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Preface

Už je to tady - už je to tady,

jsem jako drak!

Nechytit se rychle stolu

ulétnu do oblak!

Jan Haubert

This habilitation thesis is the commented collection of 14 of my papers published in the period

from 1998 to 2012. Ten of them are authored only by myself, the rest was created in collaboration

with various co-authors. Where considered appropriate, I mention specifically the part of the joint

work I am responsible for.

The common denominator of all the presented works is the concept of complexity, in its various

manifestations. Although not new, the word complexity continues to carry a sensational flavour,

at least for general audience. This atmosphere helps selling the results and getting funds for con-

tinued research but simultaneously burdens the researcher by false expectations and mass media

confusions. Nonetheless, I consider the science of complexity one of most topical fields of science

now. Let me briefly sketch its general relevance by mentioning its roots and ramifications.

Very often the discussions on complexity begin and eventually end at the definition of the

very notion of “complexity”. There are good reasons to avoid these terminological battles as they

rarely produce any progress in understanding real phenomena. Yet I wish to mention at least one

formulation, due to Giorgio Parisi [1]: “A system is complex if its behaviour crucially depends on

the details of the system.”

Indeed, the way in which various theories treat the details of the system in question may be

their distinctive feature. After the 17th century breakthroughs the analytical mechanics assumed

its more or less definitive form a century later. At that time it was constantly repeated that having

infinite (God-like) intellectual capacities implies predicting, with infinite accuracy, the behaviour

of the Universe to its tiniest parts. The epistemological optimism of the era of Enlightenment took

it for granted that we can approach that ideal infinitely, much like an infinite series approaches its

limit.

However, the realm of Infinity showed to be much less domesticated than the 18th century

scientific giants ever thought. Bolzano, Cantor, Russel and their followers released the dragons of

the mathematic set theory, which the general public is perhaps less prepared to assimilate than the

wonders of the general relativity. The stories of J. L. Borges (El Aleph, Funes el memorioso, etc.)

try to get feeling of the abyss: “The Aleph’s diameter was probably little more than an inch, but all

space was there, actual and undiminished. (...) I saw the Aleph from every point and angle, and in
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the Aleph I saw the earth and in the earth the Aleph and in the Aleph the earth; I saw my own face

and my own bowels; I saw your face; and I felt dizzy and wept, for my eyes had seen that secret

and conjectured object whose name is common to all men but which no man has looked upon –

the unimaginable universe. I felt infinite wonder, infinite pity.” The foundations of the optimistic

world-view were irreparably shattered, but the shock was yet to be felt within physics.

Indeed, a classic says: “more is different” [2], and dealing with infinity of particles or infinity

of time or infinite requirements as to precision represents a qualitative jump with respect to the

physics of small assemblies of bodies the classical mechanics was initially designed for. Even

worse, all everyday objects we have to live with (including our bodies) are composed of very large

number of particles; and “very large” may be much more difficult than “infinite” as it implies we

must investigate not only the infinity itself but infinity of ways the infinity is reached. That is the

thermodynamic limit, if taken properly. Let us look at some of the beasts infinity set free, to make

the life of a scientist more adventurous.

The gradualist idea of completing the picture of the world by adding the details of the system

one by one, as Euler did with his perturbation treatment of the Solar system, was burned instantly

by the first rays of rising deterministic chaos in the works of H. Poincaré. If anything could be

called a paradigm shift after the Galileo’s relativity principle, surely it is the idea of deterministic

chaos. From now on all minuscule details in the initial conditions were equally important, every

indiscernible perturbation equally disastrous. Any effort to approach the truth about trajectories

by pouring more precision into the formula is nothing more than a child’s occupation: pouring the

water out of the Ocean with a shell in hand.

Now, how do we renounce the precise predictions of bodies’ movements and retain scientific

rigour of our discourse? The answer lies in the use of the language of chance. Indeed, we cannot

predict the location of a tagged molecule in a gas container, but still we can predict at which

temperature the gas starts condensing, within a prescribed expectancy range. We made virtue out

of necessity, introducing probabilistic approaches of statistical mechanics. Treating the physical

systems as ensembles of particles’ collections, differing by small details, we loose the possibility to

predict the detailed evolution of each member of the ensemble, but gain the insight into the generic

features of the system behaviour. Indeed, it would be foolish to attribute the same relevance to

the question about the position of a single molecule and the question whether the system is liquid

or solid. Too much knowledge obscures understanding; therefore the gains from the statistical

approach were much larger than the apparent losses.

Statistical mechanics was indeed extremely successful branch of physics since its establishment

by Maxwell, Boltzmann and Gibbs at the end of the 19th century. Once again, it seemed that

a machinery to predict every substance’s phase diagram is at hand. Such prediction, however,

showed completely illusory when the attention turned to living beings.

New experimental techniques and advances in handling extremely large amounts of data made

it possible to investigate in detail the tiny building blocks of life: proteins, nucleic acids, cytoskele-

tons etc. As every single protein molecule is significant for the cell structure, there may not be sta-

tistical mechanics of cell proteins. Every single detail of the protein makeup and placement makes

huge difference. We are facing similar difficulty as with the deterministic chaos: any minuscule

change in the Hamiltonian of a given system results in tremendous consequences. Adding a single

extra particle into an information molecule changes the message completely. Here we come to a

situation which is typical to what is commonly called complexity.
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Yet it is not something new nor unexpected. Adding a single neutron to an atomic nucleus

makes a big difference in the spectrum of nuclear energy levels. To calculate precisely the energy

levels of an iron nucleus starting from the Standard model of particle physics is a daunting task.

But even if someone succeeds, using the biggest supercomputers, and lists a very long collection

of numbers, what could we learn from that result? Does it bear any significance that the 154th

level assumes this or that value? Stated differently, we could possess an answer but still lack the

question.

The science of complexity provides a clue: while we do not underestimate the detailed and

precise treatment of a system, with all details included, we look for generic features of our systems,

using again the language of probability. Thus, the study of complexity does not yield predictions

about the outcome of each realisation of the complex system, but shows, which features are to be

expected, decides, what is common to all proteins and what is a specific feature of the one we are

studying just now.

For example, complexity studies may tell us, what is the generic distribution of level spacings

within any nucleus, be it vanadium or nickel, while precise placement of the levels may remain

unknown. The science of complexity may reveal, how long a protein must be, in order to be

useful as an enzyme, but specific function of a specific protein still needs to be determined. The

“conventional” physics should go hand in hand with physics of complexity. The former calculating

conductivity or infrared spectra of a substance, the latter saying what is trivial, what is typical and

what is surprising. The former providing useful knowledge, the latter understanding.

While perceived as something (relatively) new, complexity science relies on many quite old

achievements, assembling them into a systematic framework. Therefore, I do not think complexity

marks any kind of revolution in physics; rather, it is like a growing plant, which suddenly develops

a blossom. It might be stunning for a visitor, but not for a gardener who has watched day after day

the preparations.

Still I do believe there is an immense resource of good, hard and exciting problems in the realm

of the complex. As a teacher, I am trying my best to bring the students’ attention to it. An example:

who would not like to understand life? Studying artificial life is one of the promising tracks. But

where to go, if neither the direction nor the thing itself is known? The word “life” seems to make

so much confusion that its meaning draws to naught. “Go there, I do not know where, find that, I

do not know what.” This is the typical situation a complexity scientist faces: the question itself is

to be established in the course of the research. But, quoting again Parisi [1]: “I am convinced that

in the next century a much more deep understanding of life will come from this approach.” I invite

you to share his optimism. A. M. D. G.

Prague, October 2013 František Slanina
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Chapter 1

Commentary

1.1 Introduction: Non-equilibrium and complexity

There is a broad variety of complex systems studied in physics in the last couple of decades. Sec-

ond order phase transitions belong perhaps to the oldest ones. Still today, the critical phenomena

related to second order transitions are textbook examples of a complex behaviour. Opening a

textbook again, we find the classical phase diagram of water, with the line of liquid/vapour equi-

librium ending in a mysterious point. Measuring optical properties close to it we discover critical

opalescence, one of the handful of phenomena which lead Einstein to his breakthroughs.

Now, what is complex about the critical opalescence? To make it short, it is the absence of a

typical length scale. There are always some thermal fluctuations around (provided atoms of finite

size exist, which is what Einstein showed). The characteristic size of the fluctuations is measured

by the correlation length ξ. Close to the critical point the correlation length diverges as a (negative)

power of the distance from the critical point. The power is a special function with respect to the

change of the units of measurement: if we change the scale, the functional form does not change.

The opposite is also true: if a function is scale-invariant, it must be a power.

Important thing about the critical point is that not only the correlation length diverges as a

power, but also the correlation function itself behaves as a power, and many other quantities,

including thermal capacity and susceptibility, have power-law singularities. This fact marks an

important observation: at the critical point the system is scale-free, i.e. it is invariant with respect

to change of the units of measurement.

Concentrating on a single typical scale of length, time, or energy is a widespread approach

in physics. We neglect gravity when dealing with semiconductors and we forget quarks in civil

engineering. There is a deep reason for it: nature does separate phenomena in different energy

bins and we rarely need to jump from one bin to another. Things are changing, however, in recent

years, with systematic use of multiple-scale modelling. For example, somebody may use ab-

initio quantum-mechanical calculations for atoms adsorbed on a surface and pass the resulting

energy barriers to somebody else, who makes Monte Carlo simulations of diffusion of many such

atoms. Or, in a unified study of crack propagation the microscopic core of the crack is treated

quantum-mechanically, the surrounding cluster by molecular dynamics and the rest of the body by

conventional elasticity theory.

These powerful methods mark a significant progress, but still they are rather like conglomer-

ates of heterogeneous approaches glued together by ingeniously designed interfaces. Going back

9
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to critical phenomena, we face a more serious problem of being able to cover all length scales by

unique approach. To be sure, we cannot investigate all features of the system at once; reductionist

paradigm is still in force, but it is applied along different axis. We do not proceed from a “fun-

damental scale” microscopic level and build our theories upon them. This would be a bottom-up

advance, selecting a smaller scale as more basic and larger scales as derived ones. Instead, we

should select “fundamental fluctuations”, spanning all length scales. All other fluctuations are

projected out or taken into account as corrections. The problem with this approach is, that there

is no a priori criterion as to what are the fundamental fluctuations, while the fundamental scale is

obvious: the smaller, the more basic it is, at least according to the reductionist orthodoxy.

To overcome this problem, renormalisation group theory [3, 4] was developed since early

1970s. The RG machinery selects automatically the proper fluctuations which contribute to the

critical behaviour. The RG operation defines a flow in the space of Hamiltonians and the investi-

gation of critical behaviour is reduced to the study of the properties of the fixed points of the flow.

The first reduction comes from the linearisation of the flow around fixed points. This screens out

fluctuations which are relevant only far off the critical point. Moreover, unstable and stable direc-

tions define relevant and irrelevant parameters in the Hamiltonian. This way, the flow is effectively

reduced to a few-dimensional problem.

As there are many more irrelevant than relevant parameters, many systems with different

Hamiltonians must share the same flow diagram. This fact implies natural grouping of physi-

cal systems into universality classes characterised by unique values of critical exponents. People

are dreaming about full classification of all possible universality classes; however, a major break-

through would be indispensable to achieve that, and besides the two-dimensional case, where the

conformal field theory provides nearly full information, it is beyond the capacities of current the-

oretical tools. I used the renormalisation-group techniques once, when investigating the effect of

impurities on a growing surface [5].

It became a common wisdom to attribute scale-free properties to fractals and vice versa. Algo-

rithmic creation of fractals via recursive formulae is a straightforward tool. It is doubtful, though,

that nature uses the same tools in making so abundant fractals around us. One possible excep-

tion are the plant shapes, like the fern leaves. In this case, the Lindenmayer L-systems based on

recursive automata may be biologically plausible [6].

In most cases, other mechanisms are involved. One of them was already hinted in the above

discussion of critical phenomena. Indeed, the power-law behaviour at the critical point is the

manifestation of emergent fractality, which can be verified by analysing the shape of domains in

spin systems on lattices or connected components in bond percolation.

Another bunch of mechanisms is related to the dynamics and non-equilibrium nature of many

physical systems. Take for example the bushy aggregates many people admire in showcases at

mineralogy departments. Usually they are deposited from hot and very dilute solutions of various

minerals. We may idealise the situation as the movement of sticky Brownian particles, which are

released one by one from a large distance. We start with one such particle already stuck at one

point and let the newcomer particle walk until it sticks to one of the already immobilised parti-

cles. Important point is that the new particle is injected only after the preceding one sticks. This

corresponds to the limit of negligible concentration and infinitely strong inter-particle bonding,

preventing any diffusion within the aggregate. The model we just described is called the diffusion

limited aggregation (DLA) and for many years it was the paradigmatic model of fractal growth [7].
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Another model, introduced in 1986, deals also with particles attaching on a surface. More

specifically, it describes a surface growing by the molecular-beam epitaxy. Particles are sent from

above onto a plane substrate and attach when they hit the already deposited layer. Diffusion over

the surface is prohibited. On a very large scale, the discreteness of the atomic structure of the ma-

terial can be neglected and the deposition process is described by time evolution of a real function

of a continuous coordinate. The prominent model of this process is described by the Kardar-Parisi

Zhang (KPZ) equation [8], perhaps the most studied stochastic non-linear partial differential equa-

tion. The surface grown in this way has fractal properties with non-trivial scaling exponents. The

model is exactly solvable in 1 spatial dimension, using replica Bethe-ansatz method [9]. There is

also ingenious dynamical renormalisation group treatment, which gives exact values of the critical

exponents in 1 dimension [10].

Even broader and largely unexplored is the area of lattice models. It is believed (and confirmed

by ample numerical evidence) that restricted solid-on-solid growth model, where particles of finite

size are attached on the surface, while the slope of the surface is restricted to fixed bound, belongs

to the KPZ universality class. In fact, exact solution of this discrete problem was found in 1

dimension, again using Bethe ansatz, which gives the same set of exponents as continuous KPZ

[11].

It is believed that many more very different models belong to the KPZ universality class. In-

deed, the range of various problems related to this simple equation is astonishing. Remaining

within continuous space description, besides the surface growth it was proved that KPZ equa-

tion can be exactly mapped to the problem of directed polymers in random media [12] and to a

simplified model of turbulence, described by Burgers equation. I contributed to this field by the

papers [5, 13, 14] which analyse the effect of impurities on the growing surface and the growth of

a two-component material.

The scale-free nature is palpable in visible spatial structures such as fractal aggregates. There

is a much more subtle way the complexity is generated, which is at work in strongly frustrated

spin systems, like spin glasses. In reality, they are diluted alloys of a magnetic substance in a non-

magnetic metal. The paradigmatic model of a spin glass introduced by Edwards and Anderson

in 1975 remains as a kind of a mystery up to the present time [15]. There is a beautiful and

comprehensive solution of its mean-field variant, called the Sherrington-Kirkpatrick model [16],

which was obtained by Parisi in early 1980s [17]. The peculiar beauty of this solution consists

in the structure of pure states in the spin-glass phase. To assess the novelty, let us compare the

situation with textbook examples. The low-temperature phase of the Ising model has just two pure

states related by the global reflection symmetry. The pure states of the classical Heisenberg model

form a sphere, therefore the set of pure states can be mapped on a Lie group coinciding with the

group of global rotational symmetries of the Hamiltonian.

On the contrary, it was found that spin glasses exhibit multitude of pure states which are not

related by any symmetry, yet they are not random, but organised in a very peculiar hierarchical

manner. Introducing overlaps between states as a measure of distance, it was shown that the set of

pure states is an ultrametric space. This fact provides, among others, a straightforward explanation

of extremely slow relaxation processes and ageing observed in spin glasses experimentally. The

“fractality” of spin glasses is not manifest in their external appearance, neither in a spatial geom-

etry. It is rather a property of the state space, which assumes a “scale-free” or “fractal” feature

due to the ultrametric structure of pure states. Moreover, unlike the usual magnetic systems show-

ing critical behaviour close to a unique critical point, spin glasses are, in a certain well-defined
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sense, explanation of which we skip here, critical at all temperatures and magnetic fields beyond

the so-called de Almeida-Thouless line.

It was realised very soon that the physics of spin glasses and the nature of Parisi’s solution

reveals connectedness of many seemingly unrelated subjects, like models of neural networks [18],

combinatorial optimisation [19], simulated annealing methods [20], directed polymers (already

mentioned in the context of the KPZ equation, [12]), error-correcting codes [21], and, indeed,

the theory of structural glasses, namely the so-called colloid glasses [22, 23]. The hierarchical

classification of species in biology was also interpreted as a manifestation of the same combination

of frustration and disorder, that is responsible for the complexity of spin glasses [24]. In short, spin

glasses became one of the typical examples of complex systems in general. I contributed to this

field by articles [25–28] dealing with learning in neural networks, finite-size effects in spin glasses,

and non-perturbative effects in directed polymers.

At the end of 1980s there were a handful of well-defined models with non-trivial critical be-

haviour. These might have been considered as prototypes of fractal generators. However, quite

soon the area was thrown into a state of much confusion by a burst of new, unexpected, and puz-

zling models. The event was marked by the appearance of the concept of self-organised criticality

(SOC) which emerged in the works of Per Bak and others [29]. The basic mechanism was built

upon a dynamical process in an open dissipative system, where the attractor of the dynamics is

a state manifesting certain crucial features of (static) critical states. The most important of them

is the power-law decay of correlation functions and power-law distribution of “events” (what an

event is, depends on the specific model in question) described mainly as “avalanches”.

The first and pedagogically most appealing is the sandpile model: grains of sand are dropped

one by one onto a two-dimensional table, until a heap is built and if a threshold slope is reached,

a toppling occurs, distributing the excess grains onto neighbours. The neighbours may in turn

surpass the threshold as well, topple, send some grains to their neighbours and the process may

continue until a new equilibrium is reached. The origin of the concept of avalanche is then evident.

Important feature and indeed a (once thought infallible) fingerprint of self-organised critical state

is the power-law probability distribution for avalanche sizes.

The idea seemed so brilliant that many people hoped a kind of a “Theory of everything” is

imminent, spanning virtually all fields of human curiosity, from pulsars to solar eruptions to global

terrestrial geology to biological evolution to brain function and social movements [30]. Indeed,

there was a hope to grasp all emergent fractals (and power laws) in nature within a single frame-

work. The most important and repeatedly stressed feature is that the critical state emerges naturally

without any fine-tuning of any state parameters, like temperature or density. To put the things in

a right perspective, it became clear quite soon that SOC cannot constitute any universal theory

for the appearance of fractals. The years that separate us from Per Bak’s promises to finally un-

derstand “How nature works”, taught us that SOC is a useful concept in specific phenomena, like

domain-wall movement, but covers only a narrow segment of nature’s works. Nevertheless, it is

still fruitful to look at some self-organised critical models.

Let us make a few general remarks concerning the theory of SOC as a whole. More thorough

investigations showed that the idea of no tunable parameters in SOC is only partially true. It was

established that the tunable quantity is the order parameter itself, being tuned to value zero by

the definition of the model dynamics. It is therefore clear that nothing else than critical point

can emerge as an attractor. Stated differently, the self-organisation towards the critical state arises

from infinitely slow driving. From this perspective, the older representatives of growing fractals,
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namely diffusion-limited aggregation and the KPZ equation, are the early examples of what was

later named self-organised criticality.

On the other hand, slow driving can be also understood as infinitesimal concentration of ele-

mentary excitations created by thermal noise. This marks the connection of SOC to a very rich field

of zero-temperature physics. Indeed, one-dimensional dynamical Ising model at T = 0 exhibits

power-law distributed avalanches and may be considered as the simplest model of SOC.

Perhaps the richest and practically most relevant example of a zero-temperature system is a

granular medium, i.e. an assembly of a large number of small but macroscopic beads interacting

by contact forces. Despite much effort in the last two decades many fundamental questions remain

unsolved. Let us mention only one of them. It is well known that the most dense packing of spheres

is achieved by one of the (infinity of) equivalent fcc/hcp packings. This was conjectured first by

Kepler in his treatise De nive sexangula (1611) and included as 18th item to the Hilbert’s list of

problems. Full mathematical proof was completed in 1998 by T. Hales and S. P. Ferguson with

a heavy use of computers. On the other hand, dense random packings have densities distributed

consistently around certain value which is well below the fcc/hcp value. Does it mean there is

certain “ideal random packing” with specific density and geometry? Most probably the techniques

necessary to answer this question still await for their discovery.

The phenomenon called self-organised criticality can be viewed from yet another perspective,

as related to absorbing-state phase transitions. Indeed, in an open system the dynamics can alter

not only the configuration but also the control parameter, such as the particle density, until an ab-

sorbing state is reached and everything stops. Then, addition of a single particle excites the system

and simultaneously increases the control parameter. The dynamics continues until an absorbing

state is reached again. Therefore, the control parameter is tuned to the critical value separating the

absorbing phase from the phase in which the dynamics lasts forever. By such a recipe, any system

with absorbing-state phase transition can be turned into a SOC model. My own contribution to

the field of SOC consists of papers [Slanina99], [Slanina99a], [Slanina02], and [SlaKot00], which

make part of this thesis and will be discussed later.

Among various ramifications of SOC, there is one which brings us further to new themes. There

is a puzzling phenomenon in biological evolution called punctuated equilibrium, first noticed by J.

S. Gould in 1972 [31]. The point is that evolution of species does not proceed gradually, as Darwin

originally supposed, but exhibits alternation of very slow and very rapid phases. In fossil record

it looks like quasi-instantaneous extinctions of entire ecosystems and equally fast bursts of new

species. The dinosaurs’ extinction 65 millions years (not very long!) ago is just the best known

of these events. The discussions on the causes of this mass extinction continue and perhaps will

continue further. On the other hand lots of similar extinction events are documented in the fossil

record and the statistics of their sizes obeys relatively well a power law [32]. So, the SOC was

called on for help and soon a model emerged, now known as the Bak-Sneppen model of biological

evolution [33]. Unfortunately, the model, while qualitatively right, failed to reproduce quantita-

tively the exponent in the power law, despite several modifications and efforts for improvement.

It was found that the problem lies in the over-simplified treatment of the network of relations be-

tween species. The Bak-Sneppen model and its variants considered static network with linear or

hypercubic geometry, or fully connected networks. Using a network with evolves in parallel to the

evolution of species improves greatly the thing. My contribution to this field is contained in the

paper [SlaKot00] (to be discussed later) and papers [34] and [35].
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This brings us to another big theme which makes part of the current studies in complex systems.

It is the theory of complex networks. We have just mentioned the complexity of the ecological net-

works representing the relationships between species in an ecosystem. This is just a single example

of the vast area which covers as much physics as biology, engineering, economy and sociology.

As a mathematical discipline, it belongs to the graph theory. Already in 1950s Hungarian math-

ematicians Pál Erdős and Alfred Rényi developed the theory of random graphs [36] which serves

as a basis and a starting point for all studies in complex networks up to now [37]. In parallel

to the mathematical studies there were investigations on a purely empirical basis. The notion of

“six degrees of separation” was coined by Milgram, as a result of his study in which letters had

to be delivered to predefined destination through a chain of personal acquaintances [38]. It was

found that the average length of such chains was about 6, hence the conclusion that arbitrarily

chosen inhabitants of the USA are separated by about six steps of personal relationships. This is

very few compared with the number of people and vast geographical areas covered. Such appar-

ent paradox was then called the small-world effect. It took some time before this phenomenon

started to be taken seriously within a mathematical model introduced by Watts and Strogatz [39].

By that time, the boom of social network studies already started. Perhaps the best known pioneer

is A.-L. Barabási, who contributed by groundbreaking empirical studies on the network structure

of the WWW [40]. The most striking finding was the power-law distribution of degrees in the

WWW network. Barabási himself, with his student R. Albert, devised a model, now called the

Barabási-Albert (BA) model, which beautifully explained the power law on a basis of the prefer-

ential attachment principle: vertices in the network receive new edges with probability growing

linearly with the degree of the vertex. Therefore, the degrees evolve according to a kind of a

multiplicative-additive process, which is a well-known and rather trivial generator of power-law

distributions [41]. As such, the WWW is an empirical example of a complex system endowed with

power-law distribution of its characteristics, but with no connection to critical phenomena. Let us

recall that the apparent absence of parameter tuning in SOC was unveiled to be a slow self-tuning

to a critical point. In the BA model, any reference to criticality is gone.

The complexity in network structure demonstrated by power-law distributions was, on one

hand, discovered in many other real systems; on the other hand, it was found that it has numerous

consequences for systems which are placed on such a networks [42–45]. For example, the percola-

tion threshold is absent, therefore the networks are in principle very robust with respect to failure.

On the other hand, there are other weak points, for example virus spreading on such networks is

extremely fast.

Let us mention just one purely physical system in which complex networks are relevant. We

have already said that granular materials are examples of zero-temperature physics, in which the

complexity arises due to absence of thermal (and quantum) fluctuations. Here we note another

feature. If we put a granular medium under pressure, stress is not distributed smoothly as in an

elastic continuum or regular lattice of elastic elements. The irregularity of random packing leads

to the appearance of force chains, i.e. networks of contacts between the beads which carry most

of the load. Majority of the material is rather loose or does nor bear any load at all. These force

chains can be easily visualised by polarised light and they are vital for mechanical properties of

sands and powders. Moreover, they make the transmission of sound through granular medium

rather unusual [46]. For example, there may be localised vibrational modes in the medium, which

is a phenomenon which resembles Anderson localisation of electrons in disordered metals [47].
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However, due to the complex network structure, this effect poses many more difficulties. This area

is still largely open.

However, this topic has direct interdisciplinary ramifications. In fact, one of the most studied

problems in the theory of complex networks consists in partitioning the networks into clusters so

that connections between clusters are rare, while connections within clusters are dense. As we

notice, such a definition is very vague and hardly can serve as a firm basis for a computation.

The complexity of the problem consists in the fact that both the formulation of the task and its

mathematical solution is to be found. As a result, many different approaches to network clustering

appeared [48]. One of the methods is based on spectral properties of the adjacency matrix en-

coding the structure of the network. Relevant eigenvectors are either located at the extreme edges

of the spectrum (largest and second largest eigenvalues) or they are identified as localised states

(inverse participation ratio being the quantitative measure of localisation). Here we recover the

connection to the sound propagation along force chains in granular medium. I contributed to this

field by the articles [SlaKon10], [Slanina11], and [Slanina12] which make part of this thesis and

will be discussed later. Besides that, I also participated in a project which studied dynamical topo-

logical phase transitions in complex networks [49, 50] and in a few other investigations concerning

complex networks [51–53].

Among all sciences, physics is unique in its perpetual and recurrent attempts to constitute a

“Theory of everything”. Indeed, if physics is to be a coherent aggregate of knowledge, it must

comprise all physical existence, not just selected pieces of it. It comes as a kind of paradox that

the current “theories of everything”, like the string theory, are the most special, rather than uni-

versal, disciplines and instead of providing a firm basis for further deductions, their own empirical

justification is still awaited. This does not mean these theories are less relevant. They are just

too difficult, as everybody knows. We leave aside the philosophical considerations on the chances

that human brain ever penetrates all the tangled mathematical schemes. Instead, we try to explore

other ways physics may help to unite separate sciences into a more compact whole. Indeed, how-

ever exaggerated it may seem, physics does constitute the explanation of all chemistry and large

part of biology, as a classic said [54]. But if physics successfully describes complex behaviour

of single proteins [55], why not extend the description to protein complexes, cells, bacteria, green

hydra, ants, apes, humans? Where is the limit to stop? Speculations do not help. A scientist must

raise a hypothesis and then make an experiment and see. A large part of complexity studies and

about a half of this thesis is devoted to the attempts to transfer physical tools, ideas and models

to areas classically covered by social sciences. This is the aim of the discipline now called socio-

physics. (See [56] for a personal testimony of S. Galam, one of the founders of sociophysics.) To

make our cause stronger, let us make first a very brief historical overview, without claims of being

systematic.

There is an often forgotten event that played a decisive role in the transfer of the ideas and

language of physics into other branches of human knowledge. A conference was scheduled to take

place in Moscow from 1 to 5 July 1974. Scientists both from the West and from the USSR were

invited to discuss implications of physics in other fields, including social sciences and humanities.

The organising committee included people like Kenneth Arrow, a Nobel laureate in economics,

and Hans Bethe, a Nobel laureate in physics. However, the communist leaders found the subject

of the meeting incompatible with the ruling ideology. The conference was banned, most of the

Russian participants were arrested and a majority of them eventually left USSR, mainly to Israel.

But many drafts scheduled for the conference talks were successfully smuggled from the USSR
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to the West, and eventually were published in a proceedings volume [57]. A tiny portion of it

appeared in [58].

But the history of interdisciplinary physics did not start with the Moscow non-event. Just

before his mysterious disappearance, Ettore Majorana wrote a paper on consequences of quantum

mechanics for the studies of human society [59]. Certainly we could find more physicists who

shared similar views. But let us go further into history. There were always people who thought

that social phenomena can be described as completely as physical ones if only we knew the right set

of laws and we were smart enough to do the calculations involved. Auguste Comte [60, 61] was the

first prophet of this belief, in the early 19th century. Comte coined the term “social physics” as an

explicit reference to the success of the Newtonian mechanics. Though Comte himself abandoned

the term social physics, it was called to life again by his successors, most notably Adolphe Quételet

[62], and it has survived in various disguises up to the present time.

There were other pioneers of the use of physics in social phenomena, but let us only mention

the south-Bohemian nobleman Georg Graf von Buquoy, the Count of Nové Hrady [63, 64], and the

swiss-italian engineer Vilfredo Pareto [65]. These attempts were not quite successful. Of course,

the Pareto law does describe the distribution of wealth in society, but any presumed connection

to physics was illusory. In the second half of the 20th century the situation started to change.

One of the inspiration for Mandelbrot’s fractal geometry was his study of cotton price fluctuations

[66]. It was found that the price fluctuations are not Gaussian, i.e. the price does nor follow a

random walk. Instead, Mandelbrot suggested that Lévy walks might be appropriate. They are char-

acterised by power-law tails in the distribution of displacements and this is just what Mandelbrot

observed empirically. In 1991, the journal Physica A published a paper [67] by R. N. Mantegna,

who applied the Lévy walks to the fluctuations of prices at Milan stock exchange. Nowadays, this

event is considered to mark the birth of a new discipline called econophysics. Meanwhile, the

study of economy in a wider context of the theory of complex systems was promoted at the Santa

Fe Institute. Among the leading personalities we find people like P. W. Anderson and D. Pines

[68]. Since the beginning of the 1990s, the use of physics in economics started to be taken very

seriously. Among the physical concepts which found a fertile ground in economics we name for

example scaling, universality, percolation, turbulence, spin glasses, reaction-diffusion processes,

random matrix theory, and we could mention many more [69–71]. Note also that the ideas of

self-organised criticality [72] and complex networks [73] find their use in econophysics, thus con-

necting the fields we are discussing here. In some sense, econophysics should be considered as a

part of sociophysics, because economy is only a narrow segment of the social life. But we have

no intention to argue on names, so let us leave econophysics and sociophysics separate. I con-

tributed to both sociophysics and econophysics by a certain number of papers (there is no need

of listing them all here). Among them, I chose for this thesis the papers [Slanina01], [SlaLav03],

[SlaSznPrz08], and [Slanina11a] as representatives of my results in sociophysics and [Slanina04],

[Slanina01a], and [Slanina08] as representatives concerning econophysics. Besides these papers

I would dare to mention also my chapter “Social Processes, Physical Models of” in the Springer

Encyclopedia of Complexity and Systems Science [74], and the chapter on the minority game in

the book Oder, disorder, and criticality, vol. 3 [75]. A book of mine, entitled “Essentials of Econo-

physics Modelling” is now being processed with the publisher and should appear in a few months

[71].

The field of the science of complexity is very vast and the topics covered by my own work

are by no means representative for the whole discipline. Nevertheless I believe the reader can
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understand that complexity studies are not a marginal segment of physics, but it is, quite the con-

trary, an important development of the physics of many-particle and/or non-equilibrium systems.

1.2 Overview of the problems solved

My own work contained in this thesis is divided into four sets. Thematically, there are a few

overlaps between them. The first set contains three papers devoted to the study of self-organised

criticality and investigates strongly non-linear mechanical systems. As temperature plays no role,

they can also be classified as zero-temperature physics. The second set contains four papers related

to the theory of complex networks. At the same time, the first one of the four takes inspiration from

SOC and therefore makes a bridge between the first and second set. The third set contains four

papers which use physical models to describe social phenomena, i.e. they belong to the field

of sociophysics. In fact, already the second paper of the second set was inspired by sociophysical

problems, meaning that there is a link between the second and third set too. The fourth set contains

three papers belonging to the field of econophysics. As economy is just a part of a social life, these

three papers may be considered as a special focus within the sociophysics field and in particular a

special ramification of the themes covered in the third set of papers. Therefore, I feel the papers

make a weakly tied, yet coherent ensemble.

1.2.1 Self-organised criticality

What is it about?

Here I describe my contributions to the field of self-organised criticality (SOC). All of them be-

long to the study of avalanche phenomena. The point is that the systems are out of equilibrium, but

infinitely close to it. Usually, such situation is physics is described by the linear response theory

(LRT). Here, LRT is not applicable for two reasons. First, the system is non-linear as the response

is never proportional to the cause. Second, LRT assumes perturbation around a well-defined and

unique equilibrium. In the models investigated in the three articles discussed in this section, ab-

sorbing states play the role of equilibrium states, and there is a large number of these absorbing

states. After an infinitesimal instantaneous perturbation, the dynamics brings the system from an

absorbing state to another, instead of returning it back to the same equilibrium state, as happens in

LRT. The transition between two absorbing states is an avalanche. If we insisted on using the con-

cept of avalanche in LRT, it would correspond to the exponential relaxation. If we perturb several

times a system subject to LRT, we observe each time the same unique rate of relaxation. There-

fore, if avalanches do have any meaning in LRT systems, all avalanches have the same typical time

scale. On the contrary, SOC systems exhibit power-law distribution of avalanche durations, thus

no typical avalanche duration can be identified. The set of avalanche durations is scale free. The

same holds also for other characteristics of avalanches, like their size etc.

Before going to the three original articles making part of this thesis, let us demonstrate the idea

of SOC more formally on a trivial example. Imagine an Ising model on a finite linear chain of

length L, with open boundary conditions. The configuration of spins can be equivalently described

by the position of domain walls, i.e. links joining spins of opposite sign. The model is endowed

with parallel zero-temperature dynamics. In terms of the domain walls, it means that at each time

step each of the walls can jump one lattice position left or right with equal probability. If two walls
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happen to be at the same position, they annihilate each other. Therefore, the dynamics is equivalent

to the dynamics of a set of annihilating random walkers on a finite one-dimensional chain. With

probability one, an absorbing state is reached in a finite time.

There are two absorbing states in the model. Both of them are characterised by the absence of

domain walls, i.e. all the spins have the same sign. In the spirit of SOC, we perturb the absorbing

state infinitesimally by flipping one randomly chosen spin. A pair of domain walls (i.e. random

walkers) is created at the distance of one lattice spacing. Then, the walkers are left to walk until

they meet and annihilate. The time elapsed until the walkers meet determines the duration of the

avalanche. The problem is equivalent to the study of first return times of a random walker to

the origin. This is a well-known exercise in probability theory. It can be easily found that the

generation function of the distribution of first return times is

P̂first return(z) = 1−
√
1− z2 (1.1)

and from here we obtain for the distribution of avalanche durations

Pdur(t) =
(2t)!

22t+1 t! (t+ 1)!
. (1.2)

For large t, the Stirling formula gives

Pdur(t) ∼ t−3/2 . (1.3)

Therefore, we obtain exactly the power-law tail in the avalanche distribution. This example is not

a mere toy, but provides a typical example of SOC behaviour in many more models. Indeed, very

often the behaviour of SOC systems can be, in this or that means, mapped on a random walker

returning to the origin. In many other cases, as we shall see in the paper [Slanina02], the mapping

is not exact but provides a very good approximation. In many cases, such approximation has the

flavour of a “mean field” approach, so that the exponent 3/2 found in (1.3) is considered a mean-

field value of the avalanche exponent, much like the Landau theory of phase transitions provides

the mean-field set of critical exponents for equilibrium critical points.

Friction

Now I will proceed to my own work. In the paper [Slanina99] I introduced a model of mechanical

friction [76]. The complexity of friction consists in the fact that the apparently flat surfaces are

in contact at many tiny irregularities of the surface shapes. These individual contacts are called

asperities. Several approaches are possible. One of them is a mechanical analogy, considering

the system of asperities as solid balls connected by springs and moving in a periodic (e.g. cosine)

potential. This is called the Frenkel-Kontorova model [77]. Another approach concentrates on a

single asperity and takes the rest as a kind of an effective medium [78]. Many more examples can

be found in Ref. [76]. My model is based on the mechanism of extremal dynamics which proved

useful in description of avalanche phenomena in dislocation movement [79]. (We shall return to

the extremal dynamics once more later, discussing the article [SlaKot00].)

The idea is based on an idealisation of the system of asperities, as illustrated in Fig. 1.1. There

are two types of asperities. Some of them are in touch with the substrate and some not. Those

in touch store certain amount of elastic energy, while those which are not in touch are free. In an
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Figure 1.1: Illustration of the model. A schematic drawing of two sliding interfaces in contact is

given in a), the idealisation of the situation used in our model is depicted in b). The elastic energy

stored in the asperity is described by the quantity b, the slot between potential asperity and the

track is d. In c), the redistribution in one step of extremal dynamics is shown schematically.

idealised scheme, each lattice point hosts one asperity in touch and one free. Those in touch are

characterised by a dynamical variable b measuring the elastic energy stored in the asperity. Those

not in touch are characterised by their distance d from the substrate.

The dynamics proceeds by alternating slow and fast episodes. We can describe it also as a

stick-slip movement. During the fast regime (a slip) the entire body moves a macroscopic distance,

until it sticks. We suppose that all slips have the same typical length. After a slip, all values of

b and d are completely random. Then, the slow movement starts. In each step, the asperity with

highest stress b is updated (hence the name extremal dynamics). This means that it is detached

from the surface. In order to keep the number of touching asperities constant, a new position is

found at the site with lowest d and the old asperity is “moved” to the new position. Meanwhile,

the released stress b is redistributed among neighbouring asperities and partially transferred to an

external energy reservoir, which can be interpreted as a big spring pushing the whole body. A slip

occurs when the energy stored in the reservoir exceeds certain threshold.

If the threshold is infinitely large, the system exhibits self-organised critical behaviour. At the

same time, the velocity of the movement is zero, as there are no slips. If we diminish the threshold,

the stick-slip movement starts. Hence we obtain the dependence of the friction force on velocity

v. It can be well fitted on the formula

Ffric = F0

(
1− exp

(
− A

v

))
(1.4)

where F0 and A are constants. This velocity dependence of the friction force is the main result of

the article.

Cracking

In the second paper of this set [Slanina99a], I looked at slow internal failure of a heap of fragile

beads. One might think of a pile of eggs on which a foolish cook sits. How many of the eggs will

survive? Surprisingly, quite a lot.

It is well known that in a granular medium (sand, powder, etc.) under external load stress is

distributed in a very inhomogeneous way. Force chains are formed where the stress is localised,

and these chains form arches carrying the load, much like the arches in a Gothic cathedral carry all

the weight of the stone blocks, leaving free space to windows illuminating the interior. This arching
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Figure 1.2: An example of the morphology of cracked areas. Every cracked grain is depicted by a

black dot.

phenomenon has, for example, a paradoxical consequence that the stress exerted on a flat support

by a conical heap of sand has a minimum just below the top of the heap. The first experimental

evidence if this fact is due to the Czechs J. Šmı́d and J. Novosad [80] and it was explained a decade

later by a model of stress propagation [81]. The model I use assumes that the stress tensor can be

replaced by a scalar, namely the diagonal element of the stress tensor along the vertical axis. The

stress is transferred from upper layers of the granular material to the lower ones stochastically. We

can also view it as an evolution of a stress configuration within a layer, if the vertical coordinate

is interpreted as time, directed to the bottom. Then, going from the top, stress develops so that in

each step the stress on a bead is redistributed randomly to its neighbours in the layer below. What

I have just sketched is the so-called q-model of stress fluctuations [82].

For the purpose of studying the cracking of beads, I define a threshold above which the stress on

a single bead leads to a collapse. Collapsed bead cannot bear as much load as before, which means

that the stress it carried before the collapse is partially redistributed to its horizontal neighbours.

But as a result thereof, these beads can also collapse and the collapses propagate through the heap

as an avalanche. After the avalanche stops, the system is “excited” again by increasing the external

load from above, until a bead is found where the stress reaches the threshold. This marks the

beginning of another avalanche. It was found that the cracked areas are localised along arches,

much like the force chains. This is of course something that should have been expected. Less

expected is that, depending on the parameters of the model, most of the cracked beads can be

found either on the top or on the bottom of the heap. An example of the morphology of cracked

regions is shown in Fig. 1.2. Moreover, it was proved that the distribution of avalanche sizes

follows a power law, thus confirming the self-organised critical state.

Ricepiles

In the third paper [Slanina02] I investigated rather special variant of the original BTW sandpile

[29] The model was inspired by experiments in which grains of rice were thrown into a slot be-

tween two parallel vertical perspex plates [83], where power-law distribution of avalanches was

verified. (A nice demonstration was given by Mária Markošová at a miniworkshop in the Center
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Figure 1.3: Illustration of the one-dimensional ricepile. In the panel a) we show the events hap-

pening after adding a grain. In b) the toppling is represented as a branching event, in c) we show

an example realisation of the resulting branching process. Branching probabilities are different for

the nodes resulting from the left and the right branch.

of Theoretical Studies in Prague, 1997.) The model of this situation [84, 85] is a one-dimensional

cellular automaton. At each site, there may be 0, 1, or 2 grains. A new grain is dropped always

at the first site from the left. If a site with a grains receives a new grain, it topples (i.e. sends one

grain to both left and right neighbour) with probability qa. We have q0 = 0, q1 = α ∈ [0, 1], and

q2 = 1. Numerical simulations found a power-law distribution of avalanche sizes with exponent

τ ≃ 1.55. The most interesting fact was that the behaviour was independent of the value of the

parameter α, unless α was very close to the endpoints α = 1 or α = 0. Precisely at the endpoints

the avalanche distribution was exponential, rather than power-law. The crossover from power law

to exponential when α approaches the endpoints was never clarified in simulations.

To treat this situation analytically, I devised a model which adapts the idea of self-organised

branching process [86]. Branching processes are known to well describe the SOC models in high

spatial dimensions, where the activity rarely returns back to the same site, for purely combinatorial

reasons. The infinite-dimensional case is a kind of a “mean-field” approximation, so it seems

strange to use it for a one-dimensional model, where the activity returns back always just in the

next time step. The “loops” of activity must be somehow taken into account. I do it in the following

way.

Before an avalanche starts, there are Na sites with a grains, a ∈ {0, 1, 2}. The first assump-

tion is that they are placed randomly, so a randomly chosen site has a grains with probability

pa = Na/
∑

b Nb. Then, the probability of toppling when a grain arrives is qapa. In the map-

ping to a branching process, each toppling is represented by one branching. Then, each branching

corresponds to the transfer of two grains, one to the left and one to the right. Two new branches

emerge from the site. The parent site gives birth to two daughter sites. If we supposed that the

activity never returns to the same place, the branching probability at the two daughter sites would

be equal and the same as at the parent site. But in one-dimensional case we know that the left

daughter toppled just one step before, therefore the probabilities of finding a grains there are mod-

ified to p′a = qa+1pa+1/
∑

b qb+1pa+1. Therefore, the branching probability of the left daughter is

also modified. Using these definitions, the branching process is investigated by standard means

of generating functions. It is found that the branching process is critical, with avalanche exponent

τ = 3/2, for p1 = max(0, (2α − 1)/α), p2 = 1 − α. But how can we know if the values of
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pa are just these? Here comes in the idea of self-organised branching processes. In fact, it is not

difficult to count the change in numbers Na of sites occupied by a grains, after the avalanche, i.e.

the branching process, ended. New Ns imply new ps, therefore each realisation of the branching

process alters the parameters which enter the next realisation of the process. This way we obtain a

sequence of branching processes, described by the evolution of their parameters pa. It is relatively

easy to find the fixed point and when we do it, we realise that it is just the set of ps which makes

the branching process critical. Therefore, the self-organised criticality is proved by a calculation.

Moreover, with little difficulty we can study also the crossover phenomena when α approaches the

points 1 or 0, as well as effects of finite size of the lattice. I would like to stress just the result for

the crossover. For α close to either 0 or 1 the avalanche size distribution behaves like

P (s) ≃ 1

so
F
( s

s0

)
(1.5)

where so = 1/(2α(1−α)) and the scaling function is expressed using the modified Bessel function

F (x) = x−1e−x I1(x) . (1.6)

But the most striking finding in this model is that the “mean-field” value of the avalanche exponent

τ = 3/2 is so close to the numerically observed value τ ≃ 1.55. It remains a kind of mystery that

the one-dimensional case can be so well approximated by the infinite-dimensional one. We shall

see later another example of a similar paradox [SlaSznPrz08].

1.2.2 Complex networks

Where the complex networks come from

In the early days of the study of networks they were modelled by static random graphs. This

is the case of Erdős-Rényi graph ensembles [36] as well as Molloy’s and Reed’s random graphs

with prescribed degree sequence [87]. The former is defined as a set of all graphs G = (V, E) with

fixed number of vertices N = |V|, but variable number of edges E = |E| endowed with probability

measure P (G) = pE(1 − p)N(N−1)/2−E . The parameter p ∈ [0, 1] tunes the overall “density” of

edges in the graph and the average degree 〈d〉 = Np. The latter ensemble is defined just as the

same set with the extra constraint that the degree sequence, i.e. the ordered list of the orders of all

vertices, is equal to the prescribed sequence. The probability measure is supposed uniform on this

set. (Of course, there may be sequences which are impossible, and the set is empty, but usually

these pathological cases are neglected.)

It is evident that the degree distribution in the above described Erdős-Rényi ensemble is bino-

mial, and for large number of vertices it approaches the Poisson distribution. (There are strong

mathematical theorems concerning this fact that seems “evident” to a physicist.) However, em-

pirical data for existing networks, like WWW, show great heterogeneity in degree distribution,

which calls for another models of random graphs. To add more complexity, graph processes were

introduced. Contrary to the static graph ensembles, in the graph process we construct a sequence

of graphs by adding edges or vertices, or both. (In a more general framework, edges and vertices

can be also removed. In fact, this will be the case of our model, too.) Each sequence is given a

probability, and each sequence is a point in a probability space.
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The best known among physicists is the Barabási-Albert (BA) graph process. It has also an

advantage of being very educative. The countable infinite vertex set is numbered by non-negative

integers. In each step, one edge is added. Suppose we are at step n and the degrees of the vertices 0
to n−1 are d0, . . . , dn−1. The newly added edge joins the vertex n with the vertex j ∈ {0, . . . , n−
1}, with probability pj = (dj + a)/

∑n−1
i=0 (di + a). The only parameter of the model is a and it

determines the exponent of the resulting power-law tail in the degree distribution [88, 89]. Vertices

with larger degree are preferred, hence the name “preferential attachment” for such a prescription.

It was established that the necessary condition for the emergence of the power-law tail is the

linear dependence of the linking probability on the degree of the linked vertex. Such linear de-

pendence can be implemented in various ways, the straightforward being just what is prescribed

in the BA process: the probability is given by hand from outside. Of course, in reality the linking

probability must arise from internal dynamics. The BA model does not account for that and this

is its main weak point. One of the simplest internal mechanisms of the preferential attachment is

node duplication [90, 91]. Now I come to my own work.

Ecosystems’ evolution

As far as I know I was the first who used this principle in a model of evolving network, introducing

a graph process which will be described below. To be fair, I should acknowledge the advice of Kim

Sneppen, who suggested me to try it, when he visited Prague in 1997. Thus, he is the true inventor

of the node duplication mechanism.

The work I speak about now is the paper [SlaKot00]. This is the result of a joint effort of myself

and Miroslav Kotrla. To asses the fraction of my own contribution, I declare that I am the author

of the formulation of the model, the computer code and all the numerical results. At the stage of

the interpretation of the results both of us contributed equally. M. Kotrla suggested comparing the

model with then-topical small-world networks, which implied another round of simulations, which

I performed. I wrote the largest part of the text of the paper. The same share of authorship concerns

also the preliminary letter [34] which preceded the full paper [SlaKot00]. The matter later evolved

in a paper [35], where the majority of work was done by M. Kotrla.

In [SlaKot00] I modelled an ecosystem composed of species linked by interactions. The quan-

tity and/or quality of the interactions is neglected, I consider only presence or absence of the

interaction. Thus, the species are represented by vertices in a graph and the interactions are im-

plemented as edges in the graph. The species are characterised by a unique number, called fitness,

quantifying the survival abilities of the species. The dynamics of the ecosystem closely follows

the Bak-Sneppen (BS) model of biological evolution [33] which accounts for the avalanche phe-

nomena in extinction dynamics of the biosphere. The basic idea is that of the extremal dynamics,

similar to the friction model discussed in [Slanina99]. In each step, the least fit species is replaced

by a new one. Simultaneously, the fitness of the neighbours is also updated, reflecting the change

in the interactions between species.

The BS model is self-organised critical and the statistics of extinction events follows a power-

law. Unfortunately, the exponent in the model is about 1.1, while the empirical data from the fossil

record show the value of about 2. Thus, the quantitative disagreement is discouraging.

I suggested to improve the model by allowing the network of interactions between species

evolve. Indeed, the BS model supposes that an extinct species is immediately replaced by a new

one, preserving all the interactions. To some extent this is true, but essentially an extinct species
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Figure 1.4: Illustration of the change in the network due to speciation (a) and extinction (b).

leaves an empty place which is only gradually filled by newly evolving species. Therefore, I

introduced changes in the network according to the following rules (illustrated in Fig. 1.4). First,

in the spirit of extremal dynamics, the species with lowest fitness is found and destined to mutation.

This means that its fitness is replaced by a new random number. Also the fitnesses of all the

neighbours are updated. Up to now, the rule is identical to the BS model. But in addition to

that, the new fitness of the mutated species is compared to the fitnesses of all the neighbours. If

it is the largest of all, the species is considered as very successful and gives rise to a completely

new species. This means that a new vertex is added to the graph and the edges connecting the

“mother” species are replicated (with the probability p ∈ (0, 1]) into the edges connecting the

“daughter” species. This way, the idea of vertex duplication is implemented. If, instead, the fitness

of the mutated species is lower than the fitnesses of all its neighbours, the species is deemed to

extinction. This means that the vertex and all edges emanating from it are removed. In this way,

the number of species fluctuates incessantly and the topology of the ecological network changes

all the time.

The most important result is that the distribution of extinction events follows a power law with

exponent ≃ 2.3, close to the empirical result. This is a substantial improvement in comparison

with the original BS model. Next, we found a surprising result that the degree distribution in the

graph is quite complicated. In short, we found that in the “equilibrium” regime, where the number

of vertices stays close to the long-time average, the degree distribution has an exponential tail,

while in the “transient” regime, where the number of vertices makes excursions much above the

average, the degree distribution has a power-law tail. This is attributed to the fact that in such a

regime the structure of the graph is dominated by its growth, much like the growing graph in the

BA graph process. This was later confirmed by supplementary simulations (not included in the

paper) in which I considered only speciation events and excluded all extinction events. The graph

was therefore growing by definition. In this case I found that the degree distribution follows a clear

power law. In fact, the empirical data on ecological networks are somewhat conflicting [92, 93].

There are reports of power-law distribution in some cases, while exponential distributions are found

in other cases. In the light of my results, one can conjecture that the ecosystems with power-law

distribution are in the state of expansion (not visible on the timescale of human life, but rapid on

a scale on which biological evolution acts) while the exponentially-distributed ecosystems may

perhaps be in an equilibrium for millions of years. But, as I stressed, these hypotheses are neither

confirmed nor refused yet.
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Spectral graph theory

Graphs are analysed by multitude of methods. One of them, which is particularly appealing to

physics, is investigating eigenvalues and eigenvectors of matrices which encode the structure of the

graph. This is the essence of a discipline called spectral graph theory [94]. In fact, at the beginning

of this discipline we find E. Hückel [95], who revolutionised the quantum organic chemistry by

the idea that many crucial properties of organic molecules follow just from the structural formula.

Such formula can be viewed as a graph. The graph can be “coloured” attributing the vertices

types of atoms and the edges types of bonds (single, double, etc.) and then proceed to solving

the quantum-mechanical problem within the molecular-orbital method. The important point is

that the structure of the molecule is encoded by a coloured graph, which is then encoded by a

matrix (simplified Hamiltonian) whose spectrum and eigenvectors are to be found. While quantum

chemistry diverged largely from this simplistic approach, spectral properties of matrices encoding

the graph structure became of interest on their own. The specific question we are interested now in

is the partitioning of a graph into modules. The notion of a module is somewhat vague, thus each

problem requires a specific definition of what a module is. For example, if we want to cut the graph

into two modules, spectral theory can help. We construct the adjacency matrix of a graph (ones

represent an edge, zeros absence of an edge) and find the eigenvector corresponding to the second

largest eigenvalue. Positive elements of the eigenvector denote vertices in one module, negative

ones denote vertices in the other module. The method can be made more precise, but I shall not

report it here, as the method I used is completely different, although it is based on spectral methods

as well.

Small clusters within networks

Here I shall report my work [SlaKon10] which I performed in collaboration with the sociologist Z.

Konopásek. His contribution consisted in putting the study in a sociological context, connecting it

to previous literature and drawing consequences which the study of ours brings to the sociological

community. My own contribution consists of collecting large amounts of empirical data from

the WWW (using software written by myself), developing the numerical method of the spectral

analysis and performing all the calculations.

In this study I looked at the network behind the e-commerce portal Amazon.com. There are

products sold (still they are mainly books, but you can buy a bottle of California red wine as easy

as fire resistant women’s shirts there), there are customers and there are reviewers who comment

on the quality of the products. I concentrated only on the products and reviewers, thus having a

bipartite graph.

At first stage, I wrote a robot who downloaded automatically the information on all the review-

ers and then I downloaded systematically all reviews written by these people. In the next stage, I

analysed the network, finding power-law degree distributions on both the reviewers and products

side. The main question was to find small densely connected clusters within the large network.

The structure is encoded in the rectangular adjacency matrix M , rows corresponding to reviewers,

columns to products. In order to apply the spectral method, I made a “collapse” to reviewers only,

which is expressed in the matrix multiplication A = MMT . Then, I diagonalised the matrix A.

Contrary to previous approaches, the key quantity of my method was the inverse participation ratio

(IPR). If eiλ is the ith element of the normalised eigenvector corresponding to the eigenvalue λ,

IPR is q−1 =
∑

i e
4
iλ. Small IPR means delocalised state, hight IPR means localised state. The
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Figure 1.5: Example of a dense cluster in the Amazon.com reviewer network found by the spectral

method.

idea consist just in finding the most localised states and identifying the clusters with the sets of

sites where the localised eigenvectors have large enough value (above certain threshold). This way

I was able to find groups of reviewers and products who share certain common characteristics.

An example of such a cluster is in Fig. 1.5. The most important point is that I did not insert any

preliminary semantic information. All the information was structural, encoded in the presence or

absence of links connecting reviewers and products. Yet the clusters found bear obvious semantic

information, interpreted a posteriori. For example the cluster shown in Fig. 1.5 connects sci-fi and

fantasy movies. Another cluster found was centred around the songs of Beatles and Bob Dylan,

with a small intrusion of the Led Zeppelin. Yet another cluster had as a common theme George W.

Bush (there were fans as well as opposers, all united). And we could continue further. This shows

that the method can indeed reveal hidden information starting just from the graph structure. For

a sociological study, this may be an invaluable tool, as it does not spoil the research by personal

prejudices of the scientist.

Zero hypothesis: a random graph spectrum . . .

For studies like [SlaKon10] it is very useful to know the “background noise” or a zero hypothesis.

i.e. the situation with no relevant information whatsoever. Without any idea of the zero hypothesis,

we can find spurious clusters which are formed by pure chance. Therefore, it is natural to study

the spectral properties of random graphs and compare the results with the findings on the empirical

networks, like the Amazon one, studied in [SlaKon10].

In fact, there are many results available on the spectra of random graphs. The problem can

be formulated as the analysis of sparse random matrices. Spectral properties of random matrices

attract physicists since the pioneering works of Wigner [96] and Dyson [97]. For a review, we can

recommend the book [98]. Sparsity of a matrix poses additional problems, investigated by Rodgers

and Bray [99]. Using the replica method, they derived an equation, whose solution encodes all

information on the density of states of a sparse random matrix corresponding to the Erddős-Rényi
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random graph. Unfortunately, there are no exact solutions of the equation available. The best one

can do is either to express the solution in terms of a series and find a few first terms, or to use

instanton calculus (in principle equivalent to estimating the behaviour of large orders of the same

series). Moreover, there are also numerical approaches, based on the cavity method [100].

In the work [Slanina11] I aimed at clarification of the mutual relation of the replica and cavity

approaches. Replica method does not contain any explicit approximations, but relies on ill-justified

mathematical procedures. Chiefly it is the analytic continuation from the set of positive integers to

the entire complex plane, that raises concern. On the other hand, the cavity method is in principle

only an approximation, but it is assumed exact in the limit of infinite system. Whether this assump-

tion is correct or not, depends on the properties of the graph whose spectrum is to be computed.

For example, if the graph is a tree, the cavity method is exact almost by definition. There is no

general answer regarding to applicability of the cavity method on an arbitrary graph. Especially,

we may ask if it works on the Erdős-Rényi graphs. This is what I investigated in [Slanina11].

The key quantity is the generating function of the (random) local Green function

γ(ω) = 〈e−ω g(z) − 1〉 . (1.7)

I found that it can be calculated by minimising a functional depending on γ(ω) and on an auxiliary

function ρ(ω). The functional can be written explicitly as

F [γ, ρ] = −
∫

∞

0

dω

ω
γ(ω)ρ(ω) +

1

µ

∫
∞

0

dω

ω
e−ωz+µγ(ω)

+
1

2

∫
∞

0

dω√
ω

∫
∞

0

dλ√
λ
I1(2

√
ωλ)ρ(ω)ρ(λ) .

(1.8)

Using this variational formulation of the problem, I proved that cavity approach indeed coincides

with replica in the limit of infinite system. Moreover, the variational approach has an advantage

of being a starting point of consistent approximations, by limiting the set of allowed forms of the

functions γ(ω) and ρ(ω). For example, assuming the form ρ(ω) = e−σ ω, where σ is independent

of ω, we get an approximation called “effective medium approximation” by the random-matrix

community, and “coherent-potential approximation” by the solid-state community (although the

exact relation to CPA in its classic formulation [101] is not completely clear).

One of the improvements my method puts forward is the treatment of the tail of the spectrum.

It is well known that the Lifschitz tail contains localised states which elude the CPA treatment.

Beyond the CPA band edge, there is a continuum of levels which extends far away. There are

general estimates of the form of the Lifschits tail, based on the instanton calculation [99], but

any precise calculation of the tail is lacking. Starting with the variational approach, I was able to

approximate the (continuous) tail by a sequence of bands, separated by (spurious) gaps. (I call it

the single-shell approximation.) I also calculated the weights of the bands, confirming the general

instanton result for the form of the tail. Therefore, my result is an improvement over the older

ones, despite the presence of unphysical spurious gaps. Moreover, I was able to use the variational

method for computing the spectra of correlation matrices (of the form A = MMT , where M is

a rectangular random matrix). In this case, I obtained significant improvement over the classical

Marčenko-Pastur result [102].
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Figure 1.6: The detail of the left tail of the density of states of an Erdős-Rényi graph. The full

line shows the result of numerical diagonalization, the dotted line is the result of effective medium

approximation, and the dashed line is the single-shell approximation.

. . . and localisation

In the work [Slanina12] I continued this study, asking about the localisation properties of the eigen-

vectors. Localisation on random graphs is somewhat different from the usual localisation problem

in solid-state physics. In a disordered conductor, the effect of localisation leads to inhibition of

diffusion of the conducting electrons [47], therefore the conductance drops to zero. The very ef-

fect of eclectic current is related to the background presence of an Euclidean space in which the

conducting or insulating sample is embedded. Indeed, the incoming and outgoing current very far

from the sample is represented by plane waves, which are themselves related to the representations

of the Euclidean symmetry group. The modification for purposes of spaces with discrete transla-

tional symmetry is straightforward. An electron state in the sample is considered non-conducting,

i.e. localised, if it has negligible overlap with any plane- or Bloch-wave state.

On the other hand, random graphs of the Erdős-Rényi, Barabási-Albert, etc. types cannot

be typically embedded into a finite-dimensional Euclidean space in any physically plausible way.

Sometimes this fact is formulated saying that these graphs are effectively infinite-dimensional; but

we consider the labels unimportant. The point is that there are no plane waves which carry the

current into the sample and which are reflected or pass through. Localisation cannot be related

to vanishing conduction. Instead, the quantity called inverse participation ratio (IPR) q−1(λ) is

applied as a measure of localisation. It depends implicitly on the system size N and it is just the

behaviour at N → ∞ which determines the localisation. If λ belongs to the range of eigenvalues

whose eigenvectors are extended, then limN→∞ q−1(λ) = 0. If, on the contrary, λ falls into the

localised regime, then the limit limN→∞ q−1(λ) stays non-zero.

In my article [Slanina12] I applied a similar approach as in [Slanina11], defining, in addition

to the “one-particle” function γ(ω), its “two-particle” counterpart

Γ(ω, ω′) = 〈(e−ω g(z) − 1)(e−ω′ g(z′) − 1)〉 . (1.9)

If the joint equations for γ(ω) and Γ(ω, ω′) were solved, IPR could be deduced. The exact solution

is unknown, but I was able to solve it in the same single shell approximation as in [Slanina11],

with the same unfortunate artifact of spurious gaps.
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Figure 1.7: Distribution of normalised level spacings in the spectrum of random cubic graph with

size N = 1000. The levels analysed are restricted to intervals z ∈ [−0.1, 0.1] (solid line) and

z ∈ [−7,−6] (dashed line). The dotted line is the dependence ∝ ∆znorm exp
(
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with a = 0.75, which corresponds to the Gaussian orthogonal ensemble. In the inset we show the

detail of the distribution at z ∈ [−0.1, 0.1] for very small spacings. The straight line is the linear

dependence ∝ ∆znorm.

For more reliable results I resorted to exact diagonalisation studies. I used random graphs

of two types: first, the Erdős-Rényi graphs, second, the random cubic graphs, with a Gaussian

random numbers added at the diagonals of the adjacency matrices. The size of graphs ranged from

N = 300 to N = 30000 and the desired quantities, i.e. the density of states, IPR, and others,

were averaged over as many as 105 realisations. (Less realisations for larger systems, of course.)

From the analysis of the dependence of IPR on N I was able to determine the mobility edge, i.e.

such a value of λ that separates the extended and localised states. The presence of localised states

was established beyond any doubt. Interestingly, it was found that in the Erdős-Rényi graphs, the

mobility edge is always quite close to the CPA band edge. (It is slightly beyond that, with the effect

that there are still some extended states beyond the CPA edge, followed by localised states in the

rest of the Lifschitz tail.) On the other hand, for the random cubic graphs with random diagonal

the mobility edge is deep within the CPA band and the data suggest (although do not prove) that

for a disorder strong enough there are only localised states present.

The result of [Slanina12] which I consider most important regards the level spacing statistics.

It is a well-known fact that the eigenvalues of random matrices are spaced according to universal

laws, which are independent of the form of the density of states, but reflect the symmetry proper-

ties of the ensemble of random matrices [98]. The classical example is the Gaussian Orthogonal

Ensemble, where the level spacing statistics follows, with a very good accuracy, the Wigner for-

mula

PGOE(x) ∝ x e−x2

. (1.10)

On the other hand, if the levels were scattered randomly, as in the case of a random matrix with all

off-diagonal elements equal to zero, the statistics would be Poissonian

PPoisson(x) ∝ e−x . (1.11)

In the language of the quantum chaos theory, Wigner distribution corresponds to a chaotic system,

while Poissonian to the non-chaotic, i.e. integrable one. Based on fairly general considerations
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one can argue that the localised regime corresponds to Poissonian, while the extended regime to

Wigner distribution of level spacings. This is just what I proved by exact diagonalisation, as seen

in Fig. 1.7.

The reason why I consider the result important is the following. In the just explained sense

we can interpret the metal-insulator transition due to crossing the mobility edge also a transition

from chaotic to integrable phase. I consider this area very fruitful and open to new profound

discoveries. One can, for example, speculate in the following direction: It is known that two-

dimensional classical integrable systems solved by the Bethe ansatz have Poissonian distribution

of energy levels. On the other hand, three-dimensional systems cannot be solved by Bethe ansatz

and we can conjecture that they are chaotic. If there were a method which would be exact in 2

dimensions (reproducing Bethe ansatz) and at least approximate in 3 dimensions (not necessarily

solving 3D Ising model exactly), the same method could be used to describe both localised and

extended states in the localisation problem. Perhaps.

1.2.3 Sociophysics

Particles and games

In the quest of the unity of knowledge, people were always lead (and mislead) by the concepts and

ideas that proved successful in a particular time and epoch. There were times when magnetism

was called into service for explaining mysterious interactions between human souls. Newton’s

idea of an instant interaction at an arbitrary distance was perfectly in accord with the theory of the

unguentum armarium tried as a means of planetary-wide synchronisation of clocks. In the early

19th century the unified theory of electricity was developed, based on purely chemical processes—

chemistry was perhaps the most dynamic science at that time. And so on, and so forth. But

laughing at such an old stuff is not very wise. In their proper times they were as serious theories as

any other, as, for example the unified theory of elementary particles, based on the K-meson (thus

avoiding the inaesthetic quarks) [103].

Nowadays, the scientific paradigm requires considering living beings, and especially humans,

as inanimate entities. These views are sold to the general public under various sticky banners, like

the selfish gene (although a specialist would explain to you that these are not genes, and not selfish,

of course). Therefore, we cannot avoid the duty to try, how far we could go with the hypothesis that

humans are just great molecules, with no soul at all. At the precise moment where this approach

fails, the human soul rises. In a sense, this quest for a failure can be considered as experimental

psychology.

It is physics whose job is explaining the properties of molecules, even if they are as big and

as complex as human bodies. And physics can offer all the tools and skills accumulated in the

studies of complex systems. As a brief introduction to the subject I would like to mention now just

three models originating in physics, that are both very simple to formulate and very successful in

elucidating social phenomena.

The society is viewed just as an ensemble of strongly interacting particles (i.e. human beings).

Among the models physicists devised for strongly interacting entities, the Ising model is perhaps

the best known. So, it seems quite natural that a situation in the society, where members should

decide from two choices, was described in terms of the Ising model. We can imagine, for example,

a big factory with angry workers who are about to go on strike. The two options are: strike “yes”
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or “no”. This is like spins choosing between “up” and “down”. The social pressure due to the

surrounding people is like the exchange interaction between spins; the combined pressure from the

greedy employer and from the hungry children is like the external magnetic field. In this way the

outburst of a strike is described by a phase transition [58].

The second is the voter model. In physics, it is used to describe catalysis [104, 105]. As a model

of a society, it describes competition of two opinions. Again, the two options can be described by

a two-state Ising variables Si. The members of the society (we call them agents) are placed on

the vertices of a lattice or a graph. To keep contact with physics, we can use a hypercubic lattice,

or, to make the calculations easy, we put the agents on a complete graph. The system evolves as

a Markov process in the following way. At each step, an agent i is chosen at random. Then, the

agent looks at one of her neighbours (again chosen at random), say, the agent j. Then, the state is

updated according to the neighbour

Si(t + 1) = Sj(t) . (1.12)

Such a simple dynamics leads to surprisingly complex behaviour [106]. And most importantly,

the model is exactly soluble on a hypercubic lattice in all dimensions. One step beyond the voter

model is the Sznajd model, which is no longer exactly soluble. My own results in this line of

research will be described later, when discussing the papers [SlaLav03] and [SlaSznPrz08].

The third is the so-called minority game. It is a scientific elaboration of a simple game called

“zig-zag-zug”, popular among children in Switzerland. It is played as follows. Three children

stand face to each other, and stretch the right leg so that the tips of their shoes nearly touch each

other. Then they say in unison “zig-zag-zug” and at the last “zug” they should either raise the foot

or keep it down. If it happens that two players do the same move and the third remains alone,

the third wins. The aim is to be in the minority. We can see something similar in an idealised

description of the stock market. Imagine an ensemble of stockbrokers who decide either to sell or

to buy a share in a company (e.g. in Verenigde Oost-Indische Compagnie if they lived in the early

17th century). When the majority of them buy, the price will probably rise and those who decided

to sell can pocket a gain. And vice versa. We can see that if the Beurs worked as indicated, the

minority option would be always profitable. The reality is always more complex, but the essence is

grasped by the minority principle: who manages to be in the minority, wins. Clearly, the situation

of agents is heavily frustrated, as by definition there is no universal strategy which would prescribe

each agent to do the opposite than the majority does. The minority game model introduced by

Challet and Zhang in 1997 [107] formulates this principle in a strict way. The most surprising

feature of this model is the presence of a dynamical phase transition, which was studied in depth

using the replica and generating functional methods [108, 109]. I contributed to this area by the

paper [Slanina01] to be discussed in the next paragraph, as well as a few others [52, 110, 111].

Social imitation

In the paper [Slanina01] I took the minority game model as a starting point to study the conse-

quences of imitation between agents.

In the minority game, each agent can choose between actions −1 or +1. The sum of actions

of all agents is called attendance A(t). Positive attendance means that the agents who chose −1
were in the minority and therefore are rewarded a point. Those in the majority are punished by

taking off a point. The total number of points accumulated by an agent is her wealth (it can also
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Figure 1.8: Two examples of time evolutions of the domains created by imitation. On the vertical

scale, wealth of agents respective to average wealth, rescaled to average fluctuations. Time goes

from the top to the bottom, which means that the top curve is the earliest, the bottommost is the

last one. The heavy bullets indicate the leaders, i.e. agents who do not imitate anybody. These

data of mine were actually published in the paper [52].

be negative). In order to predict the future, each agent owns two strategies which offer the agent

actions according to the observed past outcomes. Besides the wealth of the agent, the “virtual”

wealth, or score, is calculated for each strategy separately, which is the number of points which

would be accumulated if the strategy was used all the time, with all other circumstances unchanged.

The strategy which is actually used is the one with the highest score.

I modified the above scheme in the following way. I placed the agents on a social network,

which in [Slanina01] was a simple linear chain, as well as in the preceding paper [110], while in

the subsequent study [52] I used Erdős-Rényi and Barabási-Albert random graphs. When deciding

her next action, the agent first compares her own wealth with that of the neighbours. If she is the

richest of all, she uses the best of her own strategies. If she is not, she takes the same action as the

richest neighbour. This way domains are formed within the social network, each of them acting in

unison as a single big agent. Each domain has its leader, which is the richest agent of all within the

domain. The other agents are imitators. During the evolution the fraction of imitators increases, as

the domains grow in size, but eventually the fraction saturates. We can see the example of growing

domains in Fig. 1.8. The model has two control parameters, the overall probability of imitation p
and the price ε the imitators must pay to the imitated.

Besides the geometry of the imitation domains, we can observe the local and global measures

of efficiency of the system. Globally, the efficiency of the minority game is measured by the
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volatility, which in this context means the amplitude of fluctuations of the attendance around the

most efficient state A(t) = 0. In the classical minority game, the volatility depends on the number

of agents in a non-monotonous way. The minimum of volatility, i.e. the most efficient state is

achieved at N = Nc ≡ 2M/αc, where M is the length of the agents’ memory and αc = 0.3374...
is a universal constant, defined as a root of a certain transcendental equation [108].

In my version I found that imitation increases the global efficiency (decreases the volatility) for

N > Nc, which is quite natural, as the imitation effectively diminishes the number of agents and

thus brings the system closer to the optimum. However, even for N < Nc the imitation helps, if

the tendency to imitation p is not too high: there is a minimum on the dependence of the volatility

on p.

From the local perspective, the efficiency of the system was measured through the social ten-

sion, defined through the local differences in wealth between neighbours in the social network. It

is quite interesting that the social tension depends strongly on the information cost ε. If the infor-

mation is free, ε = 0, the imitation always lowers the tension. Indeed, the wealth inside domains

more or less equalises and the tension is mostly due to the neighbourhood of the leader. But if the

information is expensive, the leaders gain much more due to the fee paid by their followers, who

are simply deemed to poverty. Imitation makes the social tension even stronger. In such a case, the

remedy consists in lowering the number of leaders, i.e. increasing the incentive to imitation p. In

plain words, if you already must be sucked by tycoons, let them be as few as possible.

Let me also add, as a note, that in the following paper [52] I worked in collaboration with my

student H. Lavička on a generalisation to more complex social networks. We found, for example,

that on the Erdős-Rényi graph the number of immediate followers is power-law distributed, despite

the fact that the degree distribution of the underlying social network is Poissonian.

Sznajd and voter models on a full graph

The voter model shortly described earlier is very special as is allows for exact solution on a hy-

percubic lattice in every dimension. Without going into details, we can notice this fact when we

write the equations of motion for the correlation functions. Usually, two-site correlation functions

require three- or four-site correlation functions etc. so that the equations of motions never close. It

is not the case for the voter model. The equation for single-site averages does not need any higher

correlations, and the same holds for all other correlations.

There are more complex models in which this nice property is not satisfied any longer. One

of them is the Sznajd model, named after the inventors Katarzyna Sznajd-Weron and Józef Sznajd

(daughter and father) [112]. While in the voter model the opinion of a single agent is transmitted

on her neighbour, in the Sznajd model it is necessary to have two neighbours of the same opinion

in order that a neighbour of such a couple was converted to the same opinion. There are various

cosmetic variants of the process, but all of them behave in essentially the same manner. For

example, we can place the agents on a square lattice. If we find a pair of two neighbours of the

same opinion, all the six nearest neighbours of the pair adopt the same opinion.

In the paper [SlaLav03] I calculated analytically the dynamics of the voter and Sznajd models

in the case of agents placed on a full graph of N vertices. The co-author, the then-student of mine

H. Lavička contributed by making numerical simulations which confirm my analytical results. In

both voter and Sznajd model on a complete graph the state of the system is fully described by the

magnetisation m = (N+−N−)/N , where N is the total number of agents and N± are the numbers
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Figure 1.9: Average time of reaching the stationary state in the Sznajd model. The line is the exact

analytic result, the points are the results of simulations by H. Lavička, for system size N = 2000
(+) and N = 4000 (×).

of agents choosing the ±1 options, respectively. We can write the master equations for the time

dependence of the probability distribution of the magnetisation, which in the voter case is

∂

∂τ
Pm(m, τ) =

∂2

∂m2

[
(1−m2)Pm(m, τ)

]
(1.13)

and in the Sznajd case is

∂

∂τ
Pm(m, τ) = − ∂

∂m

[
(1−m2)mPm(m, τ)

]
. (1.14)

The solution of Eq. (1.13) consists of two δ-functions at the edges of the allowed interval, i.e.

at m = −1 and m = 1, and of a regular part, which is a continuous function on the support

(−1, 1). The regular part is obtained by finding the (left as well as right) eigenfunctions of the

(non-Hermitian) linear operator standing on the right-hand side of (1.13). As for the right eigen-

functions, they are proportional to the Gegenbauer polynomials. The eigenvalues determine the

sequence of relaxation times. For a comparison, H. Lavička performed very careful simulations of

the model, from which a few first relaxation times can be extracted. The agreement with the exact

results is excellent.

Eq. (1.14) is a different case, as it contains only the first derivative. The diffusive term vanishes

in the limit N → ∞ leaving just a deterministic drift dynamics. We can be interested, e.g. in the

average time to reach a stationary time in which all agents have the same opinion. It will depend

on the fraction p of those who have had the opinion +1 at the beginning, and, of course, on the

total number of agents N . The result is

〈τst〉 = − ln

(
|2p− 1|√
p(1− p)

1√
N

)
(1.15)

and as we can see in Fig. 1.9, the simulations agree very well with the exact theory. Note that the

time to reach stationarity diverges at p = 1/2, signalling a dynamical phase transition. In contrast,

in the voter model such a transition is absent.
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One-dimensional Sznajd model

The complete graph corresponds to the limit of infinite dimension and in such a situation the mean-

field theory is known to be reliable. On the other hand, one-dimensional systems are perhaps

the farthest possible from what mean-field theories predict: there are no phase transitions, etc.

However, in the paper [SlaSznPrz08] I showed how an approximation usually classified as mean-

field-like, gives extraordinarily good results. The paper [SlaSznPrz08] is co-authored also by K.

Sznajd-Weron and her student P. Przybyła. I did all the analytical calculations myself, the others

performed all the computer simulations.

The point is that the equation of motion for the average C0(t) = 〈σ(y)〉 contains higher cor-

relations functions C1(n; t) = 〈σ(y)σ(y + n)〉, C2(n,m; t) = 〈σ(y − n)σ(y)σ(y + m)〉 etc. In

particular, we obtain the equations

d

dt
C0(t) = − C2(1, 1; t) + C0(t)

d

dt
C1(1; t) = − C3(1, 1, 1; t)− C1(1; t) + C1(3; t) + 1 .

(1.16)

To close the chain, we use the Kirkwood approximation

C2(1, 1; t) ≃C1(1; t)C0(t)

C3(1, 1, 1; t) ≃
(
C1(1; t)

)2
.

(1.17)

This kind of approximation is usually called decoupling in the context of condensed matter physics.

It is considered justified if the fluctuations are small, which is the same argument which also

justifies the mean-field approximation. Therefore, decoupling and mean-field approximations are

closely related, and indeed, in many cases (but not always) they are identical.

Making the Kirkwood approximation in (1.16), we can calculate the dynamics of the correla-

tions and eventually find the probability P+ that the final configuration will have all agents in state

+1. It depends only on the initial concentration of +1 opinions, denoted n+ and the result is

P+(n+) =
n2
+

(1− n+)2 + n2
+

. (1.18)
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Figure 1.11: Evolution of the Hegselmann-Krause model. Each point represents one or more

agents with a specified value of the opinion Fi. The total number of agents is N = 200. In the

upper left panel, we show the case in which full consensus is reached. In the upper right panel, the

population splits into several non-communicating stable groups. In the lower panel we show how

the approach to consensus is slowed down when the confidence bound is close to its critical value.

We can see in Fig. 1.10 how the approximation (1.18) compares with the results of computer

simulations (the simulation data for Fig. 1.10 were obtained by myself, rather than taken from

[SlaSznPrz08]). In my personal view, the agreement is impressive. How is it possible that an

approximation that should work well in high dimensions, is so good in one-dimensional case? I

do not posses any satisfactory answer, neither I know any literature which would elucidate this

phenomenon. Let us recall that similar thing was already observed in the one-dimensional ricepile

[Slanina02]. Moreover, I came across such behaviour also in the analysis of the interacting gaps

model of an order book [113] (more on order books and related issues will be found in the follow-

ing).

Hegselmann-Krause model of consensus formation

In the voter, Sznajd and related models, agents have only very restricted choice of two opinions.

In reality, people’s views on many matters can vary in a wide range and multitude of intermediate

positions are held. One step towards reality is the introduction of continuous options F , e.g. from

the interval [0, 1]. When people meet, they adjust their opinions, thus moving within the allowed

interval. The ultimate state may or may not be the full consensus, i.e. the state in which all agents

occupy the same point within the interval. The first model of this kind was devised by DeGroot
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[114] and if we simplify his findings a lot, one can say that sooner or later consensus is always

reached, provided that there are no subgroups of agents who never communicate with the rest.

Such a conclusion is too trivial and contradicts all what we observe in society. Divisions and

struggles are ubiquitous, consensus is very rare. To account for that, the idea of bounded confidence

was implemented in such a sense that agents whose opinions within the interval [0, 1] differ more

than a certain level ε > 0, do not influence each other. If the agents are closer than ε, their opinions

move towards each other, thus promoting the consensus.

One of the models of this type is the model of Hegselmann and Krause [115]. I investigated

the model in the paper [Slanina11a]. The questions I asked are related to the fact that for ε large

enough full consensus is reached, like in DeGroot’s model, while for small ε the ensemble of agents

eventually splits into groups which are more distant than ε, and therefore do not communicate with

each other. Consensus is never reached. Examples of such evolution are shown in the two top

panels in Fig. 1.11.

Moreover, close to the value of ε separating the consensus and no-consensus phase, the dy-

namics is slowed down, much like the dynamics in the vicinity of second-order equilibrium phase

transitions (see the lower panel in Fig. 1.11). In the article [Slanina11a] I investigated this slowing

down in a great detail. The essential finding was the role of mediators, i.e. individuals or tiny

groups who are able to join and attract macroscopically large ensembles of agents. For example

I found that the spectrum of relaxation times close to the transition not only contains long time

values, but is composed of several distinct peaks. I deciphered these peaks as corresponding to

mediator groups consisting of one, two, three, etc. agents.

The ultimate conclusion, although hypothetical, from this study seems rather paradoxical: the

apparent dynamical phase transition from consensus to no-consensus phases seems to be a pure

finite-size effect. In the thermodynamic limit, there will be always enough mediators who would

guarantee the final consensus. When the number of agents increases, the transition become more

and more pronounced and simultaneously shifts to lower values of ε. In an infinite system, the

transition disappears.

In fact, such a situation is not uncommon in the models of social phenomena. Quite often the

interesting phenomena are “just” finite-size effects. Rather than being discarded as marginal, these

phenomena pose fundamental questions on how to deal with large but still finite systems. And this

is one of the pivotal questions of the science of complexity.

1.2.4 Econophysics

A branch of sociophysics

Among the various aspect of social life economy is the one which touches virtually anybody.

Therefore, in the ages of science it seems inevitable to describe and govern economy on a scien-

tific basis. In the places like Prague such efforts are unfortunately often related to the bankrupt

“scientific” theories of Marxism-Leninism. It is therefore quite understandable psychologically

that the attempts to employ somewhat more exact intellectual habits à la physique in economics

is not always welcome in the professional community. However, in my view it is vital to defend

the scientific spirit even in the areas where it is considered suspicious. Therefore, I consider very

useful to take all attempts to bring exactitude to the fields like economics. If physics proves really

useful here, why not using it? This is the motivation for the field of econophysics. I will discuss
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just two problems where physical approaches succeeded, at least partially. The first of them con-

cerns the distribution of wealth in society, the second deals with the microscopic details of trading

at the stock market.

Wealth distribution

The perspective for survival in a modern capitalist economy is often reduced to various measures

of individual and corporate wealth. Disproportions in wealth distribution across society are also

causes, either virtual or actual or both, of social tensions, resulting in incessant dynamics affect-

ing the whole social structure. The distribution of wealth (expressed by diverse indicators) was

therefore the first concern in quantitative analyses started in 19th century.

If there were a gallery of founding fathers of what is now econophysics, surely it would include

Vilfredo Pareto. In his book Cours d’économie politique [65], published in 1897, he formulated

the law for income distribution stating that the number N of individuals having an income greater

than v is

N =
A

(v + b)α
(1.19)

where b is a constant very close to zero and the value of the exponent α lies between 1 and 2.

A closer look reveals, unfortunately, small but systematic deviations from the power-law de-

pendence, which are more pronounced at low incomes. Eventually, a consensus grew that the

universal Pareto law is indeed applicable for a small fraction of society enjoying high incomes,

while the rest of society is governed by non-universal laws, i.e. distribution of lower incomes

is sensitive to the details of the actual social situation [116–118]. In fact, it is not so much the

functional form of the Pareto law but its spatial and temporal stability that is intriguing. Indeed,

while the value of the exponent α may slightly vary from one society to another, the very fact of

the power-law tail in the distribution is valid almost everywhere. Some investigations suggest that

the range of validity of the Pareto law may extend as far in the past as to ancient Egypt of the

Pharaohs [119].

Non-conservative scattering model

In the early 1960s B. Mandelbrot came with the idea that wealth might be described according to

the Lévy distribution [120] which possesses the nice property of having a power-law tail at v → ∞
like Eq. (1.19). Interestingly, this line of thought led Mandelbrot further to the discovery of Lévy

distribution in the price changes of cotton [66] and this was (according to his personal testimony)

the turning point which eventually resulted in the introduction of fractals and their wonderful new

world [121].

It was also Mandelbrot [120] who first suggested that the dynamics of wealth distribution in so-

ciety might be modelled similarly as the energy distribution within a large ensemble of interacting

particles. As particles (people) interact, energy (wealth) is redistributed among them. Unfortu-

nately, as Mandelbrot noticed, energy is distributed exponentially, while wealth follows the Lévy

distribution. Therefore, the analogy was not pursued further for a very long time.

Instead, wealth distributions were modelled by various stochastic processes of multiplicative-

additive type. The main lesson from them was that in order to obtain a power-law tail the Pareto

law requires, wealth must not be a strictly conserved quantity. And this is just the idea I used in my
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Figure 1.12: The ultimate source of the increase of total wealth of interacting agents is the energy

coming from the Sun.

paper [Slanina04]. Partially I took inspiration from the earlier studies on the inelastic scattering

processes in granular gases [122]. You can make a granular gas yourself in your garage if you shake

an oil can partly filled with sand. The grains of sand keep moving as long as you keep shaking. The

energy dissipation at collisions makes them come to rest quickly after you stop injecting energy

from the outside.

I imagined an opposite situation. Instead of sand grains I considered individuals involved in

an economic exchange. At each scattering event, the wealth is redistributed, but the total sum

increases and, on average, interaction brings profit to all. Of course, the non-conservation of

wealth is due to the fact that the whole economic system is open and the source of wealth increase

can be traced up to the energy influx from the Sun (see Fig. 1.12). The wealths of the agents i and

j affected by a scattering event change according to
(

vi(t+ 1)
vj(t+ 1)

)
=

(
1 + ǫ− β β

β 1 + ǫ− β

)(
vi(t)
vj(t)

)
. (1.20)

The parameter β measures the amount of the exchange, while ǫ is the non-conservation parameter.

The situation ǫ < 0 corresponds to the known case of granular gas with dissipation. Unfortunately,

the solution cannot be analytically continued to positive ǫ, because there is a singularity just at

ǫ = 0. Therefore, the solution must be found anew. This is what I did in [Slanina04].

As the total wealth increases, there is no true stationary solution, but if the time-dependent

distribution is rescaled by the average wealth, w = v/v, the following distribution is finally found

Φ(w) =
(α− 1)α

Γ(α)
w−α−1 exp(−α− 1

w
) . (1.21)

Clearly, the distribution exhibits the desired power-law tail. The Pareto exponent α depends on

the parameters β and ǫ. At very low incomes the probability is suppressed, in accordance with

published empirical data [118]. Therefore, the result (1.21) can be considered as a fairly successful

model for the wealth distribution seen in reality.

Price fluctuations and order books

It is not only the number on your account statement that matters to you. Equally important question

is how much of this or that commodity you can buy, if you need it. That is, what are the prices
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for order-book dynamics. The line is the power x−1.

of things. The things which are traded most are the least useful by themselves: currencies, shares,

bonds, and the like. These things are not sold in shops but at the stock market, more specifically

at a stock exchange. The stock exchange is a highly complex organisation which, on one hand,

provides a space for others to perform their trades, but on the other hand, pursues its own goals, or

even more precisely, an organisation which is owned by somebody and serves to the goals of the

owners.

In addition, the organisation is managed and structured so that these goals are achieved most

efficiently. That is why the internal functioning of various stock exchanges (New York Stock

Exchange, London Stock Exchange, Paris Bourse, NASDAQ, Deusche Börse, etc.) looks different.

Now, the electronic trade becomes widespread and the instrument to match the offers to buy and

sell is the order book.

Orders are requests of selling or buying a specified amount of shares or commodity. Limit

orders specify the price at which the deal is to be executed. They wait until somebody is willing to

accept such price. Market orders do not specify the price but are executed immediately at the best

price available. The order book is the double list of waiting limit orders. New orders are inserted

as they come and are wiped out when they meet a partner and are executed. Therefore, the order

book is a dynamical system with a long memory. Physically, we can view the order book as a

one-dimensional system, a price axis on which particles of two types are deposited. Particles of

type A correspond to sell orders, particles of type B to buy orders. Clearly, particles of type A are

always on the right of the particles of type B; otherwise a trade occurs and the orders are removed.

The current price lies in the middle between the lowest A and the highest B.

There are many models of order books which differ in the ways the particles are deposited and

the trades are performed. Two articles of mine [Slanina01a] and [Slanina08] will be discussed

in the following. Moreover, I contributed to the field also by papers [113, 123] which deal with

the interacting gaps model, introduced by Sorin Solomon. Interestingly, this model, as I and my

student A. Svorenčı́k showed in [113], is yet another example of a one-dimensional system very

well described by a mean-field-like approximation, as were the ricepile [Slanina02] and 1D Sznajd

[SlaSznPrz08] models discussed above.
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Random matrix multiplicative process

In the paper [Slanina01a] I investigated a very simple version of an order book. In reality, the

density of orders on each side from the price is a very complicated and fluctuating function. A very

drastic but useful approximation consists in taking only average densities ρ± above and below the

price. Or, equivalently, we can work with the virtual price changes which are related to the densities

as x± = 1/ρ±. It comes out that the dynamics of the vector X =
(
x+

x−

)
due to arrival of orders and

executing trades can be written as a matrix multiplication process X(t + 1) = M(t)X(t) where

the matrix M(t) is chosen randomly from the set {M0,M+,M−} with probabilities p0, p+, and

p−, respectively.

The distribution of price changes (the most studied quantity in empirical econophysics) is then

given by the probability distribution of the elements of the vector X . It can be found very easily

by numerical simulations (see Fig. 1.13) showing a power-law tail ∼ x−α−1 with α = 1. However,

this is not a very appealing procedure, because numerical results can be already obtained using

much more realistic models. Fortunately, and this is the central point of the paper [Slanina01a],

there is a way how to calculate the exponent α analytically. I got the value α = 1 exactly, in full

accord with the numerics. The method can be further refined to include non-constant densities ρ±.

These results are not contained in [Slanina01a], but appear in my forthcoming book [71].

Deposition models

The model discussed in the previous paragraph is elegant but much too idealised to be directly com-

parable with reality. In [Slanina08] I performed detailed numerical study of several more realistic

models of order books. The first of them was the model originally devised by Bak, Paczuski,and

Shubik [124]. In this model, there are no market orders, but the limit orders may freely diffuse and

particles of type A and B annihilate each other when they meet. In fact, it is an extreme case of

a reaction-diffusion model. The immediate annihilation makes the analytical treatment more dif-

ficult, but here I concentrated on simulations anyway. Unfortunately, I found that the distribution

of price changes totally contradicts the empirical data, so that this model is discarded from further

considerations.

Much better does the generalisation of the old Stigler model [125], which is known under the

name Genoa artificial market. I have shown that the distribution of price changes as well as long

autocorrelations of absolute price changes are very well in accord with the empirics.

Still, the Genoa model does not reflect entirely the “microscopic” details of the deposition and

execution of orders. The main ingredient lacking are the market orders. They are introduced in the

models of Maslov [126] and Farmer et al [127], which I thoroughly investigate in the rest of the

paper [Slanina08]. I found that the most promising scheme is the Maslov model with “evaporation”

of orders (the person who issued the order is allowed to cancel it prematurely). In Fig. 1.14 we

can see an example of the price-time diagram of the evolution of the order book in this model.

(Note that the vertical axis shows the logarithm of price, not the price itself!) We can see that

the price is pinned between the A and B particles, but time to time it performs big jumps when

the density of orders on one side diminishes due to a random fluctuation. This way the simple

fluctuations of density are translated into a very complex fluctuations of price, exhibiting power-

law tails in distributions and very slow decay of autocorrelations, indicating a long memory. In
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Figure 1.14: Example of the evolution of the Maslov model with cancellations. Each horizontal

segment represents an order, placed where the segment starts and cancelled or executed where the

segment ends. The rugged line is the time dependence of the logarithm of price.

short, the process is strongly non-Markovian. I consider this model a good candidate for realistic

simulations of what happens on the stock market.

1.3 Summary

My works collected in this thesis pertain to a fluid area of inter-disciplinary physics. Despite the

diversity of the problems solved, there are several common approaches which repeat themselves

in most of them.

The first one is the use of stochastic processes. This is a simplification which is not obvious,

as the models of non-equilibrium physical systems always tend to prefer many-particle systems

with Hamilton dynamics, as testified by the emphasis on molecular dynamics simulations. Indeed,

even the use of the Boltzmann equation may seem suspicious when we investigate the most funda-

mental questions like the fluctuation symmetries [128]. Similarly, the description of real granular

media cannot stop at the level of stochastic sandpiles introduced by Bak [29] or dissipative scat-

tering along the lines of the Maxwell model [122]. Therefore, the stochastic modelling may be

insufficient when we require predictions comparable with reality.

On the other hand, the science of complexity considers irrelevant (very much like the renor-

malisation group theory) many of the features of the dynamics which are contained in the true

Hamiltonian description. It is not too much exaggerated saying that in the complex dynamics

the Hamiltonian is irrelevant and the system is described algorithmically. Indeed, most models de-

scribed in this thesis are defined by a simulation algorithm, which is only afterwards translated into

transition probabilities of a certain complicated Markov process. This is the case of all the self-

organised critical models shown here, i.e. ricepile [Slanina02], cracking [Slanina99a], as well as

friction [Slanina99] and evolution [SlaKot00] models; this is also the case of the order book mod-

els [Slanina08], minority game [Slanina01], and the opinion and consensus models [SlaLav03],

[SlaSznPrz08], and [Slanina11a]. You can see that these methods permeat the whole thesis.

Besides the algorithmic character of the models described, the most frequent methodological

approach was the use of the mean-field approximation, under several disguises. The most straight-
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forward procedure is placing the interacting entities on a complete graph, or allowing everybody to

interact with everybody else. This way we get rid of all problems due to the structure of the lattice

or network on which the entities reside. This was done explicitly in the voter and Sznajd mod-

els on a complete graph [SlaLav03], and implicitly in the scattering model of wealth distribution

[Slanina04].

Less transparent was the use of the mean-field schemes in one-dimensional systems, namely

in the ricepile [Slanina02], the 1D Sznajd [SlaSznPrz08], and the (one-dimensional by defini-

tion) order-book model [Slanina01a]. Also the study of spectra and localisation in random graphs

yielded closed analytical results only under mean-field-like assumptions on the solution [Slan-

ina11]. In fact, virtually all the cases where the analytical calculations were successfully carried

until the final result were also the cases where the mean-field ideology was the leading thread.

I think the small sample of interdisciplinary physics shown in this thesis suggests that physics

can be useful to other disciplines: there is a method for analysing empirical networks; there are

models of stock-market fluctuations; opinion-spreading models may help to understand election

results. A complementary question is whether the interdisciplinary science can be also useful to

physics. The results may seem ambiguous, but I still keep the optimistic attitude. For example,

the physics of dry friction and cracking (as well as wear and fatigue) is to large extent open and

little-understood. The ideas of self-organised criticality did bring progress, although they did not

offer any miraculous answers. And this is the field to which i contributed by my piece of the puzzle

[Slanina99], [Slanina99a].

To conclude, I do not want to exaggerate the importance of the physics of complex systems in

the context of other rapidly developing fields. However, there are numerous difficult and challeng-

ing problems the physics of complexity offers and it is worth spending time in attempts to solve

them. This is what I tried during the research which makes part of this thesis. The adventure was

interesting; and I believe I brought home some fruits.
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[17] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific,

Singapore 1987).

[18] D. J. Amit, Modeling Brain Function (Cambridge University Press, Cambridge, 1989).
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[101] B. Velický, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175, 747 (1968).
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Collective behavior of asperities in dry friction at small velocities
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We investigate a simple model of dry friction based on extremal dynamics of asperities. At small velocities,
correlations develop between the asperities, whose range becomes infinite in the limit of infinitely slow
driving, where the system is self-organized critical. This collective phenomenon leads to effective aging of the
asperities and results in velocity dependence of the friction force in the formF;12exp(21/v).
@S1063-651X~99!06804-X#
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Phenomena connected with mechanical properties of
complex systems have been the subject of intensive study in
the last decade. Generally speaking, the difficulty stems from
the fact that both the macroscopic scale and mesoscopic
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grains of sand is a mesoscopic object, but its properties result
in macroscopic behavior of a sand heap. Among the whole
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On the other hand, the local, short time level of descrip-
tion must take into account processes that happen at several
~or many!asperities simultaneously, or within a very short
period of time, so that they cannot be considered as uncor-
related. Several approaches in this direction were already
proposed, based on geometrical considerations@12,13#, on
Frenkel-Kontorova@16#, Burridge-Knopoff and train models
@17,18#, or on an extremal dynamics model with elastic in-
teractions@14#.

The extremal dynamics~ED! models are very appealing,
because they may grasp the ‘‘skeleton’’ of the problem, de-
spite their simplicity and rudimentary nature. Generally, ED
is based on the assumption that only one site is evolving
during one time step, namely the site which has the maxi-
mum ~or minimum: it depends on the model in question! of
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examine the energy dissipated in the course of the slip. Simi-
larly, we do not calculate the physical velocity corresponding
to the kinetic energyE during the ED evolution. So, we
isolate only those contributions to the friction force and the
macroscopic slider velocity that originate in the ED process
interrupted by instantaneous slips.

The average macroscopic velocityDv stemming from the
slips depends on the average time interval between two sub-
sequent slips. We may determine this quantityD t̄ in the time
units of the extremal dynamics process. Its relation to physi-
cal time is not straightforward, but we suppose that this am-
biguity affects only units, in which we measure time and not
the general dependence of the friction force on velocity.
Thus, we write simply
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Rule ~iv! concerning the kinetic effects means that elastic
energy dbmax is transferred from the removed asperity to
kinetic energy and the rest is left for the newly inserted as-
perity. The quantitiesD1 andD2 are absorbed by the neigh-
bors, but only if they do not exceed the kinetic energy
~which should be positive!. If they do exceed it, each of the
neighbors receives exactly half of the kinetic energy, which
is thus totally absorbed.

The kinetic effects and the slip involve several param-
eters. First, the parameterd describes how much of the elas-
tic energy tends to be converted into the kinetic energy. If
d50, the kinetic effects are turned off.

The parameterbM is the limit up to which an asperity can
absorb a portion of kinetic energy and convert it back to
elastic energy. It should be the property of the surface itself,

and velocity of the slider. If
enter the model.

e parameterEthr . In a more
e necessary to introduce the
nt the number of sites, in-
ich are to be updated, pro-
e valueE. Here we take the
u(E2Ethr). Even this pa-
of the surface, irrespective of

interpretation of the quantity
rities. We suppose that it may
ternal load. Consequently,N

rent contact area of the slider
eans that update of single
e whole system, namely, the
inetic energy is slower. The

the quantityd/N that will
nce of the friction force.
the Amontons-Coulomb law,
perties will enter the velocity
e through the parameterbM
. We will see later that it is

EMENT REGIME

ase in which no slips are al-
by the limit valueEthr5`. In
ement is infinitely slow. If the
nsformed into kinetic energy
be a slightly more compli-

del for dislocation movement
-organized critical. The criti-
law distribution of avalanche
riving. It is natural to expect

our model ford50. How-
n of infinitely slow driving,
nly one asperity is updated at
C is expected as well.
e51000. The first quantity
ity distribution of the stresses,
(bmax). The functionP(b)
lueb5bc and then suddenly
r common in SOC extremal
depends ond. The typical
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Dv51/D̄

which corresponds to taking th
the length unit and average t
asperity as a time unit. The c
process is dominant if the time
than the duration of the slip,D t̄@
taneous events!and the real len
during the ED dynamicsxED is
length,xED!xslip .

The contributionDF fric to the
this process is then proportion
one slip. Because we are using

DF fric5E

Let us now describe the ext
more formally. The model con
ring topology. Each sitei P$1,2
right neighborr ( i ). The state o
the set (E,b1 ,b2 , . . . ,bN ,d1 ,d2 ,
r ( i ) which describe the connec
ginning,E50 and bothbi anddi a
the interval~0,1!. The updating
Find the maximum stressbmax5m
Remember its old right neighb
minimum slotdmin at sitei min . ~ii
The sitei max is removed by cut
right nearest neighbors and is r
site next to it on the ring. It wil
i new5r ( i max)5r ( i min), and then
netic effects: SetE85E1dbma

5(bM2bi old
)u(bM2bi old

), D25

If E8.D11D2 , we setE5E82

bi new
8 5bi new

1D2 . If not, we

1E8/2,bi new
8 5bi new

1E8/2. ~v! S

r 1 ,r 2, random numbers distribu
0,r 1,r 2,1 we set bi ma

2r 1)bmax8 , bi new
5bi new

8 1(12r2)b

slotsd are attributed to old and
site i max, taking random numb
the interval~0,1!. ~vii! If E>Ethr
that E is set to 0 andbi anddi d
interval ~0,1!.
~1!

average slip lengthxslip as
e needed to update single
tributionDv from the ED
etween slips is much larger

slip ~i.e., slips are instan-
th travelled between slips
uch shorter than the slip

iction force coming from
to the energy dissipated in

arbitrary units, we identify

. ~2!

mal dynamics of the model
sts ofN sites connected in
. . ,N% is connected to its
the model is described by
. . ,dN) and the function
vity of the sites. At the be-
e uniformly distributed in
teps are the following.~i!
xi(bi) located at sitei max.
ld5r ( i max). ~ii! Find the
Change of connectivity:
g its links to the left and

nserted betweeni min and the
ave a new right neighbor
etr ( i min)5 i max. ~iv! Ki-
bmax8 5(12d)bmax, D1

bM2bi new
)u(bM2bi new

).

12D2 , bi old
8 5bi old

1D1 ,

set E50, bi old
8 5bi old

ress redistribution: For

d uniformly in the triangle
r 1bmax8 , bi old

5bi old
8 1(r 2

ax. ~vi! New values of

ew neighbors as well as to
s uniformly distributed in
lip occurs, which means

tributed uniformly in the

without any resort to the load
d50, the parameterbM does not

The slip is determined by th
realistic description, it would b
function R(E), which would cou
cluding the extremal sitei max, wh
vided the kinetic energy has th
simplest formR(E)531(N23)
rameter should be the property
the load and velocity.

Finally, we comment on the
N, the average number of aspe
serve as a measure of the ex
does not depend on the appa
and the track. LargerN also m
asperity has less impact on th
transfer of elastic energy to k
same effect has smallerd, so it is
appear in the velocity depende

So, in order to conform with
we expect that the surface pro
dependence of the friction forc
and combinationsEthr /N andd/N
exactly the case.

III. INFINITELY SLOW MOV

Let us first investigate the c
lowed, which can be expressed
this case, the macroscopic mov
elastic energy could not be tra
E, i.e., if d50, the model would
cated version of the Zaitsev mo
@21#, which is known to be self
cality manifested by the power-
sizes is due to infinitely slow d
self-organized criticality also in
ever, even ford.0 the conditio
which means technically that o
a time, is also satisfied and SO

We simulated systems of sizN
we measured was the probabil
P(b) and maximum stressesPmax
is continuous up to a critical va
drops to zero, which is behavio
dynamics models. The value ofbc
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del@21,19#, but close to the
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behavior is shown in Fig. 2 ford
A fingerprint of self-organize

ing behavior of the forwardl-av

Pfwd~s!5s2tg~su

The l avalanche starts whenbma
ends whenbmax drops below the
the avalanche is the number of
the end of the avalanche. For n

FIG. 3. Rescaled forward
51000 andd50. The critical thresh
ing exponents aret51.28 and 1/s5
108. The corresponding thresholdsl
bols in the legend.

FIG. 2. Distribution of stresse
Pmax(bmax) for N51000,d50.01, an
old is infinite @full line for P(b) an
Ethr /N50.08 @dashed line for P
Pmax(bmax)#. The number of steps
0.01.
criticality is, e.g., the scal-
anche sizes

lcu1/s!. ~3!

exceeds the valuel and
aluel again. The sizes of
pdate steps from the start to
merical reasons it is simpler

to investigate scaling of inte
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determined.
Figures 3 and 4 show the da

scaling of the form~3!. The bes
the following values of the para
lc50.7475, t51.28, and 1/s5
andbM50.9 we havelc50.519,

There is a minor difference
best fit ford50 andd50.001. H
difference is within the numeric
and the model belongs to the
spective of parameterd.

By qualitative inspection of
lapse for different choices of th
error bars. Thus, we finish with
nents of our model:

t51.2760.02, s5

The forward avalanche expo
one-dimensional~1D! Zaitsev mo
Sneppen interface growth mod@
to be compared is the charge-d
Olami @24# and the anisotropic i
Ref. @22#, which have, however,
t. The closest universality clas
Sneppen model (t51.26), but th
class is smaller than in our mo

Whether this difference is d
the two models being in a diffe
be stated with certainty from o
would like to stress a structural
which may explain the similarit
usual interface growth models@25
nonlocal one. After a single gr
single particle!, an unbounded

alanche distribution forN
ld islc50.7475 and the scal-
.6. The number of steps is
e indicated next to the sym-

FIG. 4. Rescaled forward a
51000,d50.001, and bM50.9. T
50.519 and the scaling exponent
number of steps is 108. The corres
cated next to the symbols in the le

b) and maximum stresses

M50.9. The energy thresh-
dotted forPmax(bmax)# and
b) and dash-dotted for
106.
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y grows, until it reaches the
n the system is reinitialized.
7. If the threshold is close to

, due to fluctuations, but for
d the slips occur with fixed
of stepsDt between slips is
aches the stationary value.
tion force by Eq.~2! and the
city, according to Eq.~1!, the
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ults for variousd andbM . If
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energy to its stationary value,
The stationary value is taken

the kinetic energyE, for N
ps occur in the moments when
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performed in order to reestabli
the interface. So, the range of
the evolution, according to the
interface. Similarly, the Zaitse
extremal dynamics models, is
finding an extremal site, its neig
the range of neighborhood is
like the Sneppen model, does
teractions, but is established by
of the quantityd ~the slot!. We
which the site, where new asp
random, instead of using the sl
mean-field behavior characte
s50.5.

IV. FRICTION AT NONZE

In the preceding section we
ties of the model. In order to ac
ment, transient properties are o
the evolution of the kinetic ene
stationary valueE` , if we forbid
Fig. 5 we show the time evolut
ues of the model parametersd, bM
N. The most important obser
valueE` /N depends onbM , whil
N is within the noise level.~We
and smalld suppress the relati
energy around the stationary
cance is clear: the static friction
Eq. ~2! equal toE` , is proporti
proportional to the normal lo
Amontons-Coulomb law for sta

The approach of the kinetic
is exponential, as is demonst
approach is directly reflected i
the friction force, as we will se

FIG. 5. Time evolution of the k
parameters are as follows:N5100
line!, N5104, d50.001, andbM5
d50.001, and bM50.5 ~long d
d50.001,bM50.9 ~short dashed lin
the single-step property of
teractions fluctuates during
actual configuration of the
model, like most of other
cal in the sense that after

bors are also updated, while
ed. In contrast, our model,
ot have a fixed range of in-
he position of the minimum
mulated also a version in
rity is inserted, is chosen at
In this case we observed
ed by exponentst51.5,

O VELOCITY

ealt with stationary proper-
unt for macroscopic move-
nterest. First, we investigate
y and its approach to the
he slips, i.e.,Ethr5`. In
n ofE/N for different val-
and number of asperities
tion is that the stationary
the dependence ond and
bserve that both largeN
fluctuations of the kinetic

alue.! The physical signifi-
orce, which is according to
al toN, which is in turn
d. Thus, we recover the

friction.
ergy to its stationary value

ted in Fig. 6. This type of
the velocity dependence of
below.

If we set the thresholdEthr,E
is observed: the kinetic energ
value of the threshold, and the
This regime is illustrated in Fig.
E` , the slips are less regular
smaller values of the threshol
frequency. The mean number
determined by the wayE appro
BecauseEthr is related to the fric
mean period of slips to the velo
velocity dependence of the frict
model. Figure 8 shows the res
we denoteF05E` the static fri
plotting the velocity dependen
that the following law is well sa

DF fric5F0F12expS

etic energy per asperity. The
d50.01, andbM50.9 ~full
9 ~dotted line!, N51000,
hed line!, and N51000,

FIG. 6. Approach of the kinetic
for N5104, d50.001, andbM50.9.
asE` /N50.155.

FIG. 7. Time dependence of
5103, d50.1, andbM50.9. The sli
E drops to 0.
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state the probability distribu-
wer lawPjmp(s)5s2p. For
n our model, as indicated in
rison of the distributions for
order to give an idea of the
rections to the power-law be-

macroscopic velocity,Ethr
Ethr decreases, the velocity
chjmp(s) obeys a power law
have time enough to develop

tem, but only at shorter dis-
e velocity dependence of the
elations between the asperi-
ystem. In contrast to the theo-
nce stems from the aging of a
is a collective effect. The age
orrelations. For zero velocity
e and the age is infinite as

IONS

ry friction based on the con-
racting through a system of
tremal dynamics model in or-
during the movement of the
of the friction force with in-

s approaching zero, the fric-
rigin of the velocity depen-
erties of a single asperity, but
any asperities. At zero ve-

ly correlated, self-organized

f t
d
5

p lengths for N5103, d
is the case without slips (Ethr

ips allowed and the values of
sition where the lines reach the
, the distribution of jump lengths
e!, andN5103 ~dotted line!.
that the upward bend in the dis-
ite-size effect.
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with some constantA characteri
found A53.660.3. The deviati
dence forDv,d/N are due to ti
lead to less regular slips. Howe
the relative fluctuations decrea
dependence~5! to hold for all v
limit N→`.

For large velocities the fricti
;1/Dv. The same velocity depe
a different approach@12#.

BecauseF0 was found to be
normal load, the form of Eq.~5!
Amontons-Coulomb law.

Now we turn to the influenc
ment, connected to the slips
behavior investigated in the la
izes the values ofb and d and
critical attractor begins from s
long-range correlations charact
not fully develop. The differenc
distribution of stresses, Fig. 2.
served in the infinitely slow driv
sition of the edge determines th
forward avalanches, so we exp
will hold, as soon as the macro
velocity. However, the most d
breakdown of criticality due to t
calculation of the distribution o
time stept the maximum stress
next step at sitei t11 , we can c
tween these sites as follows.
determines the connectivity in t
connected toi on the right-hand
defined as follows: starting fromi
to the right neighbor of the ex
Then, applyings2 l times the f
at i t11 . So, s is suc

FIG. 8. Velocity dependence o
d50.001, bM50.9(1), N5103,
5103, d50.01, bM50.9(s), N
50.9(n).
ic of the model. We have
s from the above depen-
e fluctuations ofE, which
r, as we already mentioned,

e withN, so we expect the
ocities in thermodynamic

force decreases asDF fric
dence was found also using

oportional toN, i.e., to the
in conformity with the

of the macroscopic move-
the self-organized critical

section. Each slip reinitial-
e evolution towards the
atch. This means that the
istic of the critical state can-
can be seen already in the
he sharp edge inP(b) ob-
g is smeared out. The po-
critical thresholdlc for the

ct that no scaling of type~3!
opic movement has nonzero
ect way to investigate the

slips seems to us to be the
jump lengths. If in certain
s found at sitei t and in the
pute spatial distance be-

tt( i ) be the function that
et, namely,r t( i ) is the site
ide. The jump lengths is

and applyingr t we come
emal site at timet, r t( i t).
nctionr t11 we must end

that i t115r t11(r t11

@•••rt11„r t( i t)…•••#), wherer t11 is
In the self-organized critical

tion of jump lengths is the po
Ethr5` it is actually observed i
the inset in Fig. 9. The compa
N5103 andN5104 is shown in
magnitude of the finite-size cor
havior.

The situation with nonzero
,E` , is shown in Fig. 9. When
increases and the scale on whiP
shrinks. The correlations do not
on the scale of the whole sys
tances. So, we may connect th
friction force to the level of corr
ties, which are present in the s
ries where the velocity depende
single asperity, here the aging
corresponds to the range of c
the correlation length is infinit
well.

V. CONCLUS

We presented a model of d
ception of slider and track inte
asperities. We proposed an ex
der to describe the processes
slider. We found the decrease
creasing velocity. For velocitie
tion force has finite limit. The o
dence is not in a change of prop
in collective effects, involving m
locity, the system is in a high

he friction force, forN5103,
50.001, bM50.5(3), N
500, d50.01, and bM

FIG. 9. Distribution of jum
50.001, andbM50.9. The full line
51`). The dotted lines have sl
Ethr /N are indicated next to the po
right edge of the figure. In the inset
is given ford50 andN5104 ~full lin
Note that the inset makes it clear
tribution for Ethr51` is a mere fin



critical state. The values of the exponents are close to the
Sneppen interface model; however, it is not clear from our
data whether the universality class is the same.

Increasing the velocity gradually destroys the correla-
tions. It is possible to view the buildup of the correlations as
a collective asperity aging mechanism, as a counterpart to
the single asperity aging due to plastic deformation. Such
collective aging leads to a different velocity dependence of
the friction force than in the models considering single as-
perity aging and may be thus tested experimentally. A two-
dimensional variant of our 1D model would be necessary for
a real comparison. However, generalization to an arbitrary
dimension is straightforward.

This observation reveals also the limits of applicability of
our model. It is appropriate to situations where the plastic
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There can also be another source of velocity dependence
different from the exponential one, which we found in our
work. The function R(E), which gives the number of
changed asperities in one step, determines when the slips
start and consequently what will be the average velocity for
a given friction force. However, we expect that realistic
forms of R(E) have a more or less sudden increase at a
certain value ofE. We expect that all forms with a suffi-
ciently sudden jump will give the same universal behavior as
the stepwise form used by us.

As for the geometrical assumptions of the model, they are
naturally very crude. The asperities in the model do not oc-
cupy places in a realistic one-dimensional Euclidean space,
but rather on an abstract topological line. Taking into ac-
count the real geometry of the space would make more com-

place where the new asper-
rue elasticity of the medium
owever, our results show that
friction force is governed by

ical state is approached. We
versal and making the system
e universality class, as long
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Cracking piles of brittle grains
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A model which accounts for cracking avalanches in piles of grains subject to external load is introduced and
numerically simulated. The stress is stochastically transferred from higher layers to lower ones. Cracked areas
exhibit various morphologies, depending on the degree of randomness in the packing and on the ductility of the
grains. The external force necessary to continue the cracking process is constant in a wide range of values of
the fraction of already cracked grains. If the grains are very brittle, the force fluctuations become periodic in
early stages of cracking. The distribution of cracking avalanches obeys a power law with exponentt52.4
60.1. @S1063-651X~99!04108-2#
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I. INTRODUCTION

There are many phenomena concerning granular matter
which have attracted the attention of physicists@1#. The
source of the complexity of sand and similar systems stems
from a highly nonlinear mechanical response on the mesos-
copic scale~i.e., on the scale of single grains! which brings
about complicated behavior on many scales, up to the mac-
roscopic one, even though there is usually no scale-free be-
havior @2#. This feature brings the physics of granular matter
close to other complex mechanics phenomena, like friction
@3# and wear@4#, where the interplay of mesoscopic and
macroscopic phenomena is the central point of attention.

The dynamics of sand may be studied from two points of
view. Slow driving by adding single grains gives rise to ava-

granular materials is the proce
produced, i.e., the fragmentatio
ous practical importance of this
@25#. In statistical approaches
grains which are cracked are co
of each other or random two-pa
are taken into account. Such m
situation in mills. Different mec
when the bulk of the heap of gr
compression, like in manufactu
cal industry. Similar problems w
studying the localization of def
heaps of plastic cylinders@26# a
matter in silos under pressure@27

In the present work, we intro
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st
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sc
p

,2
a
l19
de

n

ers the cracking of grains within a pile of other grains, some
s not. So we will not investi-
ments, like in Ref.@23#, but
sters of cracked grains and

ons occurring during the pro-

llows. In the next section the
III is a gallery of simulation
c. IV, draws conclusions from

THE MODEL

dimensional pile of granular
ar silo. A physical realization
d by two parallel glass plates,
nds to the grain size. The lat-
d, while the upper slot is open
applied to the surface of the
rains are brittle~egg shells
ple!, which means that if the
ds a threshold valuewthr , the
nce of this, the stress pattern

lapsed grain changes, which
se and finally leads to a kind
at process, the piston is kept
orce decreases, until the ava-.c

he American Physical Society
lanches@5,6# and stratification p
ing by periodic or persistent ex
cause, for example, surface pa
grain-size separation@1#. The d
sand and air may lead to beau
ing of hourglasses@8#.

On the other hand, the mo
about static properties was the
heaps, either free or embedded
@2,9–13#. The most famous phe
mum of stress directly below
measured by Sˇmı́d and Novosad@
theoretically by Bouchaud and
planation is based on the fact
the granular packing, which su
very important phenomenon c
static avalanches due to large-
caused by very small external
slip motion of sand in a tube@19

Both of the above phenomen
within the scalar arching mode@
tion of the scalar stress model
by Liu et al. @13,21,22#.

A less studied phenomeno
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enomena@7#. Intense driv-
rnal forces was observed to
rn formation~dunes, etc.!or
amics of the mixture of
ul phenomena like the tick-

frequently asked question
ress distribution within sand
n various kinds of containers
menon is perhaps the mini-
e top of a conic sandpile,
4# and later on explained
-workers@15–17#. The ex-

at arches are created within
port most of the weight. A
nected with arching is the
ale reconstruction of arches,
erturbation@18#, and stick-
0#.
are currently well described
#, which is a generaliza-
veloped for granular matter

from the point of view of

of them already cracked, other
gate the size distribution of frag
the spatial configuration of clu
also the external force fluctuati
cess of cracking.

The article is organized as fo
model is introduced. The Sec.
results and the last section, Se
the results obtained.

II. DESCRIPTION OF

Our model describes a two-
matter contained in a rectangul
of this situation may be prepare
the distance of which correspo
eral and bottom slots are close
and a uniform external force is
pile by a kind of piston. The g
may serve as a popular exam
stress the grain supports excee
grain collapses. As a conseque
in the neighborhood of the col
may cause another grain collap
of internal avalanche. During th
immobile, so the total external fz
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lanche stops. How much the force decreases as a conse-
quence of cracking one grain is described by a material-
dependent factora,1. We may expect that for more ductile
grains the drop of the force will be smaller and the parameter
a will be closer to 1. For this reason we will calla the
ductility.

The stress within the pile is a tensor, but recent studies
@17# showed that for many purposes only the diagonal ele-
ment corresponding to the horizontal axis is important. This
simplification leads to a scalar model of stress propagation in
granular matter, which will be a basis of our model here.

We suppose the grains are placed regularly on a square
lattice rotated by 45°, so that the columns and rows of grains
correspond to the diagonals on the lattice. Each row isL
grains wide; each column isH grains high. The grains are in
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r the load instead of it. How-
already cracked grains, the

be stochastic as it was before
of the randomness, i.e., the

ged.
local stresses are recom-

t yet cracked and exceed the
e established, and this pro-
cracked grains exceeding the
alanche stops. Then we pro-
The external force is in-

another grain is cracked again
starts. We will call the ava-

of grains cracked during the
inues as long as there are any

tem, the model has two free
asures the ductility of the
omness in the stress propa-
ds to the fully deterministic

ESULTS

load is mostly transferred to
n increased their chances of

the creation of clusters of
d merge as the cracking pro-
y of the cracked clusters is
ve the formation of ‘‘arches’’

The shape of the ‘‘legs’’
y grow large. The dependence
ilitya and randomnessb is
argerb the typical size of the
hile for smallb the sample
’ which are also more sym-
domness. The ductility has a
hology: in the case of more

d areas for a sample withL
steps. Every cracked grain is
parameters area50.9 and b
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contact with the nearest neigh
domness in the size, shape, an
into account by a stochastic ru
gation of stress.

Denotewik the stress on th
from above!andkth column. It
the stress to its left bottom ne
its right bottom neighbor. We
grains themselves, compared
rule of stress propagation is de

wi 11,k5qikwik1~12qik21

wi 11,k5~12qik!wik1qik11

We impose cylindrical boundar
topmost row is subject to exter
call the normalized sumF5(kf k

The simulation proceeds as
taken randomly from the unifor
„(12b)/2,(11b)/2…. Initially a
local stresses are computed a
step t, the force is uniformly in
noncracked grain, say, at posi
old wthr51. Then, the time is st
lanche starts. The grain is cra
quences.

First, the external force is lo
response functionG( i ,k;k8) suc
external force on columnk8 is f k8
suppose that the response is
and the correlation lengthj is sh
assume that the formG( i ,k;k8)5
proximation, which does not ch
the model. This leads to a lowe
of the column in which the crac

Second, if grain in the sam
21), is not cracked, the value
neighbor of (i ,k) is set to 1. If (i ,k
a new random value from the
interval „(12b)/2,(11b)/2…. A
right hand side: if (i ,k11) is
neighbor of (i ,k) has a newq50
new q is a random number fro
above. These rules correspond
servation, that the cracked grain
ors on the lattice. The ran-
position of the grains is taken
which describes the propa-

grain ini th row ~counted
nsfers the fractionqik of
bor, the fraction 12qik to
eglect the weight of the
the external force. So the

cribed by the equations

ik21 for oddk,
~1!

ik11 for even k.

conditions,wi05wiL . The
al forcesw1k5 f k . We will

the total external force.
llows. The numbersqik are
distribution on the interval
f k are set equal and the
ording to rules~1!. At time

reased until stress on one
n (i ,k), reaches the thresh-
pped and the cracking ava-
ked, which has two conse-

ered. We can introduce the
that the reduction of the
@12G( i ,k;k8)# f k8 . We
calized,G;exp(2uk2k8u/j),
rt,j!L. In this case we
12a)dkk8 is a good ap-
ge the universality class of

ing of the force only on top
ed grain lies,f k˜a f k .
row to the left, i.e., (i ,k

corresponding to left top
1) is cracked,q is given
niform distribution on the
milar rule applies on the
t cracked, the right top

f ( i ,k11) is cracked, the
the same distribution as

o a very simple intuitive ob-
no longer bears the load, if it

has neighbors, which can bea
ever, if the neighbors are also
stress propagation remains to
the cracking, but the realization
values of the numbersq, is chan

After each change ofq’s, the
puted, the grains which are no
threshold are cracked, newq’s ar
cedure is repeated until no non
threshold are found and the av
ceed to the next time stept11.
creased up to the value when
and a new cracking avalanche
lanche sizeDc the total number
avalanche. This algorithm cont
noncracked grains left.

Besides the size of the sys
parameters. The parametera me
grains andb the degree of rand
gation. The limitb50 correspon
case.

III. SIMULATION R

When a grain is cracked, the
its neighbors, which have the
being cracked. This leads to
cracked grains, which grow an
ceeds. The typical morpholog
shown in Fig. 1. We can obser
with one dominant ‘‘leg’’ only.
resembles the letter S when the
of the morphology on the duct
shown in Figs. 2, 3, and 4. For l
cracked clusters is smaller, w
contains only few big ‘‘arches,’
metric than those for larger ran
different influence on the morp

FIG. 1. Morphology of cracke
5500 andH5500, after 5000 time
represented by a black dot. The
50.25.

slanina
Text napsaný psacím strojem



ra
a
q

ed

b

s,

ai
fo
f
s

ng
to
r

overall behavior of the force
sient period, where the force
s again, a stationary cracking
d by constant average force
raction of cracked grains is
ationsn,nmax is a sufficient
depends slightly ona. For
le for a50.9 we observed

forceFav decreases withb.
nge fromFav.0.3 for b51
0.6 for b50.1 ~minimum

there are fluctuations which
f the disorder in our sample.

d
e

d
e

d areas for a sample withL
e steps. The parameters area

al forceF ~solid line!and frac-
line!for the sample withL

5.

1942 PRE 60FRANTIŠEK SLANINA
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brittle grains, i.e., with smalle
mostly concentrated in the top p
ductile grains lead to cracking e
bulk of the sample.~We perform
ductile grains,a close to 1, and
shift the cracked regions to the
the ductility is increased.!

When the cracking proceed
tinue fluctuates. Each cracking
the force, which then rises ag
dependence of the external
cracked grainsn for a sample o
see that the force fluctuate
independent valueFav.0.55 duri
cess, at least from timet51000
more clearly observed for large

FIG. 2. Morphology of cracke
5500 andH5500, after 5000 tim
50.9 andb50.5.

FIG. 3. Morphology of cracke
5500 andH5500, after 5000 tim
50.9 andb50.1.
, the cracked areas are
rt of the sample, while more
ually probable in the whole
simulations also for very

the trend was observed to
ottom of the sample, when

the force necessary to con-
avalanche means a drop of
n. Figure 5 shows the time
rceF and the fraction of
2003200 grains. We can

around a nearly time-
the large part of the pro-

t55000. This was even
samples~in our simulations

5003500). So the picture of the
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suddenly drops and slowly rise
regime develops, characterize
Fav. This regime holds if the f
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randomness studied!.

Around the average force,
reflect the unique realization o

areas for a sample withL
steps. The parameters area

areas for a sample withL
steps. The parameters area

FIG. 4. Morphology of cracke
5500 andH5500, after 10 000 tim
50.5 andb50.5.

FIG. 5. Time evolution of extern
tion of cracked grainsn ~dashed
5200, H5200, a50.9, andb50.2
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We investigated statistical pro
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the case ofb51, where the distribution was close to expo-
nential, instead of power law. The breakdown of the power
law, whenb approaches 1, remains to be studied.

IV. CONCLUSIONS

We have found that a two-dimensional pile of brittle
grains packed in a rectangular container exhibits nontrivial
behavior when an external force is applied from above and
the grains are cracked. The cracked grains form clusters with
different morphologies, depending on the ductility of the
grains and on the degree of randomness in the packing. The
degree of randomness seems only to determine the charac-
teristic scale of the cracked clusters: lower randomness leads
to larger clusters. This fact can be understood rather easily if
we realize that a cluster occurs when the local stress exceeds
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final stage. For very brittle grains, the force oscillates rather
regularly even in the stationary regime.

Cracking one grain may result in an avalanche of further
crackings. The distribution of avalanche sizes depends on
time. While in the transient period the distribution is not
scale invariant, in the stationary regime the distribution of
avalanche sizes obeys a power law. This is an indication that
a sort of criticality is present in the cracking process. The
value of the exponentt.2.4 is larger than the avalanche
exponents found in most self-organized critical~SOC!mod-
els known to us, where typicallyt<3/2 @28–31#. On the
other hand, the dynamics of our model resembles the Olami-
Feder-Christensen~OFC! model of earthquakes@32#, where
the exponent varies in a wide range, comprising also the
value found in our model. However, the mechanism leading

C model is not completely
in that model is debated@33#.

our model a new mechanism
k, different from the usual
8# or extremal dynamics

e the simulation results with
e were not able to find any
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Abstract. A self-organized branching process is introduced to describe one-dimensional rice-pile model
with stochastic topplings. Although the branching processes are generally expected to describe well high-
dimensional systems, our modification highlights some of the peculiarities present in one dimension. We find
analytically that the crossover behavior from the trivial one-dimensional BTW behaviour to self-organized
criticality is characterised by a power-law distribution of avalanches. The finite-size effects, which are
crucial to the crossover, are calculated.

PACS. 05.65.+b Self-organized systems – 05.70.Jk Critical point phenomena – 45.70.-n Granular systems

1 Introduction

Since the pioneering work of Bak, Tang and Wiesenfeld
(BTW) [1,2], the sand-pile model became one of proto-
type abstract models exhibiting self-organized criticality
(SOC). The original BTW model and its variants (see
e.g. [3–7]) consists of a cellular automaton slowly driven
by stochastic perturbations. The state of each site is de-
scribed by the number of grains on top of it. (Actually, this
number represents the slope rather than the height, if we
want to interpret the model as a real sand-pile. However,
in the 1D model, investigated here, the description using
slope and height variables are strictly equivalent.) If the
number of grains exceeds a threshold, the site becomes
active, a toppling occurs and grains are transferred to
neighbouring sites, which then may become active and the
process continues. The driving consists of adding grains
at randomly chosen sites. The critical state is reached
asymptotically in the limit of infinitely slow driving [8].
Fully deterministic versions were also studied, showing pe-
riodic [9,10] or self-similar but non-random behaviour [11].

Even though experiments on real sand-piles did not
confirm SOC behaviour, due to inertia effects [12–18], in
the experiments using rice [19,20] instead of sand it was
found that large aspect ratio of the rice grains (in contrast
to sand which consists at almost special grains) can lead to
SOC behaviour [19], has grains much closer to spherical.

Another difference between a typical sand-pile and
rice-pile experiments is that the rice-piles used in the ex-
periments are quasi one-dimensional [19,20]. While the
original BTW model in one dimension is trivial, there are
several variants of the 1D BTW model which exhibit non-
trivial behaviour [3,11,21–25]. Also the sand-piles on quasi

a e-mail: slanina@fzu.cz

one-dimensional stripes were investigated [26]. Several
one-dimensional models devised especially for modelling
the rice-piles were studied [27–37]. The models which take
into account a possible long-range rolling of grains are
able to describe the transition from SOC behaviour typ-
ical for rice-piles to the inertia-dominated behaviour of
sand heaps [38,39].

Besides numerous exact results and renormalisation-
group calculations (to cite only a few items of a vast
bibliography, see [40–46]), the mean-field approxima-
tion [47–49] was very useful in clarifying the nature of
the SOC state, even though it cannot give correct values
of the exponents below the upper critical dimension.

It was soon realised that the mean-field approxima-
tion for sand-piles is related to the critical branching pro-
cesses [50,51]. This idea lead to the introduction of a self-
organized branching processes [52–57], which describe the
approach to the critical state. Similar approaches consist
of mapping the sand-pile to percolation on a Bethe lat-
tice [58].

The approximation is based on the observation that
in high dimensions, activity returns to the same site
with a very small probability. So, we can suppose that
in each step the toppling occurs at a site, which has
never toppled before during the same avalanche. Each
toppling is mapped to one branching. Statistical prop-
erties of avalanches are determined by the probability p
of branching. This probability is itself determined self-
consistently. If the avalanche is sub-critical, it does not
fall off the system and the average number of grains, and
thus p, increases. If, on the other hand, the avalanche is
super-critical, it surely falls off the system, which leads
to a decrease of the average number of grains and a de-
crease of p. It was shown [52], that this process sets the p
exactly to the critical value, where the avalanche sizes s
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have power-law distribution P (s) ∼ s−τ with mean-field
exponent τ = 3

2 .
The purpose of this work is to modify the self-

organized branching processes in order to describe one-
dimensional rice-pile models. Our model will be designed
to include the one-dimensional BTW model as a special
case. Clearly we cannot obtain correct values of the ex-
ponents. Our main question will be, whether there is a
sharp transition from trivial 1D BTW behaviour to SOC
behaviour or what is the nature of the crossover from the
former to the latter.

The paper is organised as follows. In the next sec-
tion we define our version of the branching process, suit-
able for treating the one-dimensional rice-pile. We find the
condition for the criticality and investigate the crossover
from trivial one-dimensional BTW behaviour to the crit-
ical branching process. The self-organization toward the
critical state is investigated in the Section 3. We first de-
fine the self-organized branching process, then find the
fixed point of the dynamics and show that it exactly cor-
responds to a critical branching process. We finally inves-
tigate the influence of finite size effects and find the finite-
size scaling form. Section 4 concludes and summarises the
work.

2 Branching process for one-dimensional
model

2.1 Ricepile model

The rice-pile models were already thoroughly investigated
by numerical simulations. In fact, there are two variants of
the one-dimensional rice-pile model. The so-called “Oslo
model” [30–33] supposes that the critical slope depends
on space and time, and assumes a new random value
after each toppling event. Another approach [27–29] as-
sumes that the toppling occurs with a certain probabil-
ity, which depends on the actual slope. It is the second
approach, which we will follow in this article. It may be
also noted that a two-dimensional model which also im-
plements stochastic topplings was studied before [59].

We recall shortly the definition of the model. We con-
sider a chain of L sites. The state of site i, i = 1, 2, ..., L is
described by a slope zi = hi−hi+1 where the height hi is a
non-negative integer, with boundary condition hL+1 = 0.
If the pile is in a stable state and a grain is dropped on the
site i = 1, the update then proceeds for all sites in parallel.
We look for all sites which satisfy at least one of the two
conditions (i) it just toppled, (ii) its right-hand or left-
hand neighbour toppled [27]. If i is such a site, it topples
with probability 1, if zi > 2, with probability α ∈ [0, 1] if
zi = 2 and with probability 0 if zi < 2. A toppling at the
site i means that zi is decreased by 2 and zi−1 and zi+1

are increased by 1.
For α = 0 or α = 1 we recover the standard one-

dimensional BTW sand-pile model with critical slope zc =
1 or zc = 2, respectively. In the intermediate region, 0 <
α < 1, self-organized criticality was found in numerical

simulations, with avalanche exponent τ = 1.55±0.02 [29].
However, it is not clear, what is the behaviour of the model
for α close to either 1 or 0. It seems, that for a finite sys-
tem the behaviour is SOC (modified by finite size effects)
only if α is not too close to 1 or 0 [34,60]. The behaviour
of the system when the system size diverges and α stays
close 0 or 1 has not been clarified. We would like to study
this question within the approximation provided by a self-
organized branching process.

2.2 Characteristic functions

From the technical point of view we will use the method
of a characteristic function (discrete Laplace transform),
defined for a function f(s) on integer numbers s as f̂(ζ) =∑∞
s=0 ζ

sf(s).
We will see that the distribution of avalanches have

generic form

P (s) ∼ s−τe−s/s0 (1)

for large s. In the mean-field approximation or in the
branching process we have τ = 3/2, while in the one-
dimensional BTW sand-pile the exponent is τ = 0. The
process is critical, if the cutoff avalanche size s0 diverges
(s0 →∞).

In the language of characteristic functions the be-
haviour (1) translates to the properties of the singu-
larity in P̂ (ζ). Generally we have P̂ (ζ) ∼ (ζ − ζ0)η +
nonsingular part. For the one-dimensional BTW pro-
cess we have η = −1, while a true branching process has
η = 1/2. The cutoff is given by the distance of the singu-
larity from the point ζ = 1, namely s0 ' 1/|ζ0 − 1|. The
process is critical, if ζ0 = 1.

We will also see that the characteristic function for the
branching process is typically the solution of a quadratic
equation. The singular part of the characteristic function
comes from the square root of the discriminant D(ζ) of
the equation, i.e. P̂ (ζ) ∼

√
D(ζ) + nonsingular part.

Therefore, η = 1/2 and the cutoff is given by the solution
of the equation D(ζ0) = 0. If D(1) = 0, we have s0 = ∞
and the process is critical.

2.3 Branching process

Let us first recall how the branching process is used to de-
scribe the simplest case of the sand-pile model, for which
in each toppling event two grains are transferred to two
randomly chosen nearest neighbours (Manna model [6]).
There are N0 sites in state z = 0 and N1 sites in state
z = 1. The branching process starts by dropping a grain
onto a randomly chosen site. The probability of becom-
ing active (of toppling) is p = N1

N0+N1
. Two new branches

arise from an active site. Each of them is active with prob-
ability p and a tree is created iteratively. The branching
process stops, when no active sites are present at the end-
points of the tree. The number of active sites, or number of
branchings, corresponds to the size of the avalanche. The
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probability distribution of avalanche sizes can be easily
obtained with the use of characteristic functions [52–56]
and gives the mean-field value of the exponent τ = 3/2

Approximating the sand- or rice-pice models by a
branching process is well justified in high dimensions,
where the activity returns to the same point with very
small probability. It seems, therefore, that the use of a
branching processes in the opposite limit, in one dimen-
sion, lacks sense, because the return of activity is very
frequent. However, we can use a very simple property of
the return of activity to make the approximation sensible.
Indeed, the most frequent case when the activity returns
to the same site is described by the following process.

If the site i is active (it topples), a grain is transferred
to site i + 1 which can become active. If that happens,
another grain is transferred back to site i (and also to site
i + 2, but this is not important now) and thus the site i
may become active again. This observation leads to the
suitable modification of the branching process to describe
the one-dimensional case. We should take into account
explicitly the return of the activity just in the next step.
We will do this by setting different branching probabilities
for a site which was active at the previous step (i.e. the
site to the left) and for the site which did not have to be
(the site to the right).

Because the grains are added only on the site i = 1, we
have zi ≥ 0 ∀i. The condition that the site topples with
probability 1 if z > 2 ensures that zi ≤ 2 ∀i. We denote Na
as the number of sites with z = a. So, picking randomly
a site, we have probability pa = N0/(N0 + N1 + N2) of
having z = a, where a = 0, 1, 2.

Let us now describe the construction of the branch-
ing process corresponding to the one-dimensional rice-pile.
There are three types of the points on the tree cre-
ated by the branching process, according to the value of
z ∈ {0, 1, 2}. We denote qa the probability that a point
with z = a branches. The points with z = 0 do not branch,
i.e. q0 = 0, while the points with z = 2 always branch, so
q2 = 1. The points with z = 1 branch with probability α,
i.e. q1 = α. The approximation consists in supposing that
if a site did not topple in the previous step, it has prob-
ability pa of having z = a, while if the site did topple in
the last step, the probability of having z = a is modified
due to the previous toppling to the value

p′a =
qa+1 pa+1∑2
b=0 qb+1 pb+1

(2)

where we used p3 = q3 = 0 for convenience.
If a branching occurs at a site, two new branches (“left”

and “right”) emanate from it. The probability that the
right branch ends with a point with z = a is pa, while
for the left branch the probability is p′a. This way the tree
corresponding to the branching process is created. The
above described rules are illustrated in Figure 1.

The root of the tree should be treated separately. The
reason is that in the ricepile model the avalanche starts
by dropping a grain always on the left edge of the pile, i.e.
on the site i = 1. If it topples, it transfers a grain only to
the right, while the grain going to the left falls off the sys-
tem. If we translated this feature to the description of our

α

1−α

p

p

p

p

α

2

1

1
p

2

0

a)

���
���
���
���

���
���
���
���

���
���
���

���
���
���

b)

=p’

=pa

a

c)

Fig. 1. Illustration of the branching process. In (a) the pro-
cesses following a grain drop are depicted. The original config-
urations and their probabilities are in the left column, the final
ones are in the right column. The possible final configurations
resulting from a toppling are framed together with their non-
normalized probabilities. In (b) the correspondence is shown
between one branching event and the toppling, in which one
new grain is added and two grains (shaded) are displaced to
the left and to the right from the toppling site. In (c) a sample
realization of the tree is sketched. The full circles placed on
the right-hand branches correspond to probabilities pa, while
empty circles on the left-hand branches have modified proba-
bilities p′a.

branching process, the root would consist either of a single
non-branching point, or a point with a single branch (the
right one) emerging from it. However, we are interested
in the regime of long trees, where the different behaviour
of the root from the rest of the tree is irrelevant. So, we
assume that in the branching process the root also obeys
the same rules as all other points. Thus, all points, includ-
ing the root, have either zero or two branches emanating
from then.

The key quantity will be P an (s), the probability that a
tree consisting of n levels starting with a point of type a
contains s branchings. The probability of having s branch-
ings (i.e. avalanche of size s) is then Pn(s) =

∑
a paP

a
n (s).

We can easily derive the recurrence relation for P an (s)
which becomes particularly simple if we use the charac-
teristic function. We obtain

P̂ an (ζ) = (1− qa) + qaζ
2∑

b,c=0

pbp
′
cP̂

b
n−1(ζ)P̂ cn−1(ζ) . (3)
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A straightforward calculation leads to the following
equations for the characteristic functions

P̂ 0
n(ζ) = 1

P̂ 1
n(ζ) = 1− α+ αP̂ 2

n(ζ) (4)

and

Pn(s) = (αp1 + p2)P 2
n(s) for s > 0 . (5)

Therefore the basic quantity of interest will be the char-
acteristic function P̂ 2

n(ζ). All properties of the branching
process can be computed from it. The set of equations
(3) thus represent a single recurrence equation for P̂ 2

n(s),
which in the limit n→∞ leads to quadratic equation for
the stationary distribution P̂ 2(ζ) = limn→∞ P̂ 2

n(ζ). We
obtain explicitly

1
ζ
P̂ 2(ζ) =

(αp1 + (1− α)p2) (1− αp1 − p2)
p2 + αp1

+
αp2 + 2α (1− α) p1p2 + (1− 2α) p2

2 + p1
2α2

p2 + α p1
P̂ 2(ζ)

+ αp2(P̂ 2(ζ))2 .
(6)

2.4 Criticality

The discriminant D(ζ) of equation (6) depends on the
parameters p1, p2, and α. The branching process is critical
if D(1) = 0. This implies the following relation

−αp1 − (1− α) p2 + 2αp1p2 + p1
2α2 + p2

2 = 0 (7)

which determines a surface in the parametric space. On
this surface the process is critical and the distribution of
avalanche sizes has a power-law tail with exponent τ =
3/2.

However, the latter statement is not strictly true in
the sense that if the coefficient at the quadratic term in
equation (6) is zero, the process is not a true branching
process, because each parent can have at most one off-
spring. This corresponds to a process with an exponential
distribution of avalanche sizes, which we will call, in this
work, a “one-dimensional BTW process”. The important
feature which makes this different from a generic branch-
ing process is that there are no true branching points.
Indeed, there may be a non-zero probability that the pro-
cess stops at a given point, but there is zero probabil-
ity of splitting into more than one branch. Therefore, the
process does not generate tree-like structures, but linear
chains of random length. Both the one-dimensional BTW
and branching processes have the same general form (1)
of the distribution of avalanches for large s, but the one-
dimensional BTW process is characterised by the expo-
nents τ = 0, η = −1. Therefore, in addition to checking
the criticality condition (7) we must also look at the be-
haviour close to the singularity.

We will prove in Section 3.2 that in the thermody-
namic limit our rice-pile model self-organizes so that the
parameters stabilise at values

p1 = max(0,
2α− 1
α

)

p2 =1− α . (8)

If we insert these values into the criticality condi-
tion (7), we find that it is satisfied for an values of α,
including the limit values of 0 and 1. At the same time we
find that the singularity is always located at ζ0 = 1. (In-
deed, as we discussed in section 2.2, the criticality of the
process is equivalent to the condition ζ0 = 1.) However,
we find that the type of the singularity corresponds to the
exponents η = 1/2, τ = 3/2 (critical branching process)
only for α’s within the open interval (0, 1), while at the
points 0 and 1 the model corresponds to one-dimensional
BTW process. This can be easily interpreted in the lan-
guage of sand- and rice-piles. Indeed, for α = 0 and 1
the system recovers the behaviour of a one-dimensional
BTW sand-pile, which does not exhibit critical behaviour
in the usual sense. (In fact, the avalanche distribution does
exhibit a power-law distribution: all avalanche sizes have
the same probability, which corresponds to the power with
exponent 0. But this situation is not usually described as
critical behaviour).

2.5 Crossover behaviour

The question arises, how does the behaviour with expo-
nent τ = 3/2 inside the interval [0, 1] cross over to the
exponent τ = 0 at the edges. As the critical behaviour
is related to the singularities of the characteristic func-
tion, we will turn our attention to the investigation of the
function P̂ 2(ζ) in more detail.

Indeed, we find that if we expand the solution of equa-
tion (6) for small values of the parameter ρ defined as

ρ(ζ) =
2α (1− α)

ζ−1 − 1 + 2α (1− α)
(9)

we can express the solution in terms of ρ and expand in
the lowest order (for ρ2 � 1)

P̂ 2(ζ) =
1
ρ
−
√

1
ρ2
− 1 ' ρ(ζ)

2
. (10)

While, as noted earlier, the exact solution for P̂ 2(ζ) has
always the singularity of the type η = 1/2 for ζ → ζ0 =
1, the approximate behaviour (10) has a singularity with
η = −1 located at the point ζ′0 = (1− 2α (1− α))−1 > 1.
When α goes to either 0 or 1, the value of ζ′0 approaches 1.
This suggests the following scenario. For large avalanches,
i.e. 1− ζ � ζ′0−1 the singularity at ζ0 = 1 is relevant and
the avalanche size distribution has a power-law tail with
exponent τ = 3/2.

For shorter avalanches, i.e. 1− ζ larger or comparable
to ζ′0 − 1 the singularity at ζ′0 becomes dominant. There-
fore, for short avalanches we have one-dimensional BTW
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behaviour and P (s) ∼ exp(−s/s0) with a cutoff

s0 = |1− ζ′0|−1 =
1− 2α (1− α)

2α (1− α)
· (11)

The next step is to investigate the behaviour of s0

when α approaches either 0 or 1. We find this by expand-
ing the expression for ζ′0 as a function of α around the
points 0 and 1, respectively. To make the notation more
compact, let us introduce the variable µ ∈ {0, 1}, which
distinguishes the two limit points α = 0 and 1. We can
see from (11) that the cutoff diverges as

s0 '
1

2 |α− µ| (12)

for α→ µ.
On the other hand, sufficiently close to the singular-

ity at ζ → ζ0 = 1 the exponent η = 1/2 is relevant. The
question is, how close to ζ = 1 does the behaviour cross
over from one type to the other. We have one-dimensional
BTW behaviour for ρ2 � 1, and a critical branching pro-
cess type of behaviour for 1− ρ2 � 1. A typical crossover
value ζcr can be found by solving the equation

ρ(ζcr) =
1
2
· (13)

The avalanche size distribution will exhibit the crossover
around scr = 1/|1− ζcr|. For s� scr the one-dimensional
BTW behaviour with exponential cutoff, diverging to in-
finity for α = 0 and 1, will apply. While for s� scr the dis-
tribution will have a power-law tail with the usual mean-
field exponent −3/2, and therefore exhibits self-organized
criticality.

The point of the transition between SOC and one-
dimensional BTW when α approaches 1 or 0 lies in the
diverging crossover value for the avalanche size. Similarly
as in the case of s0, by solving equation (13) with defini-
tion (9) we find the following limiting behaviour

scr '
1

2 |α− µ| ' s0 (14)

for α→ µ.
We can see, comparing equations (12) and (14), that

the cutoff for the one-dimensional BTW behaviour is
asymptotically equal to the crossover at which the crit-
ical branching process behaviour sets on. This suggests
the scaling form

P (s) ' 1
s0(α)

F (
s

s0(α)
) (15)

valid for s� 1 and α close to 0 and 1. The scaling function
has the form F (x) ∼ e−x for x� 1 and F (x) ∼ x−3/2 for
x � 1. Indeed, we can find the Laplace transform of the
scaling function as∫ ∞

0

e−x(y−1) F (x) dx = y −
√
y2 − 1 . (16)

From here we obtain immediately the expression for the
scaling function through the Bessel function of imaginary
argument

F (x) =
e−x

x
I1(x) . (17)

The expected behaviour for x � 1 and x � 1 can be
verified directly by inspecting the asymptotic behaviour
of the Bessel function.

3 Self-organization

3.1 Self-organized branching process

In the basic setup of our branching process, all three
parameters α, p1, p2 are freely chosen. However, in the
rice-pile model the only free parameter is α. The number
of sites with given z can change during an avalanche, so
that the probabilities p1 and p2 are also modified. This
defines a flow in the space of parameters p1, p2. Our task
now is to establish stable fixed points of the dynamics and
check whether they satisfy the condition (7). If that hap-
pens, we can conclude that the system is self-organized
critical.

There are four types of events, which can happen dur-
ing an avalanche. Let us denote them as T2, T1, E1, and
E0. In the event T2, a point with z = 2 receives a grain
and topples. As a result, the number of sites with z = 2
is decreased by 1, N2 → N2− 1, and number of sites with
z = 1 is increased by 1, N1 → N1 + 1. Similarly, in the
event T1 a point with z = 1 topples, N1 → N1 − 1 and
N0 → N0 + 1. In event E1 a site with z = 1 receives a
grain but does not topple, N1 → N1−1 and N2 → N2 +1,
and finally in event E0 a site with z = 0 receives a grain
and does not topple, N0 → N0 − 1 and N1 → N1 + 1.

Using the variables y ∈ {T,E} and a, b ∈ {0, 1, 2},
let us denote sayb,n the number of events of the type yb
occurring at the level n within the branching process,
on condition that the very first site had z = a. There
are sayb =

∑∞
n=0 sayb,n such events in the entire real-

isation of the branching process. On average, there are
〈syb〉 =

∑
a pa〈sayb〉 events of the type yb. The averages

〈syb〉 are of central importance for the dynamics of the
self-organization and can be easily obtained as follows.

For the characteristic function of the probability dis-
tribution of the number of events sayb,n we obtain an
equation analogous to (3). To study the self-organization,
we will need only the average number of events, which is
〈sayb,n〉, calculated as the derivative of the characteristic
function. Hence

〈sayb,n〉 = qa
∑
c

(pc + p′c)〈scyb,n−1〉. (18)

This is a set of three recurrence relations, which may be
reduced to one equation only, by considering the relations
〈s0yb,n〉 = 0 and 〈s1yb,n〉 = α 〈s2yb,n〉, valid for n > 1. If
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we take as the basic quantity the average 〈s2yb,n〉, we get
a recurrence relation determining a geometric sequence

〈s2yb,n+1〉 = κ〈s2yb,n〉 (19)

with quotient

κ =
αp2 + (p2 + αp1)2

p2 + α p1
· (20)

We recognise in the stationarity condition κ = 1 the equa-
tion (7), implying the criticality of the branching process.

Summation of the infinite geometric series immediately
gives

〈syb〉 =
(
pb + (pb + p′b)

α p1 + p2

1− κ

)
〈sbyb,1〉 (21)

where the initial conditions are given by 〈sbTb,1〉 = qb and
〈sbEb,1〉 = 1− qb.

The self-organization of the branching process is due
to the changes in the numbers Na, caused by the toppling
(and non-toppling) events. These numbers determine the
probabilities pa. Therefore, for fixed α the self-organized
branching process (SOBP) S(α) consists of an (infinite)
sequence of branching processes

S(α) = (22)

[B(α, p(0)
1 , p

(0)
2 ),B(α, p(1)

1 , p
(1)
2 ),B(α, p(2)

1 , p
(2)
2 ), . . . ]

where B(α, p1, p2) is the branching process determined by
fixed parameters α, p1, p2, defined above. The branching
processes within the sequence differ only by the values of
the parameters p1, and p2. Let us consider the tth branch-
ing process in the sequence. When realised, it changes the
original values of the numbersNa, or, equivalently, the val-
ues of the parameters pa. The average change is uniquely
determined by the average number of events 〈syb〉. So, the
SOBP is entirely determined by the transition relations
connecting the values of the parameters in the tth and
(t+ 1)th step

p
(t+1)
i − p(t)

i = Ti(p
(t)
1 , p

(t)
2 ) (23)

for i ∈ {1, 2}. We find explicitly

T1(p1, p2) =
αp1 + (1− α)p2 − α(2− α)p2

1 − p2
2 − 2(1− α)p1p2

αp1 + (1− α)p2 + 2αp1p2 + p2
2 + α2p2

1

(24)

T2(p1, p2) =
α(1− α)p2

1 + (1− 2α)p1p2

αp1 + (1− α)p2 + 2αp1p2 + p2
2 + α2p2

1

·

3.2 Fixed point

The fixed point of the self-organization dynamics can be
found immediately by equating the right-hand sides of
equations (25) to zero. Direct solution of the two coupled
equations gives three fixed points

p1 = 0, p2 = 0 (25)
p1 = 0, p2 = 1− α (26)
p1 = 2α−1

α , p2 = 1− α . (27)

The correct solution is determined by stability consider-
ations. The relations (25) are linearised around the fixed
points and the eigenvalues of the resulting matrices of rank
2 are found. The result is that the fixed point (25) is al-
ways unstable, while (26) is stable for α ∈ [0, 1/2) and (27)
is stable for α ∈ (1/2, 1]. For α = 1/2 the fixed points (26)
and (27) coincide and both of them are marginally stable
(i.e. the eigenvalues have zero real part).

Therefore, we find that the fixed point corresponds to
the values of the probabilities

p1 = max (0,
2α− 1
α

)

p2 =1− α (28)

which proves the already announced result of equation (8).

3.3 Finite-size effects

In the numerical simulations of the rice-pile model
[33,34,36,60] attention is paid to the fact that the crit-
ical behaviour is observed only for large enough systems
and with α not too close to neither 0 nor 1. We have al-
ready shown how the crossover length blows up when α
approaches the edge values 0 or 1. It is obvious then, that
for small systems the crossover value of the avalanche size
may not be accessible and the critical regime in the tail of
the distribution is not observed at all. In this subsection
we will investigate the consequences of the finite length of
the branching process. There are two phenomena where
the finite size enters the problem. First, if the maximum
number of generations in the branching process is L, in-
stead of infinity, the distribution of the avalanche sizes
will not extend to infinity either, but will be bounded by
s < smax = 2L − 1. Moreover, if we take for example
p1 = 1, p2 = 0, α = 1, then all avalanches will have size L,
therefore a peak at s = L will occur, and P (s) = δ(s−L).
If we move slightly from this position by increasing p2 and
decreasing p1 and α, a structure of multiple peaks located
at s = L, 2L− 1, 3L− 3, ... will appear. This makes the
analysis very complicated.

The second consequence of finite size is the shift in the
self-organized value of the parameters p1 and p2, which
for finite L will deviate from the critical values. Therefore,
the avalanche-size distribution will develop an exponential
cutoff of the form P (s) ∝ s−3/2 exp(−s/s1).

As the first problem brings particular new difficul-
ties, we will concentrate only on the second one. This
makes the analysis less consistent, but feasible. Thus, we
should stress that in the following we will suppose that
the branching process in question has unbounded length,
but the self-organization is made in such a way, that only
the first L generations of the branching process are taken
into account.

Instead of working with the finite-L version of equa-
tions (23) and (25), describing the approach to the fixed
point, we can use the set of equations

〈sE1〉 = 〈sT2〉
〈sE0〉 = 〈sT1〉 (29)
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which determine the position of the fixed point. The only
information lost in equations (29) is the stability of the
fixed points. However, we suppose the stability will not
be affected by finite-size effects. Therefore, we will rely on
the stability analysis performed for L =∞ also in the case
of finite L and calculate the finite-size corrections starting
with equation (29).

The point is that equations (29) should also hold for
finite L. In fact, the expression (21) for the averages 〈syb〉
assume the same form, only the factor (κ − 1) arising in
the L =∞ version should be replaced by the factor K =
(κ− 1)/(κL−1− 1). Assuming K small for large L, we can
find p1 and p2 in lowest order of K. Then, we return to
the definition of K and find that K ∝ L−1, confirming
that our approach is consistent.

Hence, for finite L we find, by solving equations (29)
to lowest order of 1/L, for α ∈ (0, 1/2)

p1 = − 1− α
(2α− 1)2

ln(1− γ)
L

+O(
1
L2

)

p2 = 1− α− 1− α
2α− 1

ln(1− γ)
L

+O(
1
L2

) (30)

and for α ∈ (1/2, 1)

p1 =
2α− 1
α

+
5α2 − 5α+ 1
(2α− 1)2 α

ln(1− γ)
L

+O(
1
L2

)

p2 = 1− α+
1− α
2α− 1

ln(1− γ)
L

+O(
1
L2

) (31)

where we denoted

γ =
1
2

1− 2α
1− α for α ∈ (0, 1/2)

γ =
1
2

2α− 1
α

for α ∈ (1/2, 1) . (32)

The above formulae confirm that the explicit limit L→∞
gives the same result as obtained previously when working
directly with L =∞.

Using these results we can find the position of
the square-root singularity in the characteristic func-
tion for the avalanche size distribution, solving equation
D(ζ0) = 0. The distance from 1 then determines the ex-
ponential cutoff of the distribution. We find

1/s1 = |ζ0 − 1| = σ(α)
L2

+O(
1
L3

) (33)

where

σ(α) =
ln2(1− γ)
4α (1− α)

for α ∈ (0, 1) (34)

and asymptotically for L→∞ and α fixed the avalanche
distribution becomes the function of sL−2 only,

P (s;α,L) ∝ L−3G(sL−2 σ(α)) (35)

and the scaling function has the form

G(x) = x−3/2e−x . (36)

This scaling holds well for all α with the exception of the
point α = 1/2, where we have γ = 0 and hence σ(α) = 0.
Then, the next order in 1/L takes over and the scaling
changes.

Let us use again the variable µ ∈ {0, 1}, which distin-
guishes the two limiting points α = 0 and 1. The factor
σ(α) diverges as σ(α) ' σ0 |α − µ|−1 for α → µ, where
σ0 = (ln 2)2/4. Therefore, we can write the following scal-
ing form for the avalanche size distribution

P (s;α,L) ∝ L−3|α− µ|− 3
2 G(sL−2|α− µ|−1 σ0) (37)

for α→ µ.
We can see that the power-law distribution holds only

for avalanches shorter than L2 |α − µ|. In other words, if
the parameter α is close to the end-points of the interval
[0, 1], we need to have systems of the size L� 1/

√
|α− µ|

in order to be able to observe any sign of self-organized
criticality.

In the above calculations we tacitly assumed that we
are beyond the regime we have called “one-dimensional
BTW” in Section 2.5. This means s � scr. In fact, we
can always reach this regime by choosing L large enough.
Therefore the presence of the one-dimensional regime does
not influence the scaling behaviour for large L. More pre-
cisely, we should have L2 |α − µ| � scr. But because scr

itself diverge for α→ µ as |α−µ|−1, we obtain a stronger
condition for the scaling (37) to be valid, namely

L� |α− µ|−1 (38)

if α→ µ.

4 Conclusions

We investigated analytically the self-organized critical
rice-pile model. We defined a self-organized branching pro-
cess, suitable for one-dimensional problems. The model is
characterised by the parameter α ∈ [0, 1], the probabil-
ity of toppling at a sub-threshold site. For both limiting
values α = 0 and α = 1 the model is equivalent to the
one-dimensional BTW model with trivial (uniform) dis-
tribution of avalanches.

We found that in the thermodynamic limit the sys-
tem is self-organized critical for all values of α within the
open interval (0, 1), with power-law tail in the distribution
of avalanche sizes with mean-field value of the exponent,
τ = 2

3 . However, the power-law behaviour holds only for
avalanches longer than a certain crossover value of the
avalanche size. The crossover diverges when α approaches
either of the limiting points of the interval [0, 1]. We also
found the scaling as well as the exact form of the scal-
ing function for avalanche distribution close to these limit
points. This describes how the one-dimensional BTW be-
haviour develops when approaching the limiting points.

The finite-size effects play important role in determin-
ing whether the model is self-organized critical or not. In
our model the SOC behaviour starts to occur at larger
sizes and the closer we are to the limiting points α = 0
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or 1. We found the form of the finite size and scaling in
our self-organized branching process and determined the
necessary condition for the the power-law regime in the
avalanche distribution to be observable, when we approach
the limiting points.

I wish to thank Mária Markošová for numerous useful dis-
cussions which motivated me in this work. I am indebted to
Petr Chvosta for clarifying comments regarding stochastic pro-
cesses. This work was supported by the Grant Agency of the
Czech Republic, project No. 202/00/1187.
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35. M. Markošová, M.H. Jensen, K.B. Lauritsen, K. Sneppen,

Phys. Rev. E 55, R2085 (1997).
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Random networks created by biological evolution
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We investigate a model of an evolving random network, introduced by us previously@Phys. Rev. Lett.83,
5587 ~1999!#. The model is a generalization of the Bak-Sneppen model of biological evolution, with the
modification that the underlying network can evolve by adding and removing sites. The behavior and the
averaged properties of the network depend on the parameterp, the probability to establish a link to the newly
introduced site. Forp51 the system is self-organized critical, with two distinct power-law regimes with
forward-avalanche exponentst51.9860.04 andt851.6560.05. The average size of the network diverges as
a powerlaw whenp→1. We study various geometrical properties of the network: the probability distribution
of sizes and connectivities, size and number of disconnected clusters, and the dependence of the mean distance
between two sites on the cluster size. The connection with models of growing networks with a preferential
attachment is discussed.
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I. INTRODUCTION

Irregular networks or random graphs@1# composed of
units of various kinds are very frequent both in nature and
society~which is, however, nothing but a special segment of
nature!. Examples range from vulcanized polymers, silica
glasses, force chains in granular materials@2#, and mesos-
copic quantum wires@3# to food webs@4#, herding effects in
economics@5#, worldwide-web links@6#, ‘‘small-world’’ net-
works of personal contacts between humans@7,8#, and scien-
tific collaboration networks@9#.
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@15#. Two universality classes were found. Above the perco-
lation threshold, the system belongs to the mean-field univer-
sality class, while exactly at the percolation threshold, the
avalanche exponent is different. A dynamics changing the
topology in order to drive the network to critical connectivity
was suggested.

There are also several recent results for random networks
produced by different kinds of dynamics than ED, especially
for the threshold networks@18# and Boolean networks
@19,20#.

The geometry of the worldwide web was intensively stud-
ied very recently. It was found experimentally that the net-
work exhibits scale-free characteristics, measured by the
power-law distribution of the connectivities of the sites
@6,36#. Similar power-law behavior was observed also in the
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~ii! If a unit is chosen for speciation, it acts as a ‘‘mother’’
giving birth to a new, ‘‘daughter’’ unit. A new unit is added
to the system and links are established between the new unit
and the neighbors of the ‘‘mother’’ unit: each link of the
‘‘mother’’ unit is inherited with probabilityp by the ‘‘daugh-
ter’’ unit. This rule reflects the fact that the new unit is to a
certain extent a copy of the original, so the relations to the
environment will be initially similar to the ones the old unit
has. Moreover, if a unit which speciates has only one neigh-
bor, a link between ‘‘mother’’ and ‘‘daughter’’ is also estab-
lished.
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lanche. The distribution of mas
law with the exponenttext52.32
present an improved analysi
organized critical behavior.

We measured the distributi
@21# and we observed, contrar

FIG. 1. Schematic illustration
model. Speciation is shown in~a!, wh
the extremal unit, which speciates
unit, and open circles other units
event. The dotted link illustrates th
links may not be inherited by the d
~b!, where the extremal unit, which
solid square. The unit denoted by
removed by the singular extinction
tion event is shown, which leads to
disconnected clusters.
tinction is shown. One of
a singular extinction@rule

bility that in the extinction
o several disconnected clus-

AL BEHAVIOR

aling

preceding Letter@17# cor-
und that in this case the
e defined newly the mass

its removed during an ava-
extinctions obeys a power
0.05. In this section we
of the data for the self-

of forwardl avalanches
to the BS model, that two

power-law regimes with two dif
crossover valuescross which sep
pends onl. We observed that t
l collapse onto a single curve
avalanche sizes/scross, i.e.,

Pfwd
. ~s! f cross5g~

whereg(x);x2t11 for x!1 an
The data are plotted in Fig. 2.
nents, we foundt51.9860.04 a

We investigated the depende
scrossand f crosson l and we foun
as a power law with approxim
; f cross;l2s8 with s8.3.5 ~see
critical l at which the distribu
follows a power law is assum
result is easy to understand. In
at least bounded!connectivityc, t
As will be shown in the next se
the system and average connec
thus the criticall tends to zero.
this result without resort to the
any finite time of the simulatio
system size reach only a limited
in the distribution of forward a
nonzero value.

B. Comparison with the B

If we compare the above fin
can deduce that in our model
corresponds to the usual forwa

f the dynamical rules of the
e the solid square represents
solid circle the new, daughter
not affected by the speciation
forp,1 some of the mother’s
ughter. Extinction is shown in
s removed, is indicated by the
he solid circle is the neighbor
nc! an example of an extinc-
he splitting of the network into

FIG. 2. Rescaled distribution of
p51, for the valuesl50.03(n),
50.2(L), l50.4(3), and l50.6
Pfwd

. (s) is to indicate that we count
the inset we plot the dependence

(1) and f cross(3) on l. The solid lin
exponents853.5. The number of
data are averaged over 12 indepe
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eral values ofp. The aver-

mputed from these distribu-
hown in the inset of Fig. 4.
network size diverges forp
p)2an with the exponent

the distribution of the number
. This corresponds to the fact
twork size is a random walk
, with a bias to lower val-
xtinctions~for an analysis of

from zero see, e.g.,@37#!.
size with decreasingp we de-
ular extinctions has a larger
w unit created in a specia-

e neighbors.

so
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er of units for different values
.97,(L)0.98#. Data are aver-
endence of the averaged number
sponds to the power law^nu&

er of units~solid line!and con-
averaged over 108 time steps.
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the exponentt8 is new. The a
breaks down forp,1 because t
tem size are limited~cf. the next

The main difference from th
istence of the second power-la
be particularly well observed
where the crossover avalanche
seen that such avalanches st
number of units is close to its
Between these events the evol
essentially a random walk, bec
rare @17#. This fact can explain
too far from the value 3/2 corr
of the first returns to the origi
difference is probably due to th
tions.

We measured also the distr
the distribution of barriers on th
Fig. 3 we can compare the resu
sharp step observed in the BS
the connectivity is not uniform
sured also the barrier distributi
where the network is static, bu
form. Also in that case the step
tion was qualitatively very simi
3.! The large noise level forb clos
units with largerb undergo muta

IV. NETWORK GE

In this section we analyze t
the network and their depende

A. Size of the

The first important feature o
dynamics of the model is their

FIG. 3. Distribution of barriersb ~
riers bmin ~dashed line!for p50.95
plot!. In both cases the number of
ove described scaling~1!
connectivity and the sys-

ection!.
usual BS model is the ex-
regime fors@scross. It can

r values ofl close to 1,
sizescross is small. We have
t and end mostly when the
inimum value equal to 1.

ion of the number of units is
use singular extinctions are
hy the exponentt8 is not
ponding to the distribution
for the random walk. The
presence of singular extinc-

ution of barriersP(b) and
extremal sitePmin(bmin). In
s forp51 andp50.95. The
odel is absent here, because
or comparison, we mea-

in the model of Ref.@15#,
the connectivity is not uni-
as absent and the distribu-

r to the one shown in Fig.
to 1 is due to the fact that

ions rarely.

METRY

e geometrical properties of
e on the parameterp.

twork

he networks created by the
ize or the number of units

within the network. This is a s
but on average it grows initially
rates and keeps fluctuating a
which depend onp. Figure 4 sho
tion of number of unitsnu for sev
age number of unitŝnu& was co
tions and its dependence onp is s
We can see that the average
→1 as a power law,̂ nu&}(12
an.0.8.

We can see from Fig. 5 that
of units has an exponential tail
that the time evolution of the ne
with reflecting boundary atnu51
ues, caused by the singular e
biased random walks repelled
From the decrease of average
duce that the bias due to sing
effect for smallerp, i.e., if the ne
tion event has fewer links to th

lid line!and minimum bar-
pper plot!and p51 ~lower
me steps was 107.

FIG. 4. Distribution of the numb
of p@(n)0.85,(h)0.9,(3)0.95,(1)0
aged over 108 time steps. Inset: dep
of units on p. The solid line corre
}(12p)20.8.

FIG. 5. Distribution of the numb
nectivity ~dashed line!, forp50.98,
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B. Connect

In Fig. 6 we show the proba
nectivity of network sitesPall(c)
connectivity of the extremal u
serve the tendency that the ex
nectivity than average. This is
ings of Ref.@15# obtained on st
easily understood intuitively. In
barriers of neighbors of the mu
neighbors have an enhanced p
next time step. Therefore, sit
neighbors have a larger probab
their neighborhood and that t
subsequent step.

The average connectivitŷc& c
tions Pall(c) is shown in the ins
that analogically to the system
tivity diverges forp→1 as a pow
exponent is slightly different. W
the exponentac.0.75. From the
able do decide whether the ex
within the statistical noise.

In Fig. 5 we can see that als
nectivity has an exponential tai
of the network size. We measu
densityP(nu ,c) for the number
ity. The result is shown as a co
see that also for large networks~l
connectivity is small and nea
means that the overall look of
dynamics of our model is that th
connectivity, surrounded by ma
ity.

An interesting observation c
shown in Fig. 8. It depicts the
function of the connectivity at fix
that for smaller system sizes, c
units, the distribution is expone
system size a power-law depen

FIG. 6. Distribution of the conn
and for extremal sites only~dashed
for p50.98, averaged over 108 time s
averaged connectivity onp. The solid
law ^c&}(12p)20.75.
ity

lity distribution of the con-
nd the distribution of the
t extremal(c). We can ob-
emal unit has a larger con-
accordance with the find-

ic networks. It can be also
ed, in a mutation event the

ted unit are changed. So the
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with a higher number of
ity that a mutation occurs in
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puted from the distribu-
of Fig. 6. We can observe
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r law, but the value of the
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ata available we were not
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tour plot in Fig. 7. We can
genu) the most probable
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int probability density as a
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ser to the average number of
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for the system size fixed atnu517
behavior P(nu ,c);c2h nearly u
c,nu . The value of the expone

This finding may be in acco
distribution in growing netwo
model the power-law behavior a
nificantly larger than the avera
created during time-to-time fluc
rary expansion of the network.
of expansion periods in the ne
ing to continuous growth in the
tial attachment, which is the sec
also an analog in our model; hig
likely to be mutated, as was alr
sion of Fig. 6. However, here t
nected sites is a dynamical ph
extremal dynamics rules of our

tivity for all sites~solid line!
ne!, in the stationary regime
ps. Inset: dependence of the

ine corresponds to the power

FIG. 7. Contour plot of the joint
the number of units and connectiv
3109 time steps. The contours co
of the probability density~from ins
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FIG. 8. Distribution of the conn
units, for p50.8 and sizesnu540
170 (h). The straight line is a pow
data are the same as those used
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C. Cluste

As noted already in the Sec
into several disconnected cl
merge, but they may vanish du
qualitatively that after initial gro
exhibits stationary fluctuations
which increases whenp approach
distribution of the number of cl
their sizes. In Fig. 9 we show t
of clusters. The most probable
single cluster. However, there
that even a large number of cl
ated. The tail has a power-law
off. The value of the expone
P(nc);nc

2r was aboutr.1.2. W
width of the power-law regime
leads us to the conjecture that
of clusters is power-law distribu

On the other hand, the distri
in Fig. 10 has a maximum at ve
two effects. First, already the di
a maximum at small sizes, and
into many clusters, they have
changed for a long time. The
change very rarely~and therefor
appear!can be also seen from F
of the sizes of the clusters co
shown. The latter distribution i
the size distribution for all clus
tremal site belongs mostly to la
sured also the fraction indicatin
is in the largest cluster if there
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collected, we found that this fra
to 1. A similar ‘‘screening eff
the Cayley tree models@30#: th
of the network are very stab
the evolution.

FIG. 9. Distribution of the numb
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averaged over three independent
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th the number of clusters
around an average value,
s 1. We measured both the
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tuation is that there is only a
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ters can be sometimes cre-

art with an exponential cut-
in the power-law regime

e have observed that the
s larger for largerp. This
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small values. This is due to
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significantly different from
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ata shown in Fig. 10 were
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and nearly untouched by
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The dependence of the ave
on the size of the cluster in ou
We can observe a global tend
creasingp. This result is natura
more links from a randomly ch
distance to other sites. The fu
pendence is not completely cle
sizes, greater than about 25,
faster than logarithmic, as can

r of clusters, forp50.98. The
ponent21.2. The data were
ns 53108,53108, and 108 time

FIG. 10. Distribution of the clus
aged over 108 time steps. Solid line
ters containing the extremal site. I
tion.

FIG. 11. Dependence of the ave
the same cluster on the cluster siz
50.97 ~dashed line!, averaged ove
we show the same data in the log



11. So the networks created in our model seem to be quali-
tatively different from the random networks studied previ-
ously, as far as we know.

V. CONCLUSIONS

We studied an extremal dynamics model motivated by
biological evolution on a dynamically evolving random net-
work. The properties of the model can be tuned by the pa-
rameterp, the probability that a link is inherited in the pro-
cess of speciation. Forp51 the model is self-organized
critical and the average system size and connectivity grow
without limits. Contrary to the usual BS model, we find two
power-law regimes with different exponents in the statistics
of forward l avalanches. The crossover avalanche size de-
pends onl and diverges forl→0 as a power law. The
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ity, like in models of growing networks with preferential
attachment.

The network can consist of several mutually disconnected
clusters. Even though the most probable situation contains
only a single cluster, the distribution of cluster numbers has
a broad tail, which shows a power-law regime with exponen-
tial cutoff. We observed the ‘‘screening effect,’’ character-
ized by a very small probability that the extremal site is
found in any other cluster than the largest one. So there is a
central large cluster, where nearly everything happens, sur-
rounded by some small peripheral clusters, frozen for the
major part of the evolution time.

We measured also the mean distance measured along the
links within one cluster. The distance grows very slowly
with the cluster size; however, the increase seems to be faster

ted that the extremal dynam-
tudies on macroevolution in
creating random networks of
erest to compare the proper-
ur model with food webs and

. For example studies of food
e for network sizes about
range from 2.2 to 9, which is

ndings of our model. How-
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We present and discuss a mathematical procedure for identification of small “commu-
nities” or segments within large bipartite networks. The procedure is based on spectral
analysis of the matrix encoding network structure. The principal tool here is localization
of eigenvectors of the matrix, by means of which the relevant network segments become
visible. We exemplified our approach by analyzing the data related to product reviewing
on Amazon.com. We found several segments, a kind of hybrid communities of densely
interlinked reviewers and products, which we were able to meaningfully interpret in
terms of the type and thematic categorization of reviewed items. The method provides
a complementary approach to other ways of community detection, typically aiming at
identification of large network modules.

Keywords: Social network; random matrix; internet.

1. Introduction

The complexity of our societies is studied by social analysts in various ways.
Qualitative inquiries and case studies usually put little emphasis on formalized
description, partly to avoid oversimplification, or even trivialization of the phe-
nomena under study. On the other hand, sophisticated mathematical procedures
are increasingly used in order to grasp complexity in a specific way, as a formalized
property of larger systems. One of the branches of the latter stream is represented by
the analysis of social networks using mathematical theory of graphs. Our approach
adheres precisely to this field of research and yet, it follows a slightly different
direction than most efforts in contemporary network analysis.

The purpose of this paper is twofold. First, we want to present a specific solution
to a rather standard problem of social network analysis, which is identification of
communities within complex networks. Second, we want to discuss some alternative
perspectives on the concept of “social network”. We suggest that our method might

699
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provide a suitable tool for empirical research in respective directions, enabling the
analyst to determine those “hot spots” within the network that usually escape
attention.

To make the wider methodological context of our paper clearer, let us start with
some notes on networks and network analysis in contemporary sociology. The use
of the term “network” in contemporary sociology vary from loose metaphors [17] to
rather specific and technical meanings [23, 83], compatible with the network science
as understood in mathematics or physics.

Social network analysis has a complex history, with roots involving the socio-
metric analysis of Moreno in the beginning of 20th century, the Harvard researchers
of the 1930s and 1940s who studied interpersonal configurations and cliques and,
finally, the group of anthropologists based in Manchester who, roughly at the same
time, instead of emphasizing integration and cohesion as their predecessors, focused
on conflict and change, see [83, pp. 7–37]. In the 1960s, a key turn to mathema-
tization occurred, which gave this field a new impulse and high ambitions. Today,
encouraged by the rise of interest in networks in other scientific disciplines, social
network analysis is sometimes seen as an approach that may entirely redefine the
social sciences, while integrating them into a broader interdisciplinary research pro-
gram [19]. Formalized analytical procedures hugely contributed to the fact that
social network analysis has become a firm basis for social science discussions [90].
However, integration of mathematical analytic thinking with sociological imagina-
tion is an intricate task. As noted by [31], the application of formalized methods
of social network analysis is often marked by neglecting substantive and theoreti-
cal sociological consequences. Also, despite the growing popularity of mathematical
modeling, qualitative, or ethnographic studies of “network sociality” [92] keep their
relevance, hand in hand with quantitative approaches.

Given this complicated background, our aim, in this paper, is rather modest.
We want to introduce and illustrate a new mathematical method for identification of
small parts of complex networks with higher level of commonalities and for studying
their basic formal properties. As an example and possible field of application we
have chosen networks of product reviewing on the Amazon.com portal. Here, the
simplest possible ties structuring the network are the connections established by
two reviews written on the same product. In other words, what reviewers may
have in common is the product reviewed by them. The configurations when one
product, e.g. a book or a CD, is reviewed by two or more reviewers are frequent,
of course, and not much special. But if the same reviewers are similarly connected
via some other items too, the situation gets more exciting. We can assume that
network segments with higher density of such links represent small communities of
reviewers with similar interests. Our first and main objective is to find these small
communities.

Identification of such small-size groupings has always been one of the key
tasks in social network analysis. Identification of these network segments is an
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interesting empirical finding in itself. Other times, however, the need to focus on
smaller network segments is rather methodological than substantial or theoreti-
cal: for instance, when David and Pinch [22] analyzed the phenomenon of review
plagiarism on Amazon.com, they had to “localize” the phenomena in order to
make it more understandable in detail. Thus, they had to reduce their sample
while focusing on those segments of the vast amount of data available in which
reviewed products were “somewhat similar to one another” and thus vulnerable
to “recycling” practices they were interested in. This is a characteristic situation:
complex networks, including the social ones, are quite often huge, only hardly ana-
lyzable in details, with respect to local deviations or little extremities. This is
especially true for on-line networks. When studying internet-related network struc-
tures, analysts can quickly become overloaded with data and it is difficult to tell
what exactly to look at. The urgent question becomes: how to locate tiny islands
of relevance in the ocean of data archived on the Internet? We offer a possible
mathematical method for precisely such a task — a more flexible and background-
sensitive one (a “softer” one, in a way) than those already described and used in the
field.

We should also stress at this point that our task differs from the well-studied
problem of splitting the network into several modules, which may perhaps overlap,
but as an ensemble, they cover the network entirely. This is the case in metabolic
networks, to mention just one example [72, 46]. In our case, we want to focus on a
few “hot spots”, small communities of interest within the network, leaving all the
rest behind.

2. Reviewing Networks on Amazon.com as a Sociological Problem

Before demonstrating the mathematical procedures, let us also briefly mention
some sociological contexts of the chosen example. Sociologists have pointed out the
increasing importance of the symbolic content of contemporary economics, which
is often associated, among others, with users’ or consumers’ active involvement in
the complex processes of product evaluation, qualification, and formation [2, 59].
The role of consumers is particularly enhanced by the Internet and by the ways
computer technologies shape social networks [15].

A specific and significant part of these processes has been recognized as “peer-
production of relevance/accreditation” [8, p. 75], or simply as “reputational econ-
omy” [22]. By reviewing or commenting items in online shops, classifying and rating
them, individual consumers become co-producers of coordinates for others’ eco-
nomic decision making. They engage in a complex action that cannot be simply
grasped in purely economic terms. As noted by [62, p. 322], spaces of E-commerce
are characteristic by countless devices creating diversity of forms of encounter
between products and consumers [93].

User reviews and comments, for instance, not only serve the purposes of the
seller, but also the consumer community, while simultaneously being the means for
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identity building of reviewers themselves [37]. In-depth study of all these complex
phenomena seems crucial for better understanding of contemporary “technological
economies” [6].

What kind of groupings are we interested in when we try to locate segments of
reviewers connected by shared reviewed products? We might be tempted to talk
about virtual communities. But these would not be “virtual communities” in the
usual sense [78, 91]; and they would not be “online social networks” as typically
imagined by social scientists. Both these concepts characteristically refer to groups
of people who directly communicate to each other with the help of computer net-
works — i.e. who know (about) each other and interact by means of online forums,
instant messaging, or facebook. Our groups of Amazon.com reviewers represent a
slightly different kind of entities, though. These people usually do not communicate
by addressing each other and quite often they even do not know each other. They
do not belong to the group by virtue of intentional interaction with the others,
but “merely” by doing similar things in a relatively uncoordinated way: writing
reviews on specific products. If [45, 44] drew our attention to the importance of
“weak ties” in social networks, i.e. to the significance of ordinary informal acquain-
tances (in comparison to family ties and formal hierarchies), we could speak here
of a kind of “ultra-weak ties”. These ties are “virtual” in the sense that they are
not “real enough” in the usual sociological meaning; yet, they are materialized and
articulated — although not by the reviewers themselves only. We can clearly see the
connections on the Amazon.com web pages: the reviews of these people are listed
together, accompanying the respective item in the catalog. Moreover, the review-
ers do not become members of this community completely unintentionally, but by
means of quite intentional and personal act of assessing the product and writing
the review. They create the community by highly mediated interactions, as if “by
the way”, together and via the technology of online shopping.

In the following section, we present mathematical tools for identification, repre-
sentation and elementary description of precisely such communities. The proposed
procedures may have a value especially in relation to subsequent sociological anal-
ysis of these local anomalies, as its precondition.

3. Finding Small Communities in Networks

3.1. Motivation

The problem of identification parts of the network bearing some relevant structural
information, can be relatively easily formulated in mathematical terms. The
methodological problem is to know which one of the variety of possible mathe-
matical formulations of community detection is suitable for the given purpose. Let
us stress that we neither aim at improving the existing schemes nor present an
algorithm which should compete with the established ones. Instead, we are bring-
ing an alternative scheme which reveals structures not covered by other schemes of
community detection. That is why we not only present a description of the method
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and its application to one real-world example, but also spend time putting it into
a wider context of sociological thinking.

3.2. Background

For a long time, the standard way of mathematical modeling of social networks
[90, 23] was the “classical” theory of random graphs [11, 24] initiated by the work
by Erdős and Rényi [32]. However, in the last decade a new class of networks
became studied and the name “complex networks” became common denomination
for them [4, 1, 88, 27, 12, 28, 70]. Compared with the “classical” models of random
networks, they grasp much better the networks found in reality and at the same
time their models are much more involved than bare random dropping of edges
as in the Erdős–Rényi model. The most immediate characteristics common to the
complex networks is their degree distributions with power-law tails [4].

The strong inhomogeneity of complex networks, implicit in their degree distri-
bution, changes many aspects of their behavior. In the context of our work, new
approaches for finding the communities become relevant. While the methods for
determining cliques, k-cliques and motifs [90, 23] work well if the zero-hypothesis
on the network structure is the Erdős–Rényi random graph, methods better suited
for complex networks were developed [54, 33, 68, 69, 77, 76, 72, 40, 16, 46, 39, 5, 57,
38, 82, 61, 58, 5, 56]. The central quantity for majority of them is the modularity
measure Q, which is to be made maximal. This is achieved by various optimization
algorithms.

Here we will rely on the method of describing the global properties of networks
using the spectral theory of graphs [20]. It deals with eigenvalues and eigenvectors of
various matrices representing the graph structure, which are the adjacency matrix,
Laplacian and more. It was already used for finding clusters or communities in
networks through the properties of eigenvectors corresponding to the second largest
eigenvalue [67, 16, 21, 25]. In one step, it gives the best partitioning of the network
into two modules and repeating the algorithm recursively, the communities are
found. Our approach is different, though. It is similar in spirit to the analysis of
covariance matrices in finance [73, 75], where economic sectors are attributed to
eigenvectors corresponding to the second, the third, etc. largest eigenvalue.

The first level of understanding spectral properties of a random matrix comprises
the knowledge of the density of eigenvalues. The second involves the localization
properties of the eigenvectors. It is the latter that is central for our approach.

Let us say first a few words on the eigenvalue density. Spectra of “classical”
random graphs, like the Erdős–Rényi model, are closely related to “classical” models
of random matrices [64]. The typical shape of the eigenvalue density is the Wigner
semi-circle with sharp edges, with the largest eigenvalue split far off from the bulk
of all other eigenvalues. The first complication arising in the spectrum of a random
graph is the sparseness of the adjacency matrix, which leads to the emergence of
Lifschitz tails. This appears already in the Erdős–Rényi model. Despite considerable
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effort [79], the Lifschitz tail in ER graph is still not known in all detail. Asymptotic
formula was obtained by several approaches, showing that the density of states is
nonzero at arbitrarily large eigenvalues and it decays faster than any power law
[79, 84].

It was soon realized that complex networks, characterized by power-law degree
distributions, have also non-standard spectral properties [34, 42, 29, 30, 33, 71,
53, 35, 51, 36, 85, 21, 14, 94, 26, 86]. First, there is a cusp in the middle part
of the density of eigenvalues, and second, perhaps more importantly, the tail of
the eigenvalue density seems to be described by a power law [34, 42]. Numerical
diagonalization on toy models [29, 30] as well as some analytical estimates confirmed
power-law tails in the density of states. The replica trick [80, 65], as well as the
cavity method [30, 81] were later adapted for scale free networks. It was found that
the spectrum has a power-law tail characterized by the exponent 2γ − 1 related to
the degree exponent γ of the network. Further improvements of the method were
introduced recently [50, 10].

As we shall see, our method is similar to those used in the study of covariance
matrices of stock-market fluctuations [41, 55, 73, 74, 75, 89, 3, 48, 13]. They are
modeled as random matrices of the form MMT , where M is a random rectangular
matrix. The density of states has the Marčenko–Pastur form [63] with sharp edges,
which are smeared out into Lifschitz tails if the matrix is sparse [66].

Most attention was paid to the states in the tail, i.e. located beyond the edge of
the Marčenko–Pastur density and below the maximum eigenvalue, which is always
split off. These states are supposed to carry the non-trivial information about the
stock market and, indeed, the shape of the corresponding eigenvectors was used to
identify business sectors. It was supposed that the eigenvectors were localized on
items within specific sector [43, 75, 52]. More sophisticated approaches were also
developed [89].

Our method owes largely to the spectral analysis of covariance matrices. How-
ever, we improve these approaches by systematic use of the quantitative measure
of localization of the eigenvectors, which is the inverse participation ratio. In an
intuitive manner, a similar approach was already used in the analysis of gene coex-
pression data [49]. Within this approach, we do not aim at factoring the entire
network into some number of modules, or communities, which may or may not be
overlapping, but in any case covering, as an ensemble, the whole network. Instead,
we want to find small parts of the network which differ structurally from the rest.
We may also describe our approach as “contrast coloring” of the network, which
makes certain relevant parts visible against the irrelevant background.

3.3. Spectral analysis of matrices encoding the structure

Our analysis will be devoted to bipartite graphs. There are two types of nodes,
making up sets R and I. Anticipating our application to the Amazon.com network,
we think of members of R as reviewers and members of I as items to be reviewed.
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All information on the network structure is contained in the adjacency matrix M
with elements Mri ∈ {0, 1}. The out-degree of node r ∈ R is kr =

∑
i Mri, and the

in-degree of the node i ∈ I is ki =
∑

r Mri.
In the bipartite graph, the spectral properties are deduced from the contracted

matrices B = M ·MT and C = MT ·M . The interpretation of these matrices is
obvious; e.g. Brs tells us how many neighbors the nodes r and s have in common.
Similar construction is used frequently in bipartite networks. As an example, let
us cite the network of tag co-occurrence in the analysis of collaborative tagging
systems [18] or recommendation algorithms investigated in [95].

In order to partially separate the effects of the network structure from the
influence of degree distribution, we rescale the matrix elements by the product of
square roots of the out-degrees. This way, we get the matrix

Ars =
Brs√
krks

(1)

with all diagonal elements equal to 1. We can also be more explicit and write
Ars = (

∑
i MriMsi)/

√
(
∑

i Mri)(
∑

iMsi). Obviously, the matrix A is symmetric.
The matrix A is then diagonalized. Let us see what information can be extracted

from the eigenvalues and eigenvectors. First, for any square N×N matrix D encod-
ing the structure of a graph we can interpret the traces 1

N TrDk as density of circles
of length k. This number is equal to the kth moment of the density of eigenvalues
of D. In our case, the role of D is assumed by the contracted matrix B and the kth
moment of B expresses the density of cycles of length 2k on the bipartite graph.
If we use the matrix A instead, the moments of the spectrum are related to the
density of weighted cycles. Each time the cycle goes through the vertex r ∈ R, it
assumes the weight 1/kr. Therefore, cycles connecting vertexes with large degree
are counted with lower weight. This is just what we want here: to put accent on
peripheral, less-connected areas of the network, rather than on the hubs. If we did
not rescale the matrix as in Eq. (1), the weight of the hubs, or strongly-connected
nodes in general, would overshadow the major part of the network, where the small
communities may lie hidden.

We expect that the spectrum has a power-law tail. Indeed, it will be confirmed
in the specific example of Amazon.com, which we shall show later. The power-law
tail implies that the density of cycles beyond certain length diverges. In terms of
the limit N → ∞, it means that the number of such cycles increases faster than
linearly with N . The exponent of the power-law tail tells us what is the threshold
for the cycle length, beyond which the cycles are anomalously frequent compared
to the Erdős–Rényi graph.

What does all this mean for the problem of finding small compact communities?
If we for example use the method of cliques or k-cliques, we tacitly assume that the
“background” network does not contain many of these cliques by pure chance. But
if, for example, the tail of the spectrum of D has exponent 4, the third moment
diverges, which means that there are extremely many triangles. No triangle, or
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community of size 3, can therefore be considered as informationally relevant. That
is why we consider the information on the spectrum of the network an important
auxiliary information.

The new algorithm we propose for finding small compact communities relies on
the properties of the eigenvectors. Let us denote eλ r the rth element of the eigen-
vector of the matrix A, corresponding to the eigenvalue λ. To study the localization,
we need to calculate the inverse participation ratio (IPR) defined as

q−1(λ) =
N∑

r=1

(eλ r)4, (2)

where normalization
∑N

r=1(eλ r)2 = 1 is assumed.
While IPR says quantitatively to which extent an eigenvector is localized, this

information alone is not sufficient, if we want to draw the distinction between
localized and extended states. First, it makes no sense to ask, if a particular vector
is localized, as opposed to extended, or not. What does make sense, however, is
the question whether the states around certain eigenvalue are localized. The way
to establish that fact is by finite-size analysis. Indeed, if N is the dimension of the
vector space we work with, then

q−1(λ) ∼
{
O(1), N → ∞ localized state,

O(N−1), N → ∞ extended state.
(3)

Second, also the shape of the density of eigenvalues changes with the system
size. When we increase N , the spectrum broadens. In the textbook example of the
Erdős–Rényi graph, the spectrum has sharp band edges. The edge of ER spectrum
moves as N1/2 when N grows and if we compare the IPR at different system sizes,
we must measure the eigenvalues relative to the band edge. Therefore, to compare
the behavior at different sizes, we take a random subset of the network, containing
Nsub nodes. Typically, we choose Nsub = N/2. Then, we plot the density D(λ) of
eigenvalues for both original network and the densityDsub(λ) for the random subset.
The densities are rescaled by the factor s, the value of which is found empirically
so that the data for D(λ) and Dsub(1 + (λ− 1)s) overlap as much as possible. The
form of this rescaling involves the shift of the eigenvalues by 1, because the matrix
A has spectrum centered around the value λ = Arr = 1. With s found, we plot
the IPR for the network and the subset, with the same rescaling as used for the
eigenvalues density. The regions, where we observe that q−1(λ) remains roughly the
same for the network and its subset, are the candidate areas where the localized
states are to be found.

We continue the procedure by determining the eigenvectors with largest q−1

within the areas of localized states. The elements of these vectors tell us what nodes
of the network belong to the small community. To this end, we fix a threshold T and
retain only those nodes r ∈ R for which the elements exceed the threshold in abso-
lute value, |eλ r| > T . We do not propose any exact method for fixing T . For the sake
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of consistency, T must be chosen so that the number of nodes retained is roughly
1/q−1. In practical applications, we observed the number of retained nodes when
T was gradually decreased from T = 1. At a certain crossover value of T , we saw
that the number of nodes suddenly started increasing substantially to much larger
values than 1/q−1. Hence, we fixed T somewhat below this crossover. We believe
that this procedure could be made automatic by a software implementation, but
we did not do that.

Let us make an important remark at this point. Clearly, we can find some local-
ized states also in a randomized version of the network. These states are results of
pure chance and do not bear significant information. Therefore, we cannot exclude
that also in the true empirical network, some of the localized states occur just
accidentally and thus some of the clusters found are spurious. The choice of the
threshold T only cannot discriminate between the true and the spurious clusters.
However, looking at the dependence of IPR on eigenvalue for the true and the ran-
domized network (as will be seen later in Fig. 4) we can see the regions where IPR
is large and differs markedly between true and randomized networks. The local-
ized states found in these regions (in Fig. 4, it is near the lower edge of the den-
sity of states) correspond to clusters that are non-random and do bear relevant
information.

This way, we find those vertexes r ∈ R, which form the community CR = {r ∈
R : |eλ r| > T }. Next, we proceed by finding those i ∈ I which are connected to
them. Here we can distinguish two levels. First, a vertex i ∈ I can be connected
to at least two different vertexes from CR. Then, we say that it belongs to the
connectors of the community, Ccon

I = {i ∈ I : ∃r, s ∈ CR : r �= s ∧Msi = Mri = 1}.
Furthermore, those i ∈ I which are connected to just one vertex of CR form a
more weakly bound part of the community, which we call cloud, Ccloud

I = {i ∈ I :
∃r ∈ CR \ Ccon

I : ∧Mri = 1}. We can explicitly see the asymmetry in constructing
the community. This is due to the fact that we focused on the diagonalization of
the contraction matrix acting in the space R. The procedure can be, of course,
performed also in the opposite direction, diagonalizing the contraction on I. Both
ways are equally justified on the formal level. The choice should be dictated by
practical reasons and by the interpretation we want to draw from the data in any
specific application.

To sum up, our procedure for finding small communities in bipartite networks
consists of the following steps.

(1) Diagonalize the matrix A, Ars = (
∑

iMriMsi)/
√

(
∑

i Mri)(
∑

iMsi). The out-
put is the density of states D(λ) and the inverse participation ratio q−1(λ).

(2) Do the same for random subset of the network, containing half of the nodes,
and find the proper rescaling factor s, so that rescaled density of states for the
network and the subset coincide. By rescaling the IPR using the same factor s,
determine the regions, in which localized states are to be found.

(3) Within the localized region, find the eigenvectors with highest IPR.
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(4) For each of the eigenvectors found, determine the threshold T and establish
the set CR of nodes r, for which |eλr| > T . This set is the projection of the
community to the set R.

(5) Find the connector and cloud components of the community on the side of the
set I.

4. An Example: Reviewing Networks on Amazon.com

4.1. Basic structural features

The e-commerce site Amazon.com is one of the oldest and best known on the
WWW. It has a very rich internal structure, but the user usually sees only a
small part relevant to the service requested in a particular moment. As already
announced, we shall investigate one aspect of the Amazon.com trading, namely the
network made up of connections between the items to be sold and the reviewers
who have written reports on these items.

This network is a bipartite graph, with items i = 1, 2, . . . , Nitm on one side
and reviewers r = 1, 2, . . . , Nrev on the other side. The sets of vertexes R and I
introduced in the methodical section above, correspond to the sets of reviewers and
items, respectively.

The reviews written are edges connecting these two sets. The structure of the
network can be uniquely described by the matrix M , where the element Mri equals
1 if the reviewer r wrote a review on item i, and 0 otherwise.

The data were downloaded using a very simple crawler in the period from 28
July 2005 to 27 September 2005. First, a list of total Nall = 1,714,512 reviewers was
downloaded; at that time the list containing all Amazon reviewers was accessible
through the web. (It is no more so.) The list was naturally ordered by the rank Ama-
zon assigns to each reviewer. On average, reviewers with higher rank have written
more reviews, but there are exceptions. For example, at the time of data collection,
the No. 1 reviewer, Harriet Klausner, had written 9581 reviews, while the No. 2,
Lawrance M. Bernabo, 10,603 reviews. This suggests that it is not only quantity
but also quality which counts when Amazon ranks their reviewers. We do not touch
here the obvious question how the most prolific reviewers do manage reading and
reviewing several books per day, throughout many years. As we investigate only
structural features here, these problems are left aside.

In the next step, we went through the reviewers’ list, from the top rank down-
wards. We looked only at about 105 first reviewers and stopped there, as we con-
sidered the sample sufficiently representative. The remaining reviewers are only
occasional writers, contributing by one or at most a few reviews. For each reviewer
we found all reviews written by her or him and registered the name of the item
reviewed (mostly books and CDs, of course, but in general all kinds of goods do
appear) as well as some other details about the review. In total, we examined 99,622
reviewers who wrote 2,036,091 reviews on 645,056 items.
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4.2. Degree distributions

The simplest and most accessible local property of the network is the degree
distribution. In the list of reviewers, we put down also the reported number of
reviews written by the particular person. We neglected the possible error in this
number due to various inconsistencies. We believe that the random discrepancies
between the number of reviews reported and number of reviews which can actually
be found in the system do not influence the statistics in any significant measure.
We show the distribution as out-degree distribution in Fig. 1. We can observe clear
power-law dependence except for the few highest degrees. The exponent fitted is
γout 	 2.2.

Similarly we can extract the in-degree distribution from the list of reviews. The
statistics of the number of reviews per item is also shown in Fig. 1 and a power-law
dependence is found again. The corresponding exponent is now γin 	 2.35.

The power distribution is by no means surprising, in view of the vast literature
on complex networks. The data provide a clear check that Amazon.com also belongs
to the class of networks with power-law degree distribution.

4.3. Distribution of eigenvalues

Now we are in a position to calculate the contraction matrix A acting on the set
of reviewers, and diagonalize it. As an additional study, we compare the results
with randomized version of the reviewer-item network. This way we discriminate
between the influence of the network structure and genuinely random factors.

To this end, we reshuffle the edges in the reviewer-item graph, while keeping
the degrees of all vertexes unchanged. The matrix M is replaced by MR and,
correspondingly, the matrix A is replaced by AR. Again, we can write AR

rs =

Fig. 1. Degree distribution of the bipartite reviewer-product network on Amazon.com. Circles
indicate the data for out-degree (reviews per reviewer), triangles for in-degree (reviews per item).
The latter data are shifted rightwards by one decade for better visibility. The lines are the power
laws ∝ k−2.2 (dashed line) and ∝ k−2.35 (solid line).
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Fig. 2. (Color online) Distribution of eigenvalues of the reviewer-reviewer matrix. The size of the
segment is N = 10,000. For λ < 3, the distribution is plotted as a histogram, while the larger
eigenvalues, λ > 3 are shown as individual vertical ticks. The largest eigenvalue is indicated by
the circle. In the inset, we show the detail of the central part of the same plot. Also in the inset,
the dashed (green) line is the distribution of eigenvalues of the matrix obtained by reshuffling the
reviewer-item graph.

(
∑

i M
R
ri M

R
si)/

√
krks. The only information on the network structure retained here

is the order sequence. As we showed in the last section, it obeys a power law, so the
features found in analyzing AR are entirely due to power-law degree distribution,
but without further structural details.

We diagonalize the matrices A and AR. Their eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN

are accumulated around the value λ = 1, which corresponds to the uniform diagonal
value of both the true and the randomized matrices. The distributions are plotted
in Figs. 2 and 3. Let us describe now what we can see here.

Fig. 3. Detail of the upper part of the distribution of eigenvalues. The behavior is observed using
the integrated density of eigenvalues. Circles correspond to the original reviewer–reviewer matrix

with N = 10,000, and the triangles correspond to the same graph subject to permutation of all
its edges. The full line is the power ∝ (λ− 1)−2, with the dashed line is the power ∝ (λ− 1)−3.4.
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In Fig. 2, we plot the histogram of the eigenvalues of the matrix A. Most of them
fall within the interval λ ∈ [0, 3], with sharp maximum in the eigenvalue density
at λ = 1. The eigenvalues density is much smaller for λ > 3 and we show their
positions as separate ticks. Although the notions “bulk” and “tail” are not very
precise here, we shall use them pragmatically, calling bulk the part with λ � 3 and
tail the part with λ � 3.

In Fig. 2, we can also see the spectrum of the randomized matrixAR. The power-
law distribution of degrees is preserved. In the spectrum, we can observe certain
remarkable changes. In the bulk of the density of states, as shown in the inset of
Fig. 2, the spectrum of the reshuffled network lacks the characteristic tip at the
value λ = 1 and its shape at the lower end of the spectrum is quite different. Most
importantly, a sharp band edge develops. On the other hand, at the upper tail of
the density of states, the changes are of minor importance.

In Fig. 3, we can compare the behavior of integrated density of states, D>(λ) =∑
i,λi>λ

1
N in the region of large eigenvalues. For the original matrix A, we observe

a power-law decay in the tail D>(λ) ∼ (λ−1)−τ with τ 	 2. For the matrix AR, the
tail is again quite reasonably fitted on a power law, but with larger exponent. Let us
recall that the divergence of the moments of the eigenvalue density is related to the
statistics of cycles on the network. For the reshuffled network, the divergence occurs
at higher moments, therefore at cycle lengths longer than in the original network.
This effect seems to be a tiny one, but this is just a subtle structural difference
which goes beyond the bare degree distribution. In short, the Amazon network
has many more short loops than how many could be expected knowing only its
degree sequence. This suggests the presence of small self-reinforcing communities.
Although we do not see them yet at this stage, we can perceive their existence
through the density of states of the matrix A.

Interestingly, similar conclusions about small communities were reached in
the study of collaborative tagging systems [18], where two-node correlations were
calculated in order to estimate the quantity of non-randomness, or semantic infor-
mation content.

4.4. Localization

Having investigated the eigenvalues, let us now turn to the properties of the eigen-
vectors. We show in Fig. 4 how the IPR depends on the eigenvalue. For the matrix
A we can see larger localization around the center of the spectrum at λ = 1. Farther
from the center the localization is weaker, but it increases again at the tails, more
strongly at the lower tail, while more gradually at the upper tail. Note also some
isolated highly localized states in the bulk of the eigenvalue distribution.

Now we compare the results with the random subset of Nsub = 5000. We found
that the density of eigenvalues coincides very well if we choose the scaling factor
s = 3

√
2 = 3

√
N/Nsub. With the same scaling we plot the IPR in Fig. 5. We can see

that the absence of a clearcut band edge is complemented by the absence of any
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Fig. 4. Inverse participation ratio for the reviewer–reviewer matrix with N = 10,000 (◦), and
the same for matrix obtained by reshuffling the reviewer-item graph (+). Each point denotes the
IPR for the eigenvector corresponding to the indicated eigenvalue λ.

Fig. 5. Inverse participation ratio for the reviewer–reviewer matrix. The horizontal axis is rescaled
by the factor s explained in the text. We show the data for the matrix with N = 10,000 (+, s = 1),
and for the random subset with Nsub = 5000 of the same matrix (×, s = 3√2). Each point denotes
the IPR for the eigenvector corresponding to the indicated eigenvalue λ.

region of localized states at the upper end of the spectrum. The lower end does
show localized states, though. Therefore, the candidates for compact communities
are to be found close to the lower end of the spectrum. In the next section, we
describe what we have found there.

5. Finding and Interpreting the Communities

As we have said, the most localized states are the candidates for small and densely
interlinked communities of reviewers. We counted as members of the community
only those reviewers, whose element in the eigenvector was larger than a threshold,
|eλ r| > T . The value of the threshold T was found by trial-and-error, so that all
relevant nodes, on which localization appears, were kept, while the remaining ones,
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interpreted as a noisy neighborhood, were left out. This adjustment of thresholds
also indicates that the borders of the communities found in this way are not sharp.
In our set of 104 reviewers, the number of communities which can be considered
as well-localized is about 	10. We were able to explicitly draw and interpret 7
communities. With the average size of the communities around 6 people, the fraction
of reviewers in small compact communities can be estimated to about 0.5%. In other
words, we have been able to find relatively rare cases when fractional segments of
the network display anomalously high density of mutual links. However, we expect
that this fraction would rapidly grow if more reviewers are included from the top
of the Amazon list downwards. From this point of view the small percentage of
the reviewers in small communities is partly an artifact due to the choice of the
reviewers starting from the top of the list of the most productive Amazon.com
reviewers.

Now, let us look at several specific examples of the communities found. The first
example of such a small grouping is shown in Fig. 6. (In this case, we took the 5th
most localized vector, q−1 = 0.095675, corresponding eigenvalue λ = 0.359, and the
threshold was taken as T = 0.2.) The items reviewed by the reviewers within the
community found in this way are of two types. First, there are those reviewed by at
least two reviewers from the community. These items keep the community together
and we call them “connectors”. We show them in Fig. 6 linked to their corresponding
reviewers. However, one should note that the reviewers themselves play the role of
“connectors” for the items, to the same extent as the items are “connectors” for the
reviewers. Second, there are items reviewed by only one reviewer of the community.
These items form a kind of “cloud” around the core of the network segments. We do
not show the “cloud” in our figures, but we shall discuss its meaning later.

What are the product-connectors in the given community (Fig. 6)? We can see
that the maximum number of reviewers for one item is 4 and it holds for two audio
recordings: “The Beatles (The White Album)” and “Abbey Road” also by Beatles.
Thus, the core of the community is kept together by one of the most popular
music bands ever. The remaining items are thematically close. They refer to other
records by Beatles and also by Beatles ex-members, or to the music of Bob Dylan.
Ex-Beatles and Dylan cover about a half of the items each. The only exception
is a small set of five recordings of other pop-classics, namely four of Led Zeppelin
and one of Rolling Stones. In short, all items fall into the range of notoriously
known pop-music stars. It is interesting that this characteristic does not concern
the connecting items only, but majority of all other reviews by the members of the
community (not included in the graph). Thus, not only the connectors, but also the
“cloud” bears the same characteristics.

Therefore, the interest of these reviewers lies, in general, within a rather narrow
scope determined by the pair Dylan–Beatles, with some small excursions farther
into mainstream pop-music, similar to the small “Led Zeppelin” set in Fig. 6. For
example, the reviewer gdb has also written on CDs by U2 and David Bowie, while
the “cloud” reviews by Cristian Domarchi (not listed in Fig. 6) pertain only to other
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gdb "gman"

Cristian Domarchi

Scot P. Livingston

 Abbey Road
The Beatles (The White Album)

robmra

Stephanie Sane

John_999

All Things Must Pass
Yellow Submarine (Songtrack)

Sgt. Pepper’s Lonely Hearts Club Band

Help!
Run Devil Run

Please Please Me

The Beatles 1

Double Fantasy

Let It Be
Magical Mystery Tour

Past Masters, Vol. 2
With the Beatles

A Hard Day’s Night (1964 Film)

Beatles for Sale

Rubber Soul

Yellow Submarine 

  Revolver

Mccartney

 Past Masters, Vol. 1

Venus and Mars
Imagine

 Ram

Plastic Ono Band
 Milk and Honey

Tug Of War

 Sticky Fingers
Led Zeppelin 1st

 Led Zeppelin IV
 Houses Of The Holy

 Led Zeppelin III

Blonde on Blonde

Bob Dylan
The Freewheelin’ Bob Dylan

John Wesley Harding
Another Side of Bob Dylan

Nashville Skyline

Time Out of Mind
Under the Red Sky 
Knocked Out Loaded
Planet Waves
Slow Train Coming
Street Legal

New Morning
Self Portrait

Blood on the Tracks
Desire

Planet Waves

Blood on the Tracks

Love and Theft

The Times They Are A-Changin’
Bringing It All Back Home
Highway 61 Revisited
Pat Garrett & Billy the Kid
The Basement Tapes
Shot of Love
Infidels
Oh Mercy
World Gone Wrong
 Empire Burlesque
Good as I Been to You
Down in the Groove

The Bootleg Series, Vol. 4: Bob Dylan Live, 1966
Bob Dylan: MTV Unplugged [Live, 1994]
Bob Dylan Real Live [In Europe, 1984]

Fig. 6. The “pop-music” community in the network producing a very localized eigenvector of
the matrix A. In the middle, code-names of the reviewers, on the right, recordings by The Beatles
(mostly as a band, some other by individual members), on the left, recordings by Bob Dylan, with
exception of the shaded box which contains four times music by Led Zeppelin and once Rolling
Stones.

recordings by ex-Beatles plus one book; among all the 6 reviewers, only Stephanie
Sane shows interests which go clearly beyond the Dylan–Beatles repertoire, review-
ing a good deal of books, mostly mystery and detective fiction.

A similar picture is provided by the analysis of other communities. Let us very
briefly describe two more of them.
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C. Meja

 J. A L "jose_8111"

 Daniel Geer

Denny Vu Quach

 Gladiator

 The Last Samurai

 Terminator 3 − Rise of the Machines

 The Adventures of Indiana Jones

 Kill Bill, Volume 1

The Lord of the Rings −The Two Towers

 Pirates of the Caribbean − The Curse of the Black Pearl

Buffy the Vampire Slayer − The Complete First Season

 Buffy the Vampire Slayer  − The Complete Sixth Season

 The X-Files − Sixth Season

The X-Files − Seventh Season

The X-Files − Eighth Season

The X-Files − First Season
The X-Files − Second Season

The X-Files − Fourth Season
The X-Files − Third Season

The X-Files − Fifth Season
The X-Files − Ninth Season

 The Matrix Reloaded

 The Matrix Revolutions

 The Lord of the Rings − The Return of the King

  Star Wars − Episode II, Attack of the Clones

Fig. 7. The “pop-movie” community in the network producing a very localized eigenvector of
the matrix A. In the middle, code-names of the reviewers, on the right, the X-Files series, on the
left, other popular movies.

The first one (Fig. 7) belongs to another pop-cultural domain, this time concen-
trating on DVD movies with a sci-fi and fantasy flavor. Again, we found that the
reviewers are active within rather narrow bounds. They focus on widely popular
titles, overlapping very little with any other possible themes or genres. Only a small
part of the reviews by the members of the community are related to something else,
e.g. to books by M. Proust and T. Mann.

The third and last example we want to mention is shown in Fig. 8. In analogy
with the former examples, the “pop-music” and “pop-movie” communities, we may
call this one a “pop-politics” community. The reviewers here concentrate on books

 M. Mitchell 

 David S. Rhodes

 David Fults

John

 Steven E Rustad

 Donnie Brasco

 Slander. by: Ann Coulter

 A National Party No More

Unfit for Command

Treason. by: Ann Coulter

How to Talk to a Liberal (If You Must). by: Ann Coulter

The Truth About Hillary

 Where the Right Went Wrong

Deliver Us from Evil

 Lies and the Lying Liars Who Tell Them

 What’s the Matter with Kansas?

 The Republican Noise Machine

 Rome Wasn’t Burnt in a Day

 The Price of Loyalty

Plan of Attack
All the President’s Spin

 Reason

 Liberalism is a Mental Disorder
 Shut Up and Sing

Fig. 8. The “pop-politics” community in the network producing a very localized eigenvector of
the matrix A. In the middle, code-names of the reviewers, on the left and right, books treating
mainly the clash of (neo-) conservatives versus liberals in the USA. Note that Ann Coulter is the
most prominent book author in this community.
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discussing the presidency of G. Bush, the evils of liberal ideology, as compared with
neo-conservatism, and so on. The core of the community is kept together by the
books of Ann Coulter, who is known as a militant anti-liberal writer. Majority of the
books in this group is targeted at the widest public, as is the music by The Beatles
and movies of the “X-Files” type. Their themes are not esoteric, these products are
not aiming at specialized audiences; yet, the zeal of the reviewers makes a “cult” of
them. Again, this community is narrowly defined by the interest in these popular
issues and not much else. In the “cloud” of other items reviewed by the members
of this community we find some other books by Ann Coulter, accompanied by
books such as (the titles are self-explaining, we believe) Worse Than Watergate:
The Secret Presidency of George W. Bush; Blinded by the Right: The Conscience of
an Ex-Conservative; A Matter of Character: Inside the White House of George W.
Bush; The Family: The Real Story of the Bush Dynasty; Chain of Command The
Road from 9/11 to Abu Ghraib, and similar. Out of the six reviewers, only Donnie
Brasco shows some additional field of interest, having written about various pop-
music CDs as well.

Let us sum up these observations (supported also by analyses of other small
communities we were able to find in the sample). Our expectations that strongly
localized eigenvectors would reveal some specific small communities was fulfilled in
the sense that we have indeed found groups of zealots, concentrated on relatively
narrow segments of commodities sold on Amazon.com. Individual interests of these
reviewers only scarcely reach beyond the theme common to the community.

On the other hand, however, it would be misleading to imagine these people
as eccentrics focused on highly specialized, marginal or even extreme cultural arti-
facts. The subjects of their reviews are quite ordinary, clearly part of the cul-
tural mainstream. And, by their tastes, the reviewers themselves seem belonging to
wide audiences, often focused on classics or well-established pop-cultural products.
In other words, anomalous tiny fragments of this huge network, characteristic by
various authors repeatedly writing reviews on the same items, refer typically not to
some marginal cultural forms with specialized contents, but rather to widely shared
cultural tastes and mainstream enthusiasts.

A more detailed analysis of these findings is beyond the scope of this method-
ological paper and its analytical illustration. Very probably, several possible
explanations could turn valid in parallel, including the nature of the Amazon.com
portal (primarily designed for general audiences and as wide consumer population
as possible), possibly higher probability that reviews on widely favored artifacts
get “localized” etc. What should perhaps be stressed here, however, is the pecu-
liar character of the communities or network segments under discussion. It is clear
that the tiny network fragments counting 5 or 10 reviewers and dozens of reviews
cannot represent “big” consumer populations and “widespread” artifacts in some
straightforward way. Rather, they may provide a rather specific (“small-scale”)
way of looking at a mass-scale phenomenon. Let us tell something more about this
specificity.
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We have already noted that the network and its segments we are studying is
not a “social network” as traditionally envisaged. The interaction constituting the
network is so massively mediated and by-produced (while remaining observable,
“real” enough and grounded in intentional social action) that we leave the territory
of what is usually counted by social scientists as a “group” or “community”. But
even more is at stake in this direction. A closer view of our findings reveals that
one cannot unambiguously say whether the “connecting” reviewed products provide
interpretive framework for statements about the reviewers, or whether — on the
contrary — it is the reviewers and their actions that provide clues for interpreting
communities of products. In other words, we are unable to determine whether we
study groupings of people (connected by products) or of commodities (connected
by people). In fact, we should better try to understand both within a single hybrid
network, meaningfully connected. While studying phenomena of product reviewing,
products and reviewers cannot be separated. The sets of products represented in
our figures (Figs. 6–8) do not simply make sense (and do not hold together) without
the reviews written about them by the represented reviewers. Indeed, the products
grouped by, e.g. purchases carried out by Amazon.com users would look different.
On the other hand, the groups of reviewers would not make sense without the par-
ticular reviewed products (their amount and nature). Thus, we believe the segments
identified in our example can directly represent neither populations of consumers
nor entire sections in the Amazon.com commodities catalog. Rather, they repre-
sent, in a complex way and as if under a specific lens, a phenomenon of online
user reviewing, better understanding of which may contribute to our knowledge of
contemporary popular culture and technologically mediated economic processes.

6. Conclusion

Thanks to numerous sociological efforts in the field of social network analysis as
well as the work on networks done in other scientific disciplines such as theoretical
physics, various mathematical tools have been developed. They aim either at deter-
mining large-scale structures in complex networks or at identification of smaller
network segments such as cliques or acquaintances. In this work, we introduced a
new mathematical procedure relatively close to the latter type of task. We believe
the method is very suitable for finding the most relevant small segments of complex
networks, when “relevance” cannot or need not be equaled to some absolute level
of mutual connectivity between the nodes. We argue that this is often the case,
because important social forces or processes are often related to highly mediated
and heterogeneous groupings, typically constituted as by-products of various, dif-
ferently oriented actions, and where people characteristically and usually do not
intentionally address each other and even do not know each other (here, we could
speak of “ultra-weak” ties). The proposed method based on well-localized eigenvec-
tors is well-capable to find these small communities with anomalously high density
of mutual links and therefore reveal a kind of semantic information hidden in the
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network, otherwise often neglected. As such, our method may be a good starting
point for more fine-grained further analysis of given phenomena.

As an empirical example, we have chosen the data available from the
Amazon.com online shopping portal. We studied the network constituted by users
writing reviews of the same products offered for purchase on the website during
the summer 2005, when the data were gathered. Reviewers become connected if
they have written a review on an identical item. When such connections locally
proliferate, we get a grouping of relevance.

These groupings are not directly related to the top-lists of popularity, but reveal
the most focused points in the network. They are constituted by socially rather
distant ties, i.e. by a kind of ultra-weak ties, namely highly mediated links by-
produced during processes primarily aimed at something else than addressing each
other to establish acquaintance or become closer.

The first important result of our analysis is the power-law tail in the density of
eigenvalues. This feature is partially, but not entirely, due to the power-law degree
distribution. Comparing the spectrum arising from the network with the spectrum
of a random network with the same degree sequence, we find a power-law tail in both
cases, but the exponent is significantly smaller in the original network. Generally,
such a tail implies that the density of cycles beyond certain length diverges when
the size of the network tends to infinity. The difference in the exponent means that
some shorter cycles keep finite density in the randomized network, while in the
original one they are much more abundant. This means that the Amazon network
contains much more compact groupings than what would be expected knowing only
its degree sequence.

To see at least some of these small groupings, we looked at well-localized eigen-
vectors. These localized states represent small communities or network segments
and bear semantic information hidden in the network. We call them “hot spots”,
as they represent local structures which differ from the surrounding background.
We were able to explicitly find some of these communities and attribute meaning to
them. The three of them briefly discussed in this paper can be labeled as pop-music,
pop-movie, and pop-politics communities. The reviewers of these communities are
very strongly focused on one narrow segment. This segment itself belongs usually
to mass or popular culture, so it cannot be considered as marginal or esoteric. It is
the enthusiasm of the reviewers which singles the segment out of the sea of millions
products traded on Amazon.com.

Our analysis shows that only about half per cent of the reviewers belong
to these network segments in the small sample of 104 reviewers. However, we
expect that this fraction would rapidly grow if more reviewers are included from
the top of the Amazon list downwards. If carefully treated and interpreted, the
identified network segments may be useful for enhancing our knowledge of mass
or popular culture and complex economic processes related to e-consumerism.
Especially, it would be interesting to make systematic classification of the small
communities.
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Besides these specific findings, we would like to highlight another, more general
feature. When analyzing the chosen example, it turned out that conventional talking
about “networks of reviewers” might be sociologically misleading. Our groupings, in
fact, were constituted not only by people writing reviews on the same products, but
also (simultaneously) by products reviewed by the same reviewers. That is why we
decided to switch to a more appropriate term “networks of reviewing”. This term
indicates the hybrid nature of networks we have been dealing with and it allows
better talking about processes of online economy rather than about bare structures
composed of its human agents. In this respect, our approach is well-compatible
with the currently increasing emphasis on heterogeneity as an essential quality of
collectivities studied by social scientists [60].

The method can be applied in a straightforward way to any kind of network,
wherever the data can be collected easily. However, technical limitations of the
method may arise in networks larger that several tens of thousands of vertices, due
to computer memory limitations. As shown also by the example of Amazon.com,
online networks are often larger than that. Then, we must decide which subset
of the whole network can be considered representative. In our case, we chose the
subset of the most productive reviewers, but other networks might require other
criteria.
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We show by direct calculation that the replica and cavity methods are exactly equivalent for the spectrum of an
Erdős-Rényi random graph. We introduce a variational formulation based on the cavity method and use it to find
approximate solutions for the density of eigenvalues. We also use this variational method for calculating spectra
of sparse covariance matrices.
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I. INTRODUCTION

Random matrix theory is a discipline with a wide range of
physical applications and many beautiful mathematical results
[1]. One of the aspects that makes the problem extremely
complex is the fact that real physical systems are embedded
in three-dimensional Euclidean space. Their Hamiltonian is
often a random matrix, but the randomness is constrained in a
highly nontrivial way.

The constraints are relatively less severe in the atomic
nucleus, where the three dimensionality of physical space is
of secondary importance. Hence the spectacular success of
the early works in random matrix theory, due to Wigner [2,3]
and Dyson [4]. On the other hand, the fundamental constraint
arising from the two-body character of the interaction within
the (model of an) atomic nucleus induces several drastic
changes [5–9]. Most importantly, the density of states is not
a semicircle, as suggested by Wigner, but rather it follows a
Gaussian shape. Therefore, sharp band edges are missing, and
Lifschitz tails develop. For the current state of the problem,
see, e.g., the review [10].

An even more complicated situation arises in all random
extended systems, such as disordered or amorphous semi-
conductors, where we must take into account the Euclidean
constraints. Perhaps the easiest of these constraints is the
sparsity of the Hamiltonian matrix, which is due to the finite
range of interactions. If we forget the even more severe
complications due to the precise number of spatial dimensions
(in reality one, two, or three), we are left with the problem of
determining the spectrum of a random sparse matrix.

An important breakthrough was achieved using the replica
method, which was introduced in the context of random
matrices in Ref. [11]. Rodgers and Bray, in their classic
work [12], solved the problem in the sense that they found
an integral equation for a quantity from which the density
of states is readily obtained. Unfortunately, that equation still
resists all attempts for an exact analytic solution. In Ref. [12],
two approximative solutions were found: first, in the form
of a series expansion, whose leading term coincides with the
Wigner semicircle law; and, second, using a nonperturbative
argument, introduced earlier in Ref. [13], the shape of the
Lifschitz tails in the density of states was found.

*slanina@fzu.cz

The replica method for treating spectra of sparse matrices
was further developed [14–28]. In particular, the variational
formulation of the replica equations [19,20,27] enabled gen-
erating self-consistent approximations, namely, the effective
medium approximation (EMA), which is analogous to the
coherent potential approximation used for electrons in random
potential. In these approximations, Lifschitz tails in the
spectrum are absent. Further sophistication of the method
consists of the single defect approximation (SDA), which
obtains the Lifschitz tail in the form of an infinite sequence of
delta peaks.

The complexity of the problem becomes evident when we
compare these results with the density of states obtained by nu-
merical diagonalization of large sample matrices [27,29–33].
The Lifschitz tail is smooth, while the bulk of the density of
states is the combination of a continuous component with a set
of delta peaks. The most marked of these peaks is at the origin,
others at eigenvalues z = ±1, ±√

2, etc. All these structures
should emerge from the solution of the Rodgers-Bray integral
equation, but EMA, as well as SDA, misses all of them. The
set of delta peaks was studied separately in Refs. [20,32], but
a theory that would combine naturally both these peaks and
the continuous component is still unavailable.

More recently, spectra of sparse matrices encoding the
structure of random graphs were studied successfully using
the cavity approach (see, e.g., Ref. [34]). It is based on the
fact that large random graphs are locally isomorphic to trees.
This was used, e.g., in Refs. [35–37] to calculate spectra of
adjacency matrix and Laplacians on complex networks. In
Refs. [35,36], a “self-consistent” version of SDA was used to
obtain the asymptotic shape of the Lifschitz tails, which decay
as a power law in the case of scale-free networks. In Ref. [37]
a more sophisticated calculation led to an integral equation
similar to Rodgers and Bray’s [12], from which the asymptotics
of Lifschitz tails is found. The cavity method provides an easy
way [33] to obtain the Wigner semicircle law, as well as the
Marčenko-Pastur law for a spectrum of covariance matrices.
It can be also used as an efficient numerical procedure [33],
reproducing all peculiarities of the density of states, including
Lifschitz tails and delta peaks. The mathematical justification
for the use of the cavity approach can be found in Ref. [38].

A very powerful method for computing spectral properties
of random matrices is based on supersymmetry and was
developed in Refs. [39,40] (see also the review [41] and a
recent development in Ref. [42]). Initially, the results of replica
and supersymmetric methods were found to be in conflict,
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which resulted in serious criticism of the replica trick in general
[43]. The density of states of sparse random matrices was
calculated using supersymmetry [44], leading to an equation
that was later [45] shown equivalent to the replica result of
Ref. [12]. However, the correlation of eigenvalues, which was
investigated in Ref. [46] using supersymmetry for the case of
sparse matrices, was not reproduced correctly in the replica
method, until the integral over all saddle points was properly
taken in Ref. [47]. Since then, the replica method regained
its reputation as an equivalent alternative to supersymmetric
methods. This was further supported by a series of papers
[48–50]. Finally, let us mention the works that approach the
density of states by computing the moments exactly [31,51].

In this paper, we show an alternative method to obtain
the Rodgers-Bray integral equation using the cavity approach.
Therefore, we prove exact equivalence of the replica and
cavity methods in this case, which was previously assumed
only on the basis of topological considerations for random
Erdős-Rényi graphs. Moreover, as an important by-product
of this proof, we present a variational formulation of the
problem, which serves as a useful generator of self-consistent
approximations.

II. PROJECTOR METHOD

We shall investigate the spectrum of the adjacency matrix L

of an Erdős-Rényi random graph with N vertices. Therefore,
the probability distribution of the matrix elements factorizes

π (L) =
∏
i<j

[π1(Lij )δ(Lij − Lji)]
∏

i

δ(Lii), (1)

where the probability density for a single off-diagonal element
is

π1(x) =
(

1 − μ

N

)
δ(x) + μ

N
δ(x − 1). (2)

The key ingredient of all subsequent analysis is the resolvent:

R(z) = (z − L)−1 (3)

and its average 〈R(z)〉 over disorder, taken with the distribution
(1). It contains information on the average density of states
(here we assume z on the real axis):

D(z) = lim
ε→0+

1

Nπ
Tr 〈R(z − iε)〉. (4)

In the spirit of the cavity method, we focus on a single
vertex, surrounded by the rest of the graph. To calculate
the diagonal element of the resolvent on this vertex, we use
the projector method, formulated generally in Ref. [52]. For
a different route that also leads to equivalent results, see
Ref. [34]. Let us have an arbitrary projector P and its
complement P C ≡ 1 − P . Then the projected resolvent is [52]

PRP = P

P (z − L)P − PLP C P C

z−L
P CLP

. (5)

We denote the singled-out vertex as i = 0. Let P0 be the
projector to this vertex. Furthermore, denote i = 1,2, . . . ,k

neighbors of the vertex 0 on the graph represented by the
matrix L and denote also a Pi projector to the neighbor i.
Let us use composite indices for other vertices. If ki is the

number of neighbors of i, denote [i,1],[i,2], . . . ,[i,ki − 1] as
the neighbors of vertex i, except the vertex 0. The projectors to
the second neighbors of 0 will be denoted using these indices,
so Pi,i ′ is projector on the vertex [i,i ′]. By analogy, we define
the projectors to third, fourth, etc., neighbors of 0. Note that
on a general graph, some of the projectors may coincide due
to the presence of cycles.

The cavity approach consists of replacing the graph by a
tree, which is locally isomorphic to it, i.e., neglecting all cycles
on the graph. Algebraically, it is equivalent to the assumption
that the complementary projectors can be written as direct
sums of projectors corresponding to separate branches of the
tree:

P C
0 = P(1) ⊕ P(2) ⊕ · · · ⊕ P(k),

P(i)P
C
i = P(i,1) ⊕ P(i,2) ⊕ · · · ⊕ P(i,ki−1),

(6)
P(i,i ′)P

C
i,i ′ = P(i,i ′,1) ⊕ P(i,i ′,2) ⊕ · · · ⊕ P(i,i ′,ki,i′ −1),

...

where P(i)Pi = Pi , P(i,i ′)Pi,i ′ = Pi,i ′ , and so forth.
Using the projectors we define the series of scalar functions

related to the resolvent:

g(z) = P0R(z)P0,

gi(z) = Pi

P0
C

z − L
Pi,

gi,i ′(z) = Pi,i ′
P(i) Pi

C

z − L
Pi,i ′ , (7)

gi,i ′,i ′′ (z) = Pi,i ′,i ′′
P(i,i ′) Pi,i ′

C

z − L
Pi,i ′,i ′′ ,

... .

From (5) and the assumptions (6) we have the chain of
equations for these functions:

g(z) = 1

z − ∑k
i=1 gi(z)

,

gi(z) = 1

z − ∑ki−1
i ′=1 gi,i ′(z)

,

(8)

gi,i ′(z) = 1

z − ∑ki,i′−1

i ′′=1 gi,i ′,i ′′ (z)
,

... .

On a random tree, the degrees k, ki , ki,i ′ are random variables,
and therefore g(z), gi(z), gi,i ′(z), etc., are also random
functions of z. To describe their properties, we define their
generating functions (dependence on z becomes implicit):

G(ω) = 〈e−ω g(z)〉,
G1(ω) = 〈e−ω gi (z)〉,
G2(ω) = 〈e−ω gi,i′ (z)〉,

(9)
G3(ω) = 〈e−ω gi,i′ ,i′′ (z)〉,

... .
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If the graph in question is the Erdős-Rényi random graph, all
the degrees in the corresponding random tree are independent
and distributed according to the Poisson distribution P (k) =
e−μ μk/k!. The average degree μ is the only free parameter of
this model.

Calculation of the generating functions (9) is facilitated by
the integral representation

g(z) = 1

z − ∑k
i=1 gi(z)

=
∫ ∞

0
e−λ[z−∑k

i=1 gi (z)] dλ (10)

and similarly for the other g’s. Assuming for the moment that
k is fixed, we get, after some algebra, the following relation
between G(ω) and G1(ω):

G(ω) = 1 + √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z [G1(λ)]k. (11)

Now we take into account the Poisson distribution of degrees,
which gives

G(ω) = 1 + √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z+μ[G1(λ)−1]. (12)

Repeating the same steps for further generating functions we
get

G1(ω) = 1 + √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z+μ[G2(λ)−1]. (13)

Note that the form of the relation between G and G1 is the
same as between G1 and G2 and generally between Gm and
Gm+1 for any m > 0. This is due to the special property of
the Poisson distribution, kP (k)/μ = P (k − 1). For any other
distribution this does not hold.

For an infinitely large tree we suppose that the generating
functions Gm, m = 1,2,3, . . . converge to a common limit, and
we can impose the condition of stationarity G1(ω) = G2(ω).
Therefore, we define a single function γ (ω) = G(ω) − 1, for
which we have a closed equation:

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) e−λ z+μγ (λ). (14)

It is strictly equivalent to Eq. (18) in Ref. [12] (the Rodgers-
Bray equation), which was obtained using the replica method.
Hence we conclude that the explicit calculation showed the
equivalence of the replica and cavity approaches in the case of
the Erdős-Rényi graph, which is just the situation in which the
Rodgers-Bray equation holds. Note, however, that the direct
computation we used here would fail if the degree distribution
was not Poissonian.

III. VARIATIONAL PROBLEM

The key result (14) can be reformulated in a different way
more appropriate for approximate solution. As a first step, we
define an auxiliary function ρ(ω) = e−ωz+μ γ (ω). Instead of the
single equation (14), we can solve the pair:

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρ(λ),

(15)
ρ(ω) = e−ωz+μ γ (ω).

Direct solution of (15) is as difficult as solving (14). However,
we can find a functional, whose stationary point is just defined
by Eqs. (15). We can check explicitly that such a functional is

F[γ,ρ] = −
∫ ∞

0

dω

ω
γ (ω)ρ(ω)

+ 1

2

∫ ∞

0

dω√
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ)ρ(ω)ρ(λ)

+ 1

μ

∫ ∞

0

dω

ω
e−ωz+μ γ (ω). (16)

Note that we derived, within the cavity approach, a result that
is analogous to the functional obtained in Ref. [27] using the
replica trick.

The variational formulation of the problem is useful as a
generator of approximations. In Ref. [20] a variational ansatz
was used to derive the density of states in the EMA. Let us see
now how it is obtained in our cavity procedure. If we take the
exponential ansatz for the auxiliary function ρ(ω), namely,

ρ(ω) = e−σ ω, (17)

all integrals in (16) can be performed explicitly, and we can
extremalize the functional with respect to σ and γ (ω). In this
way we find the cubic equation:

σ 3 − z σ 2 + (μ − 1) σ + z = 0. (18)

It is identical to Eq. (23) in Ref. [20] obtained by the replica
method. The solution can be obtained analytically, and the
density of states is extracted using the formula

D(z) = lim
ε→0+

Im
1

π σ (z − iε)
. (19)

We can further improve the calculation by the following
trick, which we shall refer to as the “single-shell approxima-
tion” within this paper. We may formally write the pair of
Eqs. (15) as a set of four equations:

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρ(λ),

ρ(ω) = e−ωz+μ γ (ω), (20)

γ (ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρ(λ),

ρ(ω) = e−ωz+μ γ (ω).

These equations can be obtained as a condition of stationarity
for the functional:

F1[γ,ρ,γ ,ρ] = −
∫ ∞

0

dω

ω
[γ (ω)ρ(ω) + γ (ω)ρ(ω)]

+
∫ ∞

0

dω√
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ)ρ(ω)ρ(λ)

+ 1

μ

∫ ∞

0

dω

ω
e−ωz(eμ γ (ω) + eμ γ (ω)). (21)

If Eqs. (20) were solved exactly, we would have γ (ω) =
γ (ω) and ρ(ω) = ρ(ω). The same also would hold in the case
of the effective medium approximation, which amounts to
taking the ansatz ρ(ω) = ρ(ω) = e−σ ω, so apparently the set
(20) does not bring any advantage over (15). However, relaxing
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the condition ρ(ω) = ρ(ω) we can get an improvement in an
approximate solution. Indeed, we can take the ansatz

ρ(ω) = e−σ ω (22)

as in EMA but allow ρ(ω) to adjust itself freely so that F1 is
stationary. In this way we introduce an error, because ρ(ω) 
=
ρ(ω) and γ (ω) 
= γ (ω), but we gain a better approximation for
the density of states.

After some algebra, we get the following equation for the
quantity τ = z σ :

z2 = μ + τ + e−μ

∞∑
l=1

μl

(l − 1)!

l

τ − l
. (23)

The fact that the equation depends on z2 means that the
spectrum is symmetric with respect to the point z = 0. For
a general z on the real axis, Eq. (23) can be easily solved
numerically. We find that there are at most two roots with
nonzero imaginary parts (complex conjugate to each other).
Those values of z for which all solutions are real correspond
to gaps in the spectrum. The general picture is that there is
a very narrow gap around z = 0, separating two halves of a
wide band, containing most of the eigenvalues. We can call
this band (not quite precisely) the “bulk” of the density of
states.

In the middle of the bulk, there is a δ-function contribution
just at z = 0, whose weight can be found exactly and is equal
to e−μ. On both sides of the bulk, there are a series of small
side bands separated by gaps. The density of states therefore
has the form

D(z) = e−μδ(z) + Dc(z), (24)

where Dc(z) is a continuous function. The interpretation of the
δ-function is straightforward. It corresponds to single isolated
vertices, whose fraction is just equal to e−μ, and they all
contribute with the same eigenvalue 0.

Some analytical information on the continuous part Dc(z)
can be found from an approximate solution of Eq. (23). For
e−μ � 1 we can find approximately the edge of the gap around
z = 0. We get

Dc(z) � 1

2π z

√
4ψ(μ) z2 − e−2μ, (25)

where we denote

ψ(μ) = e−μ

∞∑
l=1

μl

l! l
= μe−μ

2F2(1,1; 2,2; μ). (26)

We can see that the gap edge is at z0 = 1
2e−μ/

√
ψ(μ).

For the tails, we can calculate analytically the side bands
in an approximation that becomes exact for |z| → ∞. The
computation goes as follows. Each of the side bands can be
identified with one term in the infinite sum over l in (23). The
tails of the spectrum corresponding to large |z| are identified
with large l. In the crudest approximation, the solution is τ � l.
Therefore, we introduce a new variable η by τ = l + η. So (23)

assumes the form

z2 = μ + l + η + e−μ μl

(l − 1)!

l

η

+ e−μ

∞∑
l′=1(l′ 
=l)

μl′

(l′ − 1)!

l′

l − l′ − η
. (27)

For large l we can expand the infinite series in powers of η and
keep only the lowest terms, so

z2 = μ + l(μ) + l + [1 − �l(μ)] η

+ e−μ μl

(l − 1)!

l

η
+ O(η2), (28)

where

l(μ) = e−μ

∞∑
l′=1(l′ 
=l)

μl′

(l′ − 1)!

l′

l − l′
,

(29)

�l(μ) = e−μ

∞∑
l′=1(l′ 
=l)

μl′

(l′ − 1)!

l′

(l − l′)2
.

So, for each l large enough, we have two “bubbles” of
a nonzero density of states. The two bubbles are symmetric
to each other with respect to the origin. The “bubbles” are
separated by gaps, so each “bubble” has well-defined lower
and upper edges, zl− and zl+, respectively. For large l the
approximate form of the “bubble” is given by the solution of
a quadratic equation in η, so

Dl(z)

� |z|
π

{
[1 − �l(μ)]

e−μ l μl

(l − 1)!
−

[
z2 − μ − l − l(μ)

2

]2}1/2

×
{

e−μ l μl

(l − 1)!
+ (z2 − μ− l)l + [1 − �l(μ)](l)2

}−1

. (30)

The width of the bubble zl+ − zl− approaches zero for
l → ∞. This justifies considering η as a small parameter in
the expansion (28). For large l the “bubbles” have a semicircle
shape, and their weight is

Wl =
∫ zl+

zl−
Dl(z) dz � 1

2
e−μ μl

l!
. (31)

We recognize the Poisson distribution with mean μ. This
reflects the Poisson distribution of degrees of the random
graph. The factor 1/2 stems from the fact that we have two
bubbles for each l. The center of the bubble corresponding to
l is at zl = √

l + μ + l(μ); thus the distance between two
successive bubbles is zl � (4zl)−1/2. Hence we deduce the
approximate density of states in the tails, for |z| → ∞:

Dtail(z) � e−μ |z| μz2

�(z2 − 1)
� e−μ

√
2π

(
eμ

z2

)z2

. (32)

This is the shape of the Lifschitz tail, which was already
obtained by Refs. [12] and [20].

To assess the quality of the approximations used, we
compare the results arising from EMA [Eq. (18)], from the
single-defect [20,33], and single-shell [Eq. (23)] approxima-
tions with an average density of states obtained by numerical
diagonalization of sample matrices. In Fig. 1 we can see the
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FIG. 1. (Color online) Density of states for the adjacency matrix
of an Erdős-Rényi graph, with average degree μ = 3. The solid line
shows the result of the numerical diagonalization of a matrix of size
N = 1000, averaged over 75 000 random realizations. The dotted line
is the result of an effective medium approximation, the dot-dashed
line is the single-defect approximation, and the dashed line is the
single-shell approximation. In the inset, a detail of the density of
states around the center of the band is plotted in semilogarithmic
scale.

spectrum for μ = 3 and matrices of size N = 1000 averaged
over 75 000 realizations. We can clearly identify the delta
peaks, as well as the complicated shape of the continuous
part of the spectrum near the center of the bulk. Interestingly,
both EMA and the single-shell approximations are very good
if we are neither close to the center nor at the tails of the
spectrum. Close to the center, the shape of the density of
states is rather complex, as shown in the inset in Fig. 1.
There is a shallow depression, followed by a divergence at
z = 0. The form of the singularity at z = 0 seems to be
close to a logarithmic divergence, although the data do not
provide decisive evidence. None of the three approximations
reproduce this singularity. EMA and SDA are constant around
z = 0, while the single-shell approximation exaggerates the
depression around z = 0 to such an extent that a spurious gap is
created. This is an artifact of the approximation. However, the
delta peak at the origin is, correctly, present in the single-shell
approximation.

A similar comparison also was done at the tail of the density
of states. We can see in Fig. 2 a detail of the same data as shown
in Fig. 1. Note that, for any finite N , the density of states is not
mirror symmetric with respect to the line z = 0, because the
average value of the off-diagonal elements of the matrix L is
strictly positive. Only in the limit N → ∞ does the spectrum
become symmetric. The single largest eigenvalue is split off
the rest of the spectrum [53], and the small bump in the positive
tail corresponds to this effect. In the limit N → ∞ this bump
would vanish, as the weight of the single largest eigenvalue
becomes negligible compared to the rest of the spectrum.

As shown in Fig. 2, we can see that the single-shell
approximation is superior to both EMA and SDA in the
tail region, from two aspects. First, the spurious band edge
of EMA and SDA is shifted toward larger |z|, so that the
interval in which D(z) is well reproduced is wider. Second,
the single-shell approximation also displays nonzero density
of states in some regions of the Lifschitz tails, although, instead
of exhibiting a smooth behavior everywhere, the density of
states is concentrated in “bubbles.” The gaps separating the
“bubbles” are again artifacts of the approximation, to the

z

D(
z
)

−3.6−3.8−4−4.2−4.4

10−2

10−3

10−4

10−5

FIG. 2. (Color online) The detail of the left tail of the den-
sity of states shown in Fig. 1. The solid line shows the re-
sult of numerical diagonalization, the dotted line is the result
of effective medium approximation, the dot-dashed line is the
single-defect approximation, and the dashed line is the single-shell
approximation.

same extent as the sharp band edge is an artifact of EMA and
SDA. On the other hand, it is an important improvement over
SDA [20]. The delta peaks of SDA are widened into continuous
bands in our approach. In fact, this is to be expected, because
the single-shell approximation can be rightly interpreted as
a self-consistent version of SDA. Therefore, it should be
better than SDA in principle, although this a priori judgment
may turn out to be incorrect in practice, as the single-shell
approximation is better than SDA sometimes (in the tail) but
worse elsewhere (around z = 0).

Finally, let us note that similar “bubbles” at the tails were
also seen in approximations derived using the replica method
by Ref. [21] for the Laplacian of a random graph and by
Ref. [25] for sparse covariance matrices.

IV. COVARIANCE MATRICES

Another application of the method presented here is
investigation of sparse covariance matrices. They can be
considered as arising from a bipartite graph where edges
connect vertices from the set A with vertices from the set
B. We denote the size of the sets NA and NB , respectively.
In the thermodynamic limit, NA → ∞, NB → ∞, we fix
the ratio α = NA/NB constant. In the bipartite analog of
an Erdős-Rényi random graph, the degrees of vertices in A

and B follow Poisson distributions with average degree μA

and μB , respectively, where μB/μA = α. The problem has a
long history, starting with the work of Marčenko and Pastur
[54], and was investigated recently by the replica method in
Ref. [25].

The adjacency matrix of the bipartite graph has the form

L =
(

0 MT

M 0

)
, (33)

where the first block of indices corresponds to set A, and
the second block to set B. We define the contraction, or
covariance, matrix CA = MT M , which acts solely in the
set A (and similarly CB = MMT , which acts solely in the
set B). The spectra of the matrices L, CA, and CB are
closely related. We define DA(z) = limε→0+ Im

∑
i∈A[(z −

iε − L)−1]ii/(NA π ) as the partial density of states of L
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restricted to the set A and DCA(z) = limε→0+ Im
∑

i∈A[(z −
iε − CA)−1]ii/(NA π ) as the density of states of the correlation
matrix CA. It can be easily shown that

DCA(z) = 1√
z
DA(

√
z). (34)

This relation remains in force also after averaging over the
randomness in the matrix M . Therefore, to calculate the
average density of states of the covariance matrix CA it is
enough to investigate the matrix element 〈[(z − L)−1]ii〉 for
any i ∈ A. To this end, we define the generating functions

γA = 〈e−ω[(z−L)−1]ii 〉 − 1 for i ∈ A,
(35)

γB = 〈e−ω[(z−L)−1]jj 〉 − 1 for j ∈ B.

The further procedure follows closely that of the previous
section. Finally, we get a set of four coupled equations,
very similar to the set we encountered in the single-shell
approximation:

γA(ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρB(λ),

ρB(ω) = e−ωz+μA γB (ω),
(36)

γB(ω) = √
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ) ρA(λ),

ρA(ω) = e−ωz+μB γA(ω).

We can easily check that the solution of these equations makes
the following functional stationary:

FAB[γA,ρA,γB,ρB]

= −
∫ ∞

0

dω

ω
[γA(ω)ρA(ω) + γB(ω)ρB(ω)]

+
∫ ∞

0

dω√
ω

∫ ∞

0

dλ√
λ

I1(2
√

ωλ)ρA(ω)ρB(λ)

+
∫ ∞

0

dω

ω
e−ωz

(
1

μA

eμA γB (ω) + 1

μB

eμB γA(ω)

)
. (37)

For an approximate solution of Eqs. (36) we use again a
variational ansatz. In analogy with EMA, we assume the
following form:

ρA(ω) = e−σA ω,
(38)

ρB(ω) = e−σB ω.

The insertion of (38) in (37) produces finally two uncoupled
cubic equations for σA and σB . The equation relevant for us is

z σ 3
B + [(1 − α)μA + α − 1 − z2] σ 2

B

+ (μA α + 1 − 2α) z σB + z2 α = 0, (39)

where we used α = μB/μA. The average density of states
for the covariance matrix CA is found considering the first
equation of (36) and the relation (34); thus

DCA(z) = 1

π
√

z
lim

ε→0+
Im

1

σB(
√

z − iε)
. (40)

ζ

D C
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(ζ

)
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FIG. 3. (Color online) Density of states for the correlation matrix
based on a sparse adjacency matrix, for α = 0.3. The average degree
is μA = 3 (dash-dotted line), 5 (dotted line), and 50 (dashed line). The
full line is the Marčenko-Pastur density (41), i.e., the limit μA → ∞.

The solution can be obtained analytically, but we shall not
show the formula here. However, we can check that in the
limit μA → ∞ with α and ζ = z/μA fixed we get

DCA(ζ ) = 1

2πα ζ

√
[(1 + √

α)2 − ζ ][ζ − (1 − √
α)2], (41)

which is the Marčenko-Pastur (MP) density of states [54].
In Fig. 3 we show the density of states as function of ζ =

z/μA for several values of μA, as found by the solution of (39).
We can see that the approach to MP density is rather slow. We
found that the difference can be considered small only at about
μA � 50.

V. CONCLUSIONS

We considered a random graph of large size N → ∞
of two types: first, a “classical” Erdős-Rényi graph, and,
second, a random bipartite graph. We calculated the density
of eigenvalues for adjacency matrices of these graphs. In the
case of the bipartite graph, the final result was the density of
states of the covariance matrix, defined by a contraction of the
adjacency matrix.

Our contribution to the problem of spectra of sparse random
matrices consists of showing that the cavity approach, i.e.,
approximation of the random graph by a random tree, is exactly
equivalent to the calculation by the replica method in the
thermodynamic limit. Furthermore, we demonstrated how the
cavity calculation can be formulated as a variational problem,
similar to but substantially simpler than the variational formu-
lation arising from the replica method. At minimum, we do not
need to consider the possibility of replica-breaking solutions,
which are known to exist and contribute to the finite-size
corrections [47]. We can interpret it also in the following
manner. Since we are working directly with an infinite-size
system, N = ∞, the physics behind the replica-breaking states
has no effect.

The variational formulation introduced here is a very
practical starting point for approximations. The exponential
ansatz leads to results identical to the effective-medium
approximation studied earlier [20]. However, using our varia-
tional scheme, the approximation can be easily improved by
what we call a “single-shell approximation.” It produces the
Lifschitz tail in the density of states in the form of a series of
“bubbles.” We are able to calculate the weight and distance of
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the bubbles. Hence we arrive at average density of states in the
tail, which is identical to the result of Rodgers and Bray [12].
Furthermore, we applied the method also to the spectra of
sparse covariance matrices, where we easily derived a formula
generalizing the Marčenko-Pastur density of states.

The variational formulation introduced here can be used not
only as a generator of approximations, but also as a basis of
numerical methods. Indeed, there is no principal obstacle for
numerical extremalization of the functional of two variables.
This contrasts with the variational methods based on the
replica trick, where the replica limit n → 0, involving analytic
continuation, must be done after extremalization, which makes
the method numerically unfeasible.

We believe that the method can also be applied for other
types of random graphs. We must, however, admit a serious
limitation of our method, which is the Poisson distribution
of degrees of the graph. Therefore, it is, for example,
not applicable directly for graphs with a power-law degree
distribution. We believe that the roots of this limitation lie
quite deep. For example, to the best of our knowledge, there
is no replica calculation available for random graphs defined

by their degree sequence only. On the other hand, there are no
results from the cavity method for those random graphs with a
power-law degree distribution, for which replica calculations
do exist, like those of Ref. [23]. The point is, that for a
Erdős-Rényi graph, it is well established that the local topology
is isomorphic to a random tree. For a graph with a general
degree sequence, not obeying Poisson statistics, this may or
may not be true. The question of equivalence or not of the
replica and cavity methods is intimately related to the question
of local isomorphism to a tree, which is rather complex and
not solved in general. Hence, a successful treatment of such
cases by both the replica and cavity methods in parallel would
require, very probably, completely novel ideas.
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Abstract. Using exact numerical diagonalization, we investigate localization in two classes of random
matrices corresponding to random graphs. The first class comprises the adjacency matrices of Erdős-
Rényi (ER) random graphs. The second one corresponds to random cubic graphs, with Gaussian random
variables on the diagonal. We establish the position of the mobility edge, applying the finite-size analysis
of the inverse participation ratio. The fraction of localized states is rather small on the ER graphs and
decreases when the average degree increases. On the contrary, on cubic graphs the fraction of localized
states is large and tends to 1 when the strength of the disorder increases, implying that for sufficiently
strong disorder all states are localized. The distribution of the inverse participation ratio in localized phase
has finite width when the system size tends to infinity and exhibits complicated multi-peak structure. We
also confirm that the statistics of level spacings is Poissonian in the localized regime, while for extended
states it corresponds to the Gaussian orthogonal ensemble.

1 Introduction

After more than 50 years, Anderson localization [1] re-
mains one of the most puzzling problems of theoretical
physics [2]. Although many results have been accumu-
lated [3–5], open questions remain even in the very basic
issue of the definition of the proper criterion of localiza-
tion (as a single example, see e.g. [6]). From our view-
point, however subjective it might be, we can classify the
approaches to the phenomenon of localization into three
big groups. In this introductory sketch we shall emphasize
the results concerning Bethe lattices, as they are directly
related to our work.

First, “physical” theories aim at grasping the essence
without necessarily reaching the mathematical rigor. A
typical examples are the scaling theory [7], the self-
consistent theory [8–10], the approach based on parquet
diagrams [11] and the approaches based on replica [12] and
supersymmetry [13] methods. For our work, the relevant
sources are the results concerning localization on Bethe
lattice [14–20], where the exact self-consistent equation
was formulated and the localization threshold was com-
puted. The phase diagram exhibits extended states in the
regime of weak disorder and energies sufficiently close to
the band center. Otherwise the states are localized. There
is a well defined mobility edge, separating extended states
on one side from the localized states on the other side. Al-
though in principle we cannot exclude mixed regimes [21],
in which localized and extended states would coexist ar-
bitrarily close to each other within a finite interval, such
a mixed regime was not yet observed.

a e-mail: slanina@fzu.cz

Second, “mathematical” theories prove rigorously the
localization properties, but are limited to a few models
where the known methods of proof work. Still, there is a
good deal of results available now, see e.g. [22]. The result
relevant for us is the proof of localization in the Bethe
lattice [21,23]. However, the rigorous approaches work di-
rectly with infinite systems, thus avoiding the difficulties
in taking the thermodynamic limit. On the other hand, it
is the behavior of the system with increasing size that is
physically most interesting. Hence, the physical interpre-
tation of the rigorous results remains the matter of debate.

Third, one may resort to purely numerical computa-
tions, see e.g. [24] for electron localization or [25] for local-
ization of acoustic waves. More sophisticated approaches
rely on the cavity approximation (which becomes ex-
act on trees) and numerical solution of thus obtained
equation [26–32].

The results on the localization in Bethe lattices bring
the problem close to the field of spectral theory [33] of
random graphs [34], as many models of random graphs
are locally tree-like. Therefore, all local properties of such
random graphs should tend to Bethe lattice in thermo-
dynamic limit. Mathematically, spectra of random graphs
are the same thing as spectra of random sparse matri-
ces. The latter were studied in depth using various meth-
ods [29,35–43]. Localization of eigenvectors was found
both by exact numerical diagonalization [26,31,40,44–46]
and using the cavity method [27–30]. Here the study of
random matrices touches again the problem of localiza-
tion on a Bethe lattice, as we mentioned above.

Besides the academic interest in the localization phe-
nomenon, numerous examples of practical application of
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the ideas of localization can be denonstrated, mainly in
the area of complex networks [47–50] or in the field of the
analysis of biological [51] and social networks [52,53].

We quoted several times the results showing the pres-
ence of localization threshold for disordered Hamiltonians
on Bethe lattices. The fact is now confirmed by rigorous
mathematic methods, as well as physical arguments and
numerical work on finite samples. However, several prob-
lems remain. First, it is not quite clear how the rigorous
mathematic results should be translated to the reality of
physical experiments. Second, the Bethe lattice is patho-
logical from many points of view. Indeed, strictly speak-
ing, in numerical studies we work with a Cayley tree,
rather than Bethe lattice. The difference resides in the
boundary conditions. In the Cayley tree the volume of
“surface” sites is comparable to “bulk” sites, while the
negligibility of the former is the basis for the existence
of basic physical quantities, like the free-energy density.
In the present work we shall try to avoid the problem of
surface by working with random graphs. Our approach is
based on the belief that in thermodynamic limit the Bethe
lattice and random graph results coincide. For a mathe-
matical justification, see [54].

In our previous work [55] we showed that the cavity
approach, which may be considered as an approximation,
coincides with the replica approach, which is assumed to
be exact, in thermodynamic limit. The variational formal-
ism introduced in [55] enables us to consistently formulate
approximations.

The present work is a continuation of that of refer-
ence [55]. First, we show how the formalism of [55] can be
extended to study localization. The equations found are
in principle exact, but as soon as we resort to approx-
imations developed and used in reference [55], we find
that these approximations are insufficient to capture lo-
calization. Therefore, in the rest of the study we resort
to exact numerical diagonalization followed by finite-size
scaling analysis.

2 Cavity equations for localization

Among the diverse criteria of localization, the most suit-
able for our purposes is the behavior of the inverse partic-
ipation ratio (IPR). Let L be a N×N real symmetric ma-
trix with eigenvalues λi, i = 1, . . . , N and corresponding
normalized eigenvectors ejλi . We shall assume implicitly,
that the matrix elements of L are random variables with
properties described later. The resolvent will be denoted
R(ζ) = (ζ −L)−1 and its diagonal element gi(ζ) = Rii(ζ)
for ζ ∈ C\{λi; i = 1, . . . , N}. The IPR at λ = λi for some
i is

q−1(λ) =
∑

j

e4jλ = lim
ε→0+

ε
∑

i gi(λ+ iε) gi(λ− iε)
Im
∑

i gi(λ+ iε)
. (1)

For the proof of the latter equality, see [30,56]. The def-
inition (1) applies for fixed system size N . On the other
hand, the question we ask in the analysis of localization is,
whether the states within a certain interval, λ ∈ I, remain

localized when N → ∞ for all typical realizations of the
disorder. Therefore, we should define more properly the
average IPR in the interval I as

〈q−1
I 〉 =

〈
1
NI

∑
i:λi∈I

∑
j

e4jλi

〉
, (2)

where 〈. . .〉 means averaging over the realizations of L and
NI =

∑
i:λi∈I 1 is the number of eigenvalues within the

interval I. Then, if we find that 〈q−1
I 〉 → 0 as N → ∞,

the states in I will be considered extended, while non-zero
limit would imply localization of at least some of the states
in the interval I. We shall assume that the extended states,
if they exist, are found around the center of the spectrum,
while localized states, if any, should be expected at the
upper and lower tails. More complicated cases will not
be treated here. The mobility edges are then defined as
numbers z−mob < z+

mob such that

lim
N→∞

〈q−1
I 〉

⎧⎪⎪⎨
⎪⎪⎩

= 0 for any I ⊂ [z−mob, z
+
mob],

> 0 for any I ⊂ (−∞, z−mob)
or I ⊂ (z+

mob,∞) .

(3)

Let us now sketch the formalism using the cavity method.
It consists in neglecting loops, so that it becomes exact on
Bethe lattice, or on any tree in general. We denote g(ζ)
the diagonal element of the resolvent at the root of the
tree. Following [55] we introduce the generating functions

γ(ω) =
〈
e−ω g(ζ) − 1

〉
,

Γ (ω, ω′) =
〈(
e−ω g(ζ) − 1

)(
e−ω′ g(ζ′) − 1

)〉
. (4)

The dependence on ζ and ζ′ is assumed implicitly. We
can extract the linear and bilinear terms from the gener-
ating functions as γ(ω) = ω

(
s1(ζ)+O(ω)

)
and Γ (ω, ω′) =

ωω′ (s2(ζ, ζ′)+O(ω, ω′)
)
. Hence we deduce the expression

for the average IPR in the limit N → ∞

q−1(z)|N→∞ = lim
ε→0+

ε s2(z + iε, z − iε)
Im s1(z + iε)

. (5)

Strictly speaking, the expression (5) is incorrect for two
reasons. First, the order of the limits ε→ 0+ and N → ∞
is reversed, because the cavity approach works effectively
with infinite N from the very beginning. Second, in (5)
the average over disorder is performed separately in the
numerator and in the denominator, while if done properly,
the averaging must involve the fraction as a whole. With-
out entering into deep discussions, we assume that neither
of the two “mistakes” induce a fundamental fault into the
results. To support this assumption we can note, first, that
also references [30,57] rely on the harmless exchange of the
order of limits. Second, as for the independent averaging
of the numerator and denominator, it is justified if we sup-
pose that gi(λ+iε) is a self-averaging quantity, because in
that case the disorder-average of the denominator is safely
replaced by the sum 1/N

∑
i •.
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If the degrees of the random graph are Poisson dis-
tributed, as is the case for the Erdős-Rényi random graph,
with average μ, we obtain, for the one-particle generating
function γ(ω) a self-consistent equation in the form

γ(ω) =
√
ω

∫ ∞

0

dλ√
λ
I1(2

√
ωλ) ρ(λ),

ρ(ω) = e−ωz+μ γ(ω) . (6)

At this level, introduction of the auxiliary function ρ(ω)
seems arbitrary, but it acquires clear sense in the varia-
tional approach developed in [55].

For calculating IPR, the two-particle quantities are
needed. Without repeating the steps which lead to equa-
tion (6), we can write the equation for Γ (ω, ω′) as

Γ (ω, ω′) =
√
ωω′

∫ ∞

0

dλ√
λ

∫ ∞

0

dλ′√
λ′
I1(2

√
ωλ)

× I1(2
√
ω′λ′) ρ(λ) ρ(λ′)eμ Γ (λ,λ′). (7)

Solving equations (6) and (7) should in principle give full
description of the localization phenomenon. Note that the
formalism used in [14,28] should be a special case of ours.
Indeed, references [14,28] work with the joint probability
density for real and imaginary part of g(z + iε), which is
equivalent to the joint generating function for g(z + iε)
and g(z − iε).

Full solution of equations (6) and (7) is not yet
known. Approximative schemes for solving equation (6)
were shown in [55], partially repeating the older results
of [40,42]. The simpler one of the approximations used
in [55] is the effective-medium approximation (EMA),
which can be formulated as an ansatz ρ(ω) = eω σ(ζ).
For σ(ζ) we find the cubic equation

σ3 − ζ σ2 + (μ− 1)σ + ζ = 0 . (8)

The density of states is non-zero only within the inter-
val [z−, z+] where Imσ(z + iε) is non-zero in the limit
ε→ 0+. Therefore, EMA exhibits sharp band edges, which
is wrong, because the true spectrum contains Lifschitz
tails extending arbitrarily far. Nevertheless, it is instruc-
tive to try to use EMA as a starting point for approxima-
tive solution of equation (7). We insert in equation (7) the
functions ρ(λ), ρ(λ′), containing σ(ζ) obtained by solving
equation (8). Still, the resulting integral equation for Γ
is not readily soluble, so we apply further approximation,
leaving only the lowest (bilinear) term in the expansion
of Γ (ω, ω′) and expanding eμΓ on the right-hand side into
series. This way we obtain an equation for s2 and the so-
lution is then supplied into equation (5). The IPR is then
expressed through the function σ(z) for z ∈ R. Finally
we get

q−1(z) =

(
3σ2(z) − 2zσ(z) + μ− 1

)
σ4(z)(

σ2(z) − 1
)(
σ4(z) − μ

) (9)

for z ∈ R\[z−, z+] and q−1(z) = 0 for z ∈ [z−, z+]. The
result is shown in Figure 1 for μ = 3. We shall see later

z

q−
1 (

z)
,
D(

z)

1050−5−10

1

0.8

0.6

0.4

0.2

0

Fig. 1. (Color online) Inverse participation ratio (solid line)
and density of states (dashed line) calculated using the effective
medium approximation, for Erdős-Rényi graph with average
degree μ = 3.

that this expression reflects qualitatively well the behav-
ior of IPR at the tails of the spectrum. However, the re-
sult (9) is rather illusory, because localization indicated
by non-zero IPR occurs only in the areas where density
of states is strictly zero. The mobility edge coincides with
the band edge. Therefore, the fraction of localized states
is zero within such an approximation. We can try to im-
prove the result applying the single-shell approximation
(SSA) introduced in [55]. Within this approximation, we
obtain for σ the equation

z2 = μ+ zσ + e−μ
∞∑

l=1

μl

(l − 1)!
l

zσ − l
. (10)

As for the density of states in the Lifschitz tail, SSA
does give some improvement, although severe artifacts
of the approximation remain, namely the spurious band
gaps inside the Lifschitz tail (see Fig. 5 and [55] for de-
tails). In the same way as in EMA, we can take the func-
tion σ(ζ) obtained in SSA, insert it into equation (7) and
expand Γ (ω, ω′) into series. Thus, we obtain

q−1(z) =

(
2

1 − e−μ
∑∞

l=1
μl

(l−1)!
l

(zσ−l)2

− σ

z

)−1

× σ4(z)
σ4(z) − μ

. (11)

The result is shown in Figure 2. Contrary to EMA, the
dependence of the inverse participation ratio on eigen-
value is not monotonous, and the “interruptions”, where
q−1(z) = 0 occur exactly at the intervals where the den-
sity of states is non-zero. Therefore, SSA suffers from the
same flaw as EMA, that is the IPR is non-zero only if
density of states is zero. The conclusion of this section
is that analytical solution of equation (7) would require
more sophisticated methods than those at our disposal.

In the rest of this work, we will rely on exact numerical
diagonalization results. However, the position of the band
edge, as found in EMA, will serve as a benchmark for the
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z

q−
1 (

z)

−3.8−4−4.2−4.4−4.6

0.8

0.6

0.4

0.2

0

Fig. 2. (Color online) Inverse participation ratio, for Erdős-
Rényi graph with average degree μ = 3 calculated using the
effective medium approximation (dashed line) and single-shell
approximation (solid line).

z

D(
z)

420−2−4

0.2

0.1

0

Fig. 3. (Color online) The density of states for the adjacency
matrix of the ER graph with μ = 3, N = 1000, averaged
over 115 000 realizations (full line). For comparison, approxi-
mate results using EMA (dotted) and single-shell approxima-
tion of [55] (dashed) are shown.

position of the mobility edge and will be compared with
numerical results.

3 Localization in Erdős-Rényi graphs

The first model we shall investigate is the adjacency ma-
trix L of the Erdős-Rényi random graph. Apart from the
fact that L is symmetric matrix with zero on the diago-
nal, the matrix elements are independent and equally dis-
tributed. The probability density for a single off-diagonal
element is

π1(x) =
(
1 − μ

N

)
δ(x) +

μ

N
δ(x− 1). (12)

We investigated in depth the spectrum of L in [55]. In
Figure 3 we reproduce one of the results. The density of
states has a very complicated structure, with many singu-
larities and δ-function components. For example, an acute,
perhaps logarithmic, singularity resides at the center of
the spectrum, at z = 0, as shown in Figure 4. The theory

z

D(
z)

0.30.20.10−0.1−0.2−0.3

0.4

0.35

0.3

0.25

0.2

0.15

Fig. 4. (Color online) Detail of the data of Figure 3, showing
the singularity at z = 0.

z

D(
z)

−3.8−4−4.2−4.4−4.6

0.01

10−3

10−4

10−5

10−6

Fig. 5. (Color online) Lower tail of the data of Figure 3. Note
that the single-shell approximation is superior to EMA in the
Lifschitz-tail region, but still it is far from satisfactory.

exposed in reference [41] could in principle bring an ex-
planation of that singularity, bud we did not perform the
calculations in this direction.

It is interesting to compare such suppression of local-
ization in ER graphs with the localization which occurs
in weakly diluted systems, where the localization is en-
hanced instead, by the mechanism of maximum entropy
walk [58]. Indeed, on irregular graphs, for example the
common ER graph or a regular graph with a few edges re-
moved, the standard random walk does not possess max-
imum entropy. The requirement of entropy maximization
introduces a non-local constraint, which, rather unexpect-
edly, favors localization.

At the tails of the spectrum, there is no sharp band
edge, but a Lifschitz tail develops. The asymptotic form
of the Lifschitz tail is now well established [35,42,55] and
our numerical results can be seen in Figure 5.

It is just the Lifschitz tail where the localization is ex-
pected. To have a first glance on that, we plot the IPR
averaged over several tens of thousand realizations. In
Figures 6 and 7 we show the results for N = 1000 and for
μ = 3 and μ = 5, respectively. Comparing the behavior
of IPR with the density of states, as shown in Figure 3,
we observe the same complicated structure of singulari-
ties. Generally, IPR is large at the tails, as well as close
to the singularities in the density of states. One would
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z

q−
1 (

z)

420−2−4

1

0.1

0.01

Fig. 6. (Color online) Inverse participation ratio averaged over
115 000 realizations, for ER graph with μ = 3 and N = 1000.

z

q−
1 (

z)

6420−2−4−6

1

0.1

0.01

10−3

Fig. 7. (Color online) Inverse participation ratio averaged over
65 000 realizations, for ER graph with μ = 5 and N = 1000.

naively expect that localization would occur in all regions
where IPR is large, but it is true only in the tails. As we
stressed earlier, we must check the behavior of IPR when
N grows. Close to the singularities, we found IPR large,
but consistently decreasing with increasing system size.
On the contrary, localization in Lifschitz tails is clearly
visible, as indicated in Figures 8 and 9. In the following,
we decided to work with the lower tail, because the upper
tail is somewhat obscured by the single maximum eigen-
value which behaves differently than all the rest of the
spectrum. We can see that below certain value of z, the
IPR is independent of N , within the range of statistical
errors, while above this value, IPR decreases with N . We
identify this value with the mobility edge. We shall de-
scribe the method of extracting the mobility edge from
the data in the next section. Here we make only a few
observations.

First, this definition of mobility edge is practical but
it is not the only possible. Moreover, there might be even
some doubts of it. Indeed, above the mobility edge the
IPR should not only decrease with N , but decrease in
a specific manner, namely as 1/N , otherwise the states
cannot be considered properly extended. Therefore, the
alternative definition of the mobility edge would be as fol-
lows. We declare the states in the interval I extended, if

z

q−
1 (

z)

−3−3.5−4−4.5

0.1

0.01

10−3

Fig. 8. (Color online) Inverse participation ratio at the lower
tail of the spectrum for ER graph with μ = 3. The system size
is N = 104 (solid line), 3000 (dashed line), 1000 (dotted line),
and 300 (dash-dotted line). The data are averaged over 900,
10 000, 65 000 and 130 000 realizations, respectively.

z

q−
1 (

z)

−4.6−4.8−5−5.2−5.4

0.1

0.01

10−3

Fig. 9. (Color online) Inverse participation ratio at the lower
tail of the spectrum for ER graph with μ = 5. The system size
is N = 104 (solid line), 3000 (dashed line), 1000 (dotted line),
and 300 (dash-dotted line). The data are averaged over 800,
5000, 65 000 and 50 000 realizations, respectively.

〈q−1
I 〉 ∼ N−1 for N → ∞, otherwise the states are con-

sidered localized. The data from Figures 8 and 9 indicate
that the mobility edge defined in the latter way would lie
somewhat higher than in the former. The difference may
well be just a finite-size effect, but we cannot exclude also
the possibility that it reflects a real phenomenon, namely
presence of states which are neither properly extended,
nor exponentially localized. For example, the eigenvectors
can be characterized by tails decreasing slower than any
exponential, but on the level of knowledge provided by our
numerical data this is a mere speculation. However, note
that eigenvectors with power-law tails do occur in certain
models [59,60] and an interval of coexistence of extended
and localized states was also hypothesized in [21]. In all
the rest we shall stick to the former definition of the mo-
bility edge for purely practical reasons.

Second, comparing the IPR calculated using EMA
and SSA, shown in Figure 2 with numerical findings in
Figures 8 and 9, we observe a qualitative agreement. On
the other hand, quantitatively, EMA and SSA give much
too high values of IPR. So, however defective EMA and
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μ

z− m
ob

5.554.543.532.521.51

−3

−3.5

−4

−4.5

−5

Fig. 10. (Color online) Position of the mobility edge at the
lower tail of the spectrum, for ER graph. Where not shown,
error bars are smaller than the symbol size. The solid line is
the band edge calculated in EMA.

SSA are with respect to localization, they do provide a
hint of how IPR should behave.

Third, the data suggest that IPR for infinite system ap-
proaches a non-zero limit when we approach the mobility
edge from the localized side. Because in extended regime
IPR is strictly zero for infinite system, IPR should exhibit
a discontinuity at the mobility edge. This confirms results
obtained earlier in [61] using a supersymmetric method.

Let us continue with the analysis of our results. Hav-
ing established the mobility edge, we want to know how it
depends on the average degree of the ER graph. This de-
pendence is shown in Figure 10. For comparison, we show
also the position of the band edge, as found in EMA. We
can see that the mobility edge is slightly below the EMA
band edge, but the two quantities share a common trend.
Therefore, the EMA band edge can serve as a useful zeroth
approximation for the line of separation between localized
and extended states. This criterion was used, without fur-
ther justification, in the context of diffusion models for
biological evolution [62].

In order to see quantitatively, how much globally rele-
vant the localization phenomenon is, we measure the frac-
tion of eigenvalues below the mobility edge

floc =

〈
1
N

∑
i:λi<z−

mob

1

〉
. (13)

Supposing that the spectrum is mirror-symmetric, as it
should be in the limit N → ∞, the total fraction of local-
ized states is 2floc. We can see the results in Figure 11.
The first thing to note is that the results are practically
independent of system size, so we can safely claim that
they represent the fraction of localized eigenvalues for in-
finite system. The fraction decays with average degree
μ, until it saturates around μ 
 3 at a value close to
floc 
 0.5 × 10−4. It is suposed that this fraction should
drop to zero in the limit N → ∞, because it is known that
all states are extended in an ER graph, on condition that
μ → ∞ simultaneously with N → ∞ (Ref. [63]). The nu-
merical procedure does not enable us to work with large

μ + δμ

10
4
f l

oc

5.554.543.532.521.51

4

3.5

3

2.5

2

1.5

1

0.5

0

Fig. 11. (Color online) Fraction of states below the lower
mobility edge, for ER graph. We compare the results for
N = 10 000 (triangles), 3000 (squares), and 1000 (circles).
For better visibility, the points are slightly shifted rightwards
by δμ = 0, 0.03, and 0.1 for N = 10 000, 3000, and 1000,
respectively.

enough N to see that explicitly. Therefore, we consider
the saturation a finite-size effect.

4 Localization in random cubic graphs

4.1 Diagonal disorder

The second family of graphs investigated here are the ran-
dom cubic graphs, i.e. random graphs satisfying the only
constraint that the degree of all vertices is equal to 3. We
decided to study this family as a kind of direct opposite
of the ER graph. In ER graph, the properties are mostly
due to inhomogeneity in the degrees. In cubic graph all
degrees are equal. In ER graph, there is no diagonal dis-
order. In cubic graph, the relevant disorder is only on the
diagonal. Of course, one can study also models which in-
terpolate the two extremes, but we shall not do that in
the present work. We shall rather compare the differences
between the extremes.

The off-diagonal elements of the matrix L to study
are identical to the adjacency matrix of the graph, while
diagonal elements of L are independent Gaussian random
variables, with probability density

πdiag(Lii) =
1√
2π η

exp
(
− L2

ii

2η2

)
. (14)

In thermodynamic limit the local topology of the graph is
identical to the Bethe lattice with coordination number 3
and the randomness of the structure, i.e. the off-diagonal
disorder, must be irrelevant, as long as we investigate local
properties of the graph and its size goes to infinity. For
example, the density of states for the random graph with
η = 0 must approach a non-random function identical to
the well-known density of states of the Bethe lattice

DBethe(z) =
3
2π

√
8 − z2

9 − z2
. (15)
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Fig. 12. (Color online) Density of states for random cubic
graph with diagonal disorder, for N = 1000. The disorder
strength is η = 1 (solid line), 2 (dashed line), 3 (dotted line),
and 4 (dash-dotted line). The data are averaged over 40 000
realizations.

z

q−
1 (

z)

0−1−2−3−4

1

0.1

0.01

10−3

Fig. 13. (Color online) Inverse participation ratio at the lower
tail of the spectrum for random cubic graph with disorder
strength η = 0.5. The system size is N = 104 (solid line), 3000
(dashed line), 1000 (dotted line), and 300 (dash-dotted line).
The data are averaged over 550, 11 000, 65 000, and 160 000
realizations, respectively.

The non-trivial ingredient is the randomness in diagonal
elements of the matrix L and this is the feature which
leads to localization here. The situation is somewhat com-
plementary to the ER case investigated in the last section.
In ER graphs, localization is due to off-diagonal disorder,
while here the diagonal disorder is responsible.

4.2 Mobility edge

We show in Figure 12 the density of states for several
disorder strengths. The density of states is smooth and
free of singularities, which are typical of the spectrum
of ER graphs. The localized states occur in the Lifschitz
tails, as we can clearly see in Figures 13–15. Qualitatively,
we observe that localization is much stronger than in ER
graphs and the IPR reaches values very close to 1. On
the other hand, establishing the mobility edge is more
difficult, because the deviations of the curves for differ-
ent N are much smaller and obscured by statistical noise.
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0−2−4−6−8−10

1

0.1

0.01

10−3

Fig. 14. (Color online) Inverse participation ratio at the lower
tail of the spectrum for random cubic graph with disorder
strength η = 2. The system size is N = 104 (solid line), 3000
(dashed line), 1000 (dotted line), and 300 (dash-dotted line).
The data are averaged over 610, 10 000, 65 000, and 160 000
realizations, respectively.

z
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)
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z

q−
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0−5−10−15−20

1
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Fig. 15. (Color online) Inverse participation ratio at the lower
tail of the spectrum for random cubic graph with disorder
strength η = 4. The system size is N = 104 (solid line), 3000
(dashed line), 1000 (dotted line), and 300 (dash-dotted line).
The data are averaged over 550, 10 000, 65 000, and 160 000
realizations, respectively. In the inset, detail of the data illus-
trating the difficulty to establish the mobility edge precisely.

We illustrate it in the inset of Figure 15. In such a situ-
ation it is necessary to develop a method for extracting
the mobility edge as reliably as possible. The method is
illustrated in Figure 16. The procedure we used consists
in comparing the difference of average IPR for two sys-
tem sizes, Δq−1 = q−1(N) − q−1(N ′) with the level of
statistical noise δq−1. The estimate for the mobility edge
z−mob(N,N ′) is found where the difference Δq−1 as a func-
tion of z crosses the noise level δq−1. The error produced in
this method is estimated in a similar manner, as difference
of points where Δq−1(N,N ′) crosses δq−1 and where it
crosses twice as large noise 2δq−1. The error bars shown if
Figures 10 and 17 are obtained in this way. We found that
the estimate z−mob(N,N ′) depends quite strongly on the
sizes N , N ′. Therefore, we further extrapolate the values
found to infinite system, as shown in the inset of Figure 16.
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Fig. 16. (Color online) An example of the procedure for estab-
lishing the mobility edge. The symbols correspond to the pairs
of sizes N = 300, N ′ = 1000 (circles); N = 1000, N ′ = 3000
(squares); N = 3000, N ′ = 10 000 (triangles). The estimated
mobility edge for this pair is located where the data fall below
zero. In the inset, extrapolation of the estimated mobility edge
to infinite system size.
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Fig. 17. (Color online) Position of the mobility edge at the
lower tail of the spectrum, for random cubic graph. The solid
line is the band edge calculated in EMA.

The dependence of the mobility edge on disorder
strength is shown in Figure 17. As in the case of ER
graphs, we compare the dependence of the mobility edge
on disorder strength with the position of the band edge
calculated using the effective medium approximation.
While in ER graph the EMA band edge and the mobility
edge go in parallel, in random cubic graph they behave
differently. While the EMA band edge grows in absolute
value, thus reflecting the overall broadening of the den-
sity of states for increasing disorder, the mobility edge
remains deep within the range of the EMA band. For
disorder stronger than about η 
 4 the interval of ex-
tended states starts narrowing. This agrees qualitatively
with earlier results on Anderson localization on Bethe lat-
tice [15,23] which state that for strong enough disorder,
η > ηc, all states are localized. Note that the same quali-
tative behavior was also found by diagrammatic methods
for lattices in large Euclidean dimensions [11].
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Fig. 18. (Color online) Dependence of the fraction of states
below the lower mobility edge on the strength of the disorder,
for random cubic graph. The size is N = 104.
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Fig. 19. (Color online) Histogram of IPR, for states with
eigenvalues within a fixed interval, for η = 2 and N = 3000.
The arrows point to curves corresponding to intervals z ∈
[−0.5, 0.5] (line 1), [−1.5,−0.5] (line 2), [−2.5,−1.5] (line 3),
[−3.5,−2.5] (line 4), [−4.5,−3.5] (line 5), [−5.5,−4.5] (line 6),
and [−6.5,−5.5] (line 7). The data are accumulated from 17 000
independent realizations.

The fraction of states below the lower mobility edge
is shown in Figure 18. Again, the behavior is completely
different from the situation in ER graph. The fraction of
localized states is large and grows with the strength of the
disorder. We are unable to reach higher disorder strengths
η, because establishing the precise value of the mobility
edge is increasingly difficult. However, our data are con-
sistent with the claim that beyond a critical strength of
disorder the fraction reaches its maximum, i.e. floc = 1/2
for η > ηc.

4.3 IPR distribution

In addition to the dependence of the average IPR on z, we
are interested also in the fluctuations of IPR, if we restrict
the eigenvalue to a fixed interval z ∈ [z1, z2]. Indeed, we
found that the fluctuations may be very large, extending
up to several orders of magnitude. We show in Figure 19
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Fig. 20. (Color online) Histogram of IPR in the range of ex-
tended states, z ∈ [−0.1, 0.1], for η = 2 and different sizes of
the system, N = 104 (line 1), N = 3000 (line 2), N = 1000
(line 3), and N = 300 (line 4). The data are accumulated
from 610, 17 000, 130 000, and 270 000 independent realiza-
tions, respectively.
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Fig. 21. (Color online) Histogram of IPR in the range of lo-
calized states, z ∈ [−8.5,−7.5], for η = 5 and N = 1000.
The arrows indicate special values if IPR, q−1 = 1/2 and
q−1 = 1/3. The data are accumulated from 280 000 indepen-
dent realizations.

a series of histograms for the window [z1, z2] sliding from
extended states through the transition region, to localized
states. As expected, the width of the distribution is largest
around the transition, but even in the localized regime it
spans about one decade.

Let us first look at the extended states. The average
IPR is expected to scale as 1/N . Therefore, we plot the
histogram against the rescaled value Nq−1, in order to see
the convergence for increasing N . Indeed, we can observe
in Figure 20 that the position of the peak approaches to
a limit and simultaneously, the width of the peak shrinks.
This suggests that in the extended phase, IPR is a self-
averaging quantity.

On the contrary, we found that in the localized phase
the distribution of IPR is independent of size. Moreover,
as the example in Figure 21 shows, there are non-trivial
structures in the distribution. In Figure 21 we clearly see
two distinct peaks and a cusp. Interestingly, the positions

P (q−1)

q−1

n

P (q−1)
3

2

1

0

10.80.60.40.20
10
8

6
4

2

Fig. 22. (Color online) Series of histograms of IPR in the range
of localized states, for η = 5 and N = 1000. The index of the
curve n corresponds to the interval of eigenvalues according
to the formula z ∈ [−8.6 + 0.5n,−8.4 + 0.5n]. The data are
accumulated from 280 000 independent realizations.

of these three structures are slightly below some special
values of IPR, namely q−1 = 1, q−1 = 1/2, and q−1 = 1/3.
With our data available, we are unable to see further struc-
tures at q−1 = 1/4 etc., but we may speculate that they
are also present.

Further on, we want to see how these structures evolve
when we sweep through the regime of localized states,
changing the value of z. We plot in Figure 22 the se-
ries of histograms for z ∈ [−8.6 + 0.5n,−8.4 + 0.5n],
n = 1, 2, . . . , 10. For large |z|, i.e. deep in the localized
phase, the peak at q−1 
 1 dominates, but when we
decrease |z|, i.e. when we approach the transition, the
peak q−1 
 1/2 takes over, and further on the peak at
q−1 
 1/3 becomes most visible. Simultaneously the peaks
broaden and shift to lower values of IPR, so that the struc-
ture of distinct peaks is less and less clear.

We can interpret the special positions of the peaks at
q−1 = 1, q−1 = 1/2, etc. as coming from eigenvectors lo-
calized mostly at one, two, etc. sites. In order to support
this interpretation, we measured also the weighted aver-
age distance between sites. To this end, we first find the
shortest paths between each pair of vertices in the cur-
rent realization of the random cubic graph. Denote d(i, j)
the length of this path for vertices i and j. Of course,
d(i, i) = 0 for every i. Then, for each normalized eigenvec-
tor eiλ we calculate the weighted average

d(λ) =

∑N
i,j=1 d(i, j)e

2
iλe

2
jλ∑N

i,j=1 e
2
iλe

2
jλ

. (16)

For a vector strictly localized at one single site we get
the average distance d = 0, for a vector localized on a
pair of neighbors it is d = 1/2 and for a vector localized
on a pair of sites at distance 2 we have d = 1. The two
latter cases give the same IPR, q−1 = 1/2, so the average
distance brings further information on the eigenvector. We
plot in Figure 21 the joint distribution of IPR and average
distance, in the form of two-dimensional histogram. The
value of P (q−1, d) is discriminated by the color, higher

125CHAPTER 2. COLLECTION OF ORIGINAL PAPERS

http://www.epj.org


Page 10 of 12 Eur. Phys. J. B (2012) 85: 361

max

min

q−1

d

10.80.60.40.20

3

2.5

2

1.5

1

0.5

0

Fig. 23. (Color online) Two-dimensional histogram of IPR and
average distance of sites, in the range of localized states, z ∈
[−7.1,−6.9], for η = 5 and N = 1000. Darker color indicates
higher value of the histogram. The data are accumulated from
30 000 independent realizations.

values being darker. We clearly observe two black spots
corresponding to peaks of the distribution. The first one
is located about q−1 
 0.85 and d 
 0.2, implying states
localized around one single site. The shift from the point
q−1 = 1, d = 0 is due to decaying tails of the eigenvector.
The second peak is slightly shifted from the ideal position
q−1 = 1/2, d = 1/2. Clearly, it corresponds to states local-
ized on a pair of neighbors, again with decaying tails. We
can also see a darker spot around the position q−1 = 1/2,
d = 1. This small peak indicates states localized around a
pair of sites at distance 2, i.e. on second neighbors.

One might rise a serious suspicion, that each of the
peaks in the histogram of IPR corresponds to different re-
alization. If that were true, the multi-peak structure would
be the artifact of accumulating data from many indepen-
dent realizations into one histogram. To check it, we calcu-
lated the same histogram for a large system, N = 30 000.
In the localized phase, we found two distinct peaks also in
the histogram for one single realization. Moreover, com-
paring the histograms for a single realization and for 20
independent realizations, we see the same shape of the dis-
tribution, within statistical errors, as seen in Figure 24.
Therefore, the observed peculiarities in the IPR distribu-
tion are characteristic of single realizations.

4.4 Level spacings

An important feature of the localization transition,
stressed already in the early works [14,15], is the quali-
tative change in fluctuations of the imaginary part of the
resolvent close to the real axis. It was used for establishing
the mobility edge e.g. in reference [28]. In fact, this feature
is due to the change in level-spacing statistics [46]. Ex-
tended states are supposed to obey the level-spacing distri-
bution common to Gaussian orthogonal ensemble (GOE)
of random matrices [64], i.e. in a very good approximation

PGOE(x) ∝ xe−x2
. (17)
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Fig. 24. (Color online) Histogram of IPR in the range of lo-
calized states, z ∈ [−7.5, 6.5], for η = 6 and N = 30 000. The
solid line is the histogram for a single realization, while the
dotted line is the cumulative histogram for 20 independent re-
alizations.

(in this expression x is the distance of eigenvalues nor-
malized to the average level spacing). On the other hand,
localized states should obey the Poisson statistics

PPoisson(x) ∝ e−x. (18)

Intuitively, the change in statistics can be understood
in terms of level repulsion, which is substantial for ex-
tended, but very small for localized states. Therefore, lo-
calized states behave as if they were nearly independent
and their energies scattered randomly, which gives rise to
the Poisson statistics. Because Poisson statistics is charac-
teristic for integrable systems, while statistics like (17) is
the fingerprint of a chaotic system, the localization transi-
tion can be viewed also as a chaotic-integrable transition.

We analyzed the random cubic graph of size N = 1000
and disorder strength η = 2 and we extracted the level
spacing statistics for the spacings between eigenvalues,
normalized to the average spacing within certain interval.
We used the interval z ∈ [−0.1, 0.1] as a typical represen-
tative of extended states and z ∈ [−7,−6] as a represen-
tative of localized states. The results are shown in Fig-
ure 25. The difference in statistics is clearly visible. The
detail in the inset of Figure 25 shows also that the behav-
ior for small level spacings is close to linear in the extended
phase, in accord with equation (17). We checked also that
the distribution for localized states decays exponentially,
as in equation (18). Thus, it is clearly demonstrated that
the level spacing statistics gets transformed from Poisson
to GOE when we go from localized to extended regime in
the spectrum.

To make this argument quantitative, we calculate the
moments of the distribution of level spacings 〈(Δz)k〉 =∫
(Δz)k P (Δz)dΔz within the interval z ∈ [z−, z+]. Then,

we plot in Figure 26 the relative variance of the distri-
bution 〈(Δz)2〉/〈Δz〉2 − 1. We can clearly see the peak
around the transition between localized and delocalized
states, marking a qualitative change in the level spacing
distribution.
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Fig. 25. (Color online) Distribution of normalized level spac-
ings in the spectrum of random cubic graph with disorder
strength η = 2 and size N = 1000. The levels analyzed
are restricted to intervals z ∈ [−0.1, 0.1] (solid line) and
z ∈ [−7,−6] (dashed line). The dotted line is the depen-
dence ∝ Δznorm exp

( − a(Δznorm)2
)
, with a = 0.75, which

corresponds to the Gaussian orthogonal ensemble. In the inset
we show the detail of the distribution at z ∈ [−0.1, 0.1] for
very small spacings. The straight line is the linear dependence
∝ Δznorm.
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Fig. 26. (Color online) Relative variance of the level spacing
distribution, depending on the center of the interval over which
the distribution is calculated. The disorder strength is η = 2
and the size of the system N = 1000.

5 Conclusions

Numerically diagonalizing matrices up to size 10 000 ×
10 000, we investigated localization transition in Erdős-
Rényi and random cubic graphs. In ER graphs, the free
parameter was the average degree, while in random cubic
graphs, the parameter was the strength of disorder in the
diagonal matrix elements. The quantity to discriminate
between localized and extended regimes was the inverse
participation ratio. We averaged IPR over large number
of realizations and using finite-size scaling, we extracted
the mobility edge. The benchmark for the position of the
mobility edge was the band edge found in the effective
medium approximation.

The localization properties in ER and random cubic
graphs are much different. In the former, the mobility edge

goes more or less in parallel with the EMA band edge,
when we change the average degree, and the fraction of
localized states decreases when the average degree grows.
In the latter, the EMA band edge is significantly farther
than the mobility edge, or else, much of the localized states
are actually present within the range of EMA spectrum.
The results are consistent with analytical findings which
predicted that a critical disorder strength exists, beyond
which all states are localized.

The inverse participation ratio exhibits rather strong
fluctuations. In the extended phase, the relative width
of the IPR distribution decreases with increasing system
size, while in the localized phase the width of the distribu-
tion approaches a finite value. Moreover, the distribution
contains non-trivial structures of several peaks. We inter-
pret these structures as corresponding to states localized
around one, two, three, etc. sites.

For the random cubic graphs, we analyzed also the
level spacing statistics confirming the expectation that in
the localized region the statistics is close to Poissonian,
while in the extended region it is close to the statistics of
Gaussian orthogonal ensemble.
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of the Academy of Sciences of the Czech Republic and
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Harms and bene!ts from social imitation
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Abstract

We study the role of imitation within a model of economics with adaptive agents. The basic
ingredients are those of the minority game. We add the possibility of local information exchange
and imitation of the neighbour’s strategy. Imitators should pay a fee to the imitated. Connected
groups are formed, which act as if they were single players. Coherent spatial areas of rich and
poor agents result, leading to the decrease of local social tensions. Size and stability of these
areas depends on the parameters of the model. Global performance measured by the attendance
volatility is optimised at certain value of the imitation probability. The social tensions are sup-
pressed for large imitation probability, but due to the price paid by the imitators the requirements
of high global e4ectivity and low social tensions are in con5ict, as well as the requirements of
low global and low local wealth di4erences. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The minority game introduced by Challet and Zhang [1,2] following the earlier ideas
of Arthur [3] became in recent years a playing ground for studying various aspects of
the economic systems.
In the minority game (MG) we have N players who choose repeatedly between two

options and compete to be in the minority group. This is the idealisation of various
situations, where the competition for limited resources leads to intrinsic frustration.
One can think, for example, of cars choosing between two alternative routes or a
speculator who tries to earn money by buying and selling shares in such a manner that
the majority takes the opposite action than herself.
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Let us recall some well-known facts about the MG. The players share a public
information, saying what were the outcomes of the game in past M rounds. The play-
ers interact only through this information. Therefore, the system has a “mean-!eld”
character, in the sense that no short-range interactions exist.
The self-organization is achieved by allowing players to have several strategies and

choose among them the strategy which seems to be the best one. This feature leads
to decrease of the 5uctuations of attendance below its random coin-tossing value, thus
increasing the global e4ectivity of the system. It was found that the relevant parameter
is �=2M=N and the maximum e4ectivity is reached for �= �c � 0:34 [2,4,5] and the
properties of this phase transition are thoroughly studied using the methods developed
in the theory of neural networks [6–8].
More complete account of the current state of the standard MG and its rami!cations

is given in other contributions in these proceedings [9,10]. We would like to stress
especially the attempts to go back to the economic motivations of MG and model the
market mechanisms [11–14].
The observation that the crowded (low �) phase exhibits low global e4ectivity bears

an important hint. Indeed, if we start with the crowded phase, we can improve the
performance by grouping the agents together. This mechanism may bring about the
condensation of individual investors around consulting companies and investment funds,
which is the behaviour found in real life.
Indeed, an individual investor who sees that she is all the time behind her neigh-

bours may feel tempted to refrain from her own initiative and transfer the burden
of decisions to more successful (more wealthy) individuals. That is what we will
call imitation. The temptation for imitation in the population will be quanti!ed by a
parameter p∈ [0; 1]. Of course, an agent, who is otherwise prone to imitation, will
not imitate, if she has larger wealth and therefore is better o4 than her neighbours.
So, there may be two questions to be positively answered if the imitation is to oc-
cur: Has the agent natural tendency to imitation? Has any of her neighbours larger
wealth?
It is also natural to suppose that the decision maker, or the imitated individual,

will use (or misuse) her position to require a fee from those on which behalf her
acts. Therefore, the imitators will pay a commission 	 to the imitated. As we will
see, the value of the commission has important consequences for the behaviour of the
agents.
We introduced recently [15] the possibility of local interactions into the standard MG.

In this contribution, we further analyse the properties of social structures emerging from
the local information exchange. When doing so we go beyond the mean-!eld character
of the usual MG. Related works were already done, either assuming that the global
information is fully replaced by a local one [16] or using the MG scheme for evolving
the Kau4mans’s Boolean networks [17] to the critical state [18].
In our variant of the MG the local information is used to enable the players to decide,

whether they want to use their own strategies or imitate their neighbours. Indeed, it
is quite common that people do not invest individually, but rely on an advice from
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specialised agencies, or simply follow the trend they perceive in their information
neighbourhood. In so doing, the individuals coalesce into groups, which act as single
players. In the framework of minority game, we will study the social structure induced
by the occurrence of these groups. It should be expected that this will lead to increase
in the global performance in the crowded (small �) phase. This is indeed con!rmed
by the simulations.

2. Minority game on a chain with allowed imitation

We introduce the possibility of local information exchange in our variant of the
minority game. In analogy to the metabolic pathways in living organisms, we can
imagine a kind of “information metabolism” in work within the economic system.
Information 5ow along the edges of certain information network. The study of the
geometry of graphs describing these information networks is now a scienti!c !eld on
its own [19–21]. Within the framework of MG a linear chain [16] and random network
with !xed connectivity K [18] was already investigated in di4erent contexts.
Here, we take the simplest possible choice of a linear chain with one-directional

nearest-neighbour connections. Each player can obtain the information only from her
left-hand neighbour, namely about her neighbour’s wealth.
There will be two conditions needed for a player to imitate her neighbour. First, the

player should have internal disposition for being an imitator. We simplify the variety
of risk-aversion levels by postulating only two types of players. Each player has a
label l̃∈{1; 0} indicating, whether the player is a potential imitator (l̃=1) or always
a leader (l̃=0). At the beginning we take each of the players and attribute her label 1
with probability p and label 0 with probability 1−p. We also allow swapping between
the two types of behaviour, at a constant rate. The labels can change at each step with
probabilities p1 (1→ 0) and p2 (0→ 1). We choose always p=p2=(p1 +p2), so that
the average density of potential imitators does not change in time.
The second condition for the player of type 1 to actually imitate in the current step

is that her neighbour has larger accumulated wealth than the player itself. We suppose
that the player does not know what are the strategies of her neighbour, but if she
observes that the neighbour’s behaviour is more pro!table than her own strategy, she
relegates the decision to the neighbour and takes the same action. The player of type 0
will never imitate. Therefore, she will always look only at her S strategies and choose
the best estimate from them.
The above rules are formalized as follows. We have an odd number N of players.

Each player has S =2 strategies, denoted sj ∈{1; 2}. The two possible actions a player
can take are 0 and 1. The winning action is 1 if most players took 0 and vice versa.
The members of the winning side receive 1 point, the loosing side 0 points. The players
know the last M outcomes of the game. This information is arranged into the M -bit
string �∈{0; 1}M . The strategies are tables attributing to each of 2M possible strings
� the action a�j; sj the player j takes, if she chooses the strategy sj. The scores Uj;s of
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the strategies are updated according to the minority rule

Uj;s(t + 1)=Uj;s(t) + 1− �
(
a�(t)j; s − �

(∑
i

ai(t)− N=2
))

; (1)

where aj(t) is the action the player j takes at time t.
The potential imitators will copy the action from their more successful neighbours.

Let Wj be the wealth of the jth player and the variables lj describe the actual state of
imitation, in analogy with the labels l̃j describing potential state of imitation. We can
write lj = l̃j �(Wj−1−Wj), with �(x)= 1 for x¿ 0 and 0 otherwise. The actions of the
players are

aj = ljaj−1 + (1− lj)aj;sM : (2)

We also suppose that the imitation is not for free. The player who imitates passes a
small fraction 	 of its wealth increase to the imitated player. This rule accounts for the
price of information. Then, we update the wealth of players iteratively,

PWj(t)= (1− 	lj)(	lj+1 PWj+1(t) + 1− �
(
aj − �

(∑
i

ai(t)− N
2

))
; (3)

where PWj(t)=Wj(t + 1)−Wj(t).

3. Imitation structures

In our simulations we observe that the time evolution of the number of actually
imitating players, Ni=

∑
j lj, depends on p1. The time dependence of the fraction of

imitators Ni=N for several values of p1 is shown in Fig. 1. For p1 = 0 it increases

Fig. 1. Time dependence of the fraction of imitators, for N =1001; M =6; S =2, and p=0:95, aver-
aged over 10 independent runs. Di4erent curves (marked by symbols) correspond to di4erent probability
p1 = 0 (×); 5× 10−6 ( ); 1:5× 10−5 (+); 5× 10−5 (�); 5× 10−4 (•); 5× 10−3 (�).
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Fig. 2. Example of the evolution of the distribution of wealth among players, for N =1001;
M =6; S =2; 	=0:05, and p=0:95. The upper 5 curves correspond to p1 = 5 × 10−6, while the
lower 5 curves have p1 = 0. The time step at which the snapshot is taken is indicated on the right. For
each time, the vertical axis indicates the wealth Wj of the jth player.

monotonously until saturation, while for p1 �=0 it grows toward a local maximum and
then decreases and saturates at a value weakly dependent on p1, but signi!cantly below
the p1 = 0 value.
An example of the time evolution of the spatial wealth distribution is given in

Fig. 2 for p=0:95 and two values of p1 = 5 × 10−6 and 0. The initially random
distribution of wealth among players changes qualitatively during the evolution of the
system. Coherent groups of poor and wealthy players are formed. Again, the situation
is qualitatively di4erent if we allow the players to switch between potential imitator
and leaders. We have shown in the previous work [15] that for p1 = 0 the poor groups
persist forever. We can see the same behaviour also in Fig. 2 for p1 = 0. On the other
hand, for p1 �=0 we observe that large poor groups are unstable and split again into
smaller clusters. This leads to lowering of the global wealth di4erences, as will be
analysed in the next section.
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Fig. 3. Dependence of the attendance 5uctuations on the imitation probability for p1 = 0. The number of
players is N =1001 and memory length M =5 (�); M =6 (+); and M =7 (×).

4. Globally uniform wealth versus small social tensions

The time averaged attendance 5uctuations �2 = 〈(A − N=2)2〉 measure the distance
from the global optimum. The global e4ectivity is higher for smaller �2. We investi-
gated the in5uence of the imitation on the global e4ectivity.
We found that in the crowded phase the system becomes more eRcient if imitation

is allowed (p¿ 0), but there is a local minimum in the dependence of �2=N on p,
indicating that there is an optimal level of imitation, beyond which the system starts
to perform worse. The results for N =1001 are shown in Fig. 3. We can see that the
minimum occurs at smaller values for larger M . We can also observe that for longer
memories (M =7 in our case) the value of the 5uctuations for p=1 is signi!cantly
above the value without imitation (p=0), while the value at the minimum still lies
below the p=0 value. This implies that moderate imitation can be bene!ciary, while
exaggerated one can be harmful.
The increase of spatial coherence by creation of poor and wealthy groups can result in

decrease of local social tension. To quantify it, we introduce a kind of “utility function”
[22] U (PW ), which indicates, how much the wealth di4erence PW is subjectively
perceived. We will use the utility function in the form U (x)= x1=2. Then, the average
measure of the local social tension is

d0:5 =
1

〈W 〉


N−1∑

j=1

|Wj −Wj+1|1=2



2

; (4)

where we denoted the average wealth 〈W 〉= 1
N

∑N
j=1Wj.

The stationary values of the tension for various values of the commission 	 are
shown in Fig. 4, for p1 = 0. An important feature of the p-dependence is the maximum
at certain imitation probability. The maximum becomes more pronounced for larger
commission 	, while for 	=0:01 it disappears.
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Fig. 4. Relative local tension for N =1001; M =6; p1 = 0 measured by utility function (PW )1=2 for com-
mission 	=0:05 ( ); 0:03 (×), and 0:01 (+).

Fig. 5. Growth of the average wealth of agents, for N =1001; M =6; S =2; p=0:95, sample aver-
aged over 10 independent runs. Di4erent curves (marked by symbols) correspond to di4erent probability
p1 = 0 (×); 5× 10−6 ( ), 1:5× 10−5 (+); 5× 10−5 (�); 5× 10−4 (•); 5× 10−3 (�).

This observation has an important consequence. Imagine, we are social experimental-
ists starting with a system with no information exchange and no imitation. Let us try to
lower the social tensions by gradually encouraging the people to buy information from
the neighbours and imitate each other. If the cost of the information (	) is too high,
this social strategy would fail, because small increase in imitation would enhance the
social tension. Lower social tension must have been achieved by a macroscopic change
in the social behaviour: by jumping over the maximum in the function d0:5(p). This
may serve as a toy example of how too greedy environment (too costly information)
can prevent the system to !nd a global optimum.
By comparing Figs. 3 and 4 we can also see that for high 	 optimal performance

(minimum �2=N ) can be close to maximum in social tensions. Therefore, in greedy
environment the requirements of e4ectivity and social peace are in con5ict.
Fig. 5 shows, the growth rate of the average wealth for several values of the switch-

ing probability p1. We can see that the growth rate converges to a constant value,
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Fig. 6. Time evolution of the local tensions, for N =1001; M =6; S =2; p=0:95, sample averaged over
10 independent runs. Di4erent curves (marked by symbols) correspond to di4erent probability p1 = 0 (×),
5× 10−6 ( ); 1:5× 10−5 (+); 5× 10−5 (�); 5× 10−4 (•); 5× 10−3 (�).

Fig. 7. Time evolution of the wealth dispersion, for N =1001; M =6; S =2; p=0:95, averaged
over 10 independent runs. Di4erent curves (marked by symbols) correspond to di4erent probability
p1 = 0 (×); 5× 10−6 ( ); 1:5× 10−5 (+); 5× 10−5 (�); 5× 10−4 (•); 5× 10−3 (�).

which is higher for p1 = 0 and nearly independent of p1 for p1 �=1. In all cases, we
con!rm that the average wealth grows linearly with time.
In Fig. 6 we can see the time evolution of the local tensions for several values of the

switching probability p1. We observe that the switching enhances the local tensions.
On the other hand, in Fig. 7, we can see the time dependence of the growth rate in
the global wealth dispersion, 〈W 2〉 − 〈W 〉2 (by angle brackets we denote the average
over all players). There is a clear di4erence between the cases of p1 = 0, where the
wealth dispersion grows much more rapidly than t2 and p1 �=0, where the dispersion
grows as t2, at a rate nearly independent of p1.

This means that, if we allow switching between potential imitation and leader states,
the wealth distribution only re-scales linearly in time (this observation together with
the linear growth if the average wealth suggests that the probability density at time t
converge as P(W; t)=�(W=t) where the function �(x) does not depend on time). On
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the contrary, if we forbid the switching, the poor imitators are frozen forever in their
poverty and in the wealth distribution the rich and poor diverge steadily.
However, recalling the discussion of Figs. 6 and 5 we can see that the requirement of

low global wealth dispersion (a “just” world, achieved by enabling the poor imitators
switch to leaders and thus become richer) deteriorates both global eRciency (measured
now by the wealth growth rate) and, more surprisingly, the local social tensions.

5. Conclusions

We investigated the creation of rich and poor spatial domains due to local information
exchange, within the framework of the minority game (MG). Coherent spatial areas of
rich and poor agents emerge. Several macroscopic con5icts of interest are observed in
our model:
(1) We found that the e4ect of imitation leads to increased e4ectivity in the crowded

phase of MG. The price paid for the information needed to imitation leads to the con5ict
between e4ectivity and local social tensions. High information cost also prevents the
system from coming to the state of lower social tensions by gradual increase of the
imitation probability.
(2) We allow for switching between imitation and non-imitation (leader) states. Such

a switching makes the global wealth di4erences smaller, but increases the local social
tensions.
The creation of coherent areas of poor and rich agents leads to decrease in the

local social tensions, but only if p is suRciently close to 1. The lowest value of
the social tension is reached at p=1, but for such a value the global e4ectivity is
signi!cantly lower than its optimum value. Therefore, we observe a con5ict of local
interests (maximisation of social tension) with global performance (maximisation of
attendance 5uctuations).
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Abstract. The Sznajd model, which describes opinion formation and social influence, is treated analytically
on a complete graph. We prove the existence of the phase transition in the original formulation of the
model, while for the Ochrombel modification we find smooth behaviour without transition. We calculate
the average time to reach the stationary state as well as the exponential tail of its probability distribution.
An analytical argument for the observed 1/n dependence in the distribution of votes in Brazilian elections
is provided.

PACS. 89.65.-s Social and economic systems – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

There is significant convergence between statistical
physics and mathematical sociology in approaches to their
respective fields [1]. Ising model, the single most studied
statistical physics model, finds its numerous applications
in sociophysics simulations. Conversely, sociologically in-
spired models pose new challenges to statistical physics.
We believe this is the case of the Sznajd model we are
studying here.

The model of Sznajd-Weron and Sznajd [2] was de-
signed to explain certain features of opinion dynamics.
The slogan “United we stand, divided we fall” lead to
simple dynamics, in which individuals placed on a lattice
(one-dimensional in the first version) can choose between
two opinions (political parties, products etc.) and in each
update step a pair of neighbours sharing common opinion
persuade their neighbours to join their opinion. Therefore,
it was noted that contrary to the Ising or voter [3] models,
information does not flow from the neighbourhood to the
selected spin, but conversely, it flows out from the selected
cluster to its neighbours.

The model initiated a surge of immediate inter-
est [4–25] and the results of numerical simulations can
be briefly summarised as follows. The results do not de-
pend much on the spatial dimensionality or on the type of
the neighbourhood selected [11]. In the case of q choices of
opinion, the system has q obvious homogeneous station-
ary (absorbing) states, where all individuals choose the

a e-mail: slanina@fzu.cz

same opinion. There is no way to go out of the homoge-
neous state, so it is an attractor of the dynamics. This
is reminiscent of a zero-temperature dynamics, which in
Ising model leads to rich behaviour [26]. However, in the
Sznajd model, the possible metastable states, like the “an-
tiferromagnetic” configuration have negligible probability
to occur, unless we introduce explicitly also an “antifer-
romagnetic” dynamic rule as it was used in the very first
formulation [2].

The case q = 2 was studied mostly, denoting the opin-
ions by Ising variables +1 and −1. The probability of hit-
ting the stationary state of all +1 (or, complementary,
all −1) was studied, depending on the initial fraction p
of the individuals choosing +1. Sharp transition was ob-
served at value p = 0.5 [11]; for p > 0.5 the probability
to reach eventually the state of all opinions +1 is close to
one, while for p < 0.5 it is negligible, which can be inter-
preted as a dynamical phase transition. The distribution
of times needed to reach the stationary state was mea-
sured, revealing a peak followed by relatively fast decay.
This means that the average hitting time is a well-defined
quantity [11].

It was also found in one and two-dimensional lattices
that the fraction of individuals who never changed opin-
ion decays as a power with time, similarly to Ising model.
While the exponent in one dimension agrees with the Ising
case, the two-dimensional Sznajd model gives different ex-
ponent than Ising model, indicating different dynamical
universality class [13]. Also the waiting time between two
subsequent opinion changes is distributed according to a
power-law [2].
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Among other studies, let us mention the influence of
advertising effects [18,19] and price formation [20]. Long-
range interactions were studied in [21].

In a very short but intriguing note [22] Ochrombel sug-
gested a drastic simplification of the Sznajd model. In the
Ochrombel version it is not necessary to have a cluster of
identical opinions. Any individual is capable to convince
her neighbours to select the same opinion. This model
was reported to share all essential features of the original
Sznajd model, only the phase transition in the probability
of hitting the state of all +1 at p = 0.5 is absent.

The Sznajd model was also used to model the election
process. There is recent empirical evidence from Brazilian
elections [27–29] that the distribution of votes per candi-
date follows a power-law, more specifically P (n) ∼ 1/n,
where n is the number of votes. This result was reproduced
in a study [4] based on Sznajd model on a scale-free net-
work [30–32].

The dynamics of elections was thoroughly investigated
by Galam [33–36], showing that majority rule applied on
sufficiently many hierarchical levels leads to a homoge-
neous “totalitarian” state with one opinion pervading the
whole system.

Other approaches to physical modelling of opinion dy-
namics were also investigated [37,38] and among them
especially the Axelrod model, which was found to have
rich behaviour from the statistical physics point of
view [39–41].

We should also mention the well studied voter
model [3,42–44], which is very similar in spirit to the
Sznajd model. Indeed, the relation of the two models was
studied e.g. in [45] and it seems that Sznajd model re-
duces to the voter model at least for certain setups (es-
pecially using the Ochrombel simplification on a complete
graph) while for others the voter model can be generalised
so that it includes the rules of Sznajd model as a special
case. In fact, similar analysis to that presented here was
performed for voter model, contact process and related
processes in [46]. The persistence properties of the voter
model on complete graph were studied in [42].

Very recently a “Majority rule” model, sharing some
features with Sznajd model, was introduced and stud-
ied in [47] and its generalisation to the Majority-Minority
model [48] gives in the mean-field approximation results
closely related to ours.

2 Formulation of the model
and its simplifications

2.1 General scheme

In the original formulation of the Sznajd model, the
“united we stand” principle is often stressed [2,11]. It
means that only a cluster of identical opinions can spread
the same opinion toward its neighbours. However, this
principle was relaxed in the Ochrombel simplification [22]
without qualitatively affecting many of the results (ex-
cept the presence of the phase transition). We will propose

some other simplifications here, supposing the results re-
main robust.

Let us have N agents, each of which can be in one of
q states (opinions) σ ∈ S. We may for example think of a
q-state Potts model variables. Each agent sits on a node
of a social network, and they can interact along the edges
with their nearest neighbours.

The opinion of the agent i is denoted σi. The state of
the system is described by the set of opinions of all the
agents, Σ = [σ1, σ2, ..., σN ].

The variable Σ(t) performs a discrete-time Markov
process, whose transition probabilities from time t to t+1
differ in various cases, which will be specified in the fol-
lowing.

2.2 Case I: two against one

The first case investigated, which we will sometimes call
“two against one”, generalises and simultaneously simpli-
fies the various versions introduced in [11]. The main dif-
ference is in the fact that we will change at maximum one
agent at each time step. This may not significantly change
the behaviour, as the various choices of neighbourhood
in [11] exhibit only little difference.

Our algorithm will iterate the following three steps.
First, choose randomly an agent i. Then, choose randomly
one of its neighbours, say j. If σi(t) �= σj(t), nothing hap-
pens. However, if σi(t) = σj(t), we will choose randomly
one of the common neighbours of both i and j, say k, and
set σk(t + 1) = σi(t). We may also write it schematically
as reactions AAB → AAA, BBA → BBB.

2.3 Case II: Ochrombel simplification

In this case, we do not need to have two neighbours in
the same state. Everybody can influence each of its neigh-
bours. We choose an agent i at random. Then, choose j
randomly among neighbours and set σj(t + 1) = σi(t).
Therefore, the process may be written as AB → AA,
BA → BB. In fact, on fully connected network the Ochro-
mbel simplification is equivalent to voter model, whose
dynamical properties were studied e.g. in [42].

As an obvious observation we can note that both in
case I and case II the uniform states, with all σi equal,
are stable under the dynamics. However, we can expect
variety of metastable states in the case I, in which there
are no pairs of neighbours in the same state, therefore the
dynamics does not proceed any further.

3 On a fully-connected network

We will approximate the complex social network by the
fully-connected network (the complete graph) of N nodes.
Here, any two agents are neighbours; in the case I we sim-
ply choose three agents i, j, k at random and in the case II
two agents i, j at random. Note that the order in which
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they are chosen matters. This makes our process differ-
ent e.g. from the majority [47] or majority-minority [48]
models, although on fully connected network the differ-
ence may consist only in rescaling certain variables.

We will call this setup a mean-field approximation in
the same sense as the Ising model on the complete graph
can be considered as an approximation for Ising model on
hypercubic lattice of high dimensionality. Of course this is
not a good approximation to the original one-dimensional
formulation of the Sznajd model [2], but we believe it is ap-
propriate for much more realistic studies of Sznajd model
on complex networks [4,16,23]. We refer the reader to Ap-
pendix A for a more formal definition of the Sznajd model
on an arbitrary graph.

In fully-connected network the state of the system
is fully described by the occupation numbers Nσ =∑N

i=1 δσiσ, or equivalently the densities nσ = Nσ/N , for
each opinion σ ∈ S. The dynamics of these occupation
numbers fully describes the evolution of the system. As
the total number of nodes is conserved, there are q − 1
independent dynamical variables.

Let us start with the case II (Ochrombel simplification)
with only two opinions, q = 2. The variable σ can assume
only two values, denoted σ = ±1 for convenience. Indeed,
we are effectively working with Ising spins. The state is
described by one dynamical variable only, which will be
taken as a “magnetisation”,

m =
N+ −N−

N
· (1)

In one step of the dynamics, three events can happen.
The magnetisation may remain constant or it can change
by ±2/N . The probabilities of these three events can be
easily calculated

Prob
{
m→ m+

2
N

}
=

1
4

(
1 −m2

) (
1 +

1
N − 1

)

Prob
{
m→ m− 2

N

}
=

1
4

(
1 −m2

) (
1 +

1
N − 1

)

Prob {m→ m} =
(

1
2

(
1 +m2

) − 1
N

)

×
(

1 +
1

N − 1

)
. (2)

Our objective is writing the master equation for the
probability density of the random variable m(t), which we
denote Pm. It can be found easily in the thermodynamic
limit N → ∞. Indeed, we find that the time should be
rescaled as

t = N2 τ (3)

in the thermodynamic limit. Then the probability density
evolves according to the partial differential equation

∂

∂τ
Pm(m, τ) =

∂2

∂m2

[
(1 −m2)Pm(m, τ)

]
. (4)

The latter equation describes in principle fully the evolu-
tion of the Sznajd model in Ochrombel simplification on

a complete graph. It has the form of a diffusion equation
with position-dependent diffusion constant.

Let us turn now to the case I (original Sznajd model),
again with q = 2. We may repeat step by step the consider-
ations made above for the case II. Namely, our dynamical
variable will be again the magnetisation m which may ei-
ther remain unchanged or change by ±2/N in one step.
For the probabilities of these events we can find formulae
analogous to (2)

Prob
{
m→ m+

2
N

}
=

(
1 −m2

)
8

(
1 +m+

1 + 3m
N

)

Prob
{
m→ m− 2

N

}
=

(
1 −m2

)
8

(
1 −m+

1 − 3m
N

)

Prob{m→ m} = 1 −
(
1 −m2

)
4

(
1 +

1
N

)
(5)

where the terms of order 1/N2 are neglected. Note that
the probabilities of changes ±2/N are not symmetric, con-
trary to the previous case (II). This fact has all-important
consequences. We will see later that it is responsible for the
fact that the original Sznajd model exhibits phase tran-
sition, while in Ochrombel simplification the transition is
absent.

A more immediate consequence is that the time must
be rescaled differently, in order to get sensible thermody-
namic limit, namely

t = 2N τ. (6)

The second consequence is that the equation for Pm(m, τ)
contains first derivative with respect to m, representing a
pure drift in magnetisation:

∂

∂τ
Pm(m, τ) = − ∂

∂m

[
(1 −m2)mPm(m, τ)

]
. (7)

Contrary to the previous case (4) the diffusion term, con-
taining the second derivative in m, represents only the
finite-size correction to the drift term. However, this cor-
rection may dominate close to points m = ±1 and m = 0
where the drift velocity becomes zero.

Next case investigated will be the case II with arbitrary
value of q. Moreover, we will assume that the number of
opinions is large, q � 1. Let us define the distribution of
occupation numbers

D(n) =
N

q

q∑
σ=1

δ (n− nσ) (8)

where δ(x) = 1 for x = 0 and zero elsewhere. It would be
much more difficult to write the full dynamic equation for
D(n). Therefore, we use the approximation which replaces
the distributionD(n) by its configuration average Pn(n) =
〈D(n)〉. In the limit N → ∞ and q → ∞ and substituting
the variable x = 2n− 1 we arrive at the equation

∂

∂τ
Pn(x, τ) =

∂2

∂x2

[
(1 − x2)Pn(x, τ)

]
. (9)
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The time is rescaled again according to the equation (3).
We can see that the equations (4) and (9) have identical
form, although the interpretation of variables is different.
We can therefore solve the two cases simultaneously. This
will be performed in the next section.

4 Solution of the dynamics

4.1 Two against one: case I

The case I, q = 2 is described by the equation

∂

∂τ
P (x, τ) = − ∂

∂x

[
(1 − x2)xP (x, τ)

]
. (10)

It can be easily verified that the solution has the following
general form

P (x, τ) = [(1 − x2)x]−1 f

(
e−τ x√

1 − x2

)
(11)

for arbitrary function f(y). The form of the function f(y)
is given by initial conditions. For example if the initial
condition is a δ-function, it keeps the same form during
the evolution, only the location shifts in time. This way
we could in principle calculate, how long it takes to reach
the edges of the interval from given initial position. This
would be the time to reach the stationary state. However,
it comes out that the time needed blows up. The reason
comes from the infinite-size limit N → ∞. Indeed, very
close to the points x = ±1 the finite-size effects take over.

We can estimate the average time needed to reach the
stationary state in finite system by the following consider-
ation. In fact, the equation (10) describes the drift which
pushes the system toward the stationary state, but ne-
glects the effect of diffusion, which becomes important
at a distance ∼ 1/N from the points x = ±1. There-
fore, we must calculate the time necessary for the drift
to drive the system to the point ±(1 − 1/N). The initial
fraction p of opinions +1 corresponds to the initial condi-
tion x0 = 2p − 1 and from the formula (11) we have the
following estimate for the average time 〈τst〉 to reach the
stationary state

〈τst〉 
 − ln

(
|2p− 1|√
p(1 − p)

1√
N

)
. (12)

It is also possible to include the correction terms of
order O(1/N) into equation (10) and deduce the equation
for the average time to reach the absorbing state 〈τst〉(x0)
on condition that the process started at initial position
x0. Following the general scheme [49] we obtain a second-
order ordinary differential equation

(
1 +

3
N

)(
1 − x0

2
)
x0

d
dx0

〈τst〉 (x0)

+
1
N

(
1 − x0

2
) d2

dx0
2
〈τst〉 (x0) = −1. (13)

The solution of (13) is

〈τst〉 (x0) = N

∫ x0

−1

∫ 0

y

e
N+3

2 z2

1 − z2
dz e−

N+3
2 y2

dy. (14)

Indeed, for x0 not too close to either of the points x0 =
−1, 0, 1 (the distance must be large compared to 1/N)
we obtain from the formula (14) an approximate expres-
sion of the form given in (12). Another way to obtain the
same p dependence as in (12) is to omit the O(1/N) terms
in the equation (13) and solve the first-order differential
equation. In this case, however, we lose any information
about the dependence on N . We should also note that a
result essentially equivalent to equation (12) was obtained
also in [47].

It is rather interesting to observe that the determinis-
tic dynamics of Galam model [34,36] leads to a formula
very similar to (12), while the interpretation of the time
variable is totally different: in Galam model it represents
the number of hierarchical levels on which the majority
rule is iterated.

It would be desirable to calculate the full probability
distribution for the time to reach the stationary state τst
and not only the average. That is possible using again the
formalism of adjoint equation [49], when we introduce the
1/N corrections to equation (10) but the resulting partial
differential equation is difficult to solve explicitly. Instead,
we estimate the exponential tail of the distribution by a
simple consideration.

Indeed, after the drift had pushed the system to the
state in which there is only single spin −1 immersed in
a sea of all +1-s it finally comes into uniform stationary
state if the first pair of spins chosen is both +1 and the
third one is the single −1. This choice has probability

 1/N . Therefore, the relaxation time toward the uniform
state is trelax 
 N and using the scaling (6) we have for
the tail of the distribution

P (τst) ∼ exp(− τst
τrelax

), τst → ∞ (15)

with
τrelax 
 1

2
· (16)

The most important observation we can draw from the
solution (11) is the presence of the dynamic phase transi-
tion, as observed in numerical simulations. Indeed, start-
ing with any fixed positive magnetisation, we have initial
condition P (x, 0) = δ(x − x0), x0 > 0, and the drift ex-
pressed by equation (11) always take us to the state with
all agents having opinion +1, while from any state with
negative magnetisation the drift leads the system eventu-
ally to the state with all agents having opinion −1 and
the probability of ending in the state of all +1 is there-
fore P+ = θ(p − 1/2). The possible deviations from this
rule close to the zero magnetisation (i.e. p = 0.5) are
due to the finite size effects, which are neglected in (10).
The presence of the phase transition is also indicated by
the divergence of the average time to reach the stationary
state (12) for p→ 1/2.
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4.2 Ochrombel simplification: case II

The equation

∂

∂τ
P (x, τ) =

∂2

∂x2

[
(1 − x2)P (x, τ)

]
(17)

describes both the case II, q = 2 and II, q � 1, only the
interpretation of the variable x differ: in the former case it
corresponds to the magnetisation, while in the latter case
it is shifted percentage of votes. By solving equation (17)
we treat simultaneously both cases.

The equation of the form (17) was already studied in
variety of contexts, e.g. population genetics [50,51] or re-
action kinetics [52] and can be tackled by standard meth-
ods developed for Fokker-Planck equation.

Indeed, we look for the solution using the expan-
sion in eigenvectors. We can write (17) it in the form
∂
∂τ P (x, τ) = LP (x, τ) where the linear operator L acts as
(Lf)(x) = ∂2

∂x2

[
(1 − x2) f(x)

]
. We therefore need to find

the set of eigenvectors of L. Denoting Φc(x) the eigen-
vector corresponding to the eigenvalue −c, we have the
following equation

(1 − x2)Φ′′
c (x) − 4xΦ′

c(x) + (c− 2)Φc(x) = 0. (18)

The full solution of (17) can be then expanded as

P (x, τ) =
∑

c

Ace−cτ Φc(x) (19)

with coefficients Ac determined from the initial condition.
Important question to be settled prior to the attempt

for solution is, what is the appropriate space of functions
Φ(x). First, the interpretation of these functions as prob-
ability densities sets the requirement that it must be nor-
malisable:

∫
Φ(x) dx < ∞. Second, only the interval x ∈

[−1, 1] is relevant, so Φ(x) = 0 outside this interval. Fi-
nally, we should anticipate the possibility that δ-functions
appear in the solution, namely located at x = ±1, because
the uniform states, with all sites carrying the same spin
value, are stable under the dynamics.

We therefore look for the solution of (18) in the space of
distributions (i.e. linear functionals on sufficiently differ-
entiable functions) with support restricted to the interval
[−1, 1].

It is straightforward to find the eigenvectors corre-
sponding to eigenvalue c = 0, i.e. the stationary solutions
of equation (17). They are composed of δ-functions only. In
fact, the corresponding eigensubspace is two-dimensional
and the base vectors can be chosen as

Φ01 = δ(x − 1), Φ02 = δ(x+ 1). (20)

For c �= 0 we first decompose the solution in ordinary
function of x plus a pair of δ-functions, namely

Φc = φc+ δ(x− 1) + φc− δ(x+ 1) + φc(x) θ(x− 1) θ(x+ 1)
(21)

where φc+ and φc− are real numbers and φc(x) is a real
doubly differentiable function. Then, equation (18) trans-
lates into equation for φc(x)

(1 − x2)φ′′c (x) − 4xφ′c(x) + (c− 2)φc(x) = 0 (22)

accompanied by two other conditions

lim
x→±1

φc(x) = − c

2
φc±. (23)

The general solution of equation (22) exhibits be-
haviour φc(x) ∼ (1∓x)α at x→ ±1, where either α = 0 or
α = −1. However, the latter case should be excluded, as it
gives non-normalisable probability distribution. In fact it
is the condition of normalisability that determines all pos-
sible eigenvalues c. The solution of (22) with correct be-
haviour at x→ ±1 can be expressed in Gegenbauer poly-
nomials [52–54]. The eigenvalues are c = cl ≡ (l+1)(l+2)
for l = 0, 1, 2, ... An elementary solution and the table of
several lowest polynomials is presented in Appendix B.

It is important to note that for any eigenvalue c > 0
we have ∫

Φc(x) dx = 0
∫
xΦc(x) dx = 0. (24)

The consequence is that both
∫
P (x, τ)dx and∫

xP (x, τ)dx are independent of time. While the
first conservation law expresses simply the conservation
of probability, the second one is a non-trivial consequence
of the model dynamics. Mathematically it is related
to the fact that the eigenspace corresponding to zero
eigenvalue is two-dimensional.

Thus, we found the set of right eigenvectors of the op-
erator L. For practical solution we still need to establish
the coefficients Ac in equation (19). To this end we need
also the set of left eigenvectors of L, checking simulta-
neously that the set of left and right eigenvalues coin-
cide. First, we need to establish the adjoint operator to
L, defined by usual relation (Lf |g) = (f |LT g). While L
acts on the space of distributions, its adjoint LT acts on
the corresponding dual space, which is the space of suf-
ficiently differentiable functions. Straightforward algebra
gives (LT g)(x) = (1 − x2) g′′(x) which implies the follow-
ing equation for the left eigenvectors

(1 − x2)ψ′′
c (x) + c ψc(x) = 0. (25)

We find again that for c = 0 the eigensubspace is two-
dimensional. We can choose the basis vectors so that they
are mutually ortho-normal to the pair of right eigenvec-
tors (20), namely

ψ01 =
1
2
(1 + x), ψ02 =

1
2
(1 − x). (26)

The solutions of (25) for c > 0 with proper boundary
conditions are again polynomials presented in more detail
in Appendix B.

The coefficients in the solution (19) with initial condi-
tion P (x, 0) = P0(x) are then calculated as

Ac =
∫
P0(x)ψc(x) dx∫
φc(x)ψc(x) dx

· (27)
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From the solution (19) we can deduce an important
feature for the distribution of waiting times needed to
reach the stationary state. Indeed, if Pst(τ) is the proba-
bility density for ending at time τ in the stationary frozen
configuration with all agents in the same state, we can
express the probability that the stationary configuration
was not reached before time τ as

P>
st (τ) ≡

∫ ∞

τ

Pst(τ ′)dτ ′

= 1 − lim
ε→0+

(∫ −1+ε

−1−ε

+
∫ 1+ε

1−ε

)
P (x, τ)dx. (28)

We can see that only the δ-function components of the
eigenvectors Φc(x) in the expansion (19) contribute to
P>

st (τst). More explicitly, we find

P>
st (τ) =

∑
c>0

2Ac
φc(−1) + φc(1)

c
e−cτ · (29)

As the spectrum of eigenvalues is discrete, for long times
only the lowest non-zero c (equal to c0 = 2) is relevant.
Therefore, the distribution of waiting times will have an
exponential tail P>

st (τ) ∼ e−2τ , τ → ∞. For initial con-
dition P0(x) = δ(x − x0) we can easily compute also the
prefactor in the leading term for large τ . Indeed, from (27)
we get A2 and finally obtain

P>
st (τ) 
 6

4
(1 − x2

0) e−2τ , τ → ∞. (30)

As the functions φc(x) are odd for c = cl with odd l, we
should expect that the corrections to the formula (30) will
be governed by the second next eigenvalue c2 = 12. We will
see later how it can be checked in numerical simulations.

As in the case I the average time 〈τst〉 (x0) to reach
the absorbing state when starting at position x0 can be
obtained, using the general formalism [49], from the equa-
tion (

1 − x0
2
) d2

dx0
2
〈τst〉 (x0) = −1 (31)

which can be solved easily

〈τst〉 (x0) = −x0

2
ln

1 + x0

1 − x0
− 1

2
ln

1 − x0
2

4
(32)

(see also [52,53]). The method of adjoint equation [49,53]
can be used to calculate the distribution of times to reach
the absorbing state, when starting from initial position
at x = x0, yielding results equivalent to our direct cal-
culation. Indeed, inserting the initial condition P0(x) =
δ(x − x0) into (27) we can see that the expression (29)
represents an expansion in the eigenvectors ψc(x0) of the
adjoint operator LT taken at point x0.

Contrary to the case I, we do not observe any phase
transition here. This is due to the conservation of aver-
age magnetisation in the dynamics [47]. From this fact
it follows immediately that P+ = p. This result can
be confirmed by an explicit calculation. Starting with
fixed magnetisation x0 = 2p − 1, the initial condition

P (x, 0) = δ(x − x0) broadens under the diffusive dynam-
ics (17) and leaves always non-zero probability of ending in
either of the possible stationary states. We already noted
that

∫
xP (x, τ) dx is independent of time under the dy-

namics (17). Therefore, the asymptotic state is the follow-
ing combination of the eigenvectors (20) with c = 0

lim
τ→∞P (x, τ) =

1 − x0

2
δ(x+ 1) +

1 + x0

2
δ(x− 1) (33)

and the probability of ending in the state of all +1 is
therefore simply P+ = p.

4.3 Distribution of votes

As already stressed in Section 3, equation (17) describes
also the evolution of the distribution of votes in the case
of q � 1 parties. We will present an argument how our
results may explain the empirical data, suggesting the 1/n
law for the distribution of votes.

As stressed in the discussion following equation (23),
the time-independent solutions of equation (17) can be-
have either as 1 + x or (1 + x)−1 in the limit x → −1.
However, the latter case was excluded by the requirement
of normalisability of the probability density. On the other
hand, relaxing the normalisability condition, the functions

φ̃01(x) =
1

1 + x
(34)

φ̃02(x) =
1

1 − x
(35)

are solutions of (22) with eigenvalue c = 0. (Of course, any
linear combination of them is also solution with c = 0.)

How should be any of these additional solutions inter-
preted? The zero eigenvalue suggest that the function is
stationary in time. However, it is not normalisable, there-
fore this solution cannot be reached from any initial con-
dition. But if the distribution Pn(x, τ) is close to φ̃01(x)
(or φ̃02(x)) in some interval I of x, it is probable that it
Pn(x, τ) will remain close to (34) (or (35), respectively)
for certain period of time, while the interval I will grad-
ually shrink and eventually disappear. Therefore, we may
suggest (34) and (35) as a metastable states, or long-lived
transient states.

This may explain the observation from simulations
performed in [4]. In this work, the distribution of the type
1/n is obtained in a suitably chosen transient regime, in
certain range of n. As x = 2n − 1, the behaviour of (34)
at x → −1 corresponds precisely to 1/n behaviour for
small n.

A slightly more rigorous variant of the above argument
is also possible. Imagine now that the political system rep-
resented by the set of opinions S is not closed, but new
opinions may appear, replacing other ones which vanish.

Indeed, the current induced by the dynamics of case II
can be read off from equation (17)

j = − ∂

∂x
[(1 − x2)P (x, τ)] (36)
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Fig. 1. Probability of reaching the stationary state in time
larger than τ , for case I, q = 2, N = 2000. The values of initial
fraction p of opinions +1 are 0.1 (+) 0.2 (×) and 0.7 (�).

and by insertion of the solution (34) we deduce that there
is homogeneous flow j = +1 outward the value x = −1,
i.e. n = 0. We may interpret this flow as a consequence
of an external source placed somewhere close to the point
x = −1, i.e. n = 0. Such a source accounts for the influx
of new opinions, or new parties, into the system. It is very
reasonable to assume that the source is placed at very
small values of n, as new subjects are likely to gain little
support initially.

5 Comparison with numerical simulations

We performed numerical simulations of the Sznajd model
on fully connected network according to algorithms de-
scribed in Sections 2.2 (case I) and 2.3 (case II). The main
focus was on the dynamical properties, namely the distri-
bution of times needed to reach the homogeneous station-
ary state. We show in Figures 1 and 2 the probabilities
P>

st (τ) that the time τst to reach the stationary state is
larger that τ . We can clearly see that the probability de-
cays exponentially with τ in both cases I and II.

Let us discuss the case I first. Following the analyti-
cal expectation (15) we can fit the exponential tail of the
distribution as

P>
st (τ) 
 exp

(
−τ − 〈τst〉

τrelax

)
, τ → ∞. (37)

The results for 〈τst〉 can be seen in Figure 3, compared
with the analytical prediction of equation (12). Similarly
in Figure 4 we can compare the fitted relaxation time with
the analytical result. Both 〈τst〉 and τrelax agree satisfacto-
rily with the analytical predictions. The deviations around
the value p = 0.5 are due to finite size effects; the compari-
son of the results for system sizes N = 2000 and N = 4000
supports this interpretation. From equation (12) we can
see that 〈τst〉 diverges logarithmically for N → ∞. This
is confirmed by the simulation data which fall onto single
curve in Figure 3 for different system sizes.

τ

P
> st
(τ

)

43.532.521.510.50

1

0.1

0.01

0.001

Fig. 2. Probability of reaching the stationary state in time
larger than τ , for case II, q = 2, N = 2000. The values of initial
fraction p of opinions +1 are 0.1 (+) 0.2 (×) and 0.7 (�).
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Fig. 3. Average time of reaching the stationary state in dy-
namics of case I, q = 2. The system size is N = 2000 (+)
and N = 4000 (×). The line is the analytic prediction of equa-
tion (12)

Now let us turn to the case II. The equation (29) yields
the leading term in the tail of the distribution P>

st (τ) and
in principle also the corrections to it. As the functions
φc(x) are odd for c = cl with odd l, the next non-zero cor-
rection will come from the eigenvalue c2 = 12. Therefore,
we expect the behaviour

P>
st (τ) 
 exp

(
−τ − τ0

τr0

)
+ a1 exp(− τ

τr1
), τ → ∞ (38)

with

τr0 =
1
2
, τr1 =

1
12

· (39)

As in the initial condition P0(x) = δ(x − x0) we have
x0 = 2p−1, we can deduce from equation (30) the follow-
ing estimate

τ0 
 ln
√

6 p (1 − p)· (40)
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Fig. 4. Relaxation time toward the stationary state in dy-
namics of case I, q = 2. The system size is N = 2000 (+) and
N = 4000 (×). The horizontal line is the analytic prediction of
equation (16).
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Fig. 5. The fitted parameter τ0 for reaching the stationary
state in dynamics of case II, q = 2. The system size is N =
2000. The line represents the formula (40). In the inset, the
fitted first two relaxation times τr0 and τr1 are shown. The
horizontal lines are corresponding analytical predictions from
equation (39).

We can see from Figure 5 that it corresponds well to the
numerical data. In the inset of Figure 5 we can also see
the fitted relaxation times τr0 and τr1. Also here the cor-
respondence with analytical prediction (39) is good.

6 Conclusions

We formulated a mean-field version of the Sznajd model
of opinion formation by putting it on a complete graph.
Solving the underlying diffusion equations we found ana-
lytical results for several dynamical properties, as well as
exact long-time asymptotics. The results differ substan-
tially in the two cases studied: first, the original Sznajd
model, where a cluster of identical opinions is necessary to

persuade others to join them, and second, the Ochrombel
simplification, where also isolated agent can persuade oth-
ers. Dynamical phase transition was found analytically in
the original Sznajd model, while in the Ochrombel version
it is absent. This finding agrees with previous numerical
results.

The approach to stationary state was the main con-
cern of our calculations. We found that the distribution of
times to reach the stationary state has an exponential tail
which we were able to calculate analytically. In the case
of Ochrombel simplification, we obtained also the correc-
tions and a formula which gives in principle the whole dis-
tribution. We compared the analytical results for the tail
(and in the Ochrombel case also for the first correction)
with numerical simulations and we found good agreement.
The method of adjoint equation enabled us to find ana-
lytically the average time to reach the stationary state, in
both cases.

We found also another signature of the phase transition
in the original Sznajd model, expressed by the divergence
of the average time to reach the stationary state. Con-
trary to the Ochrombel case, in the original Sznajd model
the average time needed for reaching the stationary state
blows up logarithmically with increasing system size. This
finding was also confirmed in our numerical simulations.

The analytical treatment provided an explanation of
the 1/n distribution of votes, documented in Brazilian
elections. We found that this behaviour corresponds to
long-lived transient state of the dynamics of the Sznajd
model with large number of possible opinions, or alterna-
tively to the dynamics of an open version of the Sznajd
model, where new opinions may continuously emerge.

This work was supported by the project No. 202/01/1091 of
the Grant Agency of the Czech Republic.

Appendix A: Sznajd model on an arbitrary
social network

Our system is composed of N agents placed on nodes of a
social network, represented by the graph Λ = (Γ,E) where
Γ is the set of nodes and E set of edges, i.e. unordered
pairs of nodes. For a node i ∈ Γ we denote Γi = {j ∈
Γ |(i, j) ∈ E} the set of neighbours of i.

The opinion of the agent i s denoted σi. The state of
the system is described by the set of opinions of all the
agents, Σ = [σ1, σ2, ..., σN ] ∈ SΓ . The variable Σ(t) per-
forms a discrete-time Markov process, defined as follows.

In the case I we iterate the following three steps. First,
choose i ∈ Γ at random. Then, choose j ∈ Γi randomly
among neighbours of i. If σi(t) �= σj(t), nothing happens.
However, if σi(t) = σj(t), we will choose randomly one
of the common neighbours k ∈ Γi ∩ Γj \ {i, j} and set
σk(t+ 1) = σi(t).

In the case II we choose i ∈ Γ at random. Then, choose
j ∈ Γi randomly among neighbours and set σj(t + 1) =
σi(t).
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If the graph is random and densely connected, we may
approximate it by the complete graph with N nodes, i.e.
for each pair of nodes i, j ∈ Γ there is an edge connecting
them, (i, j) ∈ E. It means that the set of neighbours of a
node i ∈ Γ is Γi = Γ \ {i}. This is a kind of a mean-field
approximation.

Appendix B: Finding the eigenvectors

We can look for the solution of the equation (22) in the
form of power series

φc(x) =
∞∑

l=0

bl x
l (B.1)

and find the recurrence relation for the coefficients

bl+2 =
(

1 − c

(l + 1)(l + 2)

)
bl. (B.2)

We should distinguish two cases. Either the sequence
of coefficients bl contains non-zero values for arbitrarily
large l, or it is truncated at some order and (B.1) becomes
a polynomial. In the former case the solution behaves as
φc(x) ∼ (1−x2)−1 at x→ ±1 and must be excluded. The
latter case is possible only if

c = cl ≡ (l + 1)(l+ 2) (B.3)

for some l ≥ 0. Moreover, in order to have a solution in
the form of a polynomial, we require that b1 = 0 if l in the
equation (B.3) is even, and b0 = 0 if l in the equation (B.3)
is odd. The following table lists the solution for several
lowest eigenvalues (taking b0 = 1 for even l and b1 = 1 for
odd l).

l cl φc(x)

0 2 1
1 6 x

2 12 1 − 5x2

3 20 x− 7
3
x3

4 30 1 − 14x2 + 21x4

. . .

. . .

. . . (B.4)

In fact, up to a multiplicative constant, the functions φc(x)
are Gegenbauer polynomials [53,54].

The same procedure can be used for finding the eigen-
vectors of the adjoint operator, solving equation (25). We
expand the function ψc(x) in power series

ψc(x) =
∞∑

l=0

dl x
l (B.5)

and find the recurrence relation for the coefficients

dl+2 =
(l − 1)l − c

(l + 1)(l + 2)
dl. (B.6)

Again we conclude that the only acceptable values of c are
given by condition c = cl ≡ (l + 1)(l + 2) for l = 0, 1, 2, ...
and in this case the eigenvectors are polynomials of order
l+2 in the variable x. The following table lists the solution
for lowest eigenvalues (taking d0 = 1 for even l and d1 = 1
for odd l).

l cl ψc(x)

0 2 1 − x2

1 6 x− x3

2 12 1 − 6x2 + 5x4

3 20 x− 10
3
x3 +

7
3
x5

4 30 1 − 15x2 + 35x4 − 21x6

. . .

. . .

. . . (B.7)

It is important to note that the set of right eigenvalues
coincides with the set of left eigenvalues, which proves
consistency of our approach.

Note that neither φc(x) nor ψc(x) are orthogonal
polynomials. Instead, they are mutually orthogonal, i.e.∫ 1

−1
φc(x)ψc′(x)dx = 0 for c �= c′. This is due to the fact

that the operator L is not self-adjoint.
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Abstract – In this paper we introduce a modified version of the one-dimensional outflow dynamics
in the spirit of the Sznajd model, which simplifies the analytical treatment. The equivalence
between original and modified versions is demonstrated in simulations. Using the Kirkwood
approximation, we obtain an analytical formula for the exit probability and we show that it
agrees very well with computer simulations in the case of random initial conditions. Moreover, we
compare our results with earlier analytical calculations obtained from the renormalization group
method and from the general sequential probabilistic frame introduced by Galam and show that
our result is superior to the others. Using computer simulations we investigate the time evolution
of several correlation functions in order to check the validity of the Kirkwood approximation.
Surprisingly, it turns out that the Kirkwood approximation gives correct results even for such
initial conditions for which it cannot be easily justified.

Copyright c© EPLA, 2008

Introduction. – Opinion-dynamics models are among
the most studied topics in the field of sociophysics [1].
The two-state, or “Ising-like” models have been used since
the very beginning [2]. The interest in opinion dynamics
was triggered by the works of Galam [3,4] and a large
amount of works was produced, including the study of the
voter [5,6], Sznajd [7] and majority rule [3,4,8] models.
These models have two features in common. First, the
complexity of real-world opinions is reduced to the mini-
mum set of two options, σ=+1 or −1. Second, the indi-
viduals bearing these opinions are immobile; they are
attached to the sites of a lattice, which may be linear chain,
hypercubic lattice, random graph or any of other possi-
bilities. The basic questions asked when studying these
models are: what is the probability to reach consensus in
opinions, say, all individuals having σ=+1? and what is
the time necessary to reach such consensus?
More specifically, the Sznajd model can be charac-

terised by the outflow dynamics. Contrary to the kinetic
Ising model, the information does not spread from the
neighbourhood of a chosen site towards that site but,
conversely, from a cluster of sites to the neighbourhood
of that cluster. In one dimension, the dynamics is defined

(a)E-mail: kweron@ift.uni.wroc.pl

as follows. If a pair of neighbours at sites x, x+1 agree
in opinion, σ(x) = σ(x+1), the two neighbours of the
pair adopt the same opinion, i.e. σ(x− 1)→ σ(x) and
σ(x+2)→ σ(x). Otherwise the two neighbouring states
are unchanged. In higher dimensions and on other lattices
the rule is defined analogously.
By now, quite a few results have been accumulated (an

interested reader may resort to reviews [1,9–12]). In this
letter, we shall address the question: what is the prob-
ability P+ that all of the individuals eventually reach
consensus in state, say, +, provided that at the begin-
ning the fraction of + opinions was p? This quantity is
commonly called exit probability [13,14]. From the simula-
tions [15], as well as from the exact solution on a complete
graph [16] and a renormalisation-group calculation [17] it
is known that it is a step function with discontinuity at
p= 0.5, unless the lattice is a one-dimensional chain. In
this case it is a continuous function [18]. Therefore, the
one-dimensional case is singular and poses a problem of
fundamental interest.
Several analytical approaches have been proposed.

We have already mentioned the mean-field solution [16],
which, however, is inapplicable in 1D. Later, Galam in [19]
presented a general sequential probabilistic frame (GSPF),
which extended a series of earlier opinion dynamics

18006-p1
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Fig. 1: Exit probability P+ from the random initial state
consisting of the fraction p of up-spins for the modified original
outflow dynamics in one dimension for several lattice sizes L.
It may be seen that results agree very well with the analytical
formula given by eq. (22) obtained from the Kirkwood
approximation (solid line). The renormalization group (RG)
results obtained in [17] for growing networks and calculations
made by Galam within his general sequential probabilistic
frame (GSPF) given by eq. (1) agree with simulation results
much worse. However, it should be noticed that a one-step
update yields much more reasonable results than the final step
function obtained by successive iterations of eq. (1). Results
obtained for a modified version of the outflow dynamics in
which only one neighbour of the central pair is changed are
exactly the same. Results are averaged over 104 samples.

models. Within his frame, he was able to find analytic
formulae for the probability p(t+1) that a randomly
chosen agent shares opinion + at time t+1 in terms
of the same probability p(t) at time t. Among several
models, he considered also the same one-dimensional rule
as we are about to study here and within the GSPF he
found the following dynamical rule [19]:

p(t+1) = p(t)4+
7

2
p(t)3[1− p(t)]

+3p(t)2[1− p(t)]2+ 1
2
p(t)[1− p(t)]3. (1)

Iterating this formula until the absorbing state is reached,
one can find that the exit probability P+ is a step function
(see fig. 1).
In the paper [17] the real-space renormalization-group

approach has been proposed to calculate the probability
P+(p) for the outflow dynamics on a network. In the case
of a growing network, either hierarchical or of Barabási-
Albert type, the resulting formula was P+ = 3p

2− 2p3,
while in the case of a fixed network they have found that
P+ is a step function, just the same as for the complete
graph [16].
In fig. 1 we can compare the exit probability obtained

in our simulations of the 1D outflow dynamics with the
results of Galam’s GSPF and RG calculation of ref. [17]
for growing networks. None of them are satisfactory. Note

also that if we limited the process of Galam’s GSPF
to one iteration only, the agreement would be at least
qualitatively correct.
So, we can see that currently there is no analytic

argument which would satisfactorily explain the behaviour
of the outflow dynamics in the Sznajd model in one
dimension. Our intention is to fill this gap. In the rest of
this paper we present analytical results obtained using the
Kirkwood approximation following the method developed
in [13] for the majority rule model. Anticipating the
conclusions, we can see in fig. 1 that the agreement with
simulations is very good.

Approximate solution in 1D. – We consider indi-
viduals having opinions represented as spins ±1 occu-
pying sites on a linear chain of length L. We use the
following notation: σ ∈ {−1,+1}L denotes the state of
the system and σ(y) the state of the individual at site y
if the system is in state σ. We also denote by σx the state
which differs from σ by flipping the spin at site x. There-
fore, σx(y) = (1− 2δxy)σ(y).
We introduce here a slight modification of the original

outflow rule: we choose a pair of neighbours and if they
both are in the same state, then we adjust one (instead
of two) of its neighbours (chosen randomly with equal
probability 1/2) to the common state. At most one spin
is flipped in one step, while in the original formulation
two can be flipped simultaneously. Therefore, the time
must be rescaled by factor 12 . We measure the time so
that the speed of all processes remains constant when
L→∞, and thus normally one update takes time 1

L
.

Here, instead, we consider also the factor 12 , so a single
update takes time ∆t= 1

2L . Our modification eliminates
some correlations due to simultaneous flip of opinions
at distance 3. However, if we look at later stages of the
evolution, where typically the domains are larger than 2,
simultaneous flips occur very rarely. Therefore, we do
not expect any substantial difference. Indeed, computer
simulations confirm our expectations —only time has to
be rescaled (see fig. 2).
On the other hand, the modification simplifies the

analytical treatment. Indeed, the update rule can be
equivalently formulated as follows: Choose randomly a
spin x and side s (s= 1 for right, s=−1 for left). The
updated state is σ(x; t+∆t) = σ(x+ s; t) if σ(x+ s; t) =
σ(x+2s; t), otherwise σ(x; t+∆t) = σ(x; t).
Within such a formulation the probability of the flip

σ→ σx in one update is

W (σ→ σx) =
1

8L
[σ(x+2)σ(x+1)+σ(x− 1)σ(x− 2)

−σ(x)(σ(x+2)+σ(x+1)+σ(x− 1)
+σ(x− 2))+ 2]. (2)

These flip probabilities are then inserted into the master
equation:

P (σ; t+∆t) =
∑
σ′
W (σ′→ σ)P (σ′; t), (3)

fully describing the evolution of the system.

18006-p2
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Fig. 2: The mean relaxation times from the random initial state
consisting of p up-spins for the modified (1 nn) and original
(2 nn) outflow dynamics in one dimension for several lattice
sizes L. In the modified version at most one spin is flipped
in one elementary step, while in original formulation two can
be flipped simultaneously. Therefore, in the case of a modified
version the time was rescaled by a factor 1

2
. It should be noticed

that in computer simulations time is measured in Monte Carlo
steps (MCS). As usual, one MCS consists of L elementary
updating, i.e. in one MCS L times the pair of spins is random-
ly and independently selected with probability 1/L, i.e. it may
happen that one pair will be chosen several times in one MCS.
Since we investigate the relaxation process we simulate the
system as long as it reaches the final state with all spins up
or down. The average number of MCSs needed to reach the
final state depends on the initial concentration of up-spins and
is proportional to L2 analogously to the voter model [5,6,20].
The results presented here are averaged over 104 samples.

Now, we make the limit L→∞, which also implies the
continuous time limit, as ∆t→ 0. We also note that most
of the transition probabilities W (σ′→ σ) are zero, since
only one spin flip is allowed in one step. Finally we end
with

d

dt
P (σ; t) =

∑
x

[
w(σx→ σ)P (σx; t)−w(σ→ σx)P (σ; t)

]
,

(4)

where the transition rates are trivially related to transition
probabilities (2) by a proportionality factor

w(σx→ σ) = 2NW (σx→ σ) . (5)

(The sum is now over an infinite set of sites.)
It is hopeless to solve the master equation as it is.

Instead, we write evolution equations for some correlation
functions derived from it. We define:

C0(t) = 〈σ(y)〉 ≡
∑
σ

σ(y)P (σ; t),

C1(n; t) = 〈σ(y)σ(y+n)〉,
C2(n,m; t) = 〈σ(y−n)σ(y)σ(y+m)〉,

C3(n,m, l; t) = 〈σ(y−n)σ(y)σ(y+m)σ(y+m+ l)〉,
... (6)

Only two equations are relevant for us. The first is

d

dt
C0(t) =−C2(1, 1; t)+C0(t) (7)

and the second

d

dt
C1(1; t) =−C3(1, 1, 1; t)−C1(1; t)+C1(3; t)+ 1. (8)

These two become a closed set of equations, if we apply the
approximations described in the next section. Before going
to it, it is perhaps instructive to show the intermediate
results which lead to equations (7), (8), and analogically
to others, for more complicated correlation functions.
Thus, for example, for the lowest correlation function

—the average of one spin— we have

d

dt
〈σ(y)〉=−2〈w(σ→ σy)σ(y)〉 (9)

and for the next one in the level of complexity

d

dt
〈σ(y)σ(y+1)〉 =−2〈w(σ→ σy)σ(y)σ(y+1)〉

−2〈w(σ→ σy+1)σ(y)σ(y+1)〉. (10)
The pattern is transparent. When computing the corre-
lation function of spins at sites x1, x2, x3, . . . , on the
RHS we have the sum of terms, in which we average the
product of spins at sites x1, x2, x3, . . . with transition
rate, which is derived from the spin configuration accord-
ing to (2) and (5) for flip at positions x1, x2, x3, . . . . As
a formula, this sentence means

d

dt

〈∏
i

σ(xi)

〉
=−2

∑
j

〈
w(σ→ σxj )

∏
i

σ(xi)

〉
. (11)

Kirkwood approximation. Now we shall discuss the
approximations used for solving eqs. (7) and (8).
The first one is the usual Kirkwood approximation,

or decoupling, which is used in various contexts and
accordingly it assumes different names. For example in
the classical quantum many-body theory of electrons and
phonons in solids, it is nothing else than the Hartree-Fock
approximation (but contrary to this theory, which may be
improved systematically using diagrammatic techniques,
here the systematic expansions are not developed). We
use the name Kirkwood approximation, following the
work [13].
In our case, the Kirkwood approximation amounts to

C3(1, 1, 1; t)�
(
C1(1; t)

)2
(12)

in eq. (8) and

C2(1, 1; t)�C1(1; t)C0(t) (13)

in eq. (7). While the latter assumption (13) enables us
to relate equation (7) directly to (8) and therefore to
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Fig. 3: Sample time evolution of several correlation functions
given by eq. (6) for random initial conditions with fraction p
of up-spins. The Kirkwood approximation given eqs. (12), (13)
and assumption (14) are valid for later stages, although the
assumption (12) agrees very well with simulation results from
the very beginning (left upper panel). The data come from one
single run (not averaged).

solve it as soon as we have the solution of (8), the
approximation (12) does not make of (8) a closed equation
yet. The point is that there is also the function C1(3; t)
measuring the correlation at distance 3. So, we make also
an additional approximation, which is also made in [13].
We suppose that C1(n; t) only weakly depends on the
distance n, or else, that the decay of the correlations is
relatively slow. If the spins are correlated to a certain
extent on distance 1 (the neighbours), they are correlated
to essentially the same extent also on distance 3 (next-
next neighbours). This is also justified if the domains are
large enough, i.e. at later stages of the evolution. So, we
assume

C1(3; t)�C1(1; t) . (14)

In fig. 3 we present a sample (not averaged) time evolu-
tion of several correlation functions. The first assump-
tion (12) agrees very well with simulation results from
the very beginning and the second condition (13) agrees
with simulations also quite well. On the other hand,
the assumption (14) that the decay of the correlations
is relatively slow is valid only at later stages of the
evolution.
To sum it up, the approximations (12), (13), and (14)

say that approximately

C0(t) � ψ(t),

C1(n; t) � φ(t),
(15)

where ψ(t) and φ(t) satisfy the equations (the dot denotes
the time derivative)

ψ̇ = (1−φ)ψ,
φ̇ = 1−φ2 .

(16)

The solution is straightforward. We assume initial condi-
tions φ(0) =m1 and ψ(0) =m0. First we solve the second
equation from the set (16). This gives

φ(t) =
sinh t+m1 cosh t

cosh t+m1 sinh t
(17)

and inserting that into the first of the set (16) we have

ψ(t) =
2m0

1+m1+(1−m1) e−2t . (18)

The most important result is the asymptotics

ψ(∞) = 2m0
1+m1

. (19)

How to interpret this finding? The average C0(t) is the
average magnetisation. In other terms, it determines the
probability that a randomly chosen spin will have state +1
at time t. This probability is p+(t) = (C0(t)+ 1)/2. There-
fore, m0 =C0(0) is the initial magnetisation. When we go
to the limit t→∞, we know that ultimately the homo-
geneous state is reached. The asymptotic magnetisation
C0(∞) therefore says what the probability that the final
state will have all spins +1 is. It is (C0(∞)+ 1)/2. So, (19)
means that

C0(∞)� 2C0(0)

1+C1(1; 0)
. (20)

If the initial state is completely uncorrelated, i.e. we set
the spins at random, with the only condition that the
average magnetisation is m0, we have C1(1; 0) =m

2
0 and

C0(∞)� 2m0
1+m20

. (21)

Finally, we express this result in terms of the probability
p= (C0(0)+ 1)/2 to have a randomly chosen spin in state
+1 at the beginning and the probability P+ = (C0(∞)+
1)/2 that all spins are in state +1 at the end. We have

P+ � p2

2p2− 2p+1 . (22)

Computer simulations for random initial conditions, in
which assumption C1(1; 0) =m

2
0 can be done, show very

good agreement with analytical formula (22). In the next
section we show how the results will change if we allow
correlations in the initial conditions.

Correlated initial conditions. – Here we consider
two examples of correlated initial conditions with the
fraction p of up-spins:

1) Ordered initial state that consists of two clusters: pL-
length of up-spins and (1− p)L-length of down-spins,
for example in case of L= 10:

p= 0.5 : ↑↑↑↑↑↓↓↓↓↓
p= 0.4 : ↑↑↑↑↓↓↓↓↓↓ (23)

p= 0.3 : ↑↑↑↓↓↓↓↓↓↓
. . . .
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Fig. 4: Exit probability P+ from the ordered initial state
consisting of the fraction p of up-spins for the outflow dynamics
in one dimension for several lattice sizes L. The initial state
consists of two clusters: pL-length of up-spins and (1− p)L-
length of down-spins. The results for original and modified
rules are the same. The dependence between the initial ratio of
up-spins p and the exit probability is given by the simplest
linear function P+ = p as in the case of the voter model. An
analytical result in this case can be obtained from eq. (26).
Results are averaged over 103 samples.

2) Correlated, completely homogeneous, initial state.
For such p that 1/p is an integer, we set σ(n/p)=1
for n= 0, 1, 2, 3, . . . and σ(x) =−1 otherwise. For
example, in the case of L= 8:

p= 0.5 : ↑↓↑↓↑↓↑↓
p= 0.25 : ↓↓↓↑↓↓↓↑

(24)

. . . .

In both cases it is easy to calculate exactly the corre-
lation function C1(1; 0). In the first case of ordered initial
conditions we obtain

C1(1; 0) = 1− 1
L
≈ 1. (25)

Thus, from eq. (20):

C0(∞)� 2C0(0)

1+C1(1; 0)
=
2m0
1+1

=m0⇒ P+ = p. (26)

Computer simulations show that indeed for such initial
conditions P+ = p (see fig. 4).
As we can see, the Kirkwood approximation gives,

surprisingly, correct results also in this case. At the same
time, fig. 5 shows that eqs. (12) and (13) defining the
Kirkwood approximation are not justified by computer
simulations.
We have checked also the mean relaxation time in case of

ordered initial conditions (fig. 6). It occurs that like for the
random initial conditions the mean relaxation time scales
with the system size as 〈τ〉 ∼L2 (see figs. 2 and 6). The
same scaling has been found in the voter model [5,6,20].
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Fig. 5: Sample time evolution of several correlation functions
given by eq. (6) for random ordered initial conditions with
fraction p of up-spins. The initial state consists of two clusters:
pL-length of up-spins and (1− p)L-length of down-spins. The
Kirkwood approximation given eqs. (12) and (13) are not valid.
The data come from one single run (not averaged).
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Fig. 6: The mean relaxation times for the outflow dynamics
in one dimension for several lattice sizes L. The initial state
consists of two clusters: pL-length of up-spins and (1− p)L-
length of down-spins. The results for original and modified rules
are the same. It is clearly visible that in the case of such an
ordered initial state the dependence between the initial ratio
of up-spins p and the mean relaxation time 〈τ〉 is given by a
simple parabola rather than by a bell-shaped curve. The data
presented in the figure are averaged over 104 samples.

However, contrary to the random initial conditions for
which a bell-shaped curve is observed, here the mean
relaxation times is well described by simple parabola:

〈τ〉
L2
=
1

2
p(1− p). (27)

It is quite easy to understand this result. In fact,
in the initial condition there is only one domain wall,
where +1 and −1 sites come into contact. During the
evolution this domain wall performs a random walk and
cannot disappear, unless it hits the left or right edge
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of the one-dimensional chain. The mean exit time for a
random walker among two absorbing walls is well known
and depends on the initial position of the walker, which
is determined by the proportion p, exactly as indicated
in formula (27). The same consideration of a random
walker with two absorbing walls also explains the linear
dependence of P+ observed in fig. 4.
For the second case of correlated initial conditions,

which are completely homogeneous, we observed in
computer simulations that the exit probability is a step
function with an unstable fixed point at p= 0.5, i.e.

P+ = 0, for p < 0.5,

P+ = 1, for p > 0.5,

antiferromagnetic state, for p= 0.5.

(28)

In this case the two-spins correlation function can be also
calculated easily. For p= 1

n
< 0.5, n= 3, 4, . . . , L we obtain

C1(1; 0) = p

(
1×
(
1

p
− 2
)
+(−1)× 2

)
= 1− 4p. (29)

Thus, from eq. (20)

C0(∞)� 2C0(0)

1+C1(1; 0)
=
4p− 2
2− 4p =−1⇒ P+ = 0, (30)

which again agrees very well with computer simulations,
although the Kirkwood approximation cannot be easily
justified.

Conclusions. – We introduced a modified version of
the one-dimensional outflow dynamics in which we choose
a pair of neighbours and if they both are in the same
state, then we adjust one (in the original version both)
of its neighbours to the common state. We checked in
computer simulations that in accord with our expectations
the results in the case of a modified rule are the same
as in the case of the original outflow dynamics, only the
time must be rescaled by a factor 12 . In the modified
version the analytical treatment is greatly simplified and
allows to derive the master equation involving only single-
flip events. Following the method proposed in [13] we
wrote evolution equations for some correlation functions
and used the Kirkwood approximation. This approach
allowed us to derive the analytical formula for the final
magnetisation and, equivalently, for the exit probability.
In fact, just before finishing this paper, the same result
was published by Lambiotte and Redner as a special case
in the work [21] where a model interpolating the voter,
the majority rule (or Sznajd) and the so-called vacillating
voter dynamics was investigated, using also the Kirkwood
approximation.
In the case of random initial conditions the Kirkwood

approximation can be justified looking at the time
evolution of simulated correlation functions. In this
case our analytical results can be simplified to eq. (22)

and agree very well with simulations, in contrast to
earlier approaches [17,19]. We have checked also how the
Kirkwood approximation works in the case of two types
of correlated initial conditions. Although in both cases
the Kirkwood approximation cannot be easily justified,
surprisingly we obtained very good agreement of our
formula (20) with computer simulations. The validity
of the formula is much wider than the validity of the
Kirkwood approximation used in its derivation.
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Abstract. The dynamics of the model of agents with limited confidence introduced by Hegselmann and
Krause exhibits multiple well-separated regimes characterised by the number of distinct clusters in the
stationary state. We present indications that there are genuine dynamical phase transitions between these
regimes. The main indicator is the divergence of the average evolution time required to reach the stationary
state. The slowdown close to the transition is connected with the emergence of the groups of mediator
agents which are very small but have decisive role in the process of social convergence. More detailed
study shows that the histogram of the evolution times is composed of several peaks. These peaks are
unambiguously interpreted as corresponding to mediator groups consisting of one, two, three etc. agents.
Detailed study reveals that each transition possesses also an internal fine structure.

1 Introduction

Formation of consensus is one of the most studied topics
in the field of sociophysics. It was the subject of the early
paper by Callen and Shapero [1] (which was originally in-
tended as a contribution to the Moscow seminar banned
by the Communist authorities [2]). The early attempts to
apply the ideas of synergetics to social phenomena were
driven by similar ideas [3]. Consensus was in the centre of
the papers of Galam [4–6], who revived the term “socio-
physics” and made it known to general audience [7]. For
recent reviews, see e.g. [8,9].

The consensus models can be divided into two well-
defined groups. The models of the first type assume that
the agents can choose among a small number of discrete
opinions. The simplest case is the binary choice, studied
in the voter [10], Galam [5,11–13], Sznajd [14–20], and
majority-rule models [21,22].

The second type of models acknowledges that the opin-
ion of the agents may stretch on a continuous line (or a
space of any dimensionality and structure). The opinions
evolve in time by attraction, i.e. the agents shift their posi-
tion in the opinion space towards areas where other agents
are already concentrated. Assuming that this dynamics
is linear, DeGroot [23] introduced the model of opinion
convergence in which the opinions in the next time step
are linear combinations of the original opinions. The con-
ditions required for reaching consensus were clarified in

a e-mail: slanina@fzu.cz

stabilization theorems [23,24]. Essentially, the statement
is that if the agents form a network of interactions which
is a single connected cluster, the system always reaches
full consensus. The only case in which different opinions
survive in the stationary state is the trivial one, when the
agents split into several clusters with no communication
whatsoever. This is certainly an exaggerated view of the
society as we know it.

The fundamental ingredient missing in the model of
DeGroot was the limited (or bounded) confidence. It is
based on a rather trivial observation that people who differ
too much in their opinions are unable to force the partner
shift her opinion and unwilling to make themselves a tini-
est step towards the opponent. The opinions are frozen,
if they are incompatible. Within discrete-opinion mod-
els this idea was excellently implemented in the Axelrod
model [25–37], while for continuous opinions, bounded
confidence was introduced within the model of Deffuant
et al. [38,39]. Contrary to the parallel and linear dynam-
ics of DeGroot, the dynamics in Deffuant et al. model is
stochastic. In each step, a pair of agents is chosen at ran-
dom and their opinions are shifted towards each other,
on condition that they do not differ more than the confi-
dence threshold ε. This model was investigated very thor-
oughly [40–51] both by simulations of finite systems and
by numerical solution of the partial integro-differential
equation corresponding to infinite-size limit. It was found
that the ultimate stationary regime is a combination of δ-
peaks in the distribution of opinions. A single peak means
full consensus, while multiple peaks imply breaking the
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society into several non-communicating groups. There is
a sequence of sharp transitions between regimes of one,
two, three, etc. peaks, at critical values of the confidence
threshold. Numerical estimates suggest that the transition
from full consensus to multiple peaks occurs at εc1 � 0.5.
However, the side peaks only gain macroscopic weight at
another critical value εc2 � 0.27 [41,49,52].

While the model of Deffuant et al. uses sequential
stochastic dynamics, the model of Hegselmann and Krause
(HK) [53] is more close to the original DeGroot model.
The randomness enters only in the initial condition and
further evolution is deterministic. In each step, the new
values of the opinion variable are linear combinations of
those opinions, which are not farther than the confidence
threshold. From the uniformly random initial condition,
one or several groups of identical opinions evolve. Con-
trary to the Deffuant et al. model, the absorbing state
(i.e. such that none of the opinions can change any more)
is reached after finite number of steps, provided the num-
ber of agents is finite. The HK model was investigated
both by simulations and by solution of corresponding par-
tial integro-differential equation [52,54–64]. Numerically,
it was found that the transition to full consensus appears
around the critical value εc � 0.2 [57]. A smart way of dis-
cretization the integro-differential equation, called interac-
tive Markov chain [62–66], provides two conflicting results
for the consensus transition. For odd number of discretiza-
tion intervals, the answer is εc � 0.19 [52,62], while for
even number of intervals one gets εc � 0.22 [60,62]. Later,
we shall mention arguments indicating that the correct
discretization is with odd number of intervals. The advan-
tage of the approach using interactive Markov chains is
that in enables proving stabilization theorems on the HK
dynamics [67–69].

Various modifications of Deffuant et al. and HK mod-
els were investigated. For example, a model which interpo-
lates between Deffuant et al. and HK was introduced [70].
Heterogeneous confidence thresholds [63,71], influence of
extremists [40,72] and presence of a “true truth” [61,73]
were studied. Introduction of multi-dimensional opinion
space [39,60,65,74] is also a natural generalization. Inter-
estingly, introduction of noise into the dynamics alters the
behaviour profoundly [75]. This might be interpreted so
that HK and Deffuant et al. models follow a strictly zero-
temperature dynamics, which is unstable with respect to
noise.

The aim of this paper is to investigate in detail the
transitions from full consensus to state with two groups,
to state with three, four etc. groups. Especially, we show
in detail the phenomenon of critical slowdown, already
hinted in [60,65,70] and show how it is related to the pres-
ence of mediators, introduced on an intuitive level in [66].

2 Phases in the Hegselmann-Krause model

2.1 Definitions

Let us first recall the definition of the HK model. The
system consists of N agents. The opinion of agent i at

time t is a number xi(t) ∈ (0, 1). Thus, the state of the
system is described by the N -component vector x(t). The
evolution of the state vector in discrete time t = 0, 1, 2, . . .
is deterministic and seemingly linear

xi(t+ 1) =
N∑

j=1

Mij [x(t)]xj(t) (1)

but the mixing matrix M is not constant, but depends on
the actual state x. The dependence M [x] is dictated by
the principle of bounded confidence. If ε ∈ (0, 1) is the
confidence threshold, then

Mij [x] =
{

0 for |xi − xj | > ε
1

Nij
for |xi − xj | ≤ ε (2)

where the normalization factorNij is the number of agents
not farther than ε from the agent i, Nij = |{j : |xi −xj | ≤
ε}|. As the initial condition, we choose set of independent
random values xi(0), uniformly distributed in the interval
(0, 1).

The dynamics (1), (2) has infinite number of absorbing
states. They can be classified according to the number of
non-communicating clusters. The state with ν clusters is
characterised by numbers f1 < f2 < . . . < fν such that
fl+1 − fl > ε and ∀i ∃l : xi = fl. The smallest t for which
x(t) is an absorbing state will be called consensus time
and denoted τ .

As the initial condition is random, the time τ to reach
an absorbing state as well as the number ν of clusters in
that state are also random variables. We shall be mainly
interested in the mean values 〈τ〉 and 〈ν〉, averaged over
initial conditions.

2.2 Which absorbing state?

The number of clusters in the absorbing state depends
mainly on the confidence threshold ε, but also on the ini-
tial condition. We show in Figure 1 three typical examples.
For large enough ε the evolution ends in a state with single
cluster, while for smaller ε the resulting ν differs accord-
ing to the configuration of opinions at the beginning. If we
average the final number of clusters, we observe a decreas-
ing function of ε, as shown in Figure 2. A more detailed
look (see the inset in Fig. 2) shows that for increasing
number of agents, well-defined plateaus develop at integer
values of 〈ν〉, separated by steps which become sharper for
increasing N and we may conjecture that discontinuities
emerge for N → ∞ at critical values ε = εc1, εc2, etc.
From Figure 2 we can estimate the first two of them as
εc1 � 0.2, εc2 � 0.14.

2.3 Critical slowing down

The critical values εck mark dynamical phase transitions
from regime with k clusters in absorbing state to k+1 clus-
ters. It is very questionable if the notions of first-order ver-
sus continuous phase transitions can be transferred from
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Fig. 1. (Color online) Examples of the evolution of opinions
of N = 20 agents. The confidence threshold is ε = 0.1 (upper
panel) and ε = 0.25 (middle and lower panel). The evolution
is stopped as soon as the clusters stop changing.
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Fig. 2. (Color online) Dependence of the average number of
clusters on the confidence threshold. The number of agents is
N = 5000 (solid line), 2000 (dashed line), 1000 (�), 500 (+),
and 200 (×). In the inset, detail of the same data.

equilibrium to non-equilibrium transitions. However, we
can study certain features, which are distinctive in equi-
librium, also in non-equilibrium case. One of them is the
slowdown of the dynamics close to the critical point. This
is a signature of continuous transition. In HK model, we
can measure the average time to reach an absorbing state
as a function of ε, and indeed, we observe peaks located at
the transition regions, as seen in Figure 3. The height of
the peaks increases with the number of agents, which sug-
gests diverging time at the transition points. The overall
picture emerging from these results seems to be the follow-
ing. In HK model in the limit N → ∞, we have a sequence
of phases characterised by one, two, three. etc. clusters
in the absorbing state which is the result of the dynam-
ics. The phase transitions occur at confidence thresholds
εc1, εc2 etc., where the average number of clusters jumps

3 2 1

ε

〈τ
〉

0.40.30.20.10

100

10

Fig. 3. (Color online) Dependence of the average time to reach
an absorbing state on the confidence threshold. The number of
agents is N = 5000 (solid line), 2000 (dashed line), 1000 (�),
500 (+), and 200 (×). The arrows with circled numbers indicate
the values of ε used in Figures 6–8.

discontinuously between two integer values, and where the
average consensus time diverges. Having this in mind, we
can consider the phase transitions second-order. In the
following sections we shall see that the phase transitions
in HK model are even more subtle than that.

3 How the absorbing state is reached

From now on, we shall concentrate on the first of the se-
quence of transitions, where the full consensus ends. We
show in Figures 4 and 5 details of the ε-dependence of
average number of clusters and average time to reach an
absorbing state, respectively.

We can see in Figure 4 that increasing N results in de-
crease of 〈ν〉 in the transition region. (We shall defer the
sociological perspective of this phenomenon to the Conclu-
sions). The transition becomes steeper, but the inflexion
point is shifted leftwards. Similarly, in Figure 5 we observe
that the peak not only grows when number of agents in-
creases, but shifts quite markedly to lower values of ε. The
vales of εc1 inferred from the finite-N results must be con-
sidered as upper bounds to the true critical value valid in
the thermodynamic limit.

We can gain further insight into the divergence of con-
sensus time at the transition, if we plot the histogram of
times to reach an absorbing state for values of ε close to
the maximum of the peak in 〈τ〉. We show the results for
N = 2000 at ε = 0.218 and for N = 5000 at ε = 2.05,
in Figures 6 and 7, respectively. The characteristic fea-
ture of the histograms is a sequence of peaks. The height
of the peaks is nearly the same, especially for larger N .
For comparison, we plot in Figure 8 the histogram of con-
sensus times for ε = 1, far from any major peak in 〈τ〉.
There are barely visible traces of peaks, but as the sys-
tem size increases, the histogram becomes flat, contrary
to the transition region, where the peaks in the histogram
become more pronounced. Therefore, the peaks in the his-
togram are tightly related to the divergence of consensus
time at the transition.
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Fig. 4. (Color online) Detail of the dependence of the average
number of clusters on the confidence threshold. The number
of agents is N = 5000 (◦), 2000 (�), 1000 (�), 500 (+), and
200 (×).

2 1

ε

〈τ
〉

0.260.240.220.20.18

100

10

Fig. 5. (Color online) Detail of the dependence of the average
time to reach an absorbing state on the confidence threshold.
The number of agents is N = 5000 (◦), 2000 (�), 1000 (�),
500 (+), and 200 (×). The arrows with circled numbers indicate
the values of ε used in Figures 6 and 7.

As a next step, we must ask what is the origin of the
peaks. The emergence of the peaks implies that there are
certain typical lengths of the evolution from the initial
condition to the absorbing state. We naturally expect that
the typical lengths correspond to typical structural fea-
tures of the evolution. To see that, we show in Figure 9
spatio-temporal diagrams of the evolution of the system
for five principal peaks in the histogram. The consensus
times are indicated by letters A to E in Figure 6 and the
corresponding panels in Figure 9 are denoted by the same
letters. We can see immediately a common feature of all
these five samples. After a very short transient period,
three clusters are formed, one of them close to the exact
middle and two of them on the wings. The latter are slowly
attracted to the central cluster, until their distance falls
below ε. Then, all three collapse into a single cluster and
an absorbing state with full consensus is reached.

Neglecting the very short transient, the consensus time
is given by the time needed to attract the wing clusters to
the distance ε. We assume that the middle cluster contains
Nmed “mediator” agents and is located at x(0) = 1/2,
while the other groups are equal in size N+ = N− = (N −
Nmed)/2 and are located initially at x±(0) = 1/2 ± Δx.
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Fig. 6. (Color online) Histogram of times to reach an absorb-
ing state, for N = 2000 and ε = 0.218 (full line). The arrows
marked by capital letters A to E indicate the length of consen-
sus time realised in the evolution samples shown in Figure 9.
The circled “1” refers to the arrow in Figures 3 and 5. We draw
also the distribution found by replication of the longest peak,
according to (6), with kmax = 11 (dashed line). For better vis-
ibility, it is scaled down by the factor 10.
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Fig. 7. (Color online) Histogram of times to reach an absorb-
ing state, for N = 5000 and ε = 0.205.
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Fig. 8. (Color online) Histogram of times to reach an absorb-
ing state, for ε = 0.1 and N = 1000 (upper panel), N = 2000
(middle panel), and N = 5000 (lower panel).
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Fig. 9. (Color online) Examples of the evolution with different
size of the central mediator group, from top to bottom Nmed =
1, 2, 3, 4, and 5. The capital letters in the top right corners
relate to the arrows in Figure 6.

The middle cluster does not move and the wing clusters
evolve according to the difference equation

x±(t+ 1) − x±(t) = − Nmed

N± +Nmed

(
x± − 1

2

)
. (3)

For Nmed/N � 1 the dynamics is very slow and we can
replace the difference in (3) by derivative. Hence, the con-
sensus time is estimated as

τ =
N

2Nmed
ln

2Δx
ε

. (4)

Since the initial condition must be Δx < ε, otherwise the
clusters would never coalesce, and Nmed ≥ 1, we get a
strict upper bound to the consensus time, provided the
mechanism of three clusters is in force

τ ≤ N ln
√

2. (5)

Indeed, we can see that the histograms in Figures 6 and 7
obey the bound (5).

The width of the peaks in the histogram is due to the
fluctuations in the initial positions of the wing clusters.
The peaks differ only in the number of mediators. Indeed,
the evolution patterns A to E in Figure 9 are observed
for number of mediators 1, 2, . . . , 5. Comparing that with
Figure 6, where the peaks are denoted by corresponding
letters A to E, we clearly see that the peak at longest
consensus has Nmed = 1, the second has Nmed = 2 etc.
This fact suggests, that the peaks for Nmed = 2, 3, . . .
can be obtained by replication the peak at Nmed = 1.
Denoting P1(τ) the latter peak only, we approximate the

full distribution of consensus times by

P (τ) � Preplicated(τ) =
kmax∑
k=1

k P1(k τ). (6)

This approximation assumes that all sizes of the mediator
group up to Nmed = kmax have the same probability and
neglect the influence of the initial short transient. There-
fore, it is reasonably accurate for a few highest peaks, but
fails at short τ , as it is confirmed in Figure 6.

Let us also note that the mechanism of mediators lo-
cated in the middle explains why, in the numerical solution
of the partial differential equation for HK model, the dis-
cretization into even number of equally-sized intervals is
wrong. Indeed, in this case the mediator cluster is located
just at the border of two intervals, however fine the dis-
cretization is, and this induces numerical artifacts into the
results.

4 Fine structure of the transitions

We already noted that the dependence of 〈ν〉 on ε is not
like the dependence of average magnetization on tempera-
ture, as seen in simulations of finite-size Ising model. The
transition region is not only squeezed into more narrow re-
gion, but is also shifted to lower ε. The same is observed
also in 〈τ〉. When the system size grows, the peaks do not
simply grow and get thinner, but are also shifted to lower
ε, consistently with the behaviour of 〈ν〉. Let us look at
this shifting of peaks in more detail.

To this end, we performed simulations of fairly large
systems (up to N = 2×105) in the range of ε which covers
the transition from the full consensus phase (〈ν〉 = 1)
to the phase with two clusters (〈ν〉 = 2). The picture
which emerges, is demonstrated in Figures 10 and 11. It is
somewhat surprising that the peaks in 〈τ〉 only apparently
move. Closer look at Figure 10 reveals that a peak at
certain value of ε remains at the same position when N
grows, but a new peak starts growing at somewhat smaller
ε. When this second peak reaches some height, it saturates
and another peak is born and grows at even smaller ε. In
this way, older peaks do not depend on N any more, but
rather are overgrown by new ones. To our knowledge, this
effect has no analogy in equilibrium phase transitions and
is entirely related to dynamical nature of the transition in
HK model.

Similar fine structure of the transition region is ob-
served on the dependence of average number of clusters
on ε. In the transition region, it drops from 〈ν〉 = 2 to
〈ν〉 = 1. To make the details more visible, we plot the
quantity (〈ν〉− 1)/(2−〈ν〉), instead of 〈ν〉, in logarithmic
scale. In Figure 11 we can see that 〈ν〉 drops from 2 to 1
in step-wise manner. For N = 104 we observe plateaus, or
regions of ε, where the average number of clusters is nearly
constant somewhere between 1 and 2. When the system
size grows, these steps, or plateaus, diminish in the value of
〈ν〉 but keep their width. Moreover, the edges of the steps
decrease more slowly, so that the dependence of 〈ν〉 on
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Fig. 10. (Color online) Fine structure of the average time to
reach an absorbing state, at the transition from full consensus
to phase with two clusters. The system size is N = 2×105 (◦),
105 (�), 5 × 104 (�), 2 × 104 (�), 104 (×).
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Fig. 11. (Color online) Fine structure of the average number of
clusters in absorbing state, at the transition from full consensus
to phase with two clusters. The system size is N = 2×105 (◦),
105 (�), 5 × 104 (�), 2 × 104 (�), 104 (×).

ε becomes non-monotonous and the “plateaus” have de-
pression in the middle. Interestingly, the peaks in 〈τ〉 are
located just next to the right edges of these “plateaus”. We
assume that the sequence of the peaks in 〈τ〉 and plateaus
in 〈ν〉 tends to a point ε = εc1, which is the location of
the true phase transition in the limit N → ∞. Form the
data in Figures 10 and 11 we can estimate εc1 � 0.19.

Comparing Figures 10 and 11 we can see that the non-
monotonous dependence of 〈ν〉 on ε goes hand in hand
with the multiple-peak dependence of 〈τ〉 on ε. We do
not have a detailed account for this phenomenon, but the
following scenario seems plausible.

The behaviour in the transition region is dominated
by the slow evolution of three-cluster system, as described
above. The existence of full consensus depends on emer-
gence of the mediator group. In other words, the average
number of clusters is related to the probability Pmed(ε; 0)
that the mediator group is empty, as 〈ν〉 = 1+Pmed(ε; 0),
as long as more than two clusters in the absorbing state oc-
cur with negligible probability. We suppose that for given
ε and very large N the fraction of agents in the media-
tor group approaches a limit μ(ε) = limN→∞Nmed/N . As
the full consensus is only possible if μ(ε) > 0, we may con-
sider μ(ε) as order parameter of the non-equilibrium phase

transition in HK model. The location εc1 of the transition
is determined by μ(εc1) = 0.

We also assume that a “master” probability distribu-
tion exists F (ρ, n), independent of ε and N , so that the
probability distribution for Nmed is

Pmed(ε;Nmed) = F (μ(ε)N ;Nmed). (7)

The parameter ρ stands for the average size of the me-
diator group, so ρ =

∑∞
n=1 nF (ρ, n). We do not have di-

rect access to the distribution F (ρ, n) in simulations. In
absence of any other information we hay hypothesise that
the distribution might be Poissonian, F (ρ, n) = e−ρ ρn/n!.
According to (4) and assuming that Δx is proportional to
ε, we have the estimate

〈τ〉 ∝
Nmed,max∑
Nmed=1

N

Nmed
F (μ(ε)N ;Nmed). (8)

The upper bound Nmed,max for the size of the mediator
group can be safely extended to infinity. For fixed ε (and
therefore fixed μ(ε)) and N → ∞ the average consensus
time approaches a limit which is proportional to 〈τ〉 ∝
1/μ(ε). On the other hand, for N fixed and variable ε, the
dependence of 〈τ〉 according to (8) develops a maximum
as a function of μ. The location of the maximum shifts
when N grows as μmax ∝ 1/N . This way, the location of
the peak in 〈τ〉(ε) approaches εc1 as N → ∞.

If the fraction μ of agents in the mediator cluster was a
monotonous function of ε, with μ = 0 at the critical point
ε = εc1, we would see a peak in 〈τ〉 growing and shifting
gradually to lower values of ε, up to its asymptotic posi-
tion at the critical point. Then, also 〈ν〉 = 1+F (μ(ε)N ; 0)
would be a monotonously decreasing function of ε. How-
ever, we can see violation of this monotonicity in Fig-
ure 11. Therefore, μ is not a monotonous function of ε,
which explains both the non-monotonicity of 〈ν〉 and the
fact that multiple peaks appear in 〈τ〉, instead of ob-
serving smooth shift and growth of a single peak. The
non-monotonicity imposes a deformation on the otherwise
smooth growth and shift of the peak in 〈τ〉. This defor-
mation results in apparent emergence of new peaks next
to the older ones. In fact, as long as the approximation
limN→∞〈τ〉 ∝ 1/μ(ε) is justified, the non-monotonicity in
μ(ε) is directly visible in non-monotonicity, i.e. multiple-
peak structure, of 〈τ〉, close to the critical point.

However, the key ingredient of the whole phenomenon
of fine structure of the transition, which is the non-
monotonicity of μ(ε) remains unexplained. Clearly, it
relies on the processes happening within the relatively
short transient period. The three-cluster structure, i.e.
two wings plus mediators, is formed in this period and
the distribution of the number of mediators is estab-
lished, which we assumed, for simplicity, to have the form
F (μ(ε)N ;Nmed), but actually can be more complex.

5 Conclusions

We investigated in detail phase structure of the
Hegselmann-Krause model of consensus formation. The
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only parameters of the model are confidence threshold and
number of agents. The dynamics is deterministic, but the
initial condition is random. We found that, depending on
the value of the confidence threshold, well-defined phases
exist, characterised by the number of non-communicating
clusters in the absorbing state. This number is one in full
consensus phase, while it is two, three, etc. in phases lack-
ing full consensus among all agents, but exhibiting con-
sensus within the clusters. The phases are separated by
dynamical phase transitions, characterised by divergence
of the time needed to reach the absorbing state, reminis-
cent of critical slowing down known from second order
equilibrium phase transitions.

The mechanism which leads to the divergence of char-
acteristic time at the phase transition is related to the
emergence of a group of mediators, i.e. a small cluster in
the middle of the opinions, which is able to attract the
two clusters on the left and right wings from the medi-
ators. The mediator cluster can be arbitrarily small, but
non-empty. One single mediator is able to attract arbitrar-
ily large wing clusters, if they are located initially within
the confidence threshold. The attraction is the slower the
larger the wing clusters are, but typically close to the
transition the wing clusters contain nearly all the agents,
while the fraction contained in the mediator cluster is tiny.
Hence the divergence of the time needed to reach the ab-
sorbing state, when the system size grows. This mecha-
nism is reflected also in the histogram of times to reach
consensus, which exhibits a characteristic series of peaks.
Each of the peaks corresponds to a specific number of
agents in the mediator group, which is one for the far-
thest peak, two for the next one, etc.

The most surprising feature of the dynamical phase
transition in HK model is its fine structure. In the transi-
tion region, the average time to reach absorbing state, as
a function of the confidence threshold, exhibits not just
a growing peak when system size grows. The peak is also
shifted towards lower values, in a complex manner. Ap-
parently, the peak grows with system size until saturation,
and then a new peak starts growing at a lower value of the
confidence threshold. Thus, a series of peaks, overgrowing
each other, emerges. We assume that the positions of the
peaks tend to a limit which is the location of the phase
transition in the infinite-size limit.

If we interpret the results obtained in terms of the
(hypothetical) average fraction of agents in the mediator
cluster, we come to conclusion that this quantity must be
a non-monotonous function of the confidence threshold in
the transition region. If it were monotonous, the peak in
the average time to reach absorbing state would continu-
ously shift towards lower values when system size grows.
But non-monotonicity of the average size of the mediator
cluster imposes a deformation on this shift, which looks
like new peaks were born next to older ones. However,
we must admit that the non-monotonicity of the average
fraction of agents in the mediator cluster remains unex-
plained.

Finally, let us make one sociological observation. In the
transition region from full consensus phase, the average

number of clusters in the absorbing state reflects the prob-
ability to reach consensus. When the system size grows,
with confidence threshold fixed, the probability of consen-
sus increases. More agents are more likely to reach consen-
sus at the end. It is easy to understand this phenomenon
in terms of the mediators. In a larger system of agents the
probability to get non-empty mediator group is larger. Be-
cause this tiny mediator group is vital for consensus, it is
easier to reach consensus in larger society. It is a chal-
lenge to experimental sociologists to test this prediction
in reality.
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of the Academy of Sciences of the Czech republic and
was supported by the MŠMT of the Czech Republic, grant
No. OC09078 and by the Research Program CTS MSM
0021620845.
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Inelastically scattering particles and wealth distribution in an open economy
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Using the analogy with inelastic granular gases we introduce a model for wealth exchange in society. The
dynamics is governed by a kinetic equation, which allows for self-similar solutions. The scaling function has
a power-law tail, the exponent being given by a transcendental equation. In the limit of continuous trading, a
closed form of the wealth distribution is calculated analytically.
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I. INTRODUCTION the random wealth exchange be, in full analogy with the
energy distribution in a gas of elastically scattering mol-

dies within the same spirit
omic activity as a scattering
to inelastically scattering par-
the inelasticity is indispens-
il and it is also reasonable to
creases on average.
erformed to date confirm the
n agent-scattering processes
analytic insight is lacking in
day. The main concern of our
g analytical results at least
exchange. To comply with
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The distribution of wealth among individuals within a so-
ciety was one of the first ‘‘natural laws’’ of economics@1#.
Indeed, its study was motivated by the desire to bring the
accuracy attributed to natural sciences, namely physics, to
economic sciences. The celebrated Pareto law states that the
higher end of the wealth distribution follows a power-law
P(W);W212a with exponenta robust in time.

The validity of the Pareto law was questioned and reex-
amined many times but the core message, stating that the tail
of the distribution is a power law remains in force. There are
recent investigations, e.g., Refs.@2–5#, giving reasonable
empirical evidence for it. In fact, it is not so much the func-
tional form itself but its spatial and temporal stability that is

ecules.
This, together with older stu

@43#, lead to the view of econ
process of agents, analogous
ticles @29–31,44–47#. Indeed,
able to explain the power-law ta
suppose that the total wealth in

The numerical simulations p
emergence of power-law tail i
with great reliability. However,
most of the studies available to
work is to fill this gap, providin
for a simplified model of wealth
lu
a
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ed
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di
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w
ne

xisting analytical approaches
ering particles.
es was studied thoroughly in
ls@48#. The simplest one of
l model, whose inelastic vari-
61#. More realistic models

troduced@62,63#but their full
of this work. The most impor-
is that a self-similar solution

hich is not stationary in time,
form after proper rescaling of

ng function becomes a power

for granular gases can be
lth exchange of agents. In-

rsion of the Maxwell model
ne with another irrespectively
ponds to randomly picking
with no care of the~possibly
ionships. In reality the eco-
in a complex social network
ere investigations of the role

istribution@34,66#. We may
an approximation of that net-

mean-field Maxwell model
lar gas decreases by dissipa-
ealth of the agents increases
he sign of the nonconserva-
two cases. While the form of
same, the solution cannot be.c

2. he American Physical Society
intriguing. Indeed, while the va
slightly vary from one society to
power-law tail in the distribution
Recent investigations suggest t
Pareto law may extend as far
Egypt of the Pharaohs@6#.

The universality of the powe
enon asking for explanation.
effort establishing finally the
cesses repelled from zero as
power-law distributions@7–20#. A
tiplicative processes as source
in Ref. @4#. However, there are
the multiplicative random proce
scene. One of the most studi
generalized Lotka-Volterra equ
ogy with directed polymers in r
of these schemes are formaliz
scribing the exchange of weal
redistribution of wealth which
from zero. Related approaches
a number of studies and simul

More recently, empirical stu
wealth axis showed that the d
exponential than a power law, w
remains a power law@3,41,42#. T
as a result of a conservation la
the robust Boltzmann-like expo
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e of the exponenta may
nother, the very fact of the

s valid almost everywhere.
t the range of validity of the
the past as to the ancient

aw tail is surely a phenom-
cently, there was a lot of
ultiplicative random pro-
mathematical source of the
rnatively, the killed mul-
of power laws were studied
enty of possible ways how
ses of this type come onto

implementations were the
ions@10–13# and the anal-
dom media@21–23#. Both

d by a kinetic equation de-
between agents and global
lays the role of repelling
ere subsequently pursued by
ions@24–40#.
es of the lower end of the
ribution of wealth is rather
ile the high-wealth tail still
is finding was interpreted
for total wealth, leading to
ntial distribution, whatever

the task we will be guided by e
for models of inelastically scatt

Inelastic scattering of particl
the context of granular materia
the models used is the Maxwel
ant was investigated in detail@49–
of granular gases were also in
account goes beyond the topic
tant conclusion of these studies
of the kinetic equations exist, w
but assumes time-independent
the energy. The tail of the scali
law under certain condition.

The formalism developed
readily adapted for binary wea
deed, within the mean-field ve
the particles scatter randomly o
of their positions. This corres
pairs of agents for interaction,
complex!structure of their relat
nomic activity goes along links
@64,65#. Indeed, recently there w
of network topology in wealth d
consider the present model as
work by a complete graph.

The main difference from the
is that the energy of the granu
tion, while the average total w
due to the economic activity. T
tion is therefore opposite in the
the equations may remain thez
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consider it slightly more realistic as it treats the agents ina
priori symmetric manner. It also embraces various sources of
wealth nonconservation within a single effective parametere.
In fact, also the formulation based on the similarity with the
problem of directed polymers@21,22# can be reduced to a
rule of the form similar to Eq.~1!. Therefore, we are study-
ing a representative of a whole class of related models and
we expect the analytical results we will present have rather
broad relevance.

B. Kinetic equation

Equation~1! describes a matrix multiplicative stochastic
process of vector variablev(t) in discrete timet. Processes
of this type are thoroughly studied, e.g., in the context of
granular gases. Indeed, if the variablesv i are interpreted as

nular particle, we can map
imit of the Maxwell model of
e energy dissipation conven-
tion coefficient implies now
to our assumptione.0. We
tly small variation makes big
tment of the process.
e process in timet is con-
t probability distribution
e can write a kinetic equa-
o-particle distribution func-

P2~ t;v i ,v j !

i1bv j2v…dv idv j G ~2!

e eventually an infinite hier-
ype. As a standard approxi-

v i !P1~ t;v j ! ~3!

the lowest level, neglecting
alth of the agents, induced by
oximation becomes exact for
namic limit the one-particle
formation.
N in the thermodynamic
e-particle distribution func-

nn-like kinetic equation

j !

e!v i1bv j2v…dv idv j ~4!

ocess~1! in the limit N→`.
rm as the mean-field version
odel of inelastically scatter-
in difference consists in the

e
d.
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directly continued from one do
while the case of dissipation i
new approaches are needed in
the aim of the present work.

II. INTERACTING AGENTS AS SC

A. Description of

Imagine a society ofN agen
certain wealthv i , i 51,2,...,N. Fr
interact in essentially instantan
a certain fraction of the wealth
we suppose the system is ope
lyze an increase of the total w
agents. Indeed, the source of
our society and the ultimate cau
Earth from the Sun. Nonethele
lized only through a human a
problem by assuming that the n
at the very moments of agents

We also assume that only
This may be a very crude assu
affect many agents simultaneo
presence of multilateral interac
sential mechanisms in work he

The dynamics of our mode
each time stept a pair of agent
They interact and exchange we
ric rule

S v i~ t11!

v j~ t11! D5S 11e2b

b

All other agents leave their w
5vk(t) for all k different from b
bP~0,1! quantifies the wealth
sures the flow of wealth from
sketched schematically in Fig.

This rule is similar to those
and simulated numerically in

FIG. 1. Schematic picture of th
wealth is exchanged and produce
ain to another. Therefore,
relatively well understood,
e case of production. That is

TTERING PARTICLES

e process

, each of which possess
time to time the agents

us ‘‘collision’’ events, when
n be exchanged. Moreover,
and the interaction can cata-
alth of the two interacting
e human wealth lies beyond
e is the energy poured to the
, the external energy is uti-

tivity and we simplify the
t increase of wealth happens
nteraction.
airwise interaction occurs.
ption, as corporate decisions
ly. However, we expect the

ons does not affect the es-
.
s described as follows. In
i, j! is chosen randomly.
lth according to the symmet-

b

1e2b D S v i~ t !
v j~ t ! D . ~1!

alth unchanged,vk(t11)
thi and j. The parameter
changed, whilee.0 mea-
e outside. The process is

tudied in Refs.@43,53,56#
efs.@29,31,44,47#but we

energies corresponding toi th gra
the process to the mean-field l
inelastic particles. However, th
tionally quantified by the restitu
the negative valuee,0, contrary
will see later that this apparen
difference in the analytical trea

The full information about th
tained in the N-particle join
PN(t;v1 ,v2 ,...,vN). However, w
tion involving only one- and tw
tions

P1~ t11;v !2P1~ t;v !

5
2

N F2P1~ t;v !1E
3d„~12b1e!v

which may be continued to giv
archy of equations of BBGKY t
mation we use the factorization

P2~ t;v i ,v j !5P1~ t;

which breaks the hierarchy on
the correlations between the we
the scattering. In fact, this appr
N→`. Therefore, in thermody
distribution function bears all in

Rescaling the time ast52t/
limit N→`, we obtain for the on
tion P(t;v)5P1(t,v) a Boltzma

]P~v !

]t
1P~v !5E P~v i !P~v

3d„~12b1

which describes exactly the pr
This equation has the same fo
for the well-studied Maxwell m
ing particles@54,56,57#. The ma

scattering process, where the
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fact that here the wealth increases, while in inelastic gas the
energy decreases. This seemingly little difference has, how-
ever, deep consequences for the solution of Eq.~4!. Note also
that within the framework of Maxwell model the distribu-
tions are expressed in terms of velocities, while our dynami-
cal variables correspond rather to energies of the particles.

III. SOLUTION OF THE KINETIC EQUATION

A. Self-similar solutions

Note first that the average wealthv̄5*vP(v)dv in the
process described by the kinetic equation~4! grows exponen-
tially

v̄~t!5 v̄~0!eet ~5!

at
ry

S
(x
ia

on
2

F̂
th
e

ic
,2

, w
h

es
T
a

he
ri
e

d
i

ou
te
de

at
a

In
ns

t

a
, w

ibutionF(w) for w→` can
ity of the Laplace transform
sume the following behavior

¯ for x→0, ~8!

ularity results in the power-
→`. Insertion of Eq.~8!
dental equation for the expo-

12«a50 ~9!

d in Fig. 2. Obviously, there
he power-law tail is due to
ich falls into the desired in-
s of the parametersb ande.

n in Fig. 3; a solution in the
shaded region. We can also
a line in theb-e plane. We
while keepinga constant.

FIG. 2. Solution of the equationf 0(b,e,a)[(11e2b)a1ba

025 ~full line! and b50.004

~1,2! exists within the shaded
ds toa52, the dash-dotted line to
na53/2.
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and therefore Eq.~4! has no st
we may look for a quasistationa
form @50,54,56,57#

P~t;v !5
1

v̄~t!
F

Using the Laplace transformF̂
can write a nonlocal different
function in the form

exF̂8~x!1F̂~x!5F̂„~12

A hint about possible soluti
special exactly solvable casee52

ily verified @54# that the function
a solution of Eq.~7!. Inverting
obtain the corresponding w
5(1/A2p)w25/2exp(21/2w) wh
obtained in previous studies@13
case the value ofe is negative
sumption of wealth increase, w
leading to the functionF̂1(x) do
must look for alternative ways.
proach is that Eq.~7! is nearly loc
b. Therefore, we will expand t
side~RHS!of Eq. ~7! in Taylor se
the limit e, b→0. As the param
amount of wealth increase an
event, we interpret the latter lim
trading. In fact, such a limit sh
of time t, but because we are in
regime, the explicit time depen
siderations.

It should be also stressed th
inferred from the observation th
ently for positive and negativee.
larity at the point of precise co

B. Power-law

The main concern in empiric
tion is about the shape of tails
ionary solution. However,
self-similar solution in the

v
v̄~t! D . ~6!

)5*0
`F(w)e2xwdw we

l equation for the scaling

b1e!x…F̂~bx!. ~7!

s can be obtained from a
Ab12b. It can be eas-

1(x)5(11A2x)e2A2x is
e Laplace transform we
alth distributionF1(w)

h has a similar form as
1,22#. However, in this
hich contradicts our as-

ile fore.0 the above idea
not work. Therefore, we

he leading idea of our ap-
l for small values ofe and

factors on the right-hand
es ine andb and perform
terse and b quantify the
exchange in a single trade

t as the limit of continuous
ld also involve a rescaling
rested only in the stationary
nce does not enter our con-

an important feature can be
t the system behaves differ-
deed, it suggests a singu-
ervation of wealthe50.

ails

l studies of wealth distribu-
hich assumes a power-law

form. The behavior of the distr
be deduced from the singular
F̂(x) at x→0. Therefore, we as
@54,57#:

F̂~x!512x1Auxua1

whereaP~1,2!. This type of sing
law tail as F(w);w2a21 for w
into Eq. ~7! leads to a transcen
nenta

~11«2b!a1ba2

the solution of which is illustrate
is always a trivial solutiona51. T
another, nontrivial solution, wh
terval~1, 2!only for certain value
We can see the allowed regio
rangeaP~1,2! exists within the
see that fixed value ofa defines
can approach the limite→0, b→0

212ea50 for e50.1 and b50.0
~dashed line!.

FIG. 3. Solution in the rangeaP
region. The dashed line correspon
a51, and the full line to the solutio
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This is to be interpreted as continuous trading, as the amount
of wealth exchange and increase in a single trading step is
infinitesimally small. Making this, the nonlocal terms in Eq.
~7! become local and we can expect to obtain an ordinary
differential equation, soluble by standard methods.

C. Continuous trading limit

Indeed, expanding Eq.~9! we obtain the following for-
mula relatingb ande for fixed a in the limit of continuous
tradingb→0, e→0:

b5
a21

2
e21O~e3!1O~e2a!. ~10!

The leading correction term to Eq.~10! depends on the value
(

ci
as
is

xe
ua

8~

n
r
fu

A

y
s

p

tio
g

s
te
e
a
lo
a

el
p
er
a

ra

o
to
3

in single trading step. Details
the Appendix; here we only

meterb in powers ofe can

2a

O~e4!1O~e4a22!. ~14!

stribution, expanded in pow-

pS 12a

w D
a21

w2 2n10D e

1
1

w
2n01D e2~a21!G

2!, ~15!

re given in the Appendix.
distribution according to Eq.
itive values ofe, namely for

see that the distribution is
of wealth, shifting the maxi-

ncreases. On the contrary,
rly unaffected, showing uni-
havior.
olution known fore,0 cannot
gion ofe.0, due to the pres-
ingularity can be seen, e.g.,
f Eq.~9!, as shown in Fig. 5.
~13! describes the solution
and e→02. This implies

eak, because the solution of

rding to Eq.~15! for e→0 ~full
dash-dotted line!, ande50.3
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of a; for 1,a,3/2 it is of orderO
of orderO(e3), while in the spe
include both correction terms,
O(e3). Systematic expansion ine
dix.

Taking the same limit with fi
using Eq.~10!, the following eq

2
1

2
xF̂9~x!1

a21

2
„F̂

Of the two independent solutio
correct asymptoticsF̂(x)→0 fo
pressed using modified Bessel

F̂~x!5C8xa/2Ka~2

where the constantC8 is fixed b
51. Inverting the Laplace tran
wealth distribution

F~w!5Cw2a21 ex

with C5(a21)a/G(a).
We can see that the distribu

sired power-law behavior for lar
maximum at a finite value ofw5
depression for low wealth value
determined by the exponential
same value ofa which determin
law. This corresponds to the ide
stating that it is the value of the
wealth which determines the v
however, this result comes pur
analytic computation. In our ap
tween wealth increase~paramet
~parameterb! that dictates the v

D. Corrections for finite t

Expanding Eq.~7! in powers
include systematic corrections
rections to wealth distribution~1
e2a), for 3/2,a,2 it is
al pointa53/2 we should
they are of the same order
developed in the Appen-

da in Eq. ~7! we obtain,
tion:

x!1F̂~x!…50. ~11!

s of Eq.~11! only one has
x→1`. It can be ex-
nction

a21Ax!, ~12!

the normalizationF̂(0)
form we finally obtain the

S 2
a21

w D ~13!

n obtained exhibits the de-
e wealth. Moreover, it has a
wmax[(a21)/(a11) and
. The size of the depletion is
rm in Eq.~13!, i.e., by the
s the power in the power
presented, e.g., in Ref.@11#
wer bound for the allowed

lue of the exponent. Here,
y formally as a result of the
roach it is the interplay be-
e! and wealth exchange
lue of the exponenta.

ding in one step

fe andb it is possible to
Eq.~11! and therefore cor-

! for a finite amount of

wealth increase and exchange
of the calculations are given in
summarize the results.

The expansion~10! of the para
be continued as

b5
a21

2
e21

1

a S a21

2 D a

e

2
~a21!~2a21!

6
e31

Correspondingly, the wealth di
ers ofe is

F~w!5
~a21!a

G~a!
w212a ex

3F11
a21

3 S 2a

w
2

2
2

a S a21

2 D aS ln w

1O~e4!1O~e4a2

where the constantsn01 andn10 a
We show in Fig. 4 the wealth
~15! for a51.7 and several pos
e50.03, 0.1, and 0.3. We can
affected mainly at small values
mum toward smallerw when e i
the tail of the distribution is nea
versal and robust power-law be

Let us stress again that the s
be properly continued to the re
ence of singularity ate50. The s
in the behavior of the solution o
However, fora53/2 the formula
of Eq. ~7! on both limitse→01

that the singularity is rather w

FIG. 4. Wealth distribution acco
line!, e50.03 ~dashed line!,e50.1 ~
~dotted line!.
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ponenta is determined by the interplay between the intensity
of the wealth exchange and the amount of wealth produced.
The form line in theb-e plane with fixeda is found, depend-
ing quadratically one for e→0. The physically allowed val-
ues aP~1,2! determine a horn-shaped region in theb-e
plane.

The second approximation consisted in taking the limit of
continuous trading, meaning small wealth production and
small exchange within a single trading operation, while
keeping the exponenta constant. Here we obtained closed
formula for the entire wealth distribution, which has a
power-law tail as expected and a maximum at certain~low!
wealth value. The form of the wealth distribution corre-
sponds to those found in previous studies@13,21,22#. It is
interesting to note that this general form has one-to-one cor-

itionwmax of the maximum of
f the exponent. There are few
ax. This suggests that the
s.@11,13#, that the exponent
ehavior of the distribution,
Here, the free parameters are
n and exchange, but in reality
selves tuned by a mechanism

maximum of the wealth dis-
compatible with survival.

uestion of the specific values
e robust in different societies.
our results, that it cannot be

sm of economic exchange and
of sociological origin, is re-
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Eq. ~7! is continuous ine, and o
spect ofe has a jump ate50. On
fate of the singularity if we allo
rameters but random processe
the singularity would vanish but
work.

IV. CONCLUS

We formulated a model of
change, where agents random
analogy with the mean-field ve
for inelastic scattering of gran
lytical results for the wealth dis

The dynamics of the model i
tion for one-particle distribution
similar scaling solutions, corres
of wealth after each wealth inc
lutions is given by a nonlocal
soluble only in the practically i
decrease. Therefore we turned

First, we looked at the beha
of the wealth distribution has a

e5
1
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23Ab1

However, the nonlocal different
yield explicit solution. Inverting
the following series expansion:
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FIG. 5. Solution of Eq.~9! for a
line! and e,0 ~dashed line!. Note
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APPENDIX: SYSTEMAT
FOR SMALL e

Let us start with the special
has an explicit solution in the f

b229b3/2115b214b5/224b31)A~322Ab!b~2Ab11!3

Ab23b13b3/22b2

l equation~7! still does not
e expression~A1! we get

113

2592
e61O~e7!. ~A2!

For general value ofa the va
series in two small parameterse a
incide only if a53/2. Therefore,

b5e2 (
m,n50

`

bmne

3/2 in the rangese.0 ~full
he singularity ate50 which
f the three solutions of Eq.~9!
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and the various terms take variable precedence in the order
of smallness whene→0, depending on the value ofa. For
the first several coefficients we have

b005
a21

2
, ~A4!

b1052
~a21!~2a21!

6
, ~A5!

b015
1

a S a21

2 D a

. ~A6!

Starting from the expansion~A3! we can convert the first
u

qu
ie

wk

~e

x

co

dn

n

@w

en
p

d
e
ds
h

e
2(

F~w!5F0~w! (
m,n50

`

fmn~w!em12~a21!n. ~A11!

We assumef00(w)51. The normalization must be indepen-
dent ofe, which can be written as
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@3# A. Drăgulescu and V. M. Ya

~2001!.
@4# W. J. Reed and B. D. Hughes,
@5# H. Aoyama, W. Souma, and Y

~2003!.
ation~7! for F̂(x) into
ation forF(w). The price
nts in the latter equation
dw of the solution itself.

2b!x
d

dyD F̂~y!, ~A7!

d

dyD F̂~y!. ~A8!

mbination of terms of the

F̂~0!

dxn ~A9!

sform, give rise to terms

mF~w!#. ~A10!

ts are fixed by definition.
robability distribution fixes
average wealth, imposed by
first moment, so thatm0
to the equations for lowest

ich are free of unknown

then expressed in the form
a21)

~A12!:

F0~w!5
~a21!a

G~a!
w21

Indeed, it coincides with the re
The next two terms satisfy t

w2

2
f108 ~w!5

a21

3 S
w2

2
f018 ~w!52

1

a S a

which can be easily solved. We

f10~w!52
a21

3 S 2a

3

f01~w!52
2

a S a21

2 D a

and the constantsn01, n10 are
condition ~A12!. We find explicit

n105a,

n015 ln~a21!2C~

where C(x)5G8(x)/G(x) is the
the gamma function.

litique~F. Rouge, Lausanne,

ca A242, 90 ~1997!.
venko, Physica A299, 213

hys. Rev. E66, 067103~2002!.
Fujiwara, Physica A324, 352

@6# A. Y. Abul-Magd, Phys. Rev. E
@7# M. Levy and S. Solomon, Int.
@8# M. Levy and S. Solomon, Int.
@9# O. Biham, O. Malcai, M. Levy,

58, 1352~1998!.
@10# S. Solomon, inDecision Techn

nance, edited by A.-P. Refe
Moody ~Kluwer Academic Pub

046102-6



@11# S. Solomon, inApplication of Simulation to Social Sciences,
edited by G. Ballot and G. Weisbuch~Hermes Science Publi-
cations, 2000!.

@12# Z.-F. Huang and S. Solomon, Eur. Phys. J. B20, 601~2001!.
@13# S. Solomon and P. Richmond, Physica A299, 188~2001!.
@14# A. Blank and S. Solomon, Physica A287, 279~2000!.
@15# S. Solomon and M. Levy, e-print cond-mat/0005416.
@16# Z.-F. Huang and S. Solomon, Physica A294, 503~2001!.
@17# D. Sornette and R. Cont, J. Phys. I7, 431~1997!.
@18# D. Sornette, Physica A250, 295~1998!.
@19# D. Sornette, Phys. Rev. E57, 4811~1998!.
@20# H. Takayasu, A.-H. Sato, and M. Takayasu, Phys. Rev. Lett.

79, 966~1997!.
@21# M. Marsili, S. Maslov, and Y.-C. Zhang, Physica A253, 403

~1998!.
P
rk

d,
01
.
t
20
H

ya

ra

ter
in
ok
8
a
crT

pr
,

.
20
ia
G

.

ya

@39# T. Mizuno, M. Takayasu, and H. Takayasu, e-print
cond-mat/0307270.

@40# Y. Fujiwara, C. Di Guilmi, H. Aoyama, M. Gallegati, and W.
Souma, e-print cond-mat/0310061.
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Mean-field approximation for a limit order driven market model

František Slanina*
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha, Czech Republic
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A mean-field variant of the model of limit order driven market introduced recently by Maslov is formulated
and solved. The agents do not have any strategies and the memory of the system is kept within the order book.
We show that the evolution of the order book is governed by a matrix multiplicative process. The resulting
stationary distribution of step-to-step price changes is calculated. It exhibits a power-law tail with exponent 2.
We obtain also the price autocorrelation function, which agrees qualitatively with the experimentally observed
negative autocorrelation for short times.

DOI: 10.1103/PhysRevE.64.056136 PACS number~s!: 05.40.2a, 89.90.1n
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I. INTRODUCTION

The complexity of market behavior, seen as a particular
example of a natural phenomenon, has fascinated physicists
for many years@1#. The main source of interest comes from
a kind of critical behavior, made explicit by the power-law
distribution and scaling in the economic time series, first
observed by Mandelbrot~see Ref. @2#, and references
therein!and studied in detail by Mantegna and Stanley@3–5#
and subsequently by many others~see, e.g., Refs.@6–11#!.
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modeling other social phenomena, e.g., in the cellular-

count the realistic details of the
book of orders. This mechani
model set up by Maslov@35# and
then used in a recent series of p
@36–38#. The book of orders pe
was empirically investigated in

With such a diversity of mo
plausible explanation of obser
whether there is a common m
proaches, making them essent
found that such a mechanism m
chastic process repelled from
additive process. It was studie
thors and in diverse contexts@15,
in this work is to show that ess
h
p

nd
or
w
ac
c

ge
ts
la

ar
O
v

es
tr
.

d
nd
d
of
t

wa
ch

ls

is responsible for the power-law distribution of price changes

ARKET MODEL

orkers@35,39# proposed a
on that there are two kinds of
vestors place their orders at a
curs as soon as there is anyone
er hand, speculators buy and

ce which is available in the
found to have a power-law

t 51/4. The price changes
11)2p(t) have probabil-
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pose the functionh(x) is equal in all events and is symmet-
ric, h(x)5h(2x). Second, a market-price order can arrive.
An order to buy an amounts results in clearing all sell orders
up to the pricej1x1 , where

E
j

j1x1

r~x!dx5s. ~1!

The new price is thenj→j1x1 , so thatx1 is the price
increment, while the new density isr(x)→@12u(x
2j)u(j1x12x)#r(x). Analogical formulas will hold for
the sell order.

As we can see, there are no strategies that would lead the
agents to perform specific actions. The model is barely sto-
chastic. The long-term memory of the system and thus a
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Let us investigate first the consequence of an arrival of a
market-price order to buy. By definition, the price level in-
creases byx1 . As the density of orders is constant, average
density on the right-hand side from the new price is un-
changed. If now another buy order arrives, it finds the same
density and the price change is the same too. Therefore, the
new value ofx1 is equal to the old one,x1→x1 . On the
other hand, if now a new market order to sell arrives, there
are no limit orders in the interval of widthx1 below the
current price level, and when we go further down, there is a
constant densitys/x2 . As a result, the price decreases by
x11x2 . Hence, the new value ofx2 is x2→x11x2 .

To sum it up, the effect of the buy order consists in the
replacement

x →x
~2!

x2 .

orm

1X ~3!

0

1D . ~4!

ll order we get

2X, ~5!

1

1D . ~6!

due to dropping limit orders.
nctionh(x), representing the
at distancex from the current
, we suppose it to be an even

was supposed to be fixed,
the simplest choiceh(x)
means that all new orders
ced from the current price,

!. This distribution reflects
e not typically set arbitrarily
there is a certain minimum

the vectorX according to

/p! x6. ~7!

annihilate the amountv/2
er and amounts2v/2 from

rders. The shift is, therefore,
terms of the probabilityp,

formula~7!. So, in matrix
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Our essential approximation
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It can be expressed in matrix f
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where

T15S 1
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Similarly, for the action of a se

X→X85T

where
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Now we turn to the changes
It is necessary to specify the fu
average volume of orders set
price. As we already mentioned
function. Moreover, the volume
*h(x)dx5v. We apply here
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the formula
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X→X85SX, ~8!

where

S5
1

2 S 32
1

pD S 1 0

0 1D . ~9!

The price changes only after a market order is issued,
while dropping limit orders leaves the price unchanged. So,
between two subsequent shifts of the price,m>0 limit or-
ders can arrive, with probabilityPm(m)5(12p)pm. The
change of the vectorX due to one market order andm limit
orders isX→Sm T6 X. When calculating the evolution of the
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P~x!5 (
m50

`

~12p!pmE dx8P~x8!

3dS x2
3

2
x8S 32

1

p

2
D mD ~11!

and assuming a power-law tail of the probability distribution
in the formP(x);x212a, we obtain the following equation
for the exponent:

(
m50

`

~12p!pmF 3

2
S 32

1

p

2
D mG a

51. ~12!

part from the trivial solution
ona51, independent ofp.
ice changes has a power-law

2. ~13!

uld be further simplified by
to Eq.~11!, relating the prob-
le step. Then, instead of the
one market order followed by
being either limit or market

isely the same power-law tail.
slightly inconsistent, because
ply any trade, thus the price

TION FUNCTION

about financial data series is
relation of price changes@6#.
fect naturally emerges from
stic process.
rrelation function defined as

x~ t1t!&

&^x2~ t1t!&
, ~14!

ange at timet andt>1. We
e matrix describing the ac-

) its probability distribu-
alreadyPM(T2)5PM(T1)

n of taking the price change

M5T1

M5S ~15!

M5T2 .

in the argumentX. Then
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probability distribution forX, we
sible realizations. Hence, the p
vectorX should satisfy the equ

PX~X!5
1

2 (
s56

(
m50

` E dX8 Pm~m

in the stationary state.

IV. DISTRIBUTION OF P

We will make a further appr
matrix S is simply a unit matrix
the same were true also for t
would be reduced to a simple
whose properties are well know
eling price fluctuations is testifi
mentioned in the Introduction.

Our approximation will cons
trices T6 by the averageT̄5 1

2 (T
we will take only the highest
which is 3/2. Then, instead of a
x2 we have a single scalar qua
value of the price change.

Note that the same results
from beginning, thatx15x2 , i.e
is equal on both sides of the pr
make a further ‘‘mean-field’’ ap
only the fluctuations along the
tions from one side to the other
sity of states.

This way we define our mu
The fact that there is a small bu
limit orders ensures that the va
x) cannot be smaller thand. Th
‘‘repulsion from zero,’’ which w
lishing the power-law tails@42,45
by the additive term@43,46#.
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bability distribution for the
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genvalue of the matrixT̄,
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finite offsetd in placing the
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Abstract. Far-from-equilibrium models of interacting particles in one dimension are used as a basis for
modelling the stock-market fluctuations. Particle types and their positions are interpreted as buy and
sel orders placed on a price axis in the order book. We revisit some modifications of well-known models,
starting with the Bak-Paczuski-Shubik model. We look at the four decades old Stigler model and investigate
its variants. One of them is the simplified version of the Genoa artificial market. The list of studied models
is completed by the models of Maslov and Daniels et al. Generically, in all cases we compare the return
distribution, absolute return autocorrelation and the value of the Hurst exponent. It turns out that none of
the models reproduces satisfactorily all the empirical data, but the most promising candidates for further
development are the Genoa artificial market and the Maslov model with moderate order evaporation.

PACS. 89.65.-s Social and economic systems – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The order book is the central notion in the stock market.
People willing to buy or sell express their desire in well-
specified orders and the authority of the stock exchange
logs all the orders in a list, where they wait until they are
either satisfied (executed) or cancelled. The visible part
of the stock market dynamics, i.e. the complex movement
of the price, is rooted in the detailed and mostly invisible
processes happening within the order book. Anyone who
wants to study seriously the stock market fluctuations,
must pay attention to the dynamics of the order book.

There are several reasons why physicists may and
should embark on such study. First, the discipline of
Econophysics is now established and accepted with decent
respect within the Physics community [1–4]. But even if
the study of economic phenomena by the tools of physics
were a bare empty bubble (which is not!, the author be-
lieves) to be broken into pieces, the study of the order
book itself may remain one of the shards of value. (An-
other one may be the Minority Game [5].) Indeed, the
second motivation to spend some effort here is that the or-
der book is a genuinely one-dimensional non-equilibrium
system with complex dynamics. It abounds with rich phe-
nomena and poses a serious intellectual challenge, which
may provoke development of new tools in one-dimensional
non-equilibrium physics.

a e-mail: slanina@fzu.cz

The most simplified view of an order book may be
the following. The orders are immobile particles of two
kinds, A (for asks, i.e. orders to sell), and B (for bids, i.e.
orders to buy), residing on a line of price (or logarithm
of price, if more convenient). All bids are always on the
left of all asks. The actual price lies somewhere between
(and included) the highest bid and the lowest ask. The
interval between the two is the spread and it is one of the
key quantities observed in the order book. Besides these
limit orders, waiting for the future in the order book, also
market orders arrive, which buy or sell immediately at
any price available in the market. Thus, the market orders
provide liquidity.

As we already said, the tip of the order-book ice-
berg is the price. All order-book models must be con-
fronted with what is known about the price fluctuations.
These stylised facts are now very well established [6–9]. To
quote here only those which we shall be faced later, the
price movements are generically characterised by a power-
law tail in return distribution, with exponent 1 + α � 4,
power-law autocorrelation of volatility, with exponent
ranging between 0.3 to 0.5, anomalous Hurst exponent
H � 2/3, measured either directly in the so-called Hurst
plot, or as a by-product of another essential feature of
the price fluctuations, which is the scaling. It must be
noted, though, that the scaling holds satisfactorily only for
not too long time separations. At larger times, the grad-
ual crossover to Gaussian shape of return distribution is
observed. This feature is well reproduced in multifractal
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stochastic models (from many works in this direction see
e.g. [10–13]). However, we must state from the beginning,
that explanation of multifractality and other subtle fea-
tures of the stock-market fluctuations [14,15], goes beyond
the scope of this paper.

Let us mention at least some of the special features
found empirically in order books. The literature is indeed
very ample [16–41]. The first thing we may ask is the av-
erage order book profile, i.e. the average number of orders
existing in given moment at given distance form the cur-
rent price. It was found that it has sharp maximum very
close to, but away from, the price [18,26,27]. The decrease
at large distances seems to be a power law with exponent
�2 [26,27], but the form of the increase between the price
and the peak is not so clear.

Related information is contained in the price impact
function, which says how much the price moves when an
order of a specific volume arrives. In first approximation,
we consider the virtual impact function, obtained by sim-
ple integration of the order book profile from the current
price to the new, shifted price. Beyond the maximum,
the profile decreases and therefore the virtual impact is
a convex function [17,18,24]. The striking surprise in the
empirical study of order books is, that the actual price
impact is much smaller, and moreover, it is a concave,
rather than convex, function of volume [24]. The form of
the price impact was studied intensively [20,32–38], yet a
controversy persist, whether it can be better fitted on a
square root (a qualitative theoretical argument for this fit
can be found in [42]), a power with exponent <0.5 or on
a logarithm.

The incoming orders have various volumes and it turns
out that they are power-law distributed [17]. For the mar-
ket orders, the exponent is �1.4, while for the limit orders
it has higher value �2. The limit orders are deposited at
various distances from the current price and also here the
distribution follows a power law [26,27,31,39], although
the value of the exponent reported differs rather widely
(�1.5 to �2.5) from one study to another. The limit or-
ders are eventually either satisfied or cancelled. The time
they spend within the order book is again power-law dis-
tributed [18,19,43] with exponent �2.1 for cancellations
and �1.5 for satisfactions.

There were attempts to explain some of the properties
of price fluctuations as direct consequences of the empiri-
cally found statistics of order books. In references [20,44]
the power-law tail in return distribution is related to the
specific square-root form of the impact function com-
bined with power-law distribution of order volumes. On
the other hand, reference [34] shows that the distribution
of returns copies the distribution of first gap (the distance
between best and second best order – where “best” means
“lowest” for asks and “highest” for bids). It was also found
that the width of the spread is distributed as power law,
with exponent �4 [22], which is essentially the same value
as the exponent for the distribution of returns. The discus-
sion remained somewhat open [21,41], but we believe that
the properties of the price fluctuations cannot be deduced
entirely from the statistics of the order book. For example

the difference between the virtual and actual price impact
suggests that the order book reacts quickly to incoming or-
ders and reorganises itself accordingly. Therefore, without
detailed dynamical information on the movements deep
inside the book we cannot hope for explanation of the
dynamics of the price.

2 Existing models

There is no space here for an exhaustive review of the
order-book modelling, not to speak of other types of stock-
market models. We select here only a few models we shall
build upon in the later sections and quote only a part of
the literature. We apologise for unavoidable omissions, not
due to underestimation of the work of others, but dictated
by reasonable brevity of this study.

2.1 Stigler

To our best knowledge, the first numerical model of the
order book and the first computer simulation ever in eco-
nomics was the work of Stigler [45]. The model is strikingly
simple. There are only limit orders of unit volume and
they are supplied randomly into the book within a fixed
allowed interval of price. If the new order is e.g. a bid and
there is an ask at lower price, then the bid is matched
with the lowest ask and both of them are removed. If the
bid falls lower than the lowest ask, it is stored in the book
and waits there.

From this example we understand, why the order-book
models are often called “zero-intelligence” models. Indeed,
there is no space for strategic choice of the agents and
the people may be very well replaced by random number
generators. It is interesting to note that experiments with
human versus machine trading were performed [46], which
found as much efficiency in “zero-intelligence” machines as
in “rational” people (graduate students of business).

2.2 Bak, Paczuski, and Shubik

Another model, very simple to formulate but difficult
to solve, was introduced by Bak, Paczuski, and Shubik
(BPS) [47]. On a line representing the price axis, two kinds
of particles are placed. The first kind, denoted A (ask),
corresponds to sell orders, while the second, B (bid), cor-
responds to buy orders. The position of the particle is the
price at which the order is to be satisfied. A trade can
occur only when two particles of opposite type meet. If
that happens, the orders are satisfied and the particles
are removed from the system. This can be described as
annihilation reaction A + B → ∅. It is evident that all B
particles must lie on the left with respect to all A particles.
The particles diffuse freely and in order to keep their con-
centration constant on average, new orders are inserted
from the left (B type) and from the right (A type). The
whole picture of this order-book model is therefore identi-
cal to the two-species diffusion-annihilation process. The
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changes in the price are mapped on the movement of the
reaction front.

Many analytical results are known for this model. Most
importantly, the Hurst exponent can be calculated ex-
actly [48–51] and the result is H = 1/4. This value is
well below the empirically established value H � 2/3.

Several modifications of the bare reaction-diffusion
process were introduced [47] to remedy some of the short-
comings of the model. The simplest one is to postulate
a drift of articles towards the current price. This fea-
ture mimics the fact that in real order books the orders
are placed close to the current price. It also suppresses
the rather unnatural assumption of free diffusion of or-
ders. However, the measured Hurst exponent remains to
be H = 1/4 as before.

More important modification consists in a kind of
“urn” process. The new orders are placed close to already
existing ones, thus mimicking certain level of “copying” or
“herding” mechanism, which is surely present in the real-
world price dynamics. In this case the Hurst exponent is
higher and in fact very close to the random walk value,
H � 1/2.

The diffusion constant of the orders can also be cou-
pled to the past volatility, introducing a positive feedback
effect. This way the Hurst exponent can be enhanced up
to the level consistent with the empirical value. In this
case, scaling was observed in the distribution of returns
with Hurst exponent H � 0.65.

2.3 Genoa market model

The diffusion of orders contradicts reality. Indeed, orders
can be placed into the order book, and later either can-
celled or satisfied, but change in price is very uncommon.
It is therefore wise to return back to Stigler’s immobile
orders but to make his model more realistic.

Rather involved modification of the Stigler model ap-
peared much later under the name of Genoa artificial mar-
ket [52–57]. The model contains many ingredients and is
therefore very plastic.

Again, there are only limit orders and the liquidity
is assured by non-empty intersection of intervals, where
the bids and asks, respectively, are deposited. In prac-
tical implementation, the probability of order placement
was Gaussian, with the centre shifted slightly above the
current price for asks and slightly below for the bids. The
width of the Gaussians was also related to the past volatil-
ity, thus introducing a feedback. Note that essentially the
same feedback was introduced already in the BPS model.
The price of the contract was calculated according to
demand-offer balance. There was also a herding of agents
in play, in the spirit of the Cont-Bouchaud model [58]. The
main result to interest us here was the power-law tail of
the return distribution, with very realistic value of the ex-
ponent. However, it was not at all clear which of the many
ingredients of the model is responsible for the appearance
of the power-law tail.

2.4 Maslov model

To appreciate the crucial role of the market orders, Maslov
introduced a model [59], in which the bids are deposited
always on the left and asks on the right from the current
price. The limit orders never meet each other. The ex-
ecution of the orders is mediated by the market orders,
annihilating the highest bid or lowest ask, depending on
the type of the market order.

The Maslov model has several appealing features. Es-
pecially, the return distribution characterised by exponent
1+α � 3 seems to be close to the empirically found power
law. The scaling in return distribution is clearly seen as
well as the volatility clustering manifested by power-law
decay of the autocorrelation of absolute returns. However,
the Hurst exponent is 1/4 as in the BPS model, which
is bad news. Maslov model was treated analytically in a
kind of mean-field approximation [60]. Unfortunately, the
exponent α = 1 found there disagrees with the simula-
tions. Later, the reason for this difference was identified
in the assumption of uniform density of orders on either
of the sides of the price. Taking the density zero at the
current price and linearly increasing on both the ask and
bid side, the exponent becomes α = 2, in agreement with
the numerics [61].

2.5 Models with uniform deposition

The Maslov model is still very idealised. The most impor-
tant difference from real situation is the absence of cancel-
lations. In real order books the orders can be scratched, if
their owners think that they waited too long for their pa-
tience. The group of Farmer and others introduced several
variants of models with cancellation (“evaporation”) of or-
ders [62–65]. Another fundamental feature which makes
these models different from the Maslov model is that the
orders are deposited uniformly within their allowed range,
i.e. bids from the current price downwards up to a pre-
scribed lower bound and equivalently for the asks.

The order book profile, price impact and many related
properties were studied very thoroughly and their depen-
dence on the rates of thee processes involved was clari-
fied. An important step forward was the analytical study
performed in [62]. Two complementary “mean-field” ap-
proaches were applied, achieving quite good agreement
with the simulations. The first approach calculates the
average density of orders as a continuous function, ne-
glecting the fluctuations. The other approach represents
the state of the order book by intervals between individ-
ual orders, assuming that at most one order can be present
on one site (a kind of exclusion principle). The approxi-
mation consists in neglecting the correlations between the
lengths of the intervals.

This line of research was recently pushed forward in
and important paper by Mike and Farmer [66]. A scheme,
which was given very fitting name “empirical model” was
proposed, which incorporates several basic empirical facts
on the order flow dynamics, namely the distribution of dis-
tances, from the best price, where the orders are placed;
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the long memory in the signs of the orders; the cancellation
probability, depending on the position of the order. Includ-
ing these empirical ingredients into the Farmer model, an
excellent agreement with other empirical findings was ob-
served, including the return and spread distributions. The
importance of that work, at least from our point of view,
consists in observation that the most tangible feature of
the price fluctuation, the return distribution, is in fact
a secondary manifestation of more basic and yet unex-
plained features. These are the features which enter the
model of [66] as empirical input.

In our work, we address a less ambitious but more
fundamental question. What will be the fluctuation prop-
erties of these models without assuming anything special
about order flow? We shall see that in many aspects the
answer is disappointing in the sense that the results are of-
ten far from reality. This means that the inputs of [66] are
essential. On the other hand, we can hardly be satisfied
until we detect the causes behind the empirical ingredients
of [66].

2.6 Other approaches

A rather phenomenological model was simulated in [26].
The profile of the order book was successfully explained
assuming power-law distribution of placement distances
from the current price.

In fact, the crucial role of the evaporation of orders was
first noticed in the work of Challet and Stinchcombe [18].
The new limit orders were deposited close to the price,
with standard deviation which was linearly coupled with
the width of the spread. The evaporation caused a clearly
visible crossover from Hurst exponent H = 1/4 at short
time distances to the random-walk valueH = 1/2 at larger
times. This class of models was investigated in depth sub-
sequently [19,67,68]. In a related development, a version
of asymmetric exclusion model [69] was adapted as an
order-book model [70]. The two crucial ingredients are the
(biased) diffusion of particles (orders), returning some-
what back to the BPS model, and the exclusion princi-
ple, allowing at most one order at one site. It also forbids
“skipping” of particles, so each order represents an obsta-
cle for the diffusion of others. Price is represented by the
particle of a special type. Mapping to the exactly soluble
asymmetric exclusion model gives the precise value of the
Hurst exponent H = 2/3, nicely coinciding with reality.
One must remember, though, that the price for this result
is the unrealistic assumption of diffusing orders. Moreover,
even if we accepted the view that removal and immediate
placement of an order not far from the original position
may be effectively described as diffusion, why then the
particles are not allowed to overtake each other? We con-
sider that feature very far from reality.

Let us only list some other works we consider relevant
for order-book modelling [71–76]. Schematic models, like
the Interacting Gaps model [77,78], may also bring some,
however limited, insight. Despite continuing effort of many
groups performing empirical analyses as well as theoret-
ical studies, the true dynamics of the order book is far

from being fully understood. On one side, the trading in
the stock market is much more intricate than mere play
of limit and market orders. There are many more types of
them, sometimes rather complicated. At the same time,
it becomes more and more evident that assuming “zero-
intelligence” players misses some substantial processes un-
der way in the stock market. Strategic thinking cannot
be avoided without essential loss. This brings us close to
our last remark. All the models mentioned in this sec-
tion are appropriate only to those markets, which operate
without an official market maker. In presence of a mar-
ket maker, the orders do not interact individually, but
in smaller or larger chunks. One is tempted to devise a
“zero-intelligence” model with a market maker, but there
is perhaps a wiser path to follow. We have in mind a com-
bination of order-book models with Minority Game. The
latter represents an antipole to “zero-intelligence” order-
book models and amalgamating the two opposites may
prove fruitful.

In this work we shall not go thus far. Our aim is rather
to clarify the dark places in the ensemble of existing order-
book models. Performing new simulations for several of
these models in parallel, we hope to shed some light on
the the usefulness and the limitations of them.

3 New simulations

Here we present our new results of numerical simulations
of the models sketched above. Some of the data aim at
improving the results already present in the literature, but
mostly we try to clarify aspects not studied before. We also
used the same methodology in analysing the simulations
for all models, in order to make comparable statements
for each of the models under scrutiny.

3.1 Bak-Paczuski-Shubik model

The first model to study is the Bak-Paczuski-Shubik
(BPS) model. As we already explained, we have two types
of diffusing particles, called A and B. There are N par-
ticles of each type, i.e. total 2N particles placed at the
segment of length L. The particles can occupy integer po-
sitions from the set {1, 2, . . . , L}. In one update step we
choose one particle and change its position as c′i = ci ± 1
(there is no bias, so both signs of the change have the
same probability), on condition that the new position
stays within the allowed interval, 1 ≤ c′i ≤ L. We use
the convention that the time advances by 1/(2N) in one
step. If the new site was empty or there was already an-
other particle of the same type at the new position, noth-
ing more happens an the update is completed. We set
ci(t+ 1/(2N)) = c′i and ck(t+ 1/(2N)) = ck(t), k �= i On
the other hand, if the new site is occupied by a particle
of opposite type, say, particle j, so that cj(t) = c′i, then
the two particles annihilate. To keep the number of parti-
cles constant, we immediately supply two new particles at
opposite edges of the allowed segment. E.g. if i was type
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Fig. 1. Example of the evolution of the Bak-Paczuski-Shubik model. Triangles up (�) denote positions of bids, triangles down
(�) mark the asks. The full line traces the evolution of the price, showing jumps where transactions occurred. There are N = 5
particles of each type on the segment of length L = 20.
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Fig. 2. Distribution of inter-event times in BPS model. On
the segment of length L = 500, there are N = 200 particles of
each kind. In the inset, average return occurring after waiting
time ∆t, for the same values of L and N . The line is the power
∝ (∆t)0.4.

B and j was type A, the update is ci(t + 1/(2N)) = 1,
cj(t+ 1/(2N)) = L and ck(t+ 1/(2N)) = ck(t), k �= i, j.

The annihilation corresponds to an elementary trans-
action. The price set in this deal is just the position
where the annihilation took place, x(t + 1/(2N)) = c′i. If
the transaction did not occur, the price stays unchanged,
x(t+1/(2N)) = x(t). This completes the definition of the
variant of the BPS model simulated here.

In Figure 1 we can see how the typical configuration of
orders evolves in time. There are rather long periods where
the price does not change, but the positions of orders are
mixed substantially. We shall first look at these waiting
times between consecutive trades. In Figure 2 we can see
the (cumulative) probability distribution of them. It is
evident that the distribution is exponential, or very close
to it, so we can consider the sequence of trade times at
least approximately as Poisson point process.

The most desired quantity is the one-trade return dis-
tribution. If ti is the time of ith trade, we define r(ti) =
x(ti+1)− x(ti) and in Figure 3 we plot the distribution of
the absolute returns P (r) = 〈δ(r − |r(ti)|)〉 in stationary
state, for several sizes L and particle numbers N . We find
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Fig. 3. Distribution of one-transaction returns in BPS model,
rescaled by the factor s = N1/2L−1/4. The parameters are L =
250, N = 50 (�); L = 500, N = 200 (◦); L = 250, N = 250
(�). The line is the dependence ∝ exp

(−r/(50s)−(r/(34s))2
)
.

that the distribution collapses onto a single curve when
we rescale the data by the factor

s = N1/2L−1/4 . (1)

We then find

P (r) =
1
s
F

(r
s

)
(2)

and the scaling function decays faster than an exponential.
The fit of the type F (x) � A exp(−ax− bx2) seems to be
fairly satisfactory. Evidently, this distribution is very far
from the fat tails observed empirically. It is also interesting
to see how the one-trade return depends on the waiting
time before the trade. We measure the conditional average
of the return

〈r|∆t〉 =
∑

i |r(ti)| δ(ti − ti−1 −∆t)∑
i δ(ti − ti−1 −∆t)

(3)

and find (see the inset in Fig. 2) that it increases slowly
as a power law 〈r|∆t〉 ∼ (∆t)0.4.
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Fig. 4. Hurst plot for BPS model. The parameters are L =
2×104, N = 2×104 (◦), and L = 250, N = 50 (�). The dashed
line is the dependence ∝ ∆t, while solid line is ∝ (∆t)1/4.

Diffusion of the price is quantified by the Hurst plot.
Usually we calculate the quantity

R(∆t) =

〈
maxt′,t′′∈(t,t+∆t)

∣∣x(t′) − x(t′′)
∣∣√〈

r2(t′)
〉

t′ −
〈
r(t)

〉2

t′

〉
t

(4)

where the average 〈. . .〉t′ is taken over interval t′ ∈ (t, t+
∆t) while the average 〈. . .〉t extends over all times. The
time-dependent normalisation in the denominator of (4)
accounts for temporal variations of the volatility.

However, especially in BPS model the measure (4) is
inconvenient as it does not cover properly the time scales
below the typical waiting time. We use instead a simplified
and also frequently used quantity〈|∆x|max

〉
=

〈
max

t′,t′′∈(t,t+∆t)

∣∣x(t′) − x(t′′)
∣∣〉

t
. (5)

Both (4) and (5) are expected to share the same asymp-
totic behaviour for ∆t → ∞, i.e. R(∆t) ∼ 〈|∆x|max

〉 ∼
(∆t)H with Hurst exponent H .

The results for BPS model are shown in Figure 4. We
can appreciate there how difficult it is to actually observe
the valueH = 1/4 predicted by the theory. Relatively long
“short-time” regime seen in Figure 4 is characterised by
H = 1, which corresponds to ballistic, rather than diffu-
sive, movement of the price. In this regime, the time scale
is shorter than the average inter-event time, so there is
typically at most one transaction. The transaction times
follow approximately the Poisson point process, so the
probability that one transaction occur during time ∆t is,
for short times, proportional to ∆t. Assuming that the
price change, if it occurs, has certain typical size, the scale
of the average price change should be also proportional to
∆t. Hence the ballistic behaviour H = 1 seen in the Hurst
plot. Note, however, that this argument needs some refine-
ment, because, as we have seen in Figure 2, longer waiting
times imply larger price jumps afterwards. Nevertheless,
we believe that the general line of the argument is true.

The behaviour changes when ∆t becomes comparable
to the average inter-event time. The most often encoun-
tered result is represented by triangles in Figure 4. At

scales larger than the average inter-event time the quan-
tity

〈|∆x|max

〉
saturates, yielding H = 0. It is easy to un-

derstand why it must be so. If the density of particles is
large enough, the configuration of the order book can be
described by average concentrations ρA(y) and ρB(y) of
particles A and B, respectively. The variable y ∈ (0, L)
measures the position on the price axis. It is easy to
find that neglecting the fluctuations in the order density
the solution of the BPS model trivialises into ρB(y) =
8N
L2 (L/2− y)θ(L/2− y), ρA(y) = 8N

L2 (y− L/2)θ(y−L/2).
So, in absence of fluctuations the price is pinned in the
exact middle of the allowed interval. This is just the sat-
uration regime H = 0.

To see the theoretically predicted Hurst exponent H =
1/4 we must find a time window between the ballistic and
pinned regime. This is often very narrow, if it exists at all,
as testified in Figure 4 by the data for L = 250 and N =
50. Only for large enough size with small enough density of
orders the fluctuation regimeH = 1/4 is observable. (Note
that in the finite-size analysis the number of orders must
scale as N ∝ L2 with the length of the allowed interval.)
In Figure 4 we can see an example for L = N = 2 × 104,
where such time window is visible.

The difficulty to observe the desired regime in BPS
model contrasts with the way the exponent H = 1/4 was
derived analytically [48,49]. In these works the two reac-
tants occupy initially the positive and negative half-lines,
respectively. Then, they are let to diffuse and react. Anni-
hilated particles are not replaced. Therefore, the reaction
front spreads out indefinitely and we can observe a well
defined long-time regime characterised by the exponent
H = 1/4. (There is also a logarithmic factor there, but we
neglect it in this discussion.) On the contrary, in BPS the
long-time regime has always H = 0.

3.2 Stigler model and its free variant

In Stigler model, we have again the allowed price range
{1, 2, . . . , L}, where the orders can be placed. There can
be at most N orders total. If, at time t, there is still the
order deposited at time t − N , it is removed. Then, we
deposit a new order. We decide whether it will be a bid
or an ask (with equal probability) and choose randomly,
with uniform distribution, its position within the allowed
price range. A transaction may follow. If the new order is
e.g. a bid placed at position ct and the lowest ask is at
position cA ≤ ct, then the new price is set to xt = cA and
both the new bid at ct and the old lowest ask at cA are
removed. If cA > ct, the price does not change, xt = xt−1

and the new bid stays in the order book. (Symmetrically
it holds for depositing an ask.)

In Figure 5 we show an example of the typical time
sequence of price xt and one-step returns rt = xt − xt−1.
Qualitatively, we can guess that the fluctuations are far
from Gaussian, i.e. returns will not obey the normal dis-
tribution. Indeed, we can see in Figure 6 that for several
decades the distribution falls off slowly as a power with
small exponent, P (r) ∼ r−0.3 and then it is sharply cut off.
Indeed, the cutoff comes from the natural bound |rt| < L.
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Fig. 5. Example of the evolution of the Stigler model. In the upper panel, time dependence of the actual price; in the lower
panel, one-step returns. On the segment of length L = 5000 there are at most N = 5000 orders.
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Fig. 6. Distribution of one-step returns for Stigler model with
L = 5000 and N = 5000 (�) and for the free Stigler model
with N = 5000, s = 4000, and d = 104 (◦). The lines are
power laws ∝ r−0.3 (solid) and ∝ r−0.5 (dashed).

In the time series in Figure 5 we can also glimpse the
volatility clustering. To measure it quantitatively, we plot
in Figure 7 the autocorrelation of absolute returns

〈|rt rt−∆t|〉c = 〈|rt rt−∆t|〉 − 〈|rt|〉〈|rt−∆t|〉 . (6)

It decays as a power, but with rather large exponent,
〈|rt rt−∆t|〉c ∼ (∆t)−1.3. On the other hand, the returns
themselves are only short-time negatively correlated with
exponential decay, as can be seen in Figure 8.

These findings show that Stigler model is not a very
good candidate model for explaining the empirical facts.
However, it may well serve as a starting point for success-
ful construction of better models. The first limitation we
must remove is the fixed range of prices from 1 to L. A
severe consequence of this limitation is the saturation seen
in the Hurst plot (Fig. 13). In long time regime, the Hurst
exponent is obviously H = 0. To cure this problem we
introduce a “free” variant of the Stigler model. It may be
also considered as a precursor of the Genoa market model,
to be studied in the next section.
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Fig. 7. Autocorrelation of absolute returns for the Stigler
model with L = 5000 and N = 5000 (�) and for the free
Stigler model with N = 5000, s = 4000, and d = 104 (◦).
The lines are power laws ∝ (∆t)−1.3 (solid) and ∝ (∆t)−1.2

(dashed). In order to have all data in the same frame, we in-
troduced an auxiliary factor a = 10 (◦) and a = 104 (�).
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Fig. 8. Autocorrelation of returns for the Stigler model with
L = 5000 and N = 5000 (�) and for the free Stigler model
with N = 5000, s = 4000, and d = 104 (◦). In order to have
all data in the same frame, we introduced an auxiliary factor
a = 100 (◦) and a = 104 (�).
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The price axis is now extended to all integer num-
bers. Of course, the position on this axis must be now
interpreted as logarithm of price, rather than price it-
self. Nonetheless, for brevity we shall speak of “price”
also in this case. The orders are again deposited ran-
domly within an allowed range, but now the range de-
pends on the actual position of the price xt. We introduce
two integer parameters, the width of the allowed interval
d and the shift s of the interval’s centre with respect to
the current price. Denote ct the order issued at time t.
If it is a bid, it is deposited uniformly within the range
xt−s−d/2 < ct ≤ xt−s+d/2, while for an ask the range
is xt + s − d/2 ≤ ct < xt + s + d/2. Of course, in order
to have any transactions at all, we must have d ≥ 2s. As
with the Stigler model, the orders older than N steps are
removed.

In spite of the change in the deposition rules, the ba-
sic features of the free Stigler model remain very similar
to those of the original variant. In Figure 6 we can see
that the return distribution exhibits slow power-law de-
cay P (r) ∼ r−0.5 with a sharp cutoff at large returns.
The exponent �0.5 is larger than in the Stigler model,
but still remains very much below the empirical value �4.
The autocorrelation of absolute returns (see Fig. 7) de-
cays as a similar power law 〈|rt rt−∆t|〉c ∼ (∆t)−1.2. In
addition, a peak in the autocorrelation function, merely
visible in Stigler model, becomes quite pronounced here
and is shifted to larger times, about (∆t)peak � 20. This
indicates some quasi-periodic pattern in the time series of
the volatility, related probably to a typical waiting time
between subsequent trades. Indeed, we found that the
waiting times are exponentially distributed, and for the
parameters of Figure 7 the average waiting time is about
�11. As for the autocorrelation of returns, it decays expo-
nentially again, albeit more slowly, as shown in Figure 8.

The main difference observed, compared to the origi-
nal Stigler model, is shown in the Hurst plot, Figure 13.
At shorter times, there is a tendency to saturation, as in
the Stigler model, but at larger times the purely diffusive
regime with H = 1/2 prevails. We can attribute these
results the following interpretation. The orders present in
the order book form a “bunch” located somewhere around
the current price. Orders too far from the price are usually
cancelled after their lifetime (equal to N) expires. Hence
the localisation around the price. Now, while in the Stigler
model the bunch of orders is imprisoned between 1 and L,
in the free Stigler model the bunch can wander around,
following the price changes. The valueH = 1/2 shows that
the movements of the bunch as a whole can be described
as an ordinary random walk.

3.3 Genoa market model

Both in original and free Stigler model, the agents behind
the scene have truly zero intelligence. At most, they look
at the price in this instant and place orders at some dis-
tance from it, but the distance is not affected neither by
the present nor the past sequence of prices. However, it is
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Fig. 9. Return distribution in the Genoa market model. Max-
imum number of orders is N = 1000, width to shift ratio is
b = 7. The feedback factor is g = 51 (�), 52 (◦), and 52.36
(�). The three solid lines are power laws ∝ r−1−α with the ex-
ponents (from left to right) α = 5.5, 2.5, and 1.2. The dashed
line is the power ∝ r−0.5. In the inset, the dependence of the
tail exponent α on the feedback factor g. The line is the de-
pendence (α−1) ∝ (52.4− g) indicating that the critical value
lies at gc � 52.4.

reasonable to expect that the agents react to the fluctua-
tions observed in the past. The simplest feedback mecha-
nism may be that the distance to place an order is propor-
tional to the volatility measured during some time period
in the past. This idea was already applied in one of the
variants of the BPS model [47] and lies in the basis of the
Genoa artificial market [52]. What we shall call “Genoa
market model” from now on, is in fact very reduced ver-
sion of the complex simulation scheme of reference [52].
We believe, however, that we retain the most significant
ingredients.

We must first define a convenient measure of instan-
taneous volatility. Averaging absolute price changes with
an exponentially decaying kernel

vt = λ

∞∑
t′=0

(1 − λ)t′ |xt−t′ − xt−t′−1| . (7)

turns out to be a good choice. We use the value λ = 10−3

throughout the simulations. The orders will be placed on
integer positions within an interval determined by the
width and the shift from actual price, as in the free Stigler
model, but now these two parameters are time-dependent.
Their ratio will be held constant and both will expand as
the volatility vt will grow. So, the prescription will be

dt = �g vt�
st =

⌊dt

b

⌋
(8)

and the constants b and g, besides the maximum number
of orders (i.e. maximum lifetime of an order) N constitute
the parameters of the model. In order that we have any
transactions at all, we impose the bound b > 2.

The feedback mechanism we apply makes significant
difference in all aspects of the model. Let us look first
at the return distribution. In Figure 9 we can see how
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Fig. 10. Genoa market model. Dependence of the average
volatility on the feedback factor g. The parameters are N =
1000, b = 7. The lines with arrows indicate the hysteresis curve,
the false signature of an apparent first-order transition. In the
inset, the same data but plotted differently. The line is the de-
pendence ∝ (52.4 − g), suggesting the critical value gc � 52.4.

it changes when we tune the parameter g. Generically, a
power-law tail P (r) ∼ r−1−α develops, with an exponent
strongly depending on g. The larger g, the smaller the ex-
ponent, until for some critical value g = gc it approaches
the limit α = 1. Beyond that point, the average return,
i.e. also the stationary value of the average volatility vt di-
verges. This may be regarded as a kind of phase transition.
It is also worth noting that for low returns there is an inter-
val where another power law holds, with 1+α � 0.5. This
is the remainder of the behaviour characteristic for the
free Stigler model, the parent of the Genoa stock market.

We can look at this behaviour from another as-
pect when we directly calculate the time average 〈v〉 =
limT→∞ 1

T

∑T
t=0 vt. Its dependence on g is shown in Fig-

ure 10. This plot requires some explanation. The actual
implementation of the algorithm prevents the average
volatility from diverging. Instead, it reaches a relatively
large value above 108. So, all points beyond this level
should be considered as effectively infinite. Moreover, in
Figure 10 we can see a sign of bistability, or hysteresis,
which is at first sight a signature of a first-order phase
transition. However, a more careful analysis with varying
N shows that the presence of an apparent hysteresis curve
is misleading. Actually, it is a subtle finite-size effect and
the phase transition is continuous (i.e. second order).

We can see that the transition points found indepen-
dently in Figures 9 and 10 are consistent, so it is indeed a
single transition with two aspects. In fact, the coincidence
between Figures 9 and 10 means equality of time and “en-
semble” averages, i.e. ergodicity of the model dynamics.

In Figure 11 we show a phase diagram of the model,
indicating the dependence of the critical point gc on the
parameter b. When b approaches its lower limit equal to 2
(note that there are no trades for b < 2), the critical value
gc diverges. It comes as no big surprise, because trades
became more rare when b→ 2 and therefore the volatility
diminishes. This allows the feedback measured by g to be
stronger without divergence in the realised average volatil-
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Fig. 11. Phase diagram of the Genoa market model for N =
1000. Inverse of the critical value gc of the feedback factor,
deduced from the simulations, depends on the width to shift
ratio b. The phase transition is absent in the (trivial) region
b < 2, indicated by dashed line.
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Fig. 12. Autocorrelation of absolute returns in the Genoa mar-
ket model, for parameters N = 1000, b = 7, g = 52. In the
inset, the same data are plotted in linear-logarithmic scale.

ity. The phase diagram depends on the maximum number
of orders N , but we found that the dependence is very
weak and never changes the qualitative look of the phase
diagram. The reason for this is that for large N the ac-
tual number of orders present in the system is maintained
mainly by the annihilation by other orders and the frac-
tion of orders which live long enough to be discarded at
the end of their lifetime is very small. In other words, the
average number of orders in the system 〈Npresent〉 grows
extremely slowly with N .

To complete the study of the Genoa market model, we
show in Figure 12 the autocorrelations and in Figure 13
the Hurst plot. Contrary to both the Stigler model and its
free variant, the autocorrelation of absolute returns decays
as a clear exponential, although the characteristic time is
extremely long. As for the Hurst exponent, is is equal to
H = 1/2, in accord with the behaviour of the free Stigler
model. In both Genoa and free Stigler models the long-
time behaviour of R(∆t) is dominated by the diffusion of
the bunch of orders as a whole. What makes difference
between the two is the dynamics within the bunch, but
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Fig. 13. Comparison of Hurst plots for Stigler model with
parameters L = 5000, N = 5000 (�), free Stigler model with
N = 5000, s = 4000, d = 104 (◦), and Genoa market model
with N = 1000, b = 7, g = 51.6 (�). The line is the power
∝ (∆t)1/2.

this is not visible in the Hurst plot. Note also that for the
parameters used in Figure 13 the regime with H = 1/2
starts at times �105. At such time scale the autocorrela-
tions are already damped out, regardless the power-law de-
cay in free Stigler or the slow exponential decay in Genoa
models (compare Figs. 7 and 12).

3.4 Maslov model

So far, the models investigated did not distinguish be-
tween limit orders and market orders. The distinction was
only implicit. All bids placed below the lowest ask acted
effectively as limit orders, as well as the asks placed above
the highest bid. In the model of Maslov [59] the orders of
unit volume were issued at each step, being limit orders
or market orders with equal probability 1/2. The limit or-
ders were placed at close vicinity of the current price. Here
we add also the feature of order evaporation, as in [18].
Each order present in the book will have the same prob-
ability of being cancelled (evaporated). Therefore, we do
not take into account the age of the order, as we did in
various variants of the Stigler model.

We tune the speed of the evaporation by a parame-
ter q. For simpler terminology, we shall call it evaporation
probability. Actually, the probabilities of deposition, satis-
faction and evaporation event in one step of the evolution,
at time t, will be defined as, respectively,

W+dep
t =

1

2 + q
(

Nt

N
− 1

)
W−sat

t =
1 − q

2 + q
(

Nt

N
− 1

)

W−eva
t =

q Nt

N

2 + q
(

Nt

N
− 1

) (9)

where Nt is the actual number of orders in the book. The
parameter N controls the number of orders in the book

and again, to simplify the terminology, it will be called
average number of orders, although the actual value of
the average number of orders is slightly different (due to
the effect of fluctuations). If the evaporation probability is
zero, the parameter N becomes irrelevant for the dynam-
ics. Note that the three probabilities (9) change in time,
as the total number of orders Nt fluctuates.

The orders are placed at integer positions denoting the
(logarithm of the) price. Let xt be the price at time t and
NAt, NBt actual number of asks and bids, respectively,
with the total number of orders Nt = NAt +NBt.

In case deposition is selected to happen, according to
probabilities (9), we add an ask (NAt+1 = NAt+1) or a bid
(NBt+1 = NBt + 1) with equal probability. The position
of the new order is ct = xt +1, for the ask and ct = xt − 1
sign for the bid. The price remains unchanged, xt+1 = xt

because no transaction occurred.
The execution, or satisfaction, of an order happens al-

ways when a market order is issued, and there is a limit
order to match it. Again, sell and buy side are equivalent,
so they are selected with equal probability 1/2. Suppose a
sell order is issued and there is at least one bid, NBt > 0,
and cB is the position of the highest bid. Then, the new
price is xt+1 = cB, we update NBt+1 = NBt − 1 and
remove the order at cB from the book. Symmetrically it
holds for the buy order.

When the evaporation of an order is about to happen,
we select any of the existing orders with uniform probabil-
ity and remove it from the system. Note that removals of
a bid and an ask are not equiprobable, as we evaporate a
bid with probability NBt/Nt and an ask with probability
NAt/Nt.

We can see in Figure 14 the space-time diagram of
a typical evolution of the order book. The price “sows”
new orders along its fluctuating path, which are either
satisfied, as the price returns next to its original position,
or they vanish by evaporation. Longer price jumps occur
when the density of orders is low. Conversely, the price
becomes temporarily pinned, when it enters a region with
large density of orders.

Let us first revisit the results for the original Maslov
model without evaporation (q = 0). In Figure 15 we show
the distribution of returns at several time lags

P∆t(r) = 〈δ(r − |xt − xt−∆t|)〉 . (10)

We can see clearly the power-law tail P∆t(r) ∼ r−3, ob-
served first in [59]. The results can be also rescaled to
fall onto a single curve, P∆t(r) = 1

sF
(

r
s

)
as shown in

Figure 16. The dependence of the scaling factor s on the
time lag ∆t is shown in the inset of Figure 16 and we can
clearly see the power-law dependence s ∝ (∆t)1/4. Hence
we deduce the Hurst exponent of the price fluctuation pro-
cess H = 1/4. The same value of the Hurst exponent is
confirmed independently by drawing the Hurst plot, Fig-
ure 20.

The volatility clustering, measured by the autocorre-
lation of absolute returns, is shown in Figure 17. The
autocorrelations decay as a power law, similarly as in the
Stigler model, but now the exponent is significantly lower,
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Fig. 14. Example of the evolution of the Maslov model with evaporation. Each segment of a horizontal line corresponds to
one order, placed where the segment starts and executed or evaporated where the segment ends. The rugged line is the time
dependence of the actual price. Average number of orders is N = 100 and the probability of evaporation q = 0.05.
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Fig. 15. Distribution of returns in the Maslov model without
evaporation, at time lags ∆t = 1 (◦), 10 (�), 100 (�), 103

(•), 104 (�), and 105 (�). The line is the power ∝ r−3.
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Fig. 16. Rescaled distribution of returns in the Maslov model
without evaporation. The meaning of the symbols is the same
as in Figure 15. The line is the power ∝ r−3. In the inset we
plot the dependence of the scaling constant on the time lag.
The line is the power ∝ (∆t)1/4.

〈|rt rt−∆t|〉c ∼ (∆t)−0.5, which makes the behaviour much
more similar to empirical price sequences.

Now we investigate the effect of finite evaporation
probability, q > 0. In the distribution of one-step returns,
Figure 18, it leads to deformation of the original power-
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Fig. 17. Autocorrelation of absolute returns for the Maslov
model without evaporation (◦) and with evaporation proba-
bility q = 0.01 (�). Average number of orders is N = 1000.
The dashed line is the power ∝ (∆t)−0.5 and the solid line is
∝ (∆t)−0.62.

law dependence. At very small values of q, we observe
an effective increase of the power-law exponent, to values
1 + α = 4 and even more. This would sound fine, as this
is just the value reported in empirical studies. However,
a cutoff starts developing as well and when we increase q
further, the cutoff prevails and the power-law regime van-
ishes completely. Since the evaporation destroys the power
law, it is not surprising that the scaling also breaks down.
In Figure 19 we can see that no scaling can be seen, be-
cause at each time lag the shape of the graph is different.

While the return distribution changes substantially,
the absolute return autocorrelation remains nearly the
same. The decay follows again a power law, but the ex-
ponent is somewhat larger, 〈|rt rt−∆t|〉c ∼ (∆t)−0.62. The
long-time correlations are caused by the immobile orders
who sit within the book until the price finds its path back
to them. Evaporation removes some of the orders, thus
eroding the correlations. Quantitatively it results in sup-
pression of the correlation function.

Finally, we look at the Hurst plot, Figure 20. As men-
tioned already in [18], evaporation of orders induces the
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Fig. 18. Distribution of one-step returns in the Maslov model
with (�, �) and without (◦) evaporation. The evaporation
probability is q = 0.01 (�), 0.05 (�); the average number of
orders is N = 1000. The solid line is the power ∝ r−3, the
dashed line is ∝ r−4.
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Fig. 19. Distribution of returns in the Maslov model with
evaporation. The parameters are q = 0.05, N = 1000. The
lime lags are ∆t = 1 (◦), 10 (�), 100 (�), 103 (•), 104 (�),
and 105 (�).

crossover to purely diffusive behaviour, H = 1/2 at large
times. Interestingly, when we compare the quantity R(∆t)
at equal time difference for different values of q we can see
that larger evaporation probability actually suppresses the
diffusion. The Hurst exponent H = 1/2 remains univer-
sal, but the diffusion constant is lower for larger q. The
possible explanation is that the evaporation events go at
the expense of satisfaction events. Therefore, there are less
trades per unit of time, hence the slower diffusion of the
price.

We studied also another modification of the Maslov
model, where the evaporation of orders was implemented
in the sense of Stigler model. Instead of removing an arbi-
trarily chosen order with fixed probability, we track the
age of the orders and remove them if the age exceeds
certain fixed lifetime. We did not observe much differ-
ence compared to the variant with usual evaporation. The
Hurst plot looks much like that of Figure 20, showing
clear crossover from the short time H = 1/4 to long-time
H = 1/2 behaviour. Absolute returns autocorrelation de-
cays as a power with similar (slightly larger) exponent.
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Fig. 20. Hurst plot for the Maslov model without evaporation
(◦) and with evaporation probability q = 0.01 (�) and 0.05
(�). Average number of orders is N = 1000. The solid line is
the power ∝ (∆t)1/4, the dashed line is ∝ (∆t)1/2.

Somewhat larger difference can be seen in the return dis-
tribution. The finite lifetime of the orders leads to decrease
in the exponent of the power-law part, while the evapora-
tion causes its increase. Qualitatively, the cutoff at larger
returns seems more severe than in the case of evaporation,
although quantitative comparison is hardly possible. To
sum up, we consider the variant with finite lifetime farther
from the reality than the variant with simple evaporation.

3.5 Uniform deposition model

In Maslov model, the new orders are placed locally, at
distance 1 from the actual price. It could be possible to
fix another limit for the maximum distance, and indeed,
in the original work [59] this number was 5. There is little,
if any, effect of the precise value of this parameter. The
important thing is that the orders are never placed farther
than certain predefined limit.

In reality, however, the distribution of distances at
which the orders are placed is rather broad and decays
as a power law [26]. The mechanism responsible for this
power law is probably related to the optimisation of invest-
ments performed by agents working at widely dispersed
time horizons [39]. Actually it is reasonable to expect that
the distribution of time horizons and (related to it) dis-
tribution of distances is maintained by equilibration, so
that all agents expect just the same average gain, irre-
spectively of the time horizon on which they act. This
idea would certainly deserve better formalisation.

Instead of taking the empirical distribution of place-
ments as granted without deeper theoretical understand-
ing, we prefer to compare the localised deposition in
Maslov model with a complementary strategy applied in
the set of models investigated by Daniels, Farmer and
others [62–65]. Instead of keeping short distance from
the price, the orders are deposited with equal probabil-
ity at arbitrary distance. In this work, we adopt one of
the variants studied in [62] and within this paper we shall
call it Uniform Deposition Model (UDM).
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Fig. 21. Example of the evolution of the Uniform Deposition Model. Each segment of a horizontal line corresponds to one order.
The rugged line is the time dependence of the actual price. The width of the segment of allowed prices is L = 104. Average
number of orders is N = 100 and the evaporation probability q = 0.9.

In fact, the only difference with respect to the Maslov
model with evaporation, defined in Section 3.4 is that
we limit the price to a segment of length L and or-
ders are deposited uniformly on this segment. So, the or-
ders and price can assume integer position from the set
S = {−L/2,−L/2 + 1, . . . , L/2 − 2, L/2 − 1}. As in the
Maslov model, there are three classes of events, deposition,
order satisfaction, and evaporation. Their probabilities are
defined by the same formulae (9) as in the Maslov model.
When an order is to be deposited, we first look where is
the price xt. Then, select randomly a point ct from the set
S\{xt} and deposit an order there. If ct > xt the order be-
comes an ask, if ct < xt it is a bid. (We forbid depositing
exactly at the price position.) Although the probabilities
(9) look the same as in the Maslov model, we should note
that there is a big difference in the typical values of the
evaporation probability q. In Maslov model the orders are
clustered around the price and the evaporation is somehow
a complement or correction to the natural satisfaction of
the limit orders by incoming market orders. So, q is typ-
ically a small number compared to 1. On the contrary,
in UDM the evaporation is essential, because orders are
deposited in the whole allowed segment and ought to be
removed also from areas where the price rarely wanders.
Therefore, q is comparable to, although smaller than, one.
Very often, the simulations were performed in the regime
where 1 − q was much smaller than 1.

To see a typical situation, we plot in Figure 21 the
space-time chart of orders and price. We can see how the
price “crawls” through a see of orders and the configura-
tion of the orders changes substantially also very far from
the price and without being affected by its movement. Of
course, this is to be expected due to uniform deposition
rule. On the other hand, this is certainly not a realistic
feature.

We found fairly interesting, although absolutely unre-
alistic, the distribution of one-step returns, as shown in
Figures 22 and 23. The tail is characterised by power-
law decay P1(r) ∼ r−0.75 and the exponent, close to the
fraction 3/4, seems to be universal, irrespectively of the
parameters q and N . The value of the exponent is far
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Fig. 22. Distribution of one-step returns in UDM. The pa-
rameters are L = 106, q = 0.9, and N = 104 (◦), 103 (�), and
100 (�). The line is the power ∝ r−0.75.
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Fig. 23. Distribution of one-step returns in UDM. The pa-
rameters are L = 106, N = 104, and q = 0.5 (�), 0.9 (�), 0.95
(◦), and 0.99 (�). The line is the power ∝ r−0.75.

below the empirical value, but the very fact of universal
behaviour in such reaction-deposition model calls for ex-
planation. We do not have any yet.

While the power law in the return distribution indi-
cates some scale-free behaviour at single time, we find no
sign of scaling when we compare the returns at different
time scales. We can see that in Figure 24. At longer lags
the power-law tail vanishes and the distribution becomes
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Fig. 24. Distribution of returns in UDM at different time lags.
The parameters are L = 106, N = 104, and q = 0.5. The time
lags are ∆t = 1 (◦), 10 (�), 100 (�), 103 (•), and 104 (�).
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Fig. 25. Autocorrelation of absolute returns in UDM. The
parameters are L = 105, q = 0.9; N = 103 (◦), and 100 (�).

uniform. This means that after long enough time the price
can jump arbitrarily from one position to another within
nearly all the allowed range, except the vicinity of the ex-
tremal points. In fact, the same behaviour was observed
also for long enough time lags in the Stigler model. Cer-
tainly, the origin of such behaviour is the very existence
of the limited price range, both in UDM and the Stigler
model.

Let us look on the volatility clustering now. In Fig-
ure 25 we show the autocorrelation of absolute returns.
the decay is rather slow, i.e. slower than exponential, but
at the same time it is faster than a power law. This be-
haviour is special to the Uniform Deposition Model.

Finally, in Figure 26 we show the Hurst plot. Again,
there is close similarity to the Stigler model in the sense
that there is no long-time diffusive regime but saturation
is observed instead. Only in the very short initial tran-
sient we observe ordinary diffusion-like behaviour charac-
terised by H = 1/2. It is unclear from our simulations
whether there is an intermediate time window in which a
non-trivial Hurst exponent (like the notorious H = 1/4)
would be observed.
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Fig. 26. Hurst plot for UDM. The parameters are L = 106;
q = 0.9 (◦, �), and 0.5 (�); N = 104 (◦, �) and 1000 (�).
The line is the power ∝ (∆t)1/2.

4 Conclusions

It is not easy to make a synoptic comparison of the whole
ensemble of models studied here. However, one easy con-
clusion can be drawn, that none of them reproduces sat-
isfactorily the reality. Most importantly, the empirically
observed Hurst exponent H � 0.6 is not found anywhere.
We can classify the diffusion behaviour into three main
types. The first and most trivial one is dominated by the
saturation, H = 0 and happens always when the price is
restricted by definition to an interval, like in the Stigler
and Uniform Deposition models. The same holds also for
the asymptotic regime of the BPS model, although in the
latter the interesting things happen at the intermediate
time scale, where H = 1/4. We do not exclude the pos-
sibility that also in UDM the intermediate times have
H = 1/4, but we were not able to make any conclusive
statement about that. The second type is characterised by
asymptotic sub-diffusion, with H = 1/4. Strictly speaking
this holds only for the Maslov model without evaporation.
The third and most frequent type of behaviour can be de-
scribed as ordinary diffusion (H = 1/2) at long times. The
initial transient regime may exhibit either H = 1/4, as in
the Maslov model with evaporation or with fixed finite
lifetime of orders, or it may instead show the tendency to
saturation, as in the free Stigler model and Genoa artificial
market model. It seems really difficult to design an order-
book model where super-diffusive behaviour (H > 1/2)
would arise naturally, without being put in by hand. We
cannot resist the temptation to compare this difficulty
with the situation in stochastic modelling by continuous-
time random walks [79]. There also, the sub-diffusive be-
haviour can be found easily, but the super-diffusive one
should be essentially forced.

The power-law tails in the return distribution seem to
work slightly better. When we set apart the BPS model,
where the tail decays even faster than exponentially, we
can distinguish the models where the exponent in the
power-law decay is far too low (α < 0), which comprises
Stigler model, free Stigler model and UDM, from the mod-
els, where the exponent lies close, although not always
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precisely at the empirical value. The latter group contains
the Genoa market model and the Maslov model with and
without evaporation. The best chance for success when
matched with the real data has the Genoa model, where
the exponent can be tuned by variation of the model pa-
rameters. On the other hand, it is a priori unclear, why
the parameter values should be this and not that. In the
Maslov model proper, the exponent is universal, α = 2.
Adding evaporation increases this value, so the agreement
with the data can be again tuned, in this case by chang-
ing the evaporation speed. However, evaporation induces
not only effective increase of the exponent, but also emer-
gence of a cutoff. In fact, we think that the change in ex-
ponent is only an illusion brought about by combination
of the power law and a weak cutoff. This contrasts with
the Genoa model, where, below the phase transition, the
power-law tails are genuine for all values of the parameter
g < gc.

The very existence of the phase transition in the Genoa
market model is a remarkable fact. It is intimately related
to the dependence of the tail exponent on g. When the
exponent drops to the value α = 1 the average return di-
verges and the transition occurs. One could speculate, how
the picture would change if the feedback between volatility
and order placement was defined differently. For example,
the volatility can be defined through squares of returns,
instead of absolute returns. This would also sound more
natural, we think. We expect that in this case the tran-
sition would be related to the divergence of the second
moment of the return distribution, i.e. it would be located
at such parameter values which would imply the exponent
α = 2. Otherwise, the picture would be most probably the
same.

There is one feature, not so much important as such,
but showing that the free Stigler model, Genoa stock mar-
ket and Maslov model are members of the same family. If
we look at the return distribution at small returns, we find
that Genoa stock market and Maslov model (see Ref. [59])
exhibit another power-law regime, with very small expo-
nent 1 + α � 0.5. Clearly it is the sign that deep within
the bunch of orders surrounding the price the two models
behave just like the free Stigler model, which shows the
same power law in entire range of returns.

The return distribution in the Maslov model without
evaporation has a very important and appealing feature.
Its is the scaling property. The returns at different time
lags scale with Hurst exponent equal to H = 1/4. Quali-
tatively it agrees with the empirically found scaling, but,
unfortunately, quantitatively it is completely off. An im-
portant finding is that the evaporation of orders destroys
the scaling, which is also absent in the UDM model. On
the contrary, we also observed scaling in the Genoa mar-
ket model, but not a perfect one. The difference between
different lags is in the (not so much important, after all)
low-return range, where the power-law tail is not yet de-
veloped.

When we want to compare the volatility clustering
measured through the autocorrelation of absolute returns,
we exclude the BPS model. Due to rather long waiting

times, the measurement of the autocorrelation was im-
practical. In all remaining models, we found slow decay
of the autocorrelations, but the functional form was not
always a power. In fact, there are two exceptions. In the
Genoa market model, the decay is exponential, although
very slow. In UDM, the decay is faster than any power-law
but slower than an exponential. A stretched exponential
may be perhaps the candidate. In the remaining models,
the power-law decay is observed. The difference lies in the
exponent. While in the Stigler and free Stigler model, the
exponent is above 1, in the Maslov model, both with and
without evaporation, the value lies at or close to 1/2.

A crucial conclusion from the above is, that we cannot
simply pick a model (“the best one”) from those studied
here and apply it directly for a stock-market practice, e.g.
for option pricing. All the models need some extensions
or modifications to serve well as a realistic description.
In this work we had no intent to amend the models by
gluing together ad hoc parts with the only scope to get
exponents right. We consider that counter-productive. If a
simple, bare model is not satisfactory, one should look for
another one, preferably as simple as the first one. That is
why we strove to compare “bare” models here. To express
our feeling, the models which passed the tests with high-
est scores were the Genoa market model and the Maslov
model, with some (but not too much) evaporation of or-
ders. We must also note that the empirical model of ref-
erence [66] reproduces the data for return distribution by
far the best accuracy. At the same time, though, it makes
use of several empirical inputs, rather than clear micro-
scopic mechanisms, and therefore follows somewhat dif-
ferent modelling philosophy than ours. That is why we
leave this model aside, without neglecting its merits and
importance.

To sum up, we compared several order-book models
of stock-market fluctuations. None of them is fully satis-
factory yet. Calculating the return distribution, volatility
autocorrelation and the Hurst plot, we were able to iden-
tify which of the models are promising candidates for fu-
ture development. To tell the names, they are the Genoa
market model and the Maslov model.

This work was supported by the MŠMT of the Czech Republic,
grant no. 1P04OCP10.001, and by the Research Program CTS
MSM 0021620845.
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