |β| < α2 such that for all f ∈ S ′(Rn)

∥∥k0(1, f )w0|Lp(·)
(
R

n
)∥∥ + ∥∥k

(
2−j , f

)
wj |�q(·)(Lp(·))

∥∥

is an equivalent norm on Bw
p(·),q(·)(Rn).

The building blocks get calculated by

k(t, f )(x) =
∫

Rn

k(y)f (x + ty)dy = t−n

∫

Rn

k

(
y − x

t

)
f (y)dy

and similarly for k0(1, f )(x).

A similar characterization for Fw
p(·),q(·)(Rn) and details how these functions k0, k ∈

S(Rn) can be constructed can be found in [30].

3.1 Proof of Local Means

The proof of Theorem 6 is divided into three parts. The next section is devoted to
some technical lemmas needed later. Section 3.1.2 is devoted to the proof of Theo-
rem 12, which gives an inequality between different Peetre maximal operators. Fi-
nally, Sect. 3.1.3 proves the boundedness of the Peetre maximal operator in Theo-
rem 13. These two theorems combined give immediately the proof of Theorem 6.

3.1.1 Helpful Lemmas

Before proving the local means characterization we recall some technical lemmas,
which appeared in the paper of Rychkov [46]. For some of them we need adapted
versions to our situation.

The first lemma describes the use of the so called moment conditions.

Lemma 7 ([46], Lemma 1) Let g,h ∈ S(Rn) and let M ∈ N0. Suppose that
(
Dβĝ

)
(0) = 0 for 0 ≤ |β| < M.
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Then for each N ∈ N0 there is a constant CN such that

sup
z∈Rn

∣∣(gt ∗ h)(z)
∣∣(1 + |z|N ) ≤ CNtM, for 0 < t < 1,

where gt (x) = t−ng(x/t).

The next lemma is a discrete convolution inequality. We formulate it in a rather
abstract notation and point out later on the conclusions we need.

Lemma 8 Let X ⊂ {(fk)k∈Z : fk : R
n → [−∞,∞] measurable} be a quasi-Banach

space of sequences of measurable functions. Further we assume that its quasi-norm
is shift-invariant, i.e. it satisfies

∥∥(fk+l )k∈Z|X∥∥ = ∥∥(fk)k∈Z|X∥∥ for every l ∈ Z and (fk)k∈Z ∈ X.

For a sequence of non-negative functions (gk)k∈Z ∈ X and δ > 0 we denote

Gν(x) =
∞∑

k=−∞
2−|ν−k|δgk(x), x ∈ R

n, ν ∈ Z.

Then there exists a constant c > 0 depending only on δ and X such that for every
sequence (gk)k∈Z

∥∥(Gν)ν |X
∥∥ ≤ c

∥∥(gk)k|X
∥∥.

Proof Since X is a quasi-Banach space, there exists a r > 0 such that ‖·|X‖ is equiv-
alent to some r-norm, cf. [6, 43]. We have then the following

∥∥(Gν)ν |X
∥∥r =

∥
∥∥∥∥

( ∞∑

k=−∞
2−|ν−k|δgk

)

ν

∣
∣∣∣∣
X

∥
∥∥∥∥

r

=
∥∥∥∥

(∑

l∈Z

2−|l|δgν+l

)

ν

∣∣∣∣X
∥∥∥∥

r

�
∑

l∈Z

2−|l|rδ∥∥(gν+l )ν |X
∥∥r ≤ c

∥∥(gν)ν |X
∥∥r

.

Now taking the power 1/r yields the desired estimate. �

The spaces Lp(·)(�q(·)) and �q(·)(Lp(·)) are quasi-Banach spaces which fulfill the
conditions of Lemma 8. Therefore, we obtain the following

Lemma 9 Let p,q ∈ P (Rn) and δ > 0. Let (gk)k∈Z be a sequence of non-negative
measurable functions on R

n and denote

Gν(x) =
∑

k∈Z

2−|ν−k|δgk(x), x ∈ R
n, ν ∈ Z.
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Then there exist a constants C1,C2 > 0, depending on p(·), q(·) and δ, such that
∥∥Gν |�q(·)(Lp(·))

∥∥ ≤ C1
∥∥gk|�q(·)(Lp(·))

∥∥ and
∥∥Gν |Lp(·)(�q(·))

∥∥ ≤ C2
∥∥gk|Lp(·)(�q(·))

∥∥.

Remark 4 Of course, Lemma 9 holds true also if the indices k and ν run only over
natural numbers.

Since the maximal operator is in general not bounded on �q(·)(Lp(·)) (see [1, Ex-
ample 4.1]) we need a replacement for that. It turned out that a convolution with
radial decreasing functions fits very well into the scheme. A careful evaluation of the
proof in [1, Lemma 4.7] together with Lemma 19 gives us the following convolution
inequality.

Lemma 10 Let p,q ∈ P log(Rn) with p(·) ≥ 1 and let ην,m(x) = 2nν(1 + 2ν |x|)−m.
For all m > n + clog(1/q) there exists a constant c > 0 such that for all sequences
(fj )j∈N0 ∈ �q(·)(Lp(·)) it holds

∥∥(ην,m ∗ fν)ν∈N0 |�q(·)(Lp(·))
∥∥ ≤ c

∥∥(fj )j∈N0 |�q(·)(Lp(·))
∥∥.

The last technical lemma is overtaken literally from [46].

Lemma 11 ([46], Lemma 3) Let 0 < r ≤ 1 and let (γν)ν∈N0 , (βν)ν∈N0 be two se-
quences taking values in (0,∞). Assume that for some N0 ∈ N0,

lim sup
ν→∞

γν

2νN0 < ∞. (10)

Furthermore, we assume that for any N ∈ N

γν ≤ CN

∞∑

k=0

2−kNβk+νγ
1−r
k+ν , ν ∈ N0, CN < ∞

holds, then for any N ∈ N

γ r
ν ≤ CN

∞∑

k=0

2−kNrβk+ν, ν ∈ N0

holds with the same constants CN .

3.1.2 Comparison of Different Peetre Maximal Operators

In this subsection we present an inequality between different Peetre maximal oper-
ators. Let us recall the notation given before Theorem 6. For two given functions
ψ0,ψ1 ∈ S(Rn) we define

ψj (x) = ψ1
(
2−j+1x

)
, for x ∈ R

n and j ∈ N.
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Furthermore, for all j ∈ N0 we write �j = ψ̂j and in an analogous manner we define
�j from two starting functions φ0, φ1 ∈ S(Rn). Using this notation we are ready to
formulate the theorem.

Theorem 12 Let w = (wj )j∈N0 ∈ W α
α1,α2

, p,q ∈ P (Rn) and a > 0. Moreover, let
R ∈ N0 with R > α2,

Dβψ1(0) = 0, 0 ≤ |β| < R (11)

and for some ε > 0

∣∣φ0(x)
∣∣ > 0 on

{
x ∈ R

n : |x| < ε
}
, (12)

∣∣φ1(x)
∣∣ > 0 on

{
x ∈ R

n : ε/2 < |x| < 2ε
}
, (13)

then

∥∥(
�∗

k f
)
a
wk|�q(·)(Lp(·))

∥∥ ≤ c
∥∥(

�∗
kf

)
a
wk|�q(·)(Lp(·))

∥∥

holds for every f ∈ S ′(Rn).

Remark 5 Observe that there are no restrictions on a > 0 and p,q ∈ P (Rn) in the
theorem above.

Proof We have the fixed resolution of unity from Definition 1 and define the sequence
of functions (λj )j∈N0 by

λj (x) = ϕj (
2x
ε

)

φj (x)
.

It follows from the Tauberian conditions (12) and (13) that they satisfy

∞∑

j=0

λj (x)φj (x) = 1, x ∈ R
n, (14)

λj (x) = λ1
(
2−j+1x

)
, x ∈ R

n, j ∈ N, (15)

and

suppλ0 ⊂ {
x ∈ R

n : |x| ≤ ε
}

and suppλ1 ⊂ {
x ∈ R

n : ε/2 ≤ |x| ≤ 2ε
}
. (16)

Furthermore, we denote �k = λ̂k for k ∈ N0 and obtain together with (14) the fol-
lowing identities (convergence in S ′(Rn))

f =
∞∑

k=0

�k ∗ �k ∗ f, �ν ∗ f =
∞∑

k=0

�ν ∗ �k ∗ �k ∗ f. (17)
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We have

∣∣(�ν ∗ �k ∗ �k ∗ f )(y)
∣∣ ≤

∫

Rn

∣∣(�ν ∗ �k)(z)
∣∣∣∣(�k ∗ f )(y − z)

∣∣dz

≤ (
�∗

kf
)
a
(y)

∫

Rn

∣∣(�ν ∗ �k)(z)
∣∣(1 + ∣∣2kz

∣∣a)dz

=: (�∗
kf

)
a
(y)Iν,k, (18)

where

Iν,k :=
∫

Rn

∣∣(�ν ∗ �k)(z)
∣∣(1 + ∣∣2kz

∣∣a)dz.

According to Lemma 7 we get

Iν,k ≤ c

{
2(k−ν)R, k ≤ ν,

2(ν−k)(a+1+|α1|), ν ≤ k.
(19)

Namely, we have for 1 ≤ k < ν with the change of variables 2kz �→ z

Iν,k = 2−n

∫

Rn

∣∣(�ν−k ∗ �1(·/2)
)
(z)

∣∣(1 + |z|a)dz

≤ c sup
z∈Rn

∣∣(�ν−k ∗ �1(·/2)
)
(z)

∣∣(1 + |z|)a+n+1 ≤ c2(k−ν)R.

Similarly, we get for 1 ≤ ν < k with the substitution 2νz �→ z

Iν,k = 2−n

∫

Rn

∣∣(�1(·/2) ∗ �k−ν

)
(z)

∣∣(1 + ∣∣2k−νz
∣∣a)dz

≤ c2(ν−k)(M−a).

M can be taken arbitrarily large because �1 has infinitely many vanishing moments.
Taking M = 2a + |α1| + 1 we derive (19) for the cases k, ν ≥ 1 with k �= ν. The
missing cases can be treated separately in an analogous manner. The needed moment
conditions are always satisfied by (11) and (16). The case k = ν = 0 is covered by the
constant c in (19).

Furthermore, we have

(
�∗

kf
)
a
(y) ≤ (

�∗
kf

)
a
(x)

(
1 + ∣∣2k(x − y)

∣∣a)

≤ (
�∗

kf
)
a
(x)

(
1 + ∣∣2ν(x − y)

∣∣a)max
(
1,2(k−ν)a

)
.

We put this into (18) and get

sup
y∈Rn

|(�ν ∗ �k ∗ �k ∗ f )(y)|
1 + |2ν(x − y)|a ≤ c

(
�∗

kf
)
a
(x)

{
2(k−ν)R, k ≤ ν,

2(ν−k)(1+|α1|), k ≥ ν.
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Multiplying both sides with wν(x) and using

wν(x) ≤ wk(x)

{
2(k−ν)(−α2), k ≤ ν,

2(ν−k)α1, k ≥ ν,

leads us to

sup
y∈Rn

|(�ν ∗ �k ∗ �k ∗ f )(y)|
1 + |2ν(x − y)|a wν(x) ≤ c

(
�∗

kf
)
a
(x)wk(x)

{
2(k−ν)(R−α2), k ≤ ν,

2(ν−k), k ≥ ν.

This inequality together with (17) gives for δ := min(1,R − α2) > 0

(
�∗

ν f
)
a
(x)wν(x) ≤ c

∞∑

k=0

2−|k−ν|δ(�∗
kf

)
a
(x)wk(x), x ∈ R

n.

Taking the �q(·)(Lp(·)) norm and using Lemma 9 yields immediately the desired re-
sult. �

3.1.3 Boundedness of the Peetre Maximal Operator

We will present a theorem which describes the boundedness of the Peetre maximal
operator. We use the same notation introduced at the beginning of the last subsection.
Especially, we have the functions ψk ∈ S(Rn) and �k = ψ̂k ∈ S(Rn) for all k ∈ N0.

Theorem 13 Let (wk)k∈N0 ∈ W α
α1,α2

, a > 0 and p,q ∈ P log(Rn). For some ε > 0 we
assume ψ0,ψ1 ∈ S(Rn) with

|ψ0| > 0 on
{
x ∈ R

n : |x| < ε
}
,

|ψ1| > 0 on
{
x ∈ R

n : ε/2 < |x| < 2ε
}
.

For a >
n+clog(1/q)

p− + α

∥∥(
�∗

k f
)
a
wk|�q(·)(Lp(·))

∥∥ ≤ c
∥∥(�k ∗ f )wk|�q(·)(Lp(·))

∥∥

holds for all f ∈ S ′(Rn).

Remark 6 Observe that in the theorem above no moment conditions on ψ1 are stated
but this time there are restrictions on a and p(·), q(·).

Proof As in the last proof we find the functions (λj )j∈N0 with the properties (15),
(16) and

∞∑

k=0

λk

(
2−νx

)
ψk

(
2−νx

) = 1 for all ν ∈ N0.
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Instead of (17) we get the identity

�ν ∗ f =
∞∑

k=0

�k,ν ∗ �k,ν ∗ �ν ∗ f, (20)

where

�k,ν(ξ) = [
λk

(
2−ν ·)]∧(ξ) = 2νn�k

(
2νξ

)
for all ν, k ∈ N0.

The �k,ν are defined similarly. For k ≥ 1 and ν ∈ N0 we have �k,ν = �k+ν and with
the notation

σk,ν(x) =
{

ψ0(2−νx) if k = 0,

ψν(x) otherwise

we get ψk(2−νx)ψν(x) = σk,ν(x)ψk+ν(x). Hence, we can rewrite (20) as

�ν ∗ f =
∞∑

k=0

�k,ν ∗ σ̂k,ν ∗ �k+ν ∗ f. (21)

For k ≥ 1 we get from Lemma 7

∣
∣(�k,ν ∗ σ̂k,ν)(z)

∣
∣ = 2(ν−1)n

∣
∣(�k ∗ �1(·/2)

)(
2νz

)∣∣ ≤ CM2νn 2−kM

(1 + |2νz|a) (22)

for all k, ν ∈ N0 and arbitrary large M ∈ N. For k = 0 we get the estimate (22) by
using Lemma 7 with M = 0. This together with (21) gives us

∣∣(�ν ∗ f )(y)
∣∣ ≤ CM2νn

∞∑

k=0

∫

Rn

2−kM

(1 + |2ν(y − z)|a)
∣∣(�k+ν ∗ f )(z)

∣∣dz. (23)

For fixed r ∈ (0,1] we divide both sides of (23) by (1 + |2ν(x − y)|a) and we take
the supremum with respect to y ∈ R

n. Using the inequalities
(
1 + ∣∣2ν(y − z)

∣∣a)(1 + ∣∣2ν(x − y)
∣∣a) ≥ c

(
1 + ∣∣2ν(x − z)

∣∣a),
∣∣(�k+ν ∗ f )(z)

∣∣ ≤ ∣∣(�k+ν ∗ f )(z)
∣∣r(�∗

k+νf
)
a
(x)1−r

(
1 + ∣∣2k+ν(x − z)

∣∣a)1−r

and

(1 + |2k+ν(x − z)|a)1−r

(1 + |2ν(x − z)|a) ≤ 2ka

(1 + |2k+ν(x − z)|a)r ,

we get

(
�∗

ν f
)
a
(x) ≤ CM

∞∑

k=0

2−k(M+n−a)
(
�∗

k+νf
)
a
(x)1−r

∫

Rn

2(k+ν)n|(�k+ν ∗ f )(z)|r
(1 + |2k+ν(x − z)|a)r dz.

(24)
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Now, we apply Lemma 11 with

γν = (
�∗

ν f
)
a
(x), βν =

∫

Rn

2νn|(�ν ∗ f )(z)|r
(1 + |2ν(x − z)|a)r dz, ν ∈ N0

N = M +n−a, CN = CM +n−a and N0 in (10) equals the order of the distribution
f ∈ S ′(Rn).

By Lemma 11 we obtain for every N ∈ N, x ∈ R
n and ν ∈ N0

(
�∗

ν f
)
a
(x)r ≤ CN

∞∑

k=0

2−kNr

∫

Rn

2(k+ν)n|(�k+ν ∗ f )(z)|r
(1 + |2k+ν(x − z)|a)r dz (25)

provided that (�∗
ν f )a(x) < ∞.

Since f ∈ S ′(Rn), we see that (�∗
ν f )a(x) < ∞ for all x ∈ R

n and all ν ∈ N0 at
least if a > N0, where N0 is the order of the distribution. Thus we have (25) with
CN independent of f ∈ S ′(Rn) for a ≥ N0 and therefore with CN = CN,f for all
a > 0 (the right side of (25) decreases as a increases). One can easily check that (25)
with CN = CN,f implies that if for some a > 0 the right side of (25) is finite, then
(�∗

ν f )a(x) < ∞. Now, repeating the above argument resurrects the independence
of CN . If the right side of (25) is infinite, there is nothing to prove. More exhaustive
arguments of this type have been used in [54] and [47].

We point out that (25) holds also for r > 1, where the proof is much simpler. We
only have to take (23) with a +n instead of a, divide both sides by (1+|2ν(x −y)|a)
and apply Hölder’s inequality with respect to k and then z.

Multiplying (25) by wν(x)r we derive with the properties of our weight sequence

(
�∗

ν f
)
a
(x)rwν(x)r ≤ C′

N

∞∑

k=0

2−k(N+α1)r

∫

Rn

2(k+ν)n|(�k+ν ∗ f )(z)|rwk+ν(z)
r

(1 + |2k+ν(x − z)|a−α)r
dz,

(26)

for all x ∈ R
n, ν ∈ N0 and all N ∈ N.

Now, we choose r = p− and we have r(a − α) > n + clog(1/q). We denote
gr

k+ν(z) = |(�k+ν ∗ f )(z)|rwk+ν(z)
r then we can rewrite (26) by

(
�∗

ν f
)
a
(x)rwν(x)r ≤ C′

N

∞∑

l=ν

2−(l−ν)(N+α1)r
(
gr

l ∗ ηl,r(a−α)

)
(x). (27)

For fixed N > 0 with δ = N +α1 > 0 we apply the � q(·)
r

(Lp(·)
r

) norm and derive from

(27)

∥
∥(

�∗
k f

)r

a
wr

k|�q(·)/r (Lp(·)/r )
∥
∥ ≤ CN

∥∥∥
∥∥

∞∑

l=ν

2−(l−ν)δ
(
gr

l ∗ ηl,r(a−α)

)
∣∣∣
∣∣
�q(·)/r (Lp(·)/r )

∥∥∥
∥∥
.

Now application of Lemma 9 and Lemma 10 (r(a − α) > n + clog(1/q)) on the
formula above give us
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∥∥(
�∗

k f
)r

a
(·)wr

k(·)|�q(·)/r (Lp(·)/r )
∥∥ ≤ C′

N

∥∥∣∣(�ν ∗ f )(·)∣∣rwν(·)r |�q(·)/r (Lp(·)/r )
∥∥

which proves the theorem. �

3.2 Local Means Characterization of B
s(·)
p(·),q(·)(Rn) and F

s(·)
p(·),q(·)(Rn)

In this section we reformulate the local means characterization for Bw
p(·),q(·)(Rn)

from above and for Fw
p(·),q(·)(Rn) from Corollary 4.7 in [30] in terms of variable

smoothness. If we have a variable smoothness function s ∈ C
log
loc (Rn) given, then

wj(x) = 2js(x) defines an admissible weight sequence w ∈ W α
α1,α2

with α1 = s−,
α2 = s+ and α = clog(s), cf. Remark 2. Here, we denote by clog(s) the constant in (2)
for s(·).

Theorem 14 Let p,q ∈ P log(Rn) (p+, q+ < ∞ in the F-case) and s ∈ C
log
loc (Rn).

Further let a > 0, R ∈ N0 with R > s+ and let ψ0,ψ1 belong to S(Rn) with

Dβψ1(0) = 0, for 0 ≤ |β| < R,

and

∣∣ψ0(x)
∣∣ > 0 on

{
x ∈ R

n : |x| < ε
}
,

∣∣ψ1(x)
∣∣ > 0 on

{
x ∈ R

n : ε/2 < |x| < 2ε
}

for some ε > 0.

1. For a >
n+clog(1/q)

p− + clog(s) and all f ∈ S ′(Rn) we have

∥∥f |Bs(·)
p(·),q(·)

(
R

n
)∥∥ ≈ ∥∥2ks(·)(�k ∗ f )|�q(·)(Lp(·))

∥∥ ≈ ∥∥2ks(·)(�∗
k f

)
a
|�q(·)(Lp(·))

∥∥.

2. For a > n
min(p−,q−)

+ clog(s) and all f ∈ S ′(Rn) we have

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥ ≈ ∥∥2ks(·)(�k ∗ f )|Lp(·)(�q(·))

∥∥ ≈ ∥∥2ks(·)(�∗
k f

)
a
|Lp(·)(�q(·))

∥∥.

Remark 7 During the referee process of this work, there appeared in [18] a char-
acterization by local means and a characterization by atoms for B

s(·)
p(·),q(·)(Rn). The

author moved the smoothness sequence 2ks(·) into the Peetre maximal operator (6)
and modified it to

(
�∗

k 2ks(·)f
)
a
(x) = sup

y∈Rn

2ks(y)|(�k ∗ f )(y)|
1 + |2k(y − x)|a .

For this modified Peetre maximal operator he obtained in [18, Theorem 2] an equiv-
alence of the norms similar to our Theorem 14 for B

s(·)
p(·),q(·)(Rn). The advantage of

his method is that the condition on a > 0 weakens to a > n
p− .
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4 Ball Means of Differences

This section is devoted to the characterization of Besov and Triebel-Lizorkin spaces
B

s(·)
p(·),q(·)(Rn) and F

s(·)
p(·),q(·)(Rn) by ball means of differences. In the case of constant

indices p,q and s, this is a classical part of the theory of function spaces. We refer
especially to [51, Sect. 2.5] and references given there. It turns out that, under the
restriction

s > σp = n

(
1

min(p,1)
− 1

)
(28)

in the B-case and

s > σp,q = n

(
1

min(p, q,1)
− 1

)
(29)

in the F -case, Besov and Triebel-Lizorkin spaces with constant indices may be char-
acterized by expressions involving only the differences of the function values without
any use of Fourier analysis. This was complemented in [49] and [50] by showing that
these conditions are also indispensable. Of course, we are limited by (28) and (29)
also in the case of variable exponents.

The characterization by (local means of) differences for 2-microlocal spaces with
constant p,q > 1 was given by Besov [8] and a similar characterization for Besov
spaces with p = q = ∞ and the special weight sequence from (3) was given by
Seuret and Levy Véhél in [34]. We refer to [19] and [28] for the treatment of spaces
of generalized smoothness.

Our approach follows essentially [51] with some modifications described in [53].
The main obstacle on this way is the unboundedness of the maximal operator in the
frame of Lp(·)(�q(·)) and �q(·)(Lp(·)) spaces, cf. [16, Sect. 5] and [1, Example 4.1].
This is circumvented by the use of convolution with radial functions in the sense of
[16] and [1] together with a certain bootstrapping argument, which shall be described
in detail below.

The plan of this part of the work is as follows. First we give in Sect. 4.1 the nec-
essary notation. We state the main assertions of this part in Sect. 4.2. Then we prove
in Sect. 4.3 a certain preliminary version of these assertions. In Sect. 4.4 we prove
a characterization by ball means of differences for spaces with q ∈ (0,∞] constant
(where the maximal operator is bounded) and use this together with our preliminary
characterization from Sect. 4.3 to conclude the proof. Finally, in Sect. 4.5 we will
present the ball means of differences characterization also for the 2-microlocal func-
tion spaces Bw

p(·),q(·)(Rn) and Fw
p(·),q(·)(Rn) and in Sect. 4.6 we present separately

some useful Lemmas, not to disturb the main proofs of this part.

4.1 Notation

Let f be a function on R
n and let h ∈ R

n. Then we define

�1
hf (x) = f (x + h) − f (x), x ∈ R

n.
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The higher order differences are defined inductively by

�M
h f (x) = �1

h

(
�M−1

h f
)
(x), M = 2,3, . . .

This definition also allows a direct formula

�M
h f (x) :=

M∑

j=0

(−1)j
(

M

j

)
f

(
x + (M − j)h

)
. (30)

By ball means of differences we mean the quantity

dM
t f (x) = t−n

∫

|h|≤t

∣∣�M
h f (x)

∣∣dh =
∫

B

∣∣�M
thf (x)

∣∣dh,

where B = {y ∈ R
n : |y| < 1} is the unit ball of R

n, t > 0 is a real number and M is
a natural number.

Let us now introduce the (quasi-)norms, which shall be the main subject of our
study. We define

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥∗ := ∥∥f |Lp(·)

(
R

n
)∥∥

+
∥∥∥∥

(∫ ∞

0
t−s(x)q(x)

(
dM
t f (x)

)q(x) dt

t

)1/q(x)∣∣∣∣Lp(·)
(
R

n
)
∥∥∥∥

(31)

and its partially discretized counterpart

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥∗∗ := ∥∥f |Lp(·)

(
R

n
)∥∥

+
∥∥∥∥
∥

( ∞∑

k=−∞
2ks(x)q(x)

(
dM

2−k f (x)
)q(x)

)1/q(x)∣∣∣∣
∣
Lp(·)

(
R

n
)
∥∥∥∥
∥

= ∥
∥f |Lp(·)

(
R

n
)∥∥ + ∥

∥(
2ks(x)dM

2−k f (x)
)∞
k=−∞

∣
∣Lp(·)(�q(·))

∥
∥.

The norm ‖f |F s(·)
p(·),q(·)(Rn)‖∗∗ admits a direct counterpart also for Besov spaces,

namely

∥∥f |Bs(·)
p(·),q(·)

(
R

n
)∥∥∗∗ := ∥∥f |Lp(·)

(
R

n
)∥∥ + ∥∥(

2ks(x)dM
2−k f (x)

)∞
k=−∞

∣∣�q(·)(Lp(·))
∥∥.

(32)

Finally, we shall use as a technical tool also the analogues of (31)–(32) with the
integration over t restricted to 0 < t < 1. This leads to the following expressions

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥∗

1 := ∥∥f |Lp(·)
(
R

n
)∥∥

+
∥∥∥∥

(∫ 1

0
t−s(x)q(x)

(
dM
t f (x)

)q(x) dt

t

)1/q(x)∣∣∣∣Lp(·)
(
R

n
)
∥∥∥∥,
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∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥∗∗

1 := ∥∥f |Lp(·)
(
R

n
)∥∥

+
∥∥
∥∥∥

( ∞∑

k=0

2ks(x)q(x)
(
dM

2−k f (x)
)q(x)

)1/q(x)∣∣
∣∣∣
Lp(·)

(
R

n
)
∥∥
∥∥∥

= ∥∥f |Lp(·)
(
R

n
)∥∥ + ∥∥(

2ks(x)dM
2−k f (x)

)∞
k=0

∣∣Lp(·)(�q(·))
∥∥,

∥∥f |Bs(·)
p(·),q(·)

(
R

n
)∥∥∗∗

1 := ∥∥f |Lp(·)
(
R

n
)∥∥ + ∥∥(

2ks(x)dM
2−k f (x)

)∞
k=0

∣∣�q(·)(Lp(·))
∥∥.

4.2 Main Theorem

Using the notation introduced above, we may now state the main result of this section.

Theorem 15 (i) Let p,q ∈ P log(Rn) with p+, q+ < ∞ and s ∈ C
log
loc (Rn). Let M ∈

N with M > s+ and let

s− > σp−,q− ·
[

1 + clog(s)

n
· min

(
p−, q−)]

. (33)

Then

F
s(·)
p(·),q(·)

(
R

n
) = {

f ∈ Lp(·)
(
R

n
) ∩ S ′(

R
n
) : ∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥∗

< ∞}

and ‖ · |F s(·)
p(·),q(·)(Rn)‖ and ‖ · |F s(·)

p(·),q(·)(Rn)‖∗ are equivalent on F
s(·)
p(·),q(·)(Rn). The

same holds for ‖f |F s(·)
p(·),q(·)(Rn)‖∗∗.

(ii) Let p,q ∈ P log(Rn) and s ∈ C
log
loc (Rn). Let M ∈ N with M > s+ and let

s− > σp− ·
[

1 + clog(1/q)

n
+ clog(s)

n
· p−

]
. (34)

Then

B
s(·)
p(·),q(·)

(
R

n
) = {

f ∈ Lp(·)
(
R

n
) ∩ S ′(

R
n
) : ∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥∗∗

< ∞}

and ‖ · |Bs(·)
p(·),q(·)(Rn)‖ and ‖ · |Bs(·)

p(·),q(·)(Rn)‖∗∗ are equivalent on B
s(·)
p(·),q(·)(Rn).

Remark 8 Let us comment on the rather technical conditions (33) and (34).

• If min(p−, q−) ≥ 1, then (33) becomes just s− > 0. Furthermore, if p, q and s are
constant functions, then (33) coincides with (29).

• If p− ≥ 1, then (34) reduces also to s− > 0 and in the case of constant exponents
we again recover (28).

As indicated already above, the proof is divided into several parts.
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4.3 Preliminary Version of Theorem 15

This subsection contains a preliminary version of Theorem 15 (Lemma 16). Its proof
represents the heart of the proof of Theorem 15. For better lucidity, it is again divided
into more parts.

Lemma 16 Under the conditions of Theorem 15, the following estimates hold for all
f ∈ Lp(·)(Rn) ∩ S ′(Rn):

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥∗ ≈ ∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥∗∗

, (35)
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥∗

1 ≈ ∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥∗∗

1 , (36)
∥
∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥∗∗

1 �
∥
∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥ �

∥
∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥∗∗

, (37)
∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥∗∗

1 �
∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥ �

∥∥f |Bs(·)
p(·),q(·)

(
R

n
)∥∥∗∗

. (38)

Proof Part I. First we prove (35) and (36). We discretize the inner part of ‖ · ‖∗ and
obtain

[∫ ∞

0
t−s(x)q(x)

(∫

B

∣∣�M
thf (x)

∣∣dh

)q(x)
dt

t

]1/q(x)

=
[∫ ∞

0
t−s(x)q(x)

(
t−n

∫

tB

∣∣�M
κ

f (x)
∣∣dκ

)q(x)
dt

t

]1/q(x)

=
[ ∞∑

k=−∞

∫ 2−k

2−k−1
t−s(x)q(x)

(
t−n

∫

tB

∣∣�M
κ

f (x)
∣∣dκ

)q(x)
dt

t

]1/q(x)

. (39)

If 2−k−1 ≤ t ≤ 2−k , then 2ks(x)q(x) ≤ t−s(x)q(x) ≤ 2(k+1)s(x)q(x) and

2kn

∫

2−(k+1)B

∣
∣�M

κ
f (x)

∣
∣dκ � t−n

∫

tB

∣
∣�M

κ
f (x)

∣
∣dκ � 2(k+1)n

∫

2−kB

∣
∣�M

κ
f (x)

∣
∣dκ.

Plugging these estimates into (39), we may further estimate

[∫ ∞

0
t−s(x)q(x)

(∫

B

∣∣�M
thf (x)

∣∣dh

)q(x)
dt

t

]1/q(x)

�
[ ∞∑

k=−∞
2(k+1)s(x)q(x)

(
2kn

∫

2−kB

∣∣�M
κ

f (x)
∣∣dκ

)q(x)
]1/q(x)

�
[ ∞∑

k=−∞
2ks(x)q(x)

(∫

B

∣∣�M
2−kκ

f (x)
∣∣dκ

)q(x)
]1/q(x)

.

The estimate from below follows in the same manner. Finally, the proof of (36) is
almost the same.



J Fourier Anal Appl

Part II. This part is devoted to the proof of the left hand side of (37). It is divided
into several steps to make the presentation clearer.

Step 1. First, we point out that the estimate

∥∥f |Lp(·)
(
R

n
)∥∥ �

∥∥f |Bs(·)
p(·),q(·)

(
R

n
)∥∥

follows from the characterization of B
s(·)
p(·),q(·)(Rn) in terms of Nikol’skij representa-

tions (cf. Theorem 8.1 of [1]). We refer also to Remark 2.5.3/1 in [51]. The extension
to F -spaces is then given by the simple embedding

∥∥f |Lp(·)
(
R

n
)∥∥ �

∥∥f |Bs(·)−ε
p(·),p(·)

(
R

n
)∥∥ �

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥

with ε > 0 chosen small enough.
Step 2. Let (ϕj )j∈N0 be the functions used in Definition 3. We use the decomposi-

tion

f =
∞∑

l=−∞
f(k+l), k ∈ Z,

where f(k+l) = (ϕk+l f̂ )∨, or = 0 if k + l < 0 and get

(♣) :=
∞∑

k=0

2ks(x)q(x)

(∫

B

∣∣�M
2−kh

f (x)
∣∣dh

)q(x)

=
∞∑

k=0

2ks(x)q(x)

(∫

B

∣∣∣∣∣
�M

2−kh

( ∞∑

l=−∞
f(k+l)

)

(x)

∣∣∣∣∣
dh

)q(x)

.

If q(x) ≤ 1 then we proceed further

(♣) ≤
∞∑

k=0

2ks(x)q(x)

(∫

B

∞∑

l=−∞

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

)q(x)

≤
∞∑

k=0

∞∑

l=−∞
2ks(x)q(x)

(∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

)q(x)

.

If q(x) > 1, we use Minkowski’s inequality

(♣)1/q(x) ≤
( ∞∑

k=0

2ks(x)q(x)

(∫

B

∞∑

l=−∞

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

)q(x))1/q(x)

≤
∞∑

l=−∞

( ∞∑

k=0

2ks(x)q(x)

(∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

)q(x)
)1/q(x)

.
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We split in both cases

∞∑

l=−∞
· · · = I + II =

0∑

l=−∞
· · · +

∞∑

l=1

· · · (40)

Step 3. We estimate the first summand with l ≤ 0.
We use Lemma 22 in the form

∣∣�M
h f(k+l)(x)

∣∣ ≤ C max
(
1, |bh|a) · min

(
1, |bh|M)

Pb,af(k+l)(x),

where a > 0 is arbitrary, b = 2k+l and

Pb,af (x) = sup
z∈Rn

|f (x − z)|
1 + |bz|a .

Furthermore, we use this estimate with 2−kh instead of h. We obtain
∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh �

∫

B

max
(
1,

∣∣b2−kh
∣∣a) · min

(
1,

∣∣b2−kh
∣∣M)

Pb,af(k+l)(x)dh

� 2lMP2k+l ,af(k+l)(x). (41)

The last inequality follows from max(1, |b2−kh|a) ≤ 1 (recall that l ≤ 0 and |h| ≤ 1)
and min(1, |b2−kh|M) ≤ 2lM .

If q(x) ≤ 1, we estimate the first sum in (40)

I ≤
0∑

l=−∞

∞∑

k=0

2ks(x)q(x)

(∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

)q(x)

�
0∑

l=−∞

∞∑

k=0

2ks(x)q(x)
(
2lMP2k+l ,af(k+l)(x)

)q(x)

=
0∑

l=−∞
2l(M−s(x))q(x)

∞∑

k=0

2(k+l)s(x)q(x)P
q(x)

2k+l ,a
f(k+l)(x)

≈
∞∑

k=0

2ks(x)q(x)P
q(x)

2k,a
f(k)(x),

where the last estimate makes use of M > s+, q− > 0 and the fact that f(k+l) = 0 for
k + l < 0.

If q(x) > 1, we proceed in a similar way to obtain

I 1/q(x) ≤
0∑

l=−∞

( ∞∑

k=0

2ks(x)q(x)

(∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

)q(x)
)1/q(x)
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�
0∑

l=−∞

( ∞∑

k=0

2ks(x)q(x)
(
2lMP2k+l ,af(k+l)(x)

)q(x)

)1/q(x)

=
0∑

l=−∞
2l(M−s(x))

( ∞∑

k=0

2(k+l)s(x)q(x)P
q(x)

2k+l ,a
f(k+l)(x)

)1/q(x)

�
( ∞∑

k=0

2ks(x)q(x)P
q(x)

2k,a
f(k)(x)

)1/q(x)

.

We have used in the last estimate again M > s+ and the definition of f(k+l).
Hence,

I 1/q(x) �
( ∞∑

k=0

2ks(x)q(x)P
q(x)

2k,a
f(k)(x)

)1/q(x)

holds for all x ∈ R
n.

Finally, we obtain

∥∥I 1/q(·)|Lp(·)
(
R

n
)∥∥ �

∥∥∥∥∥

( ∞∑

k=0

2ks(x)q(x)P
q(x)

2k,a
f(k)(x)

)1/q(x)∣∣∣∣∣
Lp(·)

(
R

n
)
∥∥∥∥∥

= ∥∥(
2ks(x)P2k,af(k)(x)

)∞
k=0

∣∣Lp(·)(�q(·))
∥∥

�
∥∥(

2ks(·)f(k)

)∞
k=0

∣∣Lp(·)(�q(·))
∥∥ = ∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥, (42)

where we used the boundedness of Peetre maximal operator as described in Theo-
rem 14 for a > 0 large enough.

Step 4. We estimate the second summand in (40) with l > 0. If min(p−, q−) > 1,
then we put λ = 1. Otherwise we choose real parameters 0 < λ < min(p−, q−) and
a > 0 such that

a >
n

min(p−, q−)
+ clog(s)

and a(1 − λ) < s−. Due to (33), this is always possible.
We start again with estimates of the ball means of differences. We use Lemma 22

and (30) to obtain
∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

=
∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣λ · ∣∣�M

2−kh
f(k+l)(x)

∣∣1−λ
dh

�
∫

B

(
max

(
1,

∣∣2k+l2−kh
∣∣a)min

(
1,

∣∣2k+l2−kh
∣∣M)

P2k+l ,af(k+l)(x)
)1−λ

· ∣∣�M
2−kh

f(k+l)(x)
∣∣λdh
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≤ (
2laP2k+l ,af(k+l)(x)

)1−λ
∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣λdh

≤ (
2laP2k+l ,af(k+l)(x)

)1−λ
M∑

j=0

cj,M

∫

B

∣∣f(k+l)

(
x + j2−kh

)∣∣λdh, (43)

where the constants cj,M are given by (30).
We shall deal in detail only with the term with j = 1. The term with j = 0 is much

simpler to handle (as there the integration over h ∈ B immediately disappears) and
this case reduces essentially to Hölder’s inequality and boundedness of the Peetre
maximal operator. The terms with 2 ≤ j ≤ M may be handled in the same way as the
one with j = 1.

We use Lemma 20 with r = λ in the form
∣∣f(k+l)(y)

∣∣λ �
(
ηk+l,2m ∗ |f(k+l)|λ

)
(y),

with m > max(n, clog(s)), Lemmas 23 and 19 to get

2ks(x)λ

∫

B

∣∣f(k+l)

(
x + 2−kh

)∣∣λdh

� 2ks(x)λ

∫

B

(
ηk+l,2m ∗ |f(k+l)|λ

)(
x + 2−kh

)
dh

= 2ks(x)λ
([

2knχ2−kB

] ∗ ηk+l,2m ∗ |f(k+l)|λ
)
(x)

� 2ks(x)λ
(
ηk,2m ∗ |f(k+l)|λ

)
(x)

�
(
ηk,m ∗ ∣∣2ks(·)f(k+l)

∣∣λ)(x)

≤ 2−ls−λ
(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)(x). (44)

We insert (44) into (43) and arrive at

2ks(x)

∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

� 2la(1−λ)−ls−(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)1−λ(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)(x).

(45)

If q(x) > 1, we proceed further with the use of Hölder’s inequality

II 1/q(x) �
∞∑

l=1

2la(1−λ)−ls−
( ∞∑

k=0

(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)(1−λ)q(x)

· (ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)
(x)

)1/q(x)

≤
∞∑

l=1

2la(1−λ)−ls−
( ∞∑

k=0

(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)q(x)

)(1−λ)/q(x)
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·
( ∞∑

k=0

(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)/λ
(x)

)λ/q(x)

=
( ∞∑

k=0

(
2ks(x)P2k,af(k)(x)

)q(x)

)(1−λ)/q(x)

·
∞∑

l=1

2la(1−λ)−ls−
( ∞∑

k=0

(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)/λ
(x)

)λ/q(x)

.

If q(x) ≤ 1, we obtain in a similar way

II �
∞∑

l=1

2(la(1−λ)−ls−)q(x)
∞∑

k=0

(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)(1−λ)q(x)

· (ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)
(x)

≤
∞∑

l=1

2(la(1−λ)−ls−)q(x)

( ∞∑

k=0

(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)q(x)

)1−λ

·
( ∞∑

k=0

(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)/λ
(x)

)λ

=
( ∞∑

k=0

(
2ks(x)P2k,af(k)(x)

)q(x)

)1−λ

·
∞∑

l=1

2(la(1−λ)−ls−)q(x)

( ∞∑

k=0

(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)/λ
(x)

)λ

and further (with use of Lemma 24)

II 1/q(x) �
( ∞∑

k=0

(
2ks(x)P2k,af(k)(x)

)q(x)

)(1−λ)/q(x)

·
( ∞∑

l=1

2(la(1−λ)−ls−)q(x)

( ∞∑

k=0

(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)/λ
(x)

)λ)1/q(x)

�
( ∞∑

k=0

(
2ks(x)P2k,af(k)(x)

)q(x)

)(1−λ)/q(x)

·
∞∑

l=1

21/2·(la(1−λ)−ls−)

( ∞∑

k=0

(
ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)

∣∣λ)q(x)/λ
(x)

)λ/q(x)

.
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If we denote

F(x) :=
( ∞∑

k=0

(
2ks(x)P2k,af(k)(x)

)q(x)

)1/q(x)

, x ∈ R
n

and

Bk+l (x) := ∣∣2(k+l)s(x)f(k+l)(x)
∣∣, x ∈ R

n

we get for δ := −1/2 · (a(1 − λ) − s−) > 0

II 1/q(x) � F(x)1−λ ·
∞∑

l=1

2−lδ

( ∞∑

k=0

(
ηk,m ∗ Bλ

k+l

)q(x)/λ
(x)

)λ/q(x)

. (46)

We use ‖F 1−λ
1 Fλ

2 ‖p(·) ≤ 2‖F1‖1−λ
p(·) ‖F2‖λ

p(·), cf. [17, Lemma 3.2.20], and suppose
that the Lp(·)-(quasi-)norm is equivalent to an r-norm with 0 < r ≤ 1. Together with
Lemma 21 we arrive at

∥∥II 1/q(x)
∥∥r

p(·) �
∥∥F(x)

∥∥(1−λ)r

p(·) ·
∥∥∥∥∥

∞∑

l=1

2−lδ

( ∞∑

k=0

(
ηk,m ∗ Bλ

k+l

)q(x)/λ
(x)

)1/q(x)∥∥∥∥∥

λr

p(·)

�
∥∥F(x)

∥∥(1−λ)r

p(·) ·
∞∑

l=1

2−lδr

∥
∥∥∥∥

( ∞∑

k=0

(
ηk,m ∗ Bλ

k+l

)q(x)/λ
(x)

)1/q(x)∥∥∥∥∥

λr

p(·)

�
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥(1−λ)r

·
∞∑

l=1

2−lδr
∥
∥(

ηk,m ∗ Bλ
k+l (x)

)∞
k=0

∥
∥r

Lp(·)/λ(�q(·)/λ)

�
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥(1−λ)r ·

∞∑

l=1

2−lδr
∥∥(

Bλ
k+l (x)

)∞
k=0

∥∥r

Lp(·)/λ(�q(·)/λ)

�
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥(1−λ)r ·

∞∑

l=1

2−lδr
∥∥(

Bλ
k (x)

)∞
k=0

∥∥r

Lp(·)/λ(�q(·)/λ)

�
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥(1−λ)r · ∥∥Bk(x)

∥∥λr

Lp(·)(�q(·))

�
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥r

, (47)

which finishes the proof.
Part III. We prove the right hand side of (37). We follow again essentially [51,

Sect. 2.5.9] with some modifications as presented in [53]. Roughly speaking, com-
pared to the case of constant exponents, only minor modifications are necessary.
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Let ψ ∈ C∞
0 (Rn) with ψ(x) = 1, |x| ≤ 1 and ψ(x) = 0, |x| > 3/2. We define

ϕ0(x) = (−1)M+1
M−1∑

μ=0

(−1)μ
(

M

μ

)
ψ

(
(M − μ)x

)
.

It follows that ϕ0 ∈ C∞
0 (Rn) with ϕ(x) = 0, |x| > 3/2 and ϕ(x) = 1, |x| < 1/M .

We also put ϕj (x) = ϕ0(2−j x) − ϕ0(2−j+1x) for j ≥ 1. This is the decomposition

of unity we used in the definition of ‖f |F s(·)
p(·),q(·)(Rn)‖, cf. Definition 3. Recall that

due to [16] and [30], this (quasi-)norm of ‖f |F s(·)
p(·),q(·)(Rn)‖ does not depend on the

choice of the decomposition of unity.
We observe that

ϕ0(x) = (−1)M+1(�M
x ψ(0) − (−1)M

)
,

and

(
F −1ϕj F f

)
(x) =

{
(F −1�M

ξ ψ(0)F f )(x) + (−1)M+1f (x), j = 0,

(F −1(�M
2−j ξ

ψ(0) − �M
2−j+1ξ

ψ(0))F f )(x), j ≥ 1.
(48)

Furthermore, a straightforward calculation shows that

∣∣(F −1(�M
2−j ξ

ψ(0)
)

F f
)
(x)

∣∣ =
∣∣∣∣∣

M∑

u=0

(−1)uF −1[ψ
(
(M − u)2−j ·)F f

]
(x)

∣∣∣∣∣

≈
∣∣∣∣∣

M∑

u=0

(−1)uF −1[ψ
(
(M − u)2−j ·)] ∗ f (x)

∣∣∣∣∣

≈
∣∣∣∣
∣

M∑

u=0

(−1)u
∫

Rn

F −1ψ(h)f
(
x − (M − u)2−j h

)
dh

∣∣∣∣
∣

=
∣∣∣∣

∫

Rn

ψ̂(h)�M
2−j h

f (x)dh

∣∣∣∣

≤
∫

Rn

∣∣ψ̂(h)
∣∣ · ∣∣�M

2−j h
f (x)

∣∣dh (49)

holds for every j ∈ N0. We denote g = ψ̂ ∈ S(Rn) and obtain

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥ ≈ ∥∥2js(x)

(
F −1ϕj F f

)
(x)|Lp(·)(�q(·)

∥∥

�
∥∥f |Lp(·)

(
R

n
)∥∥

+
∥∥∥∥2js(x)

∫

Rn

∣∣g(h)
∣∣ · ∣∣�M

2−j h
f (x)

∣∣dh|Lp(·)(�q(·))
∥∥∥∥. (50)

The rest of this part consists essentially of using the property of g ∈ S(Rn) to come
from (50) to ‖ · ‖∗∗.
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We denote

I0 := B, Iu := 2uB \ 2u−1B, u ∈ N

and use |g(h)| ≤ c2−ur , h ∈ Iu with r taken large enough (recall that g ∈ S(Rn)) and
estimate

∫

Rn

∣∣g(h)
∣∣ · ∣∣�M

2−j h
f (x)

∣∣dh =
∞∑

u=0

∫

Iu

∣∣g(h)
∣∣ · ∣∣�M

2−j h
f (x)

∣∣dh

�
∞∑

u=0

2−ur2jn

∫

2u−j B

∣∣�M
h f (x)

∣∣dh

=
∞∑

u=0

2u(n−r)2−(u−j)n

∫

2u−j B

∣∣�M
h f (x)

∣∣dh. (51)

We put

Gj(x) := 2js(x)
∣∣(F −1(�M

2−j ξ
ψ(0)

)
F f

)
(x)

∣∣, j ∈ N0

and

gk(x) := 2ks(x)2kn

∫

2−kB

∣∣�M
h f (x)

∣∣dh, k ∈ Z.

Using (48), (49) and (51), we obtain the estimate

Gj(x) � 2js(x)

∞∑

u=0

2u(n−r)2−(u−j)n

∫

2u−j B

∣∣�M
h f (x)

∣∣dh

=
j∑

k=−∞
2(j−k)s(x)2(j−k)(n−r)2ks(x)2kn

∫

2−kB

∣∣�M
h f (x)

∣∣dh

=
j∑

k=−∞
2(j−k)(s(x)+n−r)gk(x) ≤

∞∑

k=−∞
2|j−k|·(s(x)+n−r)gk(x). (52)

Choosing r > s+ + n and applying Lemma 9 then finishes the proof.
Part IV. The proof of the left hand side of (38) follows in the same manner as in

Part II. We shall describe the necessary modifications. First, let us mention, that the
condition q+ < ∞ was used only in the application of Lemma 21. In the rest of the
arguments also the case q(x) = ∞ may be incorporated with only slight change of
notation.

Let us put

f (k)(x) := 2ks(x)

∫

B

∣∣�M
2−kh

f (x)
∣∣dh, x ∈ R

n.
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We obtain (in analogue to (40))

f (k) ≤ f (k),I + f (k),II :=
0∑

l=−∞
2ks(x)

∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

+
∞∑

l=1

2ks(x)

∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh.

We estimate the first sum using (41) and get

f (k),I �
0∑

l=−∞
2l(M−s+)g1

k+l =
k∑

u=0

2(u−k)(M−s+)g1
u ≤

∞∑

u=0

2−|u−k|(M−s+)g1
u,

where g1
u := 2us(x)P2u,af(u)(x). The application of Lemma 9 and Theorem 14 with

a > 0 large enough gives

∥∥(
f (k),I

)∞
k=0|�q(·)(Lp(·))

∥∥ �
∥∥(gu)

∞
u=0|�q(·)(Lp(·))

∥∥ �
∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥.

To estimate f (k),II , we proceed as in the Step 4 of Part II. If p− > 1, we choose
again λ = 1, otherwise we take 0 < λ < p− and

a >
n + clog(1/q)

p− + clog(s)

such that a(1 − λ) < s−. This is possible due to (34).
We use (44) with m > max(n + clog(1/q), clog(s)) to get

f (k),II �
∞∑

l=1

2la(1−λ)−ls−(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)1−λ

· (ηk,m ∗ ∣∣2(k+l)s(·)f(k+l)(·)
∣∣λ)(x)

=
∞∑

l=1

2la(1−λ)−ls−(
g1

k+l(x)
)1−λ · (ηk,m ∗ (

g2
k+l

)λ)
(x), (53)

where g2
k+l(x) := |2(k+l)s(x)f(k+l)(x)|. We take the �q(·)(Lp(·)) (quasi-)norm of the

last expression—and assume that it is equivalent to some r-norm. This gives for δ :=
s− − a(1 − λ) > 0 the following estimate

∥∥f (k),II |�q(·)(Lp(·))
∥∥r

�
∞∑

l=1

2−lδr
∥
∥(

g1
k+l (x)

)1−λ · (ηk,m ∗ (
g2

k+l

)λ)
(x)|�q(·)(Lp(·))

∥
∥r

�
∞∑

l=1

2−lδr
∥∥g1

k+l |�q(·)(Lp(·))
∥∥(1−λ)r · ∥∥[

ηk,m ∗ (
g2

k+l

)λ]1/λ|�q(·)(Lp(·))
∥∥λr
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�
∞∑

l=1

2−lδr
∥∥g1

k |�q(·)(Lp(·))
∥∥(1−λ)r · ∥∥ηk,m ∗ (

g2
k+l

)λ|�q(·)/λ(Lp(·)/λ)
∥∥r

�
∞∑

l=1

2−lδr
∥∥g1

k |�q(·)(Lp(·))
∥∥(1−λ)r · ∥∥(

g2
k+l

)λ|�q(·)/λ(Lp(·)/λ)
∥∥r

�
∞∑

l=1

2−lδr
∥∥g1

k |�q(·)(Lp(·))
∥∥(1−λ)r · ∥∥g2

k+l |�q(·)(Lp(·))
∥∥λr

�
∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥r

. (54)

We have used Lemma 10 and Lemma 25.
Part V. The right hand side inequality of (38) follows also along the same line as

in Part III. We just combine (52) with the choice r > s+ + n and apply Lemma 9. �

4.4 Proof of Theorem 15

This section is devoted to the proof of Theorem 15. We start with the case of con-
stant q . In that case, the usual Hardy-Littlewood maximal operator

Mf (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

∣
∣f (y)

∣
∣dy

is bounded on �q(Lp(·)) and Lp(·)(�q). Indeed, the following lemma is a consequence
of [12] and [17, Theorem 4.3.8].

Lemma 17

(i) Let p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞ and 1 < q < ∞. Then

∥∥(Mfj )
∞
j=−∞|Lp(·)(�q)

∥∥ �
∥∥(fj )

∞
j=−∞|Lp(·)(�q)

∥∥

for all (fj )
∞
j=−∞ ∈ Lp(·)(�q).

(ii) Let p ∈ P log(Rn) with p− > 1 and 0 < q ≤ ∞. Then

∥∥(Mfj )
∞
j=−∞|�q(Lp(·))

∥∥ �
∥∥(fj )

∞
j=−∞|�q(Lp(·))

∥∥

for all (fj )
∞
j=−∞ ∈ �q(Lp(·)).

Proof of Theorem 15 With the help of Lemma 17, we prove Theorem 15 for q con-
stant. In view of Lemma 16, it is enough to prove

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥∗∗ �

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥ (55)

and a corresponding analogue for the B-spaces.
Part I. In this part we point out the necessary modifications in the proof of

Lemma 16 to obtain a characterization by ball means of differences for B
s(·)
p(·),q(Rn)
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and F
s(·)
p(·),q(Rn). The proof follows the scheme of Part II of the proof of Lemma 16.

We start with
∑∞

k=−∞ instead of
∑∞

k=0. With this modification the Steps 1–3 go
through without any other changes and we obtain (42) again (just recall that f(k) = 0
if k < 0).

Due to the boundedness of the maximal operator there is no need for the use of
r-trick and convolution with ην,m. The analogue of (43), (44) and (45) now reads as
follows:

2ks(x)

∫

B

∣∣�M
2−kh

f(k+l)(x)
∣∣dh

�
(
2ks(x)2laP2k+l ,af(k+l)(x)

)1−λ

·
M∑

j=0

cj,M

∫

B

2ks(x+j2−kh)λ
∣∣f(k+l)

(
x + j2−kh

)∣∣λdh

≤ 2la(1−λ)−ls−(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)1−λ

·
M∑

j=0

cj,M

∫

B

2(k+l)s(x+j2−kh)λ
∣∣f(k+l)

(
x + j2−kh

)∣∣λdh

� 2la(1−λ)−ls−(
2(k+l)s(x)P2k+l ,af(k+l)(x)

)1−λ

·
M∑

j=0

cj,MM
(∣∣2(k+l)s(·)f(k+l)(·)

∣
∣λ)(x),

where we used Hölder’s regularity of s(·), see (5). As a consequence, we obtain

II 1/q(x) � F(x)1−λ ·
∞∑

l=1

2−lδ

( ∞∑

k=−l

(
MBλ

k+l

)q(x)/λ
(x)

)λ/q(x)

instead of (46). The rest then follows in the same manner with the help of Lemma 17
and the proof of (55) is finished.

The proof of
∥∥f |Bs(·)

p(·),q(·)
(
R

n
)∥∥∗∗ �

∥∥f |Bs(·)
p(·),q(·)

(
R

n
)∥∥

follows along the same lines. Especially, we get

f (k),II �
∞∑

l=1

2la(1−λ)−ls−(
g1

k+l (x)
)1−λ · (M(

g2
k+l

)λ)
(x)

instead of (53). The rest follows again by Lemma 17.
Part II. Finally, we present how the characterization for q constant can help us to

improve on the case of variable exponent q(·).
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In view of Lemma 16, it is enough to show that
∥∥∥∥∥

(
0∑

k=−∞
2ks(x)q(x)

(
dM

2−k f (x)
)q(x)

)1/q(x)∣∣∣∣∣
Lp(·)

(
R

n
)
∥∥∥∥∥

�
∥∥f |F s(·)

p(·),q(·)
(
R

n
)∥∥.

But this is a consequence of
∥∥∥∥∥

(
0∑

k=−∞
2ks(x)q(x)

(
dM

2−k f (x)
)q(x)

)1/q(x)∣∣∣∣∣
Lp(·)

(
R

n
)
∥∥∥∥∥

�
∥∥∥∥∥

(
0∑

k=−∞
2k(s(x)−ε)q−(

dM
2−k f (x)

)q−
)1/q− ∣∣∣∣∣

Lp(·)
(
R

n
)
∥∥∥∥∥

�
∥∥f |F s(·)−ε

p(·),q−
(
R

n
)∥∥ �

∥∥f |F s(·)
p(·),q(·)

(
R

n
)∥∥,

where ε > 0 is small enough and we used the differences characterization for fixed q

and a trivial embedding theorem.
The same arguments apply for the Besov spaces and the proof is finished. �

Remark 9 The somewhat complicated proof of Theorem 15 would work more direct
and simpler if we could use versions of Lemmas 10 and 21 in (47) and (54) where
the �q(·) summation runs over ν ∈ Z.

For Triebel-Lizorkin spaces there seems to exist such an extension [13], but for
Besov spaces the proof of Lemma 10 in [1] seems to be to customized to the situation
ν ∈ N0.

4.5 Ball Means of Differences for 2-Microlocal Spaces

As already remarked in Sect. 2.2 all the proofs for spaces of variable smoothness do
also serve for 2-microlocal spaces. One just has to use the definition of admissible
weight sequences and the property (5), see Remark 2.

First of all we give the notation for the (quasi-)norms. For simplicity we just
use the discrete versions, although it is also possible to give continuous versions of
2-microlocal weights, see [55, Definition 4.1]. In analogy to the spaces of variable
smoothness we introduce the following norms

∥∥f |Bw
p(·),q(·)

(
R

n
)∥∥∗∗ = ∥∥f |Lp(·)

(
R

n
)∥∥ + ∥∥(

wk(x)dM
2−k f (x)

)∞
k=−∞

∣∣�q(·)(Lp(·))
∥∥

and
∥∥f |Fw

p(·),q(·)
(
R

n
)∥∥∗∗ = ∥∥f |Lp(·)

(
R

n
)∥∥ + ∥∥(

wk(x)dM
2−k f (x)

)∞
k=−∞

∣∣Lp(·)(�q(·))
∥∥.

Finally, the preceding calculations show that the following theorem is true.

Theorem 18 (i) Let p,q ∈ P log(Rn) with p+, q+ < ∞ and w ∈ W α
α1,α2

. Let M > α2
and

α1 > σp−,q− ·
[

1 + α

n
· min

(
p−, q−)]

. (56)
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Then

Fw
p(·),q(·)

(
R

n
) = {

f ∈ Lp(·)
(
R

n
) : ∥∥f |Fw

p(·),q(·)
(
R

n
)∥∥∗∗

< ∞}

and ‖ · |Fw
p(·),q(·)(Rn)‖ and ‖ · |Fw

p(·),q(·)(Rn)‖∗∗ are equivalent on Fw
p(·),q(·)(Rn).

(ii) Let p,q ∈ P log(Rn) and w ∈ W α
α1,α2

. Let M > α2 and

α1 > σp− ·
[

1 + clog(1/q)

n
+ α

n
· p−

]
. (57)

Then

Bw
p(·),q(·)

(
R

n
) = {

f ∈ Lp(·)
(
R

n
) : ∥∥f |Bw

p(·),q(·)
(
R

n
)∥∥∗∗

< ∞}

and ‖ · |Bw
p(·),q(·)(Rn)‖ and ‖ · |Bw

p(·),q(·)(Rn)‖∗∗ are equivalent on Bw
p(·),q(·)(Rn).

Remark 10 Again, if min(p−, q−) ≥ 1 in the F-case, or p− ≥ 1 in the B-case, then
the conditions (56) and (57) simplify to α1 > 0. In the case of constant exponents
p,q we obtain similar results to [8] and [34].

4.6 Lemmas

The following lemma is a variant of Lemma 6.1 from [16].

Lemma 19 Let s ∈ C
log
loc (Rn) and let R ≥ clog(s) , where clog(s) is the constant from

(2) for s(·). Then

2νs(x)ην,m+R(x − y) ≤ c 2νs(y)ην,m(x − y)

holds for all x, y ∈ R
n and m ∈ N0.

Lemma 20 Let r > 0, ν ≥ 0 and m > n. Then there exists c > 0, which depends only
on m,n and r , such that for all g ∈ S′(Rn) with supp ĝ ⊂ {ξ ∈ R

n : |ξ | ≤ 2ν+1}, we
have

∣∣g(x)
∣∣ ≤ c

(
ην,m ∗ |g|r (x)

)1/r
, x ∈ R

n.

The following lemma is the counterpart to Lemma 10 for Triebel-Lizorkin spaces.

Lemma 21 ([16], Theorem 3.2) Let p,q ∈ P log(Rn) with 1 < p− ≤ p+ < ∞ and
1 < q− ≤ q+ < ∞. Then the inequality

∥∥(ην,m ∗ f )∞ν=0|Lp(·)(�q(·))
∥∥ ≤ c

∥∥(fν)
∞
ν=0|Lp(·)(�q(·))

∥∥

holds for every sequence (fν)ν∈N0 of Lloc
1 (Rn) functions and m > n.

The following lemma is well known (cf. [51]). We sketch its proof for the sake of
completeness.
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Lemma 22 Let a, b > 0, M ∈ N and h ∈ R
n. Let f ∈ S′(Rn) with supp f̂ ⊂ {ξ ∈

R
n : |ξ | ≤ b}. Then there is a constant C > 0 independent of f,b and h, such that

∣∣�M
h f (x)

∣∣ ≤ C max
(
1, |bh|a) · min

(
1, |bh|M)

Pb,af (x)

holds for every x ∈ R
n.

Proof The estimate

∣∣f (x + jh)
∣∣ = |f (x + jh)|

1 + |jbh|a · (1 + |jbh|a) ≤ (
1 + |Mbh|a) sup

z∈Rn

f (x − z)

1 + |bz|a
� max

(
1, |bh|a)Pb,af (x), j = 0, . . . ,M,

holds for all the admissible parameters even without the assumption on f̂ .
Hence we need to prove only

∣∣�M
h f (x)

∣∣ ≤ C max
(
1, |bh|a) · |bh|M · Pb,af (x). (58)

Using the Taylor formula for the (analytic) function f , we obtain by direct calculation

∣∣�M
h f (x)

∣∣ ≤ c|h|M sup
|α|=M

sup
|y|≤M|h|

|(Dαf )(x − y)|
1 + |by|a · (1 + |by|a)

≤ c′|h|M max
(
1, |bh|a) · sup

|α|=M

sup
|y|≤M|h|

|(Dαf )(x − y)|
1 + |by|a .

If supp ĝ ⊂ {ξ ∈ R
n : |ξ | ≤ 1}, then this may be combined with the Nikol’skij inequal-

ity, cf. [51, Sect. 1.3.1], in the form

sup
|α|=M

sup
z∈Rn

|(Dαg)(x − z)|
1 + |z|a � sup

z∈Rn

|g(x − z)|
1 + |z|a

to obtain
∣∣�M

h g(x)
∣∣ ≤ c′′|h|M max

(
1, |h|a) · sup

z∈Rn

|g(x − z)|
1 + |z|a . (59)

If supp f̂ ⊂ {ξ ∈ R
n : |ξ | ≤ b}, we define g(x) = f (x/b), apply (59) together with

�M
h f (x) = �M

bhg(bx) and obtain

∣∣�M
h f (x)

∣∣ � |bh|M max
(
1, |bh|a) sup

z∈Rn

|g(bx − z)|
1 + |z|a .

From this (58) follows and the proof is then complete. �

The following lemma resembles Lemma A.3 of [16].

Lemma 23 Let k ∈ Z, l ∈ N0 and m > n. Then

ηk+l,m ∗ [
2knχ2−kB

]
� ηk,m.
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Proof Using dilations, we may suppose that k = 0. If |x| ≤ 2, then
∫

{y:|x−y|≤1}
2nl

(
1 + 2l |y|)−m

dy ≤
∫

y∈Rn

2nl
(
1 + 2l |y|)−m

dy �
(
1 + |x|)−m

.

If |x| > 2 and |x − y| ≤ 1, we obtain 1 + 2l |y| � 1 + 2l |x| and 2nl(1 + 2l |x|)−m �
(1 + |x|)−m. This immediately implies that

∫

{y:|x−y|≤1}
2nl

(
1 + 2l |y|)−m

dy �
∫

{y:|x−y|≤1}
(
1 + |x|)−m

dy �
(
1 + |x|)−m

.

�

Remark 11 Another way, how to prove Lemma 23 is to use the inequality χB(x) ≤
2mη0,m(x) and apply Lemma A.3 of [16].

The following Lemma is quite simple and we leave out its proof.

Lemma 24 Let 0 < q < ∞, δ > 0 and let (al)l∈N be a sequence of non-negative real
numbers. Then

( ∞∑

l=1

2−lδqal

)1/q

�
∞∑

l=1

2−lδ/2a
1/q
l ,

where the constant involved depends only on δ and q .

Finally, we shall need a certain version of Hölder’s inequality for �q(·)(Lp(·))
spaces.

Lemma 25 Let p,q ∈ P (Rn) and let 0 < λ < 1. Then

∥∥fk ·gk|�q(·)(Lp(·))
∥∥ ≤ 21/q−∥∥f

1/(1−λ)
k |�q(·)(Lp(·))

∥∥1−λ ·∥∥g
1/λ
k |�q(·)(Lp(·))

∥∥λ
(60)

holds for all sequences of non-negative functions (fk)k∈N0 and (gk)k∈N0 .

Proof Due to the homogeneity, we may assume that

∥∥f
1/(1−λ)
k |�q(·)(Lp(·))

∥∥ = ∥∥g
1/λ
k |�q(·)(Lp(·))

∥∥ = 1.

Then for every ε > 0, there exist two sequences of positive real numbers (λk)k∈N0

and (μk)k∈N0 , such that

∞∑

k=0

λk < 1 + ε,

∞∑

k=0

μk < 1 + ε

and

�p(·)
(

f
1/(1−λ)
k

λ
1/q(·)
k

)
≤ 1, �p(·)

(
g

1/λ
k

μ
1/q(·)
k

)
≤ 1.
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We put

c := 21/q−
and γk := λk + μk

2
≥ λk + μk

cq(x)

and use the Young inequality in the form

[
fk(x)gk(x)

]p(x) ≤ (1 − λ)fk(x)p(x)/(1−λ) + λgk(x)p(x)/λ

to obtain

∫

Rn

(
fk(x)gk(x)

cγ
1/q(·)
k

)p(x)

dx

≤ (1 − λ)

∫

Rn

fk(x)p(x)/(1−λ)

cp(x)γ
p(x)/q(x)
k

dx + λ

∫

Rn

gk(x)p(x)/λ

cp(x)γ
p(x)/q(x)
k

dx

≤ (1 − λ)

∫

Rn

fk(x)p(x)/(1−λ)

λ
p(x)/q(x)
k

dx + λ

∫

Rn

gk(x)p(x)/λ

μ
p(x)/q(x)
k

dx ≤ 1.

Furthermore, the estimate

∞∑

k=0

γk <
2(1 + ε)

2
= 1 + ε

finishes the proof of (60) with the constant c = 21/q−
. �
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Chapter 1
A Survey of Compressed Sensing

Holger Boche, Robert Calderbank, Gitta Kutyniok, and Jan Vybíral

Abstract Compressed sensing was introduced some ten years ago as an effective
way of acquiring signals, which possess a sparse or nearly sparse representation
in a suitable basis or dictionary. Due to its solid mathematical backgrounds, it
quickly attracted the attention of mathematicians from several different areas, so
that the most important aspects of the theory are nowadays very well understood.
In recent years, its applications started to spread out through applied mathematics,
signal processing, and electrical engineering. The aim of this chapter is to provide
an introduction into the basic concepts of compressed sensing. In the first part of
this chapter, we present the basic mathematical concepts of compressed sensing,
including the Null Space Property, Restricted Isometry Property, their connection to
basis pursuit and sparse recovery, and construction of matrices with small restricted
isometry constants. This presentation is easily accessible, largely self-contained, and
includes proofs of the most important theorems. The second part gives an overview
of the most important extensions of these ideas, including recovery of vectors with
sparse representation in frames and dictionaries, discussion of (in)coherence and its
implications for compressed sensing, and presentation of other algorithms of sparse
recovery.
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1.1 Introduction

Compressed sensing is a novel method of signal processing, which was introduced
in [25] and [15, 16] and which profited from its very beginning from fruitful
interplay between mathematicians, applied mathematicians, and electrical engi-
neers. The mathematical concepts are inspired by ideas from a number of different
disciplines, including numerical analysis, stochastic, combinatorics, and functional
analysis. On the other hand, the applications of compressed sensing range from
image processing [29], medical imaging [52], and radar technology [5] to sampling
theory [56, 69], and statistical learning.

The aim of this chapter is twofold. In Section 1.3 we collect the basic mathe-
matical ideas from numerical analysis, stochastic, and functional analysis used in
the area of compressed sensing to give an overview of basic notions, including the
Null Space Property and the Restricted Isometry Property, and the relations between
them. Most of the material in this section is presented with a self-contained proof,
using only few simple notions from approximation theory and stochastic recalled in
Section 1.2. We hope that this presentation will make the mathematical concepts of
compressed sensing appealing and understandable both to applied mathematicians
and electrical engineers. Although it can also be used as a basis for a lecture on
compressed sensing for a wide variety of students, depending on circumstances, it
would have to be complemented by other subjects of the lecturers choice to make a
full one-semester course. Let us stress that the material presented in this section is by
no means new or original, actually it is nowadays considered classical, or “common
wisdom” throughout the community.

The second aim of this chapter is to give (without proof) an overview of the most
important extensions (Section 1.4). In this part, we refer to original research papers
or to more extensive summaries of compressed sensing [23, 35, 40] for more details
and further references.

1.2 Preliminaries

As the mathematical concepts of compressed sensing rely on the interplay of ideas
from linear algebra, numerical analysis, stochastic, and functional analysis, we start
with an overview of basic notions from these fields. We shall restrict ourselves to
the minimum needed in the sequel.

1.2.1 Norms and quasi-norms

In the most simple setting of discrete signals on finite domain, signals are modeled
as (column) vectors in then n-dimensional Euclidean space, denoted by R

n. We shall

vybiral@karlin.mff.cuni.cz



1 A Survey of Compressed Sensing 3

Fig. 1.1 Shape of the l2
p unit ball for p = 1/2, p = 1, p = 2, and p = ∞

use different ways how to measure the size of such a vector. The most typical way,
however, is to consider its �n

p-norm, which is defined for x = (x1, . . . ,xn)
T and p ∈

(0,∞] as (Fig. 1.1)

‖x‖p =

⎧
⎪⎪⎨

⎪⎪⎩

( n

∑
j=1
|x j|p

)1/p
, p ∈ (0,∞);

max
j=1,...,n

|x j|, p = ∞.
(1.1)

If p < 1, this expression does not satisfy the triangle inequality. Instead of that
the following inequalities hold

‖x+ z‖p ≤ 21/p−1(‖x‖p + ‖z‖p
)
,

‖x+ z‖p
p ≤ ‖x‖p

p + ‖z‖p
p

for all x ∈ R
n and all z ∈ R

n. If p = 2, �n
2 is a (real) Hilbert space with the scalar

product

〈x,z〉= zT x =
n

∑
i= j

x jz j.

If x∈R
n, we can always find a permutation σ : {1, . . . ,n}→ {1, . . . ,n}, such that

the nonincreasing rearrangement x∗ ∈ [0,∞)n of x, defined by x∗j = |xσ( j)| satisfies

x∗1 ≥ x∗2 ≥ ·· · ≥ x∗n ≥ 0.

vybiral@karlin.mff.cuni.cz



4 H. Boche et al.

If T ⊂ {1, . . . ,n} is a set of indices, we denote by |T | the number of its elements.
We shall complement this notation by denoting the size of the support of x ∈ R

n by

‖x‖0 = |supp (x)|= |{ j : x j �= 0}|.

Note that this expression is not even a quasinorm. The notation is justified by the
observation, that

lim
p→0

‖x‖p
p = ‖x‖0 for all x ∈ R

n.

Let k be a natural number at most equal to n. A vector x ∈ R
n is called k-sparse, if

‖x‖0 ≤ k and the set of all k-sparse vectors is denoted by

Σk = {x ∈ R
n : ‖x‖0 ≤ k}.

Finally, if k < n, the best k-term approximationσk(x)p of x∈R
n describes, how well

can x be approximated by k-sparse vectors in the �n
p-norm. This can be expressed by

the formula

σk(x)p = inf
z∈Σk

‖x− z‖p =

⎧
⎪⎨

⎪⎩

( n

∑
j=k+1

(x∗j)
p
)1/p

, p ∈ (0,∞);

x∗k+1, p = ∞.
(1.2)

The notions introduced so far can be easily transferred to n-dimensional complex
spaces. Especially, the scalar product of x,y ∈C

n is defined by

〈x,y〉=
n

∑
j=1

x jy j,

where z is the complex conjugate of z ∈ C.
Linear operators between finite-dimensional spaces R

n and R
m can be repre-

sented with the help of matrices A ∈ R
m×n. The entries of A are denoted by aij,

i = 1, . . . ,m and j = 1, . . . ,n. The transpose of a matrix A ∈ R
m×n is a matrix

AT ∈ R
n×m with entries (AT )ij = aji. The identity matrix in R

n×n or Cn×n will be
denoted by I.

1.2.2 Random Variables

As several important constructions from the field of compressed sensing rely on
randomness, we recall the basic notions from probability theory.

vybiral@karlin.mff.cuni.cz
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We denote by (Ω ,Σ ,P) a probability space. Here stands Ω for the sample space,
Σ for a σ -algebra of subsets of Ω , and P is a probability measure on (Ω ,Σ). The
sets B ∈ Σ are called events, and their probability is denoted by

P(B) =
∫

B
dP(ω).

A random variable X is a measurable function X : Ω → R and we denote by

μ = EX =

∫

Ω
X(ω)dP(ω)

its expected value, or mean, and by σ2 =E[(X−μ)2] =E(X2)−(EX)2 its variance.
We recall Markov’s inequality, which states

P(|X | ≥ t)≤ E|X |
t

for all t > 0. (1.3)

A random variable X is called normal (or Gaussian), if it has a density function

f (t) =
1√

2πσ2
exp

(
− (t− μ)2

2σ2

)
, t ∈ R

for some real μ and positive σ2, i.e. if P(a< X ≤ b) =
∫ b

a f (t)dt for all real a< b. In
that case, the expected value of X is equal to μ and its variance to σ2 and we often
write X ∼N (μ ,σ2). If μ = 0 and σ2 = 1, the normal variable is called standard
and its density function is

f (t) =
1√
2π

exp
(
− t2

2

)
, t ∈R.

A random variable X is called Rademacher if

P(X = 1) = P(X =−1) = 1/2. (1.4)

Random variables X1, . . . ,XN are called independent, if for every real t1, . . . , tN
the following formula holds

P(X1 ≤ t1, . . . ,XN ≤ tN) =
N

∏
j=1

P(Xj ≤ t j).

In that case,

E

[ N

∏
j=1

Xj

]
=

N

∏
j=1

E(Xj). (1.5)

vybiral@karlin.mff.cuni.cz



6 H. Boche et al.

If the random variables X1, . . . ,XN are independent and have the same distribution,
we call them independent identically distributed, which is usually abbreviated
as i.i.d.

1.3 Basic ideas of compressed sensing

There is a number of ways how to discover the landscape of compressed sensing.
The point of view, which we shall follow in this section, is that we are looking for
sparse solutions x∈R

n of a system of linear equations Ax= y, where y∈R
m and the

m× n matrix A are known. We shall be interested in underdetermined systems, i.e.
in the case m≤ n. Intuitively, this corresponds to solving the following optimization
problem

min
z
‖z‖0 subject to y = Az. (P0)

We will first show that this problem is numerically intractable if m and n are
getting larger. Then we introduce the basic notions of compressed sensing, showing
that for specific matrices A and measurement vectors y, one can recover the solution
of (P0) in a much more effective way.

1.3.1 Basis pursuit

The minimization problem (P0) can obviously be solved by considering first all
index sets T ⊂ {1, . . . ,n} with one element and employing the methods of linear
algebra to decide if there is a solution x to the system with support included in T .
If this fails for all such index sets, we continue with all index sets with two, three,
and more elements. The obvious drawback is the rapidly increasing number of these
index sets. Indeed, there is

(n
k

)
index sets T ⊂ {1, . . . ,n} with k elements and this

quantity grows (in some sense) exponentially with k and n.
We shall start our tour through compressed sensing by showing that even every

other algorithm solving (P0) suffers from this drawback. This will be formulated in
the language of complexity theory as the statement, that the (P0) problem is NP-
hard. Before we come to that, we introduce the basic terms used in the sequel. We
refer for example to [2] for an introduction to computational complexity.

The P-class (“polynomial time”) consists of all decision problems that can be
solved in polynomial time, i.e. with an algorithm, whose running time is bounded
from above by a polynomial expression in the size of the input.

The NP-class (“nondeterministic polynomial time”) consists of all decision
problems, for which there is a polynomial-time algorithm V (called verifier), with

vybiral@karlin.mff.cuni.cz
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the following property. If, given an input α , the right answer to the decision problem
is “yes”, then there is a proof β , such that V (α,β ) = yes. Roughly speaking, when
the answer to the decision problem is positive, then the proof of this statement can
be verified with a polynomial-time algorithm.

Let us reformulate (P0) as a decision problem. Namely, if the natural numbers
k,m,n, m× n matrix A and y ∈ R

m are given, decide if there is a k-sparse solution x
of the equation Ax = y. It is easy to see that this version of (P0) is in the NP-class.
Indeed, if the answer to the problem is “yes” and a certificate x ∈ R

n is given, then
it can be verified in polynomial time if x is k-sparse and Ax = y.

A problem is called NP-hard if any of its solving algorithms can be transformed
in polynomial time into a solving algorithm of any other NP-problem. We shall rely
on a statement from complexity theory, that the following problem is both NP and
NP-hard.

Exact cover problem
Given as the input a natural number m divisible by 3 and a system {Tj : j =
1, . . . ,n} of subsets of {1, . . . ,m}with |Tj|= 3 for all j = 1, . . . ,n, decide, if there is
a subsystem of mutually disjoint sets {Tj : j ∈ J}, such that

⋃
j∈J Tj = {1, . . . ,m}.

Such a subsystem is frequently referred to as exact cover.

Let us observe that for any subsystem {Tj : j ∈ J} it is easy to verify (in
polynomial time) if it is an exact cover or not. So the problem is in the NP-class.
The non-trivial statement from computational complexity is that this problem is also
NP-hard. The exact formulation of (P0) looks as follows.

�0-minimization problem
Given natural numbers m,n, an m× n matrix A and a vector y ∈ R

m as input, find
the solution of

min
z
‖z‖0 s.t. y = Az.

Theorem 1. The �0-minimization problem is NP-hard.

Proof. It is sufficient to show that any algorithm solving the �0-minimization
problem can be transferred in polynomial time into an algorithm solving the exact
cover problem. Let therefore {Tj : j = 1, . . . ,n} be a system of subsets of {1, . . . ,m}
with |Tj|= 3 for all j = 1, . . . ,n. Then we construct a matrix A ∈ R

m×n by putting

aij :=

{
1 if i ∈ Tj,

0 if i �∈ Tj,

vybiral@karlin.mff.cuni.cz
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i.e. the jth column of A is the indicator function of Tj (denoted by χTj ∈ {0,1}m)
and

Ax =
n

∑
j=1

x jχTj . (1.6)

The construction of A can of course be done in polynomial time.
Let now x be the solution to the �0-minimization problem with the matrix A and

the vector y = (1, . . . ,1)T . It follows by (1.6) that m = ‖y‖0 = ‖Ax‖0 ≤ 3‖x‖0, i.e.
that ‖x‖0 ≥ m/3. We will show that the exact cover problem has a positive solution
if, and only if, ‖x‖0 = m/3.

Indeed, if the exact cover problem has a positive solution, then there is a set
J ⊂ {1, . . . ,n} with |J|= m/3 and

χ{1,...,m} =∑
j∈J

χTj .

Hence y = Ax for x = χJ and ‖x‖0 = |J| = m/3. If, on the other hand, y = Ax and
‖x‖0 = m/3, then {Tj : j ∈ supp (x)} solves the exact cover problem. �

The �0-minimization problem is NP-hard, if all matrices A and all measurement
vectors y are allowed as inputs. The theory of compressed sensing shows neverthe-
less that for special matrices A and for y = Ax for some sparse x, the problem can be
solved efficiently.

In general, we replace the ‖z‖0 in (P0) by some ‖z‖p for p> 0. To obtain a convex
problem, we need to have p ≥ 1. To obtain sparse solutions, p ≤ 1 is necessary, cf.
Figure 1.2.

Fig. 1.2 Solution of Sp = argmin
z∈R2

‖z‖p s.t. y = Az for p = 1 and p = 2

vybiral@karlin.mff.cuni.cz



1 A Survey of Compressed Sensing 9

We are therefore naturally led to discuss under which conditions the solution
to (P0) coincides with the solution of the following convex optimization problem
called basis pursuit

min
z
‖z‖1 s.t. y = Az, (P1)

which was introduced in [19]. But before we come to that, let us show that in the real
case this problem may be reformulated as a linear optimization problem, i.e. as the
search for the minimizer of a linear function over a set given by linear constraints,
whose number depends polynomially on the dimension. We refer to [42] for an
introduction to linear programming.

Indeed, let us assume that (P1) has a unique solution, which we denote by x ∈R
n.

Then the pair (u,v) with u = x+ and v = x−, i.e. with

u j =

{
x j, x j ≥ 0,

0, x j < 0,
and v j =

{
0, x j ≥ 0,

−x j, x j < 0,

is the unique solution of

min
u,v∈Rn

n

∑
j=1

(u j + v j) s.t. Au−Av = y and u j ≥ 0 and v j ≥ 0 for all j = 1, . . . ,n.

(1.7)

If namely (u′,v′) is another pair of vectors admissible in (1.7), then x′ = u′ − v′
satisfies Ax′ = y and x′ is therefore admissible in (P1). As x is the solution of (P1),
we get

n

∑
j=1

(u j + v j) = ‖x‖1 < ‖x′‖1 =
n

∑
j=1
|u′j− v′j| ≤

n

∑
j=1

(u′j + v′j).

If, on the other hand, the pair (u,v) is the unique solution of (1.7), then x = u− v
is the unique solution of (P1). If namely z is another admissible vector in (P1), then
u′ = z+ and v′ = z− are admissible in (1.7) and we obtain

‖x‖1 =
n

∑
j=1

|u j− v j| ≤
n

∑
j=1

(u j + v j)<
n

∑
j=1

(u′j + v′j) = ‖z‖1.

Very similar argument works also in the case when (P1) has multiple solutions.
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1.3.2 Null Space Property

If T ⊂ {1, . . . ,n}, then we denote by T c = {1, . . . ,n} \ T the complement of T in
{1, . . . ,n}. If furthermore v ∈ R

n, then we denote by vT either the vector in R
|T |,

which contains the coordinates of v on T , or the vector in R
n, which equals v on T

and is zero on T c. It will be always clear from the context, which notation is being
used.

Finally, if A ∈ R
m×n is a matrix, we denote by AT the m× |T | sub-matrix

containing the columns of A indexed by T . Let us observe that if x ∈ R
n with

T = supp (x), that Ax = AT xT .
We start the discussion of the properties of basis pursuit by introducing the notion

of Null Space Property, which first appeared in [20].

Definition 1. Let A ∈ R
m×n and let k ∈ {1, . . . ,n}. Then A is said to have the Null

Space Property (NSP) of order k if

‖vT‖1 < ‖vT c‖1 for all v ∈ ker A\ {0} and all T ⊂ {1, . . . ,n} with |T | ≤ k.
(1.8)

Remark 1. (i) The condition (1.8) states that vectors from the kernel of A are well
spread, i.e. not supported on a set of small size. Indeed, if v ∈ R

n \ {0} is k-
sparse and T = supp (v), then (1.8) shows immediately, that v cannot lie in the
kernel of A.

(ii) If we add ‖vT c‖1 to both sides of (1.8), we obtain ‖v‖1 < 2‖vTc‖1. If then T
are the indices of the k largest coordinates of v taken in the absolute value, this
inequality becomes ‖v‖1 < 2σk(v)1.

Theorem 2. Let A ∈ R
m×n and let k ∈ {1, . . . ,n}. Then every k-sparse vector x is

the unique solution of (P1) with y = Ax if, and only if, A has the NSP of order k.

Proof. Let us assume that every k-sparse vector x is the unique solution of (P1) with
y = Ax. Let v ∈ ker A\{0} and let T ⊂ {1, . . . ,n} with |T | ≤ k be arbitrary. Then vT

is k-sparse, and is therefore the unique solution of

min
z
‖z‖1, s.t. Az = AvT . (1.9)

As A(−vTc) = A(v− vTc) = A(vT ), this gives especially ‖vT‖1 < ‖vTc‖1 and A has
the NSP of order k.

Let us, on the other hand, assume that A has the NSP of order k. Let x ∈ R
n be

a k-sparse vector and let T = supp (x). We have to show that ‖x‖1 < ‖z‖1 for every
z ∈ R

n different from x with Az = Ax. But this follows easily by using (1.8) for the
vector (x− z) ∈ ker A\ {0}

‖x‖1 ≤ ‖x− zT‖1 + ‖zT‖1 = ‖(x− z)T‖1 + ‖zT‖1 < ‖(x− z)Tc‖1 + ‖zT‖1

= ‖zTc‖1 + ‖zT‖1 = ‖z‖1.
�
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Remark 2. Theorem 2 states that the solutions of (P0) may be found by (P1), if A
has the NSP of order k and if y ∈ R

m is such that, there exists a k-sparse solution
x of the equation Ax = y. Indeed, if in such a case, x̂ is a solution of (P0), then
‖x̂‖0 ≤ ‖x‖0 ≤ k. Finally, it follows by Theorem 2 that x̂ is also a solution of (P1)
and that x = x̂.

In the language of complexity theory, if we restrict the inputs of the �0-
minimization problem to matrices with the NSP of order k and to vectors y, for
which there is a k-sparse solution of the equation Ax = y, the problem belongs to
the P-class and the solving algorithm with polynomial running time is any standard
algorithm solving (P1), or the corresponding linear problem (1.7).

1.3.3 Restricted Isometry Property

Although the Null Space Property is equivalent to the recovery of sparse solutions
of underdetermined linear systems by basis pursuit in the sense just described, it is
somehow difficult to construct matrices satisfying this property. We shall therefore
present a sufficient condition called Restricted Isometry Property, which was first
introduced in [15], and which ensures that the Null Space Property is satisfied.

Definition 2. Let A ∈ R
m×n and let k ∈ {1, . . . ,n}. Then the restricted isometry

constant δk = δk(A) of A of order k is the smallest δ ≥ 0, such that

(1− δ )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+ δ )‖x‖2
2 for all x ∈ Σk. (1.10)

Furthermore, we say that A satisfies the Restricted Isometry Property (RIP) of order
k with the constant δk if δk < 1.

Remark 3. The condition (1.10) states that A acts nearly isometrically when
restricted to vectors from Σk. Of course, the smaller the constant δk(A) is, the
closer is the matrix A to isometry on Σk. We will be therefore later interested in
constructing matrices with small RIP constants. Finally, the inequality δ1(A) ≤
δ2(A)≤ ·· · ≤ δk(A) follows trivially.

The following theorem shows that RIP of sufficiently high order with a constant
small enough is indeed a sufficient condition for NSP.

Theorem 3. Let A ∈R
m×n and let k be a natural number with k≤ n/2. If δ2k(A)<

1/3, then A has the NSP of order k.

Proof. Let v ∈ ker A and let T ⊂ {1, . . . ,n} with |T | ≤ k. We shall show that

‖vT‖2 ≤ δ2k

1− δk
· ‖v‖1√

k
. (1.11)

If δk ≤ δ2k < 1/3, then Hölder’s inequality gives immediately ‖vT‖1 ≤
√

k‖vT‖2 <
‖v‖1/2 and the NSP of A of order k follows.
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Before we come to the proof of (1.11), let us make the following observation. If
x,z∈ Σk are two vectors with disjoint supports and ‖x‖2 = ‖z‖2 = 1, then x±z∈ Σ2k

and ‖x± z‖2
2 = 2. If we now combine the RIP of A

2(1− δ2k)≤ ‖A(x± z)‖2
2 ≤ 2(1+ δ2k)

with the polarization identity, we get

|〈Ax,Az〉|= 1
4

∣
∣
∣‖Ax+Az‖2

2−‖Ax−Az‖2
2

∣
∣
∣≤ δ2k.

Using this formula for x′ = x/‖x‖2 and z′ = z/‖z‖2, we see that if A has the RIP of
order 2k and x,z ∈ Σk have disjoint supports, then

|〈Ax,Az〉| ≤ δ2k‖x‖2‖z‖2. (1.12)

To show (1.11), let us assume that v ∈ ker A is fixed. It is enough to consider
T = T0 the set of the k largest entries of v taken in the absolute value. Furthermore,
we denote by T1 the set of k largest entries of vT c

0
in the absolute value, by T2 the set

of k largest entries of v(T0∪T1)c in the absolute value, etc. Using 0 = Av = A(vT0 +
vT1 + vT2 + . . .) and (1.12), we arrive at

‖vT0‖2
2 ≤

1
1− δk

‖AvT0‖2
2 =

1
1− δk

〈AvT0 ,A(−vT1)+A(−vT2)+ . . .〉

≤ 1
1− δk

∑
j≥1

|〈AvT0 ,AvTj 〉| ≤
δ2k

1− δk
∑
j≥1

‖vT0‖2 · ‖vTj‖2.

We divide this inequality by ‖vT0‖2 �= 0 and obtain

‖vT0‖2 ≤ δ2k

1− δk
∑
j≥1
‖vTj‖2.

The proof is then completed by the following simple chain of inequalities, which
involve only the definition of the sets Tj, j ≥ 0.

∑
j≥1
‖vTj‖2 = ∑

j≥1

(

∑
l∈Tj

|vl |2
)1/2 ≤ ∑

j≥1

(
k max

l∈Tj
|vl |2

)1/2

= ∑
j≥1

√
kmax

l∈Tj
|vl | ≤ ∑

j≥1

√
k min

l∈Tj−1
|vl | ≤ ∑

j≥1

√
k · ∑l∈Tj−1

|vl |
k

(1.13)

= ∑
j≥1

‖vTj−1‖1√
k

=
‖v‖1√

k
.

�
Combining Theorems 2 and 3, we obtain immediately the following corollary.
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Corollary 1. Let A∈R
m×n and let k be a natural number with k≤ n/2. If δ2k(A)<

1/3, then every k-sparse vector x is the unique solution of (P1) with y = Ax.

1.3.4 RIP for random matrices

From what was said up to now, we know that matrices with small restricted isometry
constants fulfill the null space property, and sparse solutions of underdetermined
linear equations involving such matrices can be found by �1-minimization (P1). We
discuss in this chapter a class of matrices with small RIP constants. It turns out
that the most simple way is to construct these matrices by taking its entries to be
independent standard normal variables.

We denote until the end of this section

A =
1√
m

⎛

⎜
⎝

ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn

⎞

⎟
⎠ , (1.14)

where ωij, i = 1, . . . ,m, j = 1, . . . ,n, are i.i.d. standard normal variables. We shall
show that such a matrix satisfies the RIP with reasonably small constants with high
probability.

1.3.4.1 Concentration inequalities

Before we come to the main result of this chapter, we need some properties of
independent standard normal variables.

Lemma 1. (i) Let ω be a standard normal variable. Then E(eλω
2
) = 1/

√
1− 2λ

for −∞< λ < 1/2.
(ii) (2-stability of the normal distribution) Let m∈N, let λ = (λ1, . . . ,λm)∈R

m and
let ω1, . . . ,ωm be i.i.d. standard normal variables. Then λ1ω1 + · · ·+λmωm ∼
(∑m

i=1λ 2
i )

1/2 ·N (0,1), i.e. it is equidistributed with a multiple of a standard
normal variable.

Proof. The proof of (i) follows from the substitution s :=
√

1− 2λ · t in the
following way.

E(eλω
2
) =

1√
2π

∫ ∞

−∞
eλ t2 · e−t2/2dt =

1√
2π

∫ ∞

−∞
e(λ−1/2)t2

dt

=
1√
2π

∫ ∞

−∞
e−s2/2 · ds√

1− 2λ
=

1√
1− 2λ

.
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14 H. Boche et al.

Although the property (ii) is very well known (and there are several different ways
to prove it), we provide a simple geometric proof for the sake of completeness. It is
enough to consider the case m = 2. The general case then follows by induction.

Let therefore λ = (λ1,λ2) ∈ R
2,λ �= 0, be fixed and let ω1 and ω2 be i.i.d.

standard normal random variables. We put S := λ1ω1 + λ2ω2. Let t ≥ 0 be an
arbitrary non-negative real number. We calculate

P(S ≤ t) =
1

2π

∫

(u,v):λ1u+λ2v≤t
e−(u

2+v2)/2dudv =
1

2π

∫

u≤c;v∈R
e−(u

2+v2)/2dudv

=
1√
2π

∫

u≤c
e−u2/2du.

We have used the rotational invariance of the function (u,v)→ e−(u2+v2)/2. The
value of c is given by the distance of the origin from the line {(u,v) : λ1u+λ2v = t}.
It follows by elementary geometry and Pythagorean theorem that (cf. ΔOAP �
ΔBAO in Figure 1.3)

c = |OP|= |OB| · |OA|
|AB| =

t
√

λ 2
1 +λ 2

2

.

We therefore get

P(S ≤ t) =
1√
2π

∫

√
λ 2

1 +λ 2
2 ·u≤t

e−u2/2du = P

(√

λ 2
1 +λ 2

2 ·ω ≤ t

)

.

The same estimate holds for negative t’s by symmetry and the proof is finished. �

Fig. 1.3 Calculating c = |OP| by elementary geometry for λ1,λ2 > 0
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If ω1, . . . ,ωm are (possibly dependent) standard normal random variables, then
E(ω2

1 + · · ·+ω2
m) = m. If ω1, . . . ,ωm are even independent, then the value of ω2

1 +
· · ·+ω2

m concentrates very strongly around m. This effect is known as concentration
of measure, cf. [49, 50, 55].

Lemma 2. Let m ∈ N and let ω1, . . . ,ωm be i.i.d. standard normal variables. Let
0 < ε < 1. Then

P(ω2
1 + · · ·+ω2

m ≥ (1+ ε)m)≤ e−
m
2 [ε

2/2−ε3/3]

and

P(ω2
1 + · · ·+ω2

m ≤ (1− ε)m)≤ e−
m
2 [ε

2/2−ε3/3].

Proof. We prove only the first inequality. The second one follows in exactly the
same manner. Let us put β := 1+ ε > 1 and calculate

P(ω2
1 + · · ·+ω2

m ≥ βm) = P(ω2
1 + · · ·+ω2

m−βm≥ 0)

= P(λ (ω2
1 + · · ·+ω2

m−βm)≥ 0)

= P(exp(λ (ω2
1 + · · ·+ω2

m−βm))≥ 1)

≤ Eexp(λ (ω2
1 + · · ·+ω2

m−βm)),

where λ > 0 is a positive real number, which shall be chosen later on. We have used
the Markov’s inequality (1.3) in the last step. Further we use the elementary proper-
ties of exponential function and (1.5) for the independent variables ω1, . . . ,ωm. This
leads to

Eexp(λ (ω2
1 + · · ·+ω2

m−βm)) = e−λβm · Eeλω
2
1 · · ·eλω2

m = e−λβm · (Eeλω
2
1 )m

and with the help of Lemma 1 we get finally (for 0 < λ < 1/2)

Eexp(λ (ω2
1 + · · ·+ω2

m−βm)) = e−λβm · (1− 2λ )−m/2.

We now look for the value of 0 < λ < 1/2, which would minimize the last
expression. Therefore, we take the derivative of e−λβm · (1− 2λ )−m/2 and put it
equal to zero. After a straightforward calculation, we get

λ =
1− 1/β

2
,
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16 H. Boche et al.

which obviously satisfies also 0 < λ < 1/2. Using this value of λ we obtain

P(ω2
1 + · · ·+ω2

m ≥ βm)≤ e−
1−1/β

2 ·βm · (1− (1− 1/β ))−m/2 = e−
β−1

2 m ·βm/2

= e−
εm
2 · e m

2 ln(1+ε).

The result then follows from the inequality

ln(1+ t)≤ t− t2

2
+

t3

3
, −1 < t < 1. �

Using 2-stability of the normal distribution, Lemma 2 shows immediately that A
defined as in (1.14) acts with high probability as isometry on one fixed x ∈ R

n.

Theorem 4. Let x ∈ R
n with ‖x‖2 = 1 and let A be as in (1.14). Then

P

(∣
∣
∣‖Ax‖2

2− 1
∣
∣
∣≥ t

)
≤ 2e−

m
2 [t

2/2−t3/3] ≤ 2e−Cmt2
(1.15)

for 0 < t < 1 with an absolute constant C > 0.

Proof. Let x=(x1,x2, . . . ,xn)
T . Then we get by the 2-stability of normal distribution

and Lemma 2

P

(∣
∣
∣‖Ax‖2

2− 1
∣
∣
∣≥ t

)

= P

(∣
∣(ω1,1x1 + · · ·+ω1nxn)

2 + · · ·+(ωm1x1 + · · ·+ωmnxn)
2−m

∣
∣≥ mt

)

= P

(∣
∣ω2

1 + · · ·+ω2
m−m

∣
∣≥ mt

)

= P

(
ω2

1 + · · ·+ω2
m ≥ m(1+ t)

)
+P

(
ω2

1 + · · ·+ω2
m ≤ m(1− t)

)

≤ 2e−
m
2 [t

2/2−t3/3].

This gives the first inequality in (1.15). The second one follows by simple algebraic
manipulations (for C = 1/12). �
Remark 4. (i) Observe that (1.15) may be easily rescaled to

P

(∣
∣
∣‖Ax‖2

2−‖x‖2
2

∣
∣
∣≥ t‖x‖2

2

)
≤ 2e−Cmt2

, (1.16)

which is true for every x ∈R
n.
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(ii) A slightly different proof of (1.15) is based on the rotational invariance of
the distribution underlying the random structure of matrices defined by (1.14).
Therefore, it is enough to prove (1.15) only for one fixed element x ∈ R

n with
‖x‖2 = 1. Taking x = e1 = (1,0, . . . ,0)T to be the first canonical unit vector
allows us to use Lemma 2 without the necessity of applying the 2-stability of
normal distribution.

1.3.4.2 RIP for random Gaussian matrices

The proof of restricted isometry property of random matrices generated as in (1.14)
is based on two main ingredients. The first is the concentration of measure
phenomenon described in its most simple form in Lemma 2, and reformulated in
Theorem 4. The second is the following entropy argument, which allows to extend
Theorem 4 and (1.15) from one fixed x ∈ R

n to the set Σk of all k-sparse vectors.

Lemma 3. Let t > 0. Then there is a set N ⊂ S
n−1 = {x ∈R

n : ‖x‖2 = 1} with

(i) |N | ≤ (1+ 2/t)n and
(ii) for every z ∈ S

n−1, there is a x ∈N with ‖x− z‖2 ≤ t.

Proof. Choose any x1 ∈ S
n−1. If x1, . . . ,x j ∈ S

n−1 were already chosen, take x j+1 ∈
S

n−1 arbitrarily with ‖x j+1 − xl‖2 > t for all l = 1, . . . , j. This process is then
repeated as long as possible, i.e. until we obtain a set N = {x1, . . . ,xN} ⊂ S

n−1,
such that for every z ∈ S

n−1 there is a j ∈ {1, . . . ,N} with ‖x j− z‖2 ≤ t. This gives
the property (ii).

We will use volume arguments to prove (i). It follows by construction that
‖xi− x j‖2 > t for every i, j ∈ {1, . . . ,N} with i �= j. By triangle inequality, the balls
B(x j, t/2) are all disjoint and are all included in the ball with the center in the origin
and radius 1+ t/2. By comparing the volumes we get

N · (t/2)n ·V ≤ (1+ t/2)n ·V,

where V is the volume of the unit ball in R
n. Hence, we get N = |N | ≤ (1+2/t)n.

�
With all these tools at hand, we can now state the main theorem of this section,

whose proof follows closely the arguments of [4].

Theorem 5. Let n≥m≥ k≥ 1 be natural numbers and let 0< ε < 1 and 0< δ < 1
be real numbers with

m≥Cδ−2
(

k ln(en/k)+ ln(2/ε)
)
, (1.17)
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where C > 0 is an absolute constant. Let A be again defined by (1.14). Then

P
(
δk(A)≤ δ

)≥ 1− ε.

Proof. The proof follows by the concentration inequality of Theorem 4 and the
entropy argument described in Lemma 3. By this lemma, there is a set

N ⊂ Z := {z ∈ R
n : supp (z)⊂ {1, . . . ,k},‖z‖2 = 1},

such that

(i) |N | ≤ 9k and
(ii) minx∈N ‖z− x‖2 ≤ 1/4 for every z ∈ Z.

We show that if
∣
∣‖Ax‖2

2− 1
∣
∣≤ δ/2 for all x ∈N , then

∣
∣‖Az‖2

2− 1
∣
∣≤ δ for all

z ∈ Z.
We proceed by the following bootstrap argument. Let γ > 0 be the smallest

number, such that
∣
∣‖Az‖2

2− 1
∣
∣≤ γ for all z ∈ Z. Then

∣
∣‖Au‖2

2−‖u‖2
2

∣
∣ ≤ γ‖u‖2

2 for
all u∈R

n with supp (u)⊂ {1, . . . ,k}. Let us now assume that ‖u‖2 = ‖v‖2 = 1 with
supp (u)∪ supp (v)⊂ {1, . . . ,k}. Then we get by polarization identity

|〈Au,Av〉− 〈u,v〉|= 1
4

∣
∣
∣(‖A(u+ v)‖2

2−‖A(u− v)‖2
2)− (‖u+ v‖2

2−‖u− v‖2
2)
∣
∣
∣

≤ 1
4

∣
∣
∣‖A(u+ v)‖2

2−‖u+ v‖2
2

∣
∣
∣+

1
4

∣
∣
∣‖A(u− v)‖2

2−‖u− v‖2
2

∣
∣
∣

≤ γ
4
‖u+ v‖2

2+
γ
4
‖u− v‖2

2 =
γ
2
(‖u‖2

2 + ‖v‖2
2) = γ.

Applying this inequality to u′ = u/‖u‖2 and v′ = v/‖v‖2, we obtain

|〈Au,Av〉− 〈u,v〉| ≤ γ‖u‖2‖v‖2 (1.18)

for all u,v ∈ R
n with supp (u)∪ supp (v)⊂ {1, . . . ,k}.

Let now again z∈ Z. Then there is an x∈N , such that ‖z−x‖2≤ 1/4.We obtain
by triangle inequality and (1.18)

∣
∣‖Az‖2

2− 1
∣
∣=

∣
∣‖Ax‖2

2− 1+ 〈A(z+ x),A(z− x)〉− 〈z+ x,z− x〉∣∣
≤ δ/2+ γ‖z+ x‖2‖z− x‖2 ≤ δ/2+ γ/2.

As the supremum of the left-hand side over all admissible z’s is equal to γ , we obtain
that γ ≤ δ and the statement follows.
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Equipped with this tool, the rest of the proof follows by a simple union bound.

P(δk(A)> δ )≤ ∑
T⊂{1,...,n}
|T |≤k

P

(
∃z ∈R

n : supp (z)⊂ T,‖z‖2 = 1 and
∣
∣‖Az‖2

2− 1
∣
∣> δ

)

=

(
n
k

)

P

(
∃z ∈ Z with

∣
∣‖Az‖2

2− 1
∣
∣> δ

)

≤
(

n
k

)

P

(
∃x ∈N :

∣
∣‖Ax‖2

2− 1
∣
∣> δ/2

)
.

By Theorem 4, the last probability may be estimated from above by 2e−C′mδ 2
. Hence

we obtain

P(δk(A)> δ )≤ 9k
(

n
k

)

·2e−C′mδ 2

Hence it is enough to show that the last quantity is at most ε if (1.17) is satisfied.
But this follows by straightforward algebraic manipulations and the well-known
estimate

(
n
k

)

≤ nk

k!
≤
(en

k

)k
. �

1.3.4.3 Lemma of Johnson and Lindenstrauss

Concentration inequalities similar to (1.15) play an important role in several areas of
mathematics. We shall present their connection to the famous result from functional
analysis called Johnson–Lindenstrauss lemma, cf. [1, 22, 46, 54]. The lemma states
that a set of points in a high-dimensional space can be embedded into a space of
much lower dimension in such a way that the mutual distances between the points
are nearly preserved. The connection between this classical result and compressed
sensing was first highlighted in [4], cf. also [47].

Lemma 4. Let 0 < ε < 1 and let m,N and n be natural numbers with

m≥ 4(ε2/2− ε3/3)−1 lnN.

Then for every set {x1, . . . ,xN} ⊂R
n there exists a mapping f : Rn →R

m, such that

(1− ε)‖xi− x j‖2
2 ≤ ‖ f (xi)− f (x j)‖2

2 ≤ (1+ ε)‖xi− x j‖2
2, i, j ∈ {1, . . . ,N}.

(1.19)
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20 H. Boche et al.

Proof. We put f (x) = Ax, where again

Ax =
1√
m

⎛

⎜
⎝

ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn

⎞

⎟
⎠x,

and ωij, i = 1, . . . ,m, j = 1, . . . ,n are i.i.d. standard normal variables. We show that
with this choice f satisfies (1.19) with positive probability. This proves the existence
of such a mapping.

Let i, j ∈ {1, . . . ,N} arbitrary with xi �= x j. Then we put z = xi−x j

‖xi−x j‖2
and evaluate

the probability that the right-hand side inequality in (1.19) does not hold. Theorem 4
then implies

P

(∣
∣
∣‖ f (xi)− f (x j)‖2

2−‖xi− x j‖2
2

∣
∣
∣> ε‖xi− x j‖2

2

)
= P

(∣
∣
∣‖Az‖2− 1

∣
∣
∣> ε

)

≤ 2e−
m
2 [ε

2/2−ε3/3].

The same estimate is also true for all
(N

2

)
pairs {i, j} ⊂ {1, . . . ,N} with i �= j. The

probability that one of the inequalities in (1.19) is not satisfied is therefore at most

2 ·
(

N
2

)

· e− m
2 [ε

2/2−ε3/3] < N2 · e− m
2 [ε

2/2−ε3/3] = exp
(

2lnN− m
2
[ε2/2− ε3/3]

)
≤ e0 = 1

for m ≥ 4(ε2/2− ε3/3)−1 lnN. Therefore, the probability that (1.19) holds for all
i, j ∈ {1, . . . ,N} is positive and the result follows. �

1.3.5 Stability and Robustness

The ability to recover sparse solutions of underdetermined linear systems by quick
recovery algorithms as �1-minimization is surely a very promising result. On the
other hand, two additional features are obviously necessary to extend this results to
real-life applications, namely

• Stability: We want to be able to recover (or at least approximate) also vectors
x ∈ R

n, which are not exactly sparse. Such vectors are called compressible and
mathematically they are characterized by the assumption that their best k-term
approximation decays rapidly with k. Intuitively, the faster the decay of the best
k-term approximation of x ∈R

n is, the better we should be able to approximate x.
• Robustness: Equally important, we want to recover sparse or compressible vectors

from noisy measurements. The basic model here is the assumptions that the
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measurement vector y is given by y = Ax+ e, where e is small (in some sense).
Again, the smaller the error e is, the better we should be able to recover an
approximation of x.

We shall show that the methods of compressed sensing can be extended also to
this kind of scenario. There is a number of different estimates in the literature, which
show that the technique of compressed sensing is stable and robust. We will present
only one of them (with more to come in Section 1.4.3). Its proof is a modification
of the proof of Theorem 3, and follows closely [11].

Inspired by the form of the noisy measurements just described, we will concen-
trate on the recovery properties of the following slight modification of (P1). Namely,
let η ≥ 0, then we consider the convex optimization problem

min
z∈Rn

‖z‖1 s.t. ‖Az− y‖2 ≤ η . (P1,η)

If η = 0, (P1,η ) reduces back to (P1).

Theorem 6. Let δ2k <
√

2−1 and ‖e‖2 ≤ η . Then the solution x̂ of (P1,η) satisfies

‖x− x̂‖2 ≤ Cσk(x)1√
k

+Dη , (1.20)

where C,D > 0 are two universal positive constants.

Proof. First, let us recall that if A has RIP of order 2k and u,v ∈ Σk are two vectors
with disjoint supports, then we have by (1.12)

|〈Au,Av〉| ≤ δ2k‖u‖2‖v‖2. (1.21)

Let us put h = x̂−x and let us define the index set T0 ⊂ {1, . . . ,n} as the locations of
k largest entries of x taken in the absolute value. Furthermore, we define T1 ⊂ T c

0 to
be the indices of k largest absolute entries of hT c

0
, T2 the indices of k largest absolute

entries of h(T0∪T1)c , etc. As x̂ is an admissible point in (P1,η), the triangle inequality
gives

‖Ah‖2 = ‖A(x− x̂)‖2 ≤ ‖Ax− y‖2+ ‖y−Ax̂‖2 ≤ 2η . (1.22)

As x̂ is the minimizer of (P1,η ), we get ‖x̂‖1 = ‖x+h‖1 ≤ ‖x‖1, which we use to
show that h must be small outside of T0. Indeed, we obtain

‖hTc
0
‖1 = ‖(x+ h)Tc

0
− xTc

0
‖1 + ‖(x+ h)T0− hT0‖1−‖xT0‖1

≤ ‖(x+ h)Tc
0
‖1 + ‖xTc

0
‖1 + ‖(x+ h)T0‖1 + ‖hT0‖1−‖xT0‖1

= ‖x+ h‖1+ ‖xTc
0
‖1 + ‖hT0‖1−‖xT0‖1
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≤ ‖x‖1 + ‖xTc
0
‖1 + ‖hT0‖1−‖xT0‖1

= ‖hT0‖1 + 2‖xTc
0
‖ ≤ k1/2‖hT0‖2 + 2σk(x)1.

Using this together with the approach applied already in (1.13), we derive

∑
j≥2
‖hTj‖2 ≤ k−1/2‖hTc

0
‖1 ≤ ‖hT0‖2 + 2k−1/2σk(x)1. (1.23)

We use the RIP property of A, (1.21), (1.22), (1.23) and the simple inequality
‖hT0‖2 + ‖hT1‖2 ≤

√
2‖hT0∪T1‖2 and get

(1−δ2k)‖hT0∪T1‖2
2 ≤ ‖AhT0∪T1‖2

2 = 〈AhT0∪T1 ,Ah〉−〈AhT0∪T1 ,∑
j≥2

AhTj 〉

≤ ‖AhT0∪T1‖2‖Ah‖2 +∑
j≥2
|〈AhT0 ,AhTj 〉|+∑

j≥2
|〈AhT1 ,AhTj 〉|

≤ 2η
√

1+δ2k‖hT0∪T1‖2 +δ2k(‖hT0‖2 +‖hT1‖2)∑
j≥2
‖hTj‖2

≤ ‖hT0∪T1‖2

(
2η
√

1+δ2k +
√

2δ2k‖hT0‖2 +2
√

2δ2kk−1/2σk(x)1

)
.

We divide this inequality with (1− δ2k)‖hT0∪T1‖2, replace ‖hT0‖2 with the larger
quantity ‖hT0∪T1‖2 and subtract

√
2δ2k/(1− δ2k)‖hT0∪T1‖2 to arrive at

‖hT0∪T1‖2 ≤ (1−ρ)−1(αη+ 2ρk−1/2σk(x)1), (1.24)

where

α =
2
√

1+ δ2k

1− δ2k
and ρ =

√
2δ2k

1− δ2k
. (1.25)

We conclude the proof by using this estimate and (1.23)

‖h‖2 ≤ ‖h(T0∪T1)c‖2 + ‖hT0∪T1‖2 ≤ ∑
j≥2

‖hTj‖2 + ‖hT0∪T1‖2

≤ 2‖hT0∪T1‖2 + 2k−1/2σk(x)1 ≤C
σk(x)1√

k
+Dη

with C = 2(1−ρ)−1α and D = 2(1+ρ)(1−ρ)−1.

We shall give more details on stability and robustness of compressed sensing in
Section 1.4.3.
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1.3.6 Optimality of bounds

When recovering k-sparse vectors one obviously needs at least m ≥ k linear
measurements. Even when the support of the unknown vector would be known,
this number of measurements would be necessary to identify the value of the non-
zero coordinates. Therefore, the dependence of the bound (1.17) on k can possibly
only be improved in the logarithmic factor. We shall show that even that is not
possible and that this dependence is already optimal as soon as a stable recovery of
k-sparse vectors is requested. The approach presented here is essentially taken over
from [40].

The proof is based on the following combinatorial lemma.

Lemma 5. Let k ≤ n be two natural numbers. Then there are N subsets T1, . . . ,TN

of {1, . . . ,n}, such that

(i) N ≥
( n

4k

)k/2
,

(ii) |Ti|= k for all i = 1, . . . ,N and
(iii) |Ti∩Tj|< k/2 for all i �= j.

Proof. We may assume that k≤ n/4, otherwise one can take N = 1 and the statement
becomes trivial. The main idea of the proof is straightforward (and similar to the
proof of Lemma 3). We choose the sets T1,T2, . . . inductively one after another as
long as possible, satisfying (ii) and (iii) on the way, and then we show that this
process will run for at least N steps with N fulfilling (i).

Let T1 ⊂ {1, . . . ,n} be any set with k elements. The number of subsets of
{1, . . . ,n} with exactly k elements, whose intersection with T1 has at least k/2
elements is bounded by the product of 2k (i.e., the number of all subsets of T1)
and

( n−k
�k/2�

)
, which is the number of all subsets of T c

1 with at most k/2 elements.
Therefore there are at least

(
n
k

)

− 2k
(

n− k
�k/2�

)

sets T ⊂ {1, . . . ,n} with k elements and |T ∩T1| < k/2. We select T2 to be any of
them. After the jth step, we have selected sets T1, . . . ,Tj with (ii) and (iii) and there
are still

(
n
k

)

− j2k
(

n− k
�k/2�

)
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to choose from. The process stops if this quantity is not positive any more, i.e. after
at least

N ≥
(n

k

)

2k
( n−k
�k/2�

) ≥ 2−k

(n
k

)

(n−�k/2�
�k/2�

) = 2−k n!
(n− k)!k!

· (�k/2�)!(n− k)!
(n−�k/2�)!

= 2−k n(n− 1) . . .(n−�k/2�+ 1)
k(k− 1) . . .(k−�k/2�+ 1)

≥ 2−k
(n

k

)�k/2� ≥
( n

4k

)k/2

steps.

The following theorem shows that any stable recovery of sparse solutions requires
at least m number of measurements, where m is of the order k ln(en/k).

Theorem 7. Let k ≤ m ≤ n be natural numbers, let A ∈ R
m×n be a measurement

matrix, and let Δ : Rm → R
n be an arbitrary recovery map such that for some

constant C > 0

‖x−Δ(Ax)‖2 ≤C
σk(x)1√

k
for all x ∈R

n. (1.26)

Then

m≥C′k ln(en/k) (1.27)

with some other constant C′ depending only on C.

Proof. We may assume that C ≥ 1. Furthermore, if k is proportional to n (say k ≥
n/8), then (1.27) becomes trivial. Hence we may also assume that k≤ n/8.

By Lemma 5, there exist index sets T1, . . . ,TN with N ≥ (n/4k)k/2, |Ti| = k and
|Ti∩Tj|< k/2 if i �= j. We put xi = χTi/

√
k. Then ‖xi‖2 = 1, ‖xi‖1 =

√
k and ‖xi−

x j‖2 > 1 for i �= j.
Let

B =
{

z ∈ R
n : ‖z‖1 ≤

√
k

4C
and ‖z‖2 ≤ 1/4

}
.

Then xi ∈ 4C ·B for all i = 1, . . . ,N.
We claim that the sets A(xi+B) are mutually disjoint. Indeed, let us assume that

this is not the case. Then there is a pair of indices i, j ∈ {1, . . . ,n} and z,z′ ∈B with
i �= j and A(xi + z) = A(x j + z′). It follows that Δ(A(xi + z)) = Δ(A(x j + z′)) and we
get a contradiction by

1 < ‖xi− x j‖2 = ‖(xi + z−Δ(A(xi+ z))− (x j + z′ −Δ(A(x j + z′))− z+ z′)‖2

≤ ‖(xi + z−Δ(A(xi+ z))‖2 + ‖x j + z′ −Δ(A(x j + z′))‖2 + ‖z‖2 + ‖z′‖2
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≤C
σk(xi + z)1√

k
+C

σk(x j + z′)1√
k

+ ‖z‖2 + ‖z′‖2

≤C
‖z‖1√

k
+C

‖z′‖1√
k

+ ‖z‖2 + ‖z′‖2 ≤ 1.

Furthermore,

A(xi +B)⊂ A((4C+ 1)B), i = 1, . . . ,N

Let d≤m be the dimension of the range of A. We denote by V �= 0 the d-dimensional
volume of A(B) and compare the volumes

N

∑
j=1

vol
(
A(x j +B)

)≤ vol
(
A((4C+ 1)B)

)
.

Using linearity of A, we obtain

( n
4k

)k/2
V ≤ N ·V ≤ (4C+ 1)dV ≤ (4C+ 1)mV.

We divide by V and take the logarithm to arrive at

k
2

ln
( n

4k

)
≤ m ln(4C+ 1). (1.28)

If k ≤ n/8, then it is easy to check that there is a constant c′ > 0, such that

ln
( n

4k

)
≥ c′ ln

(en
k

)
.

Putting this into (1.28) finishes the proof. �

1.4 Extensions

Section 1.3 gives a detailed overview of the most important features of compressed
sensing. On the other hand, inspired by many questions coming from application
driven research, various additional aspects of the theory were studied in the
literature. We present here few selected extensions of the ideas of compressed
sensing, which turned out to be the most useful in practice. To keep the presentation
reasonable short, we do not give any proofs, and only refer to relevant sources.
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1.4.1 Frames and Dictionaries

We have considered in Section 1.3 vectors x ∈ R
n, which are sparse with respect

to the natural canonical basis {e j}n
j=1 of Rn. In practice, however, the signal has

a sparse representation with respect to a basis (or, more general, with respect to a
frame or dictionary). Let us first recall some terminology.

A set of vectors {φ j}n
j=1 in R

n, which is linearly independent and which spans
the whole space R

n is called a basis. It follows easily that such a set necessarily
has n elements. Furthermore, every x ∈ R

n can be expressed uniquely as a linear
combination of the basis vectors, i.e. there is a unique c = (c1, . . . ,cn)

T ∈ R
n, such

that

x =
n

∑
j=1

c jφ j. (1.29)

A basis is called orthonormal, if it satisfies the orthogonality relations

〈φi,φ j〉=
{

1, i = j,

0, i �= j.
(1.30)

If {φ}n
j=1 is an orthonormal basis and x ∈ R

n, then the decomposition coefficients
c j in (1.29) are given by c j = 〈x,φ j〉. Furthermore, the relation

‖x‖2
2 =

n

∑
j=1
|c j|2 (1.31)

holds true.
Equations (1.29)–(1.30) can be written also in matrix notation. If Φ is an n× n

matrix with j-th column equal to φ j, then (1.29) becomes x = Φc and (1.30) reads
ΦTΦ = I, where I denoted the n× n identity matrix. As a consequence, c = ΦT x.
We shall say that x has sparse or compressible representation with respect to the
basis {φ j}n

j=1 if the vector c ∈ R
n is sparse or compressible, respectively.

To allow for more flexibility in representation of signals, it is often useful to
drop the condition of linear independence of the set {φ j}N

j=1 ⊂ R
n. As before, we

represent such a system of vectors by an n×N matrix Φ . We say that {φ j}N
j=1 is a

frame, if there are two positive finite constants 0 < A≤ B, such that

A‖x‖2
2 ≤

N

∑
j=1
|〈x,φ j〉|2 ≤ B‖x‖2

2. (1.32)
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From A > 0, it follows that the span of the frame vectors is the whole R
n and,

therefore, that N ≥ n. If one can choose A = B in (1.32), then the frame is called
tight. Dual frame of Φ is any other frame Φ̃ with

ΦΦ̃T = Φ̃ΦT = I. (1.33)

In general, for a given signal x ∈R
n we can find infinitely many coefficients c, such

that x =Φc. Actually, if Φ̃ is a dual frame to Φ , one can take c = Φ̃T x. One is often
interested in finding a vector of coefficients c with x =Φc, which is optimal in some
sense. Especially, we shall say that x has a sparse or compressible representation
with respect to the frame {φ j}N

j=1 if c can be chosen sparse or compressible, cf.
[33].

It can be shown that the smallest coefficient sequence in the �N
2 sense is obtained

by the choice c =Φ†x, where Φ† is the Penrose pseudoinverse. In this context, Φ†

is also called the canonical dual frame. Finally, let us note that (1.33) implies that

N

∑
j=1

〈x,φ j〉φ̃ j =
N

∑
j=1

〈x, φ̃ j〉φ j = x

for every x ∈ R
n.

The theory of compressed sensing was extended to the setting of sparse repre-
sentations with respect to frames and dictionaries in [60]. The measurements now
take the form y = Ax = AΦc, where c is sparse. Essentially, it turns out that if A
satisfies the concentration inequalities from Section 1.3.4 and the dictionary Φ has
small coherence, then the matrix AΦ has small RIP constants, and the methods of
compressed sensing can be applied.

1.4.2 Coherence

We have provided in Section 1.3.4 a simple recipe how to construct matrices with
small RIP constants - namely to choose each entry independently at random with
respect to a correctly normalized standard distribution. On the other hand, if the
matrix A is given beforehand, it is quite difficult to check if this matrix really satisfies
the RIP, or to calculate its RIP constants. Another property of A, which is easily
verifiable and which also ensures good recovery guarantees, is the coherence of A.

Definition 3. Let A be an m×n matrix and let a1, . . . ,an ∈R
m be its columns. Then

the coherence of A is the number μ(A) defined as

μ(A) = max
1≤i< j≤n

|〈ai,a j〉|
‖ai‖2‖a j‖2

. (1.34)
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Due to Cauchy–Schwartz inequality, μ(A) ≤ 1 is always true. If m ≤ n, then
there is a lower bound (known as the Welch bound [71]) on the coherence given

by μ(A) ≥
√

n−m
m(n−1) . We give a particulary elegant proof of this bound, which

has recently appeared in [45]. Without loss of generality, we may assume that
the vectors a1, . . . ,an (which may be even complex) have unit norm and that
μ = max1≤i< j≤n |〈ai,a j〉|. Using the notion of the trace of a square matrix (which
is just the sum of its diagonal entries) and some of its basic and very well-known
properties, we obtain

0≤ tr
[
(AA∗ − n

m
I)2
]
= tr[(A∗A)2]− n2

m

=
n

∑
k,l=1

|〈ak,al〉|2− n2

m
≤ n+ n(n− 1)μ2− n2

m
.

Solving this inequality for μ gives the Welch bound.
Let us observe that if n� m, then this bound reduces to approximately μ(A) ≥

1/
√

m. There is a lot of possible ways how to construct matrices with small
coherence. Not surprisingly, one possible option is to consider random matrices
A with each entry generated independently at random, cf. [58, Chapter 11].
Nevertheless the construction of matrices achieving the Welch bound exactly is still
an active area of research, making use of ideas from algebra and number theory. On
the other hand, it is easy to show that the Welch bound can not be achieved if n is
much larger than m. It can be done only if n ≤ m(m+ 1)/2 in the real case, and if
n≤ m2 in the complex case.

The connection of coherence to RIP is given by the following Lemma.

Lemma 6. If A has unit-norm columns and coherence μ(A), then it satisfies the
RIP of order k with δk(A)≤ (k− 1)μ(A) for all k < 1/μ(A).

Combining this with Theorem 5, it gives recovery guarantees for the number of
measurements m growing quadratically in the sparsity k.

1.4.3 Stability and Robustness

Basic discussion of stability and robustness of the methods of compressed sensing
was given already in Section 1.3.5 with Theorem 6 being the most important
representative of the variety of noise-aware estimates in the area. Its proof follows
closely the presentation of [11]. The proof can be easily transformed to the spirit of
Section 1.3.2 and 1.3.3 using the following modification of the Null Space Property.
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Definition 4. We say that A ∈ R
m×n satisfies the �2-Robust Null Space Property of

order k with constants 0 < ρ < 1 and τ > 0 if

‖vT‖2 ≤ ρ‖vTc‖1√
k

+ τ‖Av‖2 (1.35)

for all v ∈ R
n and all sets T ⊂ {1, . . . ,n} with |T | ≤ k.

The following theorem (which goes essentially back to [14]) is then the noise-
aware replacement of Theorem 2.

Theorem 8. Let A ∈ R
m×n with �2-Robust Null Space Property of order k with

constants 0 < ρ < 1 and τ > 0. Then for any x ∈ R
n the solution x̂ of (P1,η) with

y = Ax+ e and ‖e‖2 ≤ η satisfies

‖x− x̂‖2 ≤ C√
k
σk(x)1 +Dη (1.36)

with constants C,D > 0 depending only on ρ and τ.

Finally, it turns out that the Restricted Isometry Property is also sufficient to
guarantee the �2-Robust Null Space Property and Theorem 3 can be extended to

Theorem 9. Let A ∈R
m×n and let k be a natural number with k≤ n/2. If δ2k(A)<

1/3, then A satisfies the �2-Robust Null Space Property of order k with constants
0 < ρ < 1 and τ > 0 depending only on δ2k(A).

Let us only point out, that the constant 1/3 is by no means optimal, and that
the same result (with more technical analysis) holds also if δ2k(A) < 4/

√
41, cf.

[9, 10, 38, 39].
Theorems 6 and 8 are sufficient to analyze the situation, when the noise is

bounded in the �2-norm, no matter what the structure of the noise is. Unfortunately,
it is not optimal for the analysis of measurements perturbed by Gaussian noise. To
demonstrate this, let us assume that e = (e1, . . . ,em)

T , where ei’s are independent
normal variables with variance σ2, and that

y = Ax+ e, (1.37)

where the entries of A∈R
m×n are independent standard normal variables. We divide

this equation by
√

m and use that A′ = A/
√

m satisfies the RIP of order k with high
probability for m ≥ Ck ln(eN/k). As ‖e/√m‖2 ≤ 2σ with high probability, (1.36)
becomes for a k-sparse x ∈ R

n

‖x− x̂‖2 ≤ D′σ . (1.38)

We observe that increasing the number of (properly normalised) measurements does
not lead to any decay of the approximation error.
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To deal with this issue, the following recovery algorithm, called Dantzig selector

min
z∈Rn

‖z‖1 s.t. ‖AT (Az− y)‖∞ ≤ τ, (1.39)

was proposed and analyzed in [17]. It deals with the case, when ‖AT e‖∞ is small.

Theorem 10. Let A∈R
m×n be a matrix with RIP of order 2k and δ2k <

√
2−1. Let

the measurements y take the form y = Ax+ e, where ‖AT e‖∞ ≤ τ . Then the solution
x̂ of (1.39) satisfies

‖x̂− x‖2 ≤ C√
k
σk(x)1 +D

√
kτ, (1.40)

where C,D > 0 depend only on δ2k(A).

To see how this is related to measurements corrupted with Gaussian noise, let us
assume again that the components of e∈R

m are i.i.d. normal variables with variance
σ2. If the entries of A are again independent standard normal variables, then the
2-stability of normal variables gives that the coordinates of AT e are independent
normal variables with mean zero and variance ‖e‖2

2. By simple union bound, we
then obtain

P(‖AT e‖∞ ≥ t‖e‖2)≤ 2nexp(−t2/2).

Combining this with the fact that P(‖e‖2 ≥ 2σ
√

m) ≤ exp(−m/2) and choosing
t = 2

√
ln(2n), we finally get

P
(‖AT e‖∞ ≥ 4σ

√
m ln(2n)

)≤ exp(−m/2)+ 2nexp(−2ln(2n))≤ 1
n
. (1.41)

Dividing (1.37) by
√

m again and applying Theorem 10, we obtain for the case of a
k sparse vector x ∈R

n

‖x− x̂‖2 ≤ D′σ
√

k ln(2n)
m

(1.42)

if m≥Ck ln(2n). The advantage of (1.42) over (1.38) is that (once m≥Ck ln(2n)) it
decreases with m, i.e. taking more noisy measurements decreases the approximation
error.

1.4.4 Recovery algorithms

Although we concentrated on �1-minimization in the first part of this chapter, there
is a number of different algorithms solving the problem of sparse signal recovery.
Similarly to �1-minimization, which was used successfully in machine learning
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much before the advent of compressed sensing, many of these algorithms also
predate the field of compressed sensing. We give an overview of some of these
algorithms and refer to [40] for more extensive treatment.

1.4.4.1 �1-minimization

The �1-minimization problems (P1) or (P1,η ) presented before form a backbone
of the theory of compressed sensing. Their geometrical background allows for
theoretical recovery guarantees, including corresponding stability and robustness
extensions. They are formulated as convex optimization problems, which can be
solved effectively by any general purpose numerical solver. Furthermore, sev-
eral implementations dealing with the specific setting of compressed sensing are
available nowadays.

Sometimes, it is more convenient to work with some of the equivalent reformu-
lations of (P1,η). Let us discuss two most important of them. Let η ≥ 0 be given and
let x̂ be a solution of the optimization problem (P1,η)

x̂ = argmin
z∈Rn

‖z‖1 s.t. ‖Az− y‖2≤ η . (P1,η)

Then there is a λ ≥ 0, such that x̂ is also a solution of the non-constrained convex
problem

x̂ = argmin
z∈Rn

1
2
‖Az− y‖2

2+λ‖z‖1. (1.43)

This version of �1-minimization is probably the mostly studied one, see, for
example, [34, 41, 51, 73]. On the other hand, if λ > 0 is given and x̂ is a solution
to (1.43), then there is an η > 0, such that x̂ is also a solution of (P1,η). In the same
sense, (P1,η) and (1.43) is also equivalent to Lasso (least absolute shrinkage and
selection operator, cf. [64])

x̂ = argmin
z∈Rn

‖Az− y‖2
2 s.t. ‖z‖1 ≤ τ. (1.44)

Unfortunately, the values of λ and τ > 0 making these problems equivalent are a-
priori unknown.

The last prominent example of an optimization problem, which takes a form of
�1-minimization is the Dantzig selector (1.39). Let us also point out that [7] provides
solvers for a variety of �1-minimization problems.

1.4.4.2 Greedy algorithms

Another approach to sparse recovery is based on iterative identification/approxi-
mation of the support of the unknown vector x and of its components. For example,
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one adds in each step of the algorithm one index to the support to minimize the
mismatch to the measured data as much as possible. Therefore, such algorithms are
usually referred to as greedy algorithms. For many of them, remarkable theoretical
guarantees are available in the literature, sometimes even optimal in the sense
of the lower bounds discussed above. Nevertheless, the techniques necessary to
achieve these results are usually completely different from those needed to analyze
�1-minimization. We will discuss three of these algorithms, Orthogonal Matching
Pursuit, Compressive Sampling Matching Pursuit, and Iterative Hard Thresholding.

Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit [53, 65, 67] adds in each iteration exactly one entry
into the support of x̂. After k iterations, it therefore outputs a k-sparse vector x̂.

The algorithm finds in each step the column of A most correlated with the residual
of the measurements. Its index is then added to the support. Finally, it updates the
target vector x̂i as the vector supported on Ti that best fits the measurements, i.e.
which minimizes ‖y−Az‖2 among all z ∈ R

n with supp (z) ⊂ Ti. It is well known
that this vector is given as the product of the Penrose pseudoinverse A† of A and y.

The formal transcription of this algorithm is given as follows.

Orthogonal Matching Pursuit (OMP)

Input: Compressed sensing matrix A, measurement vector y
Initial values: x̂0 = 0,r = y,T0 = /0, i = 0
Iteration step: Repeat until stopping criterion is met

i := i+ 1
Ti ← Ti−1∪ supp H1(AT r) add largest residual entry to the support
x̂i|Ti ← A†

Ti
y update the estimate of the signal

r← y−Ax̂i update the residual of the measurements
Output: x̂i

It makes use of the hard thresholding operator Hk(x). If x ∈ R
n and k ∈

{0,1, . . . ,n}, then Hk : x → Hk(x) associates with x a vector Hk(x) ∈ R
n, which

is equal to x on the k entries of x with largest magnitude and zero otherwise. The
stopping criteria can either limit the overall number of iterations (limiting also the
size of the support of the output vector x̂) or ensure that the distance between y and
Ax̂ is small in some norm.

The simplicity of OMP is unfortunately connected with one of its weak points. If
an incorrect index is added to the support in some step (which can happen in general
and depends on the properties of the input parameters), it cannot be removed any
more, and stays there until the end of OMP. We refer also to [26] for another variant
of OMP.
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Compressive Sampling Matching Pursuit (CoSaMP)

One attempt to overcome this drawback is presented in the following algorithm
called Compressive Sampling Matching Pursuit [57]. It assumes that an additional
input is given - namely the expected sparsity of the output. At each step it again
enlarges the support, but in contrast to OMP, it will add at least k new entries.
Afterwards, it again uses the Penrose pseudo-inverse to find the minimizer of
‖Az− y‖2 among all z ∈ R

n with supp (z) ⊂ Ti, but this time only the k largest
of coordinates of this minimizer are stored.

The formal description is given by the following scheme.

Compressive Sampling Matching Pursuit (CoSaMP)

Input: Compressed sensing matrix A, measurement vector y, sparsity level k
Initial values: x̂0 = 0,r = y,T0 = /0, i = 0
Iteration step: Repeat until stopping criterion is met

i := i+ 1
Ti ← supp (x̂i−1)∪ supp H2k(AT r) update the support
x̂i|Ti ← Hk(A

†
Ti

y) update the estimate of the signal
r← y−Ax̂i update the residual

Output: x̂i

Iterative Hard Thresholding (IHT)

The last algorithm [8] we shall discuss is also making use of the hard thresholding
operator Hk. The equation Az = y is transformed into AT Az = AT y, which again can
be interpreted as looking for the fixed point of the mapping z→ (I−AT A)z+AT y.
Classical approach is then to iterate this mapping and to put x̂i = (I−AT A)x̂i−1 +
AT y = x̂i−1+AT (y−Ax̂i−1). Iterative Hard Thresholding algorithm is doing exactly
this, only combined with the hard thresholding operator Hk.

Iterative Hard Thresholding (IHT)

Input: Compressed sensing matrix A, measurement vector y, sparsity level k
Initial values: x̂0 = 0, i = 0
Iteration step: Repeat until stopping criterion is met

i := i+ 1
x̂i = Hk(x̂i−1 +AT (y−Ax̂i−1)) update the estimate of the signal

Output: x̂i
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1.4.4.3 Combinatorial algorithms

The last class of algorithms for sparse recovery we shall review were developed
mainly in the context of theoretical computer science and they are based on classical
ideas from this field, which usually pre-date the area of compressed sensing.
Nevertheless, they were successfully adapted to the setting of compressed sensing.

Let us present the basic idea on the example of Group Testing, which was
introduced by Robert Dorfman [27] in 1943. One task of United States Public
Health Service during the Second World War was to identify all syphilitic soldiers.
However, syphilis test in that time was expensive and the naive approach of testing
every soldier independently would have been very costly.

If the portion of infected soldiers would be large (say above 50 percent), then the
method of individual testing would be reasonable (and nearly optimal). A realistic
assumption however is that only a tiny fraction of all the soldiers is infected, say
one in thousand, or one in ten thousand. The main idea of the area of Group Testing
in this setting is that we can combine blood samples and test a combined sample
to check if at least one soldier in the group has syphilis. Another example of this
technique is the false coin problem from recreational mathematics, in which one is
supposed to identify in a group of n coins a false coin weighting less than a real
coin. We refer to [28] to an overview of the methods of Group Testing.

To relate this problem to compressed sensing, let us consider a vector x =
(x1, . . . ,xn)∈ {0,1}n, where n is the number of soldiers, with xi = 0 if the ith soldier
is healthy, or xi = 1 if he has syphilis. The grouping is then represented by an m×n
matrix A = (aij), where aij = 1, if the blood sample of jth soldier was added to
ith combined sample. The methods of Group Testing then allow to design efficient
matrices A, such that the recovery of x can be done in a surprisingly small number
of steps - even linear in the length of the sparse representation of x, i.e. in its sparsity
k, cf. [43, 44].

1.4.5 Structured sparsity

In many applications, one has much more prior knowledge about the signal x, than
just assuming that it possesses a sparse representation with respect to certain basis,
frame, or dictionary.

For example, the image coder JPEG2000 exploits not only the fact that natural
images have compressible representation in the wavelet basis (i.e., that most of their
wavelet coefficients are small) but it also uses the fact that the values and locations
of the large coefficients have a special structure. It turns out that they tend to cluster
into a connected subtree inside the wavelet parent–child tree. Using this additional
information can of course help to improve the properties of the coder and provide
better compression rates [30, 31, 48].

Another model appearing frequently in practice is the model of block-sparse
(or joint-sparse) signals. Assume that we want to recover N correlated signals
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x1, . . . ,xN ∈ R
n with (nearly) the same locations of their most significant elements.

A simple example of such a situation are the three color channels of a natural
RGB image, where we intuitively expect the important wavelet coefficients in all
three channels to be on nearly the same locations. Furthermore, the same model
often appears in the study of DNA microarrays, magnetoencephalography, sensor
networks, and MIMO communication [6, 32, 63, 70]. It is usually convenient to
represent the signals as columns of an n×N matrix X = [x1 . . .xN ]. The recovery
algorithms are then based on mixed matrix norms, which are defined for such an
X as

‖X‖(p,q) =
( n

∑
i=1
‖x̃i‖q

p

)1/q
,

where p,q≥ 1 are real numbers and x̃i, i = 1, . . . ,n, are the rows of the matrix X . If
A is again the sensing matrix and Y = AX are the measurements, then the analogue
of (P1) in this setting is then

X̂ = argmin
Z∈Rn×N

‖Z‖(p,q) s. t. Y = AZ

for a suitable choice of p and q, typically (p,q) = (2,1). We refer, for example, to
[36, 66, 68] for further results.

Finally, let us point out that model-based compressive sensing [3] provides a
general framework for many different kinds of structured sparsity.

1.4.6 Compressed Learning

In this last part, we will discuss applications of compressed sensing to a classical
task of approximation theory, namely to learning of an unknown function f from
a limited number of its samples f (x1), . . . , f (xm). In its most simple form, treated
already in [13] and elaborated in [59], one assumes that the function f is known
to be a sparse combination of trigonometric polynomials of maximal order q in
dimension d, i.e. that

f (x) = ∑
l∈{−q,−q+1,...,q−1,q}d

cle
il·x

and ‖c‖0 ≤ k, where k ∈ N is the level of sparsity. Theorem 2.1 of [59] then
shows that, with probability at least 1− ε , f can be exactly recovered from samples
f (x1), . . . , f (xm), where m ≥ Ck ln((2q+ 1)d/ε) and x1, . . . ,xm are uniformly and
independently distributed in [0,2π ]d. The recovery algorithm is given by

argmin
c

‖c‖1 s. t. ∑
l

cle
il·x j

= f (x j), j = 1, . . . ,m.
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We refer to [12, 61] for further results and to [40, Chapter 12] for an overview on
random sampling of functions with sparse representation in a bounded orthonormal
system.

In another line of study, compressed sensing was used to approximate func-
tions f : [0,1]d → R, which depend only on k � d (unknown) active variables
i1, . . . , ik, i.e.

f (x) = f (x1, . . . ,xd) = g(xi1 , . . . ,xik ), x ∈ [0,1]d .

In [24] and [72], the authors presented sophisticated combinatorial (adaptive and
non-adaptive) constructions of sets of sampling points, which allowed for recovery
of f to a precision of 1/L using only C(k)(L+1)k lnd points. Observe that (L+1)k

points would be necessary even if the location of the active coordinates would be
known. The use of compressed sensing in this setting was then discussed in [62]. The
algorithm developed there was based on approximation of directional derivatives of
f at random points {x1, . . . ,xmX } and random directions {ϕ1, . . . ,ϕmΦ }. Denoting
the mΦ ×mX matrix of first order differences as Y and the mΦ×d matrix of random
directions by Φ , it was possible to use direct estimates of probability concentrations
to ensure that the k largest rows of ΦTY correspond to the k active coordinates of
f with high probability. Again, only an additional lnd factor is paid for identifying
the unknown active coordinates.

Finally, the paper [21] initiated a study of approximation of ridge functions of
the type

f (x) = g(〈a,x〉), x ∈ [0,1]d, (1.45)

where both the direction a ∈ R
d \ {0} and the univariate function g are unknown.

Due to the assumption a j ≥ 0 for all j = 1, . . . ,d, posed in [21], it was first possible
to approximate g by sampling on grid points along the diagonal { i

L(1, . . . ,1)
T , i =

0, . . . ,L}. Afterwards, the methods of compressed sensing were used in connection
with the first order differences to identify the vector a. The importance of derivatives
of f in connection with the assumption (1.45) is best seen from the simple formula

∇ f (x) = g′(〈a,x〉) ·a. (1.46)

Hence, approximating the gradient of f at a point x gives actually also a scalar
multiple of a.

Another algorithm to approximate the ridge functions was proposed in [37].
Similarly to [62], it was based on (1.46) and on approximation of the first order
derivatives by first order differences. In contrary to [21], first the ridge direction a
was recovered, and only afterwards the ridge profile g was approximated by any
standard one-dimensional sampling scheme. Furthermore, no assumptions on signs
of a was needed and it was possible to generalize the approach also for recovery of
k-ridge functions of the type f (x) = g(Ax), where A ∈R

k×d and g is a function of k
variables. We refer also to [18] for further results.
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ABSTRACT: We prove a variant of a Johnson-Lindenstrauss lemma for matrices with circulant
structure. This approach allows to minimize the randomness used, is easy to implement and provides
good running times. The price to be paid is the higher dimension of the target space k = O(ε−2 log3 n)

instead of the classical bound k = O(ε−2 log n). © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 39,
391–398, 2011
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1. INTRODUCTION

The classical Johnson-Lindenstrauss lemma may be formulated as follows.

Theorem 1.1. Let ε ∈ (0, 1
2 ) and let x1, . . . , xn ∈ R

d be arbitrary points. Let k =
O(ε−2 log n) be a natural number. Then there exists a (linear) mapping f : R

d → R
k such

that

(1 − ε)‖xi − xj‖2
2 ≤ ‖f (xi) − f (xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2

for all i, j ∈ {1, . . . , n}. Here ‖ · ‖2 stands for the Euclidean norm in R
d or R

k, respectively.

The original proof of Johnson and Lindenstrauss [14] uses (up to a scaling factor) an
orthogonal projection onto a random k-dimensional subspace of R

d . We refer also to [8]

Correspondence to: J. Vybíral
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392 HINRICHS AND VYBÍRAL

for a beautiful and self-contained proof. Later on, this lemma found many applications,
especially in design of algorithms, where it sometimes allows to reduce the dimension of
the underlying problem essentially and break the so-called “curse of dimension”, cf. [12]
or [13].

The evaluation of f (x), where f is a projection onto a random k dimensional subspace,
is a very time-consuming operation. Therefore, a significant effort was devoted to

• minimize the running time of f (x),
• minimize the memory used,
• minimize the number of random bits used,
• simplify the algorithm to allow an easy implementation.

Achlioptas observed in [1], that the mapping may also be realised by a matrix, where each
component is selected independently at random with a fixed distribution. This decreases
the time for evaluation of f (x) essentially.

An important breakthrough was achieved by Ailon and Chazelle in [3]. Let us briefly
describe their Fast Johnson-Lindenstrauss transform (FJLT). The FJLT is the product of
three matrices f (x) = PHDx, where

• P is a k × d matrix, where each component is generated independently at random. In
particular, Pi,j ≈ N(0, 1) with probability

q = min

{
�

(
log2 n

d

)
, 1

}

and Pi,j = 0 with probability 1 − q,
• H is the d × d normalised Hadamard matrix,
• D is a random d ×d diagonal matrix, with each Di,i drawn independently from {−1, 1}

with probability 1/2.

It follows, that with high probability, f (x) may be calculated in time O(d log d +
qdε−2 log n).

We refer to [17] for a historical overview as well as for an extensive description of the
present “state of the art.” The ultimate goal, namely to find a fast Johnson-Lindenstrauss
transform for all admissible parameters k, n, d and ε with optimal bound on k, remains
open.

In this note we propose another direction to approach the Johnson-Lindenstrauss lemma,
namely we investigate the possibility of taking a partial circulant matrix for f combined
with a random ±1 diagonal matrix, see the next section for exact definitions.

This transform may be implemented using the Fast Fourier Transform, cf. [9, Section
4.7.7], and has therefore a running time of O(d log d). It requires 2d random bits (instead of
kd used in [1] or d+O(k log2 n log(kd)) used in [2,3]) and allows a simpler implementation.

Unfortunately, up to now, we were only able to prove the statement with k =
O(ε−2 log3 n), compared to the standard value k = O(ε−2 log n). We leave the possible
improvements of this bound open for further investigations.
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2. CIRCULANT MATRICES

We study the question (which to our knowledge has not been addressed in the literature
before), whether f in the Johnson-Lindenstrauss lemma may be chosen as a circulant matrix.
Let us give the necessary notation.

Let a = (a0, . . . , ad−1) be independent identically distributed random variables. We
denote by Ma,k the partial circulant matrix

Ma,k =




a0 a1 a2 . . . ad−1

ad−1 a0 a1 . . . ad−2

ad−2 ad−1 a0 . . . ad−3

...
...

...
. . .

...
ad−k+1 ad−k+2 ad−k+3 . . . ad−k


 .

Furthermore, if κ = (κ0, . . . , κd−1) are independent Bernoulli variables, we put

Dκ =




κ0 0 . . . 0
0 κ1 . . . 0
...

...
. . .

...
0 0 . . . κd−1


 .

Theorem 2.1. Let x1, . . . , xn be arbitrary points in R
d , let ε ∈ (0, 1

2 ) and let k =
O(ε−2 log3 n) be a natural number. Let a = (a0, . . . , ad−1) be independent Bernoulli vari-
ables or independent normally distributed variables. Let Ma,k and Dκ be as above and put
f (x) = 1√

k
Ma,kDκx.

Then with probability at least 2/3 the following holds

(1 − ε)‖xi − xj‖2
2 ≤ ‖f (xi) − f (xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2, i, j = 1, . . . , n.

The preconditioning of x using Dκ seems to be necessary and we shall comment on this
point later on. Its role may be compared with the use of the random Fourier transform in [3].

In contrast to the above mentioned variants of the Johnson-Lindenstrauss lemma, the
coordinates of f (x) are now no longer independent random variables. Our approach “decou-
ples” the dependence caused by the circulant structure. It resembles in some aspects the
methods used recently in compressed sensing, cf. [5, 6, 18].

First, we recall the Lemma 1 from Section 4.1 of [16] (cf. also Lemma 2.2 of [17]),
which shall be useful later on.

Lemma 2.2. Let

Z =
D∑

i=1

αi

(
a2

i − 1
)
,

where ai are i.i.d. normal variables and αi are nonnegative real numbers. Then for any
t > 0

P(Z ≥ 2‖α‖2

√
t + 2‖α‖∞t) ≤ exp(−t),

P(Z ≤ −2‖α‖2

√
t) ≤ exp(−t).

Furthermore, we shall use the decoupling lemma of [7, Proposition 1.9].
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Lemma 2.3. Let ξ0, . . . , ξd−1 be independent random variables with E ξ0 = · · · =
E ξd−1 = 0 and let {xi,j}d−1

i,j=0 be a double sequence of real numbers. Then for 1 ≤ p < ∞

E

∣∣∣∣∣
∑
i 	=j

xi,jξiξj

∣∣∣∣∣
p

≤ 4p
E

∣∣∣∣∣
∑
i 	=j

xi,jξiξ
′
j

∣∣∣∣∣
p

,

where (ξ ′
0, . . . , ξ ′

d−1) denotes an independent copy of (ξ0, . . . , ξd−1).

The key role in the proof of the Johnson-Lindenstrauss lemma is played by the following
estimates.

Lemma 2.4. Let k ≤ d be natural numbers and let ε ∈ (0, 1
2 ). Let a = (a0, . . . , ad−1),

Ma,k and Dκ be as in Theorem 2.1 and let x ∈ R
d be a unit vector. Put f (x) = Ma,kDκx.

Then there is a constant c, independent on k, d, ε and x, such that

Pa,κ

(‖f (x)‖2
2 ≥ (1 + ε)k

) ≤ exp(−c(kε2)1/3)

and

Pa,κ

(‖f (x)‖2
2 ≤ (1 − ε)k

) ≤ exp(−c(kε2)1/3).

Proof. Let S : R
d → R

d denote the shift operator

S(x0, x1, . . . , xd−1) = (xd−1, x0, x1, . . . , xd−2), x ∈ R
d .

Then

‖f (x)‖2
2 = ‖Ma,kDκx‖2

2 =
k−1∑
j=0

|〈Sja, Dκx〉|2 =
k−1∑
j=0

(
d−1∑
i=0

aiκj+ixj+i

)2

= I1 + I2,

where

I1 =
d−1∑
i=0

a2
i ·

k−1∑
j=0

x2
j+i

and

I2 =
k−1∑
j=0

∑
i 	=i′

aiai′κj+iκj+i′xj+ixj+i′ .

Here (and any time later) the summation in the index is to be understood modulo d.
The decoupling of the circulant matrix is based on

Pa,κ

(‖Ma,kDκx‖2
2 ≥ (1 + ε)k

) ≤ Pa(I1 ≥ (1 + ε/2)k) + Pa,κ(I2 ≥ εk/2) (2.1)

and

Pa,κ

(‖Ma,kDκx‖2
2 ≤ (1 − ε)k

) ≤ Pa(I1 ≤ (1 − ε/2)k) + Pa,κ(I2 ≤ −εk/2). (2.2)

We use Lemma 2.2 to estimate the diagonal term I1.
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We choose αi = ∑k−1
j=0 x2

j+i and get ‖α‖1 = k, ‖α‖∞ ≤ 1 and hence ‖α‖2 ≤ √
k. This

leads to

Pa(I1 ≤ k − 2
√

kt) ≤ exp(−t) (2.3)

and

Pa(I1 ≥ k + 2
√

kt + 2t) ≤ exp(−t). (2.4)

We set εk/2 = 2
√

kt, i.e. t = ε2k/16, in (2.3) and obtain

Pa(I1 ≤ (1 − ε/2)k) ≤ exp(−ε2k/16). (2.5)

On the other hand, if c1 = 5/2 − √
6 > 1/20, then

√
c1 + c1/2 = 1/4 and

2
√

kt + 2t ≤ εk/2

for t = c1ε
2k, which finally gives

Pa(I1 ≥ (1 + ε/2)k) ≤ exp(−c1ε
2k). (2.6)

Next, we estimate the moments of the off-diagonal part I2. We use Lemma 2.3 twice,
which gives

Ea,κ|I2|p ≤ 16p
Ea,a′ ,κ,κ′

∣∣I ′
2

∣∣p
:= 16p

Ea,a′ ,κ,κ′

∣∣∣∣∣∣
k−1∑
j=0

∑
i 	=i′

aia
′
i′κj+iκ

′
j+i′xj+ixj+i′

∣∣∣∣∣∣
p

,

where a′ and κ
′ are independent copies of a and κ, respectively.

First, we make a substitution v = j + i, v′ = j + i′ and use the Khintchine inequality with
the optimal constant Cp ≤ √

p, cf. [10], and the random variable κ to obtain

Eκ

∣∣∣∣∣∣
k−1∑
j=0

∑
i 	=i′

aia
′
i′κj+iκ

′
j+i′xj+ixj+i′

∣∣∣∣∣∣
p

= Eκ

∣∣∣∣∣∣
d−1∑
v=0

κvxv

∑
v′ 	=v

κ
′
v′xv′

k−1∑
j=0

av−ja
′
v′−j

∣∣∣∣∣∣
p

≤ Cp
p


 d−1∑

v=0

x2
v


∑

v′ 	=v

κ
′
v′xv′

k−1∑
j=0

av−ja
′
v′−j




2


p/2

.

Next, we involve Minkowski’s inequality with respect to p/2 ≥ 1 and Khintchine’s
inequality for the random variable κ

′.

Eκ,κ′
∣∣I ′

2

∣∣p ≤ Cp
p Eκ′


 d−1∑

v=0

x2
v


∑

v′ 	=v

κv′xv′
k−1∑
j=0

av−ja
′
v′−j




2


p/2

≤ Cp
p


 d−1∑

v=0

x2
v


Eκ′

∣∣∣∣∣∣
∑
v′ 	=v

κv′xv′
k−1∑
j=0

av−ja
′
v′−j

∣∣∣∣∣∣
p


2/p



p/2

≤ C2p
p


∑

v 	=v′
x2

v x2
v′

(
k−1∑
j=0

av−ja
′
v′−j

)2



p/2

.
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Furthermore, the Minkowski inequality for a and a′ gives

Ea,a′ ,κ,κ′
∣∣I ′

2

∣∣p ≤ C2p
p


∑

v 	=v′
x2

v x2
v′

(
Ea,a′

∣∣∣∣∣
k−1∑
j=0

av−ja
′
v′−j

∣∣∣∣∣
p)2/p




p/2

.

If a0, . . . , ad−1 are Bernoulli variables, then Khintchine’s inequality gives(
Ea,a′

∣∣∣∣∣
k−1∑
j=0

av−ja
′
v′−j

∣∣∣∣∣
p)1/p

≤ √
kp,

as the product of two independent Bernoulli variables is again of this type.
For normal variables, we use first Khintchine’s inequality and spherical coordinates to

obtain

Ea,a′

∣∣∣∣∣
k−1∑
j=0

av−ja
′
v′−j

∣∣∣∣∣
p

= Ea,a′

∣∣∣∣∣
k−1∑
j=0

aja
′
j

∣∣∣∣∣
p

≤ Cp
pEa

(
k−1∑
j=0

|aj|2
)p/2

= Cp
pEa‖a‖p

2 = Cp
p

(2π)k/2

∫
Rk

e−‖a‖2
2/2‖a‖p

2da

= Cp
p

(2π)k/2
· Ak ·

∫ ∞

0
e−r2/2rp+k−1dr, (2.7)

where

Ak = 2π k/2

�(k/2)

is the area of the unit ball in R
k .

We combine (2.7) with Stirling’s inequality and obtain(
Ea,a′

∣∣∣∣∣
k−1∑
j=0

av−ja
′
v′−j

∣∣∣∣∣
p)1/p

≤ √
2Cp

[
�((k + p)/2)

�(k/2)

]1/p

≤ c2

√
p(k + p).

Hence, if a0, . . . , ad−1 are independent Bernoulli or normally distributed variables, we
may estimate (

Ea,a′ ,κ,κ′
∣∣I ′

2

∣∣p)1/p ≤ c2p · √
(k + p)p · ‖x‖2 = c2p3/2

√
k + p. (2.8)

Markov’s inequality then gives

Pa,a′ ,κ,κ′
(∣∣I ′

2

∣∣ > kε/2
) = Pa,a′ ,κ,κ′

(
2p

∣∣I ′
2

∣∣p

kpεp
> 1

)
≤ 2p

Ea,a′ ,κ,κ′
∣∣I ′

2

∣∣p

kpεp
≤

(
2c2p3/2

√
k + p

kε

)p

.

We choose p by the condition
√

8c2p3/2
√

kε
= e−1. We may assume c2 ≥ 1, which ensures that

p ≤ k and
√

k+p

k ≤
√

2√
k
, which leads to

Pa,a′ ,κ,κ′
(∣∣I ′

2

∣∣ > kε/2
) ≤ exp(−c3(kε2)1/3). (2.9)

The proof then follows by (2.1) and (2.2) combined with (2.5), (2.6) and (2.9).
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The proof of Theorem 2.1 follows from Lemma 2.4 by the union bound over all
(n

2

)
pairs

of points.

Remark 2.5. i. We note that (2.8) follows directly by very well known estimates of
moments of Gaussian chaos, cf. [11, 15]. We preferred to give a simple and direct proof.

ii. Let us also mention that Lemma 2.4 fails if the multiplication with Dκ is omitted.
Namely, let k ≤ d be natural numbers, let a0, . . . , ad−1 be independent normal variables and
let x = 1√

d
(1, . . . , 1). If f (x) = Ma,kx, then

‖f (x)‖2
2 = k

(
d−1∑
j=0

aj√
d

)2

.

Due to the 2-stability of the normal distribution, the variable

b :=
d−1∑
j=0

aj√
d

is again normally distributed, i.e. b ≈ N(0, 1). Hence

Pa

(‖f (x)‖2
2 > (1 + ε)k

) = Pb(b
2 > (1 + ε))

depends neither on k nor on d and Lemma 2.4 cannot hold.
iii. The statement of Theorem 2.1 holds also for matrices with Toeplitz structure. The

proof is literally the same, only notational changes are necessary.

Note added in proof: Interesting new work of Ailon and Liberty [4] appeared during
the review process of this paper. Their transformation is a composition of a random sign
matrix with a random selection of a suitable number k of rows from a Fourier matrix. Their
bound on k, namely k = O(ε−4 · log n · polylog d), is optimal up to the polylog d factor.
Depending on d and n, this may be better than our bound.
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Abstract

We continue our study of the Johnson–Lindenstrauss lemma and its connection to circulant matrices
started in Hinrichs and Vybíral (in press) [7]. We reduce the bound on k from k = Ω(ε−2 log3 n) proven
there to k = Ω(ε−2 log2 n). Our technique differs essentially from the one used in Hinrichs and Vybíral
(in press) [7]. We employ the discrete Fourier transform and singular value decomposition to deal with the
dependency caused by the circulant structure.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let x1, . . . , xn ∈ R
d be n points in the d-dimensional Euclidean space R

d . The classi-
cal Johnson–Lindenstrauss lemma tells that, for a given ε ∈ (0, 1

2 ) and a natural number k =
Ω(ε−2 logn), there exists a linear map f : R

d → R
k , such that

(1 − ε)
∥∥xj

∥∥2
2 �

∥∥f
(
xj

)∥∥2
2 � (1 + ε)

∥∥xj
∥∥2

2

for all j ∈ {1, . . . , n}.
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Here ‖ · ‖2 stands for the Euclidean norm in R
d or R

k , respectively. Furthermore, here and
any time later, the condition k = Ω(ε−2 logn) means, that there is an absolute constant C > 0,
such that the statement holds for all natural numbers k with k � Cε−2 logn. We shall also always
assume, that k � d . Otherwise, the statement becomes trivial.

The original proof of this fact was given by Johnson and Lindenstrauss in [9]. We refer to
[6] for a beautiful and self-contained proof. Since then, it has found many applications for ex-
ample in algorithm design. These applications inspired numerous variants and improvements of
the Johnson–Lindenstrauss lemma, which try to minimize the computational costs of f (x), the
memory used, the number of random bits used and to simplify the algorithm to allow an easy
implementation. We refer to [8,1–3,12] for details and to [12] for a nice description of the history
and the actual “state of the art”.

All the known proofs of the Johnson–Lindenstrauss lemma work with random matrices and
proceed more or less in the following way. One considers a probability measure P on a some
subset P of all k × d matrices (i.e. all linear mappings R

d → R
k). The proof of the Johnson–

Lindenstrauss lemma then emerges by some variant of the following two estimates

P
(
f ∈ P :

∥∥f (x)
∥∥2

2 � 1 + ε
)
< 1 − 1

2n

and

P
(
f ∈ P :

∥∥f (x)
∥∥2

2 � 1 − ε
)
< 1 − 1

2n
,

which have to be proven for all unit vectors x ∈ R
d , and a simple union bound over all points

xj /‖xj‖2, j = 1, . . . , n. Here and later on we assume, without loss of generality, that xj �= 0 for
all j = 1, . . . , n.

The biggest breakthrough in the attempts to minimize the running time of f was achieved
by Ailon and Chazelle in [2] (with improvements by Matoušek [12] and Ailon and Liberty [4]).
The mapping f is given in [2] as the composition of a sparse matrix, a certain random Fourier
matrix and a random diagonal matrix. The value f (x) can be computed with high probability
very efficiently, i.e. using O(d logd + min{dε−2 logn, ε−2 log3 n}) operations. This was later
further improved by Ailon and Liberty to O(d logk) for k = O(d1/2−δ), for any arbitrary small
fixed δ > 0.

In [7], we studied a different construction of f , namely the possibility of a composition of
a random circulant matrix with a random diagonal matrix. As a multiple of a circulant matrix
may be implemented with the help of a discrete Fourier transform, it provides the running time
of O(d logd), requires very few random bits (only 2d random bits in the case of Bernoulli
variables) and allows a very simple implementation, as the Fast Fourier Transform is a part of
every standard mathematical software package.

The main difference between this approach and the usual constructions available in the litera-
ture is that the components of f (x) are now no longer independent random variables. Decoupling
this dependence, we were able to prove in [7] the Johnson–Lindenstrauss lemma for composi-
tion of a random circulant matrix and a random diagonal matrix, but only for k = Ω(ε−2 log3 n).
It is the main aim of this note to improve this bound to k = Ω(ε−2 log2 n). This comes essen-
tially closer to the standard bound k = Ω(ε−2 logn). Reaching this optimal bound (and keeping
the control of the constants involved) remains an open problem and a subject of a challenging
research.
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We use a completely different technique here. We use the discrete Fourier transform and the
singular value decomposition of circulant matrices. That is the reason, why we found it more
instructive to state and prove our variant of Johnson–Lindenstrauss lemma for complex vectors
and Gaussian random variables. As a corollary, we obtain of course a corresponding real version.

Before we state our main result, we give the necessary definitions.

Definition 1.1. Let α and β be independent real Gaussian random variables with

Eα = Eβ = 0 and E|α|2 = E|β|2 = 1.

Then we call

a = α + iβ

a complex Gaussian variable.

Let us note, that if a is a complex Gaussian variable, then

Ea = Eα + iEβ = 0 and E|a|2 = Eα2 + Eβ2 = 2.

Definition 1.2. (i) Let k � d be natural numbers. Let a = (a0, . . . , ad−1) ∈ C
d be a fixed complex

vector. We denote by Ma,k the partial circulant matrix

Ma,k =

⎛
⎜⎜⎜⎜⎝

a0 a1 a2 · · · ad−1
ad−1 a0 a1 · · · ad−2
ad−2 ad−1 a0 · · · ad−3

...
...

...
. . .

...

ad−k+1 ad−k+2 ad−k+3 · · · ad−k

⎞
⎟⎟⎟⎟⎠ ∈ C

k×d .

If k = d , we denote by Ma = Ma,d the full circulant matrix. This notation extends naturally to
the case, when a = (a0, . . . , ad−1) are independent complex Gaussian variables.

(ii) If � = (�0, . . . , �d−1) are independent Bernoulli variables, we put

D� = diag(�) :=

⎛
⎜⎜⎝

�0 0 · · · 0
0 �1 · · · 0
...

...
. . .

...

0 0 · · · �d−1

⎞
⎟⎟⎠ ∈ R

d×d .

Of course, D� : C
d → C

d is an isomorphism.

Theorem 1.3. Let ε ∈ (0, 1
2 ), n � d be natural numbers, and let x1, . . . , xn ∈ C

d be n arbitrary
points in C

d . Let a = (a0, . . . , ad−1) be d independent complex Gaussian variables and let � =
(�0, . . . , �d−1) be independent Bernoulli variables.

If k = Ω(ε−2 log2 n) is a natural number, then the mapping f : C
d → C

d given by f (x) =
1√
2k

Ma,kD�x satisfies
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(1 − ε)
∥∥xj

∥∥2
2 �

∥∥f
(
xj

)∥∥2
2 � (1 + ε)

∥∥xj
∥∥2

2

for all j ∈ {1, . . . , n} with probability at least 2/3. Here ‖·‖2 stands for the �2-norm in C
d or C

k ,
respectively.

For reader’s convenience, we formulate also a variant of Theorem 1.3, which deals with real
Euclidean spaces.

Corollary 1.4. Let ε ∈ (0, 1
2 ), n � d be natural numbers, and let x1, . . . , xn ∈ R

2d be n arbitrary
points in R

2d . Let α0, . . . , αd−1, β0, . . . , βd−1 be 2d independent real Gaussian variables and let
� = (�0, . . . , �d−1) be independent Bernoulli variables.

If k = Ω(ε−2 log2 n) is a natural number, then the mapping f : R
2d → R

2k given by

f (x) = 1√
2k

(
Mα,k −Mβ,k

Mβ,k Mα,k

)(
D� 0
0 D�

)
x

satisfies

(1 − ε)
∥∥xj

∥∥2
2 �

∥∥f
(
xj

)∥∥2
2 � (1 + ε)

∥∥xj
∥∥2

2

for all j ∈ {1, . . . , n} with probability at least 2/3. Here ‖ · ‖2 stands for the �2-norm in R
2d

or R
2k , respectively.

The proof follows trivially from Theorem 1.3 by considering complex Gaussian variables
a = (α0 +iβ0, . . . , αd−1 +iβd−1) and complex vectors yj = (x

j

0 +ix
j
d , . . . , x

j

d−1 +ix
j

2d−1) ∈ Cd ,
j = 1, . . . , n.

2. Used techniques

We give an overview of the techniques used in the proof of Theorem 1.3.

2.1. Discrete Fourier transform

Our main tool in this note is the discrete Fourier transform. If d is a natural number, then the
discrete Fourier transform Fd : C

d → C
d is defined by

(Fdx)(ξ) = 1√
d

d−1∑
u=0

xu exp

(
−2πiuξ

d

)
.

With this normalization, Fd is an isomorphism of C
d onto itself. The inverse discrete Fourier

transform is given by

(
F −1

d x
)
(ξ) = 1√

d

d−1∑
u=0

xu exp

(
2πiuξ

d

)
.
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Observe, that the matrix representation of F −1
d is the conjugate transpose of the matrix represen-

tation of Fd , i.e. F −1
d = F ∗

d .
The fundamental connection between discrete Fourier transform and circulant matrices is

given by

Ma = Fd diag(
√

dFda)F −1
d , (2.1)

which may be verified by direct calculation. Hence every circulant matrix may be diagonalized
with the use of a discrete Fourier transform, its inverse and a multiple of the discrete Fourier
transform of its first row.

2.2. Singular value decomposition

The last tool needed in the proof is the singular value decomposition. Let M : C
d → C

k be a
k × d complex matrix with k � d . Then there exists a decomposition

M = UΣV ∗,

where U is a k ×k unitary complex matrix, Σ is a k ×k diagonal matrix with nonnegative entries
on the diagonal, V is a d × k complex matrix with k orthonormal columns and V ∗ denotes the
conjugate transpose of V . Hence V ∗ has k orthonormal rows. The entries of Σ are the singular
values of M , namely the square roots of the eigenvalues of MM∗.

If a = (a0, . . . , ad−1) ∈ C
d is a complex vector and Ma is the corresponding circulant matrix,

then its singular values may be calculated using (2.1). We obtain

MaM
∗
a = Fd diag(

√
dFda)F −1

d

[
Fd diag(

√
dFda)F −1

d

]∗
= Fd diag(

√
dFda)diag(

√
dFda)F −1

d

= Fd diag
(
d|Fda|2)F −1

d .

Hence, the singular values of Ma are {√d|(Fda)(ξ)|}d−1
ξ=0.

The action of an arbitrary projection onto a vector of independent real Gaussian variables is
very well known. It may be described as follows.

Lemma 2.1. Let a = (a0, . . . , ad−1) be independent real Gaussian variables. Let k � d be a
natural number and let x1, . . . , xk be mutually orthogonal unit vectors in R

d . Then

{〈
a, xj

〉}k

j=1

is equidistributed with a k-dimensional vector of independent real Gaussian variables.

A direct calculation shows, that Lemma 2.1 holds also for complex vectors a and x1, . . . , xk .
We present the following formulation of this fact.

Lemma 2.2. Let a = (a0, . . . , ad−1) be independent complex Gaussian variables. Let W be a
k × d matrix with k orthonormal rows. Then Wa is equidistributed with a k-dimensional vector
of independent complex Gaussian variables.



J. Vybíral / Journal of Functional Analysis 260 (2011) 1096–1105 1101

3. Proof of Theorem 1.3

We shall need the following statement, which describes the preconditioning role of the diag-
onal matrix D� . A similar fact has been used also in [2]. Nevertheless, using discrete Fourier
transform instead of a Hadamard matrix does not pose any restrictions on the underlying dimen-
sion d . Without repeating the details, we point out, that we discussed briefly in [7, Remark 2.5],
why this preconditioning may not be omitted.

Lemma 3.1. Let n � d be natural numbers and let x1, . . . , xn ∈ C
d be complex vectors. Let � =

(�0, . . . , �d−1) be independent Bernoulli variables. Then there is an absolute constant C > 0,
such that with probability at least 5/6,

∥∥FdD�

(
xj

)∥∥∞ � C
√

logn√
d

· ∥∥xj
∥∥

2 (3.1)

holds for all j ∈ {1, . . . , n}.

Proof. Let x = α + iβ be a unit complex vector in C
d . We put y = (y0, . . . , yd−1) = FdD�(x).

Combining the inclusion

{
z ∈ C: |z| > s

} = {
z ∈ C: (	z)2 + (
z)2 > s2} ⊂

{
z ∈ C: |	z| > s√

2

}

∪
{
z ∈ C: |
z| > s√

2

}

with

P�

(
|	yl | > s√

2

)
= 2P�

(
	yl >

s√
2

)
,

we may estimate

P�

(|yl | > s
)
� 2P�

(
	yl >

s√
2

)
+ 2P�

(

yl >

s√
2

)
, l = 0, . . . , d − 1, (3.2)

where

	yl = 1√
d

d−1∑
u=0

�u

[
αu cos(2πlu/d) + βu sin(2πlu/d)

]

and


yl = 1√
d

d−1∑
u=0

�u

[
βu cos(2πlu/d) − αu sin(2πlu/d)

]

are the real and the imaginary part of yl , respectively.
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Let t > 0 be a real parameter to be chosen later. Using Markov’s inequality we may proceed
in a standard way:

P�

(
	yl >

s√
2

)
= P�

(
exp

(
t	yl − st√

2

)
> 1

)

� exp

(
− st√

2

)
E� exp(t	yl)

= exp

(
− st√

2

) d−1∏
u=0

cosh

[
t√
d

[
αu cos(2πlu/d) + βu sin(2πlu/d)

]]

� exp

(
− st√

2

) d−1∏
u=0

exp

(
t2

2d

[
αu cos(2πlu/d) + βu sin(2πlu/d)

]2
)

� exp

(
− st√

2

) d−1∏
u=0

exp

(
t2

2d

[
α2

u + β2
u

]) = exp

(
− st√

2
+ t2

2d

)
.

We have used the inequality cosh(v) � exp(v2/2), which holds for all v ∈ R, and the inequality

between geometric and quadratic means. For the optimal t = sd√
2

, this is equal to exp(− s2d
4 ).

As the second summand in (3.2) may be estimated in the same way, we obtain

P�

(|yl | > s
)
� 4 exp

(
− s2d

4

)
, l = 0, . . . , d − 1. (3.3)

Choosing s = Ω(d−1/2√logn ) and applying the union bound over all nd � n2 components of
{Fd D�(xj /‖xj‖2)}nj=1, we obtain the result. �
Proof of Theorem 1.3. Let us choose a vector � = (�0, . . . , �d−1) ∈ {−1,+1}d , such that (3.1)
holds. According to Lemma 3.1 this happens with probability at least 5/6.

Let us take x̃ = xj

‖xj ‖2
for any fixed j = 1, . . . , n. We show, that there is an absolute constant

c > 0, such that

Pa

(‖Ma,kD�x̃‖2
2 � 2(1 + ε)k

)
� exp

(
− ckε2

logn

)
(3.4)

and

Pa

(‖Ma,kD�x̃‖2
2 � 2(1 − ε)k

)
� exp

(
− ckε2

logn

)
(3.5)

hold. From (3.4) and (3.5), Theorem 1.3 follows again by a union bound over all j = 1, . . . , n.
Let yj = Sj (D�x̃) ∈ C

d , j = 0, . . . , k − 1, where S is the shift operator defined by

S : C
d → C

d, S(z0, . . . , zd−1) = (z1, . . . , zd−1, z0).

We denote by Y the k × d matrix with rows y0, . . . , yk−1.



J. Vybíral / Journal of Functional Analysis 260 (2011) 1096–1105 1103

Then it holds

‖Ma,kD�x̃‖2
2 =

k−1∑
j=0

∣∣∣∣∣
d−1∑
u=0

a(u−j) mod d�ux̃u

∣∣∣∣∣
2

=
k−1∑
j=0

∣∣∣∣∣
d−1∑
u=0

y
j
uau

∣∣∣∣∣
2

= ‖Ya‖2
2.

Let Y = UΣV ∗ be the singular value decomposition of Y . As mentioned above, b := V ∗a is
a k-dimensional vector of independent complex Gaussian variables. Hence,

Pa

(‖Ya‖2
2 > τ

) = Pa

(∥∥UΣV ∗a
∥∥2

2 > τ
) = Pb

(‖UΣb‖2
2 > τ

)
= Pb

(‖Σb‖2
2 > τ

) = Pb

(
k−1∑
j=0

λ2
j |bj |2 > τ

)
,

holds for every τ > 0. Here, λj , j = 0, . . . , k − 1, are the singular values of Y . Let us denote
μj = λ2

j . Then

‖μ‖1 =
k−1∑
j=0

λ2
j = ‖Y‖2

F = k,

where ‖Y‖F is the Frobenius norm of Y .
Moreover,

‖μ‖∞ = ‖λ‖2∞ = sup
z∈Cd ,‖z‖2�1

‖Yz‖2
2

� sup
z∈Cd ,‖z‖2�1

‖MD�x̃z‖2
2 = d

∥∥FdD�(x̃)
∥∥2

∞ � C2 logn, (3.6)

where MD�x̃ stands for the d × d complex circulant matrix with the first row equal to D�x̃.
This leads finally also to

‖μ‖2 �
√‖μ‖1 · ‖μ‖∞ � C

√
k logn. (3.7)

Then

Pa

(‖Ya‖2
2 > 2(1 + ε)k

) = Pb

(
k−1∑
j=0

μj

(|bj |2 − 2
)
> 2εk

)
.

We denote

Z :=
k−1∑
j=0

μj

(|bj |2 − 2
)
.
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The complex version of Lemma 1 from Section 4.1 of [11] (cf. also Lemma 2.2 of [12]) states
that

Pb

(
Z � 2

√
2‖μ‖2

√
t + 2‖μ‖∞t

)
� exp(−t). (3.8)

Using (3.6) and (3.7), we arrive at

Pb

(
Z � 2

√
2C

√
tk logn + 2C2t logn

)
� exp(−t).

Choosing t = c′kε2

C2 logn
for c′ > 0 small enough, we get

Pb(Z � 2εk) � exp

(
− ckε2

logn

)
.

This finishes the proof of (3.4). Let us note, that (3.5) follows in the same manner with (3.8)
replaced by

Pb

(
Z � −2

√
2‖μ‖2

√
t
)
� exp(−t),

which may be again found in Lemma 1, Section 4.1 of [11]. �
Remark 3.2. The statement and the proof of Theorem 1.3 do not change, if we replace the partial
circulant matrix Ma,k with any k × d submatrix of Ma .

Note added in proof

Interesting new work of Ailon and Liberty [5] appeared during the review process of this
paper. Their transformation is the composition of a random sign matrix with a random selection
of a suitable number k of rows from a Fourier matrix. Their bound on k, namely k = Ω(ε−4 logn ·
polylogd), is optimal up to the polylogd factor. Depending on d and n, this may be better than
our bound.

In another very recent preprint [10], Krahmer and Ward applied the RIP bounds of [13] to
prove that partial circulant matrices satisfy the Johnson–Lindenstrauss lemma if

k = Ω
(
max

(
ε−1 log3/2 n · log3/2 d, ε−2 logn · log4 d

))
.
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Abstract We introduce the concept of average best m-term approximation widths
with respect to a probability measure on the unit ball or the unit sphere of �n

p. We
estimate these quantities for the embedding id : �n

p → �n
q with 0 < p ≤ q ≤ ∞ for

the normalized cone and surface measure. Furthermore, we consider certain tensor
product weights and show that a typical vector with respect to such a measure exhibits
a strong compressible (i.e., nearly sparse) structure. This measure may therefore be
used as a random model for sparse signals.
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1 Introduction

1.1 Best m-term Approximation

Let m ∈ N0, and let Σm be the set of all sequences x = {xj }∞j=1 with

‖x‖0 := # suppx = #{n ∈ N : xn �= 0} ≤ m.
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Here #A stands for the number of elements of a set A. The elements of Σm are said
to be m-sparse. Observe that Σm is a nonlinear subset of every �q := {x = {xj }∞j=1 :
‖x‖q < ∞}, where

‖x‖q :=
⎧
⎨

⎩

(
∑∞

j=1 |xj |q)1/q, 0 < q < ∞,

supj∈N |xj |, q = ∞.

For every x ∈ �q , we define its best m-term approximation error by

σm(x)q := inf
y∈Σm

‖x − y‖q .

Moreover, for 0 < p ≤ q ≤ ∞, we introduce the best m-term approximation widths

σ
p,q
m := sup

x:‖x‖p≤1
σm(x)q .

The use of this concept goes back to Schmidt [44], and after the work of Oskolkov
[39], it was widely used in approximation theory, cf. [15, 18, 45]. In fact, it is the
main prototype of nonlinear approximation [17]. It is well known that

2−1/p(m + 1)1/q−1/p ≤ σ
p,q
m ≤ (m + 1)1/q−1/p, m = 0,1,2, . . . . (1)

The proof of (1) is based on the simple fact that (roughly speaking) the best m-term
approximation error of x ∈ �p is realized by subtracting the m largest coefficients
taken in absolute value. Hence,

σm(x)q =
⎧
⎨

⎩

(
∑∞

j=m+1(x
∗
j )q)1/q, 0 < q < ∞,

x∗
m+1 = supj≥m+1 x∗

j , q = ∞,

where x∗ = (x∗
1 , x∗

2 , . . . ) denotes the so-called nonincreasing rearrangement [6] of
the vector (|x1|, |x2|, |x3|, . . . ).

Let us recall the proof of (1) in the simplest case, namely q = ∞. The estimate
from above then follows by

σm(x)∞ = sup
j≥m+1

x∗
j = x∗

m+1 ≤
(

(m + 1)−1
m+1∑

j=1

(
x∗
j

)p

)1/p

≤ (m + 1)−1/p‖x‖p.

(2)

The lower estimate is supplied by taking

x = (m + 1)−1/p
m+1∑

j=1

ej , (3)

where {ej }∞j=1 are the canonical unit vectors.
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For general q , the estimate from above in (1) may be obtained from (2) and
Hölder’s inequality

‖x‖q ≤ ‖x‖θ
p · ‖x‖1−θ∞ , where

1

q
= θ

p
. (4)

The estimate from below follows for all q’s by simple modification of (3).
The discussion above exhibits two effects:

(i) Best m-term approximation works particularly well when 1/p − 1/q is large,
i.e., if p < 1 and q = ∞.

(ii) The elements used in the estimate from below (and hence the elements where the
best m-term approximation performs worst) enjoy a very special structure.

Therefore, there is a reasonable hope that the best m-term approximation could be-
have better when considered in a certain average case. But first we point out two
different interesting points of view on the subject.

1.2 Connection to Compressed Sensing

The interest in �p spaces (and especially in their finite-dimensional counterparts �n
p)

with 0 < p < 1 was recently stimulated by the impressive success of the novel and
vastly growing area of compressed sensing as introduced in [9–11, 19]. Without going
much into the details, we only note that the techniques of compressed sensing allow
for the reconstruction of a vector from an incomplete set of measurements utilizing
the prior knowledge that it is sparse, i.e., ‖x‖0 is small. Furthermore, this approach
may be applied [14] also to vectors which are compressible, i.e., ‖x‖p is small for
(preferably small) 0 < p < 1. Indeed, (1) tells us that such a vector x may be very
well approximated by sparse vectors. We point to [8, 24, 25, 42] for the current state
of the art of this field and for further references.

This leads in a very natural way to a question that stands in the background of this
paper, namely:

What does a typical vector of the �n
p unit ball look like?

or, posed in an exact way:

Let μ be a probability measure on the unit ball of �n
p . What is the mean value

of σm(x)q with respect to this measure?

Of course, the choice of μ plays a crucial role. There are several standard proba-
bility measures that are connected to the unit ball of �n

p in a natural way, namely (cf.
Definitions 2 and 9):

(i) the normalized Lebesgue measure,
(ii) the n − 1 dimensional Hausdorff measure restricted to the surface of the unit

ball of �n
p and correspondingly normalized,

(iii) the so-called normalized cone measure.

Unfortunately, it turns out that all three of these measures are “bad”—a typical
vector with respect to any of them does not involve much structure and corresponds
to noise rather than to signal (in the sense described below). Therefore, we are looking
for a new type of measures (cf. Definition 13) that would behave better in this respect.
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1.3 Random Models of Noise and Signals

Random vectors play an important role in the area of signal processing. For example,
if n ∈ N is a natural number, ω = (ω1, . . . ,ωn) is a vector of independent Gaussian
variables, and ε > 0 is a real number, then εω is a classical model of noise, namely
the white noise. This model is used in the theory but also in the real life applications
of signal processing.

The random generation of a structured signal seems to be a more complicated
task. Probably the most common random model to generate sparse vectors, cf. [7,
13, 30, 40], is the so-called Bernoulli–Gaussian model. Again let n ∈ N be a natural
number and ε > 0 be a real number. Also let ω = (ω1, . . . ,ωn) stand for a vector of
independent Gaussian variables. Furthermore, let 0 < p < 1 be a real number, and let
� = (�1, . . . , �n) be a vector of independent Bernoulli variables defined as

�i =
{

1, with probability p,

0, with probability 1 − p.

The components of the random Bernoulli–Gaussian vector x = (x1, . . . , xn) are then
defined through

xi = ε�i · ωi, i = 1, . . . , n. (5)

Obviously, the average number of nonzero components of x is k := pn. Unfortu-
nately, if k is much smaller than n, then the concentration of the number of nonzero
components of x around k is not very strong. This improves if k gets larger. But in
that case, the model (5) resembles more and more the model of white noise. In some
sense, (5) represents a randomly filtered white noise rather than a structured signal. It
is one of the main aims of this paper to find a new measure such that a random vector
with respect to this measure would show a nearly sparse structure without the need
for random filtering.

1.4 Unit Sphere

Let us describe the situation in the most prominent case, when p = 2, m = 0, and
μ = μ2 is the normalized surface measure on the unit sphere S

n−1 of �n
2. Furthermore,

we denote by γn the standard Gaussian measure on R
n with the density

1

(2π)n/2
e−‖x‖2

2/2, x ∈ R
n.

We use polar coordinates to calculate
∫

Rn

max
j=1,...,n

|xj |dγn(x) = 1

(2π)n/2

∫

Rn

max
j=1,...,n

|xj | · e−‖x‖2
2/2 dx

= Ωn

(2π)n/2

∫ ∞

0
rn−1

∫

Sn−1
max

j=1,...,n
|rxj |e−‖rx‖2

2/2 dμ2(x) dr

= Ωn

(2π)n/2

∫ ∞

0
rne−r2/2 dr ·

∫

Sn−1
max

j=1,...,n
|xj |dμ2(x)

= Ωn

(2π)n/2

∫ ∞

0
rne−r2/2 dr ·

∫

Sn−1
σ0(x)∞ dμ2(x), (6)



Constr Approx (2012) 36:83–115 87

where Ωn denotes the area of S
n−1. This formula connects the expected value of

σ0(x)∞ with the expected value of a maximum of n independent Gaussian variables.
Using that this quantity is known to be equivalent to

√
log(n + 1), cf. [33, (3.14)],

∫ ∞

0
rne−r2/2 dr = 2(n−1)/2�

(
(n + 1)/2

)
and Ωn = 2πn/2

�(n/2)
,

one obtains
∫

Sn−1
σ0(x)∞ dμ2(x) ≈

√
log(n + 1)

n
, n ∈ N. (7)

Several comments on (6) and (7) are necessary.

(i) Quantities similar to the left-hand side of (7) have been used in the study of
geometry of Banach spaces and local theory of Banach spaces for many years
and are treated in detail in the work of Milman [23, 35, 36]. Especially, if ‖ · ‖K

is a norm in R
n and K := {x ∈ R

n : ‖x‖K ≤ 1} denotes the corresponding unit
ball, then the quantity

AK =
∫

Sn−1
‖x‖K dμ2(x)

(and the closely connected median MK of ‖x‖K over S
n−1) plays a crucial role

in the Dvoretzky theorem [20, 22, 35] and, in general, in the study of Euclidean
sections of K , cf. [36, Sect. 5]. Furthermore, it is known that the case of K =
[−1,1]n, when

AK =
∫

Sn−1
max

j=1,...,n
|xj |dμ2(x) =

∫

Sn−1
σ0(x)∞ dμ2(x),

is extremal, cf. [35].
(ii) The connection between the estimated value of a maximum of independent

Gaussian variables and the estimated value of the largest coordinate of a random
vector on S

n−1 is given just by integration in polar coordinates and is one of
the standard techniques in the local theory of Banach spaces. Due to the result
of [43], this holds true also for other values of p, even for p < 1, with Gaus-
sian variables replaced by variables with the density cpe−|t |p . This approach is
nowadays classical in the study of the geometry and concentration of measure
phenomenon on the �n

p-balls, cf. [2–5, 37, 38, 41].

(iii) For every x ∈ S
n−1, we obtain easily that maxj=1,...,n |xj | ≥ ( 1

n

∑n
j=1 x2

j )1/2 =
1/

√
n. Estimate (7) shows that the average value of maxj=1,...,n |xj | over S

n−1

is asymptotically larger only by a logarithmic factor. The detailed study of the
concentration of maxj=1,...,n |xj | around its estimated value (or its mean value)
is known as concentration of measure phenomena [32, 33, 36] and gives more
accurate information then the one included in (7). As our main interest lies in es-
timates of average best m-term widths, cf. Definition 1, we do not investigate the
concentration properties in this paper and leave this subject to further research.
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(iv) The calculation (6) is based on the use of polar coordinates. For p �= 2, the
normalized cone measure is exactly that measure for which a similar formula
holds, cf. (13). The estimates for n − 1 dimensional surface measure are later
obtained using its density with respect to the cone measure, cf. Lemma 10.

(v) As we want to keep the paper self-contained as much as possible and to make it
readable also for readers without (almost) any stochastic background, we prefer
to use simple and direct techniques. For example, we use the simple estimates
in Lemma 5 rather than any of their sophisticated improvements available in the
literature.

(vi) The connection to random Gaussian variables explains why a random point of
S

n−1 is sometimes referred to as white (or Gaussian) noise. It is usually not
associated with any reasonable (i.e., structured) signal; rather, it represents a
good model for random noise.

1.5 Basic Definitions and Main Results

1.5.1 Definition of Average Best m-term Widths

Having described the context of our work, we shall now present the definition of the
so-called average best m-term widths, which are the main subject of our study.

First, we observe that

σm

(
(x1, . . . , xn)

)

q
= σm

(
(ε1x1, . . . , εnxn)

)

q
= σm

((|x1|, . . . , |xn|
))

q

holds for every x ∈ R
n and ε ∈ {−1,+1}n. Also, all the measures we shall consider

are invariant under any of the mappings

(x1, . . . , xn) → (ε1x1, . . . , εnxn), ε ∈ {−1,+1}n,

and therefore we restrict our attention only to R
n+ in the following definition.

Definition 1 Let 0 < p ≤ q ≤ ∞, and let n ≥ 2 and 0 ≤ m ≤ n − 1 be natural num-
bers.

(i) We set

n
p =

⎧
⎨

⎩

{(t1, . . . , tn) ∈ R
n+ : ∑n

j=1 t
p
j = 1}, p < ∞,

{(t1, . . . , tn) ∈ R
n+ : maxj=1,...,n tj = 1}, p = ∞.

(ii) Let μ be a Borel probability measure on n
p . Then

σ
p,q
m (μ) =

∫

n
p

σm(x)q dμ(x)

is called average surface best m-term width of id : �n
p → �n

q with respect to μ.
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(iii) Let ν be a Borel probability measure on [0,1] · n
p . Then

σ
p,q
m (ν) =

∫

[0,1]·n
p

σm(x)q dν(x)

is called average volume best m-term width of id : �n
p → �n

q with respect to ν.

Let us observe that the estimates

σ
p,q
m (μ) ≤ σ

p,q
m and σ

p,q
m (ν) ≤ σ

p,q
m

follow trivially by Definition 1. Furthermore, the mapping x → σm(x)q is continuous
and, therefore, measurable with respect to the Borel measure μ.

1.5.2 Main Results

After introducing the new notion of average best m-term width in Definition 1, we
study its behavior for the measures on n

p that are widely used in the literature.
A prominent role among them is played by the so-called normalized cone measure
given by

μp(A) = λ([0,1] · A)

λ([0,1] · n
p)

, A ⊂ n
p.

In Theorem 7 and Proposition 8, we provide basic estimates of σ
p,q
m (μp) for q =

∞ and q < ∞, respectively. Surprisingly enough, it turns out that (7) has its direct
counterpart for all 0 < p < ∞. This means (as described above) that the coordinates
of a “typical” element of the surface of the �n

p unit ball are well concentrated around

the value n−1/p . So, roughly speaking, it is only �p-normalized noise.
Another well-known probability measure on n

p is the normalized surface mea-
sure �p , cf. Definition 9. We calculate in Lemma 10 the density of �p with respect to
μp to be equal to

d�p

dμp

(x) = c−1
p,n

(
n∑

i=1

x
2p−2
i

)1/2

,

where

cp,n =
∫

n
p

(
n∑

i=1

x
2p−2
i

)1/2

dμp(x)

is the normalizing constant. This result (which is a generalization of the work of
Naor and Romik [38] to the nonconvex case 0 < p < 1) might be of independent
interest for the study of the geometry of �n

p spheres. One observes immediately that
if p < 1 and one or more coordinates of xi are going to zero, then this density has a
polynomial singularity and, therefore, gives more weight to areas closed to coordinate
hyperplanes.
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We then obtain in Theorem 12 an estimate of σ
p,∞
0 (�p) from above. Although the

measure �p concentrates around coordinate hyperplanes, it turns out that the estimate
from above of σ

p,∞
0 (μp) as obtained in Theorem 7 and the estimate of Theorem 12

differ only in the constants involved.
The last part of this paper is devoted to the search for a new probability measure on

n
p that would “promote sparsity” in the sense that the mean value of σm(x)q decays

rapidly with m. One possible candidate is presented in Definition 13 by introducing a
new class of measures θp,β , which are given by their density with respect to the cone
measure μp:

dθp,β

dμp

(x) = c−1
p,β ·

n∏

i=1

x
β
i , x ∈ n

p,

where cp,β is a normalizing constant. We refer also to Remark 4 for an equivalent
characterization.

We show that for an appropriate choice of β , namely β = p/n − 1, the estimated
value of the m-th largest coefficient of elements of the �n

p-unit sphere decays expo-

nentially with m. Namely, Theorem 16 provides estimates of σ
p,∞
m−1 (θp,p/n−1) that in

the end imply that

C1
p

( 1
p

+ 1)m
≤ lim inf

n→∞ σ
p,∞
m−1 (θp,p/n−1) ≤ lim sup

n→∞
σ

p,∞
m−1 (θp,p/n−1) ≤ C2

p

( 1
p

+ 1)m
(8)

for two positive real numbers C1
p and C2

p that depend only on p.
This result (which is also simulated numerically in the very last section of this

paper) is in a certain way independent of n. This offers hope that one could apply this
approach also to the infinite-dimensional spaces �p or, using a suitable discretiza-
tion technique (like wavelet decomposition), to some function spaces. This remains
a subject of our further research.

Of course, the class θp,β provides only one example of measures with rapid de-
cay of their average best m-term widths. We also leave the detailed study of other
measures with such properties open to future work.

Note Added in the Proof Let us comment on the relation of our work with re-
cent papers of Cevher [12] and Gribonval, Cevher, and Davis [29]. Cevher uses
in [12] the concept of Order Statistics [16] to identify the probability distributions
whose independent and identically distributed (i.i.d.) realizations result typically in
p-compressible signals, i.e.,

x∗
i ≤ C R · i−1/p.

Our approach here is a bit different and more connected to the geometry of �n
p spaces.

In accordance with [43], this leads to the study of �n
p-normalized vectors with i.i.d.

components. This again allows us to better distinguish between the norm of such a
vector (i.e., its size or energy) and its direction (i.e., its structure).

The approach of the recent preprint [29] (which was submitted during the review
process of this work) comes much closer to ours. Their Definition 1 of “Compressible
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priors” introduces the quantity called relative best m-term approximation error as

σ̄m(x)q = σm(x)q

‖x‖q

, x ∈ R
n+.

The asymptotic behavior of this quantity for x = (x1, . . . , xn) being a vector with i.i.d.
components and lim infn→∞ mn

n
≥ κ ∈ (0,1) is then used to define q-compressible

probability distribution functions. In contrast to [29], we consider �q approximation
of �p normalized vectors, and therefore our widths depend on two integrability pa-
rameters p and q . Furthermore, we do not pose any restrictions on the ratio m/n

to any specific regime and consider the average best m-term widths σ
p,q
m (μ) for all

0 ≤ m ≤ n − 1. In the only case when we speak about asymptotics (i.e., (32) of
Theorem 16), we suppose m to be constant and n growing to infinity. Furthermore,
Theorem 1 of [29] shows that all distributions with bounded fourth moment do not
fit into their scheme and do not “promote sparsity.” Because we are interested in dis-
tributions that are connected to the geometry of �n

p-balls (i.e., generalized Gaussian
distribution and generalized Gamma distribution), we change the parameters of the
distribution θp,β in dependence on n. Although quite inconvenient from the mathe-
matical point of view, it is not really clear if this presents a serious obstacle to the
application of our approach. But the investigation of this goes beyond the scope of
this work.

1.5.3 Structure of the Paper

The paper is structured as follows. The rest of Sect. 1 gives some notation used
throughout the paper. Sections 2 and 3 provide estimates of the average best m-term
widths with respect to the cone and surface measure, respectively. In Sect. 4, we study
a new type of measures on the unit ball of �n

p . We show that the typical element with
respect to those measures behaves in a completely different way compared to the sit-
uations discussed before. Those results are illustrated by the numerical experiments
described in Sect. 5.

1.6 Notation

We denote by R the set of real numbers, by R+ := [0,∞) the set of nonnegative real
numbers, and by R

n and R
n+ their n-fold tensor products. The components of x ∈ R

n

are denoted by x1, . . . , xn. The symbol λ stands for the Lebesgue measure on R
n and

H for the n − 1 dimensional Hausdorff measure in R
n. If A ⊂ R

n and I ⊂ R is an
interval, we write I · A := {tx : t ∈ I, x ∈ A}.

We shall use very often the Gamma function, defined by

�(s) :=
∫ ∞

0
t s−1e−t dt, s > 0. (9)

In one case, we shall use also the Beta function

B(p,q) :=
∫ 1

0
tp−1(1 − t)q−1 dt = �(p)�(q)

�(p + q)
, p, q > 0 (10)
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and the digamma function

Ψ (s) := d

ds
log�(s) = �′(s)

�(s)
, s > 0.

We recommend [1, Chap. 6] as a standard reference for both basic and more advanced
properties of these functions. We shall need Stirling’s approximation formula (which
was implicitly used already in (7)) in its most simple form

�(x) =
√

2π

x

(
x

e

)x(

1 + O
(

1

x

))

, x > 0. (11)

If a = {aj }∞j=1 and b = {bj }∞j=1 are real sequences, then aj � bj denotes that
there is an absolute constant C > 0 such that aj ≤ C bj for all j = 1,2, . . . . Similar
convention is used for aj � bj and aj ≈ bj . The capital letter C with indices (i.e.,
Cp) denotes a positive real number depending only on the highlighted parameters,
and their meaning can change from one occurrence to another. If, for any reason,
we shall need to distinguish between several numbers of this type, we shall write for
example C1

p and C2
p , as was already done in (8).

2 Normalized Cone Measure

In this section, we study the average best m-term widths as introduced in Defini-
tion 1 for the most important measure (the so-called cone measure) on n

p , which
is well studied in the literature within the geometry of �n

p spaces, cf. [4, 5, 37, 38].
Essentially, we recover in Theorem 7 an analog of the estimate (7) for all 0 < p < ∞.

Definition 2 Let 0 < p ≤ ∞ and n ≥ 2. Then

μp(A) = λ([0,1] · A)

λ([0,1] · n
p)

, A ⊂ n
p

is the normalized cone measure on n
p .

If νp denotes the p-normalized Lebesgue measure, i.e.,

νp(A) = λ(A)

λ([0,1] · n
p)

, A ⊂ R
n+,

then the connection between νp and μp is given by

νp(A) = n

∫ ∞

0
rn−1μp

( {x ∈ A : ‖x‖p = r}
r

)

dr. (12)

The proof of (12) follows directly for sets of the type [a, b] · A with 0 < a < b < ∞
and A ⊂ n

p and is then finished by standard approximation arguments. The formula
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(12) may be generalized to the so-called polar decomposition identity, cf. [4],
∫

R
n+ f (x)dλ(x)

λ([0,1] · n
p)

= n

∫ ∞

0
rn−1

∫

n
p

f (rx) dμp(x)dr, (13)

which holds for every f ∈ L1(R
n+).

Formula (13) allows for the transfer immediately of the results for the average
surface best m-term approximation with respect to μp to the average volume approx-
imation with respect to νp .

Proposition 3 The identity

σ
p,q
m (νp) = σ

p,q
m (μp) · n

n + 1

holds for all 0 < p ≤ q ≤ ∞, all n ≥ 2, and all 0 ≤ m ≤ n − 1.

Proof We plug the function

f (x) = σm(x)q · χ[0,1]·n
p
(x)

into (13) and obtain
∫

[0,1]·n
p
σm(x)q dλ(x)

λ([0,1] · n
p)

=
∫

[0,1]·n
p

σm(x)q dνp(x)

= n

∫ 1

0
rn−1

∫

n
p

σm(rx)q dμp(x)dr = n

∫ 1

0
rn dr · σp,q

m (μp),

which gives the result. �

Proposition 3 shows that the ratio between approximation with respect to μp and
νp is equal to 1 + 1/n. This justifies our interest in measures on n

p . Furthermore,
it shows that the quantities σ

p,q
m (νp) and σ

p,q
m (μp) behave asymptotically (i.e., for

n → ∞) very similarly.
Let p = 2, and let ω1, . . . ,ωn be independent normally distributed Gaussian ran-

dom variables. Then

�2(A) = μ2(A) = P

(
(|ω1|, . . . , |ωn|)
(
∑n

j=1 ω2
j )

1/2
∈ A

)

, A ⊂ n
2 .

As noted in [43], this relation may be generalized to all values of p with 0 < p < ∞.
Let ω1, . . . ,ωn be independent random variables on R+ each with density

cpe−tp , t ≥ 0,
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with respect to the Lebesgue measure, where cp = p
�(1/p)

= 1
�(1/p+1)

.
Then, cf. [43, Lemma 1],

μp(A) = P

(
(ω1, . . . ,ωn)

(
∑n

j=1 ω
p
j )1/p

∈ A
)

, A ⊂ n
p. (14)

We now fix ω1, . . . ,ωn until the end of this paper. Also the symbols E and P are
always taken with respect to these variables.

2.1 The Case q = ∞

In this section, we deal with uniform approximation, i.e., with the case q = ∞. To be
able to imitate the calculation (6), we shall need several tools, which are the subject
of Lemmas 4, 5, and 6. Our main result of this section (Theorem 7) then provides the
estimate of σ

p,∞
m (μp) from above for all m with 0 ≤ m ≤ n − 1. Furthermore, it is

shown that in the range 0 ≤ m ≤ εpn, this estimate is also optimal.

Lemma 4 Let 0 < p < ∞, and let n ≥ 2 and 1 ≤ m ≤ n be natural numbers. Then

∫

n
p

x∗
m dμp(x) = �(n/p)

�(n/p + 1/p)
· Ex∗

m.

Furthermore, there are two positive real numbers C1
p and C2

p depending only on p

such that

C1
p · Ex∗

m

n1/p
≤

∫

n
p

x∗
m dμp(x) ≤ C2

p · Ex∗
m

n1/p
.

Proof We set f (x) = x∗
me−x

p
1 −···−x

p
n and use the polar decomposition identity (13):

∫

R
n+ x∗

me−x
p
1 −···−x

p
n dλ(x)

λ([0,1] · n
p)

= n

∫ ∞

0
rn−1

∫

n
p

(
rx∗

m

) · e−(rx1)
p−···−(rxn)pdμp(x) dr

= n

∫ ∞

0
rn−1 · re−rp

dr

∫

n
p

x∗
m dμp(x),

or, equivalently,

∫

n
p

x∗
m dμp(x) =

∫

R
n+ x∗

me−x
p
1 −···−x

p
n dλ(x)

λ([0,1] · n
p) · n ∫ ∞

0 rne−rp
dr

. (15)

The identity
∫ ∞

0
rne−rp

dr = �(n/p + 1/p)

p
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follows by a simple substitution. Furthermore, we shall need the classical formula of
Dirichlet for the volume of the unit ball B�n

p
of �n

p , cf. [21, p. 157],

λ
([0,1] · n

p

) = λ(B�n
p
)

2n
= �(1/p + 1)n

�(n/p + 1)
.

This allows us to reformulate (15) as

∫

n
p

x∗
m dμp(x) = �(n/p + 1)Ex∗

m

cn
p · n/p · �(n/p + 1/p)�(1/p + 1)n

= �(n/p)Ex∗
m

�(n/p + 1/p)
.

Finally, we use Stirling’s formula (11) to estimate

n1/p · �(n/p)

�(n/p + 1/p)
≤ C1

p

n1/p(n/p)n/p−1/2

(n/p + 1/p)n/p+1/p−1/2
≤ C2

p

(
n

n + 1

)n/p+1/p−1/2

≤ C3
p

and similarly for the estimate from below. �

Lemma 5 Let α ∈ R and δ > 0. Then

∫ ∞

δ

uαe−u du ≤ δαe−δ ·

⎧
⎪⎪⎨

⎪⎪⎩

1 if α ≤ 0,

1
1−α/δ

if α > 0 and α
δ

< 1,

( α
δ
)α · α/δ

1−δ/α
if α > 0 and α

δ
> 1.

Proof If α ≤ 0, we may estimate

∫ ∞

δ

uαe−u du ≤ δα

∫ ∞

δ

e−u du = δαe−δ.

If 0 < α ≤ 1, we use partial integration and obtain

∫ ∞

δ

uαe−u du = δαe−δ + α

∫ ∞

δ

uα−1e−u du ≤ δαe−δ
(
1 + αδ−1).

This is smaller than

δαe−δ

(

1 + α

δ
+ α2

δ2
+ · · ·

)

= δαe−δ · 1

1 − α/δ

if α/δ < 1 and smaller than

δαe−δ α

δ

(

1 + δ

α
+ δ2

α2
+ · · ·

)

= δαe−δ α

δ
· 1

1 − δ/α

if α/δ > 1.
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If k − 1 < α ≤ k for some k ∈ N, we iterate the partial integration and arrive at
∫ ∞

δ

uαe−u du

≤ δαe−δ
(
1 + αδ−1 + α(α − 1)δ−2 + · · · + α(α − 1) · · · (α − k + 1)δ−k

)

≤ δαe−δ

(

1 + α

δ
+ α2

δ2
+ · · · + αk

δk

)

≤ δαe−δ

⎧
⎨

⎩

1
1−α/δ

if α/δ < 1,

( α
δ
)α+1 1

1−δ/α
if α/δ > 1. �

Lemma 6 Let 0 < p < ∞. Then there is a positive real number Cp such that

Ex∗
m ≤ Cp log1/p

(
en

m

)

for all 1 ≤ m ≤ n.

Proof We estimate

Ex∗
m =

∫ ∞

0
P
(
ω∗

m > t
)
dt = δ +

∫ ∞

δ

P
(
ω∗

m > t
)
dt

≤ δ +
(

n

m

)∫ ∞

δ

P(ω1 > t,ω2 > t, . . . ,ωm > t) dt

= δ +
(

n

m

)∫ ∞

δ

P(ω1 > t)m dt. (16)

The parameter δ > max(1,3(1/p − 1))1/p is to be chosen later on. We substitute
v = up and obtain

P(ω1 > t) = cp

∫ ∞

t

e−up

du = cp

p

∫ ∞

tp
v1/p−1e−v dv.

Using the first two estimates of Lemma 5 (recall that tp ≥ δp > max(1,3(1/p −1))),
we arrive at

P(ω1 > t) ≤ Cpt1−pe−tp ,

where Cp depends only on p. We plug this estimate into (16) and obtain

Ex∗
m ≤ δ +

(
n

m

)

(Cp)m
∫ ∞

δ

tm(1−p)e−mtp dt. (17)

If p ≥ 1, then
∫ ∞

δ

tm(1−p)e−mtp dt ≤ δm(1−p)

∫ ∞

δ

e−mtp dt ≤ δm(1−p)

∫ ∞

mδp

e−uu1/p−1 du

≤ e−mδp

.
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Altogether, we obtain

Ex∗
m ≤ δ +

(
n

m

)

(Cp)me−mδp

.

Using
(
n
m

) ≤ ( en
m

)m and choosing δ = C′
p ln( en

m
)1/p finishes the proof.

If p < 1, we use again the second estimate of Lemma 5,

∫ ∞

δ

tm(1−p)e−mtp dt = 1

mp
· m(1/p−1)(m+1)

∫ ∞

mδp

u(1/p−1)(m+1)e−u du

≤ 1

mp
· δ(1−p)(m+1)e−mδp · 1

1 − 2(1/p−1)
δp

≤ C′
pδ(1−p)(m+1)e−mδp

.

Using (17) and
(
n
m

) ≤ ( en
m

)m again, we get

Ex∗
1 ≤ δ + exp

(−mδp + m ln(en/m) + (1 − p)(m + 1) ln δ + m lnCp + lnC′
p

)

≤ δ + exp
[−m

(
δp + Cp ln(en/m) + 2(1 − p) ln δ

)]
.

The choice δ = C′
p ln( en

m
)1/p with C′

p large enough ensures that

δp

2
≥ Cp ln(en/m) and

δp

2
≥ 2(1 − p) ln δ

and finishes the proof. �

The following theorem gives the basic estimates of σ
p,∞
m (μp).

Theorem 7 Let 0 < p ≤ ∞, and let n ≥ 2.

(i) Let 0 ≤ m ≤ n − 1. Then

σ
p,∞
m (μp) ≤ Cp

[
log( en

m+1 )

n

]1/p

.

(ii) There is a number 0 < εp < 1 such that for 0 ≤ m ≤ εpn, the following estimate
holds:

σ
p,∞
m (μp) ≥ Cp

[
log( en

m+1 )

n

]1/p

.

Proof Lemmas 4 and 6 imply immediately the first part of the theorem if p < ∞. If
p = ∞, the proof is trivial.

The proof of the second part is divided into two steps.
Step 1. We start first with the case m = 0.
If p = ∞, then x∗

1 = 1 for all x ∈ n
p and the proof is trivial. Let us therefore

assume that p < ∞. According to Lemma 4, we have to estimate Ex∗
1 from below.
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This was done in [43, Lemma 2]. We include a slightly different proof for the reader’s
convenience. For every t0 > 0, we have

Ex∗
1 ≥ t0 P

(
x∗

1 > t0
) = t0 P

(
max

1≤j≤n
xj > t0

)
≥ t0

[

nP(x1 > t0) −
(

n

2

)

P(x1 > t0)
2
]

.

We define t0 by P(x1 > t0) = 1
n

and obtain Ex∗
1 ≥ t0/2.

From the simple estimate

cp

p

∫ ∞

T p

u1/p−1e−udu ≥ Cpe−2T p

, T > 1,

it follows that there is a positive real number γp > 0 such that

P
(
x1 > γp

(
log(en)

)1/p) ≥ 1/n.

This gives t0 ≥ γp(log(en))1/p and Ex∗
1 ≥ Cp(log(en))1/p .

Step 2. Let 0 ≤ m ≤ εpn, where εp > 0 will be chosen later on.
We shall use the inequality

1

m

m∑

j=1

log1/p

(
en

j

)

≤ Cp log1/p

(
en

m

)

, 1 ≤ m ≤ n, (18)

which follows by direct calculation for p = 1, by Hölder’s inequality for 1 < p < ∞,
and by replacing the sum by the corresponding integral and integration by parts if
0 < p < 1.

We write

‖x‖(m) = 1

m

m∑

j=1

x∗
j .

By Lemma 6 and (18),

E‖x‖(m) = 1

m

m∑

j=1

Ex∗
j ≤ Cp

m

m∑

j=1

log1/p

(
en

j

)

≤ C1
p log1/p

(
en

m

)

. (19)

To estimate E‖x‖(m) from below, we assume that 1 ≤ m ≤ n and that n/m is an
integer (otherwise one has to slightly modify the argument at the cost of the constants
involved). We partition the set {1, . . . , n} = A1 ∪ · · · ∪ Am, where each one of the
disjoint sets Aj has n/m elements. Then we have

‖x‖(m) ≥ 1

m

m∑

j=1

max
l∈Aj

xl,

and by the first step we obtain

E‖x‖(m) ≥ 1

m

m∑

j=1

E max
l∈Aj

xl ≥ C2
p log1/p

(
en

m

)

. (20)
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Let Np < 1/εp be a natural number to be chosen later on. Combining (19) with (20)
gives finally

Ex∗
m ≥ 1

Npm

Npm∑

k=m

Ex∗
k ≥ E‖x‖(Npm) − 1

Np

E‖x‖(m)

≥ C2
p log1/p

(
en

Npm

)

− C1
p

Np

log1/p

(
en

m

)

= log1/p

(
en

m

){

C2
p

[

1 − log(Np)

log( en
m

)

]1/p

− C1
p

Np

}

.

An appropriate choice of Np and εp (i.e., Np > 21/pC1
p/C2

p and εp < min(1/Np,

e/N2
p)) with

C2
p

[

1 − log(Np)

log( e
εp

)

]1/p

− C1
p

Np

> 0

gives the result. �

Remark 1

(i) Theorem 7 provides basic estimates of average best m-term widths σ
p,∞
m (μp).

In the case m = 0, a stronger result on concentration of μp was obtained already
in [43, Theorem 3 and Remark 2]. It would certainly be of interest to obtain a
similar statement also for other values of m > 0, but this would go beyond the
scope of this paper, and we leave this direction open for further study.

(ii) Theorem 7 may be interpreted in the sense of the discussion after formula
(7). Namely, the average coordinate of x ∈ n

p is n−1/p . Theorem 7 shows
that the average value of the largest coordinate is only slightly larger (namely
c[ln(en)]1/p times larger). In this sense, the average point of n

p is only slightly
modified (and properly normalized) white noise.

(iii) Using the interpolation formula (4), one may immediately extend this result to
all 0 < p ≤ q < ∞. But we shall see later on that in the case q < ∞, one may
prove slightly better estimates.

(iv) The behavior of σ
p,∞
m (μp) was studied in detail in [28, Example 10] for p = 2.

It was shown that if xi are independent N(0,1) Gaussian random variables and
m ≤ n/2 + 1, then

c

√

ln
2n

m
≤ Ex∗

m ≤ C

√

ln
2n

m
,

where c and C are absolute positive constants. Furthermore, if m ≥ n/2 + 1,
then

√
π

2

n − m + 1

n + 1
≤ Ex∗

m ≤ √
2π

n − m + 1

n
.
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(v) The method used in the proof of the second part of Theorem 7 may be found,
for example, in [27].

2.2 The Case q < ∞
We discuss briefly also the case when q < ∞. It turns out that in this case the loga-
rithmic term disappears. We do not go much into details and restrict ourselves to the
case m = 0.

Proposition 8 Let n ≥ 2 and 0 < p ≤ q < ∞. Then

(i) C1
p,qn1/q ≤ E‖x‖q ≤ C2

p,qn1/q ,
(ii)

C1
p,q · E‖x‖q

n1/p
≤ σ

p,q

0 (μp) =
∫

n
p

‖x‖q dμp(x) ≤ C2
p,q · E‖x‖q

n1/p
,

and
(iii) C1

p,qn1/q−1/p ≤ σ
p,q

0 (μp) ≤ C2
p,qn1/q−1/p ,

where in all these estimates C1
p and C2

p are positive real numbers depending only
on p.

Proof

(i) The following two inequalities may be easily proved by Hölder’s and Minkows-
ki’s inequalities:

(
n∑

j=1

(Exj )
q

)1/q

≤ E

(
n∑

j=1

x
q
j

)1/q

≤
(

n∑

j=1

Ex
q
j

)1/q

, q ≥ 1,

(
n∑

j=1

Ex
q
j

)1/q

≤ E

(
n∑

j=1

x
q
j

)1/q

≤
(

n∑

j=1

(Exj )
q

)1/q

, q ≤ 1.

This gives for q ≥ 1,

E‖x‖q ≤ n1/q
(
Ex

q
j

)1/q and E‖x‖q ≥ n1/q
Exj ,

and for q ≤ 1,

E‖x‖q ≤ n1/q
Exj and E‖x‖q ≥ n1/q

(
Ex

q
j

)1/q
.

Let us note that the value of Exj and (Ex
q
j )1/q does not depend on n, only on p

and q .
(ii) The proof of the second part resembles very much the proof of Lemma 4 and is

left to the reader.
(iii) The last point follows immediately from (i) and (ii). �

Remark 2 A statement similar to Proposition 8 is included in [43, Lemma 2, point 4].
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3 Normalized Surface Measure

In this section, we study the average best m-term widths for another classical measure
on n

p , namely the normalized Hausdorff measure, cf. Definition 9. Intuitively, it
would seem that this measure gives more weight to those areas where one or more
components of x ∈ n

p are close to zero. It turns out that this really is the case,
and the mathematical formulation is given in Lemma 10 below. This relation is then
used together with Lemma 11 in Theorem 12 to provide estimates of σ

p,∞
0 (�p) from

above.

Definition 9 Let n ≥ 2 be a natural number. We denote by

�p(A) = H(A)

H(n
p)

, A ⊂ n
p,

the normalized n − 1 dimensional Hausdorff measure on n
p .

Let us mention that for p ∈ {1,2,∞}, the measure �p coincides with μp . The
following lemma provides a relationship between the normalized surface measure �p

and the cone measure μp . For p ≥ 1, it was given by [38]. We follow closely their
approach, and it turns out that it may be generalized also to the nonconvex case of
0 < p < 1.

Lemma 10 Let 0 < p < ∞ and n ≥ 2. Then �p is an absolutely continuous measure
with respect to μp and for μp almost every x ∈ n

p , we have

d�p

dμp

(x) = nλ([0,1] · n
p)

H(n
p)

∥
∥∇(‖ · ‖p

)
(x)

∥
∥

2 = c−1
p,n

(
n∑

i=1

x
2p−2
i

)1/2

,

where

cp,n =
∫

n
p

(
n∑

i=1

x
2p−2
i

)1/2

dμp(x)

is the normalizing constant.

Proof The proof follows the proof of [38, Lemmas 1 and 2], where the statement was
proved for 1 ≤ p < ∞. Hence, we may assume that 0 < p < 1. First, we introduce
some notation.

We fix x = (x1, . . . , xn) ∈ n
p such that:

• the mapping y → ‖y‖p is differentiable at x,
• x is a density point of H, i.e.,

lim
ε→0+

H(B(x, ε) ∩ n
p)

εn−1Vn−1
= 1, (21)

where Vn−1 denotes the Lebesgue volume of the n− 1 dimensional Euclidean unit
ball,

• xi > 0 for all i = 1, . . . , n.
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Obviously, �p-almost every x ∈ n
p satisfies all the three properties (we refer, for

example, to [34, Theorem 16.2] for the second one).
Furthermore, we set z := ∇(‖ · ‖p)(x). This means that

‖x + y‖p = 1 + 〈z, y〉 + r(y), (22)

where

θ(δ) := sup

{ |r(y)|
‖y‖2

: 0 < ‖y‖2 ≤ δ

}

, δ > 0

tends to zero if δ tends to zero. Using (22) for y = δx, one observes that 〈z, x〉 = 1.
We denote by H = x + z⊥ the tangent hyperplane to n

p at x. Let us note that for
0 < p < 1, the set R

n+ \ [0,1) · n
p = [1,∞) · n

p is convex. Next, we show that
〈z, y〉 ≥ 1 for every y ∈ [1,∞) · n

p . Indeed,

1 ≤ ∥
∥x + λ(y − x)

∥
∥

p
= 1 + 〈

z,λ(y − x)
〉+ r

(
λ(y − x)

)

= 1 − λ + λ〈z, y〉 + r
(
λ(y − x)

)
.

Dividing by λ > 0 and letting λ → 0 gives the statement.
The proof of the lemma is based on the following two inclusions, namely

[0,1] · (B(
x, ε

(
1 − θ(ε)

))∩ H
) ⊂ [0,1] · (B(x, ε) ∩ n

p

)
(23)

and

[0,1] · (B(x, ε) ∩ n
p

) ⊂ [
0,1 + εθ(ε)

] · (B(
x, ε

(
1 + θ(ε)‖x‖2

))∩ H
)
, (24)

which hold for all ε > 0 small enough.
First, we prove (23). Given 0 ≤ s ≤ 1 and v ∈ B(x, ε(1 − θ(ε)) ∩ H , we need to

find 0 ≤ t ≤ 1 and w ∈ B(x, ε) ∩ n
p such that sv = tw. To do this, we set

w := v

‖v‖p

∈ n
p and t := s‖v‖p.

We need to show that t ≤ 1 and ‖x − w‖2 ≤ ε.
We choose 0 < ε ≤ mini xi . Then

xi ≤ |xi − vi | + vi ≤ ‖x − v‖2 + vi ≤ ε + vi

for every i = 1, . . . , n, which implies that vi ≥ 0 and v ∈ R
n+. From v ∈ H and v ∈

R
n+, we deduce that ‖v‖p ≤ 1. Hence t = s‖v‖p ≤ ‖v‖p ≤ 1.
Next, we write

‖x − w‖2 =
∥
∥
∥
∥x − v

‖v‖p

∥
∥
∥
∥

2
≤ ‖x − v‖2 +

∥
∥
∥
∥v − v

‖v‖p

∥
∥
∥
∥

2

≤ ε
(
1 − θ(ε)

)+ ‖v‖2 · 1 − ‖v‖p

‖v‖p

≤ ε
(
1 − θ(ε)

)+ 1 − ‖v‖p
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= ε
(
1 − θ(ε)

)+ 1 − {
1 + 〈v − x, z〉 + r(v − x)

}

= ε
(
1 − θ(ε)

)+ r(v − x) ≤ ε.

Next, we prove (24). We need to find for given 0 ≤ t ≤ 1 and w ∈ B(x, ε) ∩ n
p

some 0 ≤ s ≤ 1 + εθ(ε) and v ∈ B(x, ε(1 + θ(ε)‖x‖2)) ∩ H such that tw = sv. We
put

s := t〈w,z〉 and v := w

〈w,z〉 .

Let us recall that we have shown above that w ∈ n
p implies that 〈w,z〉 ≥ 1.

Of course, tw = sv and v ∈ H (as 〈v, z〉 = 1). Hence, it remains to show that
s ≤ 1 + εθ(ε) and ‖v − x‖2 ≤ ε(1 + θ(ε)‖x‖2).

The application of (22) gives

1 = ‖w‖p = ∥
∥x + (w − x)

∥
∥

p
= 1 + 〈w − x, z〉 + r(w − x),

which again forces 〈w,z〉 ≤ 1 + εθ(ε). Then s = t〈w,z〉 ≤ 〈w,z〉 ≤ 1 + εθ(ε).
Finally, we write

‖v − x‖2 =
∥
∥
∥
∥

w

〈w,z〉 − x

∥
∥
∥
∥

2
≤

∥
∥
∥
∥

w

〈w,z〉 − x

〈w,z〉
∥
∥
∥
∥

2
+

∥
∥
∥
∥

x

〈w,z〉 − x

∥
∥
∥
∥

2

≤ ‖w − x‖2

〈w,z〉 + ‖x‖2
〈w,z〉 − 1

〈w,z〉 ≤ ε + εθ(ε)‖x‖2.

Equipped with (23) and (24), we may finish the proof of the lemma. We write

lim
ε→0

�p(B(x, ε) ∩ n
p)

μp(B(x, ε) ∩ n
p)

= lim
ε→0

H(B(x, ε) ∩ n
p)

H(n
p)

· εn−1Vn−1

εn−1Vn−1
· λ([0,1] · n

p)

λ([0,1] · [B(x, ε) ∩ n
p])

= λ([0,1] · n
p)

H(n
p)

· lim
ε→0

εn−1Vn−1

λ([0,1] · [B(x, ε) ∩ n
p]) , (25)

where we have used (21). As the perpendicular distance between zero and H is equal
to 1/‖z‖2, we observe that

vol
(
B(x, a) ∩ H

) = an−1Vn−1

n‖z‖2

holds for every a > 0. Using this, we get from (23) and (24),

λ
([0,1] · (B(

x, ε
(
1 − θ(ε)

))∩ H
))

= [ε(1 − θ(ε))]n−1Vn−1

n‖z‖2
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≤ λ
([0,1] · (B(x, ε) ∩ n

p

))

≤ λ
([

0,1 + εθ(ε)
] · (B(

x, ε
(
1 + θ(ε)‖x‖2

))∩ H
))

= [
1 + εθ(ε)

]n · [ε(1 + θ(ε)‖x‖2)]n−1Vn−1

n‖z‖2
.

Combining these estimates with (25) gives the result. �

The following lemma is analogous to Lemma 4 and reduces the calculation of
σ

p,∞
0 (�p) to inequalities for the estimated values of functions of the random variables

x1, . . . , xn.

Lemma 11 Let 0 < p < ∞. There exist two positive real numbers C1
p and C2

p such
that

C1
p·Ex∗

1 (
∑n

i=1 x
2p−2
i )1/2

E(
∑n

i=1 x
2p−2
i )1/2

· n−1/p ≤ σ
p,∞
0 (�p) =

∫

n
p

x∗
1 d�p

=
∫

n
p
x∗

1 (
∑n

i=1 x
2p−2
i )1/2dμp(x)

∫

n
p
(
∑n

i=1 x
2p−2
i )1/2dμp(x)

≤ C2
p

Ex∗
1 (
∑n

i=1 x
2p−2
i )1/2

E(
∑n

i=1 x
2p−2
i )1/2

· n−1/p

for all n ≥ 2.

Proof Only the inequalities need a proof. It resembles the proof of Lemma 4 and is
again based on the polar decomposition formula (13).

We plug the functions

f1(x) = x∗
1

(
n∑

i=1

x
2p−2
i

)1/2

e−x
p
1 −···−x

p
n and f2(x) =

(
n∑

i=1

x
2p−2
i

)1/2

e−x
p
1 −···−x

p
n

into (13) and obtain

σ
p,∞
0 (�p) =

∫

R
n+ f1(x) dx · ∫ ∞

0 rn+p−2e−rp
dr

∫

R
n+ f2(x) dx · ∫ ∞

0 rn+p−1e−rp
dr

= Ex∗
1 (
∑n

i=1 x
2p−2
i )1/2

E(
∑n

i=1 x
2p−2
i )1/2

· �(n/p + 1 − 1/p)

�(n/p + 1)
.

By Stirling’s formula, the last expression is equivalent to n−1/p with constants of
equivalence depending only on p. �

Theorem 12 Let 0 < p < ∞. Then there is a positive real number Cp such that

σ
p,∞
0 (�p) ≤ Cp

[
log(n + 1)

n

]1/p

for all n ≥ 2.
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Proof We define a probability measure αp,n on R
+
n by the density

c̃−1
p,n ·

(
n∑

i=1

x
2p−2
i

)1/2

e−x
p
1 −···−x

p
n , c̃p,n :=

∫

R
n+

(
n∑

i=1

x
2p−2
i

)1/2

e−x
p
1 −···−x

p
n dx

with respect to the Lebesgue measure. Let us note that due to the inequality

(
n∑

i=1

x
2p−2
i

)1/2

≤
n∑

i=1

x
p−1
i ,

the integral in the definition of c̃p,n really converges, and αp,n is well defined.
According to Lemma 11, we need to estimate

∫

R
n+

x∗
1 dαp,n(x).

We calculate for δ > 1, which is to be chosen later on,

∫

R
n+

x∗
1 dαp,n(x) =

∫ ∞

0
αp,n

(
x∗

1 > t
)
dt ≤ δ +

∫ ∞

δ

αp,n

(
x∗

1 > t
)
dt

≤ δ + n

∫ ∞

δ

αp,n(x1 > t)dt.

We write x′ = (x2, . . . , xn) ∈ R
n−1+ . Then

αp,n(x1 > t) = c̃−1
p,n

∫ ∞

t

e−x
p
1

∫

R
n−1+

(
n∑

i=1

x
2p−2
i

)1/2

e−x
p
2 −···−x

p
n dx′ dx1

≤ c̃−1
p,n

∫ ∞

t

e−x
p
1

∫

R
n−1+

[

x
p−1
1 +

(
n∑

i=2

x
2p−2
i

)1/2]

e−x
p
2 −···−x

p
n dx′ dx1

= c̃−1
p,n

∫ ∞

t

e−x
p
1 x

p−1
1 dx1 ·

∫

R
n−1+

e−x
p
2 −···−x

p
n dx′

+ c̃−1
p,n

∫ ∞

t

e−x
p
1 dx1 ·

∫

R
n−1+

(
n∑

i=2

x
2p−2
i

)1/2

e−x
p
2 −···−x

p
n dx′

:= I1 + I2.
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The inequality

cn
pc̃p,n = cn

p

∫

R
n+

(
n∑

i=1

x
2p−2
i

)1/2

e−x
p
1 −···−x

p
n dx

≥ cn
p

∫

R
n+

(
n∑

i=2

x
2p−2
i

)1/2

e−x
p
1 −···−x

p
n dx

= cn
p

∫ ∞

0
e−x

p
1 dx1

∫

R
n−1+

(
n∑

i=2

x
2p−2
i

)1/2

e−x
p
2 −···−x

p
n dx′

= cn−1
p c̃p,n−1 (26)

shows that

I1 = cp

∫ ∞
t

x
p−1
1 e−x

p
1 dx1

cn
pc̃p,n

≤ cp

∫ ∞
t

x
p−1
1 e−x

p
1 dx1

cpc̃p,1
= c̃−1

p,1 · e−tp

p
.

Using (26) again, we also get

I2 = c̃−1
p,n · c̃p,n−1

∫ ∞

t

e−x
p
1 dx1 ≤ cp

∫ ∞

t

e−x
p
1 dx1 = cp

p
·
∫ ∞

tp
s1/p−1e−s ds.

If p ≥ 1, we get

I1 + I2 ≤ Cpe−tp , t > 1, (27)

and
∫

R
n+

x∗
1 dαp,n(x) ≤ δ + Cpn

∫ ∞

δ

e−tp dt ≤ δ + C′
pne−δp

.

By choosing δ = Cp log(n + 1)1/p , we get the result.
If p < 1, we use the second estimate of Lemma 5 and replace (27) with

I1 + I2 ≤ Cpt1−pe−tp , t > t0,

for t0 > 1 large enough, and the result again follows by the choice of δ.
�

Remark 3

(i) Theorem 12 shows that the average size of the largest coordinate of x ∈ n
p taken

with respect to the normalized Hausdorff measure is again only slightly larger
than n−1/p . Hence, also in this case, the typical element of n

p seems to be far
from being sparse and resembles rather properly normalized white noise in the
sense described in introduction.

(ii) Using interpolation inequality (4), one may again obtain a similar estimate also
for 0 < p ≤ q < ∞, namely

σ
p,q

0 (�p) ≤ Cp,q

[
log(n + 1)

n

]1/p−1/q

.
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It would probably be possible to avoid the logarithmic terms and provide im-
proved estimates also for m > 0, but we shall not go in this direction. Our main
aim of this section was to show that normalized Hausdorff measure does not
prefer sparse (or nearly sparse) vectors, and this was clearly demonstrated by
Theorem 12.

4 Tensor Product Measures

As discussed already in the introduction and proved in Theorems 7 and 12, the aver-
age vectors of n

p with respect to the cone measure μp and with respect to surface
measure �p behave “badly,” meaning that (roughly speaking) many of their coordi-
nates are approximately of the same size. As promised before, we shall now introduce
a new class of measures for which the random vector behaves in a completely differ-
ent way. These measures are defined through their density with respect to the cone
measure μp . This density has a strong singularity near the points with vanishing co-
ordinates.

Definition 13 Let 0 < p < ∞, β > −1, and n ≥ 2. Then we define the probability
measure θp,β on n

p by

dθp,β

dμp

(x) = c−1
p,β ·

n∏

i=1

x
β
i , x ∈ n

p, (28)

where

cp,β =
∫

n
p

n∏

i=1

x
β
i dμp(x). (29)

Remark 4

(i) If 0 > β > −1, then (28) defines the density of θp,β with respect to μp only for
points where xi �= 0 for all i = 1, . . . , n. That means that this density is defined
μp-almost everywhere. The definition is then complemented by the statement
that θp,β is absolutely continuous with respect to μp .

(ii) We shall see later on that the condition β > −1 ensures that (29) is finite.
(iii) It was observed already in [4] that the measures θp,β allow a formula similar to

(14). We plug the function f (x) = χ[0,∞)·A
∏n

i=1 x
β
i e−‖x‖p

p into (13), where A
is any μp-measurable subset of n

p , and obtain

∫

[0,∞)·A

n∏

i=1

x
β
i e−‖x‖p

p dλ(x) = λ
([0,1] · n

p

) · n ·
∫ ∞

0
rn−1+nβe−rp

dr

·
∫

A

n∏

i=1

x
β
i dμp(x).



108 Constr Approx (2012) 36:83–115

We use a similar formula also for A = n
p , which leads to

∫

A
1d θp,β =

∫

A
∏n

i=1 x
β
i dμp(x)

∫

n
p

∏n
i=1 x

β
i dμp(x)

=
∫

[0,∞)·A
∏n

i=1 x
β
i e−‖x‖p

pdx
∫

R
n+
∏n

i=1 x
β
i e−‖x‖p

pdx
.

Let ω′ = (ω′
1, . . . ,ω

′
n) be a vector with independent identically distributed

components with respect to the density cp,β tβe−tp , t > 0, where c−1
p,β =

∫ ∞
0 tβe−tpdt is a normalizing constant. Up to a simple substitution, this is the

well-known gamma distribution. We observe that the distribution of random
points with respect to θp,β equals to the distribution of �n

p normalized vectors
ω′, i.e.,

θp,β(A) = P

(
(ω′

1, . . . ,ω
′
n)

(
∑n

j=1 (ω′
j )

p)1/p
∈ A

)

, A ⊂ n
p.

(iv) Of course, the same procedure might be considered also for other distributions.
We leave this to future work. We also refer to the discussion on the recent work
of Gribonval, Cevher, and Davies [29] in the introduction.

Lemma 14 Let 0 < p < ∞, β > −1, and n ≥ 2.

(i) Let 1 ≤ m ≤ n. Then

σ
p,∞
m−1 (θp,β) =

∫

n
p

x∗
m dθp,β = Ex∗

m

∏n
i=1 x

β
i

E
∏n

i=1 x
β
i

· �(n(β + 1)/p)

�(n(β + 1)/p + 1/p)
.

(ii)

E

n∏

i=1

x
β
i =

[
cp

p
· �(

(β + 1)/p
)
]n

.

Proof The proof of the first part follows again by (13), this time used for the functions

f1(x) = x∗
m

(
n∏

i=1

x
β
i

)

e−x
p
1 −···−x

p
n and f2(x) =

(
n∏

i=1

x
β
i

)

e−x
p
1 −···−x

p
n .

The proof of the second part is straightforward. �

It follows directly from (9) that �(s) tends to infinity when s tends to zero. The
following lemma quantifies this phenomenon. Although the statement seems to be
well known, we were not able to find a reference, and we therefore provide at least a
sketch of the proof.

Lemma 15 Let C � 0.577 . . . denote the Euler constant. Then

lim
n→∞

(
�(1/n)

n

)n

= e−C.
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Proof It is enough to show that

lim
n→∞n · log

(
�(1 + 1/n)

) = −C,

which (by using the l’Hospital rule) follows from

lim
n→∞

∫ ∞
0 s1/ne−s log s ds
∫ ∞

0 s1/ne−s ds
= −C.

But the numerator of this fraction is equal to �′(1 + 1/n) and its denominator to
�(1 + 1/n). The whole fraction is therefore equal to Ψ (1 + 1/n) and Ψ (1 + 1/n) →
Ψ (1) = −C as n tends to infinity, cf. [1, Sect. 6.3.2, p. 258]. �

The next theorem shows that if β = p/n − 1, then the measure θp,β promotes
sparsity, and one may even consider limiting behavior of n growing to infinity.

Theorem 16 Let 0 < p < ∞, and let n ≥ 2 and 1 ≤ m ≤ n be integers. Then

σ
p,∞
m−1 (θp,p/n−1) ≥ C1

p · �(n + 1)

�(n − m + 1)
· �(n/p + n − m + 1)

�(n/p + n + 1)
(30)

and

σ
p,∞
m−1 (θp,p/n−1)

≤ C2
p · �(n + 1)

�(n − m + 1)

{
�(n/p + n − m + 1)

�(n/p + n + 1)
+ 1

m! ·
(

e−1

�(1/n)

)m}

, (31)

where C1
p and C2

p are positive real numbers depending only on p.
Furthermore, for every fixed m ∈ N,

C1
p

( 1
p

+ 1)m
≤ lim inf

n→∞ σ
p,∞
m−1 (θp,p/n−1) ≤ lim sup

n→∞
σ

p,∞
m−1 (θp,p/n−1) ≤ C2

p

( 1
p

+ 1)m
, (32)

where C1
p and C2

p are positive real numbers depending only on p.

Proof First observe that n(β + 1)/p = 1 for β = p/n − 1, and therefore

�(n(β + 1)/p)

�(n(β + 1)/p + 1/p)
= 1

�(1 + 1/p)

depends only on p. Due to Lemma 14, we have to estimate

Ex∗
m

(
n∏

i=1

x
p/n−1
i

)

= cn
p

∫

R
d+

x∗
m

n∏

i=1

x
p/n−1
i e−x

p
1 −···−x

p
n dx. (33)

Let t = x∗
m, and let us assume that there is only one coordinate j = 1, . . . , n such that

xj = t . Obviously, this assumption holds almost everywhere. Of course, we have n
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possibilities for j . Furthermore, m − 1 from the remaining n − 1 components of x

are bigger than t and the remaining n − m components are smaller. This allows us to
rewrite (33) as

cn
p n

(
n − 1

m − 1

)∫ ∞

0
tp/ne−tp

(∫ t

0
up/n−1e−up

du

)n−m

×
(∫ ∞

t

up/n−1e−up

du

)m−1

dt

= cn
pn

pn

(
n − 1

m − 1

)∫ ∞

0
ω1/p+1/n−1e−ω

(∫ ω

0
s1/n−1e−s ds

)n−m

×
(∫ ∞

ω

s1/n−1e−s ds

)m−1

dω.

Let us write

γ = �(1/n) =
∫ ∞

0
s1/n−1e−s ds and y(ω) = γ −1 ·

∫ ω

0
s1/n−1e−s ds.

Then y(ω) is a nondecreasing function of ω, y(0) = 0 and limω→∞ y(ω) = 1. We
denote by ω(y) its inverse function, i.e.,

y = γ −1 ·
∫ ω(y)

0
s1/n−1e−s ds, 0 ≤ y ≤ 1. (34)

Using this notation, we obtain

Ex∗
m

(
n∏

i=1

x
p/n−1
i

)

= cn
p γ n

pn
n

(
n − 1

m − 1

)∫ 1

0
ω(y)1/pyn−m(1 − y)m−1 dy

and

σ
p,∞
m−1 (θp,p/n−1) = �(n + 1)

�(m)�(n − m + 1)

∫ 1

0
ω(y)1/pyn−m(1 − y)m−1 dy, (35)

where ω(y) is given by (34). �

Step 1. Estimate from below The estimate

γy =
∫ ω(y)

0
s1/n−1e−s ds ≤

∫ ω(y)

0
s1/n−1 ds = nω(y)1/n

implies, together with Lemma 15,

ω(y) ≥
(

γy

n

)n

≥ cyn,
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with c independent of n. This gives finally

σ
p,∞
m−1 (θp,p/n−1) ≥ c1/p · �(n + 1)

�(m)�(n − m + 1)
·
∫ 1

0
yn/p+n−m(1 − y)m−1 dy

= c1/p · �(n + 1)

�(m)�(n − m + 1)
· B(n/p + n − m + 1,m)

= c1/p · �(n + 1)

�(n − m + 1)
· �(n/p + n − m + 1)

�(n/p + n + 1)
,

where we used the Beta function (10), and the proof of (30) is complete.

Step 2. Estimate from above Let us first take y such that 1 − e−1/γ ≤ y ≤ 1. Then
− ln(γ (1 − y)) ≥ 1, and

∫ ∞

− ln(γ (1−y))

s1/n−1e−s ds ≤
∫ ∞

− ln(γ (1−y))

e−s ds = γ (1 − y).

Hence,

ω(y) ≤ − ln
(
γ (1 − y)

)
, 1 − e−1/γ ≤ y ≤ 1. (36)

Finally, we observe that

f : y →
∫ ∞

Cyn

s1/n−1e−s ds

is a convex function on R+, f (0) = γ and

f
(
1 − e−1/γ

) =
∫ ∞

C(1−e−1/γ )n
s1/n−1e−s ds

≤
∫ ∞

1
s1/n−1e−s ds ≤ e−1

if we choose C so large that C(1 − e−1/γ )n ≥ 1 for all n ∈ N. This is indeed possi-
ble, while a byproduct of Lemma 15 is also a relation limn→∞ γ /n = 1. Using the
convexity of f , we obtain

f (y) ≤ γ (1 − y), 0 ≤ y ≤ 1 − e−1/γ,

which further leads to

ω(y) ≤ Cyn, 0 ≤ y ≤ 1 − e−1/γ. (37)

We insert (36) and (37) into (35) and obtain

σ
p,∞
m−1 (θp,p/n−1) ≤ �(n + 1)

�(m)�(n − m + 1)

{
C1/pI1 + I2

}
, (38)
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where

I1 :=
∫ 1−e−1/γ

0
yn/p+n−m(1 − y)m−1 dy

and

I2 :=
∫ 1

1−e−1/γ

∣
∣ ln

(
γ (1 − y)

)∣
∣1/p

yn−m(1 − y)m−1 dy.

The first integral may be estimated again using the Beta function, which gives

I1 ≤ B(n/p + n − m + 1,m). (39)

We denote by k the uniquely defined integer such that 1/p ≤ k < 1/p + 1 holds, and
estimate

I2 ≤
∫ 1

1−e−1/γ

∣
∣ ln

(
γ (1 − y)

)∣
∣1/p

(1 − y)m−1 dy ≤ Ik,m :=
∫ e−1/γ

0

∣
∣ ln(γy)

∣
∣kym−1 dy.

Next, we use partial integration to estimate Ik,m. We obtain

Ik,m = 1

m

(
e−1

γ

)m

+ k

m
· Ik−1,m.

Together with I0,m = 1/m · (e−1/γ )m, this leads finally to

Ik,m ≤ (k + 1)!
m

(
e−1

γ

)m

.

This, together with (38) and (39), finishes the proof of (31).
The proof of (32) then follows directly by Stirling’s formula (11).

Remark 5

(i) Let us take m = 0. Then the formula (32) describes an essentially different be-
havior compared to the normalized cone and surface measure. Namely, the ex-
pected value of the largest coordinate of x ∈ n

p with respect to θp,p/n−1 does
not decay to zero with n growing to infinity. We shall demonstrate this effect
also numerically in the next section.

(ii) If m > 0, then (32) shows that σ
p,∞
m (θp,p/n−1) decays exponentially fast with

m as soon as n is large enough. That means that for n large enough, the average
vector of n

p exhibits a strong sparsity-like structure. Namely, its m-th largest
component decays exponentially with m.

(iii) We have chosen in (28) a different β for each n; namely, βn = p/n − 1 > −1.
This was of course a crucial ingredient in the proof of Theorem 16. It is not
difficult to adapt the analysis of the proof of Theorem 16 to the situation when
β > −1 is fixed for all n ∈ N. In this case, we obtain again that (up to logarith-
mic factors) σ

p,∞
0 (θp,β) is equivalent to n−1/p with constants of equivalence

depending on p > 0 and β > −1.
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(iv) Last, but not least, we observe that one may choose p = 1 or even p = 2 in
Theorem 16 and still obtain the exponential decay of coordinates as described
by (32). It seems that there is no significant connection between sparsity of an
average vector of x ∈ n

p and the size of p > 0.

5 Numerical Experiments

5.1 Cone Measure

We would like to demonstrate the most significant effects of the theory also by numer-
ical experiments. We start with the case of the cone measure. The key role is played
by (14). It may be interpreted in the following way. To generate a random point on
n

p with respect to the normalized cone measure, it is enough to generate ω1, . . . ,ωn

with respect to the density cpe−tp , t > 0, and then calculate

(ω1, . . . ,ωn)

(
∑n

j=1 ω
p
j )1/p

∈ n
p.

This method is very practical, as the running time of this algorithm depends only
linearly on n.

Let us note that the values of ωi may be generated very easily. For example, the
package GNU Scientific Library [26] implements a random number generator with
respect to the gamma distribution using the method described in the classical work of
Knuth [31]. Using this package, we generated 108 random points x ∈ n

p for n = 100

and p ∈ {1/2,1,2} to approximate numerically the value of n1/p · ∫
n

p
x∗
mdμp(x).

The result may be found in Fig. 1.

Fig. 1 Approximations of n1/p ·∫n
p

x∗
m dμp(x) (left) and log10(

∫

n
p

x∗
m dθp,p/n−1) (right) for n = 100,

p = 1/2(◦), p = 1(•) and p = 2(×) based on sampling of 108 random points
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5.2 Tensor Measures

As pointed out in Remark 4, point (iii), a random point on n
p with respect to θp,β

may be generated in the following way. We generate ω′
1, . . . ,ω

′
n with respect to the

density cp,β tβe−tp , t > 0, where c−1
p,β = ∫ ∞

0 tβe−tp dt is a normalizing constant, and
we consider the vector

(ω′
1, . . . ,ω

′
n)

(
∑n

j=1(ω
′
j )

p)1/p
∈ n

p.

Also this may be easily done with the help of [26]. We generated again 108 random
points x ∈ n

p with respect to θp,p/n−1 for n = 100 and p ∈ {1/2,1,2}. Then we used
those points to numerically approximate the expression log10(

∫

n
p
x∗
mdθp,p/n−1).
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PARTICLE SYSTEMS AND KINETIC EQUATIONS MODELING
INTERACTING AGENTS IN HIGH DIMENSION

M. FORNASIER†‡ , J. HAŠKOVEC‡ , AND J. VYBÍRAL‡

Abstract. In this paper we explore how concepts of high-dimensional data compression via
random projections onto lower-dimensional spaces can be applied for tractable simulation of cer-
tain dynamical systems modeling complex interactions. In such systems, one has to deal with a
large number of agents (typically millions) in spaces of parameters describing each agent of high
dimension (thousands or more). Even with today’s powerful computers, numerical simulations of
such systems are prohibitively expensive. We propose an approach for the simulation of dynami-
cal systems governed by functions of adjacency matrices in high dimension, by random projections
via Johnson-Lindenstrauss embeddings, and recovery by compressed sensing techniques. We show
how these concepts can be generalized to work for associated kinetic equations, by addressing the
phenomenon of the delayed curse of dimension, known in information-based complexity for optimal
numerical integration problems in high dimensions.

Key words. Dimensionality reduction, dynamical systems, flocking and swarming, Johnson-
Lindenstrauss embedding, compressed sensing, high-dimensional kinetic equations, delayed curse of
dimension, optimal integration of measures in high dimension.

AMS subject classifications. 34C29, 35B35, 35Q91, 35Q94, 60B20, 65Y20.

1. Introduction. The dimensionality scale of problems arising in our modern
information society has become very large and finding appropriate methods for deal-
ing with them is one of the great challenges of today’s numerical simulation. The most
notable recent advances in data analysis are based on the observation that in many
situations, even for very complex phenomena, the intrinsic dimensionality of the data
is significantly lower than the ambient dimension. Remarkable progresses have been
made in data compression, processing, and acquisition. We mention, for instance, the
use of diffusion maps for data clouds and graphs in high dimension [5, 6, 17, 18, 19]
in order to define low-dimensional local representations of data with small distance
distortion, and meaningful automatic clustering properties. In this setting the em-
bedding of data is performed by a highly nonlinear procedure, obtained by computing
the eigenfunctions of suitable normalized diffusion kernels, measuring the probability
of transition from one data point to another over the graph.
Quasi-isometrical linear embeddings of high-dimensional point clouds into low-dimensional
spaces of parameters are provided by the well-known Johnson-Lindenstrauss Lemma
[1, 22, 35]: any cloud of N points in R

d can be embedded by a random linear projec-
tion M nearly isometrically into R

k with k = O(ε−2 log(N )) (a precise statement will
be given below). This embedding strategy is simpler than the use of diffusion maps,
as it is linear, however it is “blind” to the specific geometry and local dimensionality
of the data, as the embedding dimension k depends exclusively on the number of
points in the cloud. In many applications, this is sufficient, as the number of points
N is supposed to be a power of the dimension d, and the embedding produces an
effective reduction to k = O(ε−2 log(N )) = O(ε−2 log(d)) dimensions. As clarified
in [3, 37], the Johnson-Lindenstrauss Lemma is also at the basis of the possibility
of performing optimal compressed and nonadaptive acquisition of high-dimensional

†Faculty of Mathematics, Technical University of Munich, Boltzmannstrasse 3, D-85748 Garch-
ing, Germany

‡Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of
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data. In compressed sensing [12, 24, 28] a vector x ∈ R
d is encoded in a vector y ∈ R

k

by applying a random projection M , which is modeling a linear acquisition device
with random sensors, i.e., y = Mx. From y it is possible to decode x approximatively
(see Theorem 3.7 below) by solving the convex optimization problem

x# = arg min
Mz=y

(

‖z‖ℓd
1

:=
d∑

i=1

|zi|
)

,

with the error distortion

‖x# − x‖ℓd
1
≤ CσK(x)ℓd

1
,

where σK(x)ℓd
1

= infz:#supp (z)≤K ‖z − x‖ℓd
1

and K = O(k/(log(d/k) + 1)). We de-

note ΣK = {z ∈ R
d : #supp (z) ≤ K} the set of K-sparse vectors, i.e., the union of

K-dimensional coordinate subspaces in R
d. In particular, if x ∈ ΣK , then x# = x.

Hence, not only is M a Johnson-Lindenstrauss embedding, quasi-isometrical on point
clouds and K-dimensional coordinate subspaces, but also allows for the recovery of
the most relevant components of high-dimensional vectors, from low-dimensional en-
coded information. A recent work [4, 48] extends the quasi-isometrical properties of
the Johnson-Lindenstrauss embedding from point clouds and K-dimensional coordi-
nate subspaces to smooth compact Riemannian manifolds with bounded curvature.
Inspired by this work, in [34] the authors extend the principles of compressed sensing
in terms of point recovery on smooth compact Riemannian manifolds.

Besides these relevant results in compressing and coding-decoding high-dimensional
“stationary” data, dimensionality reduction of complex dynamical systems and high-
dimensional partial differential equations is a subject of recent intensive research.
Several tools have been employed, for instance, the use of diffusion maps for dynam-
ical systems [39], tensor product bases and sparse grids for the numerical solution of
linear high-dimensional PDEs [23, 10, 30, 31], the reduced basis method for solving
high-dimensional parametric PDEs [7, 9, 38, 43, 44, 46].
In this paper we shall further explore the connection between data compression and
tractable numerical simulation of dynamical systems, and solutions of associated high-
dimensional kinetic equations. We are specially interested in dynamical systems of
the type

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (1.1)

where we use the following notation:
• N ∈ N - number of agents,
• x(t) = (x1(t), . . . , xN (t)) ∈ R

d×N , where xi : [0, T ] → R
d, i = 1, . . . , N ,

• fi : R
N×N → R

d, i = 1, . . . , N,
• fij : R

N×N → R, i, j = 1, . . . , N ,
• D : R

d×N → R
N×N , Dx := (‖xi − xj‖ℓd

2
)N
i,j=1 is the adjacency matrix of the

point cloud x.
We shall assume that the governing functions fi and fij are Lipschitz, but we shall
specify the details later on. The system (1.1) describes the dynamics of multiple com-
plex agents x(t) = (x1(t), . . . , xN (t)) ∈ R

d×N , interacting on the basis of their mutual
“social” distance Dx(t), and its general form includes several models for swarming and
collective motion of animals and micro-organisms, aggregation of cells, etc. Several
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relevant effects can be included in the model by means of the functions fi and fij ,
in particular, fundamental binary mechanisms of attraction, repulsion, aggregation
and alignment [13, 14, 20, 21, 41, 36]. Moreover, possibly adding stochastic terms
of random noise may also allow to consider diffusion effects [8, 14]. However, these
models and motion mechanisms are mostly derived borrowing a leaf from physics, by
assuming the agents (animals, micro-organisms, cells etc.) as pointlike and exclusively
determined by their spatial position and velocity in R

d for d = 3+3. In case we wished
to extend such models of social interaction to more “sophisticated” agents, described
by many parameters (d ≫ 3 + 3), the simulation may become computationally pro-
hibitive. Our motivation for considering high-dimensional situations stems from the
modern development of communication technology and Internet, for which we witness
the development of larger and larger communities accessing information (interactive
databases), services (financial market), social interactions (social networks) etc. For
instance, we might be interested to simulate the behavior of certain subsets of the
financial market where the agents are many investors, who are characterized by their
portfolios of several hundreds of investments. The behavior of each individual investor
depends on the dynamics of others according to a suitable social distance determined
by similar investments. Being able to produce meaningful simulations and learning
processes of such complex dynamics is an issue, which might be challenged by using
suitable compression/dimensionality reduction techniques.
The idea we develop in this paper is to project randomly the system and its initial
condition by Johnson-Lindenstrauss embeddings to a lower-dimensional space where
an independent simulation can be performed with significantly reduced complexity.
We shall show that the use of multiple projections and parallel computations allows
for an approximate reconstruction of the high-dimensional dynamics, by means of
compressed sensing techniques. After we explore the tractable simulation of the dy-
namical systems (1.1) when the dimension d of the parameter space is large, we also
address the issue of whether we can perform tractable simulations when also the num-
ber N of agents is getting very large. Unlike the control of a finite number of agents,
the numerical simulation of a rather large population of interacting agents (N ≫ 0)
can constitute a serious difficulty which stems from the accurate solution of a pos-
sibly very large system of ODEs. Borrowing the strategy from the kinetic theory of
gases [16], we want instead to consider a density distribution of agents, depending on
their d-parameters, which interact with stochastic influence (corresponding to classi-
cal collisional rules in kinetic theory of gases) – in this case the influence is “smeared”
since two individuals may interact also when they are far apart in terms of their
“social distance” Dx. Hence, instead of simulating the behavior of each individual
agent, we shall describe the collective behavior encoded by a density distribution µ,
whose evolution is governed by one sole mesoscopic partial differential equation. We
shall show that, under realistic assumptions on the concentration of the measure µ
on sets of lower dimension, we can also acquire information on the properties of the
high-dimensional measure solution µ of the corresponding kinetic equation, by con-
sidering random projections to lower dimension. Such approximation properties are
determined by means of the combination of optimal numerical integration principles
for the high-dimensional measure µ [29, 32] and the results previously achieved for
particle dynamical systems.
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1.1. Fundamental assumptions. We introduce the following notation for ℓp-
norms of vectors v ∈ R

d,

‖v‖ℓd
p

:=

(
d∑

i=1

|vi|p
)1/p

for 1 ≤ p < ∞,

and

‖v‖ℓd
∞

:= max
i=1,...,d

|vi|.

For matrices x ∈ R
n×m we consider the mixed norm

‖x‖ℓm
p (ℓn

q ) := ‖(‖xi‖ℓn
p
)m
i=1‖ℓm

q
,

where xi ∈ R
n is the ith-column of the matrix x.

For the rest of the paper we impose three fundamental assumptions about Lips-
chitz and boundedness properties of fi and fij ,

|fi(a) − fi(b)| ≤ L‖a − b‖ℓN
∞

(ℓN
∞

), i = 1, . . . , N (1.2)

max
i=1,...,N

N∑

j=1

|fij(a)| ≤ L′, (1.3)

max
i=1,...,N

N∑

j=1

|fij(a) − fij(b)| ≤ L′′‖a − b‖ℓN
∞

(ℓN
∞

), (1.4)

for every a, b ∈ R
N×N . Unfortunately, models of real-life phenomena would not

always satisfy these conditions, for instance models of financial markets or socio-
economic interactions can be expected to exhibit severely discontinuous behavior.
However, these assumptions are reasonable in certain regimes and allow us to prove
the concept we are going to convey in this paper, i.e., the possibility of simulating
high-dimensional dynamics by multiple independent simulations in low dimension.

1.2. Euler scheme, a classical result of stability and convergence, and
its complexity. We shall consider the system of ordinary differential equations of
the form (1.1) with the initial condition

xi(0) = x0
i , i = 1, . . . , N . (1.5)

The Euler method for this system is given by (1.5) and

xn+1
i := xn

i + h



fi(Dxn) +

N∑

j=1

fij(Dxn)xn
j



 , n = 0, . . . , n0 − 1. (1.6)

where h > 0 is the time step and n0 := T/h is the number of iterations. We consider
here the explicit Euler scheme exclusively for the sake of simplicity, for more sophisti-
cated integration methods might be used. We start with a classical result, which we
report in detail for the sake of the reader, and for simplicity we assume fij = 0 for all
i, j = 1, . . . N .
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Theorem 1.1 (Stability and convergence of the Euler scheme). Fix x0 ∈ R
d×N

and let x(t) be the unique solution of the ODE

ẋ(t) = f(Dx(t)) , x(0) = x0 , (1.7)

on the interval [0, T ], T > 0, for f = (fi)
N
i=1 satisfying (1.2). Moreover, fix h > 0

and let tn := nh and x̃n be the approximate solution obtained by the explicit Euler
method, i.e.,

x̃n+1 = x̃n + hf(Dx̃n) , x̃0 = x̃0 ,

for n = 0, . . . , n0 −1. Note that we allow different initial conditions x0 and x̃0 for the
continuous and, resp., discrete solutions. Then, we have the error estimate

En ≤ exp(2Ltn)

(

E0 + htn
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
)

2

)

,

where En = ‖x(tn) − x̃n‖ℓN
∞

(ℓd
2
).

Proof. For the sake of the proof, we extend x̃ to the full interval [0, T ] by linear
interpolation between the grid points tn, i.e.,

x̃(tn + s) = x̃(tn) + sf(Dx̃(tn)) for s ∈ [0, h] ,

such that x̃ is a continuous, piecewise linear function on [0, T ].
For a fixed n and t := tn, let us consider the exact and approximate solutions in

the interval [t, t + τ ] with τ ∈ [0, h]:

x(t + τ) = x(t) +

∫ τ

0

f(Dx(t + s)) ds , (1.8)

x̃(t + τ) = x̃(t) +

∫ τ

0

f(Dx̃(t)) ds . (1.9)

Subtracting (1.9) from (1.8) and using (1.2), we obtain

‖x(t + τ) − x̃(t + τ)‖ℓN
∞

(ℓd
2
) ≤ ‖x(t) − x̃(t)‖ℓN

∞
(ℓd

2
) +

∫ τ

0

‖f(Dx(t + s)) − f(Dx̃(t))‖ℓN
∞

(ℓd
2
) ds

≤ ‖x(t) − x̃(t)‖ℓN
∞

(ℓd
2
) + L

∫ τ

0

‖Dx(t + s) −Dx̃(t)‖ℓN
∞

(ℓN
∞

) ds

≤ ‖x(t) − x̃(t)‖ℓN
∞

(ℓd
2
) + 2L

∫ τ

0

‖x(t + s) − x̃(t)‖ℓN
∞

(ℓd
2
) ds .

Moreover, for s ∈ [0, h],

‖x(t + s) − x̃(t)‖ℓN
∞

(ℓd
2
) ≤ ‖x(t + s) − x̃(t + s)‖ℓN

∞
(ℓd

2
) + ‖x̃(t + s) − x̃(t)‖ℓN

∞
(ℓd

2
)

= ‖x(t + s) − x̃(t + s)‖ℓN
∞

(ℓd
2
) + s‖f(Dx̃(t))‖ℓN

∞
(ℓd

2
) .

The term ‖f(Dx̃(t))‖ℓN
∞

(ℓd
2
) = ‖f(Dx̃n)‖ℓN

∞
(ℓd

2
) is bounded by (1+2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
),

which can be seen from the simple induction

‖f(Dx̃n)‖ℓN
∞

(ℓd
2
) ≤ ‖f(Dx̃n) − f(Dx̃n−1)‖ℓN

∞
(ℓd

2
) + ‖f(Dx̃n−1)‖ℓN

∞
(ℓd

2
)

≤ L‖Dx̃n −Dx̃n−1‖ℓN
∞

(ℓN
∞

) + ‖f(Dx̃n−1)‖ℓN
∞

(ℓd
2
)

≤ 2L‖x̃n − x̃n−1‖ℓN
∞

(ℓd
2
) + ‖f(Dx̃n−1)‖ℓN

∞
(ℓd

2
)

= (1 + 2Lh)‖f(Dx̃n−1)‖ℓN
∞

(ℓd
2
) ≤ (1 + 2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) .
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Consequently, defining E(t + τ) := ‖x(t + τ) − x̃(t + τ)‖ℓN
∞

(ℓd
2
), we obtain

E(t + τ) ≤ E(t) + 2L

∫ τ

0

(

E(t + s) + s(1 + 2Lh)n‖f(Dx̃0)‖ℓN
∞

(ℓd
2
)

)

ds

≤ E(t) + 2L

∫ τ

0

E(t + s) ds +
h2

2
(1 + 2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) .

An application of the Gronwall lemma yields

E(t + h) ≤
(

E(t) +
h2

2
(1 + 2Lh)n‖f(Dx̃0)‖ℓN

∞
(ℓd

2
)

)

exp(2Lh) .

By another simple induction we obtain

En ≤ exp(2Lnh)E0 +

(
n∑

k=1

exp(2Lkh)(1 + 2Lh)n−k

)

h2

2
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) ,

where we turned back to the notation En = E(tn). Using (1+2Lh)n−k ≤ exp(2Lh(n−
k)), we have

En ≤ exp(2Lnh)E0 + exp(2Lnh)n
h2

2
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
) ,

and, finally, writing tn for nh, we conclude

En ≤ exp(2Ltn)

(

E0 + htn
‖f(Dx̃0)‖ℓN

∞
(ℓd

2
)

2

)

.

The simulation of the dynamical system (1.7) has a complexity which is at least
the one of computing the adjacency matrix Dx̃n at each discrete time tn, i.e., O(d ×
N2). The scope of the next sections is to show that, up to an ε-distortion, we can
approximate the dynamics of (1.1) by projecting the system into lower dimension and
by executing in parallel computations with reduced complexity. Computation of the
adjacency matrix in the new dimension requires only O(ε−2 log(N)×N2) operations.
Especially if the distortion parameter ε > 0 is not too small and the number of agents
is of a polynomial order in d, we reduce the complexity of computing the adjacency
matrix to O(log(d) × N2).

2. Projecting the Euler method: dimensionality reduction of discrete
dynamical systems.

2.1. Johnson-Lindenstrauss embedding. We wish to project the dynamics
of (1.1) into a lower-dimensional space by employing a well-known result of Johnson
and Lindenstrauss [35], which we informally rephrase for our purposes as follows.

Lemma 2.1 (Johnson and Lindenstrauss). Let P be an arbitrary set of N points
in R

d. Given a distortion parameter ε > 0, there exists a constant

k0 = O(ε−2 log(N )),

such that for all integers k ≥ k0, there exists a k × d matrix M for which

(1 − ε)‖x − x̃‖2
ℓd
2

≤ ‖Mx − Mx̃‖2
ℓk
2

≤ (1 + ε)‖x − x̃‖2
ℓd
2

, (2.1)
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for all x, x̃ ∈ P. It is easy to see that the condition

(1 − ε)‖p‖2
ℓd
2

≤ ‖Mp‖2
ℓk
2

≤ (1 + ε)‖p‖2
ℓd
2

, p ∈ R
d, (2.2)

implies

(1 − ε)‖p‖ℓd
2
≤ ‖Mp‖ℓk

2
≤ (1 + ε)‖p‖ℓd

2
, p ∈ R

d, (2.3)

for 0 < ε < 1, which will be used in the following sections. On the other hand, (2.3)
implies (2.2) with 3ε instead of ε.

Our aim is to apply this lemma to dynamical systems. As the mapping M from
Lemma 2.1 is linear and almost preserves distances between the points (up to the
ε > 0 distortion as described above), we restrict ourselves to dynamical systems
which are linear or whose non-linearity depends only on the mutual distances of the
points involved, as in (1.1).

Let us define the additional notation, which is going to be fixed throughout the
paper:

• d ∈ N - dimension (large),
• ε > 0 - the distortion parameter from Lemma 2.1,
• k ∈ N - new dimension (small),
• M ∈ R

k×d - randomly generated matrix as described below.
The only constructions of a matrix M as in Lemma 2.1 known up to now are

stochastic, i.e., the matrix is randomly generated and has the quasi-isometry property
(2.1) with high probability. We refer the reader to [22] and [1, Theorem 1.1] for two
typical versions of the Johnson-Lindenstrauss Lemma.

We briefly collect below some well-known instances of random matrices, which
satisfy the statement of Lemma 2.1 with high probability:

• k×d matrices M whose entries mi,j are independent realizations of Gaussian
random variables

mi,j ∼ N
(

0,
1

k

)

;

• k × d matrices M whose entries are independent realizations of ± Bernoulli
random variables

mi,j :=

{

+ 1√
k
, with probability 1

2

− 1√
k
, with probability 1

2

Several other random projections suitable for Johnson-Lindenstrauss embeddings
can be constructed following Theorem 3.6 recalled below, and we refer the reader to
[37] for more details.

2.2. Uniform estimate for a general model. If M ∈ R
k×d is a matrix, we

consider the projected Euler method in R
k associated to the high-dimensional system

(1.5)-(1.6), namely

y0
i := Mx0

i , (2.4)

yn+1
i := yn

i + h



Mfi(D′yn) +

N∑

j=1

fij(D′yn)yn
j



 , n = 0, . . . , n0 − 1. (2.5)
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We denote here D′ : R
k×N → R

N×N , D′y := (‖yi − yj‖ℓk
2
)N
i,j=1, the adjacency matrix

of the agents y = (y1, . . . , yN ) in R
k×N . The first result of this paper reads as follows.

Theorem 2.2. Let the sequences

{xn
i , i = 1, . . . , N and n = 0, . . . , n0} and {yn

i , i = 1, . . . , N and n = 0, . . . , n0}

be defined by (1.5)-(1.6) and (2.4)-(2.5) with fi and fij satisfying (1.2)–(1.4) and a
matrix M ∈ R

k×d with

‖Mfi(D′yn) − Mfi(Dxn)‖ℓk
2
≤ (1 + ε) ‖fi(D′yn) − fi(Dxn)‖ℓd

2
, (2.6)

‖Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

j ‖ℓd
2
, (2.7)

(1 − ε)‖xn
i − xn

j ‖ℓd
2
≤ ‖Mxn

i − Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

i − xn
j ‖ℓd

2
(2.8)

for all i, j = 1, . . . , N and all n = 0, . . . , n0. Moreover, let us assume that

α ≥ max
j

‖xn
j ‖ℓd

2
for all n = 0, . . . , n0, j = 1, . . . , N.

Let

en
i := ‖yn

i − Mxn
i ‖ℓk

2
, i = 1, . . . , N and n = 0, . . . , n0 (2.9)

and set En := maxi en
i . Then

En ≤ εhnB exp(hnA), (2.10)

where A := L′ + 2(1 + ε)(L + αL′′) and B := 2α(1 + ε)(L + αL′′).
We remark that conditions (2.6)-(2.8) are in fact satisfied as soon as M is a

suitable Johnson-Lindenstrauss embedding as in Lemma 2.1.
Proof. Using (2.9) and (1.5)-(1.6) and (2.4)-(2.5) combined with (2.6) and (2.7),

we obtain

en+1
i ≤ en

i + h ‖Mfi(D′yn) − Mfi(Dxn)‖ℓk
2

+ h

∥
∥
∥
∥
∥
∥

N∑

j=1

fij(D′yn)yn
j − fij(Dxn)Mxn

j

∥
∥
∥
∥
∥
∥

ℓk
2

≤ en
i + h(1 + ε) ‖fi(D′yn) − fi(Dxn)‖ℓd

2

+ h
N∑

j=1

(

‖fij(D′yn)yn
j − fij(D′yn)Mxn

j ‖ℓk
2

+ ‖fij(D′yn)Mxn
j − fij(Dxn)Mxn

j ‖ℓk
2

)

≤ en
i + h(1 + ε) ‖fi(D′yn) − fi(Dxn)‖ℓd

2

+ h
N∑

j=1

(

|fij(D′yn)|en
j + (1 + ε)‖xn

j ‖ℓd
2
· |fij(D′yn) − fij(Dxn)|

)

.

Taking the maximum on both sides, this becomes

En+1 ≤ En + h(1 + ε)max
i

‖fi(D′yn) − fi(Dxn)‖ℓd
2

+ hEn max
i

N∑

j=1

|fij(D′yn)| + h(1 + ε)α · max
i

N∑

j=1

|fij(D′yn) − fij(Dxn)|.
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We use (1.2)–(1.4) for a = D′yn and b = Dxn to estimate all the terms on the
right-hand side. This gives

En+1 ≤ En + h(1 + ε)L‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

) + hEnL′ + h(1 + ε)αL′′‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

≤ En(1 + hL′) + h(1 + ε)(L + αL′′)
[
‖D′yn −D′Mxn‖ℓN

∞
(ℓN

∞
) + ‖D′Mxn −Dxn‖ℓN

∞
(ℓN

∞
)

]

≤ En(1 + hL′) + 2h(1 + ε)(L + αL′′)(En + αε),

where we used (2.8) in the last line. This, together with E0 = 0, leads to

En ≤ εhnB exp(hnA),

where A := L′ + 2(1 + ε)(L + αL′′) and B := 2α(1 + ε)(L + αL′′).

2.3. Uniform estimate for the Cucker-Smale model. As a relevant exam-
ple, let us now show that Theorem 2.2 can be applied to the well-known Cucker-Smale
model, introduced and analyzed in [20, 21], which is described by

ẋi = vi ∈ R
d, (2.11)

v̇i =
1

N

N∑

j=1

g(‖xi − xj‖ℓd
2
)(vj − vi), i = 1, . . . , N. (2.12)

The function g : [0,∞) → R is given by g(s) = G
(1+s2)β , for β > 0, and bounded by

g(0) = G > 0. This model describes the emerging of consensus in a group of interacting
agents, trying to align (also in terms of abstract consensus) with their neighbors. One
of the motivations of the model from Cucker and Smale was to describe the formation
and evolution of languages [21, Section 6], although, due to its simplicity, it has been
eventually related mainly to the description of the emergence of flocking in groups of
birds [20]. In the latter case, in fact, spatial and velocity coordinates are sufficient to
describe a pointlike agent (d = 3+3), while for the evolution of languages, one would
have to take into account a much broader dictionary of parameters, hence a higher
dimension d ≫ 3 + 3 of parameters, which is in fact the case of our interest in the
present paper.

Let us show that the model is indeed of the type (1.1). We interprete the system
as a group of 2N agents in R

d, whose dynamics is given by the following equations

ẋi =

N∑

j=1

fx
ijvj ∈ R

d,

v̇i =

N∑

j=1

fv
ij(Dx)vj , i = 1, . . . , N

with fx
ij := δij , fv

ii(Dx) := − 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
), and fv

ij(Dx) :=
1

N
g(‖xi − xj‖ℓd

2
),

for i 6= j. The condition (1.2) is empty, (1.3) reads

L′ ≥ max(1, 2G) ≥ max
i

{

1,
2

N

N∑

k=1

g(‖xn
i − xn

k‖ℓd
2
)

}

.
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Finally,

max
i

2

N

N∑

j=1

∣
∣
∣g(‖xn

i − xn
j ‖ℓd

2
) − g(‖yn

i − yn
j ‖ℓk

2
)
∣
∣
∣

≤ max
i

2‖g‖Lip

N
·

N∑

j=1

∣
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣
∣

≤ 2‖g‖Lip · ‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

shows that L′′ ≤ 2‖g‖Lip.

2.4. Least-squares estimate of the error for the Cucker-Smale model.
The formula (2.10) provides the estimate of the maximum of the individual errors, i.e.,
En := ‖(yn

i −Mxn
i )N

i=1‖ℓN
∞

(ℓk
2
). In this section we address the stronger ℓN

2 (ℓk
2)-estimate

for the error. For generic dynamical systems (1.1) such estimate is not available in
general, and one has to perform a case-by-case analysis. As a typical example of
how to proceed, we restrict ourselves to the Cucker-Smale model, just recalled in the
previous section. The forward Euler discretization of (2.11)–(2.12) is given by

xn+1
i = xn

i + hvn
i , (2.13)

vn+1
i = vn

i +
h

N

N∑

j=1

g(‖xn
i − xn

j ‖ℓd
2
)(vn

j − vn
i )

with initial data x0
i and v0

i given. Let M be again a suitable random matrix in the
sense of Lemma 2.1. The Euler method of the projected system is given by the initial
conditions y0

i = Mx0
i and w0

i = Mv0
i and the formulas

yn+1
i = yn

i + hwi, (2.14)

wn+1
i = wn

i +
h

N

N∑

j=1

g(‖yn
i − yn

j ‖ℓk
2
)(wn

j − wn
i ).

We are interested in the estimates of the following quantities

en
x,i := ‖yn

i − Mxn
i ‖ℓk

2
, En

x :=

√
√
√
√ 1

N

N∑

i=1

(en
x,i)

2 =
‖(yn

i − Mxn
i )N

i=1‖ℓN
2

(ℓk
2
)√

N
,

en
v,i := ‖wn

i − Mvn
i ‖ℓk

2
, En

v :=

√
√
√
√ 1

N

N∑

i=1

(en
v,i)

2 =
‖(wn

i − Mvn
i )N

i=1‖ℓN
2

(ℓk
2
)√

N
.

Using (2.13) and (2.14), we obtain

en+1
x,i ≤ en

x,i + hen
v,i and En+1

x ≤ En
x + hEn

v .

To bound the quantity En
v we have to work more. Another application of (2.13) and
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(2.14) leads to

en+1
v,i ≤ en

v,i +
h

N

N∑

j=1

(

‖g(‖yn
i − yn

j ‖ℓk
2
)(wn

j − wn
i ) ± g(‖yn

i − yn
j ‖ℓk

2
)(Mvn

j − Mvn
i )

− g(‖xn
i − xn

j ‖ℓd
2
)(Mvn

j − Mvn
i )‖ℓk

2

)

≤ en
v,i +

h

N

N∑

j=1

g(‖yn
i − yn

j ‖ℓk
2
)(en

v,j + en
v,i) (2.15)

+
(1 + ε)h‖g‖Lip

N
·

N∑

j=1

‖vn
j − vn

i ‖ℓd
2
·
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣.

We estimate the first summand in (2.15)

h

N

N∑

j=1

g(‖yn
i − yn

j ‖ℓk
2
)(en

v,j + en
v,i) ≤

hG

N

[
Nen

v,i +
N∑

j=1

en
v,j

]
= hGen

v,i +
hG

N

N∑

j=1

en
v,j

and its ℓ2-norm with respect to i by Hölder’s inequality

h
√

NGEn
v +

hG

N

(
N∑

i=1

( N∑

j=1

en
v,j

)2
)1/2

≤ 2h
√

NGEn
v . (2.16)

To estimate the second summand in (2.15), let us set V := maxi,j,n ‖vn
i − vn

j ‖ℓd
2

and make use of
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣

≤
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖Mxn

i − Mxn
j ‖ℓk

2

∣
∣ +

∣
∣‖Mxn

i − Mxn
j ‖ℓk

2
− ‖yn

i − yn
j ‖ℓk

2

∣
∣

≤ ε‖xn
i − xn

j ‖ℓd
2

+ en
x,i + en

x,j .

We arrive at

(1 + ε)h‖g‖Lip

N

N∑

j=1

‖vn
j − vn

i ‖ℓd
2
(ε‖xn

i − xn
j ‖ℓd

2
+ en

x,i + en
x,j)

≤ (1 + ε)h‖g‖LipV

N

{

ε
N∑

j=1

‖xn
i − xn

j ‖ℓd
2

+ Nen
x,i +

N∑

j=1

en
x,j

}

.

The ℓ2-norm of this expression with respect to i is bounded by

(1 + ε)h‖g‖LipV

N






ε
( N∑

i=1

( N∑

j=1

‖xn
i − xn

j ‖ℓd
2

)2)1/2

+ N
( N∑

i=1

(en
x,i)

2
)1/2

+
√

N
N∑

j=1

en
x,j







≤ (1 + ε)h‖g‖LipV
√

N(εX + 2En
x ), (2.17)

where X := maxi,j,n ‖xn
i − xn

j ‖ℓd
2
. Combining (2.15) with (2.16) and (2.17) leads to

the recursive estimate

En+1
x ≤ En

x + hEn
v , (2.18)

En+1
v ≤ En

v + 2hGEn
v + h(1 + ε)‖g‖LipV {εX + 2En

x } ,
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which we put into the matrix form

(
En+1

x

En+1
v

)

= A
(
En

x

En
v

)

+

(
0

(1 + ε)εh‖g‖LipV X

)

, (2.19)

where A is a 2 × 2 matrix given by

A = A1 + hA2 :=

(
1 0
0 1

)

+ h

(
0 1

2(1 + ε)‖g‖LipV 2G

)

.

Taking the norms on both sides of (2.19) leads to

√

(En+1
x )2 + (En+1

v )2 ≤ (1 + h‖A2‖)
√

(En
x )2 + (En

v )2 + ε(1 + ε)h‖g‖LipV X

and the least-squares error estimate finally reads as follows.

√

(En
x )2 + (En

v )2 ≤ ε(1 + ε)hn‖g‖LipV X exp(hn‖A2‖).

3. Dimensionality reduction for continuous dynamical systems.

3.1. Uniform estimates for continuous dynamical systems. In this section
we shall establish the analogue of the above results for the continuous time setting of
dynamical systems of the type (1.1),

ẋi = fi(Dx) +

N∑

j=1

fij(Dx)xj , i = 1, . . . , N , (3.1)

xi(0) = x0
i , i = 1, . . . , N . (3.2)

We adopt again the assumptions about Lipschitz continuity and boundedness of the
right-hand side made in Section 2, namely (1.2), (1.3) and (1.4).

Theorem 3.1. Let x(t) ∈ R
d×N , t ∈ [0, T ], be the solution of the system (3.1)–

(3.2) with fi’s and fij’s satisfying (1.2)–(1.4), such that

max
t∈[0,T ]

max
i,j

‖xi(t) − xj(t)‖ℓd
2
≤ α . (3.3)

Let us fix k ∈ N, k ≤ d, and a matrix M ∈ R
k×d such that

(1 − ε)‖xi(t) − xj(t)‖ℓd
2
≤ ‖Mxi(t) − Mxj(t)‖ℓk

2
≤ (1 + ε)‖xi(t) − xj(t)‖ℓd

2
,(3.4)

for all t ∈ [0, T ] and i, j = 1, . . . , N . Let y(t) ∈ R
k×N , t ∈ [0, T ] be the solution of

the projected system

ẏi = Mfi(D′y) +
N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N , (3.5)

such that for a suitable β > 0,

max
t∈[0,T ]

‖y(t)‖ℓN
∞

(ℓd
2
) ≤ β . (3.6)
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Let us define the column-wise ℓ2-error ei(t) := ‖yi −Mxi‖ℓk
2

for i = 1, . . . , N and

E(t) := max
i=1,...,N

ei(t) = ‖y − Mx‖ℓN
∞

(ℓk
2
) .

Then we have the estimate

E(t) ≤ εαt(L ‖M‖ + L′′β) exp [(2L ‖M‖ + 2βL′′ + L′)t] . (3.7)

Proof. Due to (1.2)–(1.4), we have for every i = 1, . . . , N the estimate

d

dt
ei =

〈yi − Mxi,
d
dt (yi − Mxi)〉

‖yi − Mxi‖ℓk
2

≤
∥
∥
∥
∥

d

dt
(yi − Mxi)

∥
∥
∥
∥

ℓk
2

≤ ‖Mfi(D′y) − Mfi(Dx)‖ℓk
2

+

N∑

j=1

‖fij(D′y)yj − fij(Dx)Mxj‖ℓk
2

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) +
N∑

j=1

(

‖fij(Dx)(Mxj − yj)‖ℓk
2

+ ‖(fij(Dx) − fij(D′y))yj‖ℓk
2

)

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) + L′ ‖Mx − y‖ℓN
∞

(ℓk
2
) + L′′ ‖Dx −D′y‖ℓN

∞
(ℓN

∞
) ‖y‖ℓN

∞
(ℓk

2
) .

The term ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) ≤ ‖D′y −D′Mx‖ℓN
∞

(ℓN
∞

) + ‖D′Mx −Dx‖ℓN
∞

(ℓN
∞

) is esti-
mated by

‖D′y −DMx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖yi − yj‖ℓk

2
− ‖Mxi − Mxj‖ℓk

2

∣
∣
∣
∣

≤ max
i,j

‖yi − Mxi‖ℓk
2

+ ‖yj − Mxj‖ℓk
2
≤ 2E(t) ,

and, using the assumption (3.4),

‖D′Mx −Dx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖Mxi − Mxj‖ℓk

2
− ‖xi − xj‖ℓd

2

∣
∣
∣
∣
≤ εmax

i,j
‖xi − xj‖ℓk

2
= ε ‖Dx‖ℓN

∞
(ℓN

∞
) .

Finally, by the a priori estimate (3.3) for ‖Dx‖ℓN
∞

(ℓN
∞

) and (3.6) for ‖y‖ℓN
∞

(ℓd
2
), we

obtain

d

dt
ei ≤ L ‖M‖ (2E(t) + εα) + L′E(t) + L′′β(2E(t) + εα)

= (2L ‖M‖ + 2βL′′ + L′)E(t) + εα(L ‖M‖ + L′′β) .

Now, let us split the interval [0, T ) into a union of finite disjoint intervals Ij =
[tj−1, tj), j = 1, . . . ,K for a suitable K ∈ N, such that E(t) = ei(j)(t) for t ∈ Ij .
Consequently, on every Ij we have

d

dt
E(t) =

d

dt
ei(j)(t) ≤ (2L ‖M‖ + 2βL′′ + L′)E(t) + εα(L ‖M‖ + L′′β) ,

and the Gronwall lemma yields

E(t) ≤ [εα(L ‖M‖ + L′′β)(t − tj−1) + E(tj−1)] exp ((2L ‖M‖ + 2βL′′ + L′)(t − tj−1))

for t ∈ [tj−1, tj). A concatenation of these estimates over the intervals Ij leads finally
to the expected error estimate

E(t) ≤ εαt(L ‖M‖ + L′′β) exp [(2L ‖M‖ + 2βL′′ + L′)t] .



14 M. FORNASIER, J. HAŠKOVEC AND J. VYBÍRAL

3.2. A continuous Johnson-Lindenstrauss Lemma. Let us now go through
the assumptions we made in the formulation of Theorem 3.1 and discuss how they re-
strict the validity and applicability of the result. First of all, let us mention that (3.3)
and (3.6) can be easily proven to hold for locally Lipschitz right-hand sides fi and
fij on finite time intervals. Obviously, the critical point for the applicability of The-
orem 3.1 is the question how to find a matrix M satisfying the condition (3.4), i.e.,
being a quasi-isometry along the trajectory solution x(t) for every t ∈ [0, T ]. The an-
swer is provided by the following generalization of the Johnson-Lindenstrauss Lemma
(Lemma 2.1) for rectifiable C1-curves, by a suitable continuity argument. Let us
stress that our approach resembles the “sampling and ǫ-net” argument in [3, 4, 48] for
the extension of the quasi-isometry property of Johnson-Lindenstrauss embeddings to
smooth Riemmanian manifolds. From this point of view the following result can be
viewed as a specification of the work [4, 48].
We first prove an auxiliary technical result:

Lemma 3.2. Let 0 < ε < ε′ < 1, a ∈ R
d and let M : R

d → R
k be a linear

mapping such that

(1 − ε)‖a‖ℓd
2
≤ ‖Ma‖ℓk

2
≤ (1 + ε)‖a‖ℓd

2
.

Let x ∈ R
d satisfy

‖a − x‖ ≤
(ε′ − ε)‖a‖ℓd

2

‖M‖ + 1 + ε′
. (3.8)

Then

(1 − ε′)‖x‖ℓd
2
≤ ‖Mx‖ℓk

2
≤ (1 + ε′)‖x‖ℓd

2
. (3.9)

Proof. If a = 0, the statement is trivial. If a 6= 0, we denote the right-hand side
of (3.8) by τ > 0 and estimate by the triangle inequality

‖Mx‖ℓk
2

‖x‖ℓd
2

=
‖M(x − a) + Ma‖ℓk

2

‖x − a + a‖ℓd
2

≤
‖M‖ · ‖x − a‖ℓd

2
+ (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− ‖x − a‖ℓd

2

≤
‖M‖ · τ + (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− τ

≤ 1 + ε′ .

A similar chain of inequalities holds for the estimate from below.
Now we are ready to establish a continuous version of Lemma 2.1.
Theorem 3.3. Let ϕ : [0, 1] → R

d be a C1 curve. Let 0 < ε < ε′ < 1,

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞ and N ≥ (
√

d + 2) · γ

ε′ − ε
.

Let k be such that a randomly chosen (and properly normalized) projector M satisfies
the statement of the Johnson-Lindenstrauss Lemma 2.1 with ε, d, k and N arbitrary
points with high probability. Without loss of generality we assume that ‖M‖ ≤

√

d/k
within the same probability (this is in fact the case, e.g., for the examples of Gaussian
and Bernoulli random matrices reported in Section 2).

Then

(1 − ε′)‖ϕ(t)‖ℓd
2
≤ ‖Mϕ(t)‖ℓk

2
≤ (1 + ε′)‖ϕ(t)‖ℓd

2
, for all t ∈ [0, 1] (3.10)
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holds with the same probability.
Proof. Let ti = i/N , i = 0, . . . ,N and put

Ti := arg maxξ∈[ti,ti+1]‖ϕ′(ξ)‖ℓd
2
, i = 0, . . . ,N − 1.

Let M : R
d → R

k be the randomly chosen and normalized projector (see Lemma 2.1).
Hence ‖M‖ ≤

√

d/k and

(1 − ε′)‖ϕ(Ti)‖ℓd
2
≤ ‖M(ϕ(Ti))‖ℓk

2
≤ (1 + ε′)‖ϕ(Ti)‖ℓd

2
, i = 1, . . . ,N (3.11)

with high probability. We show that (3.10) holds with (at least) the same probability.
This follows easily from (3.11) and the following estimate, which holds for every

t ∈ [ti, ti+1],

‖ϕ(t) − ϕ(Ti)‖ℓd
2
≤

∫ Ti

t

‖ϕ′(s)‖ℓd
2
ds ≤

‖ϕ′(Ti)‖ℓd
2

N ≤
‖ϕ′(Ti)‖ℓd

2
(ε′ − ε)

γ(
√

d + 2)

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

√
d + 2

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

‖M‖ + 1 + ε′
.

The proof is then finished by a straightforward application of Lemma 3.2.
Remark 1. We show now that the condition

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞

is necessary, hence it is a restriction to the type of curves one can quasi-isometrically
project. Let d ≥ 3. It is known that there is a continuous curve ϕ : [0, 1] → [0, 1]d−1,
such that ϕ([0, 1]) = [0, 1]d−1, i.e., ϕ goes onto [0, 1]d−1. The construction of such a
space-filling curve goes back to Peano and Hilbert. After a composition with suitable
dilations and d-dimensional spherical coordinates we observe that there is also a sur-
jective continuous curve ϕ : [0, 1] → S

d−1, where S
d−1 denotes the ℓd

2 unit sphere in
R

d.
As M was supposed to be a projection, (3.10) cannot hold for all t’s with ϕ(t) ∈

ker M 6= ∅.
Obviously, the key condition for applicability of Theorem 3.3 for finding a pro-

jection matrix M satisfying (3.4) is that

sup
t∈[0,T ]

max
i,j

‖ẋi − ẋj‖ℓd
2

‖xi − xj‖ℓd
2

≤ γ < ∞ . (3.12)

This condition is, for instance, trivially satisfied when the right-hand sides fi’s and
fij ’s have the following Lipschitz continuity:

‖fi(Dx) − fj(Dx)‖ℓd
2
≤ L′′′‖xi − xj‖ℓd

2
for all i, j = 1, . . . , N ,

|fi,k(Dx) − fj,k(Dx)| ≤ L′′′′‖xi − xj‖ℓd
2

for all i, j, k = 1, . . . , N.

We will show in the examples below how condition (3.12) is verified in cases of dynami-
cal systems modeling standard social mechanisms of attraction, repulsion, aggregation
and alignment.
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3.3. Applicability to fundamental examples of dynamical systems de-
scribing social dynamics. In this section we show the applicability of our dimen-
sionality reduction theory to well-known dynamical systems driven by “social forces”
of alignment, attraction, repulsion and aggregation. Although these models were pro-
posed as descriptions of group motion in physical space, the fundamental social effects
can be considered as building blocks in the more abstract context of many parameter
social dynamics. It has been shown [14, 41] that these models are able to produce
meaningful patterns, for instance mills in two spatial dimensions (see Figure 3.1), re-
producing the behavior of certain biological species. However, we should expect that

Fig. 3.1. Mills in nature and in models

in higher dimension the possible patterns produced by the combination of fundamental
effects can be much more complex.

3.3.1. The Cucker-Smale system (alignment effect). As shown in Sec-
tion 2, the Cucker and Smale flocking model (2.11)–(2.12) is of the type (1.1) and
satisfies the Lipschitz continuity assumptions (1.2)–(1.4). Therefore, to meet all the
assumptions of Theorem 3.1, we only need to check that it also satisfies the condi-
tion (3.12). However, for this we need to consider a slightly different framework than
in Section 2.3; instead of considering the 2N d-dimensional variables (N position vari-
ables and N velocity variables), we need to arrange the model as N variables in R

2d,
each variable consisting of the position part (first d entries) and of the velocity part
(the other d entries). We have then

‖ẋi − ẋj‖ℓd
2

+ ‖v̇i − v̇j‖ℓd
2
≤ ‖vi − vj‖ℓd

2
+

1

N

N∑

k=1

∣
∣g(‖xi − xk‖ℓd

2
) − g(‖xj − xk‖ℓd

2
)
∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2

+
‖g‖Lip

N

N∑

k=1

∣
∣‖xi − xk‖ℓd

2
− ‖xj − xk‖ℓd

2

∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2

+
‖g‖Lip

N

(
N∑

k=1

‖vk‖ℓd
2

)

‖xi − xj‖ℓd
2

≤ ‖vi − vj‖ℓd
2

+ c‖xi − xj‖ℓd
2
,

for a suitable constant c depending on the initial data. We used here the a-priori

boundedness of the term 1
N

(
∑N

k=1 ‖vk‖ℓd
2

)

, see [21] or [33] for details. Consequently,
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we can satisfy (3.12) with γ = max(1, c).

3.3.2. D’Orsogna model, gravitational and electrostatic interaction (at-
traction and repulsion effects). Another practically relevant model which fits into
the class given by (1.1) is the so-called D’Orsogna model of flocking, [41]:

ẋi = vi , (3.13)

v̇i = (a − b‖vi‖2
ℓd
2

)vi −
1

N

∑

j 6=i

∇xi
U(‖xi − xj‖ℓd

2
) , i = 1, . . . , N, (3.14)

where a and b are positive constants and U : [0,∞) → R is a smooth potential. We
denote u(s) = U ′(s)/s and assume that u is a bounded, Lipschitz continuous function.
We again arrange the model as a system of N variables in R

2d, each variable consisting
of the position part (first d entries) and of the velocity part (the other d entries).
Consequently, the model can be put into a form compliant with (1.1) as follows:

ẋi =
N∑

j=1

fxv
ij vj ,

v̇i =
N∑

j=1

fvv
ij (Dv)vj +

N∑

j=1

fvx
ij (Dx)xj ,

with fxv
ij = δij , fvx

ii (Dx) = − 1
N

∑

j 6=i u(‖xi − xj‖ℓd
2
) and fvx

ij (Dx) = 1
N u(‖xi − xj‖ℓd

2
)

for i 6= j. Moreover, we may set fvv
ij (Dv) = δij(a−b‖vi‖2

ℓd
2

) by introducing an auxiliary,

noninfluential constant zero particle (x0, v0) = (0, 0) with null dynamics, i.e., f∗⋆
0 = 0

and f∗⋆
0j = 0, where ∗, ⋆ ∈ {x, v}. Then, (1.2) is void, while (1.3) is satisfied by

max
i

∑

j

(|fxv
ij (Dx,Dv)| + |fvx

ij (Dx,Dv)| + |fvv
ij (Dx,Dv)|)

≤ 1 + a + bmax
i

‖vi‖2
ℓd
2

+ 2 ‖u‖L∞

≤ L′ ,

since the theory provides an apriori bound on βv := supt∈[0,T ] maxi ‖vi‖ℓd
2
, see [41].

Condition (1.4) for fxv
ij is void, while for fvv

ij it is satisfied by

max
i

∑

j

∣
∣fvv

ij (Dv) − fvv
ij (Dw)

∣
∣ ≤ bmax

i

∣
∣
∣‖vi‖2

ℓd
2

− ‖wi‖2
ℓd
2

∣
∣
∣

≤ bmax
i

(

‖vi‖ℓd
2

+ ‖wi‖ℓd
2

)

‖vi − wi‖ℓd
2

≤ L′′ ‖Dv −Dw‖ℓN
∞

(ℓN
∞

) ,

where we again use the apriori boundedness of βv. For fvx
ij is (1.4) satisfied by

max
i

∑

j

∣
∣fvx

ij (Dx) − fvx
ij (Dy)

∣
∣ ≤ max

i

2

N

∑

j 6=i

∣
∣
∣u(‖xi − xj‖ℓd

2
) − u(‖yi − yj‖ℓd

2
)
∣
∣
∣

≤ max
i

2

N
‖u‖Lip

∑

j 6=i

∣
∣
∣‖xi − xj‖ℓd

2
− ‖yi − yj‖ℓd

2

∣
∣
∣

≤ 2 ‖u‖Lip ‖Dx −Dy‖ℓN
∞

(ℓN
∞

) .
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Finally, it can be easily checked that condition (3.12) is satisfied by

‖ẋi − ẋj‖ℓd
2

+ ‖v̇i − v̇j‖ℓd
2
≤ (1 + a + 3bβ2

v)‖vi − vj‖ℓd
2

+
(

‖u‖L∞

+ 2βx ‖u‖Lip

)

‖xi − xj‖ℓd
2
,

where βx := supt∈[0,T ] maxi ‖xi‖ℓd
2
.

In fact, the D’Orsogna model is a generalization of the classical model of inter-
acting particles through a potential U ,

ẋi = vi , i = 1, . . . , N ,

v̇i = − 1

N

∑

j 6=i

∇U(‖xi − xj‖ℓd
2
) , i = 1, . . . , N ,

for instance, gravitational or electrostatic interaction. However, in these cases the
function u(s) = U ′(s)/s does not meet the assumptions of boundedness and Lipschitz
continuity that are needed for the applicability of our method. Consequently, we only
can consider models with regular enough potentials.

3.4. Recovery of the dynamics in high dimension from multiple simula-
tions in low dimension. The main message of Theorem 3.1 is that, under suitable
assumptions on the governing functions fi, fij , the trajectory of the solution y(t) of the
projected dynamical system (3.5) is at an ε error from the trajectory of the projection
of the solution x(t) of the dynamical system (3.1)-(3.2), i.e.,

yi(t) ≈ Mxi(t) or, more precisely, ‖Mxi(t) − yi(t)‖ℓk
2
≤ C(t)ε, t ∈ [0, T ]. (3.15)

We wonder whether this approximation property can allow us to “learn” proper-
ties of the original trajectory x(t) in high dimension.

3.4.1. Sparse recovery. To address this issue we recall first some relevant and
useful concepts from the field of compressed sensing [25, 28]. Again a central role here
is played by (random) matrices with the so-called Restricted Isometry Property RIP,
cf. [11].

Definition 3.4 (Restricted Isometry Property). A k × d matrix M is said to
have the Restricted Isometry Property of order K ≤ d and level δ ∈ (0, 1) if

(1 − δ)‖x‖2
ℓd
2

≤ ‖Mx‖2
ℓk
2

≤ (1 + δ)‖x‖2
ℓd
2

for all K-sparse x ∈ ΣK = {z ∈ R
d : #supp (z) ≤ K}.

Both the typical matrices used in Johnson-Lindenstrauss embeddings (cf. Lemma
2.1) and matrices with RIP used in compressed sensing are usually generated at
random. It was observed by [3] and [37], that there is an intimate connection between
these two notions. A simple reformulation of the arguments of [3] yields the following.

Theorem 3.5 (Baraniuk, Davenport, DeVore, and Wakin). Let M be a k × d
matrix drawn at random which satisfies

(1 − δ/2)‖x‖2
ℓd
2

≤ ‖Mx‖2
ℓk
2

≤ (1 + δ/2)‖x‖2
ℓd
2

, x ∈ P

for every set P ⊂ R
d with #P ≤

(
12ed
δK

)K
with probability 0 < ν < 1. Then M

satisfies the Restricted Isometry Property of order K and level δ/3 with probability at
least equal to ν.

Combined with several rather elementary constructions of Johnson-Lindenstrauss
embedding matrices available in literature, cf. [1] and [22], this result provides a simple
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construction of RIP matrices. The converse direction, namely the way from RIP
matrices to matrices suitable for Johnson-Lindenstrauss embedding was discovered
only recently in [37].

Theorem 3.6 (Krahmer and Ward). Fix η > 0 and ε > 0, and consider a finite
set P ⊂ R

d of cardinality |P| = N . Set K ≥ 40 log 4N
η , and suppose that the k × d

matrix M̃ satisfies the Restricted Isometry Property of order K and level δ ≤ ε/4.
Let ξ ∈ R

d be a Rademacher sequence, i.e., uniformly distributed on {−1, 1}d . Then
with probability exceeding 1 − η,

(1 − ε)‖x‖2
ℓd
2

≤ ‖Mx‖2
ℓk
2

≤ (1 + ε)‖x‖2
ℓd
2

.

uniformly for all x ∈ P, where M := M̃ diag(ξ), where diag(ξ) is a d × d diagonal
matrix with ξ on the diagonal.

We refer to [42] for additional details.
Remark 2. Notice that M as constructed in Theorem 3.6 is both a Johnson-

Lindenstrauss embedding and a matrix with RIP, because

(1 − δ)‖x‖2
ℓd
2

= (1 − δ)‖diag(ξ)x‖2
ℓd
2

≤ ‖ M̃ diag(ξ)
︸ ︷︷ ︸

:=M

x‖2
ℓk
2

≤ (1 + δ)‖diag(ξ)x‖2
ℓd
2

= (1 + δ)‖x‖2
ℓd
2

.

The matrices considered in Section 2 satisfy with high probability the RIP with

K = O
(

k

1 + log(d/k)

)

.

Equipped with the notion of RIP matrices we may state the main result of the
theory of compressed sensing, as appearing in [25], which we shall use for the recovery
of the dynamical system in R

d.
Theorem 3.7. Assume that the matrix M ∈ R

k×d has the RIP of order 2K and
level

δ2K <
2

3 +
√

7/4
≈ 0.4627.

Then the following holds for all x ∈ R
d. Let the low-dimensional approximation

y = Mx + η be given with ‖η‖ℓk
2
≤ Cε. Let x# be the solution of

min
z∈Rd

‖z‖ℓd
1

subject to ‖Mz − y‖ℓk
2
≤ ‖η‖ℓk

2
. (3.16)

Then

‖x − x#‖ℓd
2
≤ C1ε + C2

σK(x)ℓd
1√

K

for some constants C1, C2 > 0 that depend only on δ2K , and σK(x)ℓd
1

= infz:#supp (z)≤K ‖z−
x‖ℓd

1
is the best-K-term approximation error in ℓd

1.

This result says that provided the stability relationship (3.15), we can approximate

the individual trajectories xi(t), for each t ∈ [0, T ] fixed, by a vector x#
i (t) solution

of an optimization problem of the type (3.16), and the accuracy of the approximation
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depends on the best-K-term approximation error σK(xi(t))ℓd
1
. Actually, when xi(t)

is a vector in R
d with few large entries in absolute value, then x#

i (t) ≈ xi(t) is a
very good approximation, up to the ineliminable ε-distortion. However, if the vector
xi(t) has many relevant entries, then this approximation will be rather poor. One
possibility to improve the recovery error is to increase the dimension k (leading to a
smaller distortion parameter ε > 0 in the Johnson-Lindenstrauss embedding). But we
would like to explore another possibility, namely projecting and simulating in parallel
and independently the dynamical system L-times in the lower dimension k

ẏℓ
i = M ℓfi(D′yℓ) +

N∑

j=1

fij(D′yℓ)yℓ
j , yℓ

i (0) = M ℓx0
i , ℓ = 1, . . . , L. (3.17)

Let us give a brief overview of the corresponding error estimates. The number of
points needed in every of the cases is N ≈ N × n0, where N is the number of agents
and n0 = T/h is the number of iterations.

• We perform 1 projection and simulation in R
k: Then ε = O

(√
logN

k

)

, K =

O
(

k
1+log(d/k)

)

and an application of Theorem 3.7 leads to

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(√

logN
k

+
σK(xi(t))ℓd

1√
K

)

. (3.18)

Here, C ′(t) combines both the constants from Theorem 3.7 and the time-
dependent C(t) from (3.15). So, to reach the precision of order C ′(t)ǫ > 0, we

have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ and

σK(xi(t))ℓd
1√

K
≤ ǫ.

We then need k × N2 operations to evaluate the adjacency matrix.

• We perform 1 projection and simulation in R
L×k: Then ε′ = O

(√
logN

Lk

)

and

K ′ = O
(

Lk
1+log(d/Lk)

)

and an application of Theorem 3.7 leads to

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(√

logN
Lk

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.19)

The given precision of order C ′(t)ǫ > 0, may be then reached by choosing

k, L ∈ N large enough, such that
√

logN
Lk ≤ ǫ and

σK′ (xi(t))ℓd
1√

K′
≤ ǫ. We then

need Lk × N2 operations to evaluate the adjacency matrix.
• We perform L independent and parallel projections and simulations in R

k:
Then we assemble the following system corresponding to (3.17)

Mx =









M1

M2

. . .

. . .
ML









xi =









y1
i

y2
i

. . .

. . .
yL

i









−









η1
i

η2
i

. . .

. . .
ηL

i









,

where for all ℓ = 1, . . . , L the matrices M ℓ ∈ R
k×d are (let us say) ran-

dom matrices with each entry generated independently with respect to the
properly normalized Gaussian distribution as described in Section 2. Then
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M/
√

L is a Lk × d matrix with Restricted Isometry Property of order K ′ =

O
(

Lk
1+log(d/Lk)

)

and level δ < 0.4627. The initial distortion of each of the

projections is still ε = O
(√

logN
k

)

. Therefore, by applying Theorem 3.7, we

can compute x#
i (t) such that

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(√

logN
k

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.20)

Notice that the computation of x#
i (t) can also be performed in parallel, see,

e.g., [26]. The larger is the number L of projections we perform, the larger
is K ′ and the smaller is the second summand in (3.20); actually σK′(xi(t))ℓd

1

vanishes for K ′ ≥ d. Unfortunately, the parallelization can not help to reduce
the initial distortion ε > 0. To reach again the precision of order C ′(t)ǫ > 0,

we have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ. Then we

chose L ≥ 1 large enough such that
σK′ (xi(t))ℓd

1√
K′

≤ ǫ. We again need k × N2

operations to evaluate the adjacency matrix.
In all three cases, we obtain the estimate

‖xi(t) − x#
i (t)‖ℓd

2
≤ C ′(t)

(

ε +
σK(xi(t))ℓd

1√
K

)

, (3.21)

where the corresponding values of ε > 0 and K together with the number of operations
needed to evaluate the adjacency matrix may be found in the following table.

ε K number of operations

1 projection into R
k O

(√
logN

k

)

O
(

k
1+log(d/k)

)

k × N2

1 projection into R
L×k O

(√
logN

Lk

)

O
(

Lk
1+log(d/Lk)

)

Lk × N2

L projections into R
k O

(√
logN

k

)

O
(

Lk
1+log(d/Lk)

)

k × N2

3.4.2. Manifold recovery. In recent papers [4, 48, 34], the concepts of com-
pressed sensing and sparse recovery were extended to vectors on smooth manifolds.
These methods could become very useful in our context if (for any reason) we would
have an apriori knowledge that the trajectories xi(t) keep staying on or near such a
smooth manifold. We leave this direction open for future research.

3.5. Numerical experiments. In this section we illustrate the practical use
and performances of our projection method for the Cucker-Smale system (2.11)–(2.12).
As already mentioned, this system models the emergence of consensus in a group of
interacting agents, trying to align with their neighbors. The qualitative behavior of
its solutions is formulated by this well known result [20, 21, 33]:

Theorem 3.8. Let (xi(t), vi(t)) be the solutions of (2.11)–(2.12). Let us define

the fluctuation of positions around the center of mass xc(t) = 1
N

∑N
i=1 xi(t), and,

resp., the fluctuation of the rate of change around its average vc(t) = 1
N

∑N
i=1 vi(t) as

Λ(t) =
1

N

N∑

i=1

‖xi(t) − xc(t)‖2
ℓd
2

, Γ(t) =
1

N

N∑

i=1

‖vi(t) − vc(t)‖2
ℓd
2

.
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Then if either β ≤ 1/2 or the initial fluctuations Λ(0) and Γ(0) are small enough
(see [20] for details), then Γ(t) → 0 as t → ∞.

The phenomenon of Γ(t) tending to zero as t → ∞ is called flocking or emergence
of consensus. If β > 1/2 and the initial fluctuations are not small, it is not known
whether a given initial configuration will actually lead to flocking or not, and the only
way to find out the possible formation of consensus patterns is to perform numerical
simulations. However, these can be especially costly if the number of agents N and
the dimension d are large; the algorithmic complexity of the calculation is O(d×N2).
Therefore, a significant reduction of the dimension d, which can be achieved by our
projection method, would lead to a corresponding reduction of the computational
cost.
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Fig. 3.2. Numerical results for β = 1.5: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

We illustrate this fact by a numerical experiment, where we choose N = 1000
and d = 200, i.e., every agent i is determined by a 200-dimensional vector xi of its
state and a 200-dimensional vector vi giving the rate of change of its state. The
initial datum (x0, v0) is generated randomly, every component of x0 being drawn
independently from the uniform distribution on [0, 1] and every component of v0 being
drawn independently from the uniform distribution on [−1, 1]. We choose β = 1.5,
1.62 and 1.7, and for each of these values we perform the following set of simulations:

1. Simulation of the original system in 200 dimensions.
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Fig. 3.3. Numerical results for β = 1.62: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 25 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

2. Simulations in lower dimensions k: the initial condition (x0, v0) is projected
into the k-dimensional space with a random Johnson-Lindenstrauss projection
matrix M with Gaussian entries. The dimension k takes the values 150, 100,
50, 25, 10, 5, and 2. For every k, we perform the simulation twenty times,
each time with a new random projection matrix M .

All the simulations were implemented in MATLAB, using 1500 steps of the forward
Euler method with time step size 0.02. The paths of Γ(t) from the twenty experiments
with k = 100 and k = 25 or k = 10 are shown in the first rows of Figs. 3.2, 3.3 and,
resp., 3.4 for β = 1.5, 1.62 and, resp., 1.7.

The information we are actually interested in is whether flocking takes place, in
other words, whether the fluctuations of velocities Γ(t) tend to zero. Typically, after an
initial phase, the graph of Γ(t) gives a clear indication either about exponentially fast
convergence to zero (due to rounding errors, “zero” actually means values of the order
10−30 in the simulations) or about convergence to a positive value. However, in certain
cases the decay may be very slow and a very long simulation of the system would be
needed to see if the limiting value is actually zero or not. Therefore, we propose the
following heuristic rules to decide about flocking from numerical simulations:

• If the value of Γ at the final time t = 30 is smaller than 10−10, we conclude
that flocking took place.



24 M. FORNASIER, J. HAŠKOVEC AND J. VYBÍRAL
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Fig. 3.4. Numerical results for β = 1.7: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

• If the value of Γ(30) is larger than 10−3, we conclude that flocking did not
take place.

• Otherwise, we do not make any conclusion.

In the second rows of Figs. 3.2, 3.3 and 3.4 we present the initial and final values of Γ of
the twenty simulations for all the dimensions k, together with the original dimension
d = 200. In accordance with the above rules, flocking takes place if the final value
of Γ lies below the lower dashed line, does not take place if it lies above the upper
dashed line, otherwise the situation is not conclusive. The results are summarized in
Table 3.1.

Experience gained with a large amount of numerical experiments shows the fol-
lowing interesting fact: The flocking behavior of the Cucker-Smale system is very
stable with respect to the Johnson-Lindenstrauss projections. Usually, the projected
systems show the same flocking behavior as the original one, even if the dimension is
reduced dramatically, for instance from d = 200 to k = 10 (see Figs 3.2 and 3.4). This
stability can be roughly explained as follows: Since the flocking behavior depends
mainly on the initial values of Γ and Λ, which are statistical properties of the random
distributions used for the generation of initial data, and since N is sufficiently large,
the concentration of measure phenomenon takes place. Its effect is that the initial
values of the fluctuations of the projected data are very close to the original ones, and
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β = 1.5 β = 1.62 β = 1.7
dim pos neg ??
200 1 0 0
150 20 0 0
100 20 0 0
50 20 0 0
25 20 0 0
10 14 0 6
5 4 4 12
2 3 8 9

dim pos neg ??
200 1 0 0
150 20 0 0
100 20 0 0
50 13 0 7
25 1 1 18
10 0 18 2
5 0 19 1
2 0 18 2

dim pos neg ??
200 0 1 0
150 0 20 0
100 0 20 0
50 0 20 0
25 0 20 0
10 0 20 0
5 0 20 0
2 0 20 0

Table 3.1
Statistics of the flocking behaviors of the systems in the original dimension d = 200 and in

the projected dimensions. With β = 1.5 and β = 1.62, the original system (d = 200) exhibited
flocking behavior. With β = 1.5, even after random projections into 25 dimensions, the system
exhibited flocking in all 20 repetitions of the experiment, and still in 14 cases in dimension 10. With
β = 1.62, the deterioration of the flocking behavior with decreasing dimension was much faster,
and already in dimension 25 the situation was not conclusive. This is related to the fact that the
value β = 1.62 was chosen to intentionally bring the system close to the borderline between flocking
and non-flocking. Finally, with β = 1.7, the original system did not flock, and, remarkably, all the
projected systems (even to two dimensions) exhibit the same behavior.

thus the flocking behavior is (typically) the same. There is only a narrow interval of
values of β (in our case this interval is located around the value β = 1.62), which is
a borderline region between flocking and non-flocking, and the projections to lower
dimensions spoil the flocking behavior, see Fig 3.3. Let us note that in our simulations
we were only able to detect cases when flocking took place in the original system, but
did not take place in some of the projected ones. Interestingly, we never observed the
inverse situation, a fact which we are not able to explain satisfactorily. In fact, one
can make other interesting observations, deserving further investigation. For instance,
Figs. 3.2 and 3.3 show that if the original system exhibits flocking, then the curves of
Γ(t) of the projected systems tend to lie above the curve of Γ(t) of the original one.
The situation is reversed if the original system does not flock, see Fig. 3.4.

From a practical point of view, we can make the following conclusion: To obtain an
indication about the flocking behavior of a highly dimensional Cucker-Smale system,
it is typically satisfactory to perform a limited number of simulations of the system
projected into a much lower dimension, and evaluate the statistics of their flocking
behavior. If the result is the same for the majority of simulations, one can conclude
that the original system very likely has the same flocking behavior as well.

4. Mean-field limit and kinetic equations in high dimension. In the pre-
vious sections we were concerned with tractable simulation of the dynamical systems
of the type (1.1) when the dimension d of the parameter space is large. Another source
of possible intractability in numerical simulations appears in the situation where the
number of agents N is very large. Therefore, in the next sections we consider the
so-called mean-field limit of (1.1) as N → ∞, where the evolution of the system is
described by time-dependent probability measures µ(t) on R

d, representing the den-
sity distribution of agents, and satisfying mesoscopic partial differential equations of
the type (4.1). This strategy originated from the kinetic theory of gases, see [16]
for classical references. We show how our projection method can be applied for di-
mensionality reduction of the corresponding kinetic equations and explain how the
probability measures can be approximated by atomic measures. Using the concepts
of delayed curse of dimension and measure quantization known from optimal integra-
tion problems in high dimension, we show that under the assumption that the measure
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concentrates along low-dimensional subspaces (and in general along low-dimensional
sets or manifolds), it can be approximated by atomic measures with sub-exponential
(with respect to d) number of atoms. Through such approximation, we shall show
that we can approximate suitable random averages of the solution of the original par-
tial differential equation in high dimension by tractable simulations of corresponding
solutions of lower-dimensional kinetic equations.

4.1. Formal derivation of mean-field equations. In this section we briefly
explain how the mean-field limit description corresponding to (1.1) can be derived.
This is given, under suitable assumptions on the family of the governing functions
FN = {fi, fij : i, j = 1, . . . N}, by the general formula

∂µ

∂t
+ ∇ · (HF [µ]µ) = 0, (4.1)

where HF [µ] is a field in R
d, determined by the sequence F = (FN )N∈N.

In order to provide an explicit example, we show how to formally derive the mean
field limit of systems of the type

ẋi = vi , (4.2)

v̇i =

N∑

j=1

fvv
ij (Dx,Dv)vj +

N∑

j=1

fvx
ij (Dx)xj , (4.3)

with

fvx
ij (Dx) = −δij

N

∑

k 6=i

u(‖xi − xk‖ℓd
2
) +

1 − δij

N
u(‖xi − xj‖ℓd

2
) ,

fvv
ij (Dx,Dv) = δij

(

h(‖vi‖2
ℓd
2

) − 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
)

)

+
1 − δij

N
g(‖xi − xj‖ℓd

2
) .

Note that for suitable choices of the functions h, g, u this formalism includes both the
Cucker-Smale model (2.11)–(2.12) and D’Orsogna model (3.13)–(3.14). We define the
empirical measure associated to the solutions xi(t), vi(t) of (4.2)–(4.3) as

µN (t) := µN (t, x, v) =
1

N

N∑

i=1

δxi(t)(x)δvi(t)(v) .

Taking a smooth, compactly supported test function ξ ∈ C∞
0 (R2d) and using (4.2)–

(4.3), one easily obtains by a standard formal calculation (see [14])

d

dt
〈µN (t), ξ〉 =

d

dt

(

1

N

N∑

i=1

ξ(xi(t), vi(t))

)

(4.4)

=

∫

R2d

∇xξ(x, v) · v dµN (t, x, v) +

∫

R2d

∇vξ(x, v) · H[µN (t)](x, v) dµN (t, x, v) ,

with

H[µ](x, v) = h(‖v‖ℓd
2
)v +

∫

R2d

g(‖x − y‖ℓd
2
)(w − v) dµ(y, w) +

∫

R2d

u(‖x − y‖ℓd
2
)(y − x) dµ(y, w) .
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We now assume weak convergence of a subsequence of (µN (t))N∈N to a time-dependent
measure µ(t) = µ(t, x, v) and boundedness of its first order moment, which indeed can
be established rigorously for the Cucker-Smale and D’Orsogna systems (see [33], [41]).
Then, passing to the limit N → ∞ in (4.4), one obtains in the strong formulation
that µ is governed by

∂µ

∂t
(t, x, v) + v · ∇xµ(t, x, v) + ∇v · (H[µ(t)](x, v)µ(t, x, v)) = 0 ,

which is an instance of the general prototype (4.1).
Using the same formal arguments as described above, one can easily derive mean

field limit equations corresponding to (1.1) with different choices of the family F .

4.2. Monge-Kantorovich-Rubinstein distance and stability. In several
relevant cases, including the Cucker-Smale and D’Orsogna systems [13], solutions
of equations of the type (4.1) are stable with respect to suitable distances. We con-
sider the space P1(R

d), consisting of all probability measures on R
d with finite first

moment. In P1(R
d) and for solutions of (4.1), a natural metric to work with is the

so-called Monge-Kantorovich-Rubinstein distance [47],

W1(µ, ν) := sup{|〈µ − ν, ξ〉| =

∣
∣
∣
∣

∫

Rd

ξ(x)d(µ − ν)(x)

∣
∣
∣
∣
, ξ ∈ Lip(Rd),Lip(ξ) ≤ 1}.

(4.5)
We further denote Pc(R

d) the space of compactly supported probability measures on
R

d. In particular, throughout the rest of this paper, we will assume that for any
compactly supported measure valued weak solutions µ(t), ν(t) ∈ C([0, T ],Pc(R

d)) of
(4.1) we have the following stability inequality

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.6)

where C(t) is a positive increasing function of t with C(0) > 0, independent of the
dimension d. We address the interested reader to [13, Section 4] for a sample of general
conditions on the vector field H[F ](µ) which guarantee stability (4.6) for solutions of
equations (4.1).

4.3. Dimensionality reduction of kinetic equations. Provided a high-dimensional
measure valued solution to the equation

∂µ

∂t
+ ∇ · (HF [µ]µ) = 0, µ(0) = µ0 ∈ Pc(R

d) , (4.7)

we will study the question whether its solution can be approximated by suitable
projections in lower dimension.

Given a probability measure µ ∈ P1(R
d), its projection into R

k by means of a
matrix M : R

d → R
k is given by the push-forward measure µM := M#µ,

〈µM , ϕ〉 := 〈µ, ϕ(M ·)〉 for all ϕ ∈ Lip(Rk). (4.8)

Let us mention two explicit and relevant examples:
• If µN = 1

N

∑N
i=1 δxi

is an atomic measure, we have 〈µN
M , ϕ〉 = 〈µN , ϕ(M ·)〉 =

1
N

∑N
i=1 ϕ(Mxi). Therefore,

µN
M =

1

N

N∑

i=1

δMxi
. (4.9)
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• If µ is absolutely continuous with respect to the Lebesgue measure, i.e., it is a
function in L1(Rd), the calculation requires a bit more effort: Let us consider
M† the pseudo-inverse matrix of M . Recall that M† = M∗(MM∗)−1 is a
right inverse of M , and M†M is the orthogonal projection onto the range of
M∗. Moreover, x = M†Mx+ ξx, where ξx ∈ ker M for all x ∈ R

d. According
to these observations, we write

∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M†Mx + ξx)dx

=

∫

ranM∗⊕ker M

ϕ(Mx)µ(M†Mx + ξx)dx

=

∫

ranM∗

∫

ker M

ϕ(Mv)µ(M†Mv + v⊥)dv⊥dv

Note now that M|ranM∗ : ranM∗ → ranM h R
k is an isomorphism, hence y =

Mv implies the change of variables dv = det(M|ranM∗)−1dy = det(MM∗)−1/2dy.
Consequently, we have
∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M†Mx + ξx)dx

=

∫

ranM∗

∫

ker M

ϕ(Mv)µ(M†Mv + v⊥)dv⊥dv

=

∫

Rk

(
1

det(MM∗)1/2

∫

ker M

µ(M†y + v⊥)dv⊥
)

ϕ(y)dy ,

and

µM (y) =
1

det(MM∗)1/2

∫

ker M

µ(M†y + v⊥)dv⊥.

According to the notion of push-forward, we can consider the measure valued function
ν ∈ C([0, T ],Pc(R

k)), solution of the equation

∂ν

∂t
+ ∇ · (HFM

[ν]ν) = 0, ν(0) = (µ0)M ∈ Pc(R
k), (4.10)

where (µ0)M = M#µ0 and FM = ({Mfi, fij , i, j = 1, . . . , N})N∈N. As for the
dynamical system (3.5), also equation (4.10) is fully defined on the lower-dimensional
space R

k and depends on the original high-dimensional problem exclusively by means
of the initial condition.

The natural question at this point is whether the solution ν of (4.10) provides
information about the solution µ of (4.7). In particular, similarly to the result of
Theorem 3.1, we will examine whether the approximation

ν(t) ≈ µM (t), t ∈ [0, T ],

in Monge-Kantorovich-Rubinstein distance is preserved in finite time. We depict the
expected result by the following diagram:

µ(0)
t−→ µ(t)

↓ M ↓ M

ν(0) = (µ0)M
t−→ ν(t) ≈ µM (t) .
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This question will be addressed by approximation of the problem by atomic measures
and by an application of Theorem 3.1 for the corresponding dynamical system, as
concisely described by

µ
W1(µ, µN ).ε−→ µN

↓ M ↓ M

ν ≈ µM
W1(ν, νN ).ε−→ νN ≈ µN

M

Let us now recall the framework and general assumptions for this analysis to be
performed. We assume again that for all N ∈ N the family FN = {fi, fij : i, j =
1, . . . N} is composed of functions satisfying (1.2)-(1.4). Moreover, we assume that
associated to F = (FN )N∈N and to

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (4.11)

we can define a mean-field equation

∂µ

∂t
+ ∇ · (H[F ](µ)µ) = 0, µ(0) = µ0 ∈ Pc(R

d), (4.12)

such that for any compactly supported measure valued weak solutions µ(t), ν(t) ∈
C([0, T ],Pc(R

d)) of (4.1) we have the following stability

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.13)

where C(t) is a positive increasing function of t, independent of the dimension d.
We further require that corresponding assumptions, including stability, hold for the
projected system (2.5) and kinetic equation (4.10). Then we have the following ap-
proximation result:

Theorem 4.1. Let us assume that µ0 ∈ Pc(R
d) and there exist points {x0

1, . . . , x
0
N} ⊂

R
d, for which the atomic measure µN

0 = 1
N

∑N
i=1 δx0

i
approximates µ0 up to ε > 0 in

Monge-Kantorovich-Rubinstein distance, in the following sense

W1(µ0, µ
N
0 ) ≤ ε, N = N k(ε) for k(ε) ≤ d and k(ε) → d for ε → 0. (4.14)

Requirement (4.14) is in fact called the delayed curse of dimension as explained below
in detail in Section 4.5. Depending on ε > 0 we fix also

k = k(ε) = O(ε−2 log(N)) = O(ε−2 log(N )k(ε)).

Moreover, let M : R
d → R

k be a linear mapping which is a continuous Johnson-
Lindenstrauss embedding as in (3.4) for continuous in time trajectories xi(t) of (4.11)
with initial datum xi(0) = x0

i . Let ν ∈ C([0, T ],Pc(R
k)) be the weak solution of

∂ν

∂t
+ ∇ · (H[FM ](ν)ν) = 0, (4.15)

ν(0) = (µ0)M ∈ Pc(R
k), (4.16)

where (µ0)M = M#µ0. Then

W1(µM (t), ν(t)) ≤ C(t)‖M‖ε, t ∈ [0, T ], (4.17)
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where C(t) is an increasing function of t, with C(0) > 0, which is at most polynomially
growing with the dimension d.

Proof. Let us define νN (t) the solution to equation (4.15) with initial datum
νN (0) = (µN

0 )M , or, equivalently, thanks to (4.9)

νN (t) =
1

N

n∑

i=1

δyi(t),

where yi(t) is the solution of

ẏi = fi(D′y) +

N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N .

We estimate

W1(µM (t), ν(t)) ≤ W1(µM (t), (µN (t))M ) + W1((µ
N (t))M , νN (t)) + W1(ν

N (t), ν(t)).

By using the definition of push-forward (4.8) and (4.14), the first term can be esti-
mated by

W1(µM (t), (µN (t))M ) = sup{〈µM (t) − (µN (t))M , ϕ〉 : Lip(ϕ) ≤ 1}
= sup{〈µ(t) − µN (t), ϕ(M ·)〉 : Lip(ϕ) ≤ 1}
≤ ‖M‖W1(µ(t), µN (t)) ≤ ‖M‖C(t)ε.

We estimate now the second term

W1((µ
N (t))M , νN (t)) = sup{〈(µN (t))M − νN (t), ϕ〉 : Lip(ϕ) ≤ 1}

= sup{ 1

N

N∑

i=1

(ϕ(Mxi(t)) − ϕ(yi(t))) : Lip(ϕ) ≤ 1}

≤ 1

N

N∑

i=1

‖Mxi(t) − yi(t)‖ℓk
2
.

We recall the uniform approximation of Theorem 3.1,

‖Mxi(t) − yi(t)‖ℓk
2
≤ D(t)ε , i = 1, . . . , N,

where D(t) is the time-dependent function on the right-hand-side of (3.7). Hence

W1(µM (t), (µN (t))M ) ≤ D(t)ε.

We address now the upper estimate of the third term, by the assumed stability of the
lower dimensional equation (4.10)

W1(ν
N (t), ν(t)) ≤ C(t)W1(ν

N (0), ν(0))

= C(t)W1((µ
N
0 )M , (µ0)M )

≤ C(t)‖M‖W (µN
0 , µ0) ≤ C(t)‖M‖ε.

We can fix C(t) = 2C(t)‖M‖+D(t), and, as observed in Theorem 3.3, we can assume

without loss of generality that ‖M‖ ≤
√

d
k . Hence, C(t) depends at most polynomially

with respect to the dimension d.
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4.4. Approximation of probability measures by atomic measures and
optimal integration. In view of the fundamental requirement (4.14) in Theorem
4.1, given µ0 ∈ Pc(R

d), we are interested to establish an upper bound to the best pos-
sible approximation in Monge-Kantorovich-Rubinstein distance by means of atomic
measures µN

0 = 1
N

∑N−1
i=0 δx0

i
with N atoms, i.e.,

EN (µ0) := inf
µN

0
= 1

N

PN−1

i=0
δ

x0
i

W1(µ0, µ
N
0 ) (4.18)

= inf
{x0

0
,...,x0

N−1
}⊂Rd

sup
{
|
∫

Rd

ξ(x)dµ0(x) − 1

N

N−1∑

i=0

ξ(x0
i )| : ξ ∈ Lip(Rd),Lip(ξ) ≤ 1

}
.

In fact, once we identify the optimal points {x0
0, . . . , x

0
N−1}, we can use them as initial

conditions xi(0) = x0
i for the dynamical system (4.11), and by using the stability

relationship (4.6), we obtain

W1(µ(t), µN (t)) ≤ C(T )W1(µ0, µ
N
0 ), t ∈ [0, T ] , (4.19)

where µN (t) = 1
N

∑N−1
i=0 δxi(t), meaning that the solution of the partial differential

equation (4.1) keeps optimally close to the particle solution of (4.11) also for suc-
cessive time t > 0. Note that estimating (4.18) as a function of N is in fact a very
classical problem in numerical analysis well-known as optimal integration with its
high-dimensional behaviour being a relevant subject of the field of Information Based
Complexity [40, 45].

The numerical integration of Lipschitz functions with respect to the Lebesgue
measure and the study of its high-dimensional behaviour goes back to Bakhvalov [2],
but much more is known nowadays. We refer to [29] and [32] for the state of the art
of quantization of probability distributions.

The scope of this section is to recall some facets of these estimates and to refor-
mulate them in terms of W1 and EN . We emphasize that here and in what follows,
we consider generic compactly supported probability measures µ, not necessarily ab-
solutely continuous with respect to the Lebesgue measure. We start first by assuming
d = 1, i.e., we work with a univariate measure µ ∈ Pc(R) with support suppµ ⊂ [a, b]
and σ := b − a > 0. We define the points x0, . . . , xN−1 as the quantiles of the proba-
bility measure µ, i.e., x0 := a and

i

N
=

∫ xi

−∞
dµ(x), i = 1, . . . , N − 1. (4.20)

This is notationally complemented by putting xN := b. Note that by definition
∫ xi+1

xi
dµ(x) = 1

N , i = 0, . . . , N − 1, and we have

∣
∣
∣
∣
∣

∫

R

ξ(x)dµ(x) − 1

N

N−1∑

i=0

ξ(xi)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

N−1∑

i=0

∫ xi+1

xi

(ξ(x) − ξ(xi))dµ(x)

∣
∣
∣
∣
∣

≤
N−1∑

i=0

∫ xi+1

xi

|ξ(x) − ξ(xi)| dµ(x) (4.21)

≤ Lip(ξ)

N

N−1∑

i=0

(xi+1 − xi) =
σLip(ξ)

N
.
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Hence it is immediate to see that

EN (µ) = inf
µN= 1

N

PN−1

i=0
δ

x0
i

W1(µ, µN ) ≤ σ

N
.

We would like to extend this estimate to higher dimension d > 1. However, for
multivariate measures µ there is no such an easy upper bound, see [29] and [32] for
very general statements, and for the sake of simplicity we restrict here the class of
measures µ to certain special cases. As a typical situation, we address tensor product
measures and sums of tensor products.

Lemma 4.2. Let µ1, . . . , µd ∈ P1(R) with W1(µ
j , µj,Nj ) ≤ εj , j = 1, . . . , d for

some N1, . . . , Nd ∈ N, ε1, . . . , εd > 0 and µj,Nj := 1
Nj

∑Nj−1
i=0 δxj

i
. Let N =

∏d
i=1 Ni.

Then

W1(µ
1 ⊗ · · · ⊗ µd, µN ) ≤

d∑

j=1

εj ,

where

µN :=
1

N

∑

x∈X

δx and X :=
d∏

j=1

{xj
0, . . . , x

j
Nj−1}.

Proof. The proof is based on a simple argument using a telescopic sum. For
j = 1, . . . , d + 1 we put

Vj :=
1

∏d
i=j Ni

Nj−1
∑

ij=0

· · ·
Nd−1∑

id=0

∫

Rj−1

ξ(x1, . . . , xj−1, x
j
ij

, . . . , xd
jd

)dµ1(x1) . . . dµj−1(xj−1).

Of course, if j = 1, then the integration over R
j−1 is missing and if j = d + 1 then

the summation becomes empty. Now

∫

Rd

ξ(x)dµ(x) − 1
∏d

i=1 Ni

N1−1∑

i1=0

· · ·
Nd−1∑

id=0

ξ(x1
i1 , . . . , x

d
id

) =

d∑

j=1

(Vj+1 − Vj)

together with the estimate |Vj+1 − Vj | ≤ εj finishes the proof.
Lemma 4.2 says, roughly speaking, that the tensor products of sampling points of

univariate measures are good sampling points for the tensor product of the univariate
measures. Next lemma deals with sums of measures.

Lemma 4.3. Let µ1, . . . , µL ∈ P1(R
d) with W1(µl, µ

N
l ) ≤ εl, l = 1, . . . , L for

some N ∈ N, ε1, . . . , εL > 0 and µN
l := 1

N

∑N−1
i=0 δxl,i

. Then

W1

(µ1 + · · · + µL

L
, µLN

)

≤ 1

L

L∑

l=1

εl,

where

µLN :=
1

LN

∑

x∈X

δx =
1

L

L∑

l=1

µN
l and X :=

L⋃

l=1

{xl,0, . . . , xl,N−1}.
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Proof. We use the homogeneity of the Monge-Kantorovich-Rubinstein distance
W1(aµ, aν) = aW1(µ, ν) for µ, ν ∈ P1(R

d) and a ≥ 0 combined with its subadditivity
W1(µ1 +µ2, ν1 + ν2) ≤ W1(µ1, ν1)+W1(µ2, ν2) for µ1, µ2, ν1, ν2 ∈ P1(R

d). We obtain

W1

(µ1 + · · · + µL

L
,
µN

1 + · · · + µN
L

L

)

≤ 1

L

L∑

l=1

W1(µl, µ
N
l ) ≤ 1

L

L∑

l=1

εl.

Next corollary follows directly from Lemma 4.2 and Lemma 4.3.
Corollary 4.4. (i) Let µ1, . . . , µd ∈ P1(R) and N1, . . . , Nd ∈ N. Then

EN (µ1 ⊗ · · · ⊗ µd) ≤
d∑

j=1

ENj
(µj), where N := N1 · · ·Nd.

(ii) Let µ1, . . . , µL ∈ P1(R
d) and N ∈ N. Then

ELN

(µ1 + · · · + µL

L

)

≤ 1

L

L∑

l=1

EN (µl).

4.5. Delayed curse of dimension. Although Lemma 4.2, Lemma 4.3 and
Corollary 4.4 give some estimates of the Monge-Kantorovich-Rubinstein distance be-
tween general and atomic measures, the number of atoms needed may still be too
large to allow the assumption (4.14) in Theorem 4.1 to be fulfilled. Let us for exam-
ple consider the case, where µ1 = · · · = µd in Lemma 4.2 and ε1 = · · · = εd =: ε.
Then, of course, N1 = · · · = Nd =: N and we observe, that the construction given in
Lemma 4.2 gives an atomic measure, which approximates µ up to the error dε using
N d atoms, hence with an exponential dependence on the dimension d. This effect is
another instance of the well-known phenomenon of the curse of dimension.

However, in many real-life high-dimensional applications the objects of study
(in our case the measure µ ∈ Pc(R

d)) concentrate along low-dimensional subspaces
(or, more general, along low-dimensional manifolds) [5, 6, 17, 18, 19]. The number
of atoms necessary to approximate these measures behaves in a much better way,
allowing the application of (4.14) and Theorem 4.1. To clarify this effect, let us
consider µ = µ1 ⊗ · · · ⊗ µd with suppµj ⊂ [aj , bj ] and define σj = bj − aj . Let us
assume, that σ1 ≥ σ2 ≥ · · · ≥ σd > 0 is a rapidly decreasing sequence. Furthermore,
let ε > 0. Then we define k := k(ε) to be the smallest natural number, such that

d∑

k=k(ε)+1

σk ≤ ε/2

and put Nk = 1 for k ∈ {k(ε) + 1, . . . , d}. The numbers N1 = · · · = Nk(ε) = N are
chosen large enough so that

1

N

k(ε)
∑

k=1

σk ≤ ε/2.
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Then Lemma 4.2 together with (4.20) state that there is an atomic measure µN with

N = N k(ε) atoms, such that

W1(µ, µN ) ≤
d∑

k=1

σk

Nk
≤ ε/2 + ε/2. (4.22)

Hence, at the cost of assuming that the tensor product measure µ is concentrated
along a k(ε)-dimensional coordinate subspace, we can always approximate the mea-
sure µ with accuracy ε by using an atomic measure supported on points whose number
depends exponentially on k = k(ε) ≪ d. However, if we liked to have ε → 0, then
k(ε) → d and again we are falling under the curse of dimension. This delayed kicking
in of the need of a large number of points for obtaining high accuracy in the ap-
proximation (4.22) is in fact the so-called delayed curse of dimension, expressed by
assumption (4.14), a concept introduced first by Curbera in [15], in the context of
optimal integration with respect to Gaussian measures in high dimension.

Let us only remark, that the discussion above may be easily extended (with help
of Lemma 4.3) to sums of tensor product measures. In that case we obtain as atoms
the so-called sparse grids, cf. [10]. Using suitable change of variables, one could also
consider measures concentrated around (smooth) low-dimensional manifolds, but this
goes beyond the scope of this work, see [29] for a broader discussion.
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Abstract Let us assume that f is a continuous function defined on the unit ball of
R

d , of the form f (x) = g(Ax), where A is a k × d matrix and g is a function of k

variables for k � d . We are given a budget m ∈ N of possible point evaluations f (xi),
i = 1, . . . ,m, of f , which we are allowed to query in order to construct a uniform
approximating function. Under certain smoothness and variation assumptions on the
function g, and an arbitrary choice of the matrix A, we present in this paper

1. a sampling choice of the points {xi} drawn at random for each function approxi-
mation;

2. algorithms (Algorithm 1 and Algorithm 2) for computing the approximating func-
tion, whose complexity is at most polynomial in the dimension d and in the num-
ber m of points.
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Due to the arbitrariness of A, the sampling points will be chosen according to suit-
able random distributions, and our results hold with overwhelming probability. Our
approach uses tools taken from the compressed sensing framework, recent Chernoff
bounds for sums of positive semidefinite matrices, and classical stability bounds for
invariant subspaces of singular value decompositions.

Keywords High-dimensional function approximation · Compressed sensing ·
Chernoff bounds for sums of positive semidefinite matrices · Stability bounds for
invariant subspaces of singular value decompositions
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1 Introduction

1.1 Learning High-Dimensional Functions from Few Samples

In large-scale data analysis and learning, several real-life problems can be formu-
lated as capturing or approximating a function defined on Ω ⊂ R

d with dimension
d very large, from relatively few given samples or queries. The usual assumption on
the class of functions to be recovered is smoothness. The more regular a function
is, the more accurately and the more efficiently it can be numerically approximated.
However, in the field of information-based complexity this kind of problem is gen-
erally intractable; i.e., it does not have polynomial complexity. To clarify this poor
approximation phenomenon, assume

Fd := {
f : [0,1]d → R,

∥∥Dαf
∥∥∞ ≤ 1, α ∈ N

d
0

}

to be the class of smooth functions we would like to approximate. We define the sam-
pling operator Sn = φ ◦ N , where N : Fd → R

n is a suitable measurement operator
and φ : R

n → L∞([0,1]d) a recovery map. For example, N can take n samples f (xi),
i = 1, . . . , n of f , and φ can be a suitable interpolation operator. The approximation
error provided by such a sampling operator is given by

e(Sn) := sup
f ∈Fd

∥∥f − Sn(f )
∥∥∞.

With this notion we further define the approximation numbers

e(n, d) := inf
Sn

e(Sn),

indicating the performance of the best sampling method, and

n(ε, d) := inf
{
n : e(n, d) ≤ ε

}
, (1)

which is the minimal number of samples we need for the best sampling method to
achieve a uniform accuracy ε ∈ (0,1).
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1.2 Intractability Results

Recent results by Novak and Woźniakowski [24] state that for a uniform approxima-
tion over Fd we have e(n, d) = 1 for all n ≤ 2	d/2
 − 1 or n(ε, d) ≥ 2	d/2
 for all
ε ∈ (0,1). Hence, the number of samples to approximate even a C∞-function grows
exponentially with the dimension d . This result seems to obliterate any hope for an
efficient solution of the learning problem in high dimension, and this phenomenon is
sometimes referred to as the curse of dimensionality.

Nevertheless, very often the high-dimensional functions which we can expect as
solutions to real-life problems exhibit more structure and eventually are much better
behaved with respect to the approximation problem. Several models currently appear
in the literature for which the approximation problem is tractable; i.e., the approxi-
mation error does not grow exponentially with respect to the dimension d .

According to the behavior of the information complexity n(ε, d), cf. (1), for small
ε > 0 and large d ∈ N, one speaks of

• polynomial tractability: if n(ε, d) depends polynomially on ε−1 and d

• strong polynomial tractability: if n(ε, d) depends polynomially only on ε−1

• weak tractability: if limε−1+d→∞
logn(ε,d)

ε−1+d
= 0

We point to [23, Chaps. 1 and 2] for further notions of tractability and many refer-
ences.

In the next two subsections we will recount a few relevant approaches leading in
some cases to (some sort of) tractability.

1.3 Functions of Few Variables

A function f : [0,1]d → R of d variables (d large) may be a sum of functions, which
only depend on k variables (k small):

f (x1, . . . , xd) =
m∑

�=1

g�(xi1, . . . , xik ). (2)

In optimization such functions are called partially separable. This model arises for
instance in physics, when we consider problems involving interaction potentials, such
as the Coulomb potential in electronic structure computations, or in social and eco-
nomical models describing multiagent dynamics. Once k is fixed and d → ∞, the
learning problem of such functions is tractable, even if the g� are not very smooth. We
specifically refer to the recent work of DeVore et al. [13], which describes an adaptive
method for the recovery of high-dimensional functions in this class, for m = 1.

This model can be extended to functions which are only approximatively depend-
ing on few variables, by considering the unit ball Hd,γ of the weighted Sobolev space
of functions f : [0,1]d → R with

‖f ‖2
d,γ :=

∑

u⊂[d]
γ −1
d,u

∫

[0,1]d

(
∂ |u|

∂xu

f (x)

)2

dx ≤ 1, (3)
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where [d] := {1, . . . , d}, and γ := {γd,u} are non-negative weights; the definition
0
0 := 0 and the choice of γd,u = 0 leads us again to the model (2). A study of the
tractability of this class, for various weights, can be found in [23].

1.4 Functions of One Linear Parameter in High Dimensions

One of the weaknesses of the model classes introduced above is that they are very
coordinate biased. It would be desirable to have results for a class of basis changes
which would make the model basis-independent. A general model assumes that

f (x) = g(Ax), (4)

for A an arbitrary k×d matrix. While solutions to these unconstrained problems have
so far been elusive, the special case of

f (x) = g(a · x), (5)

where a is a stochastic vector, i.e., a = (a1, . . . , ad), aj ≥ 0,
∑d

j=1 aj = 1, and
g : [0,1] → R is a Cs function for s > 1, has been fully addressed with an optimal
recovery method in [11].

The aim of this work is to find an appropriate formulation of the general model (4),
which generalizes both the model of k active coordinates as well as the model of one
stochastic vector, and to analyze the tractability of the corresponding approximation
problem. The rest of the paper is organized as follows. After introducing some basic
notation, the next section is dedicated to the motivation and discussion of the gener-
alized model. As an introduction to our formulation and solution approach, we then
proceed to analyze the simple case of one active direction in Sect. 3, under milder
assumptions on the vector a = (a1, . . . , ad), before finally addressing the fully gen-
eralized problem in Sect. 4. The last section is dedicated to the discussion of further
extensions of our approach, to be addressed in successive papers.

1.5 Notation

In the following we will deal exclusively with real matrices, and we denote the space
of n×m real matrices by Mn×m. The entries of a matrix X are denoted by lower case
letters and the corresponding indices, i.e., Xij = xij . The transposed matrix XT ∈
Mm×n of a matrix X ∈ Mn×m is the matrix with entries xT

ij = xji . For X ∈ Mn×m we
can write its (reduced) singular value decomposition [19] as

X = UΣV T

with U ∈ Mn×p , V ∈ Mm×p , p ≤ min(n,m), matrices with orthonormal columns,
and Σ = diag(σ1, . . . , σp) ∈ Mp×p a diagonal matrix where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0
are the singular values. For specific matrices X we write the singular value decom-
position

X = U(X)Σ(X)V (X)T = UXΣXV T
X .



Found Comput Math (2012) 12:229–262 233

For symmetric, positive semidefinite matrices, i.e., X = XT and vT Xv ≥ 0 for all
vectors v, we can take V = U , and the singular value decomposition is equivalent to
the eigenvalue decomposition. Note also that σi(X) = √

λi(XT X), where λi(X
T X)

is the ith largest eigenvalue of the matrix XT X (actually, this holds for n ≥ m,
whereas we may want to consider XXT instead of XT X if m > n). The rank of
X ∈ Mn×m denoted by rank(X) is the number of nonzero singular values. We define
the Frobenius norm of a matrix X as

‖X‖F :=
(∑

ij

|xij |2
)1/2

.

It is also convenient to introduce the �n
p vector norms

‖x‖�n
p

:=
(

n∑

i=1

|xi |p
)1/p

, 0 < p < ∞.

We denote the identity matrix by In ∈ Mn×n. The symbol BRn stands for the unit ball
and BRn(r) for the ball of radius r > 0 in R

n. The unit sphere in R
n is denoted by

S
n−1. Finally, Ln indicates the Lebesgue measure in R

n.

2 The General Model f (x) = g(Ax) and Its Simplifications

The first approach one may be tempted to consider for a generalization of (5) is to
ask that f : [0,1]d → R is of the form f (x) = g(Ax), where A is a k × d stochastic
matrix with orthonormal rows, i.e., aij ≥ 0,

∑d
j=1 aij = 1 for all i = 1, . . . , k, AAT =

Ik , and g : A([0,1]d) → R is a Cs function for s > 1. However, there are two main
problems with this formulation. The conditions of stochasticity and orthonormality
of the rows of A together are very restrictive—the only matrices satisfying both of
them are those having only one non-negative entry per column—and the domain of g

cannot be chosen generically as [0,1]k but depends on A; i.e., it is the k-dimensional
polytope A([0,1]d). Thus we will first return to the unconstrained model in (4) and
give up the conditions of stochasticity and orthonormality. This introduces rotational
invariance for the rows of A, and the quadrant defined by [0,1]d is no longer set
apart as search space. Consequently and to avoid the complications arising with the
polytope A([0,1]d), we will therefore focus on functions defined on the Euclidean
ball.

To be precise, we consider functions f : BRd (1 + ε̄) → R of the form (4), where
A is an arbitrary k × d matrix whose rows are in �d

q , for some 0 < q ≤ 1,

(
d∑

j=1

|aij |q
)1/q

≤ C1.

Further, we assume that the function g is defined on the image of BRd (1 + ε̄)

under the matrix A and is twice continuously differentiable on this domain, i.e.,
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g ∈ C2(ABRd (1 + ε̄)), and

max
|α|≤2

∥∥Dαg
∥∥∞ ≤ C2.

For μSd−1 the uniform surface measure on the sphere S
d−1 we define the matrix

Hf :=
∫

Sd−1
∇f (x)∇f (x)T dμSd−1(x). (6)

From the identity ∇f (x) = AT ∇g(Ax) we obtain

Hf = AT ·
∫

Sd−1
∇g(Ax)∇g(Ax)T dμSd−1(x) · A, (7)

and therefore the rank of Hf is k or less. We will require Hf to be well conditioned;
i.e., its singular values must satisfy σ1(H

f ) ≥ · · · ≥ σk(H
f ) ≥ α > 0.

The parameters in our model are the dimension d (large), the linear parameter
dimension k (small), the non-negative constants C1,C2, 0 < q ≤ 1, and 0 < α ≤ kC2

2 .
We now show that this model can be simplified as follows. First we see that giving

up the orthonormality condition on the rows of A was actually unnecessary. Let us
consider the singular value decomposition of A = UΣV T , hence we rewrite

f (x) = g(Ax) = g̃(Ãx), ÃÃT = Ik,

where g̃(y) = g(UΣy) and Ã = V T . In particular, by simple direct computations,

• sup|α|≤2 ‖Dαg̃‖∞ ≤ sup|α|≤2 ‖Dαg‖∞ · max{√kσ1(A), kσ1(A)2} and

• (
∑d

j=1 |ãij |q)1/q ≤ C1σk(A)−1k1/q−1/2.

Hence, by possibly considering different constants C̃1 = k1/q−1/2σk(A)−1C1 and
C̃2 = max{√kσ1(A), kσ1(A)2}C2, we can always assume that AAT = Ik , meaning
A is row-orthonormal. Note that for a row-orthonormal matrix A, (7) tells us that the
singular values of Hf are the same as those of Hg , where

Hg :=
∫

Sd−1
∇g(Ax)∇g(Ax)T dμSd−1(x).

The following simple result states that our model is almost well defined. As we will
see later, the conditions on A and f will be sufficient for the unique identification of f

by approximation up to any accuracy, but not necessarily for the unique identification
of A and g.

Lemma 2.1 Assume that f (x) = g(Ax) = g̃(Ãx) with A, Ã two k ×d matrices such
that AAT = Ik = ÃÃT and that Hf has rank k. Then Ã = OA for some k × k

orthonormal matrix O.

Proof Because A and Ã are row-orthonormal the singular values of Hg and Hg̃ are
the same as those of Hf ; i.e., we have Hg = UΣUT and Hg̃ = ŨΣŨT , where Σ is
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a k × k diagonal matrix containing the singular values of Hf in nonincreasing order
and U, Ũ are orthonormal k × k matrices. Inserting this into (7) we get

Hf = AT HgA = AT UΣUT A = ÃT Hg̃Ã = ÃT ŨΣŨT Ã.

UT A and ŨT Ã are both row-orthonormal, so we have two singular value decom-
positions of Hf . Because the singular vectors are unique up to an orthonormal
transform, we have ŨT Ã = V UT A for some orthonormal matrix V or Ã = OA for
O = ŨV UT , which is by construction orthonormal. �

With these observations in mind, let us now restate the problem and summarize
our requirements. We restrict the learning problem to functions f : BRd (1 + ε̄) → R

of the form f (x) = g(Ax), where A ∈ Mk×d and AAT = Ik . As we are inter-
ested in recovering f from a small number of samples, the accuracy will depend
on the smoothness of g. In order to get simple convergence estimates, we require
g ∈ C2(BRk (1 + ε̄)). These choices determine two positive constants C1,C2 for
which

(
d∑

j=1

|aij |q
)1/q

≤ C1, (8)

and

sup
|α|≤2

∥∥Dαg
∥∥∞ ≤ C2. (9)

For the problem to be well conditioned we require the matrix Hf to be positive
definite,

σ1
(
Hf

) ≥ · · · ≥ σk

(
Hf

) ≥ α, (10)

for a fixed constant α > 0 (actually later we may simply choose α = σk(H
f )).

Remark 1 Let us briefly comment on condition (10) in the most simple case k = 1, by
showing that such a condition is actually necessary in order to formulate a tractable
algorithm for the uniform approximation of f from point evaluations.

The optimal choice of α is given by

α =
∫

Sd−1

∣∣g′(a · x)
∣∣2 dμSd−1(x) = Γ (d/2)

π1/2Γ ((d − 1)/2)

∫ 1

−1

(
1 − |y|2) d−3

2 dy, (11)

cf. Theorem 3.7. Furthermore, we consider the function g ∈ C2([−1− ε̄,1+ ε̄]) given
by g(y) = 8(y − 1/2)3 for y ∈ [1/2,1 + ε̄] and zero otherwise. Notice that, for every
a ∈ R

d with ‖a‖�d
2

= 1, the function f (x) = g(a · x) vanishes everywhere on S
d−1

outside of the cap U (a,1/2) := {x ∈ S
d−1 : a · x ≥ 1/2} (see Fig. 1). The μSd−1 mea-

sure of U (a,1/2) obviously does not depend on a and is known to be exponentially
small in d [21]; see also Sect. 3.3. Furthermore, it is known that there is a constant
c > 0 and unit vectors a1, . . . , aK , such that the sets U (a1,1/2), . . . , U (aK,1/2) are
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Fig. 1 The function g and the spherical cap U (a,1/2)

mutually disjoint and K ≥ ecd . Finally, we observe that maxx∈Sd−1 |f (x)| = f (a) =
g(1) = 1.

We conclude that any algorithm making use only of the structure of f (x) =
g(a · x) and the condition (9) must use exponentially many sampling points in or-
der to distinguish between f (x) ≡ 0 and f (x) = g(ai · x) for some of the ai ’s as
constructed above. Hence, some additional conditions like (8) and (10) are actually
necessary to avoid the curse of dimensionality and to achieve at least some sort of
tractability. Let us observe that α = α(d) decays exponentially with d for the func-
tion g considered above. We shall further discuss the role of α in Sect. 3.3.

Contrary to the approach in [11], our strategy to learn functions of the type (4) is
to first find an approximation Â to A. Once this is known, we will give a pointwise
definition of the function ĝ on BRk (1) such that f̂ (x) := ĝ(Âx) is a good approxima-
tion to f on BRd (1). This will be done in such a way that the evaluation of ĝ at one
point will require only one function evaluation of f . Consequently, an approximation
of ĝ on its domain BRk (1) using standard techniques, like sampling on a regular grid
and spline-type approximations, will require a number of function evaluations of f

depending only on the desired accuracy and k, but not on d . Thus we will restrict our
analysis to the problem of finding Â, defining ĝ, and the amount of queries necessary
to do that.

3 The One-Dimensional Case k = 1

For an easy introduction, we start by addressing our recovery method again in the
simplest case of a ridge function,

f (x) = g(a · x), (12)

where a = (a1, . . . , ad) ∈ R
d is a row vector, ‖a‖�d

2
= 1, and g is a function from the

image of BRd (1 + ε̄) under a to R, i.e., g : BR(1 + ε̄) → R.
The ridge function terminology was introduced in the 1970s by Logan and

Shepp [22] in connection with the mathematics of computer tomography, but these
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functions have been considered for some time under the name of plane waves. See,
for example, [12, 20]. Ridge functions and ridge function approximation are studied
in statistics, often under the name of projection pursuit. Projection pursuit algorithms
approximate a function of d variables by functions of the form

f (x) ≈
�∑

j=1

gj (aj · x). (13)

Hence the recovery of f in (12) from few samples can be seen as an instance of the
projection pursuit problem. For a survey on some approximation-theoretic questions
concerning ridge functions and their connections to neural networks, see [27] and
references therein, and the work of Candès and Donoho on ridgelet approximation
[5–7].

For further clarity of notation, in the following we will assume a to be a row
vector, i.e., a 1 × d matrix, while other vectors, x, ξ,ϕ, . . . , are always assumed to be
column vectors. Hence the symbol a · x stands for the product of the 1 × d matrix a

with the d × 1 vector x.

3.1 The Algorithm

As in [11] a basic ingredient of the algorithm is a version of Taylor’s theorem giving
access to the vector a. For ξ ∈ BRd , ϕ ∈ BRd (r), ε, r ∈ R+, with rε ≤ ε̄, we have, by
Taylor’s expansion, the identity

[
g′(a · ξ)a

] · ϕ = ∂f

∂ϕ
(ξ) = f (ξ + εϕ) − f (ξ)

ε
− ε

2

[
ϕT ∇2f (ζ )ϕ

]
, (14)

for a suitable ζ(ξ,ϕ) ∈ BRd (1 + ε̄). From our assumptions (8) and (9), the term
[ϕT ∇2f (ζ )ϕ] is uniformly bounded as soon as ϕ is bounded. We will consider the
above equality for several directions ϕi and at several sampling points ξj .

To be more precise, we define two sets X ,Φ of points. The first,

X = {
ξj ∈ S

d−1 : j = 1, . . . ,mX
}
, (15)

contains the mX sampling points and is drawn at random in S
d−1 according to the

probability measure μSd−1 . For the second, containing the mΦ derivative directions,
we have

Φ =
{

ϕi ∈ BRd (
√

d/
√

mΦ) : ϕi� = 1√
mΦ

{
1, with probability 1/2,

−1, with probability 1/2,

i = 1, . . . ,mΦ, and � = 1, . . . , d

}

. (16)

Actually, we identify Φ with the mΦ × d matrix whose rows are the vectors ϕi . To
write the mX × mΦ instances of (14) in a concise way, we collect the directional
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derivatives g′(a · ξj )a, j = 1, . . . ,mX as columns in the d × mX matrix X, i.e.,

X = (
g′(a · ξ1)a

T , . . . , g′(a · ξmX )aT
)
, (17)

and we define the mΦ × mX matrices Y and E entrywise by

yij = f (ξj + εϕi) − f (ξj )

ε
, (18)

and

εij = ε

2

[
ϕT

i ∇2f (ζij )ϕi

]
. (19)

We denote by yj the columns of Y and by εj the columns of E , j = 1, . . . ,mX . With
these matrices we can write the following factorization:

ΦX = Y − E . (20)

The algorithm we propose to approximate the vector a is now based on the fact
that the matrix X has a very special structure, i.e., X = aT GT , where G = (g′(a ·
ξ1), . . . , g

′(a · ξmX ))T . In other words, every column xj is a scaled copy of the vec-
tor aT and compressible if a is compressible. We define a vector a as compressible
informally by saying that it can be well approximated in �p-norm by a sparse vec-
tor. Actually, any vector a with small �q -norm can be approximated in �p by its best
K-term approximation a[K] according to the following well-known estimate:

σK(x)�d
p

:= ‖a − a[K]‖�d
p

≤ ‖a‖�d
q
K1/p−1/q, p ≥ q. (21)

Thus by changing the viewpoint to get

Y = ΦX + E ,

we see that due to the random construction of Φ we actually have a compressed sens-
ing problem, and known theory tells us that we can recover a stable approximation
x̂j to xj via �1-minimization (see Theorem 3.2 for the precise statement). To get an
approximation of a we then simply have to set â = x̂j /‖x̂j‖�d

2
for j such that ‖x̂j‖�d

2
is maximal. From these informal ideas we derive the following algorithm.

Algorithm 1

• Given mΦ,mX , draw at random the sets Φ and X as in (15) and (16), and
construct Y according to (18).

• Set x̂j = �(yj ) := arg minyj =Φz ‖z‖�d
1
.

• Find

j0 = arg max
j=1,...,mX

‖x̂j‖�d
2
. (22)

• Set â = x̂j0/‖x̂j0‖�d
2
.

• Define ĝ(y) := f (âT y) and f̂ (x) := ĝ(â · x).
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The quality of the final approximation clearly depends on the error between x̂j

and xj , which can be controlled through the number of compressed sensing mea-
surements mΦ , and the size of â ≈ maxj ‖xj‖�d

2
= maxj |g′(a · ξj )|, which is re-

lated to the number of random samples mX . If (11) is satisfied with α large, we
shall show in Lemma 3.6 with the help of Hoeffding’s inequality that maxj ‖xj‖�d

2
=

maxj |g′(a · ξj )| is also large with high probability. If the value of α is unknown and
small, the values of ‖x̂j‖�d

2
produced by Algorithm 1 could be small as well and, as

discussed after the formula (11), no reliable and tractable approximation procedure
is possible.

To be exact, in the next section we will prove the following approximation result.

Theorem 3.1 Let 0 < s < 1 and logd ≤ mΦ ≤ [log 6]−2d . Then there is a constant
c′

1 such that using mX · (mΦ + 1) function evaluations of f , Algorithm 1 defines a

function f̂ : BRd (1 + ε̄) → R that, with probability

1 −
(
e−c′

1mΦ + e−√
mΦd + 2e

− 2mX s2α2

C4
2

)
, (23)

will satisfy

‖f − f̂ ‖∞ ≤ 2C2(1 + ε̄)
ν1√

α(1 − s) − ν1
, (24)

where

ν1 = C′
([

mΦ

log(d/mΦ)

]1/2−1/q

+ ε√
mΦ

)
(25)

and C′ depends only on C1 and C2 from (8) and (9).

Remark 2 1. We shall fix ν1 as defined by (25) for the rest of this section. Fur-
thermore, we suppose that the selected parameters (s, ε, and mΦ ) are such that
ν1 <

√
α(1 − s) holds. Refer to Remark 4(ii) to see how we can circumvent in prac-

tice the case that this condition may not hold, clearly invalidating the approxima-
tion (24).

2. In order to show a concrete application of the previous result, let us consider, for
simplicity, a class of uniformly smooth functions g such that |g′(0)| �= 0; hence, by
Proposition 3.8, α = α(g) > 0 is independent of the dimension d . If additionally we
choose q = 1, mΦ < d , and ε > 0 such that mΦ(ε +√

log(d/mΦ))−2 = O(δ−2α−1),
δ > 0, for δ,α → 0 and mX = O(α−2) for α → 0, then, according to Theorem 3.1,
we obtain the uniform error estimate

‖f − f̂ ‖∞ = O(δ), δ → 0,

with high probability. Notice that, if 1/ log(d) > δ > 0, then the number of evaluation
points mX · (mΦ + 1) = O((δ · α)−3), for δ,α → 0, is actually independent of the
dimension d .
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3.2 The Analysis

We will first show that x̂j is a good approximation to xj for all j . This follows by
the results from the framework of compressed sensing [3, 8, 10, 14, 16–18]. In par-
ticular, we state the following useful result, which is a specialization of Theorem 1.2
from [36] to the case of Bernoulli matrices.

Theorem 3.2 Assume that Φ is an m × d random matrix with all entries being inde-
pendent Bernoulli variables scaled with 1/

√
m, see, e.g., (16).

(i) Let 0 < δ < 1. Then there are two positive constants c1, c2 > 0, such that the
matrix Φ has the restricted isometry property

(1 − δ)‖x‖2
�d

2
≤ ‖Φx‖2

�m
2

≤ (1 + δ)‖x‖2
�d

2
(26)

for all x ∈ R
d such that # supp(x) ≤ c2m/ log(d/m) with probability at least

1 − e−c1m. (27)

(ii) Let us suppose that d > [log 6]2m. Then there are positive constants
C,c′

1, c
′
2 > 0, such that, with probability at least

1 − e−c′
1m − e−√

md, (28)

the matrix Φ has the following property. For every x ∈ R
d , ε ∈ R

m and every
natural number K ≤ c′

2m/ log(d/m) we have

∥∥�(Φx + ε) − x
∥∥

�d
2
≤ C

(
K−1/2σK(x)�d

1
+ max

{‖ε‖�m
2
,
√

logd‖ε‖�m∞
})

, (29)

where

σK(x)�d
1
:= inf

{‖x − z‖�d
1
: # supp z ≤ K

}

is the best K-term approximation of x.

Remark 3 (i) The first part of Theorem 3.2 is well known; see, e.g., [3] or [16, p. 15]
and references therein.

(ii) The second part of Theorem 3.2 is relatively new. It follows from Theorem 2.3
of [36] combined with Theorem 3.5 of [13], and the first part of Theorem 3.2. Without
the explicit bound of the probability (28), it also appears as Theorem 1.2 in [36].

Applied to the situation at hand, we immediately derive the following corollary.

Corollary 3.3 (i) Let d > [log 6]2mΦ . Then with probability at least

1 − (
e−c′

1mΦ + e−√
mΦd

)
,



Found Comput Math (2012) 12:229–262 241

all the vectors x̂j = �(yj ), j = 1, . . . ,mX calculated in Algorithm 1 satisfy

‖xj − x̂j‖�d
2
≤ C

([
mΦ

log(d/mΦ)

]1/2−1/q

+ max
{‖εj‖�

mΦ
2

,
√

logd‖εj‖�
mΦ∞

})
(30)

where C depends only on C1 and C2 from (8) and (9).
(ii) If furthermore mΦ ≥ logd holds, then with the same probability also

‖xj − x̂j‖�d
2
≤ C′

([
mΦ

log(d/mΦ)

]1/2−1/q

+ ε√
mΦ

)
, (31)

where C′ depends again only on C1 and C2 from (8) and (9).

Proof We apply Theorem 3.2 to the equation yj = Φxj + εj and K ≤ c′
2mΦ/

log(d/mΦ). To do so, we must estimate the best K-term approximation error of
σK(xj )�d

1
and the size of the errors εj . We start by bounding σK(xj )�d

1
. Recall that

due to the construction of X every column is a scaled copy of the vector aT , i.e.,
xj = g′(a · ξj )a

T , so we have by (21)

K−1/2σK(xj )�d
1
≤ ∣∣g′(a · ξj )

∣∣ · ‖a‖�d
q
· K1/2−1/q ≤ C1 C2

[
mΦ

log(d/mΦ)

]1/2−1/q

.

(32)
This finishes the proof of the first part.

To prove the second part, we estimate the size of the errors using (19),

‖εj‖�
mΦ∞ = ε

2
· max
i=1,...,mΦ

∣∣ϕT
i ∇2f (ζij )ϕi

∣∣

= ε

2mΦ

· max
i=1,...,mΦ

∣∣∣∣∣

d∑

k,l=1

akalg
′′(a · ζij )

∣∣∣∣∣

≤ ε‖g′′‖∞
2mΦ

(
d∑

k=1

|ak|
)2

≤ ε‖g′′‖∞
2mΦ

(
d∑

k=1

|ak|q
)2/q

≤ C2
1C2

2mΦ

ε, (33)

‖εj‖�
mΦ
2

≤ √
mΦ‖εj‖�

mΦ∞ ≤ C2
1C2

2
√

mΦ

ε, (34)

leading to

max
{‖εj‖�

mΦ
2

,
√

logd‖εj‖�
mΦ∞

} ≤ C2
1C2

2
√

mΦ

ε · max

{
1,

√
logd

mΦ

}
.

Together with our assumption mΦ ≥ logd , this finishes the proof. �

Next we need a technical lemma to relate the error between the normalized version
of x̂j and a to the size of ‖x̂j‖�d

2
.
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Lemma 3.4 (Stability of subspaces: one-dimensional case) Let us fix x̂ ∈ R
d , a ∈

S
d−1, 0 �= γ ∈ R, and n ∈ R

d with norm ‖n‖�d
2
≤ ν1 < |γ |. If we assume x̂ = γ a +n,

then
∥∥∥∥signγ

x̂

‖x̂‖�d
2

− a

∥∥∥∥
�d

2

≤ 2ν1

‖x̂‖�d
2

. (35)

Proof Applying the triangular inequality and its reverse form several times and using
a ∈ S

d−1, we get
∥∥∥∥signγ

x̂

‖x̂‖�d
2

− a

∥∥∥∥
�d

2

≤
∥∥∥∥signγ

x̂

‖x̂‖�d
2

− |γ |a
‖x̂‖�d

2

∥∥∥∥
�d

2

+
∥∥∥∥

|γ |a
‖x̂‖�d

2

− a

∥∥∥∥
�d

2

≤ ν1

‖x̂‖�d
2

+
∣∣∣∣

|γ |
‖x̂‖�d

2

− 1

∣∣∣∣ ≤
2ν1

‖x̂‖�d
2

.
�

Applied to our situation where x̂j = g′(a · ξj )a
T + nj , we see that the bound

in (35) is best for ‖x̂j‖�d
2

maximal, which justifies our definition of â in Algorithm 1.
As a last ingredient for the proof of Theorem 3.1 we need a lower bound for

maxj=1,...,mX ‖x̂‖�d
2
. Since we have maxj ‖x̂j‖�d

2
≥ maxj |g′(a · ξj )| − maxj ‖x̂j −

xj‖�d
2

≥ maxj |g′(a · ξj )| − ν1 we just have to show that, with high probability, our
random sampling of the gradient via the ξj provided a good maximum. To do this we
will use Hoeffding’s inequality, which we recall below for the reader’s convenience.

Proposition 3.5 (Hoeffding’s inequality) Let X1, . . . ,Xm be independent random
variables. Assume that the Xj are almost surely bounded, i.e., there exist finite scalars
aj , bj such that

P
{
Xj − EXj ∈ [aj , bj ]

} = 1,

for j = 1, . . . ,m. Then we have

P

{∣∣∣∣∣

m∑

j=1

Xj − E

(
m∑

j=1

Xj

)∣∣∣∣∣
≥ t

}

≤ 2e
− 2t2∑m

j=1(bj −aj )2
.

Let us now apply Hoeffding’s inequality to the random variables Xj = |g′(a ·ξj )|2.

Lemma 3.6 Let us fix 0 < s < 1. Then with probability 1 − 2e
− 2mX s2α2

C4
2 we have

max
j=1,...,mX

∣∣g′(a · ξj )
∣∣ ≥ √

α(1 − s),

where α := Eξ (|g′(a · ξj )|2).
Proof By our assumptions (10) and (9) we have

EXj = Eξ

(∣∣g′(a · ξj )
∣∣2) =

∫

Sd−1

∣∣g′(a · ξ)
∣∣2 dμSd−1(ξ) ≥ α > 0,
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and

Xj − EXj ∈ [−α,C2
2 − α

]
.

Hence, by Hoeffding’s inequality we have

P

{∣∣
∣∣∣

mX∑

j=1

∣∣g′(a · ξj )
∣∣2 − mX α

∣∣
∣∣∣
≥ smX α

}

≤ 2e
− 2mX s2α2

C4
2 . (36)

Using (36) we immediately obtain

1

mX

mX∑

j=1

∣∣g′(a · ξj )
∣∣2 ≥ α(1 − s), (37)

with probability 1 − 2e
− 2mX s2α2

C4
2 . If |g′(a · ξj )|2 < α(1 − s) for all j = 1, . . . ,mX ,

then (37) would be violated. Hence for the maximum we have

max
j=1,...,mX

∣∣g′(a · ξj )
∣∣ ≥ √

α(1 − s). �

Finally we have all the tools ready to prove Theorem 3.1.

Proof of Theorem 3.1 Lemma 3.6 ensures that

∣∣g′(a · ξj0)
∣∣ ≥ √

α(1 − s)

with probability 1 − 2e
− 2mX s2α2

C4
2 . Therefore, Corollary 3.3 together with Lemma 3.4

show that with probability at least

1 −
(
e−c′

1mΦ + e−√
mΦd + 2e

− 2mX s2α2

C4
2

)
,

â as defined in Algorithm 1 satisfies

∥∥sign
(
g′(a · ξj0)

)
â − a

∥∥
�d

2
≤ 2ν1√

α(1 − s) − ν1
(38)

for the unknown sign of g′(a · ξj0).
Using this estimate we can prove that f̂ as defined in Algorithm 1 is a good ap-

proximation to f . For x ∈ BRd (1 + ε̄) we have

∣∣f (x) − f̂ (x)
∣∣ = ∣∣g(a · x) − ĝ(â · x)

∣∣

= ∣∣g(a · x) − f
(
âT · â · x)∣∣

= ∣∣g(a · x) − g
(
a · âT · â · x)∣∣
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≤ C2
∣∣a · x − a · [âT â

] · x∣∣
= C2

∣∣a · (Id − âT â
)
x
∣∣.

Because â(Id − âT â) = 0 and therefore sign(g′(a · ξj0))â(Id − âT â) = 0, we can
further estimate

∣
∣f (x) − f̂ (x)

∣
∣ ≤ C2

∣
∣a · (Id − âT â

)
x
∣
∣

= C2
∣∣(a − sign

(
g′(a · ξj0)

)
â
) · (Id − âT â

)
x
∣∣

≤ C2
∥∥a − sign

(
g′(a · ξj0)

)
â
∥∥

�d
2
· ‖x‖�d

2

≤ 2C2(1 + ε̄)
ν1√

α(1 − s) − ν1
. �

Remark 4 Here we present a few comments on this result.

(i) Our recovery method differs from the one proposed by Cohen, Daubechies, De-
Vore, Kerkyacharian, and Picard [11]. In their approach, the domain is taken to
be [0,1]d and they make heavy use of the additional assumption

∑d
j=1 aj = 1

with aj ≥ 0. This allows them to derive an almost completely deterministic and
adaptive strategy for sampling the function f in order to first find an approxima-
tion to g and only then address the approximation to a. Here we follow somehow
the opposite order, first approximating a and then finding a uniform approxima-
tion to g and, eventually, to f as well. Notice further that not having additional
information on a, which is fully arbitrary in our case, we need to use a random
sampling scheme which eventually gives a result holding with high probability.

(ii) Note that Theorem 3.1 gives an a priori estimate of the success probability and
approximation error of Algorithm 1. If the problem parameters q,C1,C2, and α

are known, they can be used to choose mΦ and mX big enough to have, say, a
prescribed desired accuracy δ with probability at least 1 − p.

However, once Algorithm 1 has been run we have the following a posteriori
estimate. With probability at least 1 − (e−c′

1mΦ + e−√
mΦd) we obtain

‖f − f̂ ‖∞ ≤ C2(1 + ε̄)
2ν1

‖xj0‖�d
2

.

Hence, the ratio 2ν1‖xj0 ‖
�d2

� 1 defines an a posteriori indicator that the number of

samples mX and mΦ has been properly calibrated; otherwise, more points will
be drawn until such a condition is obtained.

(iii) The parameter ε is chosen at the very beginning in the Taylor expansion (14)
and, from a purely theoretical point of view, could be chosen arbitrarily small.
Unfortunately, this may affect the numerical stability in the approximation in
(14) of the derivative ∂f

∂ϕ
(ξ) by means of a finite difference. Hence, the param-

eter ε should not be taken too small in practice. Up to some extent this may be
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compensated by choosing a larger number of points mΦ in (25), as in our ex-
pression for ν1 in (25) ε appears in a ratio of the form ε√

mΦ
. We return in more

detail to this point in Sect. 5.1. In recent numerical experiments associated to the
work [31], we have been experiencing very stable reconstructions with reason-
able choices, e.g., ε ≈ 0.1. Hence, we do not consider this issue of any practical
relevance or difficulty.

3.3 Discussion on Tractability

The approximation performances of our learning strategy are basically determined
by the optimal value of α (see, e.g., (10)), which is achieved by the choice

α :=
∫

Sd−1

∣∣g′(a · x)
∣∣2 dμSd−1(x). (39)

For symmetry reasons this quantity does not depend on the particular choice of a.
The rotation-invariant probability measure μSd−1 on S

d−1 is induced on the sphere
by the (left) Haar measure on the Lie group of all orientation-preserving rotations. For
a given k × d matrix U such that UUT = Ik (i.e., with orthonormal rows) we define
the measure μk on the unit ball BRk in R

k induced by the projection of μSd−1 via U ;
i.e., for any Borel set B ⊂ BRk we define

μk(B) := U#μSd−1(B) := μSd−1

(
U←(B)

)
. (40)

Since μSd−1 is rotation-invariant, μk does not depend on the particular matrix U ,
and is itself a rotation-invariant measure on BRk . Hence for any summable function
h : BRk → R, for any k × k orthogonal matrix O such that O OT = Ik = OT O, and
for any k × d matrix U such that UUT = Ik , we have the identities

∫

B
Rk

h(Oy)dμk(y) =
∫

B
Rk

h(y)dμk(y) =
∫

Sd−1
h(Ux)dμSd−1(x). (41)

The following result is well known. We refer to [30, Sect. 1.4.4] for the case of C
n.

The proof given there also works literally in the real case.

Theorem 3.7 Let 1 ≤ k < d be natural numbers. Then the measure μk defined in
(40) is given by

dμk(y) = Γ (d/2)

πk/2Γ ((d − k)/2)

(
1 − ‖y‖2

�k
2

) d−2−k
2 dy.

Notice that as d → ∞, and for fixed k, the measure μk becomes more and more
concentrated around 0, in the sense that, for ε > 0 fixed,

μk

(
BRk (ε)

) → 1, for d → ∞,
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very rapidly (typically exponentially). By using the explicit form of the measure μk

we can compute

μk

(
BRk (ε)

) = 1 − Γ (d/2)

πk/2Γ ((d − k)/2)

∫

B
Rk \B

Rk (ε)

(
1 − ‖y‖2

�k
2

) d−2−k
2 dy

= 1 − 2Γ (d/2)

Γ (k/2)Γ ((d − k)/2)

∫ 1

ε

(
1 − r2) d−2−k

2 rk−1 dr

≥ 1 − 2Γ (d/2)

Γ (k/2)Γ ((d − k)/2)
e− d−2−k

2 ε2
.

By Stirling’s approximation 2Γ (d/2)
Γ (k/2)Γ ((d−k)/2)

≈
√

dd−1

πkk−1(d−k)d−k−1 ; thus for k and ε

constant,

μk

(
BRk (ε)

) → 1

exponentially fast as d → ∞. For k = 1, this phenomenon can be summarized in-
formally by saying that the surface measure of the unit sphere in high dimension is
concentrated around the equator [21]. Hence in the case d � k we may want to take
into account possible rescaling, i.e., working with spheres of larger radii, in order
to eventually consider properties of g (actually the matrix Hg) on larger subsets of
R

k (see also Remark 4). Without loss of generality, by keeping in mind this possible
rescaling, we can assume to work with the unit sphere.

For k = 1, we observe that α as in (39) is determined by the interplay between the
variation properties of g and the measure μ1. As just mentioned above, the most rel-
evant feature of μ1 is that it concentrates around zero exponentially fast as d → ∞.
Hence, the asymptotic behavior of α exclusively depends on the behavior of the func-
tion g′ in a neighborhood of 0.

To illustrate this phenomenon more precisely, we present the following result.

Proposition 3.8 Let us fix M ∈ N and assume that g : BR → R is CM+2-

differentiable in an open neighborhood U of 0 and d�

dx� g(0) = 0 for � = 1, . . . ,M .
Then

α(d) = Γ (d/2)

π1/2Γ ((d − 1)/2)

∫ 1

−1

∣∣g′(y)
∣∣2(1 − y2) d−3

2 dy = O
(
d−M

)
, for d → ∞.

Proof First of all, we compute the �th moment of the measure Γ (d/2)

π1/2Γ ((d−1)/2)
×

(1 − y2)
d−3

2 L1:

Γ (d/2)

π1/2Γ ((d − 1)/2)

∫ 1

−1
y�

(
1 − y2) d−3

2 dy = [1 + (−1)�]Γ (d/2)Γ ((1 + �)/2)

2
√

πΓ ((d + �)/2)
.

(42)
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Notice that all the odd moments vanish. By a Taylor expansion of g′ around 0 and by

taking into account that d�

dx� g(0) = 0 for � = 1, . . . ,M , we obtain

g′(y) =
M+1∑

�=1

1

(� − 1)!
d�

dx�
g(0)y�−1 + O

(
yM+1) = 1

M!
dM+1

dxM+1
g(0)yM + O

(
yM+1).

Hence,

∣∣g′(y)
∣∣2 =

(
1

M!
dM+1

dxM+1
g(0)

)2

y2M + O
(
y2M+1),

and

α(d) = Γ (d/2)

π1/2Γ ((d − 1)/2)

∫ 1

−1

∣∣g′(y)
∣∣2(1 − y2) d−3

2 dy

= Γ (d/2)

π1/2Γ ((d − 1)/2)

(∫

U

∣∣g′(y)
∣∣2(1 − y2) d−3

2 dy

+
∫

BR\U

∣∣g′(y)
∣∣2(1 − y2) d−3

2 dy

)

= Γ (d/2)

π1/2Γ ((d − 1)/2)

((
1

M!
dM+1

dxM+1
g(0)

)2 ∫

U
y2M

(
1 − y2) d−3

2 dy

+
∫

U
O
(
y2M+2)(1 − y2) d−3

2 dy +
∫

BR\U

∣∣g′(y)
∣∣2(1 − y2) d−3

2 dy

)
.

We consider the (2M + 2)th moment in the expression above because the previous

one is odd and therefore vanishes. Now, the term
∫
BR\U |g′(y)|2(1 − y2)

d−3
2 dy goes

to zero exponentially fast for d → 0. Using (42) we immediately obtain

α(d) = Γ (d/2)

π1/2Γ ((d − 1)/2)

∫ 1

−1

∣∣g′(y)
∣∣2(1 − y2) d−3

2 dy

= O
(

Γ (d/2)Γ ((1 + 2M)/2)

Γ ((d + 2M)/2)

)
, d → ∞.

By Stirling’s approximation, for which Γ (z) =
√

2π
z

( z
e
)z + O(1 + 1/z), for z → ∞,

we obtain

Γ (d/2)Γ ((1 + 2M)/2)

Γ ((d + 2M)/2)
≈ d(d−1)/2(1 + 2M)M(d + 2M)−( d+1

2 +M), d → ∞.

This eventually yields

α(d) = Γ (d/2)

π1/2Γ ((d − 1)/2)

∫ 1

−1

∣∣g′(y)
∣∣2(1 − y2) d−3

2 dy = O
(
d−M

)
, d → ∞. �
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The number mX × (mΦ + 1) of points we need to achieve a prescribed accuracy
in the error estimate (24) of Theorem 3.1 depends on α. Proposition 3.8 ensures that,
if g′(y) does not vanish for y → 0 superpolynomially, then the dependence of α (and
therefore of the error estimate and the number mX × (mΦ + 1) of points) on d is at
most polynomial. According to this observation we distinguish three classes of ridge
functions:

(1) For 0 < q ≤ 1, C1 > 1 and C2 ≥ α0 > 0, we define

F 1
d := F 1

d (α0, q,C1,C2) := {
f : BRd → R :

∃a ∈ R
d,‖a‖�d

2
= 1,‖a‖�d

q
≤ C1 and

∃g ∈ C2(BR),
∣∣g′(0)

∣∣ ≥ α0 > 0 : f (x) = g(a · x)
}
.

(2) For a neighborhood U of 0, 0 < q ≤ 1, C1 > 1, C2 ≥ α0 > 0 and N ≥ 2, we
define

F 2
d := F 2

d (U , α0, q,C1,C2,N) := {
f : BRd → R :

∃a ∈ R
d ,‖a‖�d

2
= 1,‖a‖�d

q
≤ C1 and ∃g ∈ C2(BR) ∩ CN(U )

∃0 ≤ M ≤ N − 1,
∣∣g(M)(0)

∣∣ ≥ α0 > 0 : f (x) = g(a · x)
}
.

(3) For a neighborhood U of 0, 0 < q ≤ 1, C1 > 1 and C2 ≥ α0 > 0, we define

F 3
d := F 3

d (U , α0, q,C1,C2) := {
f : BRd → R :

∃a ∈ R
d,‖a‖�d

2
= 1,‖a‖�d

q
≤ C1 and ∃g ∈ C2(BR) ∩ C∞(U )

∣∣g(M)(0)
∣∣ = 0 for all M ∈ N : f (x) = g(a · x)

}
.

Theorem 3.1 and Proposition 3.8 immediately imply the following tractability result
for these function classes.

Corollary 3.9 The problem of learning functions f in the classes F 1
d and F 2

d from
point evaluations is strongly polynomially tractable and polynomially tractable, re-
spectively.

On the one hand, let us notice that if in the class F 3
d we remove the condition

‖a‖�d
q

≤ C1, then the discussion on the functions described in Remark 1 shows that
the problem actually becomes intractable. On the other hand, we conjecture that the
restriction imposed by a condition such as ‖a‖�d

q
≤ C1 should instead give the prob-

lem some sort of tractability. Unfortunately, our learning method and approximation
estimates in Theorem 3.1 do not provide any information about the tractability of the
problem for functions in the class F 3

d .



Found Comput Math (2012) 12:229–262 249

4 The General Case k ≥ 1

In this section we generalize our approach to the case k ≥ 1; i.e., we consider k-ridge
functions

f (x) = g(Ax). (43)

Obviously, the sum of k ridge functions (as appearing for example in (13)) is a k-ridge
function, and the same holds true for the product.

We will proceed as in the one-dimensional case, first giving the basic ideas, which
motivate the recovery algorithm, and then stating and proving our main theorem.
Remember that we assume that A is a k × d matrix such that AAT = Ik , and g :
BRk (1 + ε̄) → R is a C2 function.

4.1 The Algorithm

As before, we consider a version of Taylor’s theorem giving access to the matrix A.
For ξ ∈ BRd , ϕ ∈ BRd (r), ε, r ∈ R+, with rε ≤ ε̄, we have the identity

[∇g(Aξ)T A
]
ϕ = f (ξ + εϕ) − f (ξ)

ε
− ε

2

[
ϕT ∇2f (ζ )ϕ

]
, (44)

for a suitable ζ(ξ,ϕ) ∈ BRd (1 + ε̄), and from (9) the term [ϕT ∇2f (ζ )ϕ] is again
uniformly bounded as soon as ϕ is bounded.

As in the one-dimensional case we now consider (44) for the mΦ directions in
the set Φ and at the mX sampling points in the set X , where X ,Φ are defined as in
(15) and (16), respectively. Again we collect the directional derivatives ∇g(Aξj )

T A,
j = 1, . . . ,mX as columns in the d × mX matrix X, i.e.,

X = (
AT ∇g(Aξ1), . . . ,A

T ∇g(AξmX )
)
, (45)

and using the matrices Y and E as defined in (18) and (19), we can write the following
factorization:

ΦX = Y − E . (46)

Similarly to the one-dimensional case we find that the matrix X has a spe-
cial structure, which we will exploit for the algorithm, i.e., X = AT GT , where
G = (∇g(Aξ1)

T | · · · |∇g(AξmX )T )T . The columns of X are now no longer scaled
copies of one compressible vector, but are linear combinations of k compressible vec-
tors, i.e., the rows of the matrix A. Thus compressed sensing theory again tells us that
we can stably recover the columns of X from the columns of Y via �1-minimization
and consequently get a good approximation X̂ to X.

Furthermore, since A has rank k, as long as GT has full rank, X will also have rank
k; also the column span of the right singular vectors of XT = USV T will coincide
with the row span of A, i.e., AT A = V V T . Moreover, V T gives us an alternative
representation of f as follows:

f (x) = g(Ax) = g
(
AAT Ax

) = g
(
AV V T x

) =: g̃(V T x
)
,
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where g̃(y) := g(AVy) = f (Vy). If X̂ is a good approximation of X, then we can
expect the first k right singular vectors of X̂ to have almost the same span as that of
X and thus of A, which inspires the following algorithm.

Algorithm 2

• Given mΦ,mX , draw at random the sets Φ and X as in (15) and (16), and
construct Y according to (18)

• Set x̂j = �(yj ) := arg minyj =Φz ‖z‖�d
1
, for j = 1, . . . ,mX , and X̂ =

(x̂1, . . . , x̂mX )

• Compute the singular value decomposition of

X̂T = (
Û1 Û2

)( Σ̂1 0
0 Σ̂2

)(
V̂ T

1

V̂ T
2

)

, (47)

where Σ̂1 contains the k largest singular values
• Set Â = V T

1
• Define ĝ(y) := f (ÂT y) and f̂ (x) := ĝ(Âx)

The quality of the final approximation of f by means of f̂ depends on two kinds
of accuracies:

1. The error between X̂ and X, which can be controlled through the number of com-
pressed sensing measurements mΦ ;

2. The stability of the span of V T , simply characterized by how well the singular
values of X or equivalently G are separated from 0, which is related to the number
of random samples mX .

To be precise, in the next section we will prove the following approximation result.

Theorem 4.1 Let logd ≤ mΦ ≤ [log 6]2d . Then there is a constant c′
1 such that using

mX · (mΦ + 1) function evaluations of f , Algorithm 2 defines a function f̂ : BRd (1 +
ε̄) → R that, with probability

1 −
(
e−c′

1mΦ + e−√
mΦd + ke

−mX αs2

2kC2
2

)
, (48)

will satisfy

‖f − f̂ ‖∞ ≤ 2C2
√

k(1 + ε̄)
ν2√

α(1 − s) − ν2
, (49)

where

ν2 = C

(
k1/q

[
mΦ

log(d/mΦ)

]1/2−1/q

+ εk2

√
mΦ

)
,

and C depends only on C1 and C2 (cf. (8) and (9)).
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4.2 The Analysis

We will first show that X̂ is a good approximation to X by applying Theorem 3.2
columnwise. This leads to the following corollary.

Corollary 4.2 Let logd ≤ mΦ < [log 6]2d . Then with probability

1 − (
e−c′

1mΦ + e−√
mΦd

)

the matrix X̂ as calculated in Algorithm 2 satisfies

‖X − X̂‖F ≤ C
√

mX

(
k1/q

[
mΦ

log(d/mΦ)

]1/2−1/q

+ εk2

√
mΦ

)
, (50)

where C depends only on C1 and C2 (cf. (8) and (9)).

Proof The proof works essentially like that of Corollary 3.3. We decompose

‖X − X̂‖2
F =

mX∑

j=1

‖xj − x̂j‖2
�d

2
.

The best K-term approximation of xj may be estimated using

‖xj‖�d
q
= ∥∥AT ∇g(Aξj )

∥∥
�d
q
≤ C2

(
d∑

v=1

(
k∑

u=1

|auv|
)q)1/q

≤ C1 C2 k1/q,

which leads to

K−1/2σK(xj )�d
1
≤ ‖xj‖�d

q
K1/2−1/q ≤ C1 C2 k1/qK1/2−1/q .

The norms of εj may be estimated similarly to the proof of Corollary 3.3 as

‖εj‖�
mΦ
2

≤ C2
1 C2 k2ε

2
√

mΦ

and ‖εj‖�
mΦ∞ ≤ C2

1 C2 k2ε

2mΦ

.

Putting all these estimates (with the choice K ≈ mΦ/ log(d/mΦ)) into Theorem 3.2
we obtain the result. �

Remark 5 The construction x̂j = �(yj ) := arg minyj =Φz ‖z‖�d
1
, for j = 1, . . . ,mX ,

and X̂ = (x̂1, . . . , x̂mX ) and Corollary 4.2 are not a unique possible approach to ap-
proximate X. As we are expecting X to be a k-rank matrix for k � min{d,mX },
one might want to consider also nuclear norm minimization, i.e., the minimization of
the �1-norm of singular values, as a possible way of accessing X from mΦ random
measurements, as in the work [15, 26, 28]. However, presently no estimates of the
type (29) are available in this context. Hence we postpone an analysis based on these
methods fully tailored to matrices to further research.
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Next we need the equivalent of Lemma 3.4 to relate the error between the sub-
spaces defined by the largest right singular values of X̂ and X, respectively, to the
error ‖X − X̂‖F . We will develop the necessary tools in the following subsection.

4.2.1 Stability of the Singular Value Decomposition

Given two matrices B and B̂ with corresponding singular value decompositions

B = (
U1 U2

)
(

Σ1 0
0 Σ2

)(
V T

1

V T
2

)

and

B̂ = (
Û1 Û2

)( Σ̂1 0
0 Σ̂2

)(
V̂ T

1

V̂ T
2

)

,

where it is understood that two corresponding submatrices, e.g., U1, Û1, have the
same size, we would like to bound the difference between V1 and V̂1 by the er-
ror ‖B − B̂‖F . As a consequence of Wedin’s perturbation bound [34] (see also [32,
Sect. 7]), we have the following useful result.

Theorem 4.3 (Stability of subspaces: Wedin’s bound) If there is an ᾱ > 0 such that

min
�,�̂

∣
∣σ

�̂
(Σ̂1) − σ�(Σ2)

∣
∣ ≥ ᾱ, (51)

and

min
�̂

∣∣σ
�̂
(Σ̂1)

∣∣ ≥ ᾱ, (52)

then
∥∥V1V

T
1 − V̂1V̂

T
1

∥∥
F

≤ 2

ᾱ
‖B − B̂‖F . (53)

The conditions (51) and (52) are separation conditions. The first says that the
singular values of Σ1 are separated from those of Σ2, although, strictly speaking,
the separation is between Σ1 and Σ̂2. However, if ‖B − B̂‖F is sufficiently small
compared to ᾱ, then Weyl’s inequality [35]

∣∣σ�(B) − σ�(B̂)
∣∣ ≤ ‖B − B̂‖F

guarantees that the two separations are essentially equivalent. The second condition
says that the singular values of Σ1 or Σ̂1 must be far away from 0.

Applied to our situation, where X has rank k and thus Σ2 = 0, we obtain

∥∥V1V
T
1 − V̂1V̂

T
1

∥∥
F

≤ 2
√

mX ν2

σk(X̂T )
, (54)
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and further, since σk(X̂
T ) ≥ σk(X

T ) − ‖X − X̂‖F , we obtain

∥∥V1V
T
1 − V̂1V̂

T
1

∥∥
F

≤ 2
√

mX ν2

σk(XT ) − √
mX ν2

. (55)

As a final ingredient we need to estimate the kth singular value of X. The next sub-
section will provide us with a generalization of Hoeffding’s inequality that can be
used to show that, with high probability, on a random draw of the sampling points ξj

the kth singular value of X is separated from zero.

4.2.2 Spectral Estimates and Sums of Random Semidefinite Matrices

The following theorem generalizes Hoeffding’s inequality to sums of random
semidefinite matrices and was recently proved by Tropp in [33, Corollary 5.2 and
Remark 5.3], improving results from [1] and using techniques from [29] and [25].

Theorem 4.4 (Matrix Chernoff) Consider X1, . . . ,Xm independent random, positive
semidefinite matrices of dimension k × k. Moreover, suppose

σ1(Xj ) ≤ C, (56)

almost surely. Compute the singular values of the sum of the expectations

μmax = σ1

(
m∑

j=1

EXj

)

and μmin = σk

(
m∑

j=1

EXj

)

. (57)

Then

P

{

σ1

(
m∑

j=1

Xj

)

− μmax ≥ sμmax

}

≤ k

(
(1 + s)

e

)− μmax(1+s)
C

, (58)

for all s > (e − 1), and

P

{

σk

(
m∑

j=1

Xj

)

− μmin ≤ −sμmin

}

≤ ke− μmins2

2C , (59)

for all s ∈ (0,1).

Applied to the matrix XT this theorem leads to the following estimate of the sin-
gular values of XT .

Lemma 4.5 For any s ∈ (0,1) we have that

σk

(
XT

) ≥ √
mX α(1 − s) (60)

with probability 1 − ke

−mX αs2

2kC2
2 .
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Proof The proof is based on an application of Theorem 4.4. First note that

XT = GA = UG ΣG
[
V T

G A
]
,

hence ΣXT = ΣG . Moreover,

σi(G) =
√

σi

(
GT G

)
, for all i = 1, . . . , k.

Thus, to get information about the singular values of XT it is sufficient to study those
of

GT G =
mX∑

j=1

∇g(Aξj )∇g(Aξj )
T .

We further notice that

σ1
(∇g(Aξj )∇g(Aξj )

T
) ≤

(
k∑

�,�′=1

∣∣∇g(Aξj )�∇g(Aξj )�′
∣∣2
)1/2

≤ kC2
2 := C.

Hence Xj = ∇g(Aξj )∇g(Aξj )
T is a random positive semidefinite matrix that is al-

most surely bounded. Moreover,

EXj = Eξ∇g(Aξj )∇g(Aξj )
T =

∫

Sd−1
∇g(Ax)∇g(Ax)T dμSd−1(x) = Hg.

Hence, remembering that the singular values of Hg are equivalent to those of Hf ,
by condition (10) we have μmax = mX σ1(Hg) ≤ mX kC2

2 and μmin = mX σk(Hg) ≥
mX α > 0. In particular,

mX k2C2 ≥ μmax ≥ μmin ≥ mX α > 0.

By an application of Theorem 4.4 we conclude that

σk

(
XT

) = σk(G) =
√√√√σk

(
mX∑

j=1

∇g(Aξj )∇g(Aξj )T

)

≥ √
μmin(1 − s) ≥ √

mX α(1 − s),

with probability

1 − ke
− μmins2

2kC2
2 ≥ 1 − ke

−mX αs2

2kC2
2 ,

for all s ∈ (0,1). �

Finally we have collected all the results necessary to prove Theorem 4.1.
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Proof of Theorem 4.1 Combining Corollary 4.2, Theorem 4.3, and Lemma 4.5 shows
that with probability at least

1 −
(
e−c′

1mΦ + e−√
mΦd + ke

−mX αs2

2kC2
2

)
,

for the first k right singular vectors of X̂ and X we have

∥∥V1V
T
1 − V̂1V̂

T
1

∥∥
F

≤ 2ν2√
α(1 − s) − ν2

.

Recalling from the proof of Lemma 4.5 that the (first k) right singular vectors V T
1 of

XT have the form V T
1 = V T

G A then shows that Â as defined in Algorithm 2 satisfies

∥∥AT A − ÂT Â
∥∥

F
= ∥∥AT VG V T

G A − V̂1V̂
T
1

∥∥
F

= ∥∥V1V
T
1 − V̂1V̂

T
1

∥∥
F

≤ 2ν2√
α(1 − s) − ν2

.

Using this estimate we can prove that f̂ as defined in Algorithm 2 is a good approxi-
mation to f . Since A is row-orthogonal we have A = AAT A and therefore

∣∣f (x) − f̂ (x)
∣∣ = ∣∣g(Ax) − ĝ(Âx)

∣∣

= ∣∣g(Ax) − g
(
AÂT Âx

)∣∣

≤ C2
√

k
∥∥Ax − AÂT Âx

∥∥
�k

2

= C2
√

k
∥∥A

(
AT A − ÂT Â

)
x
∥∥

�k
2

≤ C2
√

k
∥∥(AT A − ÂT Â

)∥∥
F
‖x‖�d

2

≤ 2C2
√

k(1 + ε̄)
ν2√

α(1 − s) − ν2
. �

Remark 6 (i) Note that Theorem 4.1 is again an a priori estimate of the suc-
cess probability and approximation error of Algorithm 2. Once Algorithm 2 has
been run we have the following a posteriori estimate. With probability at least
1 − (e−c′

1mΦ + e−√
mΦd) we have that

‖f − f̂ ‖∞ ≤ 2C2
√

kmX (1 + ε̄)
ν2

σk(X̂T )
.

(ii) We further observe that Theorem 4.1 does not straightforwardly reduce to The-
orem 3.1 for k = 1, because in the one-dimensional case we used the simpler maxi-
mum strategy as in (22) instead of the singular value decomposition (47).
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4.3 Discussion on Tractability

Recall that the push-forward measure μk = Γ (d/2)

πk/2Γ ((d−k)/2)
(1 − ‖y‖2

�k
2
)

d−2−k
2 Lk of

μSd−1 on the unit ball BRk was determined in Theorem 3.7 as the measure for which

Hg =
∫

Sd−1
∇g(Ax)∇g(Ax)T dμSd−1(x)

= Γ (d/2)

πk/2Γ ((d − k)/2)

∫

B
Rk

∇g(y)∇g(y)T
(
1 − ‖y‖2

�k
2

) d−2−k
2 dy.

As an instructive example, let us apply this formula to the case when g is a radial
function, i.e.,

g(y) = g0
(‖y‖�k

2

)
,

for a function g0 : [0,1] → R sufficiently smooth, and g′
0(0) = 0.

A direct calculation shows that ∇g(y) = g′
0(r)

r
· y, where r = ‖y‖�k

2
, and

∇g(y)∇g(y)T = g′
0(r)

2

r2
yyT .

Hence,

(Hg)ij = Γ (d/2)

πk/2Γ ((d − k)/2)

∫

B
Rk

g′
0(‖y‖�k

2
)2

‖y‖2
�k

2

yiyj

(
1 − ‖y‖2

�k
2

) d−2−k
2 dy.

If i �= j , the integral vanishes due to the symmetry of BRk . If i = j , we get again by
symmetry

(Hg)ii = Γ (d/2)

πk/2Γ ((d − k)/2)

∫

B
Rk

g′
0(‖y‖�k

2
)2

‖y‖2
�k

2

y2
i

(
1 − ‖y‖2

�k
2

) d−2−k
2 dy

= Γ (d/2)

kπk/2Γ ((d − k)/2)

∫

B
Rk

g′
0

(‖y‖�k
2

)2(1 − ‖y‖2
�k

2

) d−2−k
2 dy

= 2Γ (d/2)

kΓ ((d − k)/2)Γ (k/2)

∫ 1

0
g′

0(r)
2(1 − r2) d−2−k

2 rk−1 dr

=: α(k, d).

Hence, Hg = α(k, d)Ik . Similarly to Proposition 3.8, we can expand g′
0 into a Taylor

series,

g′
0(r) =

N−1∑

�=2

g
(�)
0 (0)

(� − 1)! r
�−1 + O

(
rN

)
.
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If we assume that g
(�)
0 (0) = 0, for all � = 1, . . . ,M , but g

(M+1)
0 (0) �= 0, then we

obtain

g′
0(r)

2 =
(

g
(M+1)
0 (0)

M!
)2

r2M + O
(
r2M+1),

and, by Stirling’s approximation,

α(k, d) = O
(

Γ (d/2)

Γ ((d − k)/2)

∫ 1

0
r2M+k−1(1 − r2) d−k−2

2 dr

)

= O
(

Γ (d/2)

Γ (d/2 + M)

)

= O
(
d−M

)
, d → ∞.

From these computations we deduce that, using our method, learning functions
f (x) = g(Ax), where g is radial (or nearly radial), usually have polynomial com-
plexity with respect to the dimension d .

5 Extensions and Generalizations

We assumed throughout the paper that the function f is defined on the unit ball BRd

of R
d . To be able to approximate the derivatives of f even on the boundary of BRd ,

we actually assumed that f is also defined on an ε̄ neighborhood of the unit ball.
Furthermore, we assumed that the function values may be measured exactly without
any error. The main aim of this section is to discuss the possibilities and limitations
of our method. First, we discuss the numerical stability of our approach with respect
to noise. Second, we deal with functions defined on a convex body Ω ⊂ R

d . It is
our intention here only to sketch (although rigorously) further interesting research
directions, so we limit our discussion to the case of k = 1.

5.1 Stability Under Noisy Measurements

Let us assume that the function evaluation in (14) can be performed only with certain
precision. We again collect the mX × mΦ instances of (14) as

ΦX = Y − E + W
ε

, (61)

where the (i, j)th entry of W (denoted by wij ) is the difference between the exact
value of f (ξj + εϕi) − f (ξj ) and its value measured with noise. This leads to a
compressed sensing setting

Y = ΦX + E − W
ε

. (62)

Applying Theorem 3.2 we obtain a substitute for Corollary 3.3 with E replaced by E −
W /ε. Therefore, we would like to estimate the norm of wj (the j th column of W ) in
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�
mΦ

2 and �
mΦ∞ . If we merely assume that the noise is bounded (i.e., |wij | ≤ ν), the best

possible estimate is ‖wj‖�
mΦ
2

≤ ν
√

mΦ . We observe that the more sampling points

we take, the greater the level of noise. This effect of noise amplification is known
as noise folding [2] and, unfortunately, it corrupts the estimate (31). See also [11,
Sect. 4] for a discussion in a related context.

Let us therefore sketch a different approach. We make the rather natural assump-
tion that wij is a random noise.

The analogue of Theorem 3.2 for the recovery of x from noisy measurements
y = Φx + ω, where ω = (ω1, . . . ,ωm) are independent identically distributed (i.i.d.)
Gaussian variables with mean zero and variance σ 2, was given in the work of Can-
dès and Tao [9]. They proposed a certain �1-regularization problem, whose solution
(called the Dantzig selector) satisfies

‖x − x̂‖2
�d

2
≤ C2 · 2 logd ·

(

σ 2 +
d∑

i=1

min
(
x2
i , σ 2)

)

.

In particular, if x is a k-sparse vector, then ‖x − x̂‖�d
2
≤ C ·√2 logd ·√k + 1 ·σ . This

estimate scales very favorably with d (only as
√

logd) and, moreover, depends only
on the sparsity of x, and no longer on the number of measurements mΦ . Therefore,
there is no noise folding in this case.

Equation (62) requires a combination of Theorem 3.2 and the result of Candès
and Tao. Namely, we would like to reconstruct x if y = Φx + ε + ω is given, where
ε is a deterministic error and ω is a vector of i.i.d. Gaussian variables. A detailed
analysis of this issue goes beyond the scope of this paper. Nevertheless, let us present
some numerical evidence of the numerical stability of our approach in the presence
of random noise.

We consider the function

f (x) = max
([

1 − 5
√

(x3 − 1/2)2 + (x4 − 1/2)2
]3

,0
)
, x ∈ R

1000 (63)

in dimension d = 1000. We use a variant of Algorithm 1 based on �1-minimization
to identify the active coordinates of f ; see [31] for details. We assume that func-
tion evaluations were distorted by Gaussian error νω with ω ≈ N (0,1) and ν ∈
{0.1,0.01,0.001}. We chose ε = 0.1 in the approximation (14). For each num-
ber of points mX ∈ {6�, � = 1, . . . ,10} (x-axis) and each number of directions
mΦ ∈ {20�, � = 1, . . . ,10} (y-axis) we produced 100 trials. As shown in Fig. 2, the
success rates of recovery go from white (no success) to black (100 successful recov-
eries).

We conclude from Fig. 2 that there is a smooth increase of the rate of successful
recovery with decreasing noise power and a fully stable recovery behavior.

5.2 Convex Bodies

A careful inspection of our method shows that it may be generalized to arbitrary
convex bodies. Let us describe the necessary modifications and give an overview of
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Fig. 2 Recovery of active coordinates of f (x) given by (63) with ν = 0.1, ν = 0.01, and ν = 0.001,
from left to right, respectively. Note that the success rates of recovery for the noise-free setting are hardly
distinguishable from the last picture above (ν = 0.001)

the results for the case k = 1. First, one has to replace (6) by

Hf :=
∫

Ω

∇f (x)∇f (x)T dμΩ(x). (64)

Here, μΩ is a probability measure on Ω , and the points in X (cf. (15)) are selected
at random with respect to μΩ . For Ω = BRd , we simply selected μΩ = μSd−1 to be
the normalized surface measure on S

d−1. This corresponded to the fact that a ∈ S
d−1

was arbitrary and therefore a priori no direction was preferred. To be able to evaluate
the derivatives of f even on the boundary of Ω , we assume that f is actually defined
on an ε̄ neighborhood of Ω , namely on the set Ω + ε̄ := {x ∈ R

d : dist(Ω,x) ≤ ε̄}.
The function g is assumed to be defined on the image of Ω + ε̄ under the mapping
x → a · x, i.e., on an interval. We again assume (9).

Surprisingly, these are all the modifications necessary to proceed with the identi-
fication of â, and (38) holds true under these circumstances.

The proof of Theorem 3.1 was based on the fact that, for every y ∈ BR, we can
easily find an element xy ∈ BRd , such that â · xy = y. It is enough to consider xy =
âT y. In the case of a general convex set Ω , we first need to define, for any â ∈ S

d−1

fixed, a function x· : â(Ω + ε̄) → Ω + ε̄ given by y �→ xy , and such that

â · xy = y.

In particular, for all y ∈ â(Ω + ε̄) we need to find

xy ∈ Ω + ε̄ ∩ {
x ∈ R

d : â · x = y
}
.

Since both Ω + ε̄ and the solution space {x ∈ R
d : â · x = y} are closed convex sets

in R
d , one could use an alternating projection algorithm for finding xy [4]. Thus, we

can assume that, at least algorithmically, this map can be computed. Moreover, and
alternatively, since the operation described above, i.e., finding xy ∈ BRd such that
â · xy = y, must be executed as many times as we need to define, e.g., an appropriate
spline approximation of ĝ, we may proceed as follows. First we find xmax, xmin ∈
BRd , such that â ·xmax = maxx∈B

Rd
â ·x and â ·xmin = minx∈B

Rd
â ·x. Then any other
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xy such that y = â · xy is computed very quickly by xy = λyxmin + (1 − λy)xmax for
some λy ∈ [0,1].

With this modification, Theorem 3.1 also holds true, with the definition of ĝ given
in Algorithm 1 now replaced by

ĝ(y) := f (xy), y ∈ â(Ω + ε̄)

and (24) replaced by

‖f − f̂ ‖∞ ≤ 2C2
(
diam(Ω) + 2ε̄

) ν1√
α(1 − s) − ν1

.

Unfortunately—and this seems to be the main drawback of this approach—the diam-
eter of Ω , diam(Ω) = maxx,x′∈Ω ‖x − x′‖�d

2
, may grow with d . This is especially the

case, when Ω = [−1,1]d , which gives diam(Ω) = √
2d .

5.3 An Approach Through the Minkowski Functional

To get better results for specific convex bodies (i.e., Ω = [−1,1]d ), we propose an-
other approach. We stress very clearly that up to now this is only to be understood as
an open direction for further research.

We assume that Ω is a closed convex set which is absorbing and balanced, i.e.,

• for every x ∈ R
d , there is a t = t (x) > 0, such that tx ∈ Ω

• αΩ := {αx : x ∈ Ω} ⊂ Ω for every α ∈ [−1,1]
Then we can define its Minkowski functional as

pΩ(x) := inf{r > 0 : x/r ∈ Ω}, x ∈ R
d .

It is well known that this expression is actually a norm and Ω is its unit ball. Hence,

sup
x,x′∈Ω

pΩ

(
x − x′) ≤ 2. (65)

This allows us to replace the inequality
∣
∣(a − â) · (xy − x)

∣
∣ ≤ ‖a − â‖2 · ‖xy − x‖2

by
∣∣(a − â) · (xy − x)

∣∣ ≤ ‖a − â‖′
Ω · ‖xy − x‖Ω.

Here, ‖ · ‖Ω = pΩ(·) and ‖ · ‖′
Ω is its dual norm. According to (65), this solves

the problem of the factor diam(Ω)—the diameter of Ω with respect to ‖ · ‖Ω is
always bounded by 2. Unfortunately, the problem is transferred to the second factor,
namely ‖a − â‖′

Ω . For this, one would need the analogue of Theorem 3.2 with the
�d

2 -norm in (29) replaced by ‖ ·‖′
Ω . While any treatment of this general case is clearly

beyond the scope of this paper and remains a topic for further investigation, we can
briefly sketch what happens in the special case Ω = [−1,1]d . Then we simply have
‖ ·‖Ω = ‖·‖�d∞ and ‖ ·‖′

Ω = ‖·‖�d
1
. To estimate ‖a − â‖�d

1
we would have to combine

Lemma 3.1 in [11] with (38) and would get again a result that does not depend on the
dimension d .



Found Comput Math (2012) 12:229–262 261

Acknowledgements Massimo Fornasier would like to thank Ronald A. DeVore for his kind and warm
hospitality at Texas A&M University and for the very exciting daily joint discussions which later in-
spired part of this work. We acknowledge the financial support provided by the START-award “Sparse
Approximation and Optimization in High Dimensions” of the Fonds zur Förderung der wissenschaftlichen
Forschung (FWF, Austrian Science Foundation). We would also like to thank the anonymous referees for
their very valuable comments and remarks.

References

1. R. Ahlswede, A. Winter, Strong converse for identification via quantum channels, IEEE Trans. Inf.
Theory 48(3), 569–579 (2002).

2. E. Arias-Castro, Y.C. Eldar, Noise folding in compressed sensing, IEEE Signal Process. Lett. 18(8),
478–481 (2011).

3. R.G. Baraniuk, M. Davenport, R.A. DeVore, M. Wakin, A simple proof of the restricted isometry
property for random matrices, Constr. Approx. 28(3), 253–263 (2008).

4. H. Bauschke, H. Borwein, On projection algorithms for solving convex feasibility problems, SIAM
Rev. 38(3), 367–426 (1996).

5. E.J. Candès, Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal. 6(2), 197–218
(1999).

6. E.J. Candès, Ridgelets: estimating with ridge functions, Ann. Stat. 31(5), 1561–1599 (2003).
7. E.J. Candès, D.L. Donoho, Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R.

Soc., Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999).
8. E.J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measure-

ments, Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).
9. E.J. Candès, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n, Ann.

Stat. 35(6), 2313–2351 (2007).
10. A. Cohen, W. Dahmen, R.A. DeVore, Compressed sensing and best k-term approximation, J. Am.

Math. Soc. 22(1), 211–231 (2009).
11. A. Cohen, I. Daubechies, R.A. DeVore, G. Kerkyacharian, D. Picard, Capturing ridge functions in

high dimensions from point queries, Constr. Approx. 35(2), 225–243 (2012).
12. R. Courant, D. Hilbert, Methods of Mathematical Physics, II (Interscience, New York, 1962).
13. R.A. DeVore, G. Petrova, P. Wojtaszczyk, Instance optimality in probability with an �1-minimization

decoder, Appl. Comput. Harmon. Anal. 27(3), 275–288 (2009).
14. D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
15. M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Stanford University, Palo Alto,

CA, 2002.
16. M. Fornasier, Numerical methods for sparse recovery, in Theoretical Foundations and Numerical

Methods for Sparse Recovery, ed. by M. Fornasier, Radon Series on Computational and Applied
Mathematics (De Gruyter, Berlin, 2010).

17. M. Fornasier, H. Rauhut, Compressive sensing, in Handbook of Mathematical Methods in Imaging,
vol. 1, ed. by O. Scherzer (Springer, Berlin, 2010), pp. 187–229.

18. S. Foucart, A note on ensuring sparse recovery via �1-minimization, Appl. Comput. Harmon. Anal.
29(1), 97–103 (2010).

19. G. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore,
1996).

20. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations (Interscience,
New York, 1955).

21. M. Ledoux, The Concentration of Measure Phenomenon (American Mathematical Society, Provi-
dence, 2001).

22. B.F. Logan, L.A. Shepp, Optimal reconstruction of a function from its projections, Duke Math. J.
42(4), 645–659 (1975).
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Abstract

We present effective algorithms for uniform approximation of multivariate functions satisfying some
prescribed inner structure. We extend, in several directions, the analysis of recovery of ridge functions
f (x) = g(⟨a, x⟩) as performed earlier by one of the authors and his coauthors. We consider ridge functions
defined on the unit cube [−1, 1]

d as well as recovery of ridge functions defined on the unit ball from noisy
measurements. We conclude with the study of functions of the type f (x) = g(∥a − x∥

2
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2
).
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1. Introduction

Functions depending on a large number of variables play nowadays a crucial role in many
areas, including parametric and stochastic PDEs, bioinformatics, financial mathematics, data
analysis and learning theory. Together with an extensive computational power being used in
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these applications, results on basic numerical aspects of these functions become crucial. Unfor-
tunately, multivariate problems often suffer from the curse of dimension, i.e. the minimal number
of operations necessary to achieve (an approximation of) a solution grows exponentially with the
underlying dimension of the problem. Although this effect was observed many times in the liter-
ature, we refer to [27] for probably the most impressive result of this kind—namely that even the
uniform approximation of infinitely-differentiable functions is intractable in high dimensions.

In the area of Information-Based Complexity it was possible to achieve a number of positive
results on tractability of multivariate problems by imposing an additional (structural) assumption
on the functions under study. The best studied concepts in this area include tensor product con-
structions and different concepts of anisotropy and weights. We refer to the series of monographs
[26,28,29] for an extensive treatment of these and related problems. We pursue the direction ini-
tiated by Cohen, Daubechies, DeVore, Kerkyacharian and Picard in [11] and further developed
in a series of recent papers [18,20,25]. This line of study is devoted to ridge functions, which are
multivariate functions f taking the form f (x) = g(⟨a, x⟩) for some univariate function g and a
non-zero vector a ∈ Rd . We refer also to [15,32,33] for a related approach.

Functions of this type are by no means new in mathematics. They appear for example very
often in statistics in the frame of the so-called single index models. They play also an important
role in approximation theory, where their simple structure motivated the question if a general
function could be well approximated by sums of ridge functions. The pioneering work in this
field is [24], where the term “ridge function” was first introduced, and also [22], where the fun-
damentality of ridge functions was investigated. Ridge functions appeared also in mathematical
analysis of neural networks [4,31] and as the basic building blocks of ridgelets of Candès and
Donoho [6]. A survey on approximation by (sums of) ridge functions was given in [30].

The biggest difference between our setting and the usual approach of statistical learning and
data analysis is that we suppose that the sampling points of f can be freely chosen, and are not
given in advance. This happens, for instance, if sampling of the unknown function at a point is
realized by a (costly) PDE solver.

Most of the techniques applied so far in recovery of ridge functions are based on the simple
formula

∇ f (x) = g′(⟨a, x⟩) · a. (1.1)

One way how to use (1.1) is to approximate the gradient of f at a point with non-vanishing
g′(⟨a, x⟩). By (1.1), it is then collinear with a. Once a is recovered, one can use any one-
dimensional sampling method to approximate g.

Another way to approximate a is inspired by the technique of compressed sensing [8,16].
Taking directional derivatives of f at x results into

∂ f (x)

∂ϕ
= ⟨∇ f (x), ϕ⟩ = g′(⟨a, x⟩)⟨a, ϕ⟩,

i.e. it gives access to the scalar product of a with a chosen vector ϕ. If we assume that most of the
coordinates of a are zero (or at least very small) and choose the directions ϕ1, . . . , ϕm at random,
one can recover a effectively by the algorithms of sparse recovery.

Our aim is to fill some gaps left so far in the analysis done in [18]. Although the possibility of
extending the analysis also to functions defined on other domains than the unit ball was men-
tioned already in [18], no steps in this direction were done there. We study in detail ridge func-
tions defined on the unit cube [−1, 1]

d . The crucial component of our analysis is the use of the
sign of a vector sign(x), which is defined componentwise. Although the mapping x → sign(x)
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is obviously not continuous, the mapping (for a ∈ Rd fixed)

x → ⟨a, sign(x)⟩

is continuous at a (and takes the value ∥a∥ld
1

there). This observation allows to imitate the ap-
proach of [18] and to adapt it to this setting. Let us remark, that all our approximation schemes
recover first an approximation of the vector a ∈ Rd . Afterwards, the problem becomes essen-
tially one-dimensional and a good approximation of f by a limited number of sampling points
can then be recovered by many classical methods, i.e. by spline approximation. We will therefore
concentrate on an effective recovery of an approximation of a and the approximation of f will
be given only implicitly.

Another topic only briefly discussed in [18] was the recovery of ridge functions from noisy
measurements. Furthermore, our analysis as well as the approach of [18] or even the classical re-
sults of [3] are based on approximation of first (or higher) order derivatives by differences, which
poses naturally the question on numerical stability of the presented algorithms. We present an al-
gorithm based on the Dantzig selector of [9], which allows for recovery of a ridge function also
in this setting. It turns out that in the case of a small step size h > 0, the first order differences
cannot be evaluated with high enough precision. On the other hand, for a large step size h the
first order differences do not approximate the first order derivatives well enough. Typically, there
is therefore an h > 0, for which an optimal degree of approximation is achieved.

The next topic we discuss is the robustness of the methods developed. We show that (without
much additional effort) it can be applied also for uniform recovery of translated radial functions
f (x) = g(∥a − x∥

2
ld
2
), which are constant along co-centered spheres instead of parallel hyper-

planes. Similarly to the model of ridge functions, both the center a ∈ Rd and the univariate
function g are unknown.

Finally, we close the paper with a number of numerical simulations of the algorithms pre-
sented. They highlight the surprising fact that their accuracy improves with increasing dimension.
This is essentially based on the use of the concentration of measure phenomenon in the underly-
ing theory and goes in line with similar observations made in the area of compressed sensing.

The paper is structured as follows. Section 2 collects some necessary notation and certain ba-
sic facts on sparse recovery from the area of compressed sensing. Section 3 extends the analysis
of [18] to the setting of ridge functions defined on the unit cube. Section 4 treats the recovery of
ridge functions defined on the unit ball from noisy measurements. Section 5 studies the translated
radial functions f (x) = g(∥a − x∥

2
ld
2
) and Section 6 closes with numerical examples.

2. Preliminaries

In this section we collect some notation and give an overview of results from the area of
compressed sensing, which we shall need later on.

2.1. Notation

For a given vector x ∈ Rd and 0 ≤ p ≤ ∞ we define

∥x∥ld
p

:=


 d

i=1

|xi |
p
 1

p
if 0 < p < ∞,

#{i | xi ≠ 0} if p = 0,

max
i=i,...,d

|xi | if p = ∞,

where #A denotes the cardinality of the set A.
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This notation is further complemented by putting for 0 < p < ∞

∥x∥ld
p,∞

:= max
k=1,...,d

k
1
p x(k),

where x(k), k = 1, . . . , d denotes the non-increasing rearrangement of the absolute entries of x ,
i.e. x(1) ≥ x(2) ≥ · · · ≥ x(d) ≥ 0 and x( j) = |xσ( j)| for some permutation σ : {1, . . . , d} →

{1, . . . , d} and all j = 1, . . . , d.

It is a very well known fact, that ∥ · ∥ℓd
p

is a norm for 1 ≤ p ≤ ∞ and a quasi-norm if 0 <

p < 1. Also ∥ · ∥ℓd
p,∞

is a quasi-norm for every 0 < p < ∞. If p = 2, the space ℓd
2 is a Hilbert

space with the usual inner product given by

⟨x, y⟩ = xT y =

d
i=1

xi yi , x, y ∈ Rd .

If 1 ≤ s ≤ d is a natural number, then a vector x ∈ Rd is called s-sparse if it contains at most
s nonzero entries, i.e. ∥x∥ld

0
≤ s. The set of all s-sparse vectors is denoted by

Σ d
s := {x ∈ Rd

| ∥x∥ld
0

≤ s}.

Finally, the best s-term approximation of a vector x describes how well x can be approximated
by s-sparse vectors.

Definition 2.1. The best s-term approximation of a given vector x ∈ Rd with respect to the
ld
1 -norm is given by

σ d
s (x)1 := min

z∈Σ d
s

∥x − z∥ld
1
.

2.2. Results from compressed sensing

Next we recall some basic concepts and results from compressed sensing which we will use
later. Compressed sensing emerged in [8,7,16] as a method of recovery of sparse vectors x from
a small set of linear measurements y = Φx . Since then, a vast literature on the subject appeared,
concentrating on various aspects of the theory, and its applications. As it is not our aim to de-
velop the theory of compressed sensing, but rather to use it in approximation theory, we shall
restrict ourselves to the most important facts needed later on. We refer to [2,12,17,19] for recent
overviews of the field and more references.

We focus on the recovery of vectors from noisy measurements, i.e. we want to recover the
vectors x ∈ Rd from m < d linear measurements of the form

y = Φx + e + z, (2.1)

where Φ ∈ Rm×d is the measurement matrix and the noise is a composition of two factors,
namely of the deterministic noise e ∈ Rm and the random noise z ∈ Rm . Typically, we will
assume that e is small (with respect to some ℓm

p norm) and that the components of z are generated
independently according to a Gaussian distribution with small variance.

Obviously, some conditions have to be posed on Φ, so that the recovery of x from the
measurements y given by (2.1) is possible. The most usual one in the theory of compressed
sensing is that the matrix Φ satisfies the restricted isometry property.
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Definition 2.2. The matrix Φ ∈ Rm×d satisfies the restricted isometry property (RIP) of order
s ≤ d if there exists a constant 0 < δ < 1 such that

(1 − δ)∥x∥
2
ld
2

≤ ∥Φx∥
2
lm
2

≤ (1 + δ)∥x∥
2
ld
2

holds for all s-sparse vectors x ∈ Σ d
s . The smallest constant δ for which this inequality holds is

called the restricted isometry constant and we will denote it by δs .

In general it is very hard to show that a given matrix satisfies this RIP or not. This is in par-
ticular the main reason why we will use random matrices, since it turns out that those matrices
satisfy the RIP with overwhelming high probability. We present a version of such a statement,
which comes from [1].

Theorem 2.3. For every 0 < δ < 1 there exist constants C1, C2 > 0 depending on δ such that
the random matrix Φ ∈ Rm×d with entries generated independently as

ϕi j =
1

√
m


+1 with probability 1/2,

−1 with probability 1/2
(2.2)

satisfies the RIP of order s for each s ≤ (C2m)/ log(d/m) with RIP constant δs ≤ δ with
probability at least

1 − 2e−C1m .

Let us remark that log stands for the natural logarithm throughout the paper. A matrix Φ gen-
erated by (2.2) is called normalized Bernoulli matrix. For the sake of simplicity, we work with
Bernoulli sensing matrices, but note that most of the statements presented below remain true for
other classes of random matrices, c.f. [14, Section 5].

Next we present several recovery results for our starting problem (2.1). The first result of
this kind deals with the case of exact measurements (i.e. e = z = 0) and uses the so called
ld
1 -minimizer, cf. [10, Theorem 4.4] or [5, Theorem 1.2].

Theorem 2.4. Let Φ ∈ Rm×d satisfy the RIP of order 2s with constant δ2s ≤ δ < 1/3. Let
x ∈ Rd and let us denote y = Φx. Finally, let ∆ld

1
(y) ∈ Rd be the solution of the minimization

problem

min
w∈Rd

∥w∥ld
1

subject to Φw = y. (2.3)

Then it holds

∥x − ∆ld
1
(y)∥ld

1
= ∥x − ∆ld

1
(Φx)∥ld

1
≤ C0σ

d
s (x)1

with constant C0 depending only on δ.

This theorem implies that s-sparse vectors are recovered exactly by the ld
1 -minimizer (2.3) in

the noise-free setting, since σ d
s (x)1 = 0 holds for every x ∈ Σ d

s . To deal with the determinis-
tic noise e, we shall need some more information about the geometrical properties of Bernoulli
matrices. In particular, we will make use of Theorems 3.5 and 4.1 of [14], cf. also [23].
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Theorem 2.5. Let Φ ∈ Rm×d be a normalized Bernoulli matrix and let d ≥ (log 6)2m. Let
UJ = {y ∈ Rm

: ∥y∥J ≤ 1}, where

∥y∥J = max

√

m∥y∥lm
∞

;


m

log(d/m)
∥y∥lm

2


.

(i) Then there exists an absolute constant C3 > 0 such that with probability at least 1 − e−
√

dm

for every y ∈ UJ there is an x ∈ Rd , such that Φx = y and ∥x∥ld
1

≤ C3.

(ii) Let δ > 0 and let C1 and C2 be the constants from Theorem 2.3. Then there exists an
absolute constant C3 and a constant C4 depending on δ such that, with probability at least
1−2e−C1m

−e−
√

md , for each y ∈ UJ there exists a vector x ∈ Rd with Φx = y, ∥x∥ld
1

≤ C3

and ∥x∥ld
2

≤ C4


log(d/m)/m.

We will use those two theorems to handle the deterministic noise e. Further we need a similar
result to handle the random noise z, therefore we recall the Dantzig selector from [9].

Definition 2.6 (Dantzig Selector). For a matrix Φ ∈ Rm×d and constants λd , σ > 0 the Dantzig
selector ∆DS(y) ∈ Rd of an input vector y ∈ Rm is defined as the solution of the minimization
problem

min
w∈Rd

∥w∥ld
1

subject to ∥ΦT (y − Φw)∥ld
∞

≤ λdσ. (2.4)

Remark 2.7. In what follows we shall use several parameters as the description of the typical
frame of compressed sensing. First, we take m ≤ d to be natural numbers and denote by
Φ ∈ Rm×d the normalized Bernoulli matrix (2.2). We put δ := 1/6 and denote by C1 and C2
the constants appearing in Theorem 2.3. Next, we assume that the natural numbers s ≤ m ≤ d
satisfy

d ≥ (log 6)2m and 3s ≤ (C2m)/ log(d/m). (2.5)

Hence, by Theorem 2.3, Φ has (with high probability) the RIP of order 3s with a constant at most
1/6.

Now we can use Theorem 1.3 of [9] to handle the random noise z.

Theorem 2.8. Let s, m, d be natural numbers satisfying (2.5) and let Φ ∈ Rm×d be a normalized
Bernoulli matrix. Let

y = Φx + z

for x ∈ Rd with ∥x∥p,∞ ≤ R, 0 < p ≤ 1, and z ∈ Rm with independent entries zi ∼ N (0, σ 2).
Then there exists a constant C5 such that the Dantzig selector (with λd =


2 log d) satisfies

∥∆DS(y) − x∥
2
ld
2

≤ min
1≤s∗≤s

2C5 log d


s∗σ
2
+ R2s−2(1/p−1/2)

∗


with high probability.

Combining Theorems 2.5 and 2.8 we get the following new result.
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Theorem 2.9. Let s, m, d be natural numbers satisfying (2.5) and let Φ ∈ Rm×d be a normalized
Bernoulli matrix. For x ∈ Rd and e, z ∈ Rm with ∥x∥ld

1,∞
≤ R, ∥e∥ld

2
≤ c ε


log(d/m), ∥e∥ld

∞
≤

c ε and zi ∼ N (0, σ 2) for some constants R, σ, ε, c > 0 let

y = Φx + e + z.

Then there exist constants C5, C6, C7 such that the Dantzig selector ∆DS (with λd =


2 log d)
applied to y satisfies the estimate

∥∆DS(y) − x∥ld
2

≤


min

1≤s∗≤s
2C5 log d


s∗σ

2
+ R̃2s−1

∗

 1
2

+ C7
ε
√

m
√

s

with high probability, where R̃ = 2(R + 2C6ε
√

m).

Proof. It follows from the assumptions that ∥e∥J ≤ c ε
√

m. Then we use Theorem 2.5 (ii) to
find a vector u ∈ Rd , such that

Φu = e,

∥u∥ld
1

≤ C3∥e∥J ≤ C3 c ε
√

m,

∥u∥ld
2

≤ C4


log(d/m)/m∥e∥J ≤ C4 c ε


log(d/m).

Further we apply the triangle inequality for the ∥ · ∥1,∞ quasinorm (see, for instance,
Lemma 2.7 in [19]) to get

∥x + u∥ld
1,∞

≤ 2

∥x∥ld

1,∞
+ ∥u∥ld

1,∞


≤ 2


∥x∥ld

1,∞
+ ∥u∥ld

1


≤ 2


R + C6ε

√
m


=: R̃.

Finally, applying Theorem 2.8 (with p = 1) we get

∥∆DS(y) − x∥ld
2

= ∥∆DS(Φx + e + z) − x∥ld
2

≤ ∥∆DS(Φ(x + u) + z) − (x + u)∥ld
2

+ ∥u∥ld
2

≤


min

1≤s∗≤s
2C5 log d


s∗σ

2
+ R̃2s−1

∗

 1
2

+ C7
ε
√

m
√

s
,

which finishes the proof. �

3. Approximation of ridge functions defined on cubes

Motivated by [11], we consider in this section uniform approximation of ridge functions of
the form

f : [−1, 1]
d

→ R, x → g(⟨a, x⟩). (3.1)

We assume that both the ridge vector a ∈ Rd and the univariate function g (also called ridge
profile) are unknown.

First, we note that the problem is invariant with respect to scaling. Suppose that f is a
ridge function with representation f (x) = g(⟨a, x⟩). Then for any scalar λ ∈ R \ {0} we put
g̃(x) := g( 1

λ
x) and ã := λa to get another representation of f in the form of (3.1), namely

g̃(⟨ã, x⟩) = g̃(⟨λa, x⟩) = g


1
λ

λa, x


= g(⟨a, x⟩) = f (x).
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Thus we can pose a scaling condition on a without any loss of generality. Furthermore, if
g′(0) ≠ 0, we can switch from a to −a, and obtain a ridge representation of f with g′(0) > 0.

In [18], the scaling condition ∥a∥ld
2

= 1 was assumed. This fitted together with both the scalar
product structure used in the definition of f , as well as with the geometry of the domain of f
used in [18], namely the Euclidean unit ball.

It is easy to observe that it will be more convenient for us to work with the ℓd
1 -norm of a.

Indeed, let us consider the case where the ridge profile g(t) = t is known, i.e. that we have
f (x) = ⟨a, x⟩ for some (unknown) a ∈ Rd , and let us assume that we have an ld

1 -approximation
â of a with ∥a − â∥ld

1
≤ ε. Then Hölder’s inequality gives us

∥ f̂ − f ∥∞ = sup
x∈[−1,1]d

|⟨a − â, x⟩| ≤ sup
x∈[−1,1]d

∥a − â∥ld
1
∥x∥ld

∞
≤ ε.

In what follows we shall therefore assume that

∥a∥ld
1

= 1 (3.2)

and that g is a univariate function defined on I = [−1, 1]. We further assume that g and g′ are
Lipschitz continuous with constants c0, c1 > 0, i.e.

|g(t1) − g(t2)| ≤ c0|t1 − t2|, (3.3)

|g′(t1) − g′(t2)| ≤ c1|t1 − t2| (3.4)

holds for all t1, t2 ∈ I = [−1, 1]. Finally, we assume that

g′(0) > 0 (3.5)

as it is known, cf. [25], that approximation of ridge functions may be intractable if this condition
is left out.

3.1. Approximation scheme without sparsity

In this part we evolve an approximation scheme for ridge functions with an arbitrary ridge
vector a ∈ Rd , merely assuming the right normalization (3.2). After this we consider the same
problem with an additional sparsity condition on a, where we will use results from compressed
sensing to reduce the number of samples.

Motivated by the formula (1.1) for x = 0

∇ f (0) = g′(0)a, (3.6)

we set for a small constant h > 0 and i ∈ {1, . . . , d}

ãi :=
f (hei ) − f (0)

h
, (3.7)

where e1, . . . , ed are the usual canonical basis vectors of Rd . As expected, it turns out that ãi is
a good approximation of g′(0)ai as the mean value theorem gives

ãi =
f (hei ) − f (0)

h
=

g(h⟨a, ei ⟩) − g(0)

h
= g′(ξh,i )ai



A. Kolleck, J. Vybı́ral / Journal of Approximation Theory 194 (2015) 35–61 43

for some ξh,i ∈ (−|hai |, |hai |). And for the ℓd
1 -approximation we obtain

∥ã − g′(0)a∥ld
1

=

d
i=1

|ãi − g′(0)ai | =

d
i=1

|g′(ξh,i ) − g′(0)||ai |

≤

d
i=1

c1|ξh,i ||ai | ≤

d
i=1

c1|hai ||ai | = c1h
d

i=1

|ai |
2

≤ c1h. (3.8)

Thus ã is a good approximation to g′(0)a and since we want an approximation to a and we know
that a is ld

1 -normalized we set

â :=
ã

∥ã∥ld
1

.

Now we have to estimate the difference between a and â. We will use a variant of [18, Lemma
3.4].

Lemma 3.1. Let x ∈ Rd with ∥x∥ld
1

= 1, x̃ ∈ Rd
\ {0} and λ ∈ R. Then it holdssign(λ)

x̃

∥x̃∥ld
1

− x


ld
1

≤

2∥x̃ − λx∥ld
1

∥x̃∥ld
1

.

Remark 3.2. We leave out the proof, which follows closely the proof of [18, Lemma 3.4]. The
proof uses only triangle inequality and the lemma therefore remains true for any norm on Rd .

Applying this lemma to our case it holds with (3.8) and the assumption (3.5)

∥sign(g′(0))â − a∥ld
1

= ∥â − a∥ld
1

≤
2c1h

∥ã∥ld
1

. (3.9)

Although we now know that â is a good approximation of a, it is still not clear how to define
the uniform approximation f̂ of f . The naive approach (used with success in [18] for ridge
functions defined on the Euclidean unit ball) is to sample f along â, i.e. to put ĝ(t) := f (t â),
and then define f̂ (x) := ĝ(⟨â, x⟩). But when trying to estimate ∥ f − f̂ ∥∞, we would need to
ensure that ⟨â, a⟩ is close to 1. This was indeed the case in [18], where an estimate on ∥â − a∥ℓd

2

was obtained, but it is not true any more in our setting of ℓd
1 approximation.

On the other hand, because of the normalization of a, we have

⟨a, sign(a)⟩ =

d
i=1

ai · sign(ai ) =

d
i=1

|ai | = ∥a∥ld
1

= 1,

where we defined the sign of a vector x ∈ Rd entrywise, i.e.

sign(x) := (sign(xi ))i ∈ Rd .

Note that this function is discontinuous, hence sign(a) and sign(â) can be far from each other,
even if the difference ∥a − â∥ld

1
is small. Nevertheless their scalar product with a is nearly the
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same as Hölder’s inequality gives

|⟨a, sign(a) − sign(â)⟩| = |⟨a, sign(a)⟩ − ⟨â, sign(â)⟩ − ⟨a − â, sign(â)⟩|

≤ ∥a − â∥ld
1
∥sign(â)∥ld

∞
= ∥a − â∥ld

1
. (3.10)

Thus we define

ĝ: [−1, 1] → R, t → f

t · sign(â)


(3.11)

and

f̂ (x) = ĝ(⟨â, x⟩). (3.12)

Let us summarize our approximation algorithm as follows.

Algorithm A

• Input: Ridge function f (x) = g(⟨a, x⟩) with (3.2)-(3.5) and h > 0 small

• Put ãi :=
f (hei ) − f (0)

h
, i = 1, . . . , d

• Put â :=
ã

∥ã∥ld
1

• Put ĝ(t) = f (t · sign(â)) and f̂ (x) = ĝ(⟨â, x⟩)

• Output: f̂

We formulate the approximation properties of Algorithm A as the following theorem.

Theorem 3.3. Let f : [−1, 1]
d

→ R be a ridge function with f (x) = g(⟨a, x⟩) for some a ∈ Rd

with (3.2) and a differentiable function g: [−1, 1] → R with (3.3)–(3.5). For h > 0 we construct
the function f̂ as described in Algorithm A. Then

∥ f − f̂ ∥∞ ≤ 2c0∥â − a∥ld
1

≤
4c0c1h

g′(0) − c1h
, (3.13)

where the last inequality only holds if g′(0) − c1h is positive.

Proof. First, we show that

∥â − a∥ld
1

≤
2hc1

∥ã∥ld
1

≤
2hc1

g′(0) − c1h
, (3.14)

where the last inequality only holds if g′(0) − c1h is positive.
Due to (3.9), we only have to show the last inequality of (3.14). With ãi = g′(ξh,i )ai for some

ξh,i ∈ (−|hai |, |hai |) ⊂ [−h, h], it follows by the triangle inequality and (3.8)

∥ã∥ld
1

≥ ∥g′(0)a∥ld
1

− ∥ã − g′(0)a∥ld
1

≥ g′(0) − c1h,

which proves (3.14) and the second inequality in (3.13).
To prove the first inequality in (3.13), we use (3.3) and (3.10) to show that ĝ is a good uniform

approximation of g on [−1, 1]. We obtain

|g(t) − ĝ(t)| = |g(t) − g(⟨a, t · sign(â)⟩)| ≤ c0|t − t⟨a, sign(â)⟩|

= c0|t |
⟨a, sign(a) − sign(â)⟩

 ≤ c0∥a − â∥ld
1

(3.15)
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for each t ∈ [−1, 1]. Finally, we combine this estimate with the definition of f̂ as given in (3.12)
and arrive at

| f̂ (x) − f (x)| = |ĝ(⟨â, x⟩) − g(⟨a, x⟩)|

≤ |ĝ(⟨â, x⟩) − g(⟨â, x⟩)| + |g(⟨â, x⟩) − g(⟨a, x⟩)|

≤ c0∥a − â∥ld
1

+ c0|⟨a − â, x⟩| ≤ 2c0∥a − â∥ld
1
. � (3.16)

Remark 3.4. (i) Algorithm A needs d + 1 function evaluations to identify â. Once â was
identified, an arbitrary one-dimensional sampling method can be used to identify f̂ or, better
said, its approximation. As there is a vast literature on that subject, we do not go into details
and refer to [13] and the references in there.

(ii) The estimate (3.13) depends heavily on the value of g′(0). Especially, the approximation
becomes difficult, when this value gets smaller and (3.13) becomes void if g′(0) = 0. This
is a very well known aspect of approximation of ridge functions, which was studied in great
detail in [25]. We refer also to a slightly weaker condition used in [18].

(iii) If ∥a∥ld
2

is small, the following improvement of (3.13) becomes of interest. First, we observe

that (3.8) can be improved to ∥ã − g′(0)a∥ld
1

≤ c1h∥a∥
2
ld
2
, which results to

∥â − a∥ld
1

≤

2c1h∥a∥
2
ld
2

∥ã∥ld
1

.

Finally, this allows to improve (3.13) to

∥ f − f̂ ∥∞ ≤

4c0c1h∥a∥
2
ld
2

g′(0) − c1h∥a∥
2
ld
2

.

3.2. Approximation with sparsity

In this subsection we assume that the ridge vector a ∈ Rd is not only ℓd
1 -normalized, but

satisfies also some sparsity condition, i.e. most of the entries of a are zero or at least very small.
We will use techniques of compressed sensing to address the approximation of the ridge vector a.
Subsequently we obtain an approximation of f in the same way as before. The main advantage
of Algorithm B presented below is that, for sparse vectors a, it achieves nearly the same error
bound as Algorithm A, using a much smaller number of sampling points, cf. Remark 3.6.

Let Φ ∈ Rm×d be a normalized Bernoulli matrix and let ϕ1, . . . , ϕm be its rows. Taking their
scalar product with the quantities in (3.6), we obtain

∂ f

∂ϕ j
(0) = ⟨∇ f (0), ϕ j ⟩ = g′(0)⟨a, ϕ j ⟩. (3.17)

We use again first order differences as an approximation of the directional derivatives in
(3.17), i.e. we set

b̃ j :=
f (hϕ j ) − f (0)

h
.
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As in the previous section the mean value theorem gives the existence of some ξh, j with
|ξh, j | ≤ |h| · |⟨a, ϕ j ⟩| such that

b̃ j = g′(ξh, j )⟨a, ϕ j ⟩.

In this sense, we expect b̃ j to be a good approximation of g′(0)⟨a, ϕ j ⟩ and b̃ to be a good
approximation of g′(0)Φa. Hence, we recover ã through ℓ1-minimization. From this point on,
we may continue as before. Let us summarize this procedure as Algorithm B.

Algorithm B

• Input: Ridge function f (x) = g(⟨a, x⟩) with (3.2)–(3.5), h > 0 small and
m ≤ d/(log 6)2

• Take Φ ∈ Rm×d a normalized Bernoulli matrix, cf. (2.2)

• Put b̃ j :=
f (hϕ j ) − f (0)

h
, j = 1, . . . , m

• Put ã := ∆ld
1
(b̃) = arg min

w∈Rd
∥w∥ld

1
s.t. Φw = b̃

• Put â :=
ã

∥ã∥ld
1

• Put ĝ(t) = f (t · sign(â)) and f̂ (x) = ĝ(⟨â, x⟩)

• Output: f̂

Theorem 3.5. Let f : [−1, 1]
d

→ R be a ridge function with f (x) = g(⟨a, x⟩) for some vector
a ∈ Rd with (3.2) and some differentiable function g: [−1, 1] → R with (3.3)–(3.5). Let
d ≥ (log 6)2m and h > 0 be fixed. Then there exist some constants C ′

0, C1, C2, c > 0, such that

for every positive integer s with 2s ≤ (C2m)/ log(d/m) the function f̂ constructed in Algorithm
B satisfies

∥ f − f̂ ∥∞ ≤ 2c0∥â − a∥ld
1

≤ 2c0 err(a, â), (3.18)

where

err(a, â) := C ′

0 ·
g′(0) · σ d

s (a)1 + ch

g′(0)(1 − σ d
s (a)1) − 2ch

,

with probability at least 1 − e−
√

md
− e−C1m provided the denominator in the expression for

err(a, â) is positive.

Proof. The first inequality in (3.18) follows again by (3.15) combined with (3.16).
Setting b̃ := (b̃1, . . . , b̃m)T

∈ Rm and b := g′(0)Φa ∈ Rm we get

∥b̃ − b∥ld
1

=

m
j=1

|g′(ξh, j )⟨a, ϕ j ⟩ − g′(0)⟨a, ϕ j ⟩| =

m
j=1

|g′(ξh, j ) − g′(0)||⟨a, ϕ j ⟩|

≤

m
j=1

c1h|⟨a, ϕ j ⟩|
2

≤ c1h
m

j=1

∥a∥
2
ld
1
∥ϕ j∥

2
ld
∞

= c1h.
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Therefore we obtain

b̃ = b + e = g′(0)Φa + e (3.19)

for e ∈ Rm with ∥e∥lm
1

≤ c1h and, similarly, ∥e∥lm
∞

≤ c1h/m and ∥e∥lm
2

≤ c1h/
√

m. This allows
us to estimate the J -norm of e as follows

∥e∥J = max

√

m∥e∥lm
∞

;


m

log(d/m)
∥e∥lm

2


≤ max


c1h
√

m
;

c1h
log(d/m)



≤ max


c1h;

c1h
2 log log 6


= c1h,

where we used d ≥ (log 6)2m for the second inequality. Hence, by using Theorem 2.5 for
ẽ = e/(c1h) there exists some vector u ∈ Rd with Φu = e and ∥u∥ℓd

1
≤ C3c1h.

Take some 1/3 > δ > 0 fixed, e.g. δ = 1/6, and apply Theorem 2.4 to g′(0)a + u. This gives
us

∥∆ld
1
(b̃) − g′(0)a∥ld

1
= ∥∆ld

1


Φ(g′(0)a + u)


− g′(0)a∥ld

1

≤ ∥∆ld
1


Φ(g′(0)a + u)


− g′(0)a − u∥ld

1
+ ∥u∥ld

1

≤ C0 · σ d
s


g′(0)a + u


1 + ∥u∥ld

1

≤ C0g′(0) · σ d
s (a)1 + (1 + C0)∥u∥ld

1

≤ (1 + C0)


g′(0) · σ d
s (a)1 + ∥u∥ld

1


.

Finally, by setting ã := ∆ld
1
(b̃) and â := ã/∥ã∥ld

1
, Lemma 3.1 provides

∥a − â∥ld
1

≤ 2(1 + C0) ·

g′(0) · σ d
s (a)1 + ∥u∥ld

1

∥ã∥ld
1

≤ 2(1 + C0) ·
g′(0) · σ d

s (a)1 + C3c1h

∥ã∥ld
1

. (3.20)

From this point on we can proceed as in the proof of Theorem 3.3. We can again estimate the
ld
1 -norm of ã from below. We get

∥ã∥ld
1

= ∥∆ld
1
(Φ(g′(0)a + u))∥ld

1

≥ ∥g′(0)a + u∥ld
1

− ∥∆ld
1
(Φ(g′(0)a + u)) − g′(0)a − u∥ld

1

≥ g′(0)∥a∥ld
1

− ∥u∥ld
1

− σ d
s (g′(0)a + u)1

≥ g′(0) − 2∥u∥ld
1

− g′(0)σ d
s (a)1

≥ g′(0) − 2C3c1h − g′(0)σ d
s (a)1. (3.21)
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Putting c = C3c1 and C ′

0 = 2(1+C0), we get the second inequality in (3.18). The first inequality
in (3.18) is then again provided by (3.16). �

Remark 3.6. (i) In particular, if a is s-sparse, we get σ d
s (a)1 = 0 and, therefore,

∥ f − f̂ ∥∞ ≤ C
ch

g′(0) − 2ch
.

(ii) If the sparsity level of a is s ∈ N, the condition 2s ≤ (C2m)/ log(d/m) implies m ≥

2s log(d)/C2. Thus, in this case we need m = O(s log d) measurements to reconstruct the
vector a.

4. Approximation of ridge functions with noisy measurements

In this section we study another aspect of recovery of ridge functions. We consider ridge
functions defined on the unit ball as in [18] but we assume that the measurements are affected by
random noise. This topic already appeared in a short remark in Section 4 of [20], but in contrary
to that work, we additionally assume that the vector a satisfies a compressibility condition.

To be more precise, we consider ridge functions

f : Bd
= {x ∈ Rd

| ∥x∥ld
2

< 1} → R, x → f (x) = g(⟨a, x⟩).

We assume, that the ridge vector a ∈ Rd is ld
2 -normalized

∥a∥ld
2

= 1 (4.1)

and compressible in the following sense,

∥a∥ld
1

≤ R, R > 0. (4.2)

Furthermore, we assume that the ridge profile is a differentiable function g: [−1, 1] → R with
(3.3)–(3.5).

We shall use again the setting of Remark 2.7. Let d ≥ (log 6)2m and let Φ ∈ Rm×d be a
normalized Bernoulli matrix (2.2) with rows ϕ1, . . . , ϕm . By Theorem 2.3 it is ensured that Φ
satisfies the RIP of order 2s with 0 < δ2s ≤ δ := 1/6 with high probability for every positive
integer s with 3s ≤ (C2m)/ log(d/m), where the constant C2 is the constant from Theorem 2.3.

But in contrary to (3.7), we now assume that the evaluation of f is perturbed by noise. To
make the presentation technically simpler, we shall assume that the value f (0) is given precisely
(i.e. without noise). This can be achieved (with high precision) by re-sampling the value f (0)

several times, and applying Hoeffding’s inequality.
Hence, we set for j = 1, . . . , m and a small constant h > 0

b j :=
( f (hϕ j ) + z̃ j ) − f (0)

h
=

f (hϕ j ) − f (0)

h
+

z̃ j

h
.

We assume that the random noise z̃ = (z̃1, . . . , z̃m)T
∈ Rm has independent components

z̃ j ∼ N (0, σ 2). Since z̃ j are independent, it is well known that

z j :=
z̃ j

h
∼ N


0,

σ 2

h2


(4.3)
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are also independent. As in the case with exact measurements the mean value theorem gives us
f (hϕ j ) − f (0)

h
=

g(⟨a, hϕ j ⟩) − g(0)

h
= g′(ξh, j )⟨a, ϕ j ⟩

for some real ξh, j with |ξh, j | ≤ |⟨a, hϕ j ⟩|, hence

b j = g′(ξh, j )⟨a, ϕ j ⟩ + z j .

To recover the vector a from these measurements let us first define the deterministic noise e ∈ Rm

by

e j = ⟨a, ϕ j ⟩(g
′(ξh, j ) − g′(0)), j = 1, . . . , m, (4.4)

i.e.

b = g′(0)Φa + e + z. (4.5)

We then recover â with the help of the Dantzig selector (2.4) instead of l1-minimization.
Finally, for the construction of ĝ and f̂ , we can use the direct approach of [18], which is given
by

ĝ: R → R, t → f (t â) and f̂ : Bd
→ R, x → ĝ(⟨â, x⟩).

Let us summarize this procedure as the following algorithm.

Algorithm C

• Input: Ridge function f (x) = g(⟨a, x⟩) with (4.1), (4.2), (3.3)–(3.5), h, σ > 0 and
m ≤ d/(log 6)2

• Construct the m × d normalized Bernoulli matrix Φ, c.f. (2.2), with rows denoted
by ϕ1, . . . , ϕm ∈ Rd

• Put b j =
( f (hϕ j ) + z̃ j ) − f (0)

h
, j = 1, . . . , m

• Put â =
∆DS(b)

∥∆DS(b)∥ld
2

for λd =


2 log d

• Put ĝ: R → R, t → f (t â)

• Put f̂ : Bd
→ R, x → ĝ(⟨â, x⟩)

• Output: f̂

Theorem 4.1. Let f : Bd
→ R be a ridge function f (x) = g(⟨a, x⟩) with (4.1), (4.2), (3.3)–

(3.5). Furthermore, let h, σ > 0 and let s ≤ m ≤ d be positive integers with (2.5). Let
z̃ j ∼ N (0, σ 2) be independent. Then there is a constant C2 > 0, such that the function f̂
defined by Algorithm C satisfies with high probability

∥ f − f̂ ∥∞ ≤ 2c0∥a − â∥ld
2

≤
4c0err(a, â)

g′(0) − err(a, â)
, (4.6)

where

err(a, â) :=


min

1≤s∗≤s
2C5 log d


s∗

σ 2

h2 + R̃2s−1
∗

 1
2

+ C7
h

√
s
, (4.7)

R̃ := 2(R + 2C6h)
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for some constants C5, C6, C7. The second inequality in (4.6) only holds if the denominator is
positive.

Proof. To prove this theorem, we apply Theorem 2.9 to (4.5). Therefore we need to estimate the
norm of e ∈ Rm , defined by (4.4). We obtain

∥e∥2
lm
2

=

m
j=1


⟨a, ϕ j ⟩(g

′(ξh, j ) − g′(0))
2

≤

m
j=1


c1h⟨a, ϕ j ⟩

2
2

≤ c2
1h2

m
j=1


∥a∥ld

1
∥ϕ j∥ld

∞

4
≤

c2
1h2 R4

m

and similarly we can show

∥e∥lm
∞

≤
c1h R2

m
.

We can now apply Theorem 2.9 with ε = h R2/
√

m to get

∥∆DS(b) − g′(0)a∥ld
2

≤


min

1≤s∗≤s
2C5 log d


s∗

2σ 2

h2 + R̃2s−1
∗

 1
2

+ C7
h

√
s

=: err(a, â)

with R̃ = 2(R + 2C6h) and some constants C5, C6, C7. And since we know that a is ld
2 -

normalized we set

â :=
∆DS(b)

∥∆DS(b)∥ld
2

.

Applying Lemma 3.1 we get

∥a − â∥ld
2

≤
2err(a, â)

∥∆DS(b)∥ld
2

≤
2err(a, â)

g′(0)∥a∥lm
2

− err(a, â)
=

2err(a, â)

g′(0) − err(a, â)
,

where the last inequality only holds if the denominator is positive. This proves the second in-
equality in (4.6).

The proof of the first part of (4.6) proceeds as in [18]. First we define an approximation ĝ to g

ĝ: R → R, t → f (t â). (4.8)

This is indeed a good approximation to g as for any t ∈ [−1, 1] we get

|ĝ(t) − g(t)| = |g(⟨a, t · â⟩) − g(t)| ≤ c0
t 1 − ⟨a, â⟩

 = c0|t | ·
⟨a, a − â⟩


≤ c0 · ∥a − â∥ld

2
. (4.9)

With this approximation ĝ to g we define the function f̂ by

f̂ : Bd
→ R, x → ĝ(⟨â, x⟩).

It remains to show that f̂ is a good approximation to f . With the help of (4.8) and (4.9) we obtain

| f (x) − f̂ (x)| = |g(⟨a, x⟩) − ĝ(⟨â, x⟩)|

≤ |g(⟨â, x⟩) − ĝ(⟨â, x⟩)| + |g(⟨a, x⟩) − g(⟨â, x⟩)|
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≤ c0 · ∥a − â∥ld
2

+ c0|⟨a − â, x⟩|

≤ 2c0∥a − â∥ld
2

for all x ∈ Bd . �

Remark 4.2. (i) We assumed that the step size h > 0 is an input of Algorithm C. From (4.7),
we see that choosing h too small would amplify the noise, where choosing h large would
lead to a worse approximation of derivatives by differences. We refer also to [20] for a brief
discussion of this phenomenon. There is therefore an h > 0, which leads to an optimal com-
promise between the two parts of the right-hand side of (4.7). Unfortunately, this optimal h
depends on the (a-priori unknown) function g and can be therefore hardly identified in the
beginning. We exhibit in Section 6.2 also numerical evidence of this effect.

(ii) The main difference between our discussion of noisy sampling and the approach applied
in [20] is that we assumed the ridge vector a to be compressible, cf. (4.2). Roughly speak-
ing, this is reflected in the logarithmic dependence on d in (4.7) compared to (8) in [20].

(iii) We studied ridge functions on the unit ball in this section to be able to make use of the esti-
mates on the Dantzig selector available in the literature. To adapt this approach to functions
defined on the unit cube, it would be necessary to introduce the ℓ1-version of Theorem 2.8
first.

5. Approximation of translated radial functions

The methods we presented so far, as well as the methods of [18], were developed in the (quite
restrictive) frame of ridge functions. The aim of this section is to demonstrate that the same
tools can be useful also in approximation of functions of different type. We consider the class of
translated radial functions, i.e. functions of the form

f : Bd
→ R, x → f (x) = g(∥a − x∥

2
ld
2
)

for some fixed ld
2 -normalized vector a ∈ Rd

∥a∥ld
2

= 1 (5.1)

and a function g: [0, 4] → R. Hence, f is constant on the spheres centered in a or, equivalently,
it is a radial function translated by a. Typically, we shall again assume that g and g′ are Lipschitz
continuous with constants c0 and c1, respectively.

The idea to recover those functions is similar to the case of ridge functions. First we recover
the center a and then we define approximations ĝ to g and f̂ to f .

For a small constant h > 0 and fixed vectors xi ∈ Rd , i = 1, . . . , d we set

ãi :=
f (hei + xi ) − f (xi )

h
,

where e1, . . . , ed are again the canonical basis vectors of Rd . With help of the mean value
theorem we can express this as

ãi =
f (hei + xi ) − f (xi )

h
=

g(∥a − hei − xi∥
2
ld
2
) − g(∥a − xi∥

2
ld
2
)

h

= g′(ξh,i )

∥a − hei − xi∥
2
ld
2

− ∥a − xi∥
2
ld
2

h
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for some real ξh,i between ∥a − hei − xi∥
2
ld
2

and ∥a − xi∥
2
ld
2
. The numerator can be simplified by

∥a − hei − xi∥
2
ld
2

− ∥a − xi∥
2
ld
2

= ⟨a − hei − xi , a − hei − xi ⟩ − ⟨a − xi , a − xi ⟩

= −2h⟨a, ei ⟩ + h2
⟨ei , ei ⟩ + 2h⟨ei , xi ⟩

= −2hai + h2
+ 2hxi,i .

Let us choose xi = −(h/2)ei to get

ãi =
f ((h/2)ei ) − f (−(h/2)ei )

h
= −2g′(ξh,i )ai

for some ξh,i between ∥a − (h/2)ei∥
2
ld
2

and ∥a + (h/2)ei∥
2
ld
2
. Next let us note that ξh,i is very

close to 1 = ∥a∥
2
ld
2
:ξh,i − 1

 ≤ max
1 − ∥a − (h/2)ei∥

2
ld
2

 , 1 − ∥a + (h/2)ei∥
2
ld
2


= max

−hai − h2/4
 , hai − h2/4


≤ h + h2/4. (5.2)

Finally we obtain that â is a good approximation to −2g′(∥a∥
2
ld
2
)a = −2g′(1)a, since

∥ã + 2g′(1)a∥
2
ld
2

=

d
i=1


−2g′(ξh,i )ai + 2g′(1)ai

2
= 4

d
i=1


g′(ξh,i ) − g′(1)


ai
2

≤ 4
d

i=1


c1
ξh,i − 1

 ai
2

≤ 4c2
1

d
i=1


h + h2/4


ai

2
= 4c2

1


h + h2/4

2 d
i=1

a2
i

= 4c2
1


h + h2/4

2
.

Thus ã is almost a multiple of a. Again, we need to assume that the derivative of g′ is non-trivial
in some sense. Due to the construction, we replace (3.5) by the condition

g′(1) ≠ 0.

Then the ld
2 -normalized vector

â :=
ã

∥ã∥ld
2

approximates a, possibly up to a sign. Choosing any vector â⊥
∈ Rd orthogonal to â, we can

identify the sign by sampling along â⊥. Afterwards, the correct sign might be assigned to â. We
will therefore restrict ourselves to the case

g′(1) > 0. (5.3)
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Once an approximation of a was recovered, it is again easy to define an approximation of g,
and finally of f . We summarize this procedure as the following algorithm.

Algorithm D

• Input: Translated radial function f : Bd
→ R with f (x) = g(∥a − x∥

2
ld
2
), a and g

with (5.1), (3.3), (3.4) and (5.3), h > 0
• Put ãi :=

f (hei /2)− f (−hei /2)
h , i = 1, . . . , d

• Put â :=
ã

∥ã∥
ld2

• Put ĝ: [0, 4] → R, t → f (â(1 −
√

t))
• Put f̂ : Bd

→ R, x → ĝ(∥â − x∥
2
ld
2
)

• Output: f̂

The performance of Algorithm D is estimated by the following theorem.

Theorem 5.1. Let f : Bd
→ R, g: [0, 4] → R and a ∈ Rd be such that f (x) = g(∥a − x∥

2
ld
2
)

and a and g satisfy (5.1), (3.3), (3.4) and (5.3). Then

∥ f − f̂ ∥∞ ≤ c0


2∥â − a∥ld

2
+ ∥â − a∥

2
ld
2


(5.4)

and

∥â − a∥ld
2

≤
2c1


h + h2/4


g′(1) − c1(h + h2/4)

(5.5)

if g′(1) − c1(h + h2/4) is positive.

Proof. First, we estimate the difference between a and â. By (5.2) and (3.4)

g′(1) − |g′(ξh,i )| ≤ |g′(1) − g′(ξh,i )| ≤ c1|1 − ξh,i | ≤ c1(h + h2/4),

hence

|g′(ξh,i )| ≥ g′(1) − c1(h + h2/4). (5.6)

Therefore, if the right hand side of (5.6) is positive, we get

∥ã∥
2
ld
2

=

d
i=1

|ãi |
2

= 4
d

i=1

|g′(ξh,i )ai |
2

≥ 4
d

i=1


g′(1) − c1(h + h2/4)

2
a2

i

= 4


g′(1) − c1(h + h2/4)
2

.

Now we apply Lemma 3.1 to obtain

∥â − a∥ld
2

≤
4c1(h + h2/4)

∥ã∥ld
2

≤
2c1(h + h2/4)

g′(1) − c1(h + h2/4)
. (5.7)
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Given the approximation â to a we define an approximation ĝ to g by

ĝ: [0, 4] → R, t → f


â


1 −
√

t


.

Essentially, ĝ is the restriction of f onto {λâ : λ ∈ R} ∩ Bd . Using (3.3) we obtain the estimate

|g(t) − ĝ(t)| =

g(t) − g(∥a − â +
√

t â∥
2
ld
2
)

 ≤ c0

t − ∥a − â +
√

t â∥
2
ld
2


= c0

2√
t⟨a − â, â⟩ + ∥a − â∥

2
ld
2

 = c0

2 1 −
√

t


(1 − ⟨a, â⟩)


= c0

1 −
√

t
 · ∥a − â∥

2
ld
2

≤ c0 ∥a − â∥
2
ld
2

(5.8)

for all t ∈ [0, 4]. Next we define

f̂ : Bd
→ R, x → ĝ(∥â − x∥

2
ld
2
).

With (5.7) and (5.8) we get the final estimate

| f (x) − f̂ (x)| =

g(∥a − x∥
2
ld
2
) − ĝ(∥â − x∥

2
ld
2
)


≤

g(∥a − x∥
2
ld
2
) − g(∥â − x∥

2
ld
2
)

+ g(∥â − x∥
2
ld
2
) − ĝ(∥â − x∥

2
ld
2
)


≤ c0

∥a − x∥
2
ld
2

− ∥â − x∥
2
ld
2

+ c0 ∥a − â∥
2
ld
2

= 2c0
⟨a − â, x⟩

+ c0 ∥a − â∥
2
ld
2

≤ c0


2∥a − â∥ld

2
+ ∥a − â∥

2
ld
2


. �

Remark 5.2. We assumed in Theorem 5.1, that the function g and its derivative g′ are both
Lipschitz. If we assume this property only on the interval (1 − (h + h2/4), 1 + (h + h2/4)), we
can still recover at least (5.7). This applies even to the case, when g (and also its derivative) are
unbounded near the origin. In that case, we can still approximate the position of the singularity,
although uniform approximation of f is out of reach.

5.1. Extensions of Theorem 5.1

As in the approximation scheme for ridge functions we can use techniques from compressed
sensing to recover f if a is compressible. To be more precise, if a satisfies

∥a∥ld
1

≤ R (5.9)

and Φ ∈ Rm×d is a normalized Bernoulli matrix with rows ϕ1, . . . , ϕm ∈ Rd , we define

b̃ j :=
f ((h/2)ϕ j ) − f (−(h/2)ϕ j )

h
, j = 1, . . . , m.

As f is defined only on the unit ball Bd and ∥ϕ j∥ld
2

=
√

d/m, we must always have at least

h ≤ 2
√

m/d to ensure that (h/2)ϕ j ∈ Bd . To allow for comparison with the non-compressible
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case just discussed in Theorem 5.1, we denote

h̃ = h/2 ·


d/m,

which leads to

b̃ j =

f


h̃
ϕ j

∥ϕ j ∥ld2


− f


−h̃

ϕ j
∥ϕ j ∥ld2


h

. (5.10)

By defining the deterministic noise e ∈ Rm

b̃ = −2g′(1)Φa + e (5.11)

we can show with similar calculations as before that

∥e∥lm
2

≤ η := 2c1 R


2Rh̃
√

d
+ h̃2


. (5.12)

Using the (P1,η) minimizer of [5] we put

ã = arg min
z∈Rd

∥z∥ld
1

s.t. ∥Φz − b̃∥lm
2

≤ η

with η given by the right hand side of (5.12). We then get the estimate, cf. [19, Theorem 4.22]
or [2, Theorem 1.6],

∥ã − 2g′(1)a∥ld
2

≤ ϱ :=
Cσ d

s (2g′(1)a)1
√

s
+ Dη

with two universal constants C, D > 0. Here again s ≤ C2m/ log(d/m). Lemma 3.1 (with ld
2

instead of ld
1 ) gives for â = ã/∥ã∥ld

2

∥â − a∥ld
2

≤ 2ϱ/∥ã∥ld
2
.

Finally, using

∥ã∥ld
2

≥ 2g′(1)∥a∥ld
2

− ∥ã − 2g′(1)a∥ld
2

≥ 2g′(1) − ϱ,

we get

∥â − a∥ld
2

≤
2ϱ

2g′(1) − ϱ

if 2g′(1) > ϱ.

This gives a replacement of (5.7), the rest of the proof of Theorem 5.1 then applies without
further modifications. We summarize this procedure as Algorithm E below and describe its
performance.
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Algorithm E

• Input: Translated radial function f : Bd
→ R with f (x) = g(∥a − x∥

2
ld
2
), a and g

with (5.1), (3.3), (3.4), (5.3) and (5.9), h̃ > 0, m ≤ d/(log 6)2

• Take Φ ∈ Rm×d a normalized Bernoulli matrix, cf. (2.2)

• Put b̃ j =

∥ϕ j∥ℓd
2

2h̃
·


f


h̃
ϕ j

∥ϕ j∥ld
2


− f


−h̃

ϕ j

∥ϕ j∥ld
2


• Put η := 2c1 R


2Rh̃
√

d
+ h̃2


• Put ã := arg minz∈Rd ∥z∥ld

1
s.t. ∥Φz − b̃∥lm

2
≤ η

• Put â :=
ã

∥ã∥ld
2

• Put ĝ: [0, 4] → R, t → f (â(1 −
√

t))
• Put f̂ : Bd

→ R, x → ĝ(∥â − x∥
2
ld
2
)

• Output: f̂

Theorem 5.3. Let f : Bd
→ R, g: [0, 4] → R and a ∈ Rd be such that f (x) = g(∥a − x∥

2
ld
2
)

and a and g satisfy (5.1), (3.3), (3.4), (5.3) and (5.9). Let s ≤ m ≤ d be positive integers
satisfying (2.5). Then

∥ f − f̂ ∥∞ ≤ c0


2∥â − a∥ld

2
+ ∥â − a∥

2
ld
2


(5.13)

and

∥â − a∥ld
2

≤
2ϱ

2g′(1) − ϱ
(5.14)

if 2g′(1) > ϱ. Here

ϱ :=
Cσ d

s (2g′(1)a)1
√

s
+ Dη

for two universal constants C, D > 0.

Remark 5.4. Once we have this approximation scheme using techniques from compressed sens-
ing, we can easily extend it to an approximation scheme with noisy measurements. We assume
again that b̃ from (5.10) is corrupted by noise z/h, where the components of z = (z1, . . . , zm)T

are again independent N (0, σ 2) distributed random variables. Formula (5.11) is then replaced
by b̃ = −2g′(1)Φa + e + z/h and the Dantzig selector can be applied.

6. Numerical results

In this section we investigate the performance of the algorithms presented so far in several
model situations. The results shed a new light on some of the aspects, which we did not discuss
in detail, especially on the size of the constants used in the previous theorems. All the approxi-
mation schemes started by looking for a good approximation â of the unknown direction a and,
consequently, the quality of the uniform approximation of f by f̂ was then bounded by the
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Fig. 1. Approximation of a non-sparse profile a according to Algorithm A with g(t) = tanh(t) (left top) and
g(t) = tanh(t − 1) (right top). Approximation of sparse profiles a with s = 5 by Algorithm A: left bottom with
g(t) = tanh(t) and right bottom with g(t) = tanh(t − 1).

corresponding distance between â and a. In what follows, we will therefore discuss only the
approximation error between a and â.

6.1. Ridge functions on cubes

We start with Algorithm A, i.e. with approximation of a ridge function f (x) = g(⟨a, x⟩)

defined on the cube [−1, 1]
d with ∥a∥ℓd

1
= 1. We have considered different dimensions

(d ∈ {10, 100, 1000, 10.000}). As Algorithm A does not make any use of sparsity of a, it is
reasonable to assume, that all its coordinates are equally likely to be non-zero. The entries of
a were therefore always independently normally distributed (i.e. ai ∼ N (0, 1)), afterwards a
got ld

1 -normalized according to (3.2). For comparison, the bottom line of Fig. 1 displays also the
performance of Algorithm A on sparse vectors.
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Fig. 2. Phase transition for the approximation of a and the average error of ∥a − â∥
ℓd

1
according to Algorithm B.

Fig. 1 shows the approximation error ∥a − â∥ℓd
1

in dependence of the step size h > 0 for
two different profiles g(t) = tanh(t) and g(t) = tanh(t − 1). Note that the y-axis scales loga-
rithmically. For each step size, we repeated the calculation thousand times and took the average
afterwards. Let us give some remarks on Fig. 1.

• The approximation improves rapidly with growing dimension. This is a consequence of con-
sidering random non-sparse ridge vectors a and of (3.8), cf. also Remark 3.4. By the concen-
tration of measure phenomenon [21], the quantity ∥a∥ℓd

2
/∥a∥ℓd

1
behaves as d−1/2 for typical

random vectors a ∈ Rd . When considering sparse vectors as inputs in Algorithm A (Fig. 1,
bottom line), this effect disappears and there is no improvement with increasing dimension.

• Smaller step size h implies also better quality of approximation, but already reasonable sizes
of h (i.e. h = 0.2) imply surprisingly small errors.

• Finally, the second derivative of the first profile at zero vanishes, were it is non-zero for the
second profile. Therefore, the first order differences approximate the first order derivative less
accurately in that case, leading to larger (but still surprisingly small) approximation errors.

The left part of Fig. 2 shows the dependence of the number of the sampling points m on
the dimension d and sparsity s, cf. (2.5), when using Algorithm B. We fixed the ridge profile
g(t) = tanh(t − 1), the sparsity s = 5 and the step size h = 0.1 and constructed an s-sparse
random vector a by MATLAB command sprandn, followed by the ℓd

1 -normalization. For each
integer d between 50 and 1000 and for each integer m between 1 and 55, we then run Algorithm
B 120 times and the average approximation error ∥a − â∥ℓd

1
corresponds afterwards to the shade

of gray of the point with coordinates d and m. In accordance with the theory of compressed sens-
ing (and with Remark 3.6), we observe that for a random matrix Φ and a random sparse vector a
the number of measurements needs to grow only logarithmically in the dimension d to guarantee
good approximation with high probability. The right part of Fig. 2 then shows the average value
of ∥a − â∥ℓd

1
over one hundred repetitions for the same profile and sparsity for three different

pairs of (d, m). We observe, that especially for large dimensions even extremely small number
of measurements guarantees already reasonable approximation errors.
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Fig. 3. Approximation of a with noisy measurements according to Algorithm C (left) and a modification of Algorithm
A (right). Note, that only the y-axis of the left plot is logarithmic.

6.2. Noisy measurements

Fig. 3 studies the performance of the recovery of the ridge vector a from noisy measurements
as described in Algorithm C. We fixed the parameters d = 1000, m = 400, and s = 5, the
ridge profile g(t) = tanh(t − 1) and four different noise levels σ ∈ {0.03, 0.01, 0.003, 0.001}.
The number of repetitions for each step size was set to 1000. We have used the ℓ1-
MAGIC implementation of Dantzig selector, available at the web page of Justin Romberg at
http://users.ece.gatech.edu/˜justin/l1magic/. As the noise level gets amplified by the factor 1/h,
when taking the first order differences, cf. (4.3), it is not surprising that the recovery fails
completely for small values of h. On the other hand, for large values of h, the correspondence
between first order differences and first order derivatives gets weaker and the quality of
approximation deteriorates as well. This effect is clearly visible from (4.7) and, numerically,
in the left part of Fig. 3, where there is an optimal h for the recovery of a. Strictly speaking,
the functions considered in Section 4 were defined only on the unit ball Bd , so that the value of
h in Fig. 3 should be limited to be smaller than

√
m/d. We have decided to include also larger

values h to exhibit the optimal h, although for our profile and our parameters it lies outside of
this interval.

Although not discussed before, it is quite straightforward to modify the non-probabilistic
Algorithm A also to the case of noisy measurements. Essentially, the gradient ∇ f (0) is then
approximated by the first-order differences, this time corrupted by noise. We applied this
approach to the profile g(t) = tanh(t−1) and parameters just described with the results plotted in
the right part of Fig. 3. We observe that the approximation errors get much larger, demonstrating
once again the success of the Dantzig selector.

6.3. Shifted radial functions

In Fig. 4 we considered the approximation of the pole a of a shifted radial function f with
f (x) = g(∥a − x∥

2
ld
2
) and g(t) = −1/t . On the left plot, we fixed the sparsity s = 5 and

http://users.ece.gatech.edu/~justin/l1magic/
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Fig. 4. Approximation of a according to Algorithm E with sparsity (left) and with noisy measurements (right).

considered three values of d = 100, d = 1000 and d = 10.000. The number of measurements
was then m = 40, m = 60, or m = 80, respectively. The number of repetitions for each step
size was set to 40 in the left part of Fig. 4 and to one hundred in the right part. Finally, we
run Algorithm E and plot the average approximation error of ∥a − â∥ℓd

2
against the step size h.

The right hand plot of Fig. 4 shows the noise-aware modification of Algorithm E described in
Remark 5.4.
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Abstract We study the properties of ridge functions f (x) = g(a · x) in high dimen-
sions d from the viewpoint of approximation theory. The function classes considered
consist of ridge functions such that the profile g is a member of a univariate Lipschitz
class with smoothness α > 0 (including infinite smoothness) and the ridge direction
a has p-norm ‖a‖p ≤ 1. First, we investigate entropy numbers in order to quantify
the compactness of these ridge function classes in L∞. We show that they are essen-
tially as compact as the class of univariate Lipschitz functions. Second, we examine
sampling numbers and consider two extreme cases. In the case p = 2, sampling ridge
functions on the Euclidean unit ball suffers from the curse of dimensionality. More-
over, it is as difficult as sampling general multivariate Lipschitz functions, which is in
sharp contrast to the result on entropy numbers. When we additionally assume that all
feasible profiles have a first derivative uniformly bounded away from zero at the origin,
the complexity of sampling ridge functions reduces drastically to the complexity of
sampling univariate Lipschitz functions. In between, the sampling problem’s degree
of difficulty varies, depending on the values of α and p. Surprisingly, we see almost
the entire hierarchy of tractability levels as introduced in the recent monographs by
Novak and Woźniakowski.
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1 Introduction

Functions depending on a large number of variables (or even infinitelymany variables)
naturally appear in many real-world applications. Since analytical representations are
rarely available, there is a need to compute approximations to such functions or at
least functionals thereof. Examples include parametric and stochastic PDEs [7,34],
data analysis and learning theory [1,8,17], quantum chemistry [11], and mathematical
finance [29].

It is a very well-known fact that approximation of smooth multivariate functions
suffers from the so-called curse of dimensionality in many cases. In particular, for
fixed smoothness, the order of approximation decays rapidly with increasing dimen-
sion [9,23]. A recent result [27] from the area of information-based complexity states
that on the unit cube, even uniform approximation of infinitely differentiable functions
is intractable in high dimensions. These results naturally lead to the search for assump-
tions other than smoothness, whichwould allow for tractable approximation but would
still be broad enough to include real-world applications. There are many different con-
ditions of this kind. Usually, they require additional structure; for example, that the
functions under consideration are tensor products or belong to some sort of weighted
function space. We refer to [35] for an introduction to information-based complexity
and [26,28] for a detailed discussion of (in)tractability of high-dimensional problems.

In this work, we are interested in functions, which take the form of a ridge. This
means that for each function f , there is direction a along which f may vary; along
lines perpendicular to a the function is constant. In other words, the function is of
the form f (x) = g(a · x), where g is a univariate function called the profile. Ridge
functions provide a simple, coordinate-independent model that describes inherently
one-dimensional structures hidden in a high-dimensional ambient space.

That the unknown functions take the form of a ridge is a frequent assumption
in statistics, for instance, in the context of single index models. For several of such
statistical problems, minimax bounds have been studied on the basis of algorithms that
exploit the ridge structure [15,20,32]. Another approach with ridge functions, which
has attracted attention for more than 30 years, is to approximate by ridge functions. An
early work in this direction is [22], whichwasmotivated by computerized tomography,
and in which the term “ridge function” was actually coined. Another seminal paper
is [14], which introduced projection pursuit regression for data analysis. More recent
works include the mathematical analysis of neural networks [3,31] and wavelet-type
analysis [4]. For a survey on further approximation theoretical results, we refer the
reader to [30].

For classical setups in statistics and data analysis, it is typical that we have no
influence on the choice of sampling points. In contrast, problems of active learning

123



Constr Approx (2015) 42:231–264 233

allow one to freely choose a limited number of samples from which to recover the
function. Such a situation occurs, for instance, if sampling the unknown function at
a point is realized by a (costly) PDE solver. In this context, ridge functions have
appeared only recently as function models. The papers [6] and [12,37] provide several
algorithms and upper bounds for the approximation error, the latter two even for the
more general situation that f (x) = g(Ax) with A a (k × d) matrix.

In the present paper, the central objective is to determine the complexity of
approximating ridge functions when the only available information is a limited
amount of function values. We make the following assumptions: The ridge func-
tions’ domain is the d-dimensional Euclidean unit ball; the profiles are Lipschitz of
order α > 0 (including infinite smoothness α = ∞); the ridge vectors are con-
tained in a �d

p-ball with 0 < p ≤ 2. Additionally, we study the situation when
one additionally knows that |g′(0)| ≥ κ for all admissible profiles g and some
prescribed 0 < κ ≤ 1 (of course, this only makes sense in the case of α > 1).
For the function classes given by these a priori assumptions, we prove lower and
upper bounds for the deterministic worst-case error with regard to standard infor-
mation. Following [25], we use the term sampling numbers for this worst-case
error.

For given Lipschitz smoothness α, the ridge function classes are contained in the
unit ball of the space of general multivariate Lipschitz functions of order α. The latter,
in turn, is related to isotropic d-variate Besov spaces. For those spaces, it is known
that their entropy numbers, which quantify the compactness in L∞, provide a fair
indicator for the behavior of sampling numbers, see [25]. We investigate whether or
not this is still the case for the ridge function classes. It turns out that they are essen-
tially as compact as the class of univariate Lipschitz functions of the same order for
all possible parameter values. For the sampling problem, however, we find a much
more diverse picture. At first glance, the simple structure of ridge functions suggests
that approximating them should not be too much harder than approximating a uni-
variate function. But this is far from true in general. In fact, the sampling problem’s
degree of difficulty crucially depends on the constraint |g′(0)| ≥ κ in our setting. If
κ > 0, then it becomes possible to first recover the ridge direction efficiently. What
remains then is only the one-dimensional problem of sampling the profile. Thus,
the ridge structure has a sweeping impact in this scenario and leads to a polyno-
mially tractable problem. Moreover, the behavior of entropy and sampling numbers
is similar. But without the constraint on first derivatives, the picture is completely
different. Sampling ridge functions is now essentially as hard as sampling general
Lipschitz functions over the same domain, given that all vectors in the domain may
occur as ridge direction (p = 2). It even suffers from the curse of dimensional-
ity as long as we only have finite smoothness of profiles. Supposing that p < 2,
which can be interpreted as imposing a sparsity constraint on the ridge vectors, mit-
igates the situation to some extent. To our surprise, we see almost the entire spec-
trum of degrees of tractability as introduced in the recent monographs by Novak and
Woźniakowski. In any case, however, entropy and sampling numbers behave totally
differently.

The paper is organized as follows. In Sect. 2, we define the setting in a precise way
and introduce central concepts. Section 3 is dedicated to the study of entropy numbers
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for the ridge function classes. Lower and upper bounds on sampling numbers are found
in Sect. 4. Finally, in Sect. 5, we interpret our findings on sampling numbers in the
language of information-based complexity.

2 Preliminaries

Notation For x ∈ Rd , recall the (quasi-)norms ‖x‖p = (∑d
j=1 |x j |p

)1/p for 0 <

p < ∞, and ‖x‖∞ = max{|x1|, . . . , |xd |}. When X denotes a (quasi-)Banach space,
equipped with the (quasi-)norm ‖ · ‖X , we write BX = { f ∈ X : ‖ f ‖X < 1} for the
open unit ball and B̄X for its closure. In the special case that X = �d

p(R) = (Rd , ‖·‖p),
we additionally use the notation Bd

p for the open unit ball and Sd−1
p for the unit sphere

in �d
p.

The notation f � g means that f ≤ Cg for some constant C > 0. Likewise, we
write f � g if f ≥ cg for some constant c > 0, and f � g if both f � g and f � g.

2.1 Ridge Function Classes

The specific formof ridge functions suggests that one describe a class of such functions
in terms of two parameters: one to determine the smoothness of profiles and the other
to restrict the norm of ridge directions.

Regarding smoothness, we require that ridge profiles are Lipschitz of some order.
For the reader’s convenience, let us briefly recall this notion. Let � ⊂ Rd be a
bounded domain and s be a natural number. The function space Cs(�) consists of
those functions over the domain �, which have partial derivatives up to order s in the
interior �̊ of �, and these derivatives are moreover bounded and continuous in �.
Formally,

Cs(�) =
{

f : � → R : ‖ f ‖Cs := max|γ |≤s
‖Dγ f ‖∞ < ∞

}

,

where, for any multi-index γ = (γ1, . . . , γd) ∈ Nd
0 , the partial differential operator

Dγ is given by

Dγ f := ∂ |γ | f

∂xγ1
1 · · · ∂xγd

d

.

Here, we have written |γ | = ∑d
i=1 γi for the order of Dγ . For the vector of first

derivatives, we use the usual notation ∇ f = (∂ f/∂x1, . . . , ∂ f/∂xd). Besides Cs(�),
we further need the space of infinitely differentiable functions C∞(�) defined by

C∞(�) =
⎧
⎨

⎩
f : � → R : ‖ f ‖C∞ := sup

γ∈Nd
0

‖Dγ f ‖∞ < ∞
⎫
⎬

⎭
. (2.1)
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For a function f : � → R and any positive number 0 < β ≤ 1, the Hölder
constant of order β is given by

| f |β := sup
x,y∈�
x �=y

| f (x) − f (y)|
2min{1, ‖x − y‖1}β .

This definition immediately implies the relation

| f |β ≤ | f |β ′ if 0 < β < β ′ ≤ 1. (2.2)

Now, for any α > 0, we can define the Lipschitz space Lipα(�). If we let s = �α�
be the largest integer strictly less than α, it contains those functions in Cs(�) which
have partial derivatives of order s which are moreover Hölder-continuous of order
β = α − s > 0. Formally,

Lipα(�) = {
f ∈ Cs(�) : ‖ f ‖Lipα(�) := max{‖ f ‖Cs , max|γ |=s

|Dγ f |β} < ∞}
.

For s ∈ N0 and 1 ≥ β2 > β1 > 0, the following embeddings hold true:

C∞(�) ⊂ Lips+β2
(�) ⊂ Lips+β1

(�) ⊂ Cs(�) ⊂ Lips(�), (2.3)

where the respective identity operators are of norm one. In other words, the respective
unit balls satisfy the same relation. Note that the fourth inclusion only makes sense
if s ≥ 1. The third embedding is a trivial consequence of the definition. The second
embedding follows from the third and (2.2). The fourth embedding and the second
imply the first. So it remains to establish the fourth embedding. We have to show that
for every γ ∈ Nd

0 with |γ | = s − 1, it holds that |Dγ f |1 ≤ ‖ f ‖Cs . On the one hand,
Taylor’s formula in Rd gives for some 0 < θ < 1,

|Dγ f (x) − Dγ f (y)| = |∇(Dγ f )(x + θ(y − x)) · (x − y)|
≤ max|β|=s

‖Dβ f ‖∞ · ‖x − y‖1
≤ ‖ f ‖Cs ‖x − y‖1.

On the other hand, we have |Dγ f (x)− Dγ f (y)| ≤ 2‖ f ‖Cs . Both estimates together
yield |Dγ f |1 ≤ ‖ f ‖Cs .

Having introduced Lipschitz spaces, we can give a formal definition of our classes
of ridge functions. For the rest of the paper, we fix as function domain the closed unit
ball

� = B̄d
2 = {x ∈ Rd : ‖x‖2 ≤ 1}.
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As before, let α > 0 denote the order of Lipschitz smoothness. Further, let 0 < p ≤ 2.
We define the class of ridge functions with Lipschitz profiles as

Rα,p
d =

{
f : � → R : f (x) = g(a · x), ‖g‖Lipα[−1,1] ≤ 1, ‖a‖p ≤ 1

}
. (2.4)

In addition, we define the class of ridge functions with infinitely differentiable profiles
by

R∞,p
d = {

f : � → R : f (x) = g(a · x), ‖g‖C∞[−1,1] ≤ 1, ‖a‖p ≤ 1
}
.

Let us collect basic properties of these classes.

Lemma 2.1 For any α > 0 and 0 < p ≤ 2, the class Rα,p
d is contained in B̄Lipα(�)

and R∞,p
d is contained in B̄C∞(�).

Proof Let f ∈ Rα,p
d and s = �α�. Furthermore, let γ ∈ Nd

0 be such that |γ | ≤ s.
Then, there exists g ∈ Lipα([−1, 1]) with

Dγ f (x) = D|γ |g(a · x)aγ , x ∈ �,

where we used the convention aγ = ∏d
i=1 aγi

i . Therefore, we have

‖Dγ f ‖∞ ≤ ‖D|γ |g‖∞‖a‖|γ |∞ ≤ ‖a‖|γ |
p ≤ 1.

If we let s → ∞, this immediately implies R∞,p
d ⊂ B̄C∞(�). Moreover, if |γ | = s

and β = α − s, we obtain by Hölder’s inequality for x, y ∈ �,

|Dγ f (x) − Dγ f (y)| = |aγ | · |Ds g(a · x) − Ds g(a · y)|
≤ ‖a‖s

p · |Ds g|β · 2min{1, ‖a‖p · ‖x − y‖1}β
≤ 2min{1, ‖x − y‖1}β.

Consequently, we have ‖ f ‖Lipα(�) ≤ 1 and hence Rα,p
d ⊂ B̄Lipα(�). �

Note that in the special case α = 1, we have Lipschitz-continuous profiles. Whenever
0 < α1 < α2 ≤ ∞, we have Rα2,p

d ⊂ Rα1,p
d , which is an immediate consequence of

(2.3). Likewise, for p < q, we have the relation Rα,p
d ⊂ Rα,q

d .
Finally, for Lipschitz smoothnessα > 1,wewant to introduce a restricted version of

Rα,p
d , where profiles obey the additional constraint |g′(0)| ≥ κ > 0. See Sect. 4.2 and

in particular Remark 4.9 for an explanation of why we study this additional constraint.
We define

Rα,p,κ
d = {g(a·) ∈ Rα,p

d : |g′(0)| ≥ κ}. (2.5)

Hereafter, whenever we say that we consider ridge functions with first derivatives
bounded away from zero in the origin, we mean that they are contained in the class
Rα,p,κ

d for some 0 < κ ≤ 1.
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Taylor expansion. We introduce a straightforward, multivariate extension of Taylor’s
expansion on intervals to ridge functions inRα,p

d and functions in Lipα(�). For x, x0 ∈
�̊, we define the function 
x (·) by


x (t) := f (x0 + t (x − x0)), t ∈ [0, 1].

Lemma 2.2 Let α > 1 and α = s + β, s ∈ N, 0 < β ≤ 1. Let f ∈ Lipα(�) and
x, x0 ∈ �̊. Then, there is a real number θ ∈ (0, 1) such that

f (x) = Ts,x0 f (x) + Rs,x0 f (x),

where the Taylor polynomial Ts,x0 f (x) is given by

Ts,x0 f (x) =
s∑

j=0



( j)
x (0)

j ! =
∑

|γ |≤s

Dγ f (x0)

γ ! (x − x0)γ

and the remainder by

Rs,x0 f (x) = 1

s!
(

(s)

x (θ) − 
(s)
x (0)

)
(2.6)

=
∑

|γ |=s

Dγ f (x0 + θ(x − x0)) − Dγ f (x0)

γ ! (x − x0)γ . (2.7)

The previous lemma has a nice consequence for the approximation of functions from
Rα,p

d in the case α > 1 and 0 < p ≤ 2. Let p′ denote the dual index of p given by
1/max{p, 1} + 1/p′ = 1.

Lemma 2.3 Let α = s + β > 1 and � = B̄d
2 .

(i) For f ∈ Lipα(�) and x, x0 ∈ �̊, we have

| f (x) − Ts,x0 f (x)| ≤ 2‖ f ‖Lipα(�)

∥∥∥x − x0
∥∥∥

α

1

s! .

(ii) Let 0 < p ≤ 2. Then, for f ∈ Rα,p
d , we have the slightly better estimate

| f (x) − Ts,x0 f (x)| ≤ 2

s! ‖x − x0‖α
p′ .
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Proof To prove (i) we use (2.7) and the definition of Lipα(�) and estimate as follows:

| f (x) − Ts,x0 f (x)| ≤
∑

|γ |=s

|Dγ f (x0 + θ(x − x0)) − Dγ f (x0)|
γ ! |(x − x0)γ |

≤ 2‖ f ‖Lipα(�) min{1, ‖x − x0‖1}β ·
∑

|γ |=s

∏d
i=1 |xi − x0i |γi

γ ! .

Using mathematical induction, it is straightforward to verify the multinomial identity

(a1 + · · · + ad)s =
∑

|γ |=s

s!
γ !a

γ1
1 . . . aγd

d .

Hence, choosing ai = |xi − x0i |, we can continue estimating

| f (x) − Ts,x0 f (x)| ≤ 2‖ f ‖Lipα(�) min

{
1,
∥∥
∥x − x0

∥∥
∥
1

}β ‖x − x0‖s
1

s!
and obtain the assertion in (i).
For showing the improved version (ii) for functions of type f (x) = g(a · x), we use
formula (2.6) of the Taylor remainder. We easily see that for t ∈ (0, 1), it holds that


(s)
x (t) = g(s)

(
a · (x0 + t (x − x0))

)
· [a · (x − x0)]s .

Using Hölder continuity of g(s) of order β and Hölder’s inequality, we see that

| f (x) − Ts,x0 f (x)|
≤ 1

s!
∣∣∣[a ·

(
x − x0

)
]s ·

{
g(s)

(
a · (x0 + θ(x − x0))

)
− g(s)(a · x0)

}∣∣∣

≤ 1

s! ‖a‖s
p ·

∥∥∥x − x0
∥∥∥

s

p′ · 2min{1, |θa ·
(

x − x0
)
|β}

≤ 2

s!
∥∥∥x − x0

∥∥∥
α

p′ .

The proof is complete. �

2.2 Information Complexity and Tractability

In this work, we want to approximate ridge functions from F = Rα,p
d or F = Rα,p,κ

d
by means of deterministic sampling algorithms, using a limited amount of function
values. Any allowed algorithm S consists of an information map N ada

S : F → Rn

and a reconstruction map ϕS : Rn → L∞(�). For given f ∈ F , the former provides
function values f (x1), . . . , f (xn) at points x1, . . . , xn ∈ �, which are allowed to
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be chosen adaptively. Adaptivity here means that xi may depend on the preceding
values f (x1), . . . , f (xi−1). According to [26], we speak of standard information.
The reconstruction map then builds an approximation to f based on those function
values provided by the information map.

Formally, we consider the class of deterministic, adaptive sampling algorithms
Sada = ⋃

n∈N Sada
n , where

Sada
n =

{
S : F → L∞(B̄d

2 ) :
S = ϕ ◦ N ada, ϕ : Rm → L∞ N ada : F → Rm, m ≤ n

}
.

The nth minimal worst-case error

gada
n,d(F , L∞) := errn,d(F ,Sada, L∞) = inf

{

sup
f ∈F

‖ f − S( f )‖∞ : S ∈ Sada
n

}

describes the approximation error of the best possible algorithm. Stressing that func-
tion values are the only available information, we refer to gada

n,d(F , L∞) as the nth
(adaptive) sampling number. To reveal the effect of adaption, it is useful to compare
adaptive algorithms with the subclass S ⊂ Sada of nonadaptive, deterministic algo-
rithms, that is, for each algorithm S ∈ S, the information map is now of the form
NS = (δx1 , . . . , δxn ), with n ∈ N and x1, . . . , xn ∈ B̄d

2 . This corresponds to nonadap-
tive standard information in [26]. The associated nth worst-case error

gn,d(F , L∞) := inf
S∈Sn

sup
f ∈F

∥
∥ f − S( f )

∥
∥∞ = errn,d(F ,Sn, L∞)

coincides with the standard nth sampling number as known in approximation the-
ory [25]. As a third restriction, let us introduce the nth linear sampling number
glin

n,d(F , L∞); here, only algorithms from S with linear reconstruction maps are
allowed. Clearly,

gada
n,d(F , L∞) ≤ gn,d(F , L∞) ≤ glin

n,d(F , L∞).

Remark 2.4 Studying adaptive algorithmsmakes sense since the considered classes of
ridge functions are not convex. Hence, the general results on linear problems [26, Sec-
tion 4.2] do not apply here. Nevertheless, the analysis in Sect. 4 will reveal that neither
adaptivity nor nonlinearity lead to any substantial improvement in the approximation
of ridge functions defined on a Euclidean ball.

Whenever we speak of sampling of ridge functions, we refer to the problem
of approximating ridge functions in F by sampling algorithms from Sada, the
L∞-approximation error measured in the worst case. Its information complexity
n(ε, d) is given for 0 < ε ≤ 1 and d ∈ N by

n(ε, d) := min
{

n ∈ N : gada
n,d(F , L∞) ≤ ε

}
.
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2.3 Entropy Numbers

The concept of entropy numbers is central to this work. An entropy number can be
understood as a measure to quantify the compactness of a set with respect to some
reference space. For a detailed discussion and historical remarks, we refer to the
monographs [5,10]. The kth entropy number ek(K , X) of a subset K of a (quasi-
)Banach space X is defined as

ek(K , X) = inf

⎧
⎪⎨

⎪⎩
ε > 0 : K ⊂

2k−1⋃

j=1

(x j + ε B̄X ) for some x1, . . . , x2k−1 ∈ X

⎫
⎪⎬

⎪⎭
.

Note that ek(K , X) = inf{ε > 0 : Nε(K , X) ≤ 2k−1} holds true, where

Nε(K , X) := min

⎧
⎨

⎩
n ∈ N : ∃x1, . . . , xn ∈ X : K ⊂

n⋃

j=1

(x j + ε B̄X )

⎫
⎬

⎭

denotes the covering number of the set K in the space X , which is the minimal natural
number n such that there is an ε-net of K in X of n elements. We can introduce
entropy numbers for operators, as well. The kth entropy number ek(T ) of an operator
T : X → Y between two quasi-Banach spaces X and Y is defined by

ek(T ) = ek

(
T (B̄X ), Y

)
.

The results in Sects. 3 and 4 rely to a great degree on entropy numbers of the identity
operator between the two finite dimensional spaces X = �d

p(R) and Y = �d
q(R). Their

behavior is understood very well, see [10,21,33,36]. For the reader’s convenience, we
restate the result.

Lemma 2.5 Let 0 < p ≤ q ≤ ∞, and let k and d be natural numbers. Then,

ek(B̄d
p, �d

q) �

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 ≤ k ≤ log(d),
(
log(1+d/k)

k

)1/p−1/q
, log(d) ≤ k ≤ d,

2−k/dd1/q−1/p, k ≥ d.

The constants behind “�” depend neither on k nor on d. They only depend on the
parameters p and q.

If we consider entropy numbers of �d
p-spheres instead of �

d
p-balls in �d

q , the situation
is quite similar.We are not aware of a reference where this has already been formulated
thoroughly.

Lemma 2.6 Let d ∈ N, d ≥ 2, 0 < p ≤ q ≤ ∞, and p̄ = min{1, p}. Then,

(i) 2−k/(d−1)d1/q−1/p � ek(S
d−1
p , �d

q) � 2−k/(d− p̄)d1/q−1/p, k ≥ d.
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(ii)

ek(S
d−1
p , �d

q ) �
⎧
⎨

⎩

1, 1 ≤ k ≤ log(d),
(
log(1+d/k)

k

)1/p−1/q
, log(d) ≤ k ≤ d.

The constants behind “�” only depend on p and q.

Proof For given ε > 0, an ε-covering {y1, . . . , yN } of Sd−1
p in �d

p fulfills

(1 + ε)B̄d
p \ (1 − ε)B̄d

p ⊆
N⋃

i=1

(yi + 21/ p̄ε B̄d
p). (2.8)

Let q̄ = min{1, q}. For given ε > 0, a maximal set {x1, . . . , xM } ⊂ Sd−1
p of vectors

with mutual distance greater than ε obeys

M⋃

i=1

(xi + 2−1/q̄ ε B̄d
q ) ⊆ (1 + ε

p̄
d )1/ p̄ B̄d

p \ (1 − ε
p̄
d )1/ p̄ B̄d

p, (2.9)

where εd = 2−1/q̄ ε d1/p−1/q .

(i). A standard volume argument applied to (2.8) yields h(ε) ≤ Nεd2d/ p̄, where
h(ε) = (1 + ε)d − (1 − ε)d . First-order Taylor expansion in ε allows one to
estimate h(ε) ≥ dε. Solving for N yields a lower bound for covering numbers
in the case p = q. The lower bound in the case p �= q follows from the trivial
estimate ek(S

d−1
p , �d

q) ≥ d1/q−1/p ek(S
d−1
p , �d

p).
For the upper bound in the case p = q, a standard volume argument applied to
(2.9) yields Mεd2−d/ p̄ ≤ h p(ε

p̄/2) with h p(x) = (1 + x)d/ p̄ − (1 − x)d/ p̄.
The mean value theorem gives h p(x) ≤ d/ p̄ 2d/ p̄ x if 0 < x ≤ 1. Hence, we
get h p(ε

p̄/2) ≤ d/ p̄ 2d/ p̄ε p̄/2. Solving for M gives an upper bound for packing
numbers and hence also for covering numbers. In the case p �= q, we again
use (2.9) and pass to volumes. This time, the quotient vol(Bd

p)/vol(Bd
q ) remains

in the upper bound for M . The given bounds now easily translate to the stated
bounds on entropy numbers. In the case p �= q, one has to take

[vol(Bd
p)

vol(Bd
q )

]1/(d− p̄) � d1/q−1/p

into account to get the additional factor in d.
(ii). The proof by Kühn [21] immediately gives the lower bound. The upper bound

follows trivially from Sd−1
p ⊂ B̄d

p . �
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Remark 2.7 Note that in the case p ≥ 1, we have the sharp bounds

ek(S
d−1
p , �d

q) �

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 ≤ k ≤ log(d),
(
log(1+d/k)

k

)1/p−1/q
, log(d) ≤ k ≤ d,

2− k
d−1 d1/q−1/p, k ≥ d.

In the case p < 1, there remains a gap between the upper and lower estimate for
ek(S

d−1
p , �d

q) if k ≥ d. However, this gap can be closed by using a different proof
technique, see [18].

3 Entropy Numbers of Ridge Functions

This section is devoted to the study of entropy numbers of the classesRα,p
d andRα,p,κ

d .
Specifically, we want to relate their behavior to that of entropy numbers of uni- and
multivariate Lipschitz functions. This will give us an understanding how “large” the
ridge function classes are. Let us stress that we are interested in the dependence of the
entropy numbers on the underlying dimension d, as it is usually done in the area of
information-based complexity.

To begin with, we examine uni- and multivariate Lipschitz functions from
Lipα[−1, 1] and Lipα(�). Recall the notation Bα := BLipα[−1,1] and BLipα(�) for the
respective open unit balls. The behavior of entropy numbers of univariate Lipschitz
functions is well known, see for instance [23, Chap. 15, §2, Thm. 2.6].

Lemma 3.1 For α > 0, there exist two constants 0 < cα < Cα such that

cαk−α ≤ ek(B̄α, L∞([−1, 1])) ≤ Cαk−α, k ∈ N.

This behavior does not change if we consider only functions with first derivative in
the origin bounded away from zero, as we do with the profiles in the classRα,p,κ

d .

Proposition 3.2 Let α > 1 and 0 < κ ≤ 1. Consider the class

Lipκ
α(
[−1, 1

]
) = { f ∈ Lipα(

[−1, 1
]
) : ‖ f ‖Lipα[−1,1] ≤ 1 ,

∣∣ f ′(0)
∣∣ ≥ κ}.

For the entropy numbers of this class, we have two constants 0 < cα < Cα such that

cαk−α ≤ ek(Lip
κ
α([−1, 1]), L∞([−1, 1])) ≤ Cαk−α, k ∈ N.

Proof The upper bound is immediate by Lemma 3.1. The lower bound is proved in the
same way as for general univariate Lipschitz functions of order α except that we have
to adapt the “bad” functions such that they meet the constraint on the first derivative
in the origin. Again, set s = �α� and β = α − s > 0. Consider the standard smooth

123



Constr Approx (2015) 42:231–264 243

bump function

ϕ(x) =
⎧
⎨

⎩
e
− 1

1−x2 , |x | < 1,

0, |x | ≥ 1.

Let

ψk,b(x) = cα · ϕ(5k(x − b))

kα
, k ∈ N, b ∈ R,

where cα = 1/(5α
∥
∥ϕ

∥
∥
Lipα

). The scaling factor cαk−α assures ψk,b ∈ Lipα(
[−1, 1

]
).

Let a = π/4 − 1/5 and I = [a, a + 2/5] ⊂ (0, 1). We set h(x) = sin(x) and

γ = sup
j∈N0

max
x∈I

|h( j)(x)| = max
x∈I

max{cos(x), sin(x)} < 1. (3.1)

For any multi-index θ = (θ1, . . . , θk) ∈ {0, 1}k , let

gθ = (1 − γ )

k∑

j=1

θ jψk,b j , b j = a + 2 j − 1

5k
.

Observe that supp gθ ⊂ I .
There are 2k such multi-indices, and for two different multi-indices θ̂ and θ̃ , we

have
∥∥∥g

θ̂
− gθ̃

∥∥∥∞ = (1 − γ )
∥∥ψk,0

∥∥∞ = cα(1 − γ )e−1k−α.

Set fθ = h + gθ . Because of the scaling factors, it is assured that fθ ∈ Lipκ
α(
[−1, 1

]
).

On the other hand, f ′
θ (0) = cos(0) = 1. Obviously,

∥∥∥ fθ̃ − f
θ̂

∥∥∥∞ =
∥∥∥gθ̃ − g

θ̂

∥∥∥∞. We

conclude

ek(Lip
κ
α(
[−1, 1

]
), L∞) ≥ c′

αk−α

for c′
α = (1 − γ )e−1cα . �

Considering multivariate Lipschitz functions, decay rates of entropy numbers
change dramatically compared to those of univariate Lipschitz functions; they depend
exponentially on 1/d. This is known if the domain is a cube � = I d , see [23, Chap.
15, §2]. We provide an extension to our situation where the domain is � = B̄d

2 .

Proposition 3.3 Let α > 0. For natural numbers n and k such that 2k−1 < n ≤ 2k ,
we have

en(B̄Lipα(B̄d
2 ), L∞(B̄d

2 )) ≥ cαek+1(id : �d
2 → �d

2)
α.
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In particular, we have en(id : Lipα(B̄d
2 ) → L∞(B̄d

2 )) � n−α/d .

Proof Consider the radial bump function ϕ(x) given by

ϕ(x) =
⎧
⎨

⎩
e
− 1

1−‖x‖22 , ‖x‖2 < 1,

0, ‖x‖2 ≥ 1.

Let s = �α�. With cα := (
∥∥ϕ

∥∥
Lipα

)−1, the rescaling

ϕα
ε (x) := cαεαϕ(x/ε)

is contained in the closed unit ball of Lipα(�).
For 0 < ε < ek+1(B̄d

2 , �d
2), let {x1, . . . , xm} be a maximal set of 2ε-separated

points in the Euclidean ball B̄d
2 , the distance measured in �d

2 . Clearly, every closed ball
of radius ε contains at most one xi , and consequently every covering of B̄d

2 by balls of
radius ε contains at least m elements. The choice of ε implies m > 2k ≥ n. For every
multi-index θ ∈ {0, 1}m , we define

fθ (x) :=
m∑

j=1

θ jϕ
α
ε (x − x j ).

By construction of ϕα
ε , it is assured that fθ ∈ Lipα(�) and

∥
∥ fθ

∥
∥
Lipα

≤ 1. Moreover,

we see immediately that
∥∥ fθ

∥∥∞ = cαe−1εα , and

∥∥ fθ − fθ ′
∥∥∞ ≥ cαe−1εα =: ε1

for θ �= θ ′. Therefore, the set { fθ : θ ∈ {0, 1}m} consists of 2m functions with mutual
distances greater than or equal to ε1. This implies

2n < 2m < Nε1/2(B̄Lipα(�), L∞).

Hence, en(id : Lipα(�) → L∞(�)) > ε1/2, and by the choice of ε, also

en(B̄Lipα(�), L∞(�)) > c′
αek(id : �d

2 → �d
2)

α

for c′
α = cα/(4e). Now, it follows immediately from the estimate above andLemma2.5

that

en(B̄Lipα(�), L∞(�)) � 2−αk/d � n−α/d .

�
Now consider ridge functions with Lipschitz profile as given by the classRα,p

d .

123



Constr Approx (2015) 42:231–264 245

Theorem 3.4 Let d be a natural number, α > 0, and 0 < p ≤ 2. Then, for any k ∈ N,

1

2
max{e2k(B̄d

p, �d
2), e2k(B̄α, L∞)} ≤ e2k(Rα,p

d , L∞)

≤ ek(B̄d
p, �d

2)
min{α,1} + ek(B̄α, L∞).

Proof Lower bounds: For ε > 0, let g1, . . . , gn be a maximal set of univariate Lip-
schitz functions in B̄α with mutual distances

∥∥gi − g j
∥∥∞ > ε for i �= j . Now, let

a = (1, 0, . . . , 0), and set fi (x) = gi (a · x) for i = 1, . . . , n. Then, of course, we
have fi ∈ Rα,p

d , and

∥
∥ fi − f j

∥
∥∞ = ‖gi − g j‖∞ > ε.

Consequently, the functions f1, . . . , fn are ε-separated, as well. This implies

e2k(Rα,p
d , L∞) ≥ 1

2
e2k(B̄α, L∞).

On the other hand, for ε > 0, let a1, . . . , an be a maximal set of vectors in B̄d
p with

pairwise distances
∥
∥ai − a j

∥
∥
2 > ε. Furthermore, let g(t) = t , and set f̃i (x) = g(ai ·x)

for i = 1, . . . , n. Then, f̃i ∈ Rα,p
d , and

‖ f̃i − f̃ j‖∞ = sup
x∈B̄d

2

| f̃i (x) − f̃ j (x)| = sup
x∈B̄d

2

|g(ai · x) − g(a j · x)|

= sup
x∈B̄d

2

|(ai − a j ) · x | = ‖ai − a j‖2 > ε.

Thus, the functions f̃1, . . . , f̃n are ε-separated w.r.t. the L∞-norm. This implies

e2k(Rα,p
d , L∞) ≥ 1

2
e2k(B̄d

p, �d
2).

Upper bound: We use the shorthand ᾱ = min{α, 1}. Let 1/2 > ε1, ε2 > 0 be
fixed, and set ε := εᾱ

1 + ε2. Let N = {g1, . . . , gn} be a minimal ε1-net of B̄α in the
L∞-norm. Further, letM = {a1, . . . , am} be a minimal ε2-net of B̄d

p in the �d
2-norm.

Now, fix some ridge function f : x �→ g(a · x) in Rα,p
d , i.e., ‖g‖Lipα

≤ 1 and
‖a‖p ≤ 1. Then, there is a function gi ∈ N with ‖g−gi‖∞ ≤ ε1 and a vector a j ∈ M
with ‖a − a j‖2 ≤ ε2. We obtain

‖g(a · x) − gi (a j · x)‖∞ ≤ sup
x∈B̄d

2

|g(a · x) − g(a j · x)| + |g(a j · x) − gi (a j · x)|

≤ sup
x∈B̄d

2

|g|ᾱ · |a · x − a j · x |ᾱ + ‖g − gi‖∞

≤ ‖a − a j‖ᾱ
2 + ‖g − gi‖∞ ≤ εᾱ

1 + ε2 = ε.
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Hence, the set {x → g(a · x) : g ∈ N , a ∈ M} is an ε-net of Rα,p
d in L∞(�) with

cardinality

#N · #M = Nε1(B̄α, L∞) · Nε2(B̄d
p, �d

2).

Consequently, Nε(Rα,p
d , L∞) ≤ #N · #M, and we conclude that

e2k(Rα,p
d , L∞) ≤ ek(B̄d

p, �d
2)

ᾱ + ek(B̄α, L∞).

�
Remark 3.5 In view of Proposition 3.2, it is easy to see that Theorem 3.4 remains
valid if we replace the classRα,p

d byRα,p,κ
d .

We exemplify the consequences of Theorem 3.4 by considering the case p = 2;
for 0 < p < 2, estimates would be similar. As the corollary below shows, entropy
numbers of ridge functions asymptotically decay as fast as those of their profiles. In
contrast to multivariate Lipschitz functions on �, the dimension d does not appear in
the decay rate’s exponent. It only affects how long we have to wait until the asymptotic
decay becomes visible.

Corollary 3.6 Let d be a natural number and α > 0. For the entropy numbers of
Rα,2

d in L∞(�), we have

max(k−α, 2−k/d) � ek(Rα,2
d , L∞) �

{
1, k ≤ cαd log d,

k−α, k ≥ cαd log d,
(3.2)

for some universal constant cα > 0 which does not depend on d.

Before we turn to the proof, let us note that (3.2) implies that

ek(Rα,2
d , L∞) � 1 if k ≤ d,

and

ek(Rα,2
d , L∞) � k−α if k ≥ cαd ln d.

Hence, entropy numbers of ridge functions are guaranteed to decay like those of their
profiles for k ≥ cαd log d—and surely behave differently for k ≤ d.

Proof of Corollary 3.6 The lower bound in (3.2) follows from Theorem 3.4 combined
with Lemma 2.5 and Lemma 3.1. The upper bounds are proven in the same manner,
using the simple fact that for every α > 0 there are two constants cα, c′

α > 0, such
that k ≥ cαd log d implies that 2−min{α,1}k/d ≤ c′

αk−α . �
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Summarizing this section, the classes of ridge functions with Lipschitz profiles of
order α are essentially as compact as the class of univariate Lipschitz functions of
order α. Consequently, when speaking in terms of metric entropy, these classes of
functions must be much smaller than the class of multivariate Lipschitz functions of
order α.

Remark 3.7 The readerwho is interested in results on entropy numbers of other classes
of ridge functions is referred to the recent work [24]. There, classes of sums of ridge
functions are studied such that each sum of ridge functions forms a multivariate poly-
nomial of some maximal degree.

4 Sampling Numbers of Ridge Functions

In light of Sect. 3, one is led to think that efficient sampling of ridge functions should
be feasible. Moreover, their simple, two-component structure naturally suggests a
two-step procedure: first, use a portion of the available function samples to identify
either the profile or the direction; then, use the remaining samples to unveil the other
component.

However, in Sect. 4.1, we learn that for ridge functions in the classRα,p
d , sampling is

almost as hard as sampling of generalmultivariate Lipschitz functions on theEuclidean
unit ball. In particular, such two-step procedures as sketched above cannot work in an
efficient manner. It needs additional assumptions on the ridge profiles or directions.
We discuss this in Sect. 4.2.

4.1 Sampling of Functions inRα,p
d

As usual, throughout the section, let α > 0 be the Lipschitz smoothness of profiles,
s = �α� the order up to which derivatives exist, and let 0 < p ≤ 2 indicate the
p-norm such that ridge directions are contained in the closed �d

p-ball.
The algorithms we use to derive upper bounds are essentially the same as those

which are known to be optimal for general multivariate Lipschitz functions, albeit the
ridge structure allows a slightly improved analysis, at least in the case p < 2.

Proposition 4.1 Let α > 0 and 0 < p ≤ 2. For n ≥ (d+s
s

)
sampling points, the nth

sampling number is bounded from above by

glin
n,d(Rα,p

d , L∞) ≤ ek−�(B̄d
2 , �d

p′)α,

where k = �log n� + 2, � = 1 + �log (d+s
s

)�, and p′ is the dual index of p.

Proof Case α ≤ 1: In this case, s = 0 and � = 1. We choose sampling points
x1, . . . , x2k−2 such that they form an ε-covering of B̄d

2 in �d
p′ . Given this covering,

we construct (measurable) sets U1, . . . , U2k−2 such that Ui ⊆ xi + ε B̄d
p′ for i =

1, . . . , 2k−2 and
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2k−2⋃

i=1

(
xi + ε B̄d

p′
)

=
2k−2⋃

i=1

Ui , Ui ∩ U j = ∅ for i �= j.

Now, we use piecewise constant interpolation: we approximate f = g(a·) ∈ Rα,p
d by

S f := ∑2k−2

i=1 f (xi )1Ui . Then,

∥∥ f − S f
∥∥∞ = sup

i=1,...,2k−2
sup
x∈Ui

∣∣ f (x) − f (xi )
∣∣

≤ sup
i=1,...,2k−2

sup
x∈Ui

∥
∥g

∥
∥
Lipα

‖a‖α
p‖x − xi‖α

p′ ≤ εα.

The smallest ε is determined by the (k − 1)st entropy number ek−1(B̄d
2 , �d

p′). Conse-
quently,

glin
n,d(Rα,p

d , L∞) ≤ glin
2k−2,d(Rα,p

d , L∞) ≤ ek−1(B̄d
2 , �d

p′)α.

Case α > 1: Let the sampling points x1, . . . , x2k−�−1 and the sets U1, . . . , U2k−�−1

be as above. However, instead of piecewise constant interpolation, we apply on each
of the sets Ui ⊆ xi + ε B̄d

p′ a Taylor formula of order s around the center xi .

That is, to approximate a given f = g(a·) ∈ Rα,p
d , we set S f :=

∑2k−�−1

i=1 Txi ,s f 1Ui . Then, by Lemma 2.3 (ii), we have

∥∥ f − S f
∥∥∞ = sup

i=1,...,2k−�−1
sup
x∈Ui

∣∣ f (x) − Txi ,s f (x)
∣∣ ≤ 1

s! ‖x − xi‖α
p′ ≤ εα.

It takes 2k−�−1
(d+s

s

) ≤ n function values to approximate all the Txi ,s above up to
arbitrary precision by finite-order differences, cf. [38].

The smallest ε is now determined by the (k −�)th entropy number ek−�(B̄d
2 , �d

p′).
We conclude

glin
n,d(Rα,p

d , L∞) ≤ glin
2k−�−1,d(Rα,p

d , L∞) ≤ ek−�(B̄d
2 , �d

p′)α.

�

We turn to an analysis of lower bounds for the classes Rα,p
d . Our strategy is to

find “bad” directions which map, for a given budget n ∈ N, all possible choices of n
sampling points to a small range of [−1, 1]. There, we let the “fooling” profiles be zero;
outside of that range, we let the profiles climb as steep as possible. Proposition 4.2
below states the lower bound that results from this strategy provided that the “bad”
directions are given by some M ⊆ B̄d

p \ {0}. We discuss appropriate choices of M
later. Hereafter, we use the mapping � : Rd \ {0} → Sd−1

2 defined by x �→ x/‖x‖2.
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Proposition 4.2 Let α > 0, 0 < p ≤ 2, and M ⊆ B̄d
p \ {0}. Then, for all natural

numbers k and n with n ≤ 2k−1, we have

gada
n,d (Rα,p

d , L∞) ≥ cα inf
a∈M

‖a‖α
2 · ek(�(M), �d

2)
2α.

The constant cα depends only on α.

Proof Let us first describe the “fooling” profiles in detail. For each a ∈ M and ε < 1,
we define a function

ga,ε(t) = ϑα

[
(t − ‖a‖2(1 − ε2/2))+

]α (4.1)

on the interval [−1, 1]. The factor ϑα assures that ‖ga,ε‖Lipα[−1,1] = 1. Set fa,ε(x) =
ga,ε(a · x). By construction, we have that fa,ε ∈ Rα,p

d . Moreover, whenever x ∈ B̄d
2

and a ∈ M is such that

ε2 <
∥∥x − �(a)

∥∥2
2 , (4.2)

then ε2 ≤ 2 − 2(x · �(a)) and hence

x · a = ‖a‖2(x · �(a)) < ‖a‖2(1 − ε2/2).

Therefore, (4.2) implies fa,ε(x) = 0.
Now, let n ≤ 2k−1 and S ∈ Sada

n be an adaptive algorithm with a budget of n
sampling points. Clearly, the first sampling point x1 must have been fixed by S in
advance. Then, let x2, . . . , xn be the sampling points, which S would choose when
applied to the zero function. Furthermore, let F(x1, . . . , xn) ⊆ Rα,p

d denote the set of
functions that make S choose the very points x1, . . . , xn . Obviously, we have fa,ε ∈
F(x1, . . . , xn) if (4.2) holds for every xi , i = 1, . . . , n. This is true for some a ∈ M if
we choose ε < ek(�(M), �d

2). For the respective function fa,ε, we have in particular
N ada

S ( fa,ε) = 0, and hence, S[ fa,ε] = S[− fa,ε]. Consequently,
max

{‖ fa,ε − S[ fa,ε]‖∞, ‖ − fa,ε − S[− fa,ε]‖∞
} ≥ ‖ fa,ε‖∞

= ga,ε(‖a‖2) = cα‖a‖α
2ε2α, (4.3)

where cα := 2−αϑα . Since ε has been chosen arbitrarily but less than ek(�(M), �d
2),

we are allowed to replace ε by ek(�(M), �d
2) in (4.3) and get

sup
f ∈Rα,p

d

‖ f − S( f )‖∞ ≥ cα inf
a∈M

‖a‖α
2 · ek(�(M), �d

2)
2α.

Taking the infimum over all algorithms S ∈ Sada
n yields

gada
n,d(Rα,p

d , L∞) ≥ cα inf
a∈M

‖a‖α
2 ek(�(M), �d

2)
2α.

�
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Theorem 4.3 Let α > 0, s = �α�, and 0 < p ≤ 2. For the classes Rα,p
d , we have

the following bounds:

(i) The nth (linear) sampling number is bounded from above by

glin
n,d(Rα,p

d , L∞)

≤ C p,α

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, n ≤ 2d
(d+s

s

)
,

[
log(1+d/ log n1)

log n1

]α(1/max{1,p}−1/2)
, 2d

(d+s
s

)
< n ≤ 2d+1

(d+s
s

)
,

n−α/d d−α(1/max{p,1}−1/2), n > 2d+1
(d+s

s

)
,

where n1 = n/[2(d+s
s

)] and the constant C p,α depends only on α and p.
(ii) The nth (adaptive) sampling number is bounded from below by

gada
n,d (Rα,p

d , L∞) ≥ cp,α

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, n < d,

[
log2(1+d/(2+log2 n))

2+log2 n

]α(1/p−1/2)

, d ≤ n < 2d−1,

n−2α/(d−1) d−α(1/p−1/2), n ≥ 2d−1.

The constant cp,α depends only on α and p.

Proof (i) The upper bound is a direct consequence of Proposition 4.1 andLemma2.5.
Note that, for k and� as in Proposition 4.1, it holds true that k−�−2 ≤ log n1 ≤
k − �. Note also that

(
d + s

s

)α/d

≤ (1 + s)sα/ddsα/d ≤ ((1 + s)e)sα

ensures that the constant C p,α can be chosen independently of d and n.
(ii) Case n < d. Let M = {±e1, . . . ,±ed} be the set of positive and negative

canonical unit vectors. Clearly, we have �M = 2d, and every two distinct vectors
inM have mutual �d

2-distance equal to or greater than
√
2. Let k be the smallest

integer such that n ≤ 2k−1; this implies 2k−1 < 2d. Hence,whenever 2k−1 balls of
radius ε cover the setM, there is at least one ε-ball, which contains two elements
from M. In consequence, we have 2ε ≥ √

2 and hence ek(M, �d
2) ≥ √

2/2. By
Proposition 4.2 and the fact that M = �(M), we obtain

gada
n,d(Rα,p

d , L∞) ≥ cαek(M, �d
2)

2α ≥ cα2
−α.

Case d ≤ n < 2d−1. For m ≤ d, consider the subset of m-sparse vectors of the
p-sphere,

Sd−1
m,p = {

x ∈ Sd−1
p : � supp (x) = m

}
.
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Using the combinatorial construction of [16], cf. also [13],weknow that there exist
at least (d/(4m))m/2 vectors in �(Sd−1

m,p ) = Sd−1
m,2 having mutual �d

2-distance

greater than 1/
√
2. Therefore, we have

� ≤ m/2 log(d/(4m)) �⇒ e�(�(Sd−1
m,p ), �d

2) ≥ √
2/4. (4.4)

Let k again be the smallest integer such that n ≤ 2k−1. Hence, k ≤ d. Choose

m∗ := ⌊
min{4k/ log(d/(4k)), k}⌋ ≤ k.

Because of k > log d, we have min{log d, 4} ≤ m∗ ≤ d. Write
M = Sd−1

m∗,p. If k ≤ d/64, then log(d/(4k)) ≥ 4 and k ≤ m∗ log(d/(4k))/2 ≤
m∗ log(d/(4m∗))/2. Hence, by (4.4), one has ek(�(Sd−1

m∗,p), �
d
2) ≥ √

2/4. Con-
sequently, by Proposition 4.2, it follows that

gada
n,d(Rα,d

d , L∞) ≥ cα(m∗)α(1/2−1/p)ek(�(Sd−1
m∗,p), �

d
2)

2α

≥ cα8
−α4−α(1/p−1/2)

[ log(d/(4k))

k

]α(1/p−1/2)

≥ cα8
−α8−α(1/p−1/2)

(
log(1 + d/k)

k

)α(1/p−1/2)

≥ cp,α

(
log(1 + d/k)

k

)α(1/p−1/2)

.

On the other hand, if d/64 < k ≤ d, then m∗ = k. By Sk−1
2 ⊂ �(Sd−1

m∗,p) ⊂ Sd−1
2

and Lemma 2.6, we have ek(�(Sd−1
m∗,p), �

d
2) � 1. Proposition 4.2, together with

log(1 + d/k) < 8 for k > d/64, implies

gada
n,d(Rα,p

d , L∞) ≥ c′
αk−α(1/p−1/2) ≥ c′

α8
−α(1/p−1/2)

(
log(1 + d/k)

k

)α(1/p−1/2)

= c′
p,α

(
log(1 + d/k)

k

)α(1/p−1/2)

.

Case n ≥ 2d−1. Again, k is chosen such that 2k−2 < n ≤ 2k−1, which implies
k ≥ d. In this case, we choose M = Sd−1

p . By Lemma 2.6 and Proposition 4.2,
we obtain

gada
n,d(Rα,p

d , L∞) ≥ cα d−α(1/p−1/2)ek(S
d−1
2 , �d

2)
2α

≥ cαd−α(1/p−1/2) (4n)−2α/(d−1)

≥ cα4
−2αd−α(1/p−1/2)n−2α/(d−1).

This completes the proof. �
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Remark 4.4 Consider the situation p = 2. For sampling numbers with n ≤ 2d−1, we
have

gada
n,d(Rα,2

d , L∞) � 1.

For sampling numbers with n ≥ 2d+1
(d+s

s

)
, we have

n−2α/(d−1) � gada
n,d(Rα,2

d , L∞) � n−α/d . (4.5)

The upper estimate on sampling numbers is exactly the same as for multivariate Lip-
schitz functions fromLipα(�). Although there is a gap between lower and upper bound
in (4.5), the factor 1/(d − 1) in the exponent of the lower bound allows us to con-
clude that sampling of ridge functions inRα,2

d is nearly as hard as sampling of general
Lipschitz functions from Lipα(�). Hence, we have the opposite situation to Sect. 3,
where ridge functions in Rα,2

d behave similarly to univariate Lipschitz functions.

Remark 4.5 Let us consider themodified ridge function classes R̃α,p
d and R̄α,p

d defined
by

R̃α,p
d := {

f : [0, 1]d → R : f (x) = g(a · x), ‖g‖Lipα[0,1] ≤ 1, ‖a‖p ≤ 1, a ≥ 0
}

(4.6)
for 0 < p ≤ 1, and

R̄α,p
d := {

f : B̄d
2 ∩ [0, 1]d → R : f (x) = g(a · x),

‖g‖Lipα[0,1] ≤ 1, ‖a‖p ≤ 1, a ≥ 0
}

(4.7)

for 0 < p ≤ 2. Here, a ≥ 0 means that all coordinates of a are nonnegative.

(i) In the recent paper [6], it has been shown that there is an adaptive algorithm,
which attains a decay rate of n−α , for the worst-case L∞-approximation error
with respect to the class R̃α,1

d , provided that n ≥ d. In terms of adaptive sampling
numbers (such that the feasible algorithms are adjusted to the domain [0, 1]d ),
this reads as

gada
n,d(R̃α,1

d , L∞) ≤ Cαn−α, n ≥ d. (4.8)

At the same time, a careful inspection of the proofs of Propositions 4.1, 4.2, and
Theorem 4.3 shows that the results can be carried over to the classes R̄α,p

d for all
0 < p ≤ 2. In particular, for 0 < p ≤ 1, we have the lower bound

gada
n,d(R̄α,p

d , L∞) ≥ cp,αn−2α/(d−1)dα(1/2−1/p), n ∈ N. (4.9)

The estimates (4.8) and (4.9) appear to be conflicting at first glance.We encounter
the rather surprising phenomenon that enlarging the domain of the class of func-
tions under consideration leads to better approximation rates. To understand this,
let us briefly sketch the adaptive algorithm of [6]. For f = g(a·) ∈ R̃α,p

d not the
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zero function, the idea is to first sample along the diagonal of the first orthant,
that is, at points x = t (1, . . . , 1) with t ∈ [0, 1]. Importantly, it is guaranteed that
we can take samples from the whole relevant range [0, ‖a‖1] of the profile g of
f . This in turn assures that, by sampling adaptively along the diagonal, we find
a small range in [0, ‖a‖1] where the absolute value of g′ is strictly larger than 0.
Then, the ridge direction a can be recovered in a similar way as in Sect. 4.2.
On the other hand, for the classes R̄α,p

d , this adaptive algorithm will not work.
Assume we sample again along the (rescaled) diagonal. This time, we can be
sure that we are able to reach every point in the intervall [0, ‖a‖1/

√
d]. But this

interval is in most cases strictly included in the relevant interval [0, ‖a‖2] for g.
Hence, it is not guaranteed anymore that we sample the whole relevant range of
g and find an interval on which g′ is not zero.

(ii) Admittedly, the domain � = [0, 1]d ∩ Bd
2 in (4.7) is a somewhat artificial choice

in case of p ≤ 1, whereas the cube � = [0, 1]d seems natural. Conversely,
the definition in (4.6) is not reasonable in the case p > 1, since then a · x might
exceed the domain interval for g. However,� = [0, 1]d ∩ Bd

2 is the natural choice
for p = 2 in (4.7). In this situation, we suffer from the curse of dimensionality
for adaptive algorithms using standard information, see Remark 4.4 and Theo-
rem 5.1,(1) below. This shows that the condition p ≤ 1 is essential in the setting
of [6] and that (4.8) cannot be true for the class R̄α,2

d .

Remark 4.6 We are not aware of any results on the approximation of ridge functions
when arbitrary bounded, linear functionals are admitted in the information map, see
Sect. 2.2. It seems to be an open problemwhether or not such linear informationwould
lead to substantially better bounds for the worst-case error.

4.2 Recovery of Ridge Directions

At the beginning of Sect. 4, we have sketched two-step procedures for the recovery
of ridge functions. In this section, we discuss under which conditions these two-step
procedures are feasiblewithin our setting.The adaptive algorithmof [6],whichwehave
already discussed in Remark 4.5, first approximates the profile g. Unfortunately, we
could already argue that this algorithm cannot work in our setting. There is an opposite
approach in Fornasier et al. [12], which first tries to recover the ridge direction and
conforms to our setting. Following the ideas of [2], the authors developed an efficient
scheme using Taylor’s formula to approximate ridge functions withCs profile obeying
certain integral condition on themodulus of its derivative. This conditionwas satisfied,
for example, if

∣
∣g′(0)

∣
∣ ≥ κ > 0. In their approach, the smoothness parameter s had

to be at least 2. Using a slightly different analysis, this scheme turns out to work for
Lipschitz profiles of order α > 1.

Before we turn to the analysis, let us sketch the Taylor-based scheme in more detail.
As transposes of matrices and vectors appear frequently, for reasons of convenience,
we write a · x = aT x for the remainder of this subsection. Now, Taylor’s formula in
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direction ei yields

f (hei ) = f (0) + h∇ f (ξ
(i)
h ei )

T ei

= g(0) + hg′(ξ (i)
h ai )ai .

Hence, we can expose the vector a, distorted by a diagonal matrix with components

ξh =
(

g′(ξ (1)
h a1), . . . , g′(ξ (d)

h ad)
)

on the diagonal. In total, we have to spend only d + 1 function evaluations for that.
Moreover, each of ξh’s components can be pushed arbitrarily close to g′(0). This
gives an estimate â of a/‖a‖2, along which we can now conduct classical univariate
approximation. Effectively, one samples a distorted version of g given by

g̃ : [−1, 1
] → R, t �→ f (t â) = g

(
taT â

)
.

The approximation ĝ obtained in this way, together with â, forms the sampling approx-
imation to f ,

f̂ (x) = ĝ(âT x).

Observe that g̃(âT x) = g(aT ââT x), so it is crucial that ââT spans a subspace, which
is close to the one-dimensional subspace spanned by aaT , in the sense that

∥
∥aT (Id − ââT )

∥
∥
2

has to be small. Importantly, this provides the freedom to approximate a only up to
a sign. Finally, let us note that if the factor g′(0) can become arbitrary small, the
information we get through Taylor’s scheme about a also becomes arbitrarily bad.
Hence, for this approach to work, it is necessary to require

∣∣g′(0)
∣∣ ≥ κ .

Lemma 4.7 Let 0 < β ≤ 1, 0 < κ ≤ 1, and ε > 0. Further, let δ = ε·κ
2+ε

and

h = (δ/2)1/β . For any g ∈ Lipκ
1+β(

[−1, 1
]
) and a ∈ B̄d

2 with a �= 0, let f = g(a·).
Set

ãi = f (hei ) − f (0)

h
, i = 1, . . . , d (4.10)

and â = ã/‖ã‖2. Then

∥∥sign (g′(0))â − a/‖a‖2
∥∥
2 ≤ ε.

Proof By the mean value theorem of calculus, there exist ξ (i)
h ∈ [

0, h
]
such that

ãi = g′(ξ (i)
h ai )ai .
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By Hölder continuity, we get

|g′(ξ (i)
h ai ) − g′(0)| < 2|g′|β |ai |β |h|β ≤ δ

for all i = 1, . . . , d. Let us observe that δ < κ , and therefore, ã �= 0 and â is well
defined. Set ξ = (g′(ξ (i)

h ai ))
d
i=1. Then, we can write ã = diag(ξ)a. For the norm of

ã, we get

‖ã‖2 ≤ ‖diag(ξ)a − g′(0)a‖2 + |g′(0)|‖a‖2
≤ max

i=1,...,d
|g′(ξ (i)

h ai ) − g′(0)|‖a‖2 + |g′(0)|‖a‖2
≤ (δ + |g′(0)|)‖a‖2.

Analogously, by the inverse triangle inequality, ‖ã‖2 ≥ (|g′(0)|−δ)‖a‖2. In particular,
∣
∣‖ã‖2/‖a‖2 − |g′(0)|∣∣ ≤ δ.

Now, writing γ = sign (g′(0)), we observe
∥
∥γ â − a/‖a‖2

∥
∥
2 ≤ ∥

∥γ â − |g′(0)|a/‖ã‖2
∥
∥
2 + ∥

∥|g′(0)|a/‖ã‖2 − a/‖a‖2
∥
∥
2

= ‖ã‖−1
2

(‖(diag(ξ)−g′(0)Id) a‖2+
∣∣|g′(0)|−‖ã‖2/‖a‖2

∣∣ ‖a‖2
)

≤ 2δ‖a‖2/‖ã‖2 ≤ 2δ/(|g′(0)| − δ) ≤ 2δ/(κ − δ) = ε.

�
Having recovered the ridge direction, we manage to unveil the one-dimensional

structure from the high-dimensional ambient space. In other words, recovery of the
ridge direction is a dimensionality reduction step. What remains is the problem of
sampling the profile, which can be done using standard techniques. In combination,
this leads to the following result:

Theorem 4.8 Let α > 1 and 0 < κ ≤ 1.

(i) Let n ≤ d − 1. Then gn,d(Rα,2,κ
d , L∞) = glin

n,d(Rα,2,κ
d , L∞) = 1.

(ii) Let n ≥ d + 1. Then,

cα · n−α ≤ gn,d(Rα,2,κ
d , L∞) ≤ glin

n,d(Rα,2,κ
d , L∞) ≤ Cα(n − d)−α

with constants cα and Cα , which depend on α only.

Proof (i) It is enough to show that gn,d(Rα,2,κ
d , L∞) ≥ 1 forn ≤ d−1.Let us assume

that a given (adaptive) approximation method samples at x1, . . . , xn , and let us
denote by L their linear span. Then, dim L ≤ n < d, and we may find a ∈ Rd

with ‖a‖2 = 1 orthogonal to all x1, . . . , xn . Finally, if we define g(t) = t , we
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obtain

1 = ‖g(aT ·)‖∞

≤ 1

2
·
{
‖g(aT ·) − Sn(g(aT ·))‖∞ + ‖ − g(aT ·) − Sn(−g(aT ·))‖∞

}

≤ gn,d(Rα,2,κ
d , L∞).

(ii) Fix some 0 < ε < 1. Let â denote the reconstruction of a obtained by Lemma 4.7,
which uses d + 1 sampling points of f . We estimate g by sampling the distorted
version

g̃ : [−1, 1
] → R, t �→ f (t â) = g

(
taT â

)
.

Re-using the value g(0) which we have already employed for the recovery of a, we
spend k = n − d ≥ 1 sampling points and obtain a function ĝ with ‖ĝ − g̃‖∞ ≤ ε

:= C ′
αk−α‖g̃‖Lipα

.

Now write f̂ (x) = ĝ(âT x) as our approximation to f . To control the total approx-
imation error, observe that

| f̂ (x) − f (x)| ≤
∣
∣∣ĝ(âT x) − g̃(âT x)

∣
∣∣+

∣
∣∣g̃(âT x) − g(aT x)

∣
∣∣ =: E1 + E2.

For the first error term E1, we immediately get

E1 ≤ ‖ĝ − g̃‖∞ ≤ ε = C ′
α‖g̃‖Lipα

k−α ≤ C ′
αk−α

as ‖g̃‖Lipα
≤ ‖a‖2 ‖g‖Lipα

≤ 1.
For the second error term, note that

E2 =
∣∣
∣g(aT ââT x) − g(aT x)

∣∣
∣ ≤ ‖g‖Lipα

∥∥
∥aT (Id − ââT )

∥∥
∥
2

‖x‖2
≤ ‖g‖Lipα

‖x‖2 ‖a‖2
∥∥aT /‖a‖2 (Id − ââT )

∥∥
2.

We do not know the exact value of the subspace stability term ‖aT /‖a‖2 (Id − ââT )‖2.
But because ââT is the identity in the direction of â, we have the estimate

∥∥aT /‖a‖2 (Id − ââT )
∥∥
2 = ∥∥(a/‖a‖2 − sign (g′(0))â

)T
(Id − ââT )

∥∥
2

≤ ‖Id − ââT ‖2→2
∥∥a/‖a‖2 − sign (g′(0))â

∥∥
2

≤ ε.

For the last inequality, we have used Lemma 4.7 and the fact that ‖Id − ââT ‖2→2 ≤ 1.
As a consequence,

E2 ≤ ‖x‖2 ‖a‖2 ‖g‖Lipα
ε ≤ ε.
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Putting everything together, we conclude

‖ f̂ − f ‖∞ ≤ 2ε ≤ 2C ′
αk−α.

Let us turn to the lower bound. Assume we are given a feasible approximation
method Sn that samples at points {x1, . . . , xn} ⊂ �. Let ψk,b be as in the proof of
Proposition 3.2. There is an interval I ′ ⊂ I = [π/4 − 1/5, π/4 + 1/5] of length
|I ′| = 1/(5n) such that I ′ does not contain any of the first coordinates of x1, . . . , xn ;
in other words, it is disjoint with {x1 · e1, . . . , xn · e1}, where e1 = (1, 0, . . . , 0) is the
first canonical unit vector. Furthermore, let b be the center of I ′, put ψ = ψ2n,b, and
a = e1. Finally, with γ as in (3.1), we write

f (x) = sin(x · e1),

f+(x) = sin(x · e1) + (1 − γ )ψ(x · e1),

f−(x) = sin(x · e1) − (1 − γ )ψ(x · e1).

As Sn( f ) = Sn( f+) = Sn( f−) and all the three functions are in Rα,2,κ
d , we may

use the triangle inequality

‖(1 − γ )ψ‖∞ = ‖(1 − γ )ψ(e1·)‖∞

≤ 1

2

{
‖(1 − γ )ψ(e1·) + f − Sn( f )‖∞

+ ‖(1 − γ )ψ(e1·) − [ f − Sn( f )]‖∞
}

= 1

2

{
‖ f+ − Sn( f+)‖∞ + ‖ f− − Sn( f−)‖∞

}

to conclude that

gn,d(Rα,2,κ
d , L∞) � n−α,

with a constant depending only on α. �
Remark 4.9 Let us briefly comment why we assume g′(0) ≥ κ and not g′(t0) ≥ κ

for some arbitrary but known t0 ∈ [−1, 1]. Let x ∈ B̄d
2 be some arbitrary sampling

point (taken, e.g., uniformly at random in B̄d
2 ). Since the only a-priori information is

‖a‖2 ≤ 1, by the concentration of measure phenomenon, the inner product a · x will
most likely be close to zero when d is large. Hence, to exploit g′(t0) ≥ κ for some
t0 �= 0, we effectively have to know the vector a beforehand.

Remark 4.10 Once we have control of the derivative at the origin, recovery of the
ridge direction and approximation of the ridge profile can be addressed independently.
Formula (4.10) is based on the simple observation that

∂ f

∂xi
(0) = g′(0)ai = g′(0)〈a, ei 〉
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might be well approximated by first-order differences. Furthermore, this holds also
for every other direction ϕ ∈ Sd−1

2 , i.e.,

∂ f

∂ϕ
(0) = g′(0)〈a, ϕ〉

can be approximated by differences

f (hϕ) − f (0)

h
.

Taking the directions ϕ1, . . . , ϕm
 at random (and appropriately normalized), one can
approximate the scalar products {〈a, ϕi 〉}m


i=1. Finally, if one assumes that a ∈ B̄d
p for

0 < p ≤ 1, one can recover a good approximation to a by the sparse recoverymethods
of themodern area of compressed sensing. This approach has been investigated in [12].

Although the algorithms of compressed sensing involve random matrices, once a
random matrix with good sensing properties (typically with small constants of their
restricted isometry property) is fixed, the algorithms become fully deterministic. This
allows one to transfer the estimates of [12] into an upper bound for the deterministic
worst-case error glin

n,d(R2,p,κ
d , L∞).

Let 0 < p ≤ 1 and

cκ− 2p
2−p log d ≤ m
 ≤ Cd

for two universal positive constants c, C . It follows from the results of [12] that drawing
the directions ϕ1, . . . , ϕm
 once yields with high probability a deterministic algorithm
that needs n > m
 sampling points to recover any function f ∈ R2,p,κ

d up to precision

[ m


log(d/m
)

]1/2−1/p + (n − m
)−2.

If 1/p ≤ 5/2 and c′κ− 2p
2−p log d ≤ n ≤ C ′d, this implies that

glin
n,d(R2,p,κ

d , L∞) �
[ n

log(d/n)

]1/2−1/p
,

and the same estimate holds if 1/p > 5/2 and c′κ− 2p
2−p log d ≤ n ≤ c′′(log d)

1/p−1/2
1/p−5/2 .

Finally, if c′′(log d)
1/p−1/2
1/p−5/2 ≤ n ≤ C ′d, we obtain

glin
n,d(R2,p,κ

d , L∞) � n−2.

5 Tractability Results

The field of information-based complexity [26] deals with a family of properties of
so-called tractability, which allow one to classify ridge function sampling by degrees
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of difficulty. With regard to these properties, the studied ridge function classes are
surprisingly rich. We run across almost the whole hierarchy of degrees of tractability
if we vary the problem parameters α and p, or add the constraint on the profiles’ first
derivative in the origin.

Let us briefly introduce the standard properties of tractability.We say that a problem
is polynomially tractable if its information complexity n(ε, d) is bounded polynomi-
ally in ε−1 and d; i.e., there exist numbers C, r, q > 0 such that

n(ε, d) ≤ C ε−r dq for all 0 < ε < 1 and all d ∈ N.

A problem is called quasi-polynomially tractable if there exist two constants C, t > 0
such that

n(ε, d) ≤ C exp(t (1 + ln(1/ε))(1 + ln d)). (5.1)

It is called weakly tractable if

lim
1/ε+d→∞

log n(ε, d)

1/ε + d
= 0; (5.2)

i.e., the information complexity n(ε, d) depends exponentially neither on 1/ε nor on
d.

We say that a problem is intractable if (5.2) does not hold. If for some fixed
0 < ε < 1, the number n(ε, d) is an exponential function in d, then a problem is,
of course, intractable. In that case, we say that the problem suffers from the curse of
dimensionality. To make it precise, we face the curse if there exist positive numbers
c, ε0, γ such that

n(ε, d) ≥ c(1 + γ )d for all 0 < ε ≤ ε0 and infinitely many d ∈ N.

In the language of IBC, Theorems 4.3 and 4.8 now read as follows:

Theorem 5.1 Consider the problem of ridge function sampling as defined in Sect. 2.2.
Assume that ridge profiles have at least Lipschitz smoothness α > 0; further, assume
that ridge directions are contained in the closed �d

p-unit ball for p ∈ (0, 2
]
. Then,

sampling of ridge functions in the class Rα,p
d

(1) suffers from the curse of dimensionality if p = 2 and α < ∞,
(2) never suffers from the curse of dimensionality if p < 2,
(3) is intractable if p < 2 and α ≤ 1

1/p−1/2 ,

(4) is weakly tractable if p < 2 and α > 1
1/max{1,p}−1/2 ,

(5) is quasi-polynomially tractable if α = ∞,
(6) and with positive first derivatives of the profiles in the origin it is polynomially

tractable, no matter what the values of α and p are.

To prove Theorem 5.1, we translate Theorem 4.3 into bounds on the information
complexity

n(ε, d) = min{n ∈ N : gn,d(Rα,p
d , L∞) ≤ ε}.
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Lemma 5.2 Let p < 2 and α > 0. Set η = α(1/2− 1/p′) = α(1/max{1, p} − 1/2)
and define

εU
1 := C p,α

[
log(1 + d/ log d)

log d

]η

, εU
2 := C p,α

(
1

d

)η

.

Then, there are positive constants C0 and C1 such that

log n(ε, d) ≤ C0 + C1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log d, εU
1 ≤ ε ≤ 1,

log d · (1/ε)1/η, εU
2 ≤ ε < εU

1 ,

log(1/ε) · (1/ε)1/η, ε < εU
2 .

The constants depend only on p and α.

Lemma 5.3 Let p < 2 and α > 0. Set

εL
1 := cp,α

[
log(1 + d/ log d)

log d

]α(1/p−1/2)

, εL
2 := cp,α

(
1

d

)α(1/p−1/2)

,

εL
3 := 4−αεL

2 .

Then, there are universal constants c0, c1, which depend only on p and α, such that

log n(ε, d) ≥ c0 + c1(1/ε)
α−1(1/p−1/2)−1

for εL
3 ≤ ε < εL

1 .

Proof of Theorem 5.1(1). For n ≤ 2d−2, the lower bound in Theorem 4.3 gives

gn,d(Rα,2
d , L∞) ≥ cp,α =: ε0.

Hence, n(ε, d) ≥ 2d−2 for all ε < ε0, and we have the curse of dimensionality.
(2). Since α1 > α2 impliesRα1,p

d ⊆ Rα2,p
d , we can w.l.o.g. assume α ≤ 1.We choose

an arbitrary εU
2 ≤ ε ≤ 1. By Lemma 5.2,

n(ε, d) ≤ 2C0dC1ε
α−1(1/max{1,p}−1/2)−1

.

By our assumption ε ≥ εU
2 , this is true for all natural d >

(C p,α/ε)α
−1(1/max{1,p}−1/2)−1

. Hence, the curse of dimensionality does not occur.
(3). Set γ = α(1/p − 1/2). Assume d → ∞ and εL

3 ≤ ε < εL
2 . The latter implies

(
cp,α

4α

)1/γ

(1/ε)1/γ ≤ d < c1/γp,α (1/ε)1/γ .
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This yields

log2 n(ε, d)

d + 1/ε
≥ c0

d + 1/ε
+ c1

(1/ε)1/γ

c1/γp,α (1/ε)1/γ + 1/ε
.

Assuming that α ≤ 1/(1/p − 1/2), we have γ ≤ 1 and thus 1/ε ≤ (1/ε)1/γ . We
conclude that

log n(ε, d)

d + 1/ε
≥ c1

c1/γp,α + 1
> 0.

Consequently, the problem is not weakly tractable and thus is intractable.
(4). Set x = 1/ε + d. By Lemma 5.2 and 1/ε ≤ x , d ≤ x , we have

log n(ε, d) ≤ C0 + C1 log(x)xα−1(1/max{1,p}−1/2)−1
.

Now, if α > 1
1/max{1,p}−1/2 , then limx→∞ x−1 log n(ε, d) = 0.

(5). By embedding arguments, it is enough to consider the class R∞,2
d . We approx-

imate the function f ∈ R∞,2
d via the Taylor polynomial Ts,0 f (x) in x0 = 0.

Lemma 2.3, (ii) gives for every s ∈ N the bound

‖ f − Ts,0 f ‖∞ ≤ 2

s! .

Let ε > 0 be given, and let s ∈ N be the smallest integer such that 2/s! ≤ ε.
Then, (s − 1)! ≤ 2/ε, and therefore [(s − 1)/e]s−1 ≤ (s − 1)! ≤ 2/ε. This gives

(s − 1) ln((s − 1)/e) ≤ ln(2/ε). (5.3)

We know from [38] that it requires
(s+d

s

)
function values to approximate the

Taylor polynomial up to arbitrary (but fixed) precision. Hence, using (5.3), we
see that there is a constant t > 0 such that

ln n(ε, d) ≤ s ln(e(d + 1)) ≤ t (1 + ln(1/ε))(1 + ln d),

which is (5.1).
(6). From Theorem 4.8, we can immediately conclude ε−1/α � n(ε, d) � ε−1/α ,

where the constants behind “�” behave polynomially in d. Consequently, sam-
pling of ridge functions inRα,2,κ

d is polynomially tractable. �

ByLemma 2.1, we know thatR∞,2
d is a subclass of the unit ball inC∞(�). Besides,

we know that approximation using function values is quasi-polynomially tractable in
R∞,2

d , see Theorem 5.1. What is the respective tractability level in C∞(�)? Or, to put
it differently: how much do we gain by imposing a ridge structure in C∞(�)? The
seminal paper [27] tells us that approximation in C∞([0, 1]d) suffers from the curse
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of dimensionality when norming the space in the way we did in (2.1). In contrast, we
will show that sampling in C∞(�) is still weakly tractable. This is not too much of a
surprise. Due to the concentration of measure phenomenon, the Euclidean unit ball’s
volume gets “very small” in high dimensions d; its measure scales like (2πe/d)d/2.
Anyhow, the result suggests that one still benefits from supposing a ridge structure;
infinitely differentiable ridge functions fromR∞,2

d probably canbe approximatedmore
easily than general functions from the unit ball of C∞(�). This is not guaranteed,
however, because we do not show that one cannot get anything better than weak
tractability for the sampling of functions in the unit ball of C∞(�).

Theorem 5.4 The sampling problem for C∞(�), where the error is measured in
L∞(�), is weakly tractable.

Proof Applying Lemma 2.3, (i) together with (2.3), we obtain for any f ∈ C∞(�)

with ‖ f ‖C∞(�) ≤ 1 and every s ∈ N the relation

| f (x) − Ts,0 f (x)| ≤ 2

(s − 1)! ‖x‖s
1, x ∈ �,

≤ 2ds/2

(s − 1)! .

Let s ∈ N be the smallest integer such that 2ds/2/(s − 1)! ≤ ε. This leads to

1√
d

( s − 2

e
√

d

)s−2 ≤ (s − 2)!
d

s−1
2

≤ 2

ε
,

which implies

(s − 2) ln
( s − 2

e
√

d

)
≤ ln(2/ε) + 1

2
ln(d). (5.4)

To approximate the Taylor polynomial Ts,0 f with arbitrary precision (uniformly in
f ), we need

(d+s
s

)
function values, see [38, p. 4]. Let us distinguish two cases. If

(s − 2) ≤ e2
√

d, we obtain

ln n(ε, d) ≤ s ln(e(d + 1)) ≤ (e2
√

d + 2) · ln(e(d + 1))

and hence (5.2). If s − 2 > e2
√

d, then (5.4) yields s − 2 ≤ ln(2/ε) + ln(d). Thus,

ln n(ε, d) ≤ s ln(e(d + 1)) ≤ (ln(2/ε) + ln(d) + 2) · ln(e(d + 1)),

and again (5.2) holds true. This establishes weak tractability. �
Remark 5.5 (i) The result in Theorem 5.4 is also a consequence of the arguments in

[19, Sections 5.2, 5.3, and Section 6] by setting L j,d = d j/2.
(ii) Recently, Vybíral [38] showed that there is quasi-polynomial tractability if one

replaces the classical norm supγ∈Nd
0
‖Dγ f ‖∞ by supk∈N0

∑
|γ |=k ‖Dγ f ‖∞/γ !

in C∞([0, 1]d). In contrast to that, Theorem 5.4 shows weak tractability for the
classical norm on the unit ball.
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27. Novak, E., Woźniakowski, H.: Approximation of infinitely differentiable multivariate functions is

intractable. J. Complex. 25, 398–404 (2009)

123



264 Constr Approx (2015) 42:231–264
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Non-asymptotic Analysis
of `1-norm Support Vector Machines

Anton Kolleck, Jan Vybı́ral

Abstract

Support Vector Machines (SVM) with `1 penalty became a standard tool in analysis of highdimensional classification problems
with sparsity constraints in many applications including bioinformatics and signal processing. Although SVM have been studied
intensively in the literature, this paper has to our knowledge first non-asymptotic results on the performance of `1-SVM in
identification of sparse classifiers. We show that a d-dimensional s-sparse classification vector can be (with high probability)
well approximated from only O(s log(d)) Gaussian trials. The methods used in the proof include concentration of measure and
probability in Banach spaces.

Index Terms

Support vector machines, compressed sensing, machine learning, regression analysis, signal reconstruction, classification
algorithms, functional analysis, random variables

I. INTRODUCTION

A. Support Vector Machines

Support vector machines (SVM) are a group of popular classification methods in machine learning. Their input is a set of
data points x1, . . . , xm ∈ Rd, each equipped with a label yi ∈ {−1,+1}, which assigns each of the data points to one of two
groups. SVM aims for binary linear classification based on separating hyperplane between the two groups of training data,
choosing a hyperplane with separating gap as large as possible.

Since their introduction by Vapnik and Chervonenkis [27], the subject of SVM was studied intensively. We will concentrate
on the so-called soft margin SVM [8], which allow also for misclassification of the training data are the most used version of
SVM nowadays.

In its most common form (and neglecting the bias term), the soft-margin SVM is a convex optimization program

min
w∈Rd

ξ∈Rm

1

2
‖w‖22 + λ

m∑
i=1

ξi subject to yi〈xi, w〉 ≥ 1− ξi

and ξi ≥ 0 (I.1)

for some tradeoff parameter λ > 0 and so called slack variables ξi. It will be more convenient for us to work with the following
equivalent reformulation of (I.1)

min
w∈Rd

m∑
i=1

[1− yi〈xi, w〉]+ subject to ‖w‖2 ≤ R, (I.2)

where R > 0 gives the restriction on the size of w. We refer to monographs [25], [28], [29] and references therein for more
details on SVM and to [13, Chapter B.5] and [9, Chapter 9] for a detailed discussion on dual formulations.

B. `1-SVM

As the classical SVM (I.1) and (I.2) do not use any pre-knowledge about w, one typically needs to have more training data
than the underlying dimension of the problem, i.e. m� d. Especially in analysis of high-dimensional data, this is usually not
realistic and we typically deal with much less training data, i.e. with m� d. On the other hand, we can often assume some
structural assumptions on w, in the most simple case that it is sparse, i.e. that most of its coordinates are zero. Motivated by
the success of LASSO [26] in sparse linear regression, it was proposed in [6] that replacing the `2-norm ‖w‖2 in (I.2) by its
`1-norm ‖w‖1 =

∑d
j=1 |wj | leads to sparse classifiers w ∈ Rd. This method was further popularized in [34] by Zhu, Rosset,

Hastie, and Tibshirani, who developed an algorithm that efficiently computes the whole solution path (i.e. the solutions of (I.2)
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mail:kolleck@math.tu-berlin.de). A. Kolleck was supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.

J. Vybı́ral is with the Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 00, Prague 8, Czech Republic, (e-mail:
vybiral@karlin.mff.cuni.cz). J. Vybı́ral was supported by the ERC CZ grant LL1203 of the Czech Ministry of Education and by the Neuron
Fund for Support of Science.
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for a wide range of parameters R > 0). We refer also to [5], [2], [18] and [19] for other generalizations of the concept of
SVM.

Using the ideas of concentration of measure [20] and random constructions in Banach spaces [21], the performance of
LASSO was analyzed in the recent area of compressed sensing [11], [7], [3], [10], [12].
`1-SVM (and its variants) found numerous applications in high-dimensional data analysis, most notably in bioinformatics

for gene selection and microarray classification [30], [31], [15]. Finally, `1-SVM’s are closely related to other popular methods
of data analysis, like elastic nets [32] or sparse principal components analysis [33].

C. Main results

The main aim of this paper is to analyze the performance of `1-SVM in the non-asymptotic regime. To be more specific, let
us assume that the data points x1, . . . , xm ∈ Rd can be separated by a hyperplane according to the given labels y1, . . . , ym ∈
{−1,+1}, and that this hyperplane is normal to a s-sparse vector a ∈ Rd. Hence, 〈a, xi〉 > 0 if yi = 1 and 〈a, xi〉 < 0 if
yi = −1. We then obtain â as the minimizer of the `1-SVM. The first main result of this paper (Theorem II.3) then shows that
â/‖â‖2 is a good approximation of a, if the data points are i.i.d. Gaussian vectors and the number of measurements scales
linearly in s and logarithmically in d.

Later on, we introduce a modification of `1-SVM by adding an additional `2-constraint. It will be shown in Theorem IV.1,
that it still approximates the sparse classifiers with the number of measurements m growing linearly in s and logarithmically
in d, but the dependence on other parameters improves. In this sense, this modification outperforms the classical `1-SVM.

D. Organization

The paper is organized as follows. Section II recalls the concept of `1-Support Vector Machines of [34]. It includes the
main result, namely Theorem II.3. It shows that the `1-SVM allows to approximate sparse classifier a, where the number of
measurements only increases logarithmically in the dimension d as it is typical for several reconstruction algorithms from the
field of compressed sensing. The two most important ingredients of its proof, Theorems II.1 and II.2, are also discussed in
this part. The proof techniques used are based on the recent work of Plan and Vershynin [24], which in turn makes heavy use
of classical ideas from the areas of concentration of measure and probability estimates in Banach spaces [20], [21].

Section III gives the proofs of Theorems II.1 and II.2. In Section IV we discuss several extensions of our work, including
a modification of `1-SVM, which combines the `1 and `2 penalty.

Finally, in Section V we show numerical tests to demonstrate the convergence results of Section II. In particular, we compare
different versions of SVM and 1-Bit Compressed Sensing, which was first introduced by Boufounos and Baraniuk in [4] and
then discussed and continued in [23], [24], [22], [1], [17] and others.

E. Notation

We denote by [λ]+ := max(λ, 0) the positive part of a real number λ ∈ R. By ‖w‖1, ‖w‖2 and ‖w‖∞ we denote the `1, `2
and `∞ norm of w ∈ Rd, respectively. We denote by N (µ, σ2) the normal (Gaussian) distribution with mean µ and variance
σ2. When ω1 and ω2 are random variables, we write ω1 ∼ ω2 if they are equidistributed. Multivariate normal distribution is
denoted by N (µ,Σ), where µ ∈ Rd is its mean and Σ ∈ Rd×d is its covariance matrix. By log(x) we denote the natural
logarithm of x ∈ (0,∞) with basis e. Further notation will be fixed in Section II under the name of “Standing assumptions”,
once we fix the setting of our paper.

II. `1-NORM SUPPORT VECTOR MACHINES

In this section we give the setting of our study and the main results. Let us assume that the data points x1, . . . , xm ∈ Rd are
equipped with labels yi ∈ {−1,+1} in such a way that the groups {xi : yi = 1} and {xi : yi = −1} can indeed be separated
by a sparse classifier a, i.e. that

yi = sign(〈xi, a〉), i = 1, . . . ,m (II.1)

and

‖a‖0 = #{j : aj 6= 0} ≤ s. (II.2)

As the classifier is usually not unique, we cannot identify a exactly by any method whatsoever. Hence we are interested in a
good approximation of a obtained by `1-norm SVM from a minimal number of training data. To achieve this goal, we will
assume that the training points

xi = rx̃i, x̃i ∼ N (0, Id) (II.3)

are i.i.d. measurement vectors for some constant r > 0.
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To allow for more generality, we replace (II.2) by

‖a‖2 = 1, ‖a‖1 ≤ R. (II.4)

Let us observe, that ‖a‖2 = 1 and ‖a‖0 ≤ s implies also ‖a‖1 ≤
√
s, i.e. (II.4) with R =

√
s.

Furthermore, we denote by â the minimizer of

min
w∈Rd

m∑
i=1

[1− yi〈xi, w〉]+ subject to ‖w‖1 ≤ R. (II.5)

Let us summarize the setting of our work, which we will later on refer to as “Standing assumptions” and which we will
keep for the rest of this paper.

Standing assumptions:
(i) a ∈ Rd is the true (nearly) sparse classifier with ‖a‖2 = 1, ‖a‖1 ≤ R, R ≥ 1, which we want to approximate;

(ii) xi = rx̃i, x̃i ∼ N (0, Id), i = 1, . . . ,m are i.i.d. training data points for some constant r > 0;
(iii) yi = sign(〈xi, a〉), i = 1, . . . ,m are the labels of the data points;
(iv) â is the minimizer of (II.5);
(v) Furthermore, we denote

K = {w ∈ Rd | ‖w‖1 ≤ R}, (II.6)

fa(w) =
1

m

m∑
i=1

[1− yi〈xi, w〉]+, (II.7)

where the subindex a denotes the dependency of fa on a (via yi).

In order to estimate the difference between a and â we adapt the ideas of [24]. First we observe

0 ≤ fa(a)− fa(â)

=
(
Efa(a)− Efa(â)

)
+
(
fa(a)− Efa(a)

)
−
(
fa(â)− Efa(â)

)
≤ E(fa(a)− fa(â)) + 2 sup

w∈K
|fa(w)− Efa(w)|,

i.e.

E(fa(â)− fa(a)) ≤ 2 sup
w∈K

|fa(w)− Efa(w)|. (II.8)

Hence, it remains
• to bound the right hand side of (II.8) from above and
• to estimate the left hand side in (II.8) by the distance between a and â from below.
We obtain the following two theorems, whose proofs are given in Section III.

Theorem II.1. Let u > 0. Under the “Standing assumptions” it holds

sup
w∈K

|fa(w)− Efa(w)| ≤
8
√

8π + 18rR
√

2 log(2d)√
m

+ u

with probability at least

1− 8

(
exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
.

Theorem II.2. Let the “Standing assumptions” be fulfilled and let w ∈ K. Put

c = 〈a,w〉, c′ =
√
‖w‖22 − 〈a,w〉2

and assume that c′ > 0. If furthermore c ≤ 0, then πE(fa(w)− fa(a)) can be estimated from below by

π

2
+ c′r

√
π√
2
−
√

2π

r
.

If c > 0, then πE(fa(w)− fa(a)) can be estimated from below by
√
π√
2

∫ 1/cr

0

(1− crt)e
−t2

2 dt+
c′

c
exp

(
−1

2c2r2

)
−
√

2π

r
.
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Combining Theorems II.1 and II.2 with (II.8) we obtain our main result.

Theorem II.3. Let d ≥ 2, 0 < ε < 0.18, r >
√

2π(0.57− πε)−1 and m ≥ Cε−2r2R2 log(d) for some constant C. Under the
“Standing assumptions” it holds ∥∥∥a− â

‖â‖2

∥∥∥
2

〈a, â
‖â‖2 〉

≤ C ′
(
ε+

1

r

)
(II.9)

with probability at least

1− γ exp (−C ′′ log(d)) (II.10)

for some positive constants γ,C ′, C ′′.

Remark II.4. 1) If the classifier a ∈ Rd with ‖a‖2 = 1 is s-sparse, we always have ‖a‖1 ≤
√
s and we can choose

R =
√
s in Theorem II.3. The dependence of m, the number of samples needed, is then linear in s and logarithmic in

d. Intuitively, this is the best what we can hope for. On the other hand, we leave it open, if the dependence on ε and r
is optimal in Theorem II.3.

2) Theorem II.3 uses the constants C, C ′ and C ′′ only for simplicity. More explicitly we show that taking

m ≥ 4ε−2
(

8
√

8π + 19rR
√

2 log(2d)
)2
,

we get the estimate

‖a− â/‖â‖2‖2
〈a, â/‖â‖2〉

≤ 2e1/2

(
πε+

√
2π

r

)
with probability at least

1− 8

(
exp

(
−r2R2 log(2d)

16

)
+ exp

(
− log(2d)

16

))
.

3) If we introduce an additional parameter t > 0 and choose m ≥ 4ε−2(8
√

8π+ (18 + t)rR
√

2 log(2d))2, nothing but the
probability changes to

1− 8

(
exp

(
−t2r2R2 log(2d)

16

)
+ exp

(
−t2 log(2d)

16

))
.

Hence, by fixing t large, we can increase the value of C ′′ and speed up the convergence of (II.10) to 1.

Proof of Theorem II.3: To apply Theorem II.1 we choose

u =
rR
√

2 log(2d)√
m

and

m ≥ 4ε−2(8
√

8π + 19rR
√

2 log(2d))2

and we obtain the estimate

sup
w∈K

|fa(w)− Efa(w)| ≤
8
√

8π + 18rR
√

2 log(2d)√
m

+ u ≤ ε

2

with probability at least

1− 8

(
exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
= 1− 8

(
exp

(
−r2R2 log(2d)

16

)
+ exp

(
− log(2d)

16

))
.

Using (II.8) this already implies

E
(
fa(â)− fa(a)

)
≤ ε (II.11)

with at least the same probability. Now we want to apply Theorem II.2 with w = â to estimate the left hand side of this
inequality. Therefore we first have to deal with the case c′ =

√
‖â‖22 − 〈a, â〉2 = 0, which only holds if â = λa for some
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λ ∈ R. If λ > 0, then â/‖â‖2 = a and the statement of the Theorem holds trivially. If λ ≤ 0, then the condition f(â) ≤ f(a)
can be rewritten as

m∑
i=1

[1 + |λ| · |〈xi, a〉|]+ ≤
m∑
i=1

[1− |〈xi, a〉|]+.

This inequality holds if, and only if, 〈xi, a〉 = 0 for all i = 1, . . . ,m - and this in turn happens only with probability zero.
We may therefore assume that c′ 6= 0 holds almost surely and we can apply Theorem II.2. Here we distinguish the three

cases c = 〈â, a〉 ≤ 0, 0 < c ≤ 1/r and 1/r < c. First, we will show that the two cases c ≤ 0 and 0 < c < 1/r lead to a
contradiction and then, for the case c > 1/r, we will prove our claim.
1. case c ≤ 0: Using Theorem II.2 we get the estimate

πE(fa(â)− fa(a)) ≥ π

2
+ c′r

√
π√
2
−
√

2π

r
≥ π

2
−
√

2π

r

and (II.11) gives (with our choices for r and ε) the contradiction

1

π

(
π

2
−
√

2π

r

)
≤ E(fa(â)− fa(a)) ≤ ε.

2. case 0 < c ≤ 1/r: As in the first case we use Theorem II.2 in order to show a contradiction. First we get the estimate

πE(fa(â)− fa(a))

≥
√
π√
2

∫ 1/cr

0

(1− crt)e
−t2

2 dt+
c′

c
exp

(
−1

2c2r2

)
−
√

2π

r

≥
√
π√
2

∫ 1/cr

0

(1− crt)e
−t2

2 dt−
√

2π

r
.

Now we consider the function

g : (0,∞)→ R, z 7→
∫ 1/z

0

(1− zt)e
−t2

2 dt.

It holds g(z) ≥ 0 and

g′(z) = −
∫ 1/z

0

te
−t2

2 dt < 0,

so g is monotonic decreasing. With cr < 1 this yields

πE(fa(â)− fa(a)) ≥
√
π√
2

∫ 1/cr

0

(1− crt)e
−t2

2 dt−
√

2π

r

=

√
π√
2
g(cr)−

√
2π

r
≥
√
π√
2
g(1)−

√
2π

r

=

√
π√
2

∫ 1

0

(1− t)e
−t2

2 dt−
√

2π

r

≥ 0.57−
√

2π

r
.

Again, (II.11) now gives the contradiction

1

π

(
0.57−

√
2π

r

)
≤ E(fa(â)− fa(a)) ≤ ε.

We conclude that it must hold c′ > 0 and c > 1/r almost surely.
3. case 1/r < c: In this case we get the estimate

πE(fa(â)− fa(a)) ≥
√
π√
2

∫ 1/cr

0

(1− crt)e
−t2

2 dt

+
c′

c
exp

(
−1

2c2r2

)
−
√

2π

r
(II.12)

≥ c′

c
exp

(
−1

2c2r2

)
−
√

2π

r

≥ c′

c
e−1/2 −

√
2π

r
,
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where we used cr > 1 for the last inequality. Further we get

c′

c
=

√
‖â‖22 − 〈a, â〉2
〈a, â〉

=

√
‖â‖22 − 〈a, â〉2
〈a, â〉2

=

√(
‖â‖2 − 〈a, â〉
〈a, â〉

)(
‖â‖2 + 〈a, â〉
〈a, â〉

)

=

√
(2− 2〈a, â/‖â‖2〉)(2 + 2〈a, â/‖â‖2〉)

4〈a, â/‖â‖2〉2
(II.13)

=

√
‖a− â/‖â‖2‖22 · ‖a+ â/‖â‖2‖22

4〈a, â/‖â‖2〉2

≥ 1

2

‖a− â/‖â‖2‖2
〈a, â/‖â‖2〉

.

Finally, combining (II.11), (II.12) and (II.13), we arrive at

1

π

(
‖a− â/‖â‖2‖2
〈a, â/‖â‖2〉

1

2
e−1/2 −

√
2π

r

)
≤ E(fa(â)− fa(a)) ≤ ε,

which finishes the proof of the theorem.

III. PROOFS

The main aim of this section is to prove Theorems II.1 and II.2. Before we come to that, we shall give a number of helpful
Lemmas.

A. Concentration of fa(w)

In this subsection we want to show that fa(w) does not deviate uniformly far from its expected value Efa(w), i.e. we want
to show that

sup
w∈K

|fa(w)− Efa(w)|

is small with high probability. Therefore we will first estimate its mean

µ := E
(

sup
w∈K

|fa(w)− Efa(w)|
)

(III.1)

and then use a concentration inequality to prove Theorem II.1. The proof relies on standard techniques from [21] and [20] and
is inspired by the analysis of 1-bit compressed sensing given in [24].

For i = 1, . . . ,m let εi ∈ {+1,−1} be i.i.d. Bernoulli variables with

P(εi = 1) = P(εi = −1) = 1/2. (III.2)

Let us put

Ai(w) = [1− yi〈xi, w〉]+, A(w) = [1− y〈x,w〉]+, (III.3)

where x is an independent copy of any of the xi and y = sign(〈x, a〉). Further, we will make use of the following lemmas.

Lemma III.1. For m ∈ N, i.i.d. Bernoulli variables ε1, . . . , εm according to (III.2) and any scalars λ1, . . . , λm ∈ R it holds

P
( m∑
i=1

εi[λi]+ ≥ t
)
≤ 2P

( m∑
i=1

εiλi ≥ t
)
. (III.4)

Proof: First we observe

P
( m∑
i=1

εi[λi]+ ≥ t
)

= P
(∑
λi≥0

εiλi ≥ t
)

= P
(∑
λi≥0

εiλi ≥ t and
∑
λi<0

εiλi ≥ 0

)
+ P

(∑
λi≥0

εiλi ≥ t and
∑
λi<0

εiλi < 0

)
.



7

Now we can estimate the second of these two probabilities by the first one and we arrive at

P
( m∑
i=1

εi[λi]+ ≥ t
)
≤ 2P

(∑
λi≥0

εiλi ≥ t and
∑
λi<0

εiλi ≥ 0

)

≤ 2P
( m∑
i=1

εiλi ≥ t
)
.

Lemma III.2. 1) For Gaussian random variables x1, . . . , xm ∈ Rd according to (II.3) it holds

E
∥∥∥∥ 1

m

m∑
i=1

xi

∥∥∥∥
∞
≤
r
√

2 log(2d)√
m

. (III.5)

2) Let the i.i.d. Bernoulli variables ε1, . . . , εm be according to (III.2) and let u > 0. Then it holds

P
(∣∣∣∣ 1

m

m∑
i=1

εi

∣∣∣∣ ≥ u) ≤ 2 exp

(
−mu2

2

)
. (III.6)

3) For x1, . . . , xm ∈ Rd and K ⊂ Rd according to (II.3) and (II.6) we denote

µ̃ = E
(

sup
w∈K

〈
1

m

m∑
i=1

xi, w

〉)
. (III.7)

Then it holds

P
(

sup
w∈K

〈
1

m

m∑
i=1

xi, w

〉
≥ µ̃+ u

)
≤ exp

(
−mu2

2r2R2

)
. (III.8)

Proof:
1) The statement follows from

E
∥∥∥∥ 1

m

m∑
i=1

xi

∥∥∥∥
∞

=
r√
m
E‖x̃‖∞

with x̃ ∼ N (0, Id) and proposition 8.1 of [13]:√
log(d)

4
≤ E‖x̃‖∞ ≤

√
2 log(2d). (III.9)

2) The estimate follows as a consequence of Hoeffding’s inequality [16].
3) Theorem 5.2 of [24] gives the estimate

P
(

sup
w∈K

〈
1

m

m∑
i=1

xi, w

〉
≥ µ̃+ u

)
≤ exp

(
−u2

2σ2

)
with

σ2 = sup
w∈K

E
(〈

1

m

m∑
i=1

xi, w

〉2)
.

Since the x′is are independent we get

1

m

m∑
i=1

xi =
r√
m
x̃ with x̃ ∼ N (0, Id)

and we end up with

σ2 = sup
w∈K

E
(
r2

m
〈x̃, w〉2

)
=
r2

m
sup
w∈K

‖w‖22 =
r2R2

m
. (III.10)
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1) Estimate of the mean µ: To estimate the mean µ, we first derive the following symmetrization inequality, cf. [21, Chapter
6] and [24, Lemma 5.1].

Lemma III.3 (Symmetrization). Let ε1, . . . , εm be i.i.d. Bernoulli variables according to (III.2). Under the “Standing assump-
tions” it holds for µ defined by (III.1)

µ ≤ 2E sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εi[1− yi〈xi, w〉]+
∣∣∣∣. (III.11)

Proof: Let Ai(w) and A(w) be according to (III.3). Let x′i and x′ be independent copies of xi and x. Then A′i(w) and
A′(w), generated in the same way (III.3) with x′i and x′ instead of xi and x, are independent copies of Ai(w) and A(w). We
denote by E′ the mean value with respect to x′i and x′. Using E′

(
A′i(w)− E′A′(w)

)
= 0, we get

µ = E sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

(
Ai(w)− EA(w)

)∣∣∣∣
= E sup

w∈K

∣∣∣∣ 1

m

m∑
i=1

(
Ai(w)− EA(w)

)
− E′

(
A′i(w)− E′A′(w)

)∣∣∣∣
= E sup

w∈K

∣∣∣∣ 1

m

m∑
i=1

E′
(
Ai(w)−A′i(w)

)∣∣∣∣.
Applying Jensen’s inequality we further get

µ ≤ EE′ sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

(
Ai(w)−A′i(w)

)∣∣∣∣
= EE′ sup

w∈K

∣∣∣∣ 1

m

m∑
i=1

εi
(
Ai(w)−A′i(w)

)∣∣∣∣
≤ 2E sup

w∈K

∣∣∣∣ 1

m

m∑
i=1

εiAi(w)

∣∣∣∣
= 2E sup

w∈K

∣∣∣∣ 1

m

m∑
i=1

εi[1− yi〈xi, w〉]+
∣∣∣∣

as claimed.
Equipped with this tool, we deduce the following estimate for µ.

Lemma III.4. Under the “Standing assumptions” we have

µ = E sup
w∈K

|fa(w)− Efa(w)| ≤
4
√

8π + 8rR
√

2 log(2d)√
m

.

Proof: Using Lemma III.3 we obtain

µ = E sup
w∈K

|fa(w)− Efa(w)|

≤ 2E sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εi[1− yi〈xi, w〉]+
∣∣∣∣

= 2

∫ ∞
0

P
(

sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εi[1− yi〈xi, w〉]+
∣∣∣∣ ≥ t) dt.

Now we can apply Lemma III.1 to get

µ ≤ 4

∫ ∞
0

P
(

sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εi(1− yi〈xi, w〉)
∣∣∣∣ ≥ t) dt

≤ 4

∫ ∞
0

P
(∣∣∣∣ 1

m

m∑
i=1

εi

∣∣∣∣ ≥ t/2)
+ P

(
sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εiyi〈xi, w〉
∣∣∣∣ ≥ t/2) dt.



9

Using the second part of Lemma III.2 we can further estimate

µ ≤ 4
√

8π√
m

+ 4

∫ ∞
0

P
(

sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εiyi〈xi, w〉
∣∣∣∣ ≥ t/2) dt

=
4
√

8π√
m

+ 8E
(

sup
w∈K

∣∣∣∣〈 1

m

m∑
i=1

εixi, w

〉∣∣∣∣).
Using the duality ‖ · ‖′1 = ‖ · ‖∞ and the first part of Lemma III.2 we get

=
4
√

8π√
m

+ 8RE
∥∥∥∥ 1

m

m∑
i=1

xi

∥∥∥∥
∞
≤ 4
√

8π√
m

+
8rR

√
2 log(2d)√
m

.

2) Concentration inequalities: In this subsection we will estimate the probability that fa(w) deviates anywhere on K far
from its mean, i.e. the probability

P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ µ+ t

)
for some t > 0. First we obtain the following modified version of the second part of Lemma 5.1 of [24], cf. also [21, Chapter
6.1].

Lemma III.5 (Deviation inequality). Let ε1, . . . , εm be i.i.d. Bernoulli variables according to (III.2) and let the “Standing
assumptions” be fulfilled. Then, for µ ∈ R according to (III.1) and any t > 0, it holds

P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ+ t

)
(III.12)

≤ 4P
(

sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εi[1− yi〈xi, w〉]+
∣∣∣∣ ≥ t/2).

Proof: Using Markov’s inequality let us first note

P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ

)
≤

E supw∈K |fa(w)− Efa(w)|
2µ

=
1

2
.

Using this inequality we get

1

2
P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ+ t

)
≤
(

1− P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ

))
· P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ+ t

)
= P

(
∀w ∈ K : |fa(w)− Efa(w)| < 2µ

)
· P
(
∃w ∈ K : |fa(w)− Efa(w)| ≥ 2µ+ t

)
.

Let Ai and εi be again defined by (III.2), (III.3) and let A′i be independent copies of Ai. We further get

1

2
P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ+ t

)
≤ P

(
∀w ∈ K :

∣∣∣∣ 1

m

m∑
i=1

(
Ai(w)− EA(w)

)∣∣∣∣ < 2µ

)
· P
(
∃w ∈ K :

∣∣∣∣ 1

m

m∑
i=1

(
A′i(w)− EA′(w)

)∣∣∣∣ ≥ 2µ+ t

)
≤ P

(
∃w ∈ K :

∣∣∣∣ 1

m

m∑
i=1

((
Ai(w)− EA(w)

)
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−
(
A′i(w)− EA′(w)

))∣∣∣∣≥ t)
= P

(
∃w ∈ K :

∣∣∣∣ 1

m

m∑
i=1

εi(Ai(w)−A′i(w))

∣∣∣∣≥ t)
≤ 2P

(
∃w ∈ K :

∣∣∣∣ 1

m

m∑
i=1

εiAi(w)

∣∣∣∣≥ t/2),
which yields the claim.

Combining the Lemmas III.1 and III.5 we deduce the following result.

Lemma III.6. Under the “Standing assumptions” it holds for µ and µ̃ according to (III.1) and (III.7) and any u > 0

P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ+ 2µ̃+ u

)
≤ 8

(
exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
. (III.13)

Proof: Applying Lemma III.5 and Lemma III.1 we get

P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ+ 2µ̃+ u

)
≤ 4P

(
sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εi[1− yi〈xi, w〉]+
∣∣∣∣ ≥ µ̃+ u/2

)
≤ 8P

(
sup
w∈K

∣∣∣∣ 1

m

m∑
i=1

εi(1− yi〈xi, w〉)
∣∣∣∣ ≥ µ̃+ u/2

)
≤ 8P

(∣∣∣∣ 1

m

m∑
i=1

εi

∣∣∣∣ ≥ u/4)
+ 8P

(
sup
w∈K

∣∣∣∣〈 1

m

m∑
i=1

xi, w

〉∣∣∣∣ ≥ µ̃+ u/4

)
.

Finally, applying the second and third part of Lemma III.2 this can be further estimated from above by

≤ 8

(
exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
,

which finishes the proof.
Using the two Lemmas III.4 and III.6 we can now prove Theorem II.1.

Proof of Theorem II.1: Lemma III.6 yields

P
(

sup
w∈K

|fa(w)− Efa(w)| ≥ 2µ+ 2µ̃+ u

)
≤ 8

(
exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
.

Using Lemma III.4 we further get

µ ≤
4
√

8π + 8rR
√

2 log(2d)√
m

.

Invoking the duality ‖ · ‖′1 = ‖ · ‖∞ and the first part of Lemma III.2 we can further estimate µ̃ by

µ̃ = RE

∥∥∥∥∥ 1

m

m∑
i=1

xi

∥∥∥∥∥
∞

≤
rR
√

2 log(2d)√
m

.

Hence, with probability at least

1− 8

(
exp

(
−mu2

32

)
+ exp

(
−mu2

32r2R2

))
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we have

sup
w∈K

|fa(w)− Efa(w)| ≤ 2µ+ 2µ̃+ u

≤
8
√

8π + 18rR
√

2 log(2d)√
m

+ u

as claimed.

B. Estimate of the expected value

In this subsection we will estimate

E(fa(w)− fa(a)) = E[1− y〈x,w〉]+ − E[1− y〈x, a〉]+

for some w ∈ Rd\{0} with ‖w‖1 ≤ R. We will first calculate both expected values separately and later estimate their difference.
We will make use of the following statements from probability theory.

Lemma III.7. Let a, x ∈ Rd be according to (II.4), (II.3) and let w ∈ Rd\{0}. Then it holds
1) 〈x, a〉, 〈x, w

‖w‖2 〉 ∼ N (0, r2),
2) Cov(〈x, a〉, 〈x,w〉) = r2〈a,w〉.

Proof: The first statement is well known in probability theory as the 2-stability of normal distribution. For the second
statement we get

Cov(〈x, a〉, 〈x,w〉) = E(〈x, a〉〈x,w〉) =

d∑
i,j=1

aiwjE(xixj)

= r2
d∑
i=1

aiwi = r2〈a,w〉

as claimed.
It is very well known, cf. [14, Corollary 5.2], that projections of a Gaussian random vector onto two orthogonal directions

are mutually independent.

Lemma III.8. Let x ∼ N (0, Id) and let a, b ∈ Rd with 〈a, b〉 = 0. Then 〈x, a〉 and 〈x, b〉 are independent random variables.

Applying these two lemmas to our case we end up with the following lemma.

Lemma III.9. For a ∈ Rd according to (II.4), x ∼ N (0, r2Id) and w ∈ Rd we have

〈x,w〉 = c〈x, a〉+ c′Z

for some Z ∼ N (0, r2) independent of 〈x, a〉 and

c = 〈a,w〉, c′ =
√
‖w‖22 − c2. (III.14)

Remark III.10. Note that c′ is well defined, since c2 ≤ ‖w‖22‖a‖22 = ‖w‖22.

Proof: If c′ = 0, the statement holds trivially. If c′ 6= 0, we set

Z =
1

c′
(〈x,w〉 − c〈x, a〉) =

1

c′

d∑
i=1

xi (wi − cai) .

Hence, Z is indeed normally distributed with E(Z) = 0 and Var(Z) = r2. It remains to show that Z and 〈x, a〉 are independent.
We observe that

〈a,w − ca〉 = 〈a,w〉 − 〈a,w〉‖a‖2 = 0

and, finally, Lemma III.8 yields the claim.

Lemma III.11. Let a ∈ Rd and fa : Rd → R be according to (II.4), (II.7). Then it holds

1) Efa(a) = 1√
2π

∫
R
[
1− r|t|

]
+
e

−t2

2 dt,

2) Efa(w) = 1
2π

∫
R2

[
1− cr|t1| − c′rt2

]
+
e

−t21−t22
2 dt1 dt2, where c and c′ are defined by (III.14).

Proof:



12

1) Let ω ∼ N (0, 1) and use the first part of Lemma III.7 to obtain

Efa(a) = E[1− |〈x, a〉|]+ = E[1− r|ω|]+

=
1√
2π

∫
R

[
1− r|t|

]
+
e

−t2

2 dt.

2) Using the notation of Lemma III.9 we get

Efa(w) = E[1− sign(〈x, a〉)〈x,w〉]+
= E[1− sign(〈x, a〉)(c〈x, a〉+ c′Z)]+

= E[1− c|〈x, a〉| − c′sign(〈x, a〉)Z]+

= E[1− c|〈x, a〉| − c′Z]+

=
1

2π

∫
R2

[1− cr|t1| − c′rt2]+e
−t21−t22

2 dt1 dt2.

Using this result we now can prove Theorem II.2.
Proof of Theorem II.2: Using Lemma III.11 we first observe

−πEfa(a) = −
√
π√
2

∫
R

[1− r|t|]+e
−t2

2 dt (III.15)

= −
√

2π

∫ 1
r

0

(
1− rt

)
e

−t2

2 dt

≥ −
√

2π

∫ 1
r

0

e
−t2

2 dt ≥ −
√

2π

r
.

To estimate the expected value of fa(w) we now distinguish the two cases c ≤ 0 and c > 0.
1. case: c ≤ 0: In that case we get

πEfa(w) =

∫
R

∫ ∞
0

[
1− crt1 − c′rt2

]
+
e

−t21−t22
2 dt1 dt2.

Since −crt1 ≥ 0 for 0 ≤ t1 <∞ we can further estimate

πEfa(w) ≥
∫
R

∫ ∞
0

[
1− c′rt2

]
+
e

−t21−t22
2 dt1 dt2

≥
∫ 0

−∞

∫ ∞
0

(1− c′rt2)e
−t21−t22

2 dt1 dt2

=

∫ 0

−∞

∫ ∞
0

e
−t21−t22

2 dt1 dt2 + c′r

∫ ∞
0

∫ ∞
0

t2e
−t21−t22

2 dt1 dt2

=
π

2
+ c′r

√
π√
2
.

As claimed, putting both terms together, we arrive at

πE(fa(w)− fa(a)) ≥ π

2
+ c′r

√
π√
2
−
√

2π

r
.

2. case: c > 0: First let us observe that 1− crt1 − c′rt2 ≥ 0 on [0, 1/cr]× (−∞, 0] ⊂ R2. Hence, we get

πEfa(w) =

∫
R2

[1− crt1 − c′rt2]+e
−t21−t22

2 dt2 dt1

≥
∫ 1

cr

0

∫ 0

−∞
(1− crt1 − c′rt2)e

−t21−t22
2 dt2 dt1

=

√
π√
2

∫ 1
cr

0

(1− crt)e
−t2

2 dt+ c′r

∫ 1
cr

0

e
−t2

2 dt

≥
√
π√
2

∫ 1
cr

0

(1− crt)e
−t2

2 dt+
c′

c
exp

(
−1

2c2r2

)
.
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Combining this estimate with (III.15) we arrive at

πE(fa(w)− fa(a)) ≥
√
π√
2

∫ 1
cr

0

(1− crt)e
−t2

2 dt

+
c′

c
exp

(
−1

2c2r2

)
−
√

2π

r
.

IV. `1-SVM WITH ADDITIONAL `2-CONSTRAINT

A detailed inspection of the analysis done so far shows that it would be convenient if the convex body K would not include
vectors with large `2-norm. For example, in (III.10) we needed to calculate supw∈K ‖w‖22 = R2, although the measure of the
set of vectors in K with `2-norm close to R is extremely small.

Therefore, we will modify the `1-SVM (II.5) by adding an additional `2-constraint, that is instead of (II.5) we consider the
optimization problem

min
w∈Rd

m∑
i=1

[1− yi〈xi, w〉]+ s. t. ‖w‖1 ≤ R and ‖w‖2 ≤ 1. (IV.1)

The combination of `1 and `2 constraints is by no means new - for example, it plays a crucial role in the theory of elastic
nets [32]. Furthermore, let us remark that the set

K̃ = {w ∈ Rd | ‖w‖1 ≤ R and ‖w‖2 ≤ 1} (IV.2)

appears also in [24]. We get K̃ ⊂ K with K according to (II.6). Hence, Theorem II.1 and (II.8) still remain true if we replace
K by K̃ and we obtain

sup
w∈K̃

|fa(w)− Efa(w)| ≤
8
√

8π + 18rR
√

2 log(2d)√
m

+ u (IV.3)

with high probability and

E(fa(â)− fa(a)) ≤ 2 sup
w∈K̃

|fa(â)− fa(a)|, (IV.4)

where â is now the minimizer of (IV.1).
It remains to estimate the expected value E(fa(w)−fa(a)) in order to obtain an analogue of Theorem II.3 for (IV.1), which

reads as follows.

Theorem IV.1. Let d ≥ 2, 0 < ε < 1/2, r > 2
√

2π(1− 2ε)−1, a ∈ Rd according to (II.4), m ≥ Cε−2r2R2 log(d) for some
constant C, x1, . . . , xm ∈ Rd according to (II.3) and â ∈ Rd a minimizer of (IV.1). Then it holds

‖a− â‖22 ≤
C ′ε

r(1− exp
( −1
2r2

)
)

(IV.5)

with probability at least

1− γ exp (−C ′′ log(d))

for some positive constants γ,C ′, C ′′.

Remark IV.2. 1) As for Theorem II.3 we can write down the expressions explicitly, i.e. without the constants γ,C,C ′ and

C ′′. That is, taking m ≥ 4ε−2
(

8
√

8π + (18 + t)rR
√

2 log(2d)
)2

for some t > 0, we get

‖a− â‖22 ≤
√
π/2 ε

r
(
1− exp

( −1
2r2

)) .
with probability at least

1− 8

(
exp

(
−t2r2R2 log(2d)

16

)
+ exp

(
−t2 log(2d)

16

))
.

2) The main advantage of Theorem IV.1 compared to Theorem II.3 is that the parameter r does not need to grow to infinity.
Actually, (IV.5) is clearly not optimal for large r. Indeed, if (say) ε < 0.2, we can take r = 10, and obtain

‖a− â‖22 ≤ C̃ ′ε
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for m ≥ C̃ε−2R2 log(d) with high probability.

Proof: As in the proof of Theorem II.3 we first obtain c′ =
√
‖â‖22 − 〈a, â〉2 > 0 and c = 〈a, â〉 > 0. Using Lemma

III.11 we get

πE(fa(w)− fa(a))

≥
∫ 1

r

0

∫
R

(
(1− crt1 − c′rt2)− (1− rt1)

)
e

−t21−t22
2 dt2 dt1

= r(1− c)
√

2π

∫ 1
r

0

te
−t2

2 dt

with

1− c = 1− 〈a, â〉 ≥ 1

2
(‖a‖22 + ‖â‖22)− 〈a, â〉 =

1

2
‖a− â‖22.

The claim now follows from (IV.4) and (IV.3).

V. NUMERICAL EXPERIMENTS

We performed several numerical tests to exhibit different aspects of the algorithms discussed above. In the first two parts
of this section we fixed d = 1000 and set ã ∈ Rd with 5 nonzero entries ã10 = 1, ã140 = −1, ã234 = 0.5, ã360 = −0.5,
ã780 = 0.3, Afterwards we normalized ã and set a = ã/‖ã‖2 and R = ‖a‖1.

A. Dependency on r

We run the `1-SVM (II.5) with m = 200 and m = 400 for different values of r between zero and 1.5. The same was done
for the `1-SVM with the additional `2-constraint (IV.1), which is called `1,2-SVM in the legend of the figure. The average
error of n = 20 trials between a and â/‖â‖2 is plotted against r. We observe that especially for small r’s the `1-SVM with
`2-constraint performs much better than classical `1-SVM.

size r

0.2 0.4 0.6 0.8 1 1.2 1.4

∥ ∥

a
−

â
/
‖
â
‖
2

∥ ∥

2

0

0.2

0.4

0.6

0.8

1
ℓ1-SVM with m = 200

ℓ1,2-SVM with m = 200

ℓ1-SVM with m = 400

ℓ1,2-SVM with m = 400

Figure 1. Dependency on r

B. Dependency on m and comparison with 1-Bit CS

In the second experiment, we run `1-SVM with and without the extra `2-constraint for two different values of r, namely
for r = 0.75 and for r depending on m as r =

√
m/30. We plotted the average error of n = 40 trials for each value. The last

method used is 1-bit Compressed Sensing [24], which is given as the maximizer of

max
w∈Rd

m∑
i=1

yi〈xi, w〉 subject to ‖w‖2 ≤ 1, ‖w‖1 ≤ R. (V.1)

Note that maximizer of (V.1) is independent of r, since it is linear in xi. First, one observes that the error of `1-SVM does
not converge to zero if the value of r = 0.75 is fixed. This is in a good agreement with Theorem II.3 and the error estimate
(II.9). This drawback disappears when r =

√
m/30 grows with m, but `1-SVM still performs quite badly. The two versions

of `1,2-SVM perform essentially better than `1-SVM, and slightly better than 1-bit Compressed Sensing.
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size m
100 200 300 400 500 600 700 800 900 1000

∥ ∥

a
−

â
/
‖â

‖ 2
∥ ∥

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ℓ1-SVM with r = 0.75
ℓ1,2-SVM with r = 0.75
ℓ1-SVM with r =

√
m/30

ℓ1,2-SVM with r =
√
m/30

1-Bit CS

Figure 2. Comparison of `1-SVM with 1-Bit CS.
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0 500 1000 1500 2000 2500 3000

∥ ∥
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‖
2

∥ ∥

2
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0.4

0.5

0.6

0.7
m = 10 log(d)

m = 20 log(d)

m = 40 log(d)

s = 5
r = 0.75

Figure 3. Dependency on d.

C. Dependency on d

In figure 3 we investigated the dependency of the error of `1-SVM on the dimension d. We fixed the sparsity level s = 5
and for each d between 100 and 3000 we draw an s-sparse signal a and measurement vectors xi at random. Afterwards we
run the `1-SVM with the three different values m = mi log(d) with m1 = 10, m2 = 20 and m3 = 40. We plotted the average
errors between a and â/‖â‖2 for n = 60 trials.

We indeed see that to achieve the same error, the number of measurements only needs to grow logarithmically in d, explaining
once again the success of `1-SVM for high-dimensional classification problems.

VI. DISCUSSION

In this paper we have analyzed the performance of `1-SVM (II.5) in recovering sparse classifiers. Theorem II.3 shows,
that a good approximation of such a sparse classifier can be achieved with small number of learning points m if the data is
well spread. The geometric properties of well distributed learning points are modelled by independent Gaussian vectors with
growing variance r and it would be interesting to know, how `1-SVM performs on points chosen independently from other
distributions. The number of learning points needs to grow logarithmically with the underlying dimension d and linearly with
the sparsity of the classifier. On the other hand, the optimality of the dependence of m on ε and r remains open. Another
important question left open is the behavior of `1-SVM in the presence of missclasifications, i.e. when there is a (small)
probability that the signs yi ∈ {−1,+1} do not coincide with sign(〈xi, a〉). Finally, we proposed a modification of `1-SVM
by incorporating an additional `2-constraint.
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Statistical learning of materials properties or functions so far starts with a largely silent, nonchallenged
step: the choice of the set of descriptive parameters (termed descriptor). However, when the scientific
connection between the descriptor and the actuating mechanisms is unclear, the causality of the learned
descriptor-property relation is uncertain. Thus, a trustful prediction of new promising materials,
identification of anomalies, and scientific advancement are doubtful. We analyze this issue and define
requirements for a suitable descriptor. For a classic example, the energy difference of zinc blende or
wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor can be found
systematically.
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Using first-principles electronic-structure codes, a large
number of known and hypothetical materials have been
studied in recent years, and currently, the amount of
calculated data increase exponentially with time. The
targets of these studies are, for example, the stable structure
of solids or the efficiency of potential photovoltaic,
thermoelectric, battery, or catalytic materials. Utilizing
such data like a reference book (query and read out what
was stored) is an avail. Finding the actuating mechanisms
of a certain property or function and describing it in terms
of a set of physically meaningful parameters (henceforth
termed descriptor) is the desired science. A most impres-
sive and influential example for the importance and impact
of finding a descriptor is the periodic table of elements,
where the elements are categorized (described) by two
numbers, the table row and column. The initial version had
several “white spots,” i.e., elements that had not been found
at that time, but the chemical properties of these elements
were roughly known already from their position in the
table. Interestingly, the physical meaning of this two-
dimensional descriptor became clear only later. Below
we will use an example from materials science to discuss
and demonstrate the challenge of finding meaningful
descriptors: the prediction of the crystal structure of binary
compound semiconductors, which are known to crystallize
in zinc blende (ZB), wurtzite (WZ), or rocksalt (RS)
structures. The structures and energies of ZB and WZ
are very close and for the sake of clarity we will not
distinguish them here. The energy difference between ZB
and RS is larger, though still very small, namely just

0.001% or less of the total energy of a single atom. Thus,
high accuracy is required to predict this difference. This
refers to both steps, the explicit calculations and the
identification process of the appropriate descriptor (see
below). The latter includes the representation of the
descriptor-property relation.
For brevity, we only write “property,” characterized by a

number Pi in the following, with i denoting the actually
calculated material, but we mean the materials function(s)
as well. In general, the property will be characterized by a
string of numbers, but here we like to keep the discussion
simple. Analogously, the multidimensional descriptor is
denoted as a vector di, with dimension Ω. The generali-
zation of the discrete data set fPi; dig to a continuous
function PðdÞ has been traditionally achieved in terms of
physical models, or mathematical fits. Scientific under-
standing of the descriptor d and of the relationship between
d and P is needed for deciding with confidence what new
materials should be studied next as the most promising
novel candidates and for identifying interesting anomalies.
In 1970, Phillips and van Vechten (Ph-vV) [1,2] ana-

lyzed the classification challenge of ZB or WZ versus RS
structures. They came up with a two-dimensional descrip-
tor, i.e., two numbers that are related to the experimental
dielectric constant and nearest-neighbor distance in the
crystal [1,2]. Figure 1 shows their conclusion. Clearly, in
this representation ZB or WZ and RS structures separate
nicely: Materials in the upper left part crystallize in the RS
structure, those in the lower right part are ZB or WZ. Thus,
based on the ingenious descriptor d ¼ ðEh; CÞ one can
predict the structure of unknown compounds without the
need of performing explicit experiments or calculations.
Several authors have taken up the Ph-vV challenge and
identified alternative descriptors [3–5]. We will come back
to this below.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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In recent years, the demand for finding the function PðdÞ
employed statistical learning theory, which is the focus of
this Letter. This strategy has been put forward by several
authors in materials science [14–18], as well as in bio- and
cheminformatics (see, e.g., Ref. [19] and references
therein). Most of these works employed the kernel ridge
regression (KRR) approach. For a Gaussian kernel, the
fitted property is expressed as a weighted sum of
Gaussians: PðdÞ ¼ P

N
i¼1 ci exp ð−∥di − d∥22=2σ2Þ, where

N is the number of training data points. The coefficients ci
are determined by minimizing

P
N
i¼1½PðdiÞ − Pi�2þ

λ
PN;N

i;j¼1 cicj exp ð−∥di − dj∥22=2σ2Þ, where ∥di − dj∥22 ¼PΩ
α¼1ðdi;α − dj;αÞ2 is the squared l2 norm of the difference

of descriptors of different materials, i.e., their “similarity.”
The regularization parameter λ and σ are chosen separately,
usually with the help of leave-some-out cross validation
[20], i.e., by leaving some of the calculated materials out in
the training process and testing how the predicted values for
them agree with the actually calculated ones.
In essentially all previous materials studies the possibly

multidimensional descriptor was introduced ad hoc, i.e.,
without demonstrating that it was the best (in some sense)
within a certain broad class (see Ref. [17] for an impressive
exception). In this Letter, we describe an approach for
finding descriptors for the accurate prediction of a given
property of a class of materials, where we restrict ourselves
to ab initio data.
For the example shown in Fig. 1, statistical learning is

unnecessary, because one can determine the classification
by visual inspection of the 2D plot. In this Letter, we add
the quantitative energy difference between ZB and RS to
the original Ph-vV challenge. In general, the descriptor will
be higher dimensional. Additionally, the scientific question
will be typically more complex than the structural classi-
fication. We define the conditions that a proper descriptor

must fulfill in order to be suitable for causal “learning” of
materials properties, and we demonstrate how the descrip-
tor with the lowest possible dimensionality can be iden-
tified. Specifically, we will use the least absolute shrinkage
and selection operator (LASSO) for feature selection [21].
All data shown in this study have been obtained with

density-functional theory using the local-density approxi-
mation (LDA) for the exchange-correlation interaction.
Calculations were performed using the all-electron full-
potential code FHI-aims [7] with highly accurate basis sets,
k meshes, and integration grids. For the task discussed in
this Letter, the quality of the exchange-correlation func-
tional is irrelevant. Nevertheless, we stress that the LDA
provides a good description of the studied materials. In
particular, we have computed equilibrium lattice constants
and total energies for all three considered lattices (ZB, WZ,
RS) of a set of 82 binary materials. The full list of these
materials and all calculated properties can be found in the
Supplemental Material [6], and all input and output files
can be downloaded from the NoMaD repository [22].
Furthermore, we calculated several properties of the iso-
lated neutral atoms and dimer molecules (see below).
Let us start with a simple example that demonstrates the

necessity of validation in the search for descriptors. The
nuclear numbers of a binary semiconductor AB, ZA and ZB,
unambiguously identify the lowest energy structure: They
define the many-body Hamiltonian, and its total energies
for the different structures give the stable and metastable
structures. Figure 2 (top) displays the total-energy
differences of the ZB and RS structures as function of
ZA and ZB. When using the KRR approach, the data can be
fitted well (see Supplemental Material [6]) when the whole
set is used for learning. However, the predictive power of
KRR based on the descriptor d ¼ ðZA; ZBÞ is bad, as tested
by leave-some-out cross validation (see Table I and
Supplemental Material [6]). Obviously, the relation
between d ¼ ðZA; ZBÞ and the property that we need to
learn is by far too complex.
For a descriptor, we consider the following properties to

be important, if not necessary.
(a) A descriptor di uniquely characterizes the material i as

well as property-relevant elementary processes.
(b) (b) Materials that are very different (similar) should be

characterized by very different (similar) descriptor
values.

(c) The determination of the descriptor must not involve
calculations as intensive as those needed for the
evaluation of the property to be predicted.

(d) The dimension Ω of the descriptor should be as low as
possible (for a certain accuracy request).

Although the Ph-vV descriptor d ¼ ðEh; CÞ fulfills con-
ditions (a), (b), and (d), it falls short on condition (c). In
contrast, d ¼ ðZA; ZBÞ fails for conditions (b) and (d).
In order to identify a good descriptor, we start with a

large number M of candidates (the “feature space”) for the

FIG. 1 (color online). Experimental ground-state structures of
68 octet binary compounds, arranged according to the two-
dimensional descriptor introduced by Phillips [2] and van
Vechten [1]. Because of visibility reasons, only 10 materials
are labeled for each structure. See the Supplemental Material for
more details [6].
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components of d. We then look for the Ω-dimensional
(Ω ¼ 1; 2;…) descriptor d that gives the best linear fit of
PðdÞ: PðdÞ ¼ dc, where c is the Ω-dimensional vector of
coefficients. It is determined by minimizing the loss
function ∥P − Dc∥22, where D is a matrix with each of
the N rows being the descriptor di for each training data

point, and P is the vector of the training values Pi. We
emphasize that the choice of a linear fitting function for
PðdÞ is not restrictive since, as we will show below,
nonlinearities are included in a controlled way in the
formation of the candidate components of d. The function
PðdÞ is then determined by only Ω parameters.
The task is now to find, among all the Ω-tuples of

candidate features, the Ω-tuple that yields the smallest
∥P − Dc∥22. Unfortunately, a computational solution for such
a problem is infeasible (NP-hard) [23]. LASSO [21] provides
sparse (i.e., low-dimensional) solutions by recasting the
NP-hard problem into a convex minimization problem

argmin
c∈RM

∥P − Dc∥22 þ λ∥c∥1; ð1Þ

where the use of the l1-norm (∥c∥1 ¼
P

M
α¼1 jcαj) is crucial.

The larger we choose λ > 0, the smaller the l1-norm of the
solution of Eq. (1) and vice versa. There is actually a smallest
λ̄ > 0, such that the solution of Eq. (1) is zero. If λ < λ̄, one or
more coordinates of c become nonzero.
We note that the so-called “feature selection” is a

widespread set of techniques that are used in statistical
analysis in different fields [24], and LASSO is one of them.
LASSO was successfully demonstrated in Ref. [17], for
identifying the low-dimensional representation of the for-
mation energy of an alloy, within the cluster expansion of
the Hamiltonian. Obviously, when a well-identified basis
set, such as the cluster expansion, is not available for the
property to be modeled, the feature space must be con-
structed differently. In this Letter, we start from scientific
insight, i.e., defining physically motivated primary features
that form the basis for a large feature space. We then search
for a low-dimensional descriptor that minimizes the RMSE,
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ∥P − Dc∥22

p
, for our N ¼ 82 binary

compounds. The property P that we aim to predict is
the difference in the LDA energies between RS and ZB for
the given atom pair AB, ΔEAB. The order of the two atoms
is such that element A has the smallest Mulliken electro-
negativity: EN ¼ −ðIPþ EAÞ=2. IP and EA are atomic
ionization potential and electron affinity.
For constructing the feature space, i.e., the candidate

components of the descriptor, and then selecting the most

FIG. 2 (color online). Calculated energy differences between
RS and ZB structures of the 82 octet binary AB materials,
arranged by using the nuclear numbers ðZA; ZBÞ as descriptor
(top) and according to our optimal two-dimensional descriptor
(bottom). In the bottom panel, seven ZB materials with predicted
ΔEAB > 0.5 eV are outside the shown window (see Supplemen-
tal Material [6]).

TABLE I. Root-mean-square error (RMSE) and maximum absolute error (MaxAE) in eV for the least-squares fit of all data (first two
lines) and for the test set in a leave-10%-out cross validation (L-10%-OCV), averaged over 150 random selections of the training set (last
two lines). The errors for ðZA; ZBÞ and ðrσ ; rπÞ [3] are for a KRR fit at hyperparameters ðλ; σÞ that minimize the RMSE for the L-10%-
OCV (see Supplemental Material [6]). The errors for the Ω ¼ 1; 2; 3; 5 (noted as 1D, 2D, 3D, 5D) descriptors are for the LASSO fit. In
the L-10%-OCV for the latter descriptors, the overall LASSO-based selection procedure of the descriptor (see text) is repeated at each
random selection of the test set.

Descriptor ZA; ZB rσ ; rπ 1D 2D 3D 5D

RMSE 2 × 10−4 0.07 0.14 0.10 0.08 0.06
MaxAE 8 × 10−4 0.25 0.32 0.32 0.24 0.20
RMSE, CV 0.19 0.09 0.14 0.11 0.08 0.07
MaxAE, CV 0.43 0.17 0.27 0.18 0.16 0.12
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relevant of them, we implemented an iterative approach. At
first we defined primary features. These are (for atom A):
IPðAÞ and EAðAÞ, HðAÞ, and LðAÞ, i.e., the energies of the
highest-occupied and lowest-unoccupied Kohn-Sham lev-
els, as well as rsðAÞ, rpðAÞ, and rdðAÞ, i.e., the radii where
the radial probability density of the valence s, p, and d
orbitals are maximal. The same was done for atom B. In
addition to these atomic data, we offered information on
AA, BB, and AB dimers, namely, their equilibrium distance,
binding energy, and HOMO-LUMO Kohn-Sham gap.
Altogether, these are 23 primary features.
Next, we define rules for linear and nonlinear combi-

nations of the primary features. One can easily generate a
huge number of candidate descriptors, e.g., all thinkable
but not violating basic physical rules. In the present study,
we used about 10 000 candidates grouped in subsets that
are used in the different iterations (see Supplemental
Material [6]). A more detailed discussion will be given
in Ref. [25]. In the language of KRR, this approach designs
a kernel, done here by using physical insight. Not surpris-
ingly, LASSO (and actually any other method) has diffi-
culties in selecting among highly correlated features [26].
In these cases, it is not ensured that the first Ω selected
features form the best Ω-dimensional descriptor. Although
checking correlations between pairs is straightforward and
computationally reasonably inexpensive, discovering cor-
relations between triples and more-tuples is computation-
ally prohibitive. Therefore, we adopted a different strategy:
The first 25–30 features proposed by LASSO were selected
and a batch of least-squares fits performed [when the
descriptor is fixed, i.e., the nonzero components of c are
fixed, Eq. (1) reduces to a linear, least-squares, fit], taking
in turn as D each single feature, each pair, etc. We
confirmed that this strategy always finds the best descriptor
by running the mentioned extensive search for several
different subsets of hundreds of features.
Our procedure identifies as best (i.e., lowest RMSE) 1D,

2D, and 3D descriptors, the first, the first two, and all three
of the following features:

IPðBÞ−EAðBÞ
rpðAÞ2

;
jrsðAÞ− rpðBÞj
exp½rsðAÞ�

;
jrpðBÞ− rsðBÞj
exp½rdðAÞ�

:

ð2Þ

Note that, mathematically, the descriptor does not
necessarily need to build up incrementally in this way;
e.g., the 1D one may not be a component of the 2D one.
However, in our study, it does. The RMSE and MaxAE for
the 1D, 2D, 3D descriptors are reported in Table I. By
adding further dimensions to the descriptor, the decrease of
the RMSE becomes smaller and smaller.
We tested the robustness of our descriptor by performing

a leave-10%-out cross validation (L-10%-OCV). Thereby,
the overall procedure of selecting the descriptor is repeated
from scratch on a learning set obtained by randomly

selecting 90% of the materials. The resulting fitted linear
model is applied to the excluded materials and the
prediction errors on this set, averaged over 150 random
selections, are recorded. The results are shown in Table I.
Not only the RMSE, but also the selection of the descriptor,
proved very stable. In fact, the 2D descriptor was selected
100% of the times, while the 1D descriptor was the same in
90% of the cases.
The errors for the 2D descriptor introduced by Zunger

(Refs. [3,5] and Supplemental Material [6]), based on sums
and absolute differences of rs ’s and rp’s, are also reported
in Table I. The cross-validation error of the linear fit with
our 2D descriptor is as small as the highly nonlinear KRR
fit with Zunger’s 2D descriptor. However, our descriptor
bears the advantage that it was derived from a broad class of
options by a well-defined procedure, providing a basis for a
systematic improvement (with increasing Ω). Our LASSO-
derived descriptor contains physically meaningful quan-
tities, like the band gap of B in the numerator of the first
component and the size mismatch between valence s and p
orbitals (numerators of the second and third component).
We note that the components of the descriptors are not
symmetric with respect to exchange between A and B.
Symmetric features were included in the feature space, but
never emerged as prominent, and, for the selected descrip-
tors, symmetrized versions were explicitly constructed,
tested, and systematically found to perform worse. This
reflects that the symmetry was explicitly broken in the
construction of the test set, as the order AB in the
compound is such that ENðAÞ < ENðBÞ. Furthermore,
we find that d orbitals appear only in the third or higher
dimension. In Fig. 2 (bottom) we show the calculated and
predicted ΔEAB, according to our best 2D descriptor. It is
evident that our 2D descriptor fulfills all above noted
conditions, where conditions (a), (c), and (d) are in fact
ensured by construction.
In order to further test the robustness and the physical

meaningfulness of the identified descriptor, we performed
tests by perturbing the value of the property ΔEAB by
adding uniform noise in the interval ½−0.1; 0.1� eV. The 2D
descriptor of Eq. (2) was identified 93% of the times, with
an increase of the RMSE by 10% only. More details are
reported in Ref. [25]. This test shows that the model allows
for some uncertainty in the measured property. Larger noise
terms, however, destroy the reliable identification of the
descriptor (see Ref. [25]). This analysis implies that the
descriptor identified by LASSO contains the important
physically meaningful ingredients for the prediction of
ΔEAB, even though a physical model that justifies the PðdÞ
mapping is not transparent.
Finally, we comment on the causality of the learned

descriptor-property relationship. The simplicity of our
model is in sharp contrast with what is yielded by, for
instance, KRR, where as many fit parameters as observed
points are, in principle, necessary. As an indication of
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having identified a causal (physically meaningful) descrip-
tor for the property ΔEAB, we use the stability of the
selection of the descriptor upon both L-10%-OCV and
perturbation of the values of the property, under the
condition that the PðdÞ dependence has a small number
of fit parameters and a simple functional form [see Eq. (2)
and Supplemental Material [6]).
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