
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

HABILITAČNÍ PRÁCE

komentovaný soubor publikaćı

OBOR: Teoretická informatika

Minimálńı KNF reprezentace

booleovských funkćı

RNDr. Petr Kučera, Ph.D.

Katedra teoretické informatiky a matematické logiky

Praha, ř́ıjen 2013

Obsah habilitačńı práce

Tato práce se skládá ze souboru pěti p̊uvodńıch článk̊u doplněného úvodńım
komentářem.

1. Endre Boros, Ondřej Čepek, Alexander Kogan, and Petr Kučera.
Exclusive and essential sets of implicates of Boolean functions. Dis-
crete Applied Mathematics 158 (2010) 81-96. (16 stran, [8])

2. Endre Boros, Ondřej Čepek, Alexander Kogan, and Petr Kučera.
A subclass of Horn CNFs optimally compressible in polynomial time.
Annals of Mathematics and Artificial Intelligence (2009) 57:249-
291. (43 stran, [7])

3. Ondřej Čepek and Petr Kučera. Disjoint essential sets of implicates
of a CQ Horn function. Annals of Mathematics and Artificial
Intelligence (2011) 61:231-244. (14 stran, [12])

4. Ondřej Čepek, Petr Kučera, and Petr Savický. Boolean functions with
a simple certificate for CNF complexity. Discrete Applied Mathe-
matics 160 (2012) 365-382. (18 stran, [13])

5. Endre Boros, Ondřej Čepek, and Petr Kučera. A decomposition me-
thod for CNF minimality proofs. Theoretical Computer Science,
Available on-line, DOI: 10.1016/j.bbr.2011.03.031, (16 stran, [9]).

Články do této práce byly vybrány s ohledem na společné téma, j́ımž
je studium minimálńıch reprezentaćı booleovských funkćı formulemi v kon-
junktivně normálńı formě. Spojuj́ıćı téma vybraných článk̊u se dá popsat
i úžeji. Všechny se totiž nějakým zp̊usobem věnuj́ı esenciálńım a exklu-
zivńım množinám implikát̊u, což jsou pojmy zavedené v prvńım vybraném
článku spolu s řadou teoretických výsledk̊u o těchto množinách. Ve druhém
článku byla pak takto vybudovaná teorie využita k definici nové tř́ıdy funkćı
(component-wise quadratic, CQ), u nichž je možné v polynomiálńım čase
naj́ıt nejkratš́ı reprezentaci formuĺı v konjunktivně normálńı formě. Ve třet́ım
článku je tř́ıda CQ studována z hlediska esenciálńıch množin implikát̊u. Te-
orie z prvńıho článku je potom dále rozv́ıjena v článku čtvrtém. Konečně
posledńı vybraná práce popisuje zp̊usob, jak pomoćı esenciálńıch a exklu-
zivńıch množin implikát̊u odhadnout počet klauzuĺı v nejkratš́ı reprezentaci

1

dané funkce. Tyto techniky jsou použity k d̊ukazu toho, že již hledáńı mi-
nimálńıch reprezentaćı formuĺı v 3KNF (tj. konjunktivně normálńı formě, kde
každá klauzule obsahuje nejvýš tři literály) je NP-těžké. Všech pět článk̊u
již vyšlo v časopisech s impakt faktorem, přičemž posledńı vybraný článek,
tedy [9] vyšel zat́ım jen elektronicky a v době podáńı této habilitačńı práce
jej ještě čeká přǐrazeńı plných bibliografických údaj̊u.

Podrobněǰśı seznámeńı s výsledky obsaženými ve shromážděných článćıch
a souvisej́ıćı komentáře uvedeme v části dvě této habilitačńı práce. Nejprve
však v prvńı části práce shrneme současný stav problematiky minimalizace
booleovských formuĺı, což je téma spojuj́ıćı vybrané články.

1 Současný stav zkoumané problematiky

Pod pojmem booleovská funkce na n proměnných mı́ńıme zobrazeńı f :
{0, 1}n 7→ {0, 1}. Booleovskou funkci lze reprezentovat r̊uznými zp̊usoby, asi
nejpřirozeněǰśım je reprezentace pomoćı pravdivostńı tabulky. Tento zp̊usob
reprezentace však jistě neńı nejúsporněǰśı.

Hledáńı v nějakém smyslu nejmenš́ı či nejúsporněǰśı reprezentace dané bo-
oleovské funkce je přitom d̊uležitým problémem, který je třeba řešit v řadě
aplikaćı. Např́ıklad v umělé inteligenci je tento problém ekvivalentńı hledáńı
nejúsporněǰśı reprezentace báze znalost́ı [20, 19]. Při tom docháźı ke kom-
presi znalost́ı, nebot’ zat́ımco reprezentace se může změnit, samotné znalosti
z̊ustávaj́ı beze změny. Při návrhu logických obvod̊u pak hledáńı nejmenš́ı
reprezentace odpov́ıdá hledáńı obvodu s co nejmenš́ım počtem hradel [10].

Obt́ıžnost hledáńı úsporné reprezentace i zp̊usoby, které k tomuto hledáńı
bývaj́ı použity, se lǐśı podle toho, jaký typ reprezentace uvažujeme. Roli
hraje pochopitelně i to, jakým zp̊usobem měř́ıme velikost reprezentace, tedy
použitá mı́ra. Ve většině př́ıpad̊u je problém minimalizace booleovské funkce
obt́ıžný, a proto se v praktických aplikaćıch často využ́ıvaj́ı heuristické me-
tody. Již v šedesátých letech byly použ́ıvány Karnaughovy mapy, algoritmus
Espresso a řada jiných [10].

V závislosti na aplikaci se uvažuj́ı r̊uzné reprezentace booleovských funkćı.
Zmiňme např́ıklad rozhodovaćı diagramy (binary decision diagrams, BDD),
OBDD (ordered BDD, jde o zvláštńı typ rozhodovaćıho diagramu) či obvody.
Obvod lze definovat jako orientovaný acyklický graf, v němž vnitřńı vrcholy
odpov́ıdaj́ı hradl̊um, která poč́ıtaj́ı elementárńı booleovské funkce (např. kon-
junkci, disjunkci, negaci, ale i XOR či NAND). Vrcholy bez vstupńıch hran

2

pak odpov́ıdaj́ı vstupńım proměnným a vrcholy bez výstupńıch hran od-
pov́ıdaj́ı výstupu obvodu. Zvláštńım př́ıpadem obvodu je potom logická for-
mule, na kterou lze pohĺıžet jako na obvod, u nějž vyžadujeme, aby výstupńı
stupeň každého hradla byl nejvýš jedna.

V mnoha př́ıpadech uvažujeme reprezentaci booleovské funkce pomoćı
konjunktivně normálńı formy (KNF) či disjunktivně normálńı formy (DNF,
též zvané sum of products, SOP). Je známo, že každou booleovskou funkci lze
reprezentovat jak pomoćı KNF tak pomoćı DNF [11]. Z hlediska struktury
jsou si tyto reprezentace velmi podobné, a proto obvykle stač́ı uvažovat jednu
z nich, přičemž výsledky pro KNF lze snadno přenést i na DNF a naopak.
V následuj́ıćım textu se proto omeźıme zejména na KNF, protože i články
obsažené v této práci použ́ıvaj́ı tento typ reprezentace booleovských funkćı.
Konjunktivně normálńı formu definujeme následuj́ıćım zp̊usobem. Literál je
bud’ proměnná (pozitivńı literál , např. a), nebo jej́ı negace (negativńı literál ,
např. a). Klauzule je disjunkćı literál̊u, např. (a∨ b∨ c). Řekneme, že formule
ϕ je v konjunktivně normálńı formě (KNF), jde-li o konjunkci klauzuĺı, např.
(a ∨ b ∨ c)(a ∨ b ∨ c). Mı́sto toho, abychom psali, že ϕ je formuĺı v KNF,
budeme též psát, že ϕ je KNF. Obsahuje-li KNF ϕ jen klauzule s nejvýš třemi
literály, řekneme, že jde o 3KNF či že je ϕ kubická. Je-li KNF ϕ složena jen
z klauzuĺı obsahuj́ıćıch nejvýš dva literály, řekneme, že jde o 2KNF či že je
ϕ kvadratická.

Formule v KNF odpov́ıdá obvodu, který má dvě vrstvy hradel, prvńı
vrstva obsahuje jen hradla typu OR (disjunkce), druhá vrstva pak hradla
AND (konjunkce). Pokud připust́ıme, že jedno hradlo může mı́t v́ıce než
dva vstupy, jde skutečně o obvod hloubky dva (kde hloubku obvodu definu-
jeme jako počet hradel na nejdeľśı cestě od vstupu k výstupu obvodu), tedy
o obvod, jehož paralelńı výpočet zabere dva kroky. Pokud však vyžadujeme,
aby hradla AND a OR měla vždy jen dva vstupy, je hloubka obecné KNF
Θ(log2 n). I v tomto př́ıpadě však hloubka formule v 3KNF nebo v 2KNF
bude konstantńı, což dodává studiu konjunktivně normálńıch forem s klau-
zulemi omezené délky na d̊uležitosti.

Uved’me ještě několik základńıch pojmů, které budeme v tomto textu
využ́ıvat. Necht’ f je booleovská funkce. Řekneme, že klauzule C je im-
plikátem funkce f , pokud plat́ı, že každé ohodnoceńı splňuj́ıćı f splňuje i
C. Řekneme, že implikát C funkce f je primárńı, pokud neexistuje žádná
vlastńı podklauzule C ′ klauzule C, která by též byla implikátem f . Formule
ϕ v KNF reprezentuj́ıćı funkci f je primárńı KNF , pokud se skládá pouze
z primárńıch implikát̊u f . Pokud z ϕ nelze odstranit žádnou klauzuli aniž by

3

došlo ke změně reprezentované funkce, jedná se o iredundantńı KNF .
Uvažme nejprve úlohu, jej́ımž vstupem je pravdivostńı tabulka funkce f a

na výstupu očekáváme formuli ϕ v KNF, která reprezentuje funkci f a skládá
se z co nejmenš́ıho počtu klauzuĺı (označme si tuto úlohu jako BM-TT). Takto
definovaná úloha je zvláštńım př́ıpadem problému Set Cover, tedy pokrýváńı
množin. Konkrétně se snaž́ıme pokrýt nulové body (false pointy), což jsou
vstupy v, pro něž je f(v) = 0, primárńımi implikáty funkce f . Stejně jako Set
Cover [18], i BM-TT je NP-těžká úloha [1, 14, 27]. Nav́ıc lze tuto úlohu těžko
aproximovat. Konkrétně, pokud NP nepatř́ı do tř́ıdy problémů řešitelných
v deterministickém kvazipolynomiálńım čase, pak existuje konstanta γ > 0,
pro kterou plat́ı, že neexistuje polynomiálńı aproximačńı algoritmus s apro-
ximačńım poměrem (logN)γ, kde N je velikost pravdivostńı tabulky funkce
f na vstupu [1, 17].

Úlohu, kdy uvažujeme jako vstup KNF ϕ reprezentuj́ıćı funkci f na n
proměnných a ćılem je nalézt KNF ϕ′, která rovněž reprezentuje funkci f a
skládá se z co nejmenš́ıho počtu klauzuĺı, si označ́ıme jako BM-KNF. Tato
úloha je dokonce Σp

2-těžká, kde Σp
2 označuje druhou úroveň polynomiálńı

hierarchie. Nejen to, ale Σp
2-těžké je i aproximovat řešeńı úlohy BM-KNF

v polynomiálńım čase s aproximačńım poměrem n
1
2
−ε pro libovolné ε > 0 [26,

27].
Kromě hledáńı minimálńıch reprezentaćı obecných booleovských funkćı se

úsiĺı zaměřovalo i na studium zvláštńıch tř́ıd booleovských funkćı. Mezi nimi
význačné postaveńı zauj́ımá tř́ıda hornovských funkćı. Řekneme, že klauzule
je hornovská, obsahuje-li nejvýš jeden pozitivńı literál, přitom pokud obsa-
huje právě jeden pozitivńı literál, hovoř́ıme o čistě hornovské klauzuli , pokud
pozitivńı literál neńı v klauzuli v̊ubec neobsažen, jedná se o negativńı klau-
zuli . Hornovská KNF se potom skládá jen z hornovských klauzuĺı. Pokud
funkci f můžeme reprezentovat nějakou hornovskou KNF, hovoř́ıme o hor-
novské funkci . Důležitost tř́ıdy hornovských formuĺı tkv́ı jednak v tom, že
o hornovské formuli ϕ můžeme v lineárńım čase rozhodnout, zda je splni-
telná [16, 23, 25], přestože problém testováńı splnitelnosti obecné formule
v KNF je NP-úplný [18]. Daľśım d̊uvodem význačnosti hornovských for-
muĺı je, že analogické struktury se objevuj́ı v řadě oblast́ı diskrétńı mate-
matiky a informatiky. Mezi jinými zmiňme např́ıklad orientované hypergrafy
(viz např. [3]), databázová schémata [24, 15], implikačńı báze uzávěrových
systémů [2, 4].

Na rozd́ıl od splnitelnosti, minimalizace hornovských funkćı vzhledem
k počtu klauzuĺı je NP-těžkou úlohou, pokud je vstupem hornovská KNF [3]

4

(takto omezený problém nazveme BM-HORN). Nedávno bylo nav́ıc ukázáno,
že jde o problém těžký i pro aproximaci. Konkrétně v [5] autoři ukazuj́ı, že
problém BM-HORN neńı aproximovatelný v polynomiálńım čase s poměrem
2log1−ε(n) pro každé ε > 0 za předpokladu, že NP 6⊆ DTIME(npolylog(n)).
Jen o něco nověǰśı výsledek [6] ukazuje, že problém BM-HORN je neaproxi-

movatelný polynomiálńım algoritmem s aproximačńım poměrem 2O(log1−o(1) n)

za předpokladu, že P 6= NP , a to i tehdy, je-li vstup omezen na hornovské
formule v 3KNF.

Na druhou stranu však zmiňme i některé pozitivńı výsledky týkaj́ıćı se mi-
nimalizace hornovských funkćı. Čistě hornovskou klauzuli C můžeme rozdělit
na dvě části, na množinu proměnných A, které se v C vyskytuj́ı negativně a
na proměnnou x, která se v C vyskytuje pozitivně. V tom př́ıpadě ř́ıkáme,
že A je zdrojová množina a proměnné v ńı obsažené jsou podćıle klauzule C.
Jediná pozitivńı proměnná x je pak ćılem klauzule C. Tyto pojmy vycházej́ı
z toho, že klauzule C = (

∨
a∈A a∨x) reprezentuje implikaci (

∧
a∈A a→ x), kte-

rou si můžeme představit jako pravidlo, které umožňuje z platnosti podćıl̊u
odvodit platnost ćıle klauzule C. Úloha, v ńıž je naš́ım ćılem nalézt pro danou
hornovskou KNF ϕ formuli ϕ′ s co nejmenš́ım počtem r̊uzných zdrojových
množin, je řešitelná v polynomiálńım čase [24].

Kromě toho můžeme nalézt zvláštńı př́ıpady hornovských funkćı, pro něž
je možné vyřešit úlohu BM-HORN v polynomiálńım čase. Jedná se např́ıklad
o tř́ıdy acyklických a kvaziacyklických funkćı zavedených v [21]. Definice obou
těchto tř́ıd je založena na pojmu KNF grafu. K dané hornovské KNF ϕ definu-
jeme KNF graf Gϕ = (V,E) následovně, jde o orientovaný graf, kde množina
vrchol̊u V odpov́ıdá množině proměnných ϕ. Z proměnné x do proměnné y
vede hrana, tj. (x, y) ∈ E, pokud ve formuli ϕ existuje klauzule C, v ńıž je
x podćılem a y ćılem. Dá se ukázat, že definuj́ı-li formule ϕ a ϕ′ touž funkci
f , pak grafy Gϕ a Gϕ′ maj́ı shodný tranzitivńı uzávěr Gf , naopak to ovšem
neplat́ı. Acyklická funkce f má acyklický graf Gf . Pro kvaziacyklickou funkci
g plat́ı, že patř́ı-li dvě proměnné x a y do téže silně souvislé komponenty
grafu Gg, pak jsou pro funkci g proměnné x a y ekvivalentńı, tj. (x ∨ y) a
(y ∨ x) jsou implikáty funkce g. V [21] se ukazuje, že každá primárńı KNF ϕ
reprezentuj́ıćı acyklickou (resp. kvaziacyklickou) funkci f je acyklická (resp.
kvaziacyklická). Nav́ıc je možno naj́ıt k ńı nejkratš́ı KNF reprezentaci ϕ′

funkce f v polynomiálńım čase. nalezená KNF ϕ′ je potom nejkratš́ı jak co
do počtu klauzuĺı, tak co do celkového počtu literál̊u, které se ve formuli ϕ′

vyskytuj́ı.

5

V obecném př́ıpadě lze problém BM-HORN aproximovat v polynomiálńım
čase s aproximačńım poměrem n, kde n označuje počet proměnných vstupńı
formule ϕ. K tomu stač́ı převést hornovskou KNF ϕ do primárńı a iredun-
dantńı podoby [20]. Je známo [20], že k dané hornovské formuli ϕ lze nalézt
ekvivalentńı primárńı a iredundantńı formuli v polynomiálńım čase.

Za zmı́nku také stoj́ı, že dosud neńı známa složitost hledáńı minimálńı
hornovské KNF reprezentuj́ıćı funkci f , je-li zadána pravdivostńı tabulkou.

2 Přehled prezentovaných výsledk̊u

V článku [8] jsou zavedeny ústředńı pojmy esenciálńı a exkluzivńı množiny
implikát̊u, které jsou dále využ́ıvány v daľśıch článćıch. Obě definice jsou
založené na pojmech rezoluce a rezolučńıho odvozeńı, které nejprve krátce
připomeneme. Jsou-li C1 a C2 klauzule, řekneme, že maj́ı konflikt v proměnné
x, pokud jedna z nich obsahuje x a druhá x. Pokud C1 a C2 maj́ı konflikt
v právě jedné proměnné, pak jsou rezolvovatelné. Jsou-li C1 = A ∨ x a C2 =
B ∨ x, kde A a B jsou klauzule, které nemaj́ı konflikt v žádné proměnné,
potom rezolventa klauzuĺı C1 a C2 je klauzule C = R(C1, C2) = (A ∨ B).
Dá se ukázat, že je-li ϕ formule v KNF, která reprezentuje funkci f , a lze-li
klauzuli C odvodit z formule ϕ posloupnost́ı rezolućı, pak C je implikát f .
Nav́ıc plat́ı, že každý primárńı implikát funkce f lze z ϕ pomoćı rezoluce
odvodit [11].

Necht’ f je booleovská funkce, pomoćı Ip(f) označ́ıme množinu všech
primárńıch implikát̊u f a pomoćı I(f) označ́ıme rezolučńı uzávěr Ip(f), tj.
do I(f) patř́ı všechny klauzule, které lze odvodit z primárńıch implikát̊u f
pomoćı rezoluce.

Nyńı již můžeme definovat pojmy esenciálńı a exkluzivńı množiny im-
plikát̊u. Necht’ f je booleovská funkce a necht’ X ⊆ I(f), řekneme, že X je
exkluzivńı množinou implikát̊u funkce f , pokud pro každé dvě rezolvovatelné
klauzule C1, C2 ∈ I(f) plat́ı, že je-li jejich rezolventa C = R(C1, C2) prvkem
X , pak i oba implikáty C1, C2 patř́ı do X . Tj. plat́ı-li implikace

C = R(C1, C2) ∈ X ⇒ C1 ∈ X a C2 ∈ X .

Podobně definujeme i esenciálńı množiny. Množina E ⊆ I(f) je esenciálńı
množinou implikát̊u funkce f , pokud pro každé dvě rezolvovatelné klauzule
C1, C2 ∈ I(f) plat́ı, že je-li jejich rezolventa C = R(C1, C2) prvkem E , pak

6

alespoň jeden z implikát̊u C1, C2 patř́ı rovněž do E . Tj. plat́ı-li implikace

C = R(C1, C2) ∈ X ⇒ C1 ∈ E nebo C2 ∈ E .

V článku [8] je studována řada vlastnost́ı těchto množin, zmiňme zde ty
nejzaj́ımavěǰśı. Význam exkluzivńıch množin pro minimalizaci booleovských
funkćı tkv́ı v následuj́ıćı výměnné vlastnosti. Uvažme booleovskou funkci
f a exkluzivńı množinu implikát̊u X ⊆ I(f). V [8] se ukazuje, že jsou-li
ϕ1 a ϕ2 dvě KNF formule reprezentuj́ıćı f , pak ϕ1 ∩ X reprezentuje touž
funkci jako ϕ2 ∩ X , takovou funkci pak nazýváme exkluzivńı komponen-
tou funkce f a označujeme ji pomoćı fX . To znamená, že v KNF reprezen-
taci f můžeme zaměňovat r̊uzné reprezentace exkluzivńı komponenty fX .
Při hledáńı nejmenš́ı reprezentace f můžeme tedy zvlášt’ nalézt nejmenš́ı re-
prezentaci komponenty fX , kterou poté vlož́ıme zpět do KNF reprezentace
f . Exkluzivńı množiny implikát̊u funkce f takto umožňuj́ı dekomponovat
problém minimalizace na podproblémy.

Zastavme se nyńı u esenciálńıch množin implikát̊u. V [8] se ukazuje, že
jsou-li E1, . . . , Ek po dvou disjunktńı esenciálńı množiny implikát̊u funkce f ,
pak každá KNF formule ϕ reprezentuj́ıćı f muśı obsahovat alespoň k klauzuĺı.
Tento dolńı odhad plyne z obecněǰśıho tvrzeńı, které ř́ıká, že je-li ϕ formule
v KNF, pak ϕ reprezentuje f , právě když ϕ má neprázdný pr̊unik s každou
neprázdnou esenciálńı množinou implikát̊u funkce f . Označ́ıme-li si počet
klauzuĺı v nejmenš́ı (vzhledem k počtu klauzuĺı) KNF reprezentaci f pomoćı
cnf(f) a největš́ı počet po dvou disjunktńıch esenciálńıch množin implikát̊u
funkce f pomoćı ess(f), dostáváme nerovnost ess(f) ≤ cnf(f). Esenciálńı
množiny takto mohou poskytnout dolńı odhad na počet klauzuĺı v nejkratš́ı
KNF (co do počtu klauzuĺı) reprezentuj́ıćı danou funkci f .

V [8] jsou studovány i daľśı vlastnosti esenciálńıch a exkluzivńıch množin,
a to jak obecných booleovských funkćı, tak zvláště hornovských funkćı a
kvadratických funkćı. Ukazuje se, že je-li funkce f hornovská kvaziacyklická
funkce či je-li f kvadratická funkce, pak plat́ı dokonce rovnost ess(f) =
cnf(f). To nab́ıźı daľśı vhled do principu práce minimalizačńıch algoritmů
pro kvaziacyklické (a tedy i acyklické) a kvadratické funkce.

V článku [7] jsou teoretické výsledky z [8] využity k zobecněńı kvaziacyk-
lických funkćı do tř́ıdy CQ funkćı a ke konstrukci polynomiálńıho algoritmu,
který nalezne nejkratš́ı reprezentaci CQ funkce. Připomeňme, že definice kva-
ziacyklické funkce f je založena na KNF grafu Gf . Tento graf je i základem
definice CQ funkce. Uvažme opět hornovskou funkci f . Řekneme, že čistě

7

hornovská klauzule C je CQ klauzuĺı (component-wise quadratic) vzhledem
k funkci f , pokud plat́ı, že je-li K silně souvislá komponenta grafu Gf obsa-
huj́ıćı hlavu klauzule C, pak K obsahuje nejvýš jeden podćıl C. Je-li ϕ KNF
reprezentuj́ıćı f , která obsahuje pouze CQ implikáty a f , pak ϕ nazveme CQ
KNF reprezentaćı f . Pokud f má alespoň jednu CQ KNF reprezentaci, jde
o CQ funkci . Dá se přitom ukázat, že je-li f CQ funkce a C jej́ı primárńı
implikát, tak C je CQ klauzuĺı vzhledem k f . Z toho plyne, že každá primárńı
KNF reprezentace f je současně CQ KNF reprezentaćı f . Všimněme si, že
z uvedené definice plyne, že primárńı implikáty funkce f jsou čistě hornovské,
speciálně nepřipoušt́ıme negativńı implikáty. Již z výsledk̊u v [21] plyne, že
u hornovské funkce f lze zvlášt’ minimalizovat čistě hornovskou část, plat́ı,
že v každé minimálńı KNF reprezentaci f je potom týž počet negativńıch im-
plikát̊u a že je možné minimalizovat počet negativńıch implikát̊u s jakoukoli
čistě hornovskou část́ı. To plyne i z toho, že čistě hornovské implikáty tvoř́ı
exkluzivńı množinu, zat́ımco negativńı implikáty tvoř́ı esenciálńı množinu
implikát̊u funkce f .

CQ funkce jsou zřejmě zobecněńım kvaziacyklických funkćı. Pozname-
nejme, že kdybychom připustili dva podćıle v téže silně souvislé komponentě
společně s hlavou, patřily by do takto zobecněné tř́ıdy všechny hornovské
3KNF, a pro ně již je minimalizace NP-úplná [9].

Minimalizačńı algoritmus v [7] je založen na rozložeńı do exkluzivńıch
komponent, které jsou definovány na základě nově zavedeného grafu Df im-
plikát̊u dané hornovské funkce f . K minimalizaci samé je pak využito KNF
grafu Gf . Algoritmus nalezne v polynomiálńım čase nejmenš́ı reprezentaci
dané CQ funkce f jak vzhledem k počtu klauzuĺı, tak vzhledem k počtu li-
terál̊u. Vlastnosti tř́ıdy CQ funkćı jsou dále studovány v [12], kde se ukazuje,
že i v př́ıpadě CQ funkce f vždy plat́ı, že cnf(f) = ess(f).

Funkce, pro něž plat́ı rovnost mezi mı́rami cnf(f) a ess(f) jsou podro-
beny systematickému studiu v článku [13]. Funkce f , která splňuje cnf(f) =
ess(f) je zde nazvána coverable. Nejprve jsou v [13] zkoumány daľśı vlast-
nosti esenciálńıch množin. Předně se ukazuje, že při určováńı mı́ry ess(f) se
stač́ı omezit na esenciálńı množiny definované pomoćı nulových bod̊u dané
funkce. Je-li v nulovým bodem funkce f , tj. plat́ı-li f(v) = 0, pak množina
E(v) = {C ∈ I(f) | C(v) = 0} je esenciálńı množinou. Všimněme si, že
např́ıklad esenciálńı množina všech negativńıch implikát̊u hornovské funkce
f , má-li f jaké, je takto definována pomoćı nulového bodu v, který obsahuje
samé jedničky. V [8] bylo těchto množin využito při d̊ukazu jednoho směru
ekvivalence, že KNF ϕ reprezentuje funkci f právě když má neprázdný pr̊unik

8

s každou esenciálńı množinou implikát̊u funkce f .
V [13] jsou tyto množiny nazvány FE množinami (falsepoint essential set)

a je zde ukázáno, že zmı́něná ekvivalence plat́ı již pro př́ıpad FE množin.
Nav́ıc se ukazuje, že v inkluzi minimálńı esenciálńı množina je vždy FE
množinou a i pro definici ess(f) si ve skutečnosti vystač́ıme s FE množinami.
Ve skutečnosti se stač́ı omezit jen na pr̊uniky esenciálńıch množin s Ip(f),
tj. jen na primárńı implikáty z FE množin. U dvou FE množin E(u) a E(v)
neńı obt́ıžné rozhodnout, zda jsou disjunktńı, což je základem d̊ukazu toho,
že problém, v němž se ptáme, zda ess(f) ≥ k pro danou funkci f a přirozené
č́ıslo k, patř́ı do NP. Na druhou stranu se v článku [13] ukazuje i NP-těžkost
tohoto problému, jde tedy o problém NP-úplný. Zvláštńım př́ıpadem jsou
potom coverable funkce. Uvažme tř́ıdu KNF formuĺı C, která je coverable a
tractable, což v zásadě znamená, že je možno v polynomiálńım čase rozhod-
nout, zda daná KNF ϕ patř́ı do C, zda daná KNF ϕ ∈ C je splnitelná a zda
daná klauzule je implikátem dané KNF ϕ ∈ C. Z hlediska splnitelnosti je tedy
tractable tř́ıda formuĺı jednoduchá. Pro takovou tř́ıdu C plat́ı, že problém,
v němž se ptáme, zda cnf(f) ≤ k pro danou funkci f reprezentovanou KNF
formuĺı ϕ ∈ C a dané přirozené č́ıslo k, patř́ı do NP ∩ coNP .

Zdaleka ne všechny funkce jsou ovšem coverable. V [13] je studována i
otázka, jak velký může být rozd́ıl mezi cnf(f) a ess(f) pro obecnou funkci f ,
př́ıpadně pro hornovskou funkci f . Ukazuje se, že poměr cnf(f)/ess(f) nelze
omezit žádnou konstantou, přesněji je zkonstruován př́ıklad hornovské funkce
na n proměnných, pro kterou je tento poměr Ω(log2 n). Možná velikost tohoto
poměru byla dále studována autorkami [22], které zkonstruovaly hornovskou
funkci f , pro kterou je cnf(f)/ess(f) = Ω(

√
n).

Konečně v článku [9] je popsána obecná metoda, která s pomoćı de-
kompozice implikát̊u booleovské funkce f slouž́ı k určeńı dolńıho odhadu
počtu klauzuĺı v nejkratš́ı KNF reprezentuj́ıćı f , tedy dolńıho odhadu hod-
noty cnf(f). Tato metoda je demonstrována na dvou př́ıkladech. Jedńım
z nich je d̊ukaz NP-těžkosti minimalizace hornovských funkćı, tento d̊ukaz
p̊uvodně pocháźı z [3], avšak tam byl d̊ukaz jen velmi zkratkovitý. V [9] je po-
psaná dekompozičńı metoda použita k elegantńımu a jednoduchému d̊ukazu
potřebných vlastnost́ı převodu popsaného v [3]. Tento d̊ukaz je posléze upra-
ven tak, aby ukazoval NP-těžkost minimalizace hornovských 3KNF, i zde de-
kompozičńı metoda popsaná v [9] podává jednoduchý nástroj pro d̊ukaz mi-
nimality formule zkonstruované v převodu z problému Set Cover. Uvědomme
si, že prostý fakt, že minimalizace hornovských 3KNF je NP-těžká vyplývá již
z výsledk̊u [6], hlavńım výsledkem [9] je popis metody, která umožňuje uka-

9

zovat dolńı odhad cnf(f) pro konkrétńı funkci f , minimalizace hornovských
funkćı je zde vzata předevš́ım jako př́ıklad, na kterém jsou techniky popsané
v [9] demonstrovány.

Reference

[1] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Mi-
chael Saks. Minimizing dnf formulas and ac0d circuits given a truth table.
In Proceedings of the 21st Annual IEEE Conference on Computational
Complexity, pages 237–251. IEEE Computer Society, 2006. ISBN 0-
7695-2596-2. doi: 10.1109/CCC.2006.27.

[2] Marta Arias and José Balcázar. Canonical horn representations and
query learning. In Ricard Gavaldà, Gábor Lugosi, Thomas Zeugmann,
and Sandra Zilles, editors, Algorithmic Learning Theory, volume 5809
of Lecture Notes in Computer Science, pages 156–170. Springer Berlin /
Heidelberg, 2009. ISBN 978-3-642-04413-7.

[3] G. Ausiello, A. D’Atri, and D. Sacca. Minimal representation of directed
hypergraphs. SIAM Journal on Computing, 15(2):418–431, May 1986.

[4] K. Bertet and B. Monjardet. The multiple facets of the canonical direct
unit implicational basis. Theoretical Computer Science, 411(22–24):2155
– 2166, 2010. ISSN 0304-3975. doi: 10.1016/j.tcs.2009.12.021.

[5] Amitava Bhattacharya, Bhaskar DasGupta, Dhruv Mubayi, György
Turán, Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm
Meyer auf der Heide, and Paul Spirakis. On Approximate Horn Formula
Minimization, volume 6198, pages 438–450. Springer Berlin / Heidel-
berg, 2010. ISBN 978-3-642-14164-5. doi: 10.1007/978-3-642-14165-2 38.

[6] Endre Boros and Aritanan Gruber. Hardness results for approximate
pure horn cnf formulae minimization. In Proceedings of International
Symposium on AI and Mathematics (ISAIM), 2012.

[7] Endre Boros, Ondřej Čepek, Alexander Kogan, and Petr Kučera. A
subclass of horn cnfs optimally compressible in polynomial time. Annals
of Mathematics and Artificial Intelligence, 57:249–291, 2009. ISSN 1012-
2443. 10.1007/s10472-010-9197-7.

10

[8] Endre Boros, Ondřej Čepek, Alexander Kogan, and Petr Kučera.
Exclusive and essential sets of implicates of boolean functions. Dis-
crete Applied Mathematics, 158(2):81 – 96, 2010. ISSN 0166-218X. doi:
10.1016/j.dam.2009.08.012.

[9] Endre Boros, Ondřej Čepek, and Petr Kučera. A decomposition method
for cnf minimality proofs. Theoretical Computer Science, 2013. ISSN
0304-3975. doi: 10.1016/j.tcs.2013.09.016.

[10] R.K. Brayton, G.D. Hachtel, C. McMullen, and A.L. Sangiovanni-
Vincentelli. Logic minimization algorithms for VLSI synthesis, volume 2.
Springer, 1984.

[11] Hans K. Büning and T. Lettmann. Propositional Logic: Deduction and
Algorithms. Cambridge University Press, New York, NY, USA, 1999.
ISBN 0521630177.

[12] Ondřej Čepek and Petr Kučera. Disjoint essential sets of implicates of
a cq horn function. Annals of Mathematics and Artificial Intelligence,
61:231–244, 2011. ISSN 1012-2443. doi: 10.1007/s10472-011-9263-9.

[13] Ondřej Čepek, Petr Kučera, and Petr Savický. Boolean functions with
a simple certificate for cnf complexity. Discrete Applied Mathematics,
160(4-5):365 – 382, March 2012. ISSN 0166-218X.

[14] Sebastian Czort. The complexity of minimizing disjunctive normal form
formulas. Master’s thesis, University of Aarhus, 1999.

[15] C. Delobel and R.G. Casey. Decomposition of a data base and the
theory of boolean switching functions. IBM Journal of Research and
Development, 17:374 – 386, 1973.

[16] W.F. Dowling and J.H. Gallier. Linear time algorithms for testing the
satisfiability of propositional horn formulae. Journal of Logic Program-
ming, 3:267 – 284, 1984.

[17] Vitaly Feldman. Hardness of approximate two-level logic minimization
and pac learning with membership queries. In STOC ’06: Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing,
pages 363–372, New York, NY, USA, 2006. ACM. ISBN 1-59593-134-1.
doi: http://doi.acm.org/10.1145/1132516.1132569.

11

[18] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, San
Francisco, 1979.

[19] P. L. Hammer and A. Kogan. Knowledge compression - logic minimi-
zation for expert systems. In Proceedings of IISF/ACM Japan Internati-
onal Symposium, pages 306–312, Tokyo, March 1994. World Scientific,
Singapore.

[20] P.L. Hammer and A. Kogan. Optimal compression of propositional horn
knowledge bases: Complexity and approximation. Artificial Intelligence,
64:131 – 145, 1993.

[21] P.L. Hammer and A. Kogan. Quasi-acyclic propositional horn knowledge
bases: Optimal compression. IEEE Transactions on Knowledge and Data
Engineering, 7(5):751 – 762, 1995.

[22] Lisa Hellerstein and Devorah Kletenik. On the gap between ess(f) and
cnf size(f). Discrete Applied Mathematics, 161(1-2):19 – 27, 2013. ISSN
0166-218X. doi: 10.1016/j.dam.2012.07.004.

[23] A. Itai and J.A. Makowsky. Unification as a complexity measure for
logic programming. Journal of Logic Programming, 4:105 – 117, 1987.

[24] D. Maier. Minimal covers in the relational database model. Journal of
the ACM, 27:664 – 674, 1980.

[25] M. Minoux. Ltur: A simplified linear time unit resolution algorithm for
horn formulae and computer implementation. Information Processing
Letters, 29:1 – 12, 1988.

[26] Christopher Umans. The minimum equivalent dnf problem and shortest
implicants. J. Comput. Syst. Sci., 63(4):597–611, 2001. ISSN 0022-0000.
doi: http://dx.doi.org/10.1006/jcss.2001.1775.

[27] Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-
Vincentelli. Complexity of two-level logic minimization. IEEE Trans.
on CAD of Integrated Circuits and Systems, 25(7):1230–1246, 2006.

12

Discrete Applied Mathematics 158 (2010) 81–96

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Exclusive and essential sets of implicates of Boolean functions

Endre Boros a, Ondřej Čepek b,c,∗, Alexander Kogan d,a, Petr Kučera b
a RUTCOR, Rutgers University, P.O. Box 5062, New Brunswick, NJ 08903, USA
b Department of Theoretical Computer Science, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
c Institute of Finance and Administration (VŠFS), Estonská 500, 100 00 Praha 10, Czech Republic
d Department of Accounting, Business Ethics, and Information Systems, Rutgers Business School, Rutgers University, Newark, NJ 07102, USA

a r t i c l e i n f o

Article history:
Received 25 June 2008
Received in revised form 25 July 2009
Accepted 27 August 2009
Available online 30 September 2009

Keywords:
Horn functions
Boolean minimization
Essential sets
Exclusive sets

a b s t r a c t

In this paper we study relationships between CNF representations of a given Boolean
function f and certain sets of implicates of f . We introduce two definitions of sets of
implicates which are both based on the properties of resolution. The first type of sets,
called exclusive sets of implicates, is shown to have a functional property useful for
decompositions. The second type of sets, called essential sets of implicates, is proved to
possess an orthogonality property, which implies that every CNF representation and every
essential set must intersect. The latter property then leads to an interesting question,
to which we give an affirmative answer for some special subclasses of Horn Boolean
functions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

One of the most commonly used representations of Boolean functions are CNFs (conjunctive normal forms). For a
given function there are typically many different CNFs representing it, which may significantly vary in length. In some
applications an important problem is the following: for a given function find a shortest CNF among all of its possible CNF
representations. For instance, in artificial intelligence this problem is equivalent to finding a most compact representation
of a given knowledge base [12,13]. Such transformation of a knowledge base accomplishes knowledge compression, since
the actual knowledge does not change, while the size of the representation can be significantly reduced. In general, this
problem, known as Boolean minimization (BM), can be stated as follows: given a CNF φ find a CNF φ′ representing the same
function and such that φ′ consists of a minimum possible number of clauses.
It is easy to see that BM is NP-hard as it contains the satisfiability problem (SAT) as its special case (an unsatisfiable CNF

can be represented by an equivalent CNF consisting of only the constant ‘‘false’’, i.e. consisting of zero clauses or one clause
depending on whether the definition of a clause admits clauses with no variables). In fact, BM was shown to be probably
harder than SAT: while SAT is NP-complete (i.e.Σp1 -complete) [6], BM isΣ

p
2 -complete [21] (see also the review paper [22]

for related results). BM remains NP-hard even for some classes of Boolean functions for which SAT is solvable in polynomial
time. The best known example of such a class are Horn functions (see [1,2,7,12,15] for various BM intractability results). The
difficulty of BM of course raises a natural question whether for a given input CNF a nontrivial lower bound can be obtained
for the number of clauses in the shortest equivalent CNF. We give a partial answer to this question in Section 6.

∗ Corresponding author at: Department of Theoretical Computer Science, Charles University, Malostranskénám. 25, 118 00 Praha 1, Czech Republic.
Tel.: +420 221 914 246; fax: +420 221 914 323.
E-mail addresses: boros@rutcor.rutgers.edu (E. Boros), cepek@rutcor.rutgers.edu, cepek@ksi.ms.mff.cuni.cz (O. Čepek), kogan@rutgers.edu (A. Kogan),

kucerap@ktiml.ms.mff.cuni.cz (P. Kučera).

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.08.012

82 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

On the positive side, [14] introduced two subclasses of Horn functions, acyclic and quasi-acyclic functions, for which BM
is solvable in polynomial time. In fact, [14] and an earlier paper [10] by the same authors served as the original motivation
for the results presented in this manuscript.
Given a Boolean function f themain object of interest throughout this paper will be the set I(f) defined as the resolution

closure of the set of all prime implicates of f . We shall show that I(f) has an interesting inner structure. We shall define and
study certain subsets of I(f) called exclusive and essential sets of implicates of f , and show how these sets can be used for
decompositions of f and for lower bounds on the size of CNF representations of f . Among other results we shall generalize
the key theorems from [10,14] used to prove the correctness of the BM algorithm for quasi-acyclic Horn functions.
Our interest in the structure of I(f)was originally motivated by our attempts to design a polynomial time BM algorithm

for a class of CQ Horn functions which form a strict superset of quasi-acyclic Horn functions. This algorithm was recently
published in [4]. However, in the process of proving the correctness of the above mentioned algorithm, we have developed
many nontrivial results concerning the structure of I(f) and its connections to the properties of CNF representations of f ,
which are not restricted to the CQ Horn or even general Horn cases, but are valid for all Boolean functions. Therefore, we
believe that these results are of an independent interest, and present them in this paper, which is structured as follows.
In Section 2 we introduce the necessary notation and present several elementary results important for the subsequent

presentation. In Section 3we define the class of Horn functions aswell as its subclasses of acyclic and quasi-acyclic functions
and recall some basic properties of these classes. Section 4 contains a short collection of simple lemmas about the properties
of resolution closures. The main results of this paper are presented in Sections 5 and 6. Section 5 deals with exclusive sets of
implicates and yields a decomposition theorem, which is shown to be useful in Boolean minimization. Section 6 is devoted
to essential sets of implicates and presents a duality relation between essential sets of clauses and CNF representations. This
duality provides a lower bound for the size of a CNF representation and leads to an interesting question for which classes
of functions this bound is tight. Finally, Section 7 gives an affirmative answer to this question for the classes of quadratic,
acyclic, and quasi-acyclic Horn functions.

2. Basic notation, definitions, and results

In this section we shall introduce the necessary notation and state several basic known results that will be needed later
in the text.
A Boolean function f on n propositional variables x1, . . . , xn is a mapping {0, 1}n → {0, 1}. The propositional variables

x1, . . . , xn and their negations x1, . . . , xn are called literals (positive and negative literals, respectively). An elementary
disjunction of literals

C =
∨
i∈I

xi ∨
∨
j∈J

xj (1)

is called a clause, if every propositional variable appears in it at most once, i.e. if I ∩ J = ∅. A degree of a clause is the number
of literals in it. For two Boolean functions f and g we write f ≤ g if

∀(x1, . . . , xn) ∈ {0, 1}n : f (x1, . . . , xn) = 1 H⇒ g(x1, . . . , xn) = 1. (2)
Since each clause is in itself a Boolean function, formula (2) also defines the meaning of inequalities C1 ≤ C2, C1 ≤ f , and
f ≤ C1, where C1, C2 are clauses and f is a Boolean function.
We say that a clause C1 subsumes another clause C2 if C1 ≤ C2 (e.g. the clause x∨z subsumes the clause x∨y∨z). A clause

C is called an implicate of a function f if f ≤ C . An implicate C is called prime if there is no distinct implicate C ′ subsuming
C , or in other words, an implicate of a function is prime if dropping any literal from it produces a clause which is not an
implicate of that function.
It is a well-known fact that every Boolean function f can be represented by a conjunction of clauses (see e.g. [9]). Such

an expression is called a conjunctive normal form (or CNF) of the Boolean function f . It should be noted that a given Boolean
function may have many CNF representations (doubly exponentially many in the number of propositional variables). If two
distinct CNFs, say φ1 and φ2, represent the same function, we say that they are equivalent, and denote this fact by φ1 ≡ φ2. A
CNF φ representing a function f is called prime if each clause of φ is a prime implicate of the function f . A CNF φ representing
a function f is called irredundant if dropping any clause from φ produces a CNF that does not represent f .

Example 2.1. Consider the CNF

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4).

The 2nd clause can be dropped (although it is prime), and the 4th clause can be shortened (i.e. it is not prime). In fact, the
same function can be represented by the CNF

(x1 ∨ x2) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4)

which is both prime and irredundant.

The following two notational conventions will allow us to switch back and forth between sets of clauses and CNFs. For
an arbitrary set of clauses C the symbol φ(C) denotes the CNF obtained by taking a conjunction of all clauses in C. On the
other hand, for an arbitrary CNF φ the symbol C(φ) denotes the set of all clauses present in φ. We shall use the notion of

E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96 83

‘‘representing a given function’’ interchangeably for both CNFs and sets of clauses, i.e. if a CNF φ represents a function f we
shall also say that the set of clauses C(φ) represents f .
It should be noted here that all the results presented in this paper using the CNF terminology can be easily translated into

equivalent statements using the DNF (disjunctive normal form) language with proper terminological substitutions (terms
instead of clauses, implicants instead of implicates, consensus instead of resolution, falsifiability instead of satisfiability,
etc.).
Two clauses C1 and C2 are said to be resolvable if they contain exactly one complementary pair of literals, i.e. if there exists

exactly one propositional variable that appears uncomplemented in one of the clauses and complemented in the other. That
means that we can write C1 = C̃1 ∨ x and C2 = C̃2 ∨ x for some propositional variable x and clauses C̃1 and C̃2 which contain
no complementary pair of literals. The clauses C1 and C2 are called parent clauses and the disjunction R(C1, C2) = C̃1 ∨ C̃2
is called the resolvent of the parent clauses C1 and C2. Note that the resolvent is a clause (does not contain a propositional
variable and its negation). The following is an easy lemma [5].

Lemma 2.2. Let C1 and C2 be two resolvable implicates of a Boolean function f . Then R(C1, C2) is also an implicate of f .
We say, that a clause C can be derived by a series of resolutions from a CNF φ, if there exists a finite sequence C1, C2, . . . , Cp

of clauses such that
(1) Cp = C , and
(2) for i = 1, . . . , p, either Ci ∈ C(φ) or there exist j < i and k < i such that Ci = R(Cj, Ck).

Resolutions have a very important property usually called the completeness of resolution. Sometimes this property is also
referred to as the Quine theorem after the author of one of the first papers in which this property was proved [16,17], see
also [5] for related material.

Theorem 2.3. Let φ be a CNF representation of a Boolean function f and let C be a prime implicate of f . Then C can be derived
from φ by a series of resolutions.

Throughout this paper we shall also use the following notation. For an arbitrary set of clauses C the resolution closure of
C denoted byR(C) is the set of all clauses obtainable through series of resolutions from the set C (allowing the resolvents
to become parent clauses in subsequent resolutions).
For a Boolean function f let us denote by Ip(f) the set of its prime implicates, and let I(f) = R(Ip(f)). Note that not

all implicates of f may belong to I(f). For instance, if f is defined by the CNF φ = (x1 ∨ x2) ∧ (x2 ∨ x3), then we have
I(f) = Ip(f) = {(x1 ∨ x2), (x2 ∨ x3)}, however the clause (x1 ∨ x2 ∨ x3) is also a implicate of f .
Let us now turn our attention to a subclass of Boolean functions which will be frequently used in this paper, namely the

class of Horn functions.

3. Horn functions and their subclasses

In this section we will describe a class of Horn functions, the properties of which served as the original motivation for
deriving the more general results presented in this paper. We will also define two subclasses of Horn functions which are
the main subject of the last section.
A clause C defined by (1) is called negative if it contains no positive literals (i.e. if J = ∅). It is called pure Horn (or in some

literature definite Horn) if it contains exactly one positive literal (i.e. if |J| = 1). To simplify notation, we shall sometimes
write a pure Horn clause C =

∨
x∈S x ∨ y simply as C = S ∨ y. Each propositional variable x ∈ S is called a subgoal of C

and the propositional variable y is called the head of C .1 We shall denote Head(C) = y, Subg(C) = S (this set is sometimes
called the ‘‘body’’ of C), and Vars(C) = S ∪ {y}.
A CNF is called Horn if it contains only negative and pure Horn clauses. A CNF is called pure Horn if it contains only pure

Horn clauses. Finally, a Boolean function is called Horn if it has at least one representation by a Horn CNF, and similarly a
Boolean function is called pure Horn if it has at least one representation by a pure Horn CNF.
It is known (see [10]) that each prime implicate of a Horn function is either negative or pure Horn, and each prime

implicate of a pure Horn function is pure Horn. Thus, in particular, any prime CNF representing a Horn function is Horn, and
any prime CNF representing a pure Horn function is pure Horn.
Let us now recall some very useful definitions from [14], associating directed graphs to Horn CNFs and Horn functions.

Let us start by reviewing several standard notions from graph theory.
A directed graph (or a digraph) is an ordered pair D = (N,A) where N is the set of nodes and A is the set of arcs, where

an arc is an ordered pair of nodes. A directed path is a sequence of arcs a1, a2, . . . ,ap such that ai = (xi, xi+1) for some nodes
x1, x2, . . . , xp+1. A directed cycle is a directed path such that x1 = xp+1. A directed graph is called strongly connected if for any
two nodes x and y there exist both a directed path from x to y and a directed path from y to x. If a graph D is not strongly
connected then its node set can be decomposed in a unique way into maximal strongly connected subsets, called the strong
components of D. A directed graph is called acyclic if it contains no directed cycle. Note that in such a case every strong
component consists of a single node.

1 This terminology comes from the area of artificial intelligence, where the clause C is thought of as a ‘‘rule’’ S −→ y.

84 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

If D = (N,A) is a directed graph, then the transitive closure of D is a directed graph D = (N,A) where (x, y) ∈ A,
whenever there is a directed path from x to y in the digraph D. Obviously, for a given D the transitive closure D is uniquely
defined. Finally, if D = (N,A) is a directed graph with strong components C1, . . . , Cs, then the directed graph D′ = (N′,A′)
on the set of nodes N′ = {C1, . . . , Cs}with arcs

(Ci, Cj) ∈ A′ iff ∃x ∈ Ci ∃y ∈ Cj such that (x, y) ∈ A
is called the acyclic condensation of the digraph D.

Definition 3.1. For a Horn CNF φ let Gφ = (N,Aφ) be the digraph defined by

N = {x| x is a propositional variable in φ}
Aφ = {(x, y) | ∃ a clause C ∈ C(φ) such that C ≥ x ∨ y}.

In other words, for each pure Horn clause C in φ, the graph Gφ contains as many arcs as the number of subgoals in C , with
each arc going from the corresponding subgoal to the head of C . Since aHorn function can be represented by several different
Horn CNFs, seemingly we can associate in this way several different graphs to a Horn function. However, as it was shown
in [3], all these graphs share several important features.

Theorem 3.2. Let φ1 and φ2 be two distinct prime CNFs representing the same Horn function f and let x, y be arbitrary
propositional variables from f . Then there is a directed path from x to y in Gφ1 if and only if there is a directed path from x to
y in Gφ2 . Moreover, it then follows that Gφ1 and Gφ2 have identical transitive closures, identical strong components, and identical
acyclic condensations.

Theorem 3.2 allows us to associate a graph directly to a Horn function rather than to its particular CNF representations.

Definition 3.3. Let f be a Horn function and φ its arbitrary prime CNF representation. Then we define Gf as the transitive
closure of Gφ .
The graph Gf moreover has the following useful property with respect to the set I(f).

Lemma 3.4. Let C = x1 ∨ x2 ∨ . . . ∨ xk ∨ y ∈ I(f) be arbitrary. Then (xi, y) is an arc in Gf for every 1 ≤ i ≤ k.
Proof. If C is prime then it suffices to pick φ containing C in Definition 3.3 and the claim for C follows. Now observe that
resolving two clauses in which each subgoal is connected to the head by an arc in Gf produces a resolvent in which each
subgoal is connected to the head by a directed path in Gf . However, Gf is transitively closed and thus the claim follows for
any C ∈ I(f). �

Remark 3.5. Note that the correspondence between function f and graph Gf is not one-to-one. Consider e.g. f1 represented
by a single cubic clause (a∨ b∨ c) and f2 represented by two quadratic clauses (a∨ c)∧ (b∨ c) for which obviously f1 6= f2
while Gf1 = Gf2 .

Theorem 3.2 suggests that for a given Horn function f the strong components of Gf play an important role in how the set
of all prime CNF representations of f is structured. In what follows we shall call Gφ and Gf the implication graphs of φ and f ,
respectively. The notion of implication graph of a Horn function f carries a lot of information about the CNF representations
of f , allowing the characterization of two important subclasses of Horn functions.
A Horn CNF φ is said to be acyclic if its associated implication graph Gφ is acyclic. A Horn function f is called acyclic if it

admits at least one acyclic CNF representation. It was shown in [14] that every pure Horn acyclic function has a unique
irredundant and prime representation. This fact has an important consequence: obviously, this unique CNF is also the
shortest possible CNF representing the given pure Horn function. Moreover, as transforming an arbitrary Horn CNF into an
equivalent prime and irredundant CNF canbedone in polynomial time [10], this uniqueminimal CNF canbe found efficiently.
It was also shown in [10] that in fact this procedure can be used to minimize any acyclic Horn CNF (not necessarily pure
Horn).
Let us call two propositional variables x and y logically equivalent in a Horn function f if the clauses x ∨ y and y ∨ x are

implicates of f . A Horn CNFφ is then said to be quasi-acyclic (see [14]) if every strong component of its associated implication
graph Gφ consists of a set of logically equivalent propositional variables. A Horn function f is called quasi-acyclic if it admits
at least one quasi-acyclic CNF representation.
Note that every acyclic CNF φ is quasi-acyclic since each strong component of Gφ is a singleton. Also note that every

quadratic Horn CNF φ (i.e. a CNF consisting of clauses of degree at most two) is quasi-acyclic as every strong component of
Gφ in this case consists of logically equivalent variables.
The name ‘‘quasi-acyclic’’ comes from the property that picking a representative in each set of logically equivalent

propositional variables and substituting this representative for all the other logically equivalent variables in the set results
in an acyclic CNF (i.e. the CNF is essentially acyclic except for the fact that each variable can have several ‘‘names’’). In order
to understand the structure of quasi-acyclic functions it is important to realize that if f is a quasi-acyclic function and x, y
are propositional variables from the same strong component of Gf then both x ∨ y and y ∨ x are implicates of f . Hence no
prime pure Horn implicate of f with degree three or more may contain a subgoal from the same strong component of Gf as

E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96 85

the head. This means that the pure Horn clauses in any prime CNF representation of f can be partitioned into two groups.
The first group (let us call it group A) contains clauses where all the subgoals are in different strong component(s) of Gf than
the head, while the second group (group B) contains quadratic clauses with both the subgoal and the head belonging to the
same strong component of Gf . Loosely speaking, the clauses in group B ‘‘generate’’ the strong components of Gf while the
clauses in group A ‘‘generate’’ its acyclic condensation. It was proved in [14] that similarly to the acyclic functions, a shortest
CNF representation (i.e a representation with the minimum possible number of clauses) of a given quasi-acyclic function
can be found in polynomial time.
Let us now leave the class of Horn functions and return (for the next three sections) to general Boolean functions.

4. Properties of resolution closures

In this section we prove several simple properties of resolution closures of sets of clauses and of CNF representations of
Boolean functions. In the remainder of this section let us consider an arbitrary but fixed Boolean function f , the set Ip(f) of
all prime implicates of f , and the set I(f) = R(Ip(f)) of all implicates of f that can be generated from the prime implicates
of f by series of resolutions. Note that I(f) = R(I(f)), i.e. the set I(f) is closed under resolution.

Lemma 4.1. If A ⊆ B are arbitrary sets of clauses, then we haveR(A) ⊆ R(B) andR(R(A)) = R(A).
Proof. Immediate by the definition of the resolution closure. �

Lemma 4.2. Let C1 and C2 be two sets of clauses. Then R(C1) = R(C2) implies that φ(C1) ≡ φ(C2), i.e. if the sets have the
same resolution closure then they represent the same function.
Proof. By Lemma 2.2, adding a resolvent of two clauses present in a given CNF to this CNF does not change the function
being represented. Hence φ(C) ≡ φ(R(C)) holds for any set C of clauses. Therefore R(C1) = R(C2) implies φ(C1) ≡
φ(R(C1)) = φ(R(C2)) ≡ φ(C2)which completes the proof. �
Let us note that the reverse implication in the above statement is not valid. This is due to the fact that if we do not assume

C ⊆ I(f), then we can still have φ(C) = f whileR(C) 6= I(f). For instance, we have (x ∨ y) ∧ x ≡ x, but the resolution
closures of these two CNFs are not the same, obviously. On the other hand, adding the assumptionsC1 ⊆ I(f) andC2 ⊆ I(f)
makes the reverse implication work as well.

Lemma 4.3. A set of clauses C ⊆ I(f) represents the function f if and only if I(f) = R(C).
Proof. Assume first that C ⊆ I(f) represents f . Then by Theorem 2.3 we have Ip(f) ⊆ R(C), and thus I(f) = R(Ip(f)) ⊆
R(R(C)) = R(C) ⊆ R(I(f)) = I(f) follows by Lemma 4.1.
For the reverse direction assume that I(f) = R(C). Now I(f) = R(I(f)) together with Lemma 4.2 imply φ(C) ≡

φ(I(f)) and so C represents f . �
The following two simple technical lemmas will be useful in our proofs later.

Lemma 4.4. Let V,W ⊆ I(f) be two arbitrary sets of clauses. ThenR(V ∪W) = R(V ∪R(W)).
Proof. The inclusionR(V ∪W) ⊆ R(V ∪R(W)) follows by Lemma 4.1, since V ∪W ⊆ V ∪R(W) by the definition of
the resolution closure. To prove the opposite inclusion, let us assume that C ∈ R(V ∪R(W)). Then, any C ′ ∈ R(W) used
in the derivation of C from the set V ∪ R(W) by a series of resolutions is, by assumption, itself derivable from the setW ,
and hence C ∈ R(V ∪W) holds. �
Let us close out this section with a lemma which roughly says the following: replacing a set of clauses E by its subsetQ

does not change the function if the resolution closures of E andQ are the same.

Lemma 4.5. Let C ⊆ I(f) andQ ⊆ E ⊆ R(C) be sets of clauses such that R(Q) = R(E). ThenR((C \ E) ∪Q) = R(C).
Proof. Using Lemma 4.4 with V = C \ E twice (first withW = Q and then withW = E) we get

R((C \ E) ∪Q) = R((C \ E) ∪R(Q)) = R((C \ E) ∪R(E)) = R((C \ E) ∪ E) = R(C)

which is the stated result. �

5. Exclusive sets and exclusive components of functions

As in the previous section let us consider throughout this section an arbitrary but fixed Boolean function f and the sets
of clauses Ip(f) and I(f) associated with it. Let us now define the first of the two key concepts of this paper.

Definition 5.1. Given a set C of clauses, a subset X ⊆ C is called an exclusive subset of C if for every pair of resolvable
clauses C1, C2 ∈ C the following implication holds:

R(C1, C2) ∈ X H⇒ C1 ∈ X and C2 ∈ X,

i.e. the resolvent belongs toX only if both parent clauses are inX. In particular, if C = I(f) for a Boolean function f , we
call such a subsetX an exclusive set of clauses of f (or simply an exclusive set, if f or C is clear from the context).

86 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

Note that the above definition trivially implies that C itself is the largest (with respect to inclusion) exclusive subset of C
(for any C), and in particular I(f) is by definition the largest exclusive set of clauses of f . Let us first claim in the next lemma
some simple properties possessed by exclusive sets. Since all these properties follow directly from Definition 5.1 we shall
omit the proofs.

Lemma 5.2. Let C be an arbitrary set of clauses. Then,
(a) if A is an exclusive subset of B andB is an exclusive subset of C, thenA is an exclusive subset of C;
(b) if A ⊆ B ⊆ C, andA is an exclusive subset of C, then it is also an exclusive subset of B;
(c) if A,B ⊆ C are both exclusive subsets of C, thenA∪B andA∩B are also exclusive (and hence all exclusive subsets of C
form a lattice). �
To see an interesting example of exclusive sets of clauses, let us for a moment return to Horn functions. Let h be a Horn

function and let us partition the set I(h) into two subsets I(h) = H ∪N whereH is the set of all pure Horn clauses in I(h)
andN is the set of all negative clauses in I(h).2 Then it is not hard to see thatH is an exclusive set of h (the resolvent is in
H only if both parent clauses are inH). Moreover, in this case any resolvent of two clauses inH is again inH which is not
necessarily true for every exclusive set.
The partition I(h) = H ∪N has some important properties, shown in [10]. The first such property states that if φ1 and

φ2 are two distinct prime CNFs representing h, then the pure Horn parts of φ1 and φ2 (i.e. the conjunctions of all pure Horn
clauses in the given CNFs) also represent the same pure Horn function, called in [10] the pure Horn component of h.

Proposition 5.3 ([10]). Let φ1 and φ2 be two distinct prime CNFs of a Horn function h. Then φ(C(φ1) ∩H) ≡ φ(C(φ2) ∩H).

The proof of this proposition is based on the above mentioned fact that the only way how to generate a pure Horn clause
by resolution is to use two pure Horn clauses as the parent clauses. Using the just defined terminology, the proof rests on
the fact that pure Horn clauses constitute an exclusive set of h. Thus it is obviously very tempting to generalize the result to
all exclusive sets. However, first we need to state a simple lemma.

Lemma 5.4. Let X ⊆ I(f) be an exclusive set of clauses (of f) and C ⊆ I(f) be a set of clauses such that X ⊆ R(C). Then
R(X) = R(C ∩X).
Proof. The fact thatX is exclusive means that no clause in C \X can appear as a parent clause in a resolution leading to a
resolvent inX. That, together with the inclusionX ⊆ R(C), implies thatX ⊆ R(C \ (C \X)) = R(C ∩X)must hold,
which in turn impliesR(X) ⊆ R(R(C∩X)) = R(C∩X) by Lemma 4.1. The reverse inclusionR(C∩X) ⊆ R(X) follows
also from Lemma 4.1, since C ∩X ⊆ X holds trivially. �
We are now ready to generalize Proposition 5.3 to all exclusive sets.

Theorem 5.5. Let C1,C2 ⊆ I(f) be two distinct sets of clauses such that φ(C1) ≡ φ(C2) ≡ f , i.e. such that both sets represent
f , and let X ⊆ I(f) be an exclusive set of clauses. Then φ(C1 ∩X) ≡ φ(C2 ∩X).
Proof. Since both C1 and C2 represent f , we haveR(C1) = R(C2) = I(f) by Lemma 4.3, and henceX ⊆ R(C1) = R(C2).
Nowby Lemma5.4we getR(X) = R(C1∩X) = R(C2∩X)which then impliesφ(C1∩X) ≡ φ(C2∩X) by Lemma4.2. �
It is immediate to see that Proposition 5.3 is just a special case of Theorem 5.5. We can also generalize the notion of a

‘‘pure Horn component’’.

Definition 5.6. Let f be an arbitrary Boolean function,X ⊆ I(f) be an exclusive set of clauses of f , and C ⊆ I(f) be a set of
clauses which represents f (i.e. φ(C) ≡ f). The Boolean function fX represented by the set C ∩X is called theX-component
of the function f . We shall simply call a function g an exclusive component of f , if g = fX for some exclusive subsetX ⊆ I(f).

Theorem 5.5 guarantees that theX-component fX is well defined for every exclusive setX ⊆ I(f). Let us now briefly
return to Proposition 5.3. It has the following consequence: given a Horn CNF one can extract the pure Horn sub-CNF which
represents the pure Horn component, find its shortest CNF representation, and then insert this new sub-CNF back into the
input CNF. This is exactly how theminimization procedure for acyclic and quasi-acyclic functionsworks. A similar (butmore
general) consequence can be drawn from Theorem 5.5.

Corollary 5.7. Let C1,C2 ⊆ I(f) be two distinct sets of clauses such that φ(C1) ≡ φ(C2) ≡ f , i.e. such that both sets represent
f , and let X ⊆ I(f) be an exclusive set of clauses. Then φ((C1 \X) ∪ (C2 ∩X)) ≡ f .
Proof. Similarly as in the proof of Theorem 5.5 we getX ⊆ R(C1) = R(C2) and alsoR(X) = R(C1 ∩X) = R(C2 ∩X).
Now using Lemma 4.5 withQ = C2 ∩X, E = X, and C = C1 (note that C2 ∩X ⊆ X ⊆ R(C1) and so the assumptions of
Lemma 4.5 are satisfied) we obtain

R((C1 \X) ∪ (C2 ∩X)) = R(C1)

which together with the factR(C1) = R(C2) = I(f) completes the proof by Lemma 4.2. �

2 It is left to the reader to verify the easy fact that H and N indeed constitute a partition of I(h), i.e. that no clause which is neither pure Horn nor
negative can appear in I(h) (recall that each prime implicate of a Horn function is either pure Horn or negative).

E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96 87

The algorithmic meaning of Corollary 5.7 can be stated as follows. If C1 is the input CNF, one can extract the sub-CNF
C1 ∩Xwhich represents theX-component fX, find its shortest CNF representation (say C2 ∩X), and then insert this new
sub-CNF back into the input CNF. That suggests a decomposition approach for minimization algorithms. Whenever one can
find an exclusive subset of clauses of a given function or several pairwise disjoint exclusive subsets of clauses of a given
function, it is possible to decompose the minimization problem, solve the subproblems separately, and then compose the
obtained solutions back together.
Let us close this section by a simple corollary about certain redundant sets of clauses. A clause C ∈ I(f) is called redundant

with respect to a function f if C does not appear in any irredundant CNF representationC ⊆ I(f) of f (in other words, C 6∈ C
for any minimal C ⊆ I(f) such thatR(C) = I(f)). A set S ⊆ I(f) of clauses is called redundant with respect to a function
f if every clause in S is redundant with respect to f , i.e., if S ∩ C = ∅ for every irredundant representation C ⊆ I(f) of f .

Corollary 5.8. For every exclusive set X ⊆ I(f) we have R(X) = I(fX), furthermore the set R(X) \ X is redundant with
respect to fX, as well as with respect to f .

Proof. By Lemma 5.4 we have R(X) = R(X ∩ C) for every irredundant representation C ⊆ I(f) of f , and hence
C∩(R(X)\X) = ∅ follows for all such representations by their irredundancy. Furthermore, by Corollary 5.7 and Lemma4.5,
we can choose C such that C ∩ X is a prime irredundant representation of fX, from which I(fX) = R(X ∩ C) = R(X)
follows (again by Lemma 5.4). �

6. Essential sets and a min–max relation

Let us now introduce the second key concept of this paper.

Definition 6.1. Given a setC of clauses, a subset E ⊆ C is called an essential subset of C if for every pair of resolvable clauses
C1, C2 ∈ C the following implication holds:

R(C1, C2) ∈ E H⇒ C1 ∈ E or C2 ∈ E,

i.e. the resolvent belongs to E only if at least one of the parent clauses is from E . In particular, if C = I(f) for a Boolean
function f , we call E an essential set of clauses of f (or simply an essential set, if f or C is clear from the context).

It is easy to see that every exclusive set of clauses (and the set I(f) in particular) is also essential. We summarize in the
following lemma a few simple properties of essential sets. Since all these properties follow directly from Definitions 5.1 and
6.1 we shall omit the proofs.

Lemma 6.2. Let C be an arbitrary set of clauses. Then,
(a) if A,B ⊆ C are both essential subsets of C, thenA ∪B is also essential;
(b) if R(C) = C andA is an essential subset of C, then C \A is closed under resolution, i.e. C \A = R(C \A);
(c) if R(A) = A andB is an exclusive subset of C, thenB \A is an essential subset of C;
(d) if A ⊆ B ⊆ C,A is an essential subset of B , andB is an exclusive subset of C, thenA is an essential subset of C, as well;
(e) if A,B ⊆ C,A ∩ B 6= ∅,A is an essential subset of C, andB is an exclusive subset of C, thenA ∩ B is also an essential
subset of C. �

To see an interesting example of essential sets, let us consider again a Horn function h and return to the partition of the
set I(h) into two subsets I(h) = H ∪N whereH is the set of all pure Horn clauses in I(h) andN is the set of all negative
clauses in I(h). Then, it is not hard to see that N is essential for h. In fact, more is true in this case: since no two clauses in
N are resolvable, the resolvent is inN only if exactly one of the parent clauses is inN and the other one is inH .
A second important property (aside of Proposition 5.3) of the partition I(h) = H ∪ N states that if φ1 and φ2 are two

distinct irredundant CNFs representing h, then φ1 and φ2 both contain the same number of negative clauses.

Proposition 6.3 ([10]). Let φ1 and φ2 be two distinct irredundant CNFs of a Horn function h. Then |C(φ1)∩N | = |C(φ2)∩N |.

The proof of this proposition ismore or less based on the abovementioned fact that negative clauses form an essential set
of hwith no resolvable pair, and their complement (i.e. pure Horn clauses) forms an exclusive set of h (of course the original
proof did not use this terminology). This observation leads to an obvious idea to generalize the statement of Proposition 6.3.
We will arrive at such a generalization in the end of this section (Theorem 6.16 and Corollary 6.17).
Another way to look at the above example of an essential set is to realize that it is a special case of Lemma 6.2 case (c)

where we takeA = H andB = C = I(h) = H ∪N (note thatR(H) = H). A similar statement is of course true for any
function f : if for someA ⊆ I(f)we haveR(A) = A then I(f) \A is an essential set. Note that f is not required to be Horn,
so this gives us examples of non-Horn essential sets (some of them will be discussed in more detail in Theorem 6.7).
Another example of essential sets is given by the following definition.

Definition 6.4. Given a Boolean function f on n propositional variables and an arbitrary vector t ∈ {0, 1}n let us define a
falsepoint set of f defined by t as

E(t) = {C ∈ I(f) | C(t) = 0}

88 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

where by C(t) = 0 we mean the following: if we substitute for the propositional variables of f the truth values according
to the vector t then the clause C evaluates to zero (false).

Lemma 6.5. Let f be a Boolean function on n propositional variables and let t ∈ {0, 1}n be an arbitrary vector. Then E(t) is an
essential set of f .

Proof. By definition, E(t) ⊆ I(f). Let C1 = A ∨ x and C2 = B ∨ x be arbitrary two resolvable clauses from I(f) such that
R(C1, C2) = A ∨ B ∈ E(t). This means that all literals in the set A ∪ B evaluate to zero under the truth assignment t , which
in turn implies that exactly one of the clauses C1 and C2 evaluates to zero, depending on the value assigned to x. Therefore
either C1 ∈ E(t) or C2 ∈ E(t) and thus E(t) is essential. �

We shall use Lemma 6.5 to prove a key theorem which shows that every essential set has one (or more) of its clauses
present in every representation of f and moreover that this condition is not only necessary but also sufficient.

Theorem 6.6. Let C ⊆ I(f) be an arbitrary set of clauses. Then C represents f if and only if C ∩ E 6= ∅ for every nonempty
essential set of clauses E ⊆ I(f).

Proof. Let us assume thatC ⊆ I(f) represents f andC∩E = ∅ for some nonempty essential set E ⊆ I(f). That means that
whenwe startmaking resolutions from the setCwecannever get intoE , i.e. thatR(C)∩E = ∅. However,E ⊆ I(f) = R(C)
by Lemma 4.3, which is a contradiction. Therefore C ∩ E 6= ∅ for every nonempty essential set of clauses E ⊆ I(f).
To prove the opposite implication let us assume that C ⊆ I(f) is a set of clauses which has a nonempty intersection

with every nonempty essential set E ⊆ I(f). By Lemma 6.5 C ∩ E(t) 6= ∅ holds for every truth assignment t such that E(t)
is nonempty. Let us now denote the CNF φ(C) by φ. We want to prove φ ≡ f . The inequality φ ≥ f trivially follows from
the fact that C ⊆ I(f). Thus it remains to be shown that also φ ≤ f which is equivalent to proving that f (t) = 0 implies
φ(t) = 0 for every truth assignment t . So let t be an arbitrary assignment such that f (t) = 0. This means that there must
exist a prime implicate C of f such that C(t) = 0. Therefore E(t) is a nonempty set and by Lemma 6.5 also an essential set,
and thus by our assumption C ∩ E(t) 6= ∅ holds, i.e. C contains a clause that evaluates to zero under the truth assignment
t . However, that implies φ(t) = 0 which completes the proof. �

Some of the sets E(t) defined in Definition 6.4 play quite an important role in the structure of I(f). Let us for a moment
consider the lattice L of all subsets of I(f). Clearly, the property of being a representation of f is monotone in L (every
superset of a representation is again a representation). The minimal sets inLwhich represent f are of course exactly all the
irredundant representations of f . On the other hand, also the property of not being a representation of f is a monotone one
in L (every subset of a non-representation is again a non-representation). Thus it is of some interest to understand what
the maximal non-representations of f inL are. We summarize the properties of these sets in the following theorem.

Theorem 6.7. Let D ⊆ I(f) be amaximal (under inclusion) set of clauses not representing f . ThenD = R(D), the set I(f)\D
is essential, and there exists a Boolean vector t such that I(f) \D = E(t).

Proof. Let us assume that there exist clauses C1, C2 ∈ D such that C = R(C1, C2) 6∈ D . By the property of resolution
(Lemma 2.2) we have φ(D) = φ(D ∪ {C}), and hence D ∪ {C} still does not represent f , which is a contradiction to the
maximality of D . Therefore D = R(D) and by Lemma 6.2 part (c) (where we take A = D and B = C = I(f)) the set
I(f) \D is essential.
To finish the proof let us consider the function f ′ = φ(D). Clearly f ≤ f ′ and since f 6= f ′ there must exist a Boolean

vector t such that f (t) = 0 and f ′(t) = 1. Now consider the set E(t). Obviously E(t)∩D = ∅ (all clauses inD must evaluate
to 1 on t in order to make f ′(t) = 1). So it remains to prove that E(t) ∪D = I(f), or in other words that every clause that
evaluates to 1 on t is in D . Assume by contradiction that there exists a clause C 6∈ D such that C ∈ I(f) and C(t) = 1.
Clearly φ(D ∪ {C})(t) = 1 while f (t) = 0 and so the setD ∪ {C} still does not represent f , which is again a contradiction
to the maximality ofD . �

It follows from the proof of Theorem6.7 that themaximal non-representations of f inL can be alternatively characterized
as follows.

Corollary 6.8. Set D ⊆ I(f) of clauses is a maximal (under inclusion) set not representing f if and only if D is a maximal proper
subset of I(f) closed under resolution.

To give one more example of essential sets let us recall the following definition.

Definition 6.9. Given a Boolean function f a clause C is called an essential prime implicate of f if C appears in every prime
and irredundant CNF representation of f .

We shall show that essential prime implicates are just a special case of essential sets of cardinality one.

Lemma 6.10. Let f be a Boolean function and C its prime implicate. Then C is an essential prime implicate of f if and only if {C}
is an essential set of f .

E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96 89

Proof. If {C} is an essential set of f , then by Theorem 6.6 clause C must be present in every CNF ϕ representing f , i.e. C is an
essential prime implicate of f .
On the other hand let C be an essential prime implicate of f , it follows, that Ip(f) \ {C} does not represent f and hence

there is a vector t , for which C(t) = 0 while C ′(t) = 1 for every C ′ ∈ Ip(f) \ {C}. Let us examine set E(t), which is an
essential set due to Lemma 6.5. We shall show that E(t) = {C}. Since C is the only prime implicate which belongs to E(t),
we can observe, that in fact

E(t) ⊆ {D ∈ I(f) | C ≤ D}

i.e. all clauses in E(t) contain C . Let us proceed by contradiction and let us assume |E(t)| > 1. Every clause in E(t) ⊆ I(f)
can be derived from Ip(f) by a series of resolutions. Let us denote by D the clause from E(t)\{C} for which such a derivation
is the shortest possible. Moreover, let D = R(X, Y) be the last step of such a derivation. Since E(t) is essential, one of the
parent clauses must be in E(t), w.l.o.g. let X ∈ E(t). Now if X 6= C , then X ∈ E(t) \ {C} and its derivation from Ip(f) is
shorter than the derivation of D contradicting the choice of D. Hence X = C . But now D = R(C, Y) contradicts C ≤ D.
Therefore no such D can exist and we have shown, that E(t) = {C}. �

Let us now return to Theorem 6.6. It has an obvious corollary: if there exist nonempty essential sets E1, E2, . . . , Ek ⊆ I(f)
which are pairwise disjoint, then every representation of f must consist of at least k clauses. Hence, any collection of pairwise
disjoint essential sets of clauses provides an easy lower bound on the size (i.e. on the number of clauses) of a minimal
representation of f .

Definition 6.11. Given a Boolean function f , let us denote by ε(f) the maximum number of pairwise disjoint nonempty
essential subsets of I(f) and by σ(f) the minimum number of clauses needed to represent f by a CNF.

Using this notation, we can now formulate the above noted simple corollary of Theorem 6.6 very succinctly as follows:

Corollary 6.12. For every Boolean function f the following inequality holds

σ(f) ≥ ε(f).

Note that Corollary 6.12 generalizes the known lower bound on the size of a CNF representation given by the number
of essential prime implicates. Indeed, by Lemma 6.10 the one element sets defined by essential prime implicates form a
collection of pairwise disjoint essential sets, and hence ε(f) is always greater or equal to the number of essential prime
implicates.
It remains to be seen for which classes of functions the inequality in Corollary 6.12 is tight, i.e. turns into an equality. Let

us state this formally as a question.

Question 6.13. Let C be a class of Boolean functions. Is it true that σ(f) = ε(f) holds for every f ∈ C?

In the next sectionwe shall prove that Question 6.13 has an affirmative answer for the following three subclasses of Horn
functions (which were introduced in Section 3): quadratic Horn functions, acyclic Horn functions, and quasi-acyclic Horn
functions.3
Let us now come back to Theorem 6.6. The first part of the proof of Theorem 6.6, which shows that for an arbitrary C

representing f and an arbitrary nonempty essential set E , C ∩ E 6= ∅must hold, gives yet another corollary.

Corollary 6.14. Let E ⊆ I(f) be an arbitrary set of clauses. Then E is a nonempty essential set only if E ∩ C 6= ∅ for every
representation C ⊆ I(f) of the function f .

There is an obvious duality between Corollary 6.14 and Theorem 6.6 based on the reversal of roles between E and
C. However, unlike in Theorem 6.6 where the equivalence holds, only one implication (the ‘‘only if’’ part) is true in
Corollary 6.14. The reason for this is the following. If C represents f and we add some clauses from I(f) to C, the new set
will still represent f . On the other hand, if E is an essential set andwe add some clauses from I(f) to E , the resulting set may
not be essential. To avoid the presence of such ‘‘extra’’ clauses in E we shall add a minimality assumption. This minimality
assumption simply means that we shall require not only that E intersect all representations of f (i.e. that E be a transversal
of all representations) but also that E be a minimal set with this property (i.e. that E be a minimal transversal). With this
additional assumption the reverse implication in Corollary 6.14 (the ‘‘if’’ part) becomes valid as well, making the duality
with Theorem 6.6 work both ways (i.e., informally speaking, by the above corollary every essential set forms a transversal
of all representations, and by the theorem below every minimal transversal of all representations forms an essential set).

Theorem 6.15. Let E be an arbitrary minimal (under inclusion) subset of I(f) such that E ∩ C 6= ∅ for every C ⊆ I(f) which
represents f . Then E is an essential set of clauses.

3 There exists a counterexample proving that the equality does not hold for the class of all Horn functions [19].

90 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

Proof. Let us assume by contradiction that E is not essential, i.e. that there exist two resolvable clauses C1, C2 ∈ I(f) such
that C1, C2 6∈ E but C = R(C1, C2) ∈ E . Let us consider the setΣ of all representations of f which contain the clause C , i.e. let

Σ = {C | R(C) = I(f) and C ∈ C}.

If every C ∈ Σ intersected E in two or more clauses then we could remove C from E and still maintain the property that
E intersects all representations of f . However, this would be a contradiction to the minimality of E . Therefore there must
exist a representation C ′ of f in the set Σ which intersects E in exactly one clause, i.e. such that C ′ ∩ E = {C}. Let us now
construct a set of clauses

C ′′ = C ′ \ {C} ∪ {C1, C2}.

Clearly C ′′ ⊆ I(f). Moreover, since C = R(C1, C2) it is obvious thatR(C ′′) = R(C) = I(f), i.e., C ′′ represents f . However,
C ′′ ∩ E = ∅which is a contradiction to the choice of E . �

Let us finish this section by proving a generalization of Proposition 6.3.

Theorem 6.16. Given a Boolean function f , let X ⊆ I(f) be an exclusive subset of f such that no two clauses from E =
I(f) \ R(X) are resolvable. Then, there exists an integer k = k(E) > 0, and pairwise disjoint essential subsets Qj ⊆ E ,
j = 1, .., k such that |Qj ∩ C| = 1 for j = 1, . . . , k and |(E \

⋃k
j=1Qj) ∩ C| = 0 for any irredundant set C ⊆ I(f) of clauses

representing f .

Proof. Let us observe that E is an essential set by (c) of Lemma 6.2. Furthermore, the property that no two clauses of the
essential family E are resolvable implies that if R(A, B) ∈ E for some resolvable clauses A, B ∈ I(f), then exactly one of
these clauses belongs to E .
Let us then first define a directed graphH, the vertices of which are the clauses in E , and where (A, B) is a directed arc for

A, B ∈ E if and only if B ∈ R(X∪ {A}). Let us next consider a strong componentQ ⊆ E of H, which is an initial component,
i.e., for which there exists no arc (A, B) of H such that A ∈ E \ Q and B ∈ Q. We claim that Q is an essential set of f . To see
this, let us consider a pair of resolvable clauses A, B ∈ I(f) for which C = R(A, B) ∈ Q. Since C ∈ Q ⊆ E and since E is
essential with no two of its clauses resolvable, we must have exactly one of A and B belong to E , as we observed above. Say,
we have A ∈ E and B ∈ R(X). Then, we have C ∈ R(X ∪ {A}), and thus by the definition of H we must have (A, C) as an
arc of H. Since we assumed that Q is an initial set, with no arcs entering it, we must have A ∈ Q, showing that Q is indeed
essential.
Let us next consider all the initial strong componentsQ1, . . . ,Qk of H. We claim that for any irredundant representation

C of f we must have |C ∩Qj| = 1 for j = 1, . . . , k and |C ∩ E | = k, from which the statement readily follows.
To see this, let us observe first that for all subsets C ⊆ I(f) representing f we must have C ∩ Qi 6= ∅ for i = 1, . . . , k

by Theorem 6.6, since all the sets Qi, i = 1, . . . , k are essential, as we observed above. Let us fix now an irredundant
representation C of f , and let us choose clauses Cj ∈ Qj ∩ C for j = 1, . . . , k, arbitrarily. Since X is exclusive we have
R(X) = R(X ∩ C) by Lemma 5.4. Furthermore, since H is transitively closed, every clause C ∈ E is reachable by an arc
from the set {C1, . . . , Ck}, implying E ⊆ R(X ∪ {C1, . . . , Ck}). Thus, by applying Lemma 4.4 we get I(f) = E ∪ R(X) ⊆
R(X ∪ {C1, . . . , Ck}) = R((X ∩ C) ∪ {C1, . . . , Ck}) ⊆ R(C) = I(f), implying that (X ∩ C) ∪ {C1, . . . , Ck} ⊆ C is a
representation of f . Since C is assumed to be irredundant, equality follows, implying C \X = C ∩ E = {C1, . . . , Ck}, from
which the claim follows. �

Of course, it is clear that Theorem 6.16 implies the following corollary which more closely resembles the statement of
Proposition 6.3.

Corollary 6.17. Let f ,X, and E be as in the statement of Theorem 6.16, and let φ1 and φ2 be two distinct irredundant CNFs of
f . Then |C(φ1) ∩ E | = |C(φ2) ∩ E |.

Clearly, Proposition 6.3 is just a special case of Corollary 6.17 if we setX to be the set of all pure Horn clauses in I(f) (in
this caseX = R(X)) and E to be the set of all negative clauses in I(f).
Note that not every essential set E of implicates with no resolution inside has the properties claimed in Theorem 6.16.

In other words, the condition that the complement of E is a resolution closure of an exclusive set cannot be neglected. A
good example for this observation is the following: given any function f , its negative implicates in I(f) obviously form an
essential set with no resolution inside. However, if f is not Horn, it may happen that the non-negative implicates in I(f)
do not form a resolution closure of an exclusive set, and the properties claimed in Theorem 6.16 fail to hold. To see this,
consider the following two CNFs:

C1 = (x ∨ z)(x ∨ z)(x ∨ y),
C2 = (x ∨ z)(x ∨ z)(y ∨ z).

It is not hard to verify that they represent the same function and both are irredundant, but while C1 contains one negative
clause, C2 contains two negative clauses.

E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96 91

7. Disjoint essential sets for Horn functions

In this section we shall restrict our attention to Horn functions only, in particular to the subclasses of quadratic Horn,
acyclic Horn, and quasi-acyclic Horn functions. We shall show that Question 6.13 has an affirmative answer for all of the
mentioned subclasses of Horn functions. We shall proceed as follows: after some simple preprocessing (getting rid of unit
implicates) we shall use Theorem 6.16 to show that we can in fact concentrate only on pure Horn functions. Then we shall
answer Question 6.13 for quadratic pure Horn and acyclic pure Horn functions. Finally, we will use a combination of these
two results to answer Question 6.13 for quasi-acyclic pure Horn functions.
By standard Boolean terminology, a unit clause is a clause consisting of exactly one literal. If x or x is a unit prime implicate

of a Boolean function f , then clearly no other prime implicates of f may contain the variable x (negated or not). This implies
that also in I(f) the variable x appears only in the unit clause and nowhere else, which in turn means that this clause
constitutes a trivial exclusive (andhence also essential) set (it cannot be derived by resolution fromanyother clauses inI(f)).
It follows that any Horn function f can be decomposed into a conjunction of unit clauses f1 and a Horn function f2 which

has no unit prime implicates, in such a way that f1 and f2 are defined on disjoint sets of variables, and f = f1 ∧ f2. Of course,
Question 6.13 can be answered independently for f1 and f2 (due to the disjointness of their sets of variables) and the equality
σ(f) = ε(f) trivially holds for f1 by the above considerations. Therefore we can from now on restrict our attention (without
loss of generality) solely to Horn functions with no unit prime implicates.
Let h be a Horn function and C ⊆ I(h) a minimum (and therefore irredundant) set of clauses representing h such that

C1, C2, . . . , Ck are all the negative clauses in C. Then Theorem 6.16 guarantees the existence of pairwise disjoint essential
sets of negative implicatesQ1,Q2, . . . ,Qk such that Cj ∈ Qj for j = 1, . . . , k. Furthermore, if p is the pure Horn component
of h (which is represented by the pure Horn clauses in C by Definition 5.6) then I(p) consists only of pure Horn clauses (since
all prime implicates of a pure Horn function are pure Horn and a resolution of two pure Horn clauses is also pure Horn as
recalled in Section 3), and thusQj ∩ E = ∅ for every j = 1, . . . , k and every subset E of I(p). This implies that if we manage
to answer Question 6.13 for p by exhibiting pairwise disjoint essential subsets E1, E2, . . . , E` of I(p), where ` is the number
of pure Horn clauses in C, then the sets Ei, i = 1, . . . , `, together with the sets Qj, j = 1, . . . , k, give an affirmative answer
to Question 6.13 also for h.
Therefore we shall from now on restrict our attention to pure Horn functions (with no unit prime implicates) only. Let us

start by introducing a very useful technique for verifying that a given clause is an implicate of a given pure Horn function.
Let η be a pure Horn CNF of a pure Horn function h. We shall define a forward chaining procedure which associates to

any subset Q of the propositional variables of h a setM in the following way. The procedure takes as input the subset Q of
propositional variables, initializes the setM = Q , and at each step it looks for a pure Horn clause S∨ y in η such that S ⊆ M ,
and y 6∈ M . If such a clause is found, the propositional variable y is included intoM , and the search is repeated asmany times
as possible.
In the relational database terminology the propositional variables in M are said to be ‘‘chained’’ to the subset Q (see

e.g. [8]). In the expert systems terminology the usage of the clause S ∨ y is called ‘‘firing the rule’’
∧
x∈S x→ y (see e.g. [11]).

Forward Chaining Procedure(C,Q)

Input: A set C of pure Horn clauses, and
a subset Q of propositional variables.

Initialization: SetM = Q .
Main Step: While ∃ C ∈ C : Subg(C) ⊆ M and Head(C) 6∈ M

doM = M ∪ {Head(C)}.
Stop: Output FCC(Q) = M .

If the forward chaining procedure subsequently uses clauses C1, . . . , Ck (in this order) to enlarge the setM (starting with
set Q), we say that the sequence of clauses C1, . . . , Ck forms a forward chaining derivation of Head(Ck) from Q . The sequence
is called an irredundant forward chaining derivation of Head(Ck) from Q , if no proper subsequence of C1, . . . , Ck forms a
forward chaining derivation of Head(Ck) from Q . The following lemma [12,18], shows how the above procedure can help in
determining whether a given clause is an implicate of a given CNF, or not.

Lemma 7.1. Given a set C of pure Horn clauses, a subset Q of its propositional variables, and another one of its variables y, we
have y ∈ FCC(Q) if and only if Q ∨ y is an implicate of a function represented by C.

In what follows we will frequently not distinguish between CNFs and their sets of clauses, and thus for C = C(η) we shall
write both FCη(Q) = FCC(Q). If η′ and η′′ are two distinct pure Horn CNF representations of a given pure Horn function h
and if Q is an arbitrary subset of the propositional variables, then by Lemma 7.1 FCη′(Q) = FCη′′(Q) because η′ and η′′ have
the same set of implicates. Therefore, the set of propositional variables reachable from Q by forward chaining depends only
on the underlying function rather than on a particular CNF representation. For this reason, we shall also use the expression
FCh(Q) instead of FCη(Q)whenever we do not want to refer to a specific CNF.

92 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

Now let us return to essential sets of implicates. A key role in the upcoming proofs will be played by falsepoint sets
E(t) from Definition 6.4 which were proved to be essential in Lemma 6.5. Using these sets we can show the following easy
observation.

Lemma 7.2. Let f be a Boolean function and let C = {C1, C2, . . . , Cm} ⊆ I(f) be an irredundant set of clauses representing f .
Then for each i = 1, . . . ,m there exists an essential set Ei, for which Ei ∩ C = {Ci}.

Proof. Take i ∈ {1, . . . ,m} arbitrarily. Since C is irredundant, there exists at least one Boolean vector t such that Ci(t) = 0
and Cj(t) = 1 for all j 6= i. Thus Ei can be set to E(t). �

It is clear that the sets Ei, i = 1, . . . ,m, in the above proof need not be disjoint. However, we shall show that if f is a
quadratic pure Horn, an acyclic pure Horn, or a quasi-acyclic pure Horn function and C is its minimum representation, then
we can find Boolean vectors t1, . . . , tm such that the sets Ei = E(ti), i = 1, . . . ,m in the above proof are pairwise disjoint,
giving an affirmative answer to Question 6.13 for f .
In the remainder of this section we shall frequently use the implication graph Gf = (N,A) of f defined in Section 3 (see

Definition 3.3). Let us introduce some further notation. By Kx we shall denote that strong component of Gf which contains
variable x. Le us denote by τ the partial ordering of strong components of Gf given by the arcs in Gf , i.e., the existence of an
arc in Gf from some variable in Kx to some variable in Ky is equivalent to the fact that Kx<τ Ky whenever Kx 6= Ky. Finally,
for a Boolean vector t (a truth assignment to the variables of f) and a variable x, t[x] will denote the element of t which
corresponds to x. Now we are ready to prove some useful properties connecting forward chaining and implication graphs.

Lemma 7.3. Let v ∈ FCf (S) and let clauses C1, . . . , Ck ⊆ I(f) form an irredundant forward chaining derivation of v from S. Let
x be an arbitrary variable used in clause Ci for some 1 ≤ i ≤ k. Then either x = v or (x, v) is an arc in Gf .

Proof. By the definition of an irredundant forward chaining derivation it follows that Head(Ci) ∈ ∪kj=i+1 Subg(Cj) for every
1 ≤ i ≤ k− 1 and that Head(Ck) = v. By Lemma 3.4 we know that for every Ci each of its subgoals is connected by an arc in
Gf to its head. A simple inductive argument going backward from Ck to Ci then shows that x is connected to v by a directed
path (possibly of length zero if x = Head(Ck) = v) in Gf , which together with the fact that Gf is a transitively closed graph
finishes the proof. �

Lemma 7.4. Let C be an irredundant and prime representation of a pureHorn function f . Let C = A∨x ∈ C andD = B∨y ∈ I(f).
If y 6∈ FCC\{C}(B), then A ⊆ FCC\{C}(B) and either x = y or (x, y) is an arc in Gf .

Proof. Since D ∈ I(f), Lemma 7.1 guarantees that y ∈ FCC(B). Hence there exists an irredundant forward chaining
derivation C1, . . . , Ck of y from B using clauses from C ⊆ I(f). Moreover, since y 6∈ FCC\{C}(B), each derivation of y from B
must use C and thus Ci = C for some 1 ≤ i ≤ kwhich directly implies A ⊆ FCC\{C}(B), and using Lemma 7.3 it also implies
that either x = y or (x, y) is an arc in Gf . �

Lemma 7.5. Let C be an irredundant and prime representation of a pure Horn function f , and let A,B be two sets of variables of
f such that A ⊆ FCC(B). Furthermore, let A′ ⊆ A. Then A′ ⊆ FCC(B′), where B′ = B∩ (A′ ∪ {x | ∃a ∈ A′ : (x, a) is an arc in Gf }).

Proof. Let a ∈ A′ be arbitrary. Since A ⊆ FCC(B) there exists an irredundant forward chaining derivation C1, . . . , Ck of a
from B using clauses from C ⊆ I(f). By Lemma 7.3, every variable x used in C1, . . . , Ck fulfils either x = a or (x, a) is an arc
in Gf . Thus a ∈ FCC(B ∩ ({a} ∪ {x | (x, a) is an arc in Gf })), from which the claim follows. �

Now we have all the necessary tools to answer Question 6.13 for the class of quadratic pure Horn functions.

Theorem 7.6. Let f be a quadratic pure Horn function on n variables. Let m be the number of clauses in a minimum quadratic
pure Horn CNF representing function f . Then there exist m pairwise disjoint essential sets of implicates of f .

Proof. Consider a minimum set C = {C1, C2, . . . , Cm} ⊆ I(f) representing f (such a set can be constructed in polynomial
time from any pure Horn representation of f either by the algorithm for a transitive reduction of a directed graph [20] or
by the minimization algorithm for quasi-acyclic functions [14]). Recall that every prime implicate of a quadratic pure Horn
function is a quadratic pure Horn clause, and a resolvent of two quadratic pure Horn clauses is again a quadratic pure Horn
clause. It follows that not only C but also I(f) consists only of quadratic pure Horn clauses. Let us consider the implication
graph Gf and the partial ordering τ of strong components of Gf . There are two types of clauses in C: for a clause Ci = x ∨ y
either Kx<τ Ky (clause of type (A)) or Kx = Ky (clause of type (B)). Given a clause Ci = x∨ywe define a set Ei in the following
way:

Ei =

{
{(u ∨ v) ∈ I(f) | u ∈ Kx and v ∈ Ky} if Kx<τ Ky (type (A))
{(z ∨ y) ∈ I(f) | z ∈ Kx = Ky and z 6= y} if Kx = Ky (type (B)).

If we think of quadratic pure Horn clauses as arcs in Gf then Ei of type (A) is a complete bipartite subgraph of all arcs going
from Kx to Ky and Ei of type (B) is a star subgraph of all arcs in Kx = Ky entering y.

E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96 93

Let us first show that the sets Ei, i = 1, . . . ,m are pairwise disjoint sets of implicates of f . Obviously, a set of type (A) can
never intersect a set of type (B). Two sets of type (A) intersect only if C contains two clauses Ci = x ∨ y, Cj = u ∨ v of type
(A) such that Kx = Ku and Ky = Kv (in fact, in such a case the sets Ei and Ej not only intersect but are equal). However, this is
a contradiction to the irredundancy of C, since Ci together with clauses of type (B) in C spanning Kx and Ky imply Cj. To see
that no two sets of type (B) intersect we have to use the minimality of C. Indeed, in a minimum representation each strong
component of Gf must be spanned by a simple cycle of clauses (arcs) from C (see [20] or [14] for a proof of this simple fact).
This means that for every y in a strong component of Gf of size larger than one, C contains exactly one clause (arc) of type
B entering y. This in turn implies that all sets Ei of type B are pairwise disjoint.
It remains to show that each Ei, i = 1, . . . ,m, forms an essential set of clauses. For each Ci we shall define a Boolean

vector ti ∈ {0, 1}n and show that Ei = E(ti) for i = 1, . . . ,m, which will finish the proof since each E(ti) is essential by the
proof of Theorem 6.6.
Let us start with the simpler case when Ci = x ∨ y ∈ C is of type (B). We define ti in the following way:

ti[z] =
{
1 if z 6= y and (Ky =)Kx≤τ Kz
0 otherwise.

Informally speaking, all variables in strong components ‘‘after’’ Kx = Ky in order τ are assigned value 1, all variables in
strong components ‘‘not after’’ Kx = Ky in order τ are assigned value 0, and within Kx = Ky only y is assigned value 0
while all other variables are assigned value 1. It is clear from the definition of ti that Ei ⊆ E(ti), so we only have to show
the opposite inclusion. Consider a clause C ∈ E(ti). Since by definition E(ti) ⊆ I(f), C is quadratic pure Horn and we may
write C = u ∨ v. Moreover, by Lemma 3.4 (u, v) is an arc in Gf and hence clearly Ku≤τ Kv . The fact that C(ti) = 0 implies
ti[u] = 1 and ti[v] = 0. Hence u 6= y and Kx≤τ Ku (all ‘‘ones’’ are in or ‘‘after’’ Kx). Because Ku≤τ Kv , we have also that
Kx≤τ Kv . This together with fact that ti[v] = 0 and definition of ti implies that v = y. Putting all this together we get
Ky = Kx≤τ Ku≤τ Kv = Ky, which implies Ku = Kv = Ky = Kx and hence C ∈ Ei.
Now let us consider that Ci = x ∨ y ∈ C is of type (A). This time we define ti in the following way:

ti[z] =
{
0 if Kz 6= Kx and Kz ≤τ Ky
1 otherwise.

Note that (x, y) is an arc in Gf , which implies Kx<τ Ky. Informally speaking, all variables in Ky and in strong components
‘‘before’’ Ky in order τ except for Kx are assigned value 0, while all variables in Kx and in strong components which are
different from Ky and are ‘‘not before’’ Ky in order τ are assigned value 1. Again, it is clear from the definition of ti that
Ei ⊆ E(ti), so we only have to show the opposite inclusion. Let us take a clause C ∈ E(ti). As in the previous case, C can be
written as C = u∨v where (u, v) is an arc in Gf , ti[u] = 1 and ti[v] = 0. This assignment implies that Kv 6= Kx and Kv ≤τ Ky.
Since (u, v) is an arc in Gf , Ku≤τ Kv ≤τ Ky and thus Ku = Kx (since ‘‘ones’’ which are not in Kx are not before Ky). Therefore
Kx = Ku<τ Kv . Proving that Kv = Ky (and hence C ∈ Ei) takes a bit more work. We have to show that no strong component
which was assigned the value 0 (and thus could contain v) except for Ky is reachable by an arc from Kx. For this we shall use
the irredundancy of C. Let us by contradiction assume that Kx = Ku<τ Kv <τ Ky. By the definition of partial ordering τ we
get that (v, y) is an arc in Gf , and hence v ∨ y is a prime implicate of f . Since u ∈ Kx, x∨ v is also a prime implicate of f . The
following three observations now finish the proof:

• The fact x∨v ∈ I(f) implies v ∈ FCC({x}) and also v ∈ FCC\{Ci}({x}) since otherwise Lemma 7.4 implies that either y = v
or (y, v) is an arc in Gf , which is not possible since Kv <τ Ky.
• The fact v ∨ y ∈ I(f) implies y ∈ FCC({v}) and also y ∈ FCC\{Ci}({v}) since otherwise Lemma 7.4 implies that
{x} ⊆ FCC\{Ci}({v}), which in turn implies that there is a directed path from v to x in Gf . Again, this is not possible
since Kx<τ Kv .
• Putting the above two facts together gives y ∈ FCC\{Ci}(x)which is a contradiction to the irredundancy of C. �

A similar result answering Question 6.13 can be derived for the class of acyclic pure Horn functions.

Theorem 7.7. Let f be an acyclic pure Horn function on n variables. Let m be the number of clauses in the minimum acyclic pure
Horn CNF representing function f . Then there exist m pairwise disjoint essential sets of implicates of f .

Proof. The proof is in many ways similar to the proof of Theorem 7.6. This time, since all strong components of Gf are
singletons, the clauses of type (B) do not exist, on the other hand clauses of type (A) are no longer restricted to quadratic
ones.
Again consider a minimum prime set C = {C1, C2, . . . , Cm} ⊆ I(f) representing f , which is (as proved in [12]) in fact the

unique irredundant and prime CNF representing f . As in the previous proof we shall define for each i = 1, . . . ,m a Boolean
vector ti ∈ {0, 1}n and show that Ci ∈ E(ti) and that the sets E(ti), i = 1, . . . ,m are pairwise disjoint.
Since Gf is acyclic, the set of arcs of Gf induces a partial ordering of variables (vertices of Gf) which we shall denote by τ ,

i.e., the existence of an arc (x, y) in Gf is equivalent to the fact, that x<τ y. Let us consider Ci = X ∨ywhere X = {x1, . . . , xk}
and let ti be defined as follows:

ti[z] =
{
0 if z 6∈ FCC\{Ci}(X) and z≤τ y
1 otherwise .

94 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

Note that this definition is a generalization of the corresponding definition (for a clause of type (A)) in the proof of
Theorem 7.6. In the rest of this proof we shall proceed as follows. First we shall observe that Ci ∈ E(ti). Then we shall
show that E(ti) ⊆ {A ∨ y | X ⊆ A}, which will make it easy to prove the disjointness of the sets E(ti), i = 1, . . . ,m.
Let us start by observing that Ci(ti) = 0. Clearly, for each j = 1, . . . , k, xj ∈ FCC\{Ci}(X) and xj≤τ y, hence ti[xj] = 1. Since

C is irredundant, y 6∈ FCC\{Ci}(X) and hence ti[y] = 0. By combining these two observations we get Ci(ti) = 0 and therefore
Ci ∈ E(ti).
Now let us consider an arbitrary C = A ∨ b ∈ E(ti) where A = {a1, . . . , a`}. Let us show that b = y and X ⊆ A. The fact

that C(ti) = 0 means that ti[aj] = 1 for j = 1, . . . , ` and ti[b] = 0. By the definition of ti this implies for every j = 1, . . . , `

aj ∈ FCC\{Ci}(X) or aj 6≤τ y (i)

while

b 6∈ FCC\{Ci}(X) and b≤τ y. (ii)

Since C ∈ I(f), Lemma 3.4 implies that (aj, b) is an arc in Gf for each j = 1, . . . , ` and so aj<τ b≤τ y. This makes the option
aj 6≤τ y in (i) impossible and therefore

A ⊆ FCC\{Ci}(X). (iii)

Now (ii) and (iii) together clearly imply that

b 6∈ FCC\{Ci}(A), (iv)

since otherwise b ∈ FCC\{Ci}(X), which is not the case. From (iv)we get using Lemma 7.4 that

X ⊆ FCC\{Ci}(A), (v)

and also that either y = b or (y, b) is an arc in Gf and hence y≤τ b. However, in (ii) we have shown b≤τ y which together
imply y = b.
Nowwe shall show that X ⊆ A. Let us assume by contradiction that there exists xj 6∈ A and let j be aminimal variablewith

respect to τ with this property. Let A′ ⊆ A and X ′ ⊆ X be the sets of all variables less than xj with respect to τ . Obviously,
(iii) and Lemma 7.5 imply A′ ⊆ FCC\{Ci}(X

′) which in turn implies FCC\{Ci}(A
′) ⊆ FCC\{Ci}(X

′). Similarly, (v) and Lemma 7.5
imply xj ∈ FCC\{Ci}(A

′). By Lemma 7.1 this means that X ′ ∨ xj is an implicate of the function represented by C \ {Ci}. But now
the resolvent (X \ {xj}) ∨ y of clauses Ci and X ′ ∨ xj is an implicate of f contradicting the assumed primality of Ci. Hence
X ⊆ A.
Now we know that when a clause C belongs to E(ti), then it is of the form A ∨ y where X ⊆ A. Let us assume for the

purpose of contradiction that C ∈ E(ti) ∩ E(tj) for some i 6= j. The only possibility is that Ci = Xi ∨ y, Cj = Xj ∨ y, and
Xi, Xj ⊆ A. Moreover, we know from (iii) that A ⊆ FCC\{Ci}(Xi). Since Cj ∈ C and Cj 6= Ci we have y ∈ FCC\{Ci}(Xj). But since
Xj ⊆ A, we also have y ∈ FCC\{Ci}(A) ⊆ FCC\{Ci}(Xi)which is a contradiction to irredundancy of C, since Ci could be dropped
without changing the function. �

It should be noted that if C is a quadratic pure Horn acyclic CNF representing a quadratic pure Horn acyclic function f ,
then it is not hard to observe that the proof of Theorem 7.7 shows that Ei = E(ti) = {Ci}, since I(f) consists of only quadratic
pure Horn clauses.
By combining the proofs of Theorems 7.6 and 7.7 we can now prove the same result for the class of quasi-acyclic pure

Horn functions.

Corollary 7.8. Let f be a quasi-acyclic pure Horn function. Let m be number of clauses in the minimum quasi-acyclic pure Horn
CNF representing function f . Then there exist m pairwise disjoint essential sets of implicates of f .

Proof. Let us consider a minimum prime set C = {C1, C2, . . . , Cm} ⊆ I(f) representing f with the following properties:

• In each strong component Q of Gf one of its variables (denoted xQ) is chosen as its ‘‘representative’’, and all clauses which
contain variables from several different strong components (clauses of type A using the terminology of Theorem 7.6)
contain no variables from Q except for xQ .
• Each strong component Q of Gf of size k is spanned by k quadratic clauses from C which form a cycle (clauses of type B).

It was shown in [14] that there always exists a minimal CNF with the above properties. As in the previous proof we shall
define for each i = 1, . . . ,m a Boolean vector ti ∈ {0, 1}n and show that Ci ∈ E(ti) and that the sets E(ti), i = 1, . . . ,m are
pairwise disjoint. We shall proceed as follows:

• If Ci is of type A we define ti as in the proof of Theorem 7.7. To prove that Ci ∈ E(ti) and the sets E(ti) for all clauses of
type A are disjoint, it suffices to follow line by line the proof of Theorem 7.7. The partial order used this time is a partial
order of the strong components of Gf (or equivalently of the representative variables). The only difference is that the
sets obtained by forward chaining include with every representative variable also all other variables in the given strong
component (all its logically equivalent ‘‘copies’’), but the proof remains valid.

E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96 95

• If Ci is of type B we define ti as in the proof of Theorem 7.6 (for clauses of type B). Again, the fact that Ci ∈ E(ti) and
the sets E(ti) for all clauses of type A are disjoint follows directly from the proof of Theorem 7.6. The proof uses the fact
that I(f) contains only quadratic clauses. That is no longer true in the quasi-acyclic case, however what is true (and is
sufficient for the validity of the proof) is that every clause in I(f) that contains a head and a subgoal from the same strong
component of Gf is a quadratic clause (cannot contain any additional literals). Thus E(ti) for a clause of type B consists
(as before) only of quadratic clauses which represent arcs inside the strong component entering the head of Ci. This last
observation also proves the ‘‘mixed’’ disjointness of sets E(ti) for every pair of clauses of type A and B. �

8. Conclusions

The main results of this paper are presented in Sections 5–7. Section 5 introduces the notion of an exclusive set of
implicates of a Boolean function and derivesmany properties that these sets possess. Themost important property is proved
in Theorem5.5. Loosely speaking, given two different CNF representationsC1 andC2 of a Boolean function f and an exclusive
set X of implicates of f , the set of implicates in C1 that belong to X and the set of implicates in C2 that belong to X
represent the same subfunction of f . Given X, this subfunction is uniquely defined, and it is called the X-component of
f (or an exclusive component of f ifX is clear from the context). The properties of exclusive components are summarized in
Corollaries 5.7 and 5.8. The above results have a nice application in Booleanminimization. Indeed, ifX is an exclusive set and
C is the input CNF for the minimization problem, one can extract the sub-CNF which represents theX-component of f , find
its shortest CNF representation, and then insert this new sub-CNF back into the input CNF. That suggests a decomposition
approach for minimization algorithms. Whenever one can find an exclusive subset of clauses of a given function or several
pairwise disjoint exclusive subsets of clauses of a given function, it is possible to decompose the minimization problem,
solve the subproblems separately, and then compose the obtained solutions back together. This approach is used by the
authors of this paper in a manuscript (currently available as a research report [4]) for a polynomial time minimization of a
subclass of Horn functions which properly includes the classes of quadratic, acyclic, and quasi-acyclic Horn functions.
Section 6 then introduces the notion of an essential set of implicates of a Boolean function. The main results presented in

Theorems 6.6 and 6.15 state a nice duality (or orthogonality) between representations of a function f and essential sets of
implicates of f . A set of clauses represents f if and only if it intersects every nonempty essential set of f . On the other hand,
a set of clauses is essential only if it intersects all representations. Moreover, if a set of clauses intersects all representations
and is minimal with this property, then it is essential. A simple corollary of these results provides the following lower bound
on the length of CNF representations: given k pairwise disjoint nonempty essential sets of implicates of f , it is clear that
every CNF representation of f contains at least k clauses. We pose a question (Question 6.13) for which classes of functions
this lower bound is tight, i.e. for which classes of functions the number of clauses in a shortest representation always equals
the maximum number of pairwise disjoint nonempty essential subsets of implicates. There are two natural open problems
connected to this question:

(1) Are there any classes of functions for which ε(f) = σ(f) and computing this number is hard? Note that for all the classes
we know for which ε(f) = σ(f)we can compute this number in polynomial time.

(2) What is the complexity of computing ε(f) in case ε(f) < σ(f)?

Finally, in Section 7 we give an affirmative answer to Question 6.13 for the classes of quadratic, acyclic, and quasi-acyclic
Horn functions. It should be noted that these results can be easily extended to the corresponding subclasses of renameable
Horn functions. Given a Horn CNF C, one can in linear time decide whether C is renameable Horn, and if so, output a set S
of variables, such that switching (complementing) the variables in S produces a Horn CNF. In case this CNF falls into one of
the above mentioned subclasses of Horn functions, one can find the appropriate Boolean vectors defining disjoint essential
families as described in Section 7. After complementing the components of these vectors that correspond to the set S, one
obtains disjoint essential sets of implicates of the original function. This observation also implies that Question 6.13 has an
affirmative answer for the entire class of quadratic functions as it is well known that a quadratic CNF is either renameable
Horn or identically zero, the latter being a trivial case in which there are no prime implicates and hence also no nonempty
essential sets.

Acknowledgements

The authors would like to thank three anonymous referees for a thorough reading of the manuscript and for many
helpful comments which helped to improve its final version. The second author gratefully acknowledges the support by
the Czech Science Foundation (grant 201/07/0205). The fourth author gratefully acknowledges the support by the Czech
Science Foundation (grant 201/07/P168).

References

[1] G. Ausiello, A. D’Atri, D. Sacca, Minimal representation of directed hypergraphs, SIAM Journal on Computing 15 (1986) 418–431.
[2] E. Boros, O. Čepek, On the complexity of Hornminimization, RUTCOR Research Report RRR 1-94, Rutgers University, New Brunswick, NJ, January 1994.
[3] E. Boros, O. Čepek, A. Kogan, Horn minimization by iterative decomposition, Annals of Mathematics and Artificial Intelligence 23 (1998) 321–343.

96 E. Boros et al. / Discrete Applied Mathematics 158 (2010) 81–96

[4] E. Boros, O. Čepek, A. Kogan, P. Kučera, A subclass of Horn CNFs optimally compressible in polynomial time, RUTCOR Research Report RRR 11-2009,
Rutgers University, New Brunswick, NJ, June 2008.

[5] H.K. Buning, T. Letterman, Propositional Logic: Deduction and Algorithms, Cambridge University Press, 1999.
[6] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third Annual ACM Symposium on theory of Computing, STOC’71,
Shaker Heights, Ohio, United States, May 03–05, ACM, New York, NY, 1971, pp. 151–158.

[7] O. Čepek, Structural Properties and Minimization of Horn Boolean Functions, Doctoral Dissertation, Rutgers University, New Brunswick, NJ, October
1995.

[8] C. Delobel, R.G. Casey, Decomposition of a data base and the Theory of Boolean switching functions, IBM Journal of Research and Development 17
(1973) 374–386.

[9] M.R. Genesereth, N.J. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 1987.
[10] P.L. Hammer, A. Kogan, Horn functions and their DNFs, Information Processing Letters 44 (1992) 23–29.
[11] P.L. Hammer, A. Kogan, Horn functionminimization and knowledge compression in production rule bases, RUTCOR Research Report RRR 8-92, Rutgers

University, New Brunswick, NJ, March 1992.
[12] P.L. Hammer, A. Kogan, Optimal compression of propositional Horn knowledge bases: Complexity and approximation, Artificial Intelligence 64 (1993)

131–145.
[13] P.L. Hammer, A. Kogan, Knowledge compression — logic minimization for expert systems, in: Computers As Our Better Partners, in: Proceedings of

the IISF/ACM Japan International Symposium, World Scientific, Singapore, 1994, pp. 306–312.
[14] P.L. Hammer, A. Kogan, Quasi-acyclic propositional Horn knowledge bases: Optimal compression, IEEE Transactions on Knowledge and Data

Engineering 7 (5) (1995) 751–762.
[15] D. Maier, Minimal covers in the relational database model, Journal of the ACM 27 (1980) 664–674.
[16] W. Quine, The problem of simplifying the truth functions, American Mathematical Monthly 59 (1952) 521–531.
[17] W. Quine, A way to simplify truth functions, American Mathematical Monthly 62 (1955) 627–631.
[18] S.J. Russel, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed., Pearson Education, 2003.
[19] Petr Savický, Private communication.
[20] R.E. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on Computing 2 (1972) 146–160.
[21] C. Umans, The minimum equivalent DNF problem and shortest implicants, Journal of Computer and System Sciences 63 (Dec.) (2001) 4.
[22] C. Umans, T. Villa, A.L. Sangiovanni-Vincentelli, Complexity of two-level logicminimization, IEEE Transactions onComputer-AidedDesign of Integrated

Circuits and Systems 25 (7) (2006) 1230–1246.

Ann Math Artif Intell (2009) 57:249–291
DOI 10.1007/s10472-010-9197-7

A subclass of Horn CNFs optimally compressible
in polynomial time

Endre Boros · Ondřej Čepek · Alexander Kogan ·
Petr Kučera

Published online: 26 June 2010
© Springer Science+Business Media B.V. 2010

Abstract The problem of Horn Minimization (HM) can be stated as follows: given
a Horn CNF representing a Boolean function f , find a shortest possible (optimally
compressed) CNF representation of f , i.e., a CNF representation of f which consists
of the minimum possible number of clauses. This problem is the formalization of the
problem of knowledge compression for speeding up queries to propositional Horn
expert systems, and it is known to be NP-hard. There are two subclasses of Horn
functions for which HM is known to be solvable in polynomial time: acyclic and
quasi-acyclic Horn functions. In this paper we define a new class of Horn functions
properly containing both of the known classes and design a polynomial time HM
algorithm for this new class.

E. Boros · A. Kogan
RUTCOR, Rutgers University, P. O. Box 5062, New Brunswick, NJ 08903, USA

E. Boros
e-mail: boros@rutcor.rutgers.edu

O. Čepek (B) · P. Kučera
Department of Theoretical Computer Science and Mathematical Logic, Charles University,
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: cepek@ksi.ms.mff.cuni.cz

P. Kučera
e-mail: kucerap@ktiml.mff.cuni.cz

O. Čepek
Institute of Finance and Administration—VŠFS, Estonská 500,
100 00, Praha 10, Czech Republic
e-mail: ondrej.cepek@mff.cuni.cz

A. Kogan
Department of Accounting and Information Systems, Rutgers Business School,
Rutgers University, Newark, NJ 07102, USA
e-mail: kogan@rutgers.edu

250 E. Boros et al.

Keywords Horn functions · Boolean minimization · CQ functions · Essential sets ·
Exclusive sets

Mathematics Subject Classifications (2010) 06E30 · 94C10

1 Introduction

Horn functions are a very important subclass of Boolean functions. Their importance
stems from the fact that the satisfiability problem (SAT), which is NP-complete
for general Boolean formulae (see e.g. [13]) is solvable in linear time for Horn
formulae [11, 22, 25]. This implies that certain real-life problems which require
solving SAT become tractable if the underlying Boolean function in the problem
is Horn. Such problems arise in several application areas, among others in artificial
intelligence [9, 17, 18] and database design [10, 24]. Horn clauses constitute a very
popular type of knowledge representation which is due to both the computational
efficiency of reasoning and their relative richness (compared to other tractable
classes) for capturing essential features of real-life problems.

In some applications an important problem is to find a shortest possible (i.e.,
optimally compressed) representation of a given Boolean function. For instance, in
artificial intelligence this problem is equivalent to finding a most compact represen-
tation of a given knowledge base [17, 18]. Such transformation of a knowledge base
accomplishes knowledge compression, since the actual knowledge does not change,
while the size of the representation can be significantly reduced. The computational
complexity of reasoning in the case of Horn knowledge bases is reduced accordingly,
since the compressed knowledge base is guaranteed to remain Horn. The procedure
of knowledge compression preprocesses the knowledge base, and can be done
off-line. This results in speeding up on-line operation while answering queries.
Therefore, the computational expense of a single run of knowledge compression will
be quickly amortized over a large number of queries to the knowledge base.

Knowledge compression represents a special type of knowledge preprocessing.
There are other knowledge preprocessing techniques such as knowledge compilation
and knowledge condensation. All knowledge preprocessing methods utilize a trade-
off between off-line and on-line processing, and are based on the observation that
the additional computation resources consumed off-line will be compensated for by
the ongoing reduction in computational effort during on-line operations. Knowledge
compilation is a well developed type of knowledge preprocessing (see [6, 8, 23, 29,
30]). It was originally designed to construct Horn upper and lower bounds of a
general Boolean function for subsequent use in answering queries. Some queries can
be answered successfully and fast using only these bounds, while the attempt to an-
swer such queries using the original Boolean function directly would be prohibitively
expensive computationally. However, if the Horn bounds do not provide an answer,
then the original function has to be used for answering such queries.

While knowledge compilation aims at reducing an intractable computational
problem to a tractable one, knowledge compression focuses on Horn functions, for
which the computational problem of answering queries is already tractable. How-
ever, the reduction of the total computational effort due to knowledge compression is
nonetheless extremely important, since Horn functions used in practical applications

Optimally compressible subclass of Horn CNFs 251

can have very long representations. Such a situation can happen in many applications
where Horn functions are generated automatically (as, e.g., when first order Horn
theories are instantiated over finite but large domains). In these situations, the
possible significant size reductions of Horn function representations enabled by
knowledge compression are absolutely essential for saving computational resources
and speeding up on-line query answering.

Another knowledge preprocessing technique is known as knowledge condensa-
tion (see [20, 21]). This technique attempts to identify the presence of functional
dependencies implying that, in all models of a theory, the value of a variable is a
function of values of some other variables. Then it may be possible to simplify a
Horn function by repeatedly eliminating the variables whose values are determined
by the values of other variables. The resulting “condensed” function may have much
fewer variables and may be structurally simpler than the original function. Similarly
to knowledge compilation, knowledge condensation changes not only the represen-
tation (as knowledge compression does), but the original function as well, while
maintaining the possibility of using the condensed function for answering queries
about the original one. Both knowledge condensation and knowledge compression
can be used together with knowledge compilation to simplify the Horn bounds it
produces.

Unfortunately, unlike satisfiability, the representation minimization problem is
NP-hard not only in the general case, but also for Horn CNFs [1, 2, 7, 17, 24]. The
Horn Minimization (HM) problem can be stated as follows: given a Horn CNF φ find
a CNF φ′ representing the same function and such that φ′ consists of the minimum
possible number of clauses. Paper [19] introduced two subclasses of Horn functions,
acyclic and quasi-acyclic functions, for which HM is solvable in polynomial time.

In the present paper we shall introduce another subclass of Horn functions which
properly contains both of the above subclasses and develop a polynomial time
algorithm solving HM for the new class. The correctness of this algorithm heavily
depends on nontrivial results about certain sets of implicates of Boolean functions
proved in [4].

The practical significance of the optimal compression algorithm developed in this
paper depends on whether the knowledge base is used for answering sufficiently
many queries, and whether the response time is critically important or not. If the
usage of the knowledge base is anticipated to be very infrequent, then it may not be
justified to invest computational resources upfront in knowledge compression. If, on
the other hand, the knowledge base is designed for active use, then the computational
expense of a single run of knowledge compression will be abundantly compensated
for by the ongoing computational savings derived in answering each subsequent
query. Additionally, in those real-time applications where the response time in query
answering is a major bottleneck, the proposed algorithm will be invaluable since it
enables the reduction of the response time by up to a factor of 2, and this halving of
the response time can make a difference between responding while the answer still
matters and failing to do so.

The paper is structured as follows. In Section 2 we introduce the necessary
notation and present several elementary results important for the subsequent pre-
sentation. In Section 3 we describe the classes of Horn functions for which HM is
known to be solvable in polynomial time, and define a new class of Horn functions
(component-wise quadratic or simply CQ functions), as well as prove some basic

252 E. Boros et al.

properties of this new class. Section 4 deals with so called exclusive and essential
sets of implicates of (general) Boolean functions which were studied in [4]. We
recall several key properties of these sets which are needed in the remainder of the
paper. In Section 5 we return to the study of Horn functions. We associate with each
Horn function two different directed graphs, show that these graphs define a nested
structure of exclusive and essential sets of implicates of the function, and derive a
series of technical statements about these sets. Finally, Section 6 contains the main
result of this paper, namely the polynomial time HM algorithm for CQ functions, a
proof of its correctness (which heavily depends on the results of the previous two
sections), and an upper bound on its time complexity.

2 Basic notation, definitions, and results

In this section we shall introduce the necessary notation and summarize the basic
known results that will be needed later in the text. The first subsection will present
some basic facts about (general) Boolean functions and about the subclass of
Horn functions. The second subsection will introduce a so called “forward chaining
procedure” which constitutes a very useful tool for the study of Horn functions.
Finally, the third subsection will present the standard graph terminology that will
be used throughout this paper.

2.1 Boolean functions

A Boolean function f on n propositional variables x1, . . . , xn is a mapping {0, 1}n →
{0, 1}. The propositional variables x1, . . . , xn and their negations x1, . . . , xn are called
literals (positive and negative literals, respectively). An elementary disjunction of
literals

C =
∨

i∈I

xi ∨
∨

j∈J

x j (1)

is called a clause, if every propositional variable appears in it at most once, i.e., if I ∩
J = ∅. A degree of a clause is the number of literals in it. For two Boolean functions
f and g we write f ≤ g if

∀(x1, . . . , xn) ∈ {0, 1}n : f (x1, . . . , xn) = 1 =⇒ g(x1, . . . , xn) = 1 (2)

Since each clause is in itself a Boolean function, formula (2) also defines the meaning
of inequalities C1 ≤ C2, C1 ≤ f , and f ≤ C1, where C1, C2 are clauses and f is a
Boolean function.

We say that a clause C1 subsumes another clause C2 if C1 ≤ C2 or, in other words,
if the set of literals in C1 is a subset of the set of literals in C2 (e.g. the clause x ∨ z
subsumes the clause x ∨ y ∨ z). A clause C is called an implicate of a function f if
f ≤ C. An implicate C is called prime if there is no distinct implicate C

′
subsuming

C, or in other words, an implicate of a function is prime if dropping any literal from
it produces a clause which is not an implicate of that function.

It is a well-known fact that every Boolean function f can be represented by
a conjunction of clauses (see e.g. [14]). Such an expression is called a conjunctive
normal form (or CNF) of the Boolean function f . The special cases of the constants

Optimally compressible subclass of Horn CNFs 253

1 and 0 are considered to be represented by the empty CNF (i.e., the one with
no clauses) and by the CNF consisting of the empty clause (i.e., the one with no
literals), respectively. It should be noted that a given Boolean function may have
many different CNF representations. If two distinct CNFs, say φ1 and φ2, represent
the same function, we say that they are equivalent, and denote this fact by φ1 ≡ φ2.
A CNF φ representing a function f is called prime if each clause of φ is a prime
implicate of the function f . A CNF φ representing a function f is called irredundant
if dropping any clause from φ produces a CNF that does not represent f .

For example, in the CNF

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4)

the 2nd clause can be dropped (although it is prime), and the 4th clause can be
shortened (i.e., it is not prime). In fact, the same (Horn) function can be represented
by the CNF

(x1 ∨ x2) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4)

which is both prime and irredundant.
The following two notational conventions will allow us to switch back and forth

between sets of clauses and CNFs. For an arbitrary set of clauses C the symbol φ(C)

denotes the CNF obtained by taking a conjunction of all clauses in C. On the other
hand, for an arbitrary CNF φ the symbol C(φ) denotes the set of all clauses present
in φ. We shall use the notion of “representing a given function” interchangeably for
both CNFs and sets of clauses, i.e., if a CNF φ represents a function f we shall also
say that the set of clauses C(φ) represents f .

Two clauses C1 and C2 are said to be resolvable if they contain exactly one
complementary pair of literals, i.e., if there exists exactly one propositional variable
that appears uncomplemented in one of the clauses and complemented in the other.
That means that we can write C1 = C̃1 ∨ x and C2 = C̃2 ∨ x for some propositional
variable x and clauses C̃1 and C̃2 which contain no complementary pair of literals.
The clauses C1 and C2 are called parent clauses and the disjunction R(C1, C2) =
C̃1 ∨ C̃2 is called the resolvent of the parent clauses C1 and C2. Note that the resolvent
is a clause (does not contain a propositional variable and its negation). The following
is an easy lemma [5].

Lemma 1 Let C1 and C2 be two resolvable implicates of a Boolean function f . Then
R(C1, C2) is also an implicate of f .

We say, that a clause C can be derived by a series of resolutions from a CNF φ, if
there exists a finite sequence C1, C2, . . . , Cp of clauses such that

(1) Cp = C, and
(2) for i = 1, . . . , p, either Ci ∈ C(φ) or there exist j < i and k < i such that Ci =

R(C j, Ck).

Resolutions have a very important property (for consequence finding) usually
called the completeness of resolution. Sometimes this property is also referred to as
the Quine theorem after the author of one of the first papers in which this property
was proved [26, 27], see also [5] for related material.

254 E. Boros et al.

Theorem 1 Let φ be a CNF representation of a Boolean function f and let C be a
prime implicate of f . Then C can be derived from φ by a series of resolutions.

Throughout this paper we shall also use the following notation. For an arbitrary
set of clauses C the resolution closure of C denoted by R(C) is the set of all clauses
obtainable through series of resolutions from the set C (allowing the resolvents to
become parent clauses in subsequent resolutions).

For a Boolean function f let us denote by I p(f) the set of its prime implicates,
and let I(f) = R(I p(f)). Note that not all implicates of f may belong to I(f). For
instance, if f is defined by the CNF φ = (x1 ∨ x2) ∧ (x2 ∨ x3), then we have I(f) =
I p(f) = {(x1 ∨ x2), (x2 ∨ x3)}, however the clause (x1 ∨ x2 ∨ x3) is also an implicate
of f .

For the purpose of measuring the complexity of algorithms we need ways of
measuring the “size” of a given CNF φ. The following two definitions are the ones
used most commonly in the literature:

– |φ|c = ∑
C∈C(φ) 1 (the number of clauses in φ),

– |φ|� = ∑
C∈C(φ) |C| (the number of literals in φ),

where |C| denotes the number of literals in clause C. For instance for the small CNF
φ = (x1 ∨ x2) ∧ (x2 ∨ x3) of the above example, we have |φ|c = 2 and |φ|� = 4. Note
also that |φ|c = |C(φ)| if we use the standard notation |S| to denote the cardinality of
set S (recall that C(φ) is the set of clauses in φ). We will swith back and forth betwen
both notations in the subsequent text depending on whether we will be talking about
CNFs or sets of clauses.

In this paper we shall mainly focus on the first measure, though many of our
statements hold for the second measure, as well. Let us now turn our attention to
the subclass of Boolean functions which is the focus of this paper, i.e., the class of
Horn functions.

A clause C defined by (1) is called negative if it contains no positive literals (i.e.,
if J = ∅). It is called pure Horn (or in some literature def inite Horn) if it contains
exactly one positive literal (i.e., if |J| = 1). To simplify notation, we shall sometimes
write a pure Horn clause C = ∨

x∈S x ∨ y simply as C = S ∨ y. Each propositional
variable x ∈ S is called a subgoal of C and the propositional variable y is called the
head of C.1 We shall denote Head(C) = y, Subg(C) = S, and Vars(C) = S ∪ {y}.

A CNF is called Horn if it contains only negative and pure Horn clauses. A CNF
is called pure Horn if it contains only pure Horn clauses. Finally, a Boolean function
is called Horn if it has at least one representation by a Horn CNF, and similarly a
Boolean function is called pure Horn if it has at least one representation by a pure
Horn CNF.

It is known (see [15]) that each prime implicate of a Horn function is either
negative or pure Horn, and each prime implicate of a pure Horn function is pure
Horn. Thus, in particular, any prime CNF representing a Horn function is Horn, and
any prime CNF representing a pure Horn function is pure Horn. The next statement
was proved in [15].

1This terminology comes from the area of artificial intelligence, where the clause C is thought of as
a “rule”

∧
x∈S x −→ y.

Optimally compressible subclass of Horn CNFs 255

Theorem 2 Given a Horn CNF φ one can f ind in O(|φ|2�) time an irredundant and
prime CNF φ′ equivalent with φ.

We shall use Theorem 2 as a (polynomial time) “preprocessing step” which will
allow us to make an assumption that the CNF we work with (input CNF) is
irredundant and prime (usually only primality will be needed).

2.2 Forward chaining procedure

In verifying that a given clause is an implicate of a given pure Horn function, a very
useful and simple procedure is the following. Let η be a pure Horn CNF of a pure
Horn function h. We shall define a forward chaining procedure which associates to
any subset Q of the propositional variables of h a set M in the following way. The
procedure takes as input the subset Q of propositional variables, initializes the set
M = Q, and at each step it looks for a pure Horn clause S ∨ y in η such that S ⊆ M,
and y �∈ M. If such a clause is found, the propositional variable y is included into M,
and the search is repeated as many times as possible.

In the relational database terminology the propositional variables in M are said
to be “chained” to the subset Q (see e.g. [10]). In the expert system terminology the
usage of the clause S ∨ y is called “firing the rule”

∧
x∈S x → y (see e.g. [16]).

Forward Chaining Procedure(C, Q)

Input: A set C of pure Horn clauses, and
a subset Q of propositional variables.

Initialization: Set M = Q.

Main step: While ∃ C ∈ C : Subg(C) ⊆ M and Head(C) �∈ M
do M = M ∪ {Head(C)}.

Stop: Output FCC(Q) = M.

The following lemma, proved in [17], shows how the above procedure can help in
determining whether a given clause is an implicate of a given CNF, or not.

Lemma 2 Given a set C of pure Horn clauses, a subset Q of its propositional variables,
and its variable y /∈ Q, we have y ∈ FCC(Q) if and only if Q ∨ y is an implicate of the
function represented by C.

In what follows we will frequently refer to CNFs as well as their sets of clauses, and
thus for C = C(η) we shall write both FCη(Q) = FCC(Q). The following statement,
proved in [19], shows that the forward chaining procedure can be efficiently imple-
mented, i.e., that the complexity of performing the above mentioned verification
is low.

Lemma 3 Given a pure Horn CNF η and a subset Q of its propositional variables, the
set FCη(Q) can be determined in O(|η|�) time.

256 E. Boros et al.

The complexity guaranteed by Lemma 3 is asymptotically the best possible one,
since any implementation of the forward chaining procedure must at least read the
entire input CNF. Let us conclude this section with a notational remark.

If η′ and η′′ are two distinct pure Horn CNF representations of a given pure
Horn function h and if Q is an arbitrary subset of the propositional variables,
then by Lemma 2 FCη′(Q) = FCη′′(Q) because η′ and η′′ have the same set of
implicates. Therefore, the set of propositional variables reachable from Q by forward
chaining depends only on the underlying function rather than on a particular CNF
representation. For this reason, we shall also use the expression FCh(Q) instead of
FCη(Q) whenever we do not want to refer to a specific CNF.

2.3 Implication graphs of Horn functions

Let us recall first some standard notions from graph theory. A directed graph
(sometimes abbreviated to digraph) is an ordered pair D = (N, A) where N is the
set of nodes and A is the set of arcs, and where an arc is an ordered pair of nodes.

A directed path is a nonempty sequence of arcs a1, a2,...,ap such that ai = (xi, xi+1)

for some vertices x1, x2, ..., xp+1. A cycle is a path such that x1 = xp+1. A directed
graph is called strongly connected if for any two nodes x and y there exist both a
directed path from x to y and a directed path from y to x. If a graph D is not strongly
connected then its vertex set can be decomposed in a unique way into maximal
strongly connected subsets, called the strong components of D.

A subset X ⊆ N of nodes is called an initial set of D if (u, v) ∈ A and v ∈ X imply
u ∈ X, and it is called a terminal set of D if (u, v) ∈ A and u ∈ X imply v ∈ X. We
shall denote by ConeD(X) the smallest (with respect to inclusion) initial set of D that
contains X, and by AnticoneD(X) the smallest (with respect to inclusion) terminal
set of D that contains X.

A directed graph is called acyclic if it contains no directed cycle. Note that in such
a case every strong component consists of a single node. If D is an acyclic directed
graph with a node set N = {x1, . . . , xn}, then an ordering of the nodes (xi1 , . . . , xin) is
called a topological order on N if for every arc (xi j, xik) ∈ A we have i j < ik.

If D = (N, A) is a directed graph, then the transitive closure of D is a directed
graph D = (N, A) where (x, y) ∈ A, whenever there is a directed path from x to y in
the digraph D. For each directed graphs D its transitive closure D is uniquely defined.
A transitive reduction of D is a graph DR = (N, AR) such that DR = D (the digraphs
DR and D have the same transitive closure) and |AR| is minimum. As opposed to
the transitive closure, there may be several distinct transitive reductions of the same
digraph D.

Finally, if D = (N, A) is a directed graph with strong components C1, . . . , Cs, then
the directed graph D′ = (N′, A′) on the set of nodes N′ = {C1, . . . , Cs} with arcs

(Ci, C j) ∈ A′ iff ∃x ∈ Ci ∃y ∈ C j such that (x, y) ∈ A

is called the acyclic condensation of the digraph D.
Let us note that the strong components of a directed graph D = (N, A) along with

the topological order of its acyclic condensation can be found in O(|A|) time [31].
Let us recall next some very useful definitions from [19], associating directed

graphs to Horn CNFs and Horn functions.

Optimally compressible subclass of Horn CNFs 257

Definition 1 For a Horn CNF φ let Gφ = (N, Aφ) be the digraph defined by

N = {x| x is a propositional variable in φ}

Aφ = {(x, y) | ∃ a clause C ∈ C(φ) such that C ≥ x ∨ y}.

In other words, for each pure Horn clause C in φ, the graph Gφ contains as many
arcs as is the number of subgoals in C, with each arc going from the corresponding
subgoal to the head of C. Since a Horn function can be represented by several
different Horn CNFs, seemingly we can associate in this way several different graphs
to a Horn function. However, as it was shown in [3], all these graphs share several
important features. Before stating these features formally, let us consider a small
example.

Example 1 Let us consider the following CNF

φ = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x1) ∧ (x3 ∨ x2)∧
∧(x5 ∨ x4) ∧ (x5 ∨ x6) ∧ (x6 ∨ x7) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x6 ∨ x5) ∧ (x3 ∨ x7 ∨ x6)

It is a well known fact that pure Horn CNFs are in a one to one correspondence
with directed hypergraphs, where the propositional variables play the role of the
nodes of the the hypergraph and each clause corresponds to a directed hyperedge.
Each such directed hyperedge is directed from the set of negative literals (subgoals)
in the clause to the unique positive literal (head) of the clause. Figure 1 depicts the
hypergraph that corresponds to the above defined CNF φ.

By definition, the directed graph Gφ can be obtained from the directed hypergraph
of φ by replacing every directed hyperedge by a set of directed edges, one edge per
subgoal. Figure 2 depicts Gφ corresponding to the CNF φ given in Example 1. Note
that Gφ consists of two strong components denoted by C1 and C2.

Since we will be using the above CNF φ and the function f defined by φ as a
running example throughout the rest of this paper, let us also consider the set of
prime implicates of f . It is not hard to see that I p(f) consists of all six quadratic
clauses on the set {x1, x2, x3}, i.e., of the clauses

(x1 ∨ x2), (x2 ∨ x3), (x2 ∨ x1), (x3 ∨ x2), (x3 ∨ x1), (x1 ∨ x3)

Fig. 1 Hypergraph
corresponding to CNF φ from
Example 1

258 E. Boros et al.

Fig. 2 CNF graph Gϕ

corresponding to CNF φ from
Example 1

plus the three quadratic clauses on the set {x4, x5, x6, x7} which are explicitly present
in φ and one obtained by transitivity, i.e., of the clauses

(x5 ∨ x4), (x5 ∨ x6), (x6 ∨ x7), (x5 ∨ x7)

plus all cubic clauses of the form (xi ∨ x j ∨ xk) where i ∈ {1, 2, 3}, j, k ∈ {4, 5, 6, 7},
j �= k, and where (x j ∨ xk) is not a prime implicate of f , namely the cubic clauses

(xi ∨ x4 ∨ x5), (xi ∨ x4 ∨ x6), (xi ∨ x4 ∨ x7),

(xi ∨ x6 ∨ x4), (xi ∨ x6 ∨ x5),

(xi ∨ x7 ∨ x4), (xi ∨ x7 ∨ x5), (xi ∨ x7 ∨ x6),

for i ∈ {1, 2, 3}. Finally, the set I(f) additionally contains those cubic clauses of the
form (xi ∨ x j ∨ xk) where i ∈ {1, 2, 3}, j, k ∈ {4, 5, 6, 7}, i �= k, and where (x j ∨ xk) is a
prime implicate; it also contains all 36 (non-prime) degree four clauses of the form
(xi ∨ x� ∨ x j ∨ xk) where i, � ∈ {1, 2, 3}, i �= �, j, k ∈ {4, 5, 6, 7}, j �= k, and all 12 (non-
prime) degree five clauses of the form (x1 ∨ x2 ∨ x3 ∨ x j ∨ xk) where j, k ∈ {4, 5, 6, 7},
j �= k.

Theorem 3 [3] Let φ1 and φ2 be two distinct prime CNFs representing the same Horn
function f and let x, y be arbitrary propositional variables from f . Then there is a
directed path from x to y in Gφ1 if and only if there is a directed path from x to y
in Gφ2 . Moreover, it then follows that Gφ1 and Gφ2 have identical transitive closures,
identical strong components, and identical acyclic condensations.

Theorem 3 allows us to associate a graph directly to a Horn function rather than
to its particular Horn CNF representations.

Definition 2 Let f be a Horn function and φ its arbitrary prime CNF representation.
Then we define G f as the transitive closure of Gφ .

Theorem 3 suggests that for a given Horn function f the strong components of
G f play an important role in how the set of all prime CNF representations of f are
structured. In what follows we shall call Gφ and G f the implication graphs of φ and
f , respectively.

Note that the correspondence between pure Horn CNFs or functions and their
implication graphs is not one to one. Given a CNF or a function, its implication graph

Optimally compressible subclass of Horn CNFs 259

is uniquely defined but not vice versa. For instance, if we replace the cubic clause
(x1 ∨ x4 ∨ x5) by two quadratic clauses (x1 ∨ x5) and (x4 ∨ x5) in Example 1 then the
new CNF represents a different pure Horn function than the original CNF φ but the
implication graphs of both CNFs are identical and the same is true for the implication
graphs of both functions.

Let us state finally an important property of implication graphs, slightly general-
izing a statement of [19].

Lemma 4 Let h be a pure Horn function, and let C ∈ I(h). Then (x, Head(C)) is an
arc in Gh = (N, A) for every x ∈ Subg(C).

Proof This statement was shown in [19] for all prime implicates C ∈ I p(h). Since
I(h) = R(I p(h)), every implicate C ∈ I(h) can be derived by a series of resolutions
from prime implicates of h. Thus, the statement will follow by the inductive use of
the following argument:

Let C1 = B1 ∨ x and C2 = B2 ∨ x ∨ y be two resolvable clauses such that (z, x) ∈
A for every z ∈ B1 and (z, y) ∈ A for every z ∈ B2 ∪ {x}. Then, the clause C =
R(C1, C2) = B1 ∨ B2 ∨ y has the property that (z, y) ∈ A for every z ∈ B1 ∪ B2,
since (z, y) ∈ A is assumed for z ∈ B2 and since Gh is transitively closed and (x, y) ∈
A and (z, x) ∈ A for all z ∈ B1 by our assumptions. ��

3 Polynomially solvable cases of HM

The notion of an implication graph of a Horn function f carries a lot of information
about the CNF representations of f , allowing the characterization of important
special classes for which HM is polynomially solvable.

A Horn CNF φ is said to be acyclic if its associated implication graph Gφ is acyclic.
A Horn function f is called acyclic if it admits at least one acyclic CNF represen-
tation. It was shown in [19] that every acyclic function has a unique irredundant
and prime representation, implying that this unique CNF also constitutes a minimal
representation of the given function with respect to both complexity measures we
introduced. Hence the “preprocessing phase” corresponding to Theorem 2 (i.e.,
transforming the input CNF into an irredundant and prime one) itself represents
a polynomial time HM algorithm for acyclic functions.

Let us call two propositional variables x and y logically equivalent in a Horn
function f if the clauses x ∨ y and y ∨ x are implicates of f . A Horn CNF φ is
then said to be quasi-acyclic (see [19]) if every strong component of its associated
implication graph Gφ consists of a set of logically equivalent propositional variables.
A Horn function f is called quasi-acyclic if it admits at least one quasi-acyclic CNF
representation.

Note that every acyclic CNF φ is also quasi-acyclic since each strong component
of Gφ is a singleton. The name quasi-acyclic comes from the fact that picking a repre-
sentative in each set of logically equivalent propositional variables and substituting
this representative for all the other logically equivalent variables in the set results
in an acyclic CNF (i.e., the CNF is essentially acyclic except for the fact that each
variable can have several “names”). In order to understand the structure of quasi-
acyclic functions it is important to realize that if f is a quasi-acyclic function and

260 E. Boros et al.

x, y are propositional variables from the same strong component of G f then, since
both x ∨ y and y ∨ x are implicates of f , no prime pure Horn implicate of f with
degree three or more may contain a subgoal from the same strong component of G f

as the head. This means that the pure Horn clauses in any prime CNF representation
of f can be partitioned into two groups. The first group (let us call it group A)
contains clauses where all the subgoals are in different strong component(s) of G f

than the head, while the second group (group B) contains quadratic clauses with both
the subgoal and the head belonging to the same strong component of G f . Loosely
speaking, the clauses in group B “generate” the strong components of G f while the
clauses in group A “generate” its acyclic condensation. It was proved in [19] that HM
can be solved in polynomial time for quasi-acyclic functions.

Generalizing further the above classes (still using the implication graph) leads us
to the main concept of this paper.

Definition 3 Let us call a pure Horn clause C component-wise quadratic (or CQ for
short) with respect to a Horn function f if at most one subgoal of C belongs to the
strong component of G f containing the head of C. A Horn CNF φ representing
a function f is said to be CQ if every pure Horn clause of φ is CQ with respect
to f . Finally, a Horn function f is called CQ if it admits at least one CQ CNF
representation.

The intuition behind the name, component-wise quadratic, is that if we restrict
any such CNF to variables from a single strong component of its implication graph,
the pure Horn part of the resulting CNF is always quadratic. The negative part may
contain clauses of higher degrees than two, but as we shall see later in this paper,
negative clauses play no essential role in the Horn minimization problem. Note that
the CNF φ introduced in Example 1 is a CQ Horn CNF. It consists of seven quadratic
and three cubic clauses. The quadratic clauses in φ are of course CQ clauses. It can be
easily seen from Fig. 2 that each of the three cubic clauses in φ has its head together
with one subgoal in strong component C2 while the other subgoal is in C1. Therefore
all three cubic clauses in φ are CQ clauses as well.

Once again, it is possible to ask what happens if a CQ function is represented
by a CNF which is not CQ. Fortunately, as in the acyclic and quasi-acyclic cases,
it is enough to do the preprocessing phase to arrive to a CQ representation, as the
following statement shows.

Theorem 4 Let f be a CQ function. Then any prime CNF representation of f is CQ.

Proof By Definition 3 there exists a CQ CNF φ which represents f . Let us replace
every clause in φ by a prime implicate of f which subsumes the given clause and let
us denote the resulting prime CNF of f by φ′. Note that each pure Horn clause C of
φ′ has two properties:

1. C is a CQ clause;2

2. there is an arc in G f from every subgoal of C to the head of C.

2Here we mean CQ with respect to f . Whenever it is obvious which function is meant, we shall omit
referring to it in the subsequent text.

Optimally compressible subclass of Horn CNFs 261

The first property follows from the fact that deleting literals from a CQ clause must
yield another CQ clause. The second property follows from the fact that G f is the
transitive closure of Gφ′ by Definition 2 (here we need primality and that is the reason
why we transformed φ into φ′). We shall show that a resolvent of any two clauses
which satisfy the above two properties has again both of these properties.

So let C1 = A ∨ x and C2 = B ∨ x ∨ y be two arbitrary resolvable clauses belong-
ing to I(f) and satisfying the above two properties. Let us denote their resolvent
by C = A ∨ B ∨ y, and observe that C ∈ I(f) by Lemma 1 and by the definition of
I(f). Thus, the second property follows by Lemma 4.

To verify the first property, let us consider the strong components Sx and Sy of G f

which contain x and y respectively.

– If Sx �= Sy, then Sx precedes Sy in the partial order imposed by the acyclic
condensation of G f (because there is an arc from x to y in G f), and hence so
do all strong components which have a nonempty intersection with the set A
(because for every z ∈ A there is an arc from z to x in G f). Hence A ∩ Sy = ∅.
Now the fact that C2 is CQ implies |B ∩ Sy| ≤ 1 and thus |(A ∪ B) ∩ Sy| ≤ 1
follows, implying that C is CQ.

– If Sx = Sy, then {x, y} ⊆ Sy, and thus the fact that C1 and C2 are CQ implies |A ∩
Sy| ≤ 1 and B ∩ Sy = ∅. Therefore again |(A ∪ B) ∩ Sy| ≤ 1 follows, proving that
C is CQ.

By completeness of resolution (Theorem 1) every prime implicate of f can be
derived from φ′ by a series of resolutions. This implies that every prime implicate
of f satisfies the above two properties, i.e., in particular every prime implicate of f
is a CQ clause, which completes the proof. ��

Note that the above proof actually implies a bit more: if f is a CQ function then
not only all prime implicates of f are CQ but even all clauses in I(f) are CQ. Let us
formulate this easy observation as a corollary.

Corollary 1 Let f be a CQ function and C an arbitrary clause in I(f). Then C is CQ
with respect to f .

Of course, Theorem 4 also immediately implies the following corollary concerning
the recognition of CQ functions.

Corollary 2 Let φ be a Horn CNF. Then it can be checked in O(|φ|2�) time whether φ

represents a CQ function or not.

Proof Using Theorem 2 we can transform φ into a logically equivalent irredundant
and prime CNF φ′ in O(|φ|2�) time. Note that the new CNF is at most as long as
the input one, i.e., |φ′|� ≤ |φ|�. Now by Theorem 4 we get that the represented
function is CQ if and only if φ′ is a CQ CNF, which can be checked in O(|φ′|�) time

262 E. Boros et al.

(both building the implication graph and detecting its strong components as well as
checking that every clause fulfils the CQ property takes linear time in the length
of φ′). ��

The main aim of this paper is to show that HM is polynomially solvable for CQ-
functions.

Theorem 5 Let h be a CQ-function on n variables, represented by an irredundant
and prime CNF C consisting of m clauses and � literals. Then, a minimum CNF
representation C∗ of h can be found in O(n2 + m�) time.

In the rest of the paper we shall present a decomposition based proof for the
above statement. To arrive at such a proof, we first need to analyze the structure of
potentially useful decompositions. We accomplish this by studying the structure of
certain subfamilies of implicates of a Boolean function (in general, we do not restrict
ourselves to Horn functions only). In particular, in Section 4 we consider subfamilies
of implicates which define subfunctions, the representation of which can be chosen
independently from the other clauses of the considered CNF representation. We
also consider subfamilies from which every CNF representation must contain some
clauses, leading to a min-max relation. In Section 5 we return to Horn functions, and
provide tools to identify the above mentioned useful subfamilies of implicates in a
constructive way. The main tool in this will be a new graph associated to a Horn
function h, the vertices of which are the implicates of h, and which we shall call the
clause graph of h. Finally, in Section 6 we present an algorithm for HM, and prove its
correctness and complexity, as claimed in Theorem 5.

A natural question to ask is whether it is possible to further extend the class of
CQ functions by allowing the pure Horn clauses to have not at most one but at most
two (three, four, etc.) subgoals in the same strong component as the head, and still
maintain the polynomial time solvability of HM. The answer is no unless P=NP. The
reason is that even allowing just two subgoals to fall in the same strong component
as the head would include all cubic Horn functions into the extended class (a Horn
function is cubic if it admits a CNF representation with the highest clause degree at
most three). However, it was proved in [2, 7] that HM is NP-hard for cubic Horn
CNFs.

4 Exclusive and essential sets of implicates

In this section we recall properties of CNF representations of Boolean functions
proved in [4]. These properties are applicable to all Boolean functions not just Horn
ones. We also state and prove a decomposition lemma which is a consequence of the
recalled properties. Later in the paper we shall return to Horn functions, and more
specifically to CQ-functions, and apply the general results developed in this section.

In the remainder of this section let us consider an arbitrary but fixed Boolean
function f , the set I p(f) of all prime implicates of f , and the set I(f) = R(I p(f))
of all implicates of f that can be generated from the prime implicates of f by series of
resolutions. Note that I(f) = R(I(f)), i.e., the set I(f) is closed under resolution.

Optimally compressible subclass of Horn CNFs 263

Let us start by recalling two simple technical lemmas from [4] (appearing there
as Lemmas 4.3 and 4.4) which deal with properties of resolution closures of sets of
clauses.

Lemma 5 Let C1 and C2 be two sets of clauses. Then R(C1) = R(C2) implies that
φ(C1) ≡ φ(C2), i.e., if the sets have the same resolution closure then they represent the
same function.

Lemma 6 Let X ,Z ⊆ I(f) be two arbitrary sets of clauses. Then R(X ∪ Z) =
R(X ∪ R(Z)).

4.1 Exclusive components of functions

Let us now define the first key concept of this section, which helps us to decompose
the problem of Horn minimization.

Definition 4 Given a set C of clauses, a subset X ⊆ C is called an exclusive subset of
C if for every pair of resolvable clauses C1, C2 ∈ C the following implication holds:

R(C1, C2) ∈ X =⇒ C1 ∈ X and C2 ∈ X ,

i.e., the resolvent belongs to X only if both parent clauses are in X . In particular, if
C = I(f) for a Boolean function f , we call such a subset X an exclusive set of clauses
of f (or simply an exclusive set, if f or C is clear from the context).

Let us first claim in the next lemma [4] some simple properties possessed by
exclusive sets. Since all these properties follow directly from Definition 4 we shall
omit the proofs.

Lemma 7 Let C be an arbitrary set of clauses. Then,

(a) if A is an exclusive subset of B and B is an exclusive subset of C, then A is an
exclusive subset of C;

(b) if A ⊆ B ⊆ C, and A is an exclusive subset of C, then it is also an exclusive subset
of B;

(c) if A,B ⊆ C are both exclusive subsets of C, then A ∪ B and A ∩ B are also
exclusive (and hence all exclusive subsets of C form a lattice).

The following simple technical lemma dealing with exclusive sets of implicates was
proved in [4] (as Lemma 5.4).

Lemma 8 Let X ⊆ I(f) be an exclusive set of clauses (of f) and C ⊆ I(f) be a set of
clauses such that X ⊆ R(C). Then R(X) = R(C ∩ X).

To see an interesting example of exclusive sets of clauses, let us for a moment
return to Horn functions. Let h be a Horn function and let us partition the set I(h)

into two subsets I(h) = H ∪ N where H is the set of all pure Horn clauses in I(h)

264 E. Boros et al.

and N is the set of all negative clauses in I(h).3 Then it is not hard to see that H is
an exclusive set of h (the resolvent is in H only if both parent clauses are in H).

The partition I(h) = H ∪ N has some important properties (shown in [15]). The
first such property states, that if φ1 and φ2 are two distinct prime CNFs representing
h, then the pure Horn parts of φ1 and φ2 (i.e., the conjunctions of all pure Horn
clauses in the given CNFs) also represent the same pure Horn function, called in [15]
the pure Horn component of h.

Proposition 1 [15] Let φ1 and φ2 be two distinct prime CNFs of a Horn function h.
Then φ(C(φ1) ∩ H) ≡ φ(C(φ2) ∩ H).

Proposition 1 was generalized in [4] to all exclusive sets (it appears there as
Theorem 5.5).

Proposition 2 [4] Let C1, C2 ⊆ I(f) be two distinct sets of clauses such that φ(C1) ≡
φ(C2) ≡ f , i.e., such that both sets represent f , and let X ⊆ I(f) be an exclusive set of
clauses. Then φ(C1 ∩ X) ≡ φ(C2 ∩ X).

It is immediate to see that Proposition 1 is just a special case of Proposition 2. We
can also generalize the notion of a “pure Horn component”.

Definition 5 Let f be an arbitrary Boolean function, X ⊆ I(f) be an exclusive set
of clauses of f , and C ⊆ I(f) be a set of clauses which represents f (i.e., φ(C) ≡ f).
The Boolean function fX represented by the set C ∩ X is called the X -component
of the function f . We shall simply call a function g an exclusive component of f , if
g = fX for some exclusive subset X ⊆ I(f).

Proposition 2 guarantees that the X -component fX is well defined for every
exclusive set X ⊆ I(f). Moreover, Proposition 2 has an important consequence
(appearing in [4] as Corollary 5.7) that will prove to be instrumental later in the
minimization of CQ functions.

Corollary 3 Let C1, C2 ⊆ I(f) be two distinct sets of clauses such that φ(C1) ≡ φ(C2) ≡
f , i.e., such that both sets represent f , and let X ⊆ I(f) be an exclusive set of clauses.
Then φ((C1 \ X) ∪ (C2 ∩ X)) ≡ f .

Loosely speaking, Corollary 3 says that if C1, C2 both represent f and X is
exclusive, then removing C1 ∩ X from C1 and replacing it with C2 ∩ X produces
another representation of f . This statement can be strengthened in the following
way: if C1 is a prime and irredundant representation of f and C2 ∩ X is a prime
and irredundant representation of fX then also (C1 \ X) ∪ (C2 ∩ X) is a prime and
irredundant representation of f . Before stating this stronger version of Corollary 3
we first prove a simple technical lemma.

3It is left to the reader to verify the easy fact that H and N indeed constitute a partition of I(h), i.e.,
that no clause which is neither pure Horn nor negative can appear in I(h) (recall that each prime
implicate of a Horn function is either pure Horn or negative).

Optimally compressible subclass of Horn CNFs 265

Lemma 9 Let C ⊆ I(f) be an irredundant and prime set of clauses such that φ(C) ≡
f , and let X ⊆ I(f) be an exclusive set of clauses. Then C ∩ X is an irredundant and
prime set of clauses such that φ(C ∩ X) ≡ fX .

Proof The fact that C ∩ X represents fX follows directly from the definition of fX .
The irredundancy of C ∩ X trivially follows from the irredundancy of C (if we can
drop a clause from C ∩ X without changing the function represented by C ∩ X then
the same clause can be dropped from C without changing the function represented
by C). To show the primality of C ∩ X let us assume that there exists a nonprime
implicate C′ ∈ C ∩ X of function fX . However, then C′ is also a nonprime implicate
of f contradicting the primality of C. ��

Corollary 4 Let C ⊆ I(f) be an irredundant and prime set of clauses such that φ(C) ≡
f , and let X ⊆ I(f) be an exclusive set of clauses. Moreover, let C ′ ⊆ I(f) be an
irredundant and prime set of clauses such that φ(C ′) ≡ fX . Then (C \ X) ∪ C ′ is an
irredundant and prime set of clauses such that φ((C \ X) ∪ C ′) ≡ f .

Proof The fact that (C \ X) ∪ C ′ represents f follows directly from Corollary 3
(where C ′ plays the role of C2 ∩ X). The irredundancy and primality of (C \ X) ∪ C ′
follows by similar arguments as in the proof of Lemma 9. ��

Let us recall next that a subset of the implicates S ⊆ I(f) of f is called redundant
with respect to f , if S ∩ C = ∅ for all irredundant representations C ⊆ I(f) of f (i.e.,
for all minimal sets of implicates for which R(C) = I(f)). The following statement
was proved in [4] (as Corollary 5.8).

Lemma 10 For every exclusive set X ⊆ I(f) we have R(X) = I(fX), furthermore
the set R(X) \ X is redundant with respect to fX , as well as with respect to f .

Let us finally close this section by an important consequence of Corollary 3,
namely that in an arbitrary representation C of f we can replace C ∩ X by an
arbitrary representation of fX and obtain again a representation of f , whenever X is
an exclusive set. This suggests a decomposition of problem HM, which we summarize
in the following statement:

Lemma 11 (Decomposition lemma) Given a function f , let ∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xt

be a chain of exclusive subsets in which R(Xt) = I(f) and let C∗
i ⊆ Xi \ Xi−1 be

minimal subsets such that R(Xi−1 ∪ C∗
i) = R(Xi) for i = 1, ..., t. Then, C∗ = ⋃t

i=1 C∗
i

is a minimal representation of f (where minimality is with respect to any one of the
complexity measures introduced earlier).

Proof Using Lemma 6 we can show by induction that R(C∗
1 ∪ · · · ∪ C∗

i) = R(R(C∗
1 ∪

· · · ∪ C∗
i−1) ∪ C∗

i) = R(Xi−1 ∪ C∗
i) = R(Xi), for i = 1, .., t, which implies by Lemma 5

that
⋃i

j=1 C∗
j is a representation of the Xi-component fXi of f , for i = 1, .., t.

Let us now consider an arbitrary CNF representation C ⊆ I(f) of f , and define
Ci = C ∩ (Xi \ Xi−1) for i = 1, ..., t. By (b) of Lemma 7 we have that Xi−1 is an
exclusive subset of Xi, for i = 1, ..., t. Thus, we can apply Lemma 8 to the function
fXi and its exclusive subset Xi−1, for i = 1, 2, ..., t, and obtain inductively by Lemma 6

266 E. Boros et al.

that R(Xi−1 ∪ Ci) = R(Xi), for i = 1, ..., t. Therefore, by our choice of C∗
i we have that

the size of Ci is not smaller than that of C∗
i , for i = 1, ..., t (by the complexity measure

we use). Since both considered complexity measures are additive, the statement
follows. ��

4.2 Essential sets and an orthogonality relation

Let us now introduce the second key concept of this section, which will establish a
certain orthogonality relation between sets of implicates and CNF representations.

Definition 6 Given a set C of clauses, a subset E ⊆ C is called an essential subset of C
if for every pair of resolvable clauses C1, C2 ∈ C the following implication holds:

R(C1, C2) ∈ E =⇒ C1 ∈ E or C2 ∈ E,

i.e., the resolvent belongs to E only if at least one of the parent clauses are from E . In
particular, if C = I(f) for a Boolean function f , we call E an essential set of clauses
of f (or simply an essential set, if f or C is clear from the context).

It is easy to see that every exclusive set of clauses (and the set I(f) in particular)
is also essential. We summarize in the following lemma a few simple properties of
essential sets. Since all these properties follow directly from Definitions 4 and 6 we
shall omit the proofs.

Lemma 12 [4] Let C be an arbitrary set of clauses. Then,

(a) if A,B ⊆ C are both essential subsets of C, then A ∪ B is also essential;
(b) if R(C) = C and A is an essential subset of C, then C \ A is closed under

resolution, i.e., C \ A = R(C \ A);
(c) if R(A) = A and B is an exclusive subset of C, then B \ A is an essential subset

of C;
(d) if A ⊆ B ⊆ C, A is an essential subset of B, and B is an exclusive subset of C, then

A is an essential subset of C, as well;
(e) if A,B ⊆ C, A ∩ B �= ∅, A is an essential subset of C, and B is an exclusive subset

of C, then A ∩ B is also an essential subset of C.

To see an interesting example of essential sets, let us consider again a Horn
function h and return to the partition of the set I(h) into two subsets I(h) = H ∪ N
where H is the set of all pure Horn clauses in I(h) and N is the set of all negative
clauses in I(h). Then, it is not hard to see that N is essential for h (since no two
clauses in N are resolvable, the resolvent is in N only if exactly one of the parent
clauses is in N and the other one is in H).

The orthogonality property of essential sets was proved in [4]. This key propo-
sition (which appears there as Theorem 6.4) shows that every essential set has one
(or more) of its clauses present in every representation of f and moreover that this
condition is not only necessary but also sufficient.

Proposition 3 [4] Let C ⊆ I(f) be an arbitrary set of clauses. Then C represents f if
and only if C ∩ E �= ∅ for every nonempty essential set of clauses E ⊆ I(f).

Optimally compressible subclass of Horn CNFs 267

Proposition 3 has an obvious corollary: if there exist nonempty essential sets
E1, E2, . . ., Ek ⊆ I(f) which are pairwise disjoint, then every representation of f must
consist of at least k clauses. Hence, any collection of pairwise disjoint essential sets
of clauses provides an easy lower bound on the size (i.e., number of clauses) of a
minimal representation of f .

A second important property (proved in [15]) of the partition I(h) = H ∪ N states
that, if φ1 and φ2 are two distinct irredundant CNFs representing h, then φ1 and φ2

both contain the same number of negative clauses.

Proposition 4 [15] Let φ1 and φ2 be two distinct irredundant CNFs of a Horn function
h. Then |C(φ1) ∩ N | = |C(φ2) ∩ N |.

Let us finish this section by recalling a generalization of Proposition 4 (it appears
as Theorem 6.12 in [4]), which will come handy in the subsequent sections of this
paper.

Proposition 5 [4] Given a Boolean function f , let X ⊆ I(f) be an exclusive subset of
f such that no two clauses from E = I(f) \ R(X) are resolvable. Then, there exists an
integer k = k(E) > 0, and pairwise disjoint essential subsets Q j ⊆ E , j = 1, .., k such
that |Q j ∩ C| = 1 for j = 1, ..., k and |(E \ ⋃k

j=1 Q j) ∩ C| = 0 for any irredundant set
C ⊆ I(f) of clauses representing f .

Of course, it is clear that Proposition 5 implies the following corollary which more
closely resembles the statement of Proposition 4.

Corollary 5 [4] Let f , X , and E be as in the statement of Proposition 5, and let φ1 and
φ2 be two distinct irredundant CNFs of f . Then |C(φ1) ∩ E | = |C(φ2) ∩ E |.

Clearly, Proposition 4 is just a special case of Corollary 5 if we set X to be the set
of all pure Horn clauses in I(f) (in this case X = R(X)) and E to be the set of all
negative clauses in I(f).

5 Horn minimization

Let us return now to the problem of Horn minimization, and let us recall first a few
preprocessing steps.

By standard Boolean terminology a unit clause is a clause consisting of exactly
one literal. If x or x is a unit prime implicate of a Boolean function f , then clearly no
other prime implicates of f may contain the variable x (negated or not). Therefore
any Horn function f represented by a CNF φ can be decomposed (in O(|φ|2�) time
due to Theorem 2) into a conjunction of unit clauses f1 and a Horn function f2 which
has no unit prime implicates, in such a way that f1 and f2 are defined on disjoint
sets of variables, and f = f1 ∧ f2. Since the aim of this paper is Horn minimization,
and the above described decomposition of course outputs the shortest possible
representation of the exclusive component f1 of f , we can restrict our attention
(without loss of generality) solely to functions with no unit prime implicates. Note

268 E. Boros et al.

that both I(f1) and I(f2) are exclusive sets, so we can minimize them independently
due to Corollary 3.

Moreover, due to Proposition 4 (and its more general form Proposition 5) we may
restrict our attention even further to pure Horn functions because the minimization
of a Horn function really amounts to the minimization of its pure Horn component.
Again note that the set of pure Horn implicates is exclusive and so it can be
minimized independently due to Corollary 3.

Therefore, throughout the remainder of this section we can assume that the Horn
function h to be minimized is pure Horn and has no unit prime implicates. Let us
denote by η the given CNF representation of it.

5.1 Implication graphs

Recall that in Section 3 we have defined the implication graphs Gη = (N, Aη) and
Gh = (N, Ah) associated to η and h, respectively, where N is the set of variables of
the function h represented by the CNF η. We shall first use these implication graphs
to define exclusive subsets of clauses for h. In what follows, we shall simply write G
instead of Gh or Gη, whenever h and/or η will be clear from the context.

Definition 7 Given a subset Y of variables of the function h, let us denote by

Clauses(Y) = {C ∈ I(h) | Vars(C) ⊆ Y}
the set of all clauses from I(h) which have all their variables belonging to the set Y.

Lemma 13 Let X ⊆ N be a set of nodes of the implication graph G = Gh (variables of
h). Then the sets Clauses(ConeG(X)) and Clauses(AnticoneG(X)) are both exclusive
sets of clauses of h.

Proof Let C1 = B1 ∨ z and C2 = B2 ∨ z ∨ y be two resolvable clauses in I(h) and
let C = R(C1, C2) = B1 ∨ B2 ∨ y be their resolvent.

If Vars(C) ⊆ ConeG(X) then y ∈ ConeG(X) and (z, y) ∈ Ah imply z ∈ ConeG(X)

and thus Vars(C1) ⊆ ConeG(X) and Vars(C2) ⊆ ConeG(X) proving that Clauses
(ConeG(X)) is exclusive.

Similarly, if Vars(C) ⊆ AnticoneG(X) then the fact that w ∈ AnticoneG(X)

and (w, z) ∈ A for every w ∈ B1 implies z ∈ AnticoneG(X) and thus Vars(C1) ⊆
AnticoneG(X) and Vars(C2) ⊆ AnticoneG(X) proving that Clauses(AnticoneG(X))

is exclusive. ��

Corollary 6 Let X and Y be two arbitrary sets of nodes (variables) in G, and
let us def ine IntG(X, Y) = Clauses(AnticoneG(X)) ∩ Clauses(ConeG(Y)) to be the
“interval” between X and Y. Then IntG(X, Y) is an exclusive set of clauses.

Proof Follows immediately from Lemmas 13 and 7 (exclusiveness is closed under
intersection). ��

Let us show next a few technical claims about forward chaining and implication
graphs.

Optimally compressible subclass of Horn CNFs 269

Lemma 14 (Forward chaining) Let S be a set of variables, v ∈ FCh(S), and let C ⊆
I(h) be a minimal set of implicates of h for which v ∈ FCC(S). Then, we have

⋃

C∈C
Vars(C) ⊆ ConeG({v}).

Proof By Lemma 4 we have Vars(C) ⊆ ConeG(Head(C)) for all C ∈ I(h). Since
C is a minimal set with the property v ∈ FCC(S), we can index its clauses C =
{C1, C2, . . . , Ck} so that v = Head(Ck) and Head(C j) ∈ Subg(Ci) for some i > j for
all j = 1, ..., k − 1. This implies hence that Vars(C j) ⊆ ConeG(Head(Ci)) for some
i > j for all j < k, from which the statement readily follows, since v = Head(Ck). ��

We shall call such a minimal set of clauses C ⊆ I(h) for which v ∈ FCC(S) a
minimal derivation of v from S.

Definition 8 Let Y be an arbitrary set of variables and C ⊆ I(h) be a set of clauses.
Then we shall denote by C|Y the set of clauses from C which have all variables
in the set Y, i.e., C|Y = C ∩ Clauses(Y). Furthermore, if Y is such that the set
E = Clauses(Y) forms an exclusive set of clauses (of h), we denote by h|Y = hE the
E-component of h (see Definition 5).

Proposition 2 guarantees that the function h|Y is well defined whenever the set
Clauses(Y) is exclusive. Due to Lemma 13 and Corollary 6 this happens for instance
whenever Y is an initial, terminal, or interval set in G.

Lemma 15 (Initial set) Let I be an initial set in G, and let S be an arbitrary set of
variables. Then FCh(S) ∩ I = FCh|I (S ∩ I).

Proof Let us start by proving the inclusion FCh(S) ∩ I ⊆ FCh|I (S ∩ I). Let us con-
sider an arbitrary variable v ∈ FCh(S) ∩ I, and let C ⊆ I(h) be a minimal derivation
of v from S. It follows from Lemma 14 that

⋃
C∈C Vars(C) ⊆ ConeG({v}), and

because v ∈ I and I is an initial set, we also have ConeG({v}) ⊆ I. Therefore,⋃
C∈C Vars(C) ⊆ I follows, and hence v ∈ FCh|I (S ∩ I), which is the desired result.
Now let us prove the opposite inclusion. Since h|I is defined only on variables

from the set I, it follows that FCh|I (S ∩ I) ⊆ I. The inclusion FCh|I (S ∩ I) ⊆ FCh(S)

is trivial, and so we get that FCh|I (S ∩ I) ⊆ FCh(S) ∩ I. ��

5.2 Clause graphs

We shall define yet another directed graph associated to a set of pure Horn clauses
and/or to a pure Horn function. As opposed to Gh and GC which are defined on the
set of variables, this so called clause graph is defined on the set of clauses.

Given a set C of pure Horn clauses let us define its clause graph DC = (VC, EC)

on the given set of clauses as its vertex set VC = V(DC) = C, and where the arc set
EC = E(DC) is defined as follows: For C1, C2 ∈ C we have (C1, C2) ∈ EC if and only
if both

(1) Head(C1) ∈ ConeGC (Head(C2)), and
(2) Subg(C1) ⊆ FCC(Subg(C2)).

270 E. Boros et al.

Fig. 3 A clause graph DC defined by the set C of clauses in the CNF φ from Example 1

Recall that FCC(S) is the forward chaining closure of the set of variables S as defined
in Section 2.

It is easy to see by the definitions of the implication graph and forward chaining
that the clause graph DC is transitively closed. In the special case when C = I(h) for
a pure Horn function h we shall denote the clause graph of C by Dh, furthermore,
whenever the function h will be clear from the context, we shall simply write D
instead of Dh. In this latter case condition (1) simplifies to (Head(C1), Head(C2)) ∈
Ah, due to the fact that Gh itself is transitively closed.

A clause graph DC defined by the set C of clauses in the CNF φ from Example 1
is depicted in Fig. 3. To make the figure easier to read we omitted drawing all the
arcs in the transitively closed graph DC and displayed its transitive reduction instead.
Note that DC consists of four strong components denoted by K1, K2, K3 and K4.

Let us remark that in the sequel, we shall primarily consider clause graphs of
Horn functions, though some of those will be specified implicitly via the set of their
implicates, such as exclusive components of a given function. For this reason we keep
both notations DI(h) = Dh.

We shall also need to consider induced subgraphs of clause graphs. For given sets
B ⊆ C of pure Horn clauses, let us denote by DC(B) the subgraph of DC induced
by the (vertex) set B. Note that by the definitions DB is a subgraph of DC , which
may not be induced, i.e., in general we have DB �= DC(B). However, it is an induced
subgraph when C = R(B).

Optimally compressible subclass of Horn CNFs 271

Lemma 16 Given a set B of pure Horn clauses, let C = R(B). Then, we have DB =
DC(B).

Proof By the definitions of implication graph and forward chaining we have that
ConeGB (v) = ConeGC (v) for every variable v, and FCB(S) = FCC(S) for every set
of variables S. ��

Let us also remark that while the implication graph Gh can be built in polynomial
time from any given CNF representation η = φ(C), C ⊆ I(h) of the function h
(according to its definition and Theorem 3, it is enough to construct the transitive
closure of the graph Gη, which clearly can be done in O(n2 + |η|�) time), it is quite
clear that the same goal is impossible to achieve for the clause graph Dh simply
because the set I(h) may be exponentially large with respect to the size of its
CNF representation η. However, induced subgraphs of a clause graph can be built
efficiently.

Lemma 17 Given the pure Horn function h represented by a pure Horn CNF η =
φ(C), C ⊆ I(h) = R(C), and two clauses C1, C2 ∈ I(h), it is possible to verify in linear
O(|η|�) time whether (C1, C2) is an arc of Dh, or not.

Proof Forward chaining works in linear time in the size of η. Since ConeGC (Subg
(C2)) = ConeGh(Subg(C2)), condition (1) can also be checked in linear time in the
size of η by a direct labeling procedure using only the clauses of C. ��

We can save on the above complexity somewhat when building a clause graph, by
constructing all arcs entering an implicate essentially at the same price as constructing
one of those arcs.

Corollary 7 For any CNF representation η of the function h and subset B ⊆ I(h) the
induced subgraph Dh(B) can be built in O(|B|(|η|� + |B|�)) time. In particular, the
induced subgraph Dh(C(η)) can be built in O(|η|c|η|�) = O(m�) time, where m = |η|c
is the number of clauses in η, and � = |η|� is the number of literals in η.

Proof Let us build first the implication graph Gh in O(|η|�) time. Next, compute the
sets FCh(Subg(C)) for all clauses of B in O(|B||η|�) time, and store them in a |B| × n
binary matrix. Finally, for each C ∈ B we can check in O(|C||B|) time which other
clauses of B are reachable from C, thus in another O(|B||B|�) time we can construct
Dh(B). ��

5.3 Strong components of clause graphs

Let us now derive several important properties of clause graphs.

Lemma 18 Let C be a set of Horn clauses, and C1, C2 ∈ C be two resolvable clauses
such that C = R(C1, C2) ∈ C. Then (C1, C) and (C2, C) are arcs in DC .

272 E. Boros et al.

Proof Let C1 = B1 ∨ v, C2 = B2 ∨ v ∨ u, and C = R(C1, C2) = B1 ∨ B2 ∨ u. Since
C2 ∈ C we get that (v, u) is an arc in the implication graph GC by definition, and so
condition (1) in the definition of DC is satisfied for both (C1, C) and (C2, C).

To prove condition (2) we have to show that B1 ⊆ FCC(B1 ∪ B2) and B2 ∪ {v} ⊆
FCC(B1 ∪ B2). Since the inclusions B1 ⊆ FCC(B1 ∪ B2) and B2 ⊆ FCC(B1 ∪ B2)

are trivial, we need only to show that v ∈ FCC(B1 ∪ B2), which follows by the fact
that C1 = B1 ∨ v is a clause of C and hence v ∈ FCC(B1) ⊆ FCC(B1 ∪ B2). ��

Theorem 6 Let C be a set of Horn clauses, and I ⊆ C be an initial set in DC . Then I
is an exclusive subset of C.

Proof Let C1, C2 ∈ C be two resolvable clauses such that C = R(C1, C2) ∈ C. Then
by Lemma 18 (C1, C) ∈ EC and (C2, C) ∈ EC and hence both C1 ∈ I and C2 ∈ I ,
because I is an initial set in DC . ��

Let us show next some important properties of the strong components of the
clause graph.

Theorem 7 Let h be a pure Horn function, and K be a strong component of Dh. Then,
either K is redundant or K contains a nonempty essential set of clauses.

Proof Let us note first that since K is a strong component of D = Dh, both ConeD(K)

and X = ConeD(K) \ K are initial sets of D, and hence by Theorem 6 both of them
are exclusive (for h). Furthermore, by Lemma 10 the set S = R(X) \ X is redundant.
Thus, if K ⊆ S , then K itself is redundant. On the other hand, if K �⊆ S , then the set
E = K \ R(X) = ConeD(K) \ R(X) ⊆ K is essential by (c) of Lemma 12. ��

An important consequence of the above theorem is that the number of non-
redundant strong components of D is limited by the size of an arbitrary represen-
tation of h.

Corollary 8 Given an arbitrary irredundant representation C ⊆ I(h) of h, the strong
components of the graph DC = D(C) are in a one-to-one correspondence with the non-
redundant strong components of D.

Proof For any strong component K of D, the set K ∩ C forms a strong component of
D(C), by definition of an induced subgraph. Since R(C) = I(h), we have the equality
DC = D(C) by Lemma 16. Thus, by Proposition 3 and Theorem 7, non-redundant
strong components of D correspond in a one to one way to the (nonempty) strong
components of DC . ��

Now we are ready to describe an efficient procedure to construct a chain of
exclusive sets, in the spirit of Lemma 11.

Theorem 8 Let h be a pure Horn function on n variables with no unit implicates,
represented by an irredundant and prime CNF η = φ(C), C ⊆ I(h). Let K1, . . . , Kt be

Optimally compressible subclass of Horn CNFs 273

all strong components of graph DC sorted according to some topological order. Let us
def ine sets of clauses X0 = ∅ and

Xi =
i⋃

j=1

ConeDh(K j),

then the following properties are satisf ied:

(i) Xi−1 is an exclusive subset of Xi for i = 1, . . . , t;
(ii) Xt is an exclusive subset of I(h) and R(Xt) = I(f);

(iii) Ki = C ∩ (Xi \ Xi−1) and the set Ki is the unique terminal strong component of
DConeDXi∩C (Ki), for i = 1, ..., t;

(iv) the strong components K1, . . . , Kt can be found in time O(n2 + m�), where m is
the number of clauses of η and � is the number of literals of η.

Proof Since Xi−1 is by definition an initial set of graph Dh for every i = 1, . . . , t,
it is an exclusive subset of I(h) according to Theorem 6. Therefore according to
Lemma 7, proposition (b), it is also an exclusive subset of Xi. Therefore property (i)
is satisfied.

Since C ⊆ Xt and η = φ(C) is a prime representation of h, clearly R(Xt) = I(h).
Because Xt is an initial set of graph Dh, it is also an exclusive subset of I(h) due to
Theorem 6. Hence (ii) is satisfied.

The fact that Ki = C ∩ (Xi \ Xi−1) follows directly from the definition of sets Xi

and Xi−1. Set Ki is clearly the unique strong component of DConeDXi∩C (Ki) by the
definition of ConeDXi∩C (Ki). Hence also property (iii) is satisfied.

Now, let us examine, how quickly we can find strong components K1, . . . , Kt. We
first construct an implication graph GC , which can be done in O(�) time and then its
transitive closure Gh can be found in O(n2) time. Therefore O(n2 + �) time suffices
to perform this step.

Then the subgraph DC of the clause graph Dh is constructed. For this purpose it is
necessary to test for each pair of clauses C1, C2 ∈ C, whether (C1, C2) is an arc in DC ,
which amounts to verifying the conditions:

1. (Head(C1), Head(C2)) is an arc in Gh or Head(C1) = Head(C2)). This can be
tested in constant time because Gh is already constructed (assume for simplicity
that the first step constructs its adjacency matrix).

2. Subg(C1) ⊆ FCh(Subg(C2))). In order to test this condition we shall first con-
struct for each clause C the set FCh(Subg(C)). By Lemma 3, this takes O(�)

time per clause and thus O(m�) time in total (the results can be stored e.g. in an
m × n matrix). Now we can easily decide whether Subg(C1) ⊆ FCh(Subg(C2))

in O(|C1|) time, and thus we can find all arcs leading to the clause C2 in O(�)

time.

Therefore all arcs of graph DC can be discovered in O(m�) time. Strong components
and their topological order can be found in time linear in the size of DC , i.e., in
O(m2) = O(m�) time. By this also the property (iv) is satisfied. ��

An important consequence of the above theorem is that the problem of Horn
Minimization can be reduced to the following special incremental problem, of finding

274 E. Boros et al.

the optimal representation of a terminal strong component of the clause graph (or in
short, the problem of ORTSC).

Problem ORTSC(F ,Q)

Input: A pure Horn function g, represented by a prime and irredundant set
of clauses F ∪ Q, for which F ⊆ X for some exclusive subset X of
I(g) and Q ⊆ K = I(g) \ X , and where K is the unique terminal strong
component of the clause graph Dg (in other words, I(g) = X ∪ K =
ConeDg(K)).

Output: A minimum cardinality subset Q∗ ⊆ K, such that R(F ∪ Q∗) = R(F ∪
Q) = I(g).

Theorem 9 If problem ORTSC can be solved in polynomial time, then problem HM
can be solved in polynomial time.

Proof Given a Horn function represented by a Horn CNF, let us first bring it to a
prime and irredundant form. We can then delete the negative clauses, according to
Propositions 1 and 4. Let us next perform the preprocessing steps as described in
the beginning of Section 5. All these can be done in O(�2) time, and reduces the
minimization of the original input to the minimization of a pure Horn function h
which has no unit prime implicates, and which is represented by an irredundant and
prime set C of clauses.

Let us next find strong components K1, . . . , Kt of graph DC and their topological
order in time O(n2 + m�) as in Theorem 8, and let X1, . . . ,Xt be defined as in
Theorem 8.

For every i = 1, . . . , t the set Xi \ Xi−1 contains the (non-redundant) strong com-
ponent Li of the graph Dh which corresponds by Corollary 8 to the strong component
Ki of the graph DC . In other words Ki = C ∩ Li ⊆ Li ⊆ Xi \ Xi−1 holds (where the
last inclusion may be proper, if Xi \ Xi−1 contains some redundant strong components
of Dh). Therefore, in order to satisfy the assumptions of Lemma 11 (which yields a
minimum cardinality set of clauses which represents h and thus solves HM) it suffices
to show, that by solving an instance of ORTSC with suitable input we can find for
every i = 1, . . . , t a subset K∗

i ⊆ Xi \ Xi−1 such that

K∗
i is a minimum cardinality set such that R(Xi−1 ∪ K∗

i) = R(Xi). (3)

The set Xi can be split into two disjoint parts: V = ConeDh(Ki) and W = Xi \ V .
Let us denote Y = V ∩ Xi−1. Note that both V and Y are again initial sets of Dh, so
both are exclusive subsets of I(h) by Theorem 6. Moreover W = Xi−1 \ Y holds and
so Xi−1 can be rewritten as disjoint union of W and Y . Thus (3) can be rewritten as

K∗
i is a minimum cardinality set such that R(W ∪ Y ∪ K∗

i) = R(W ∪ V). (4)

Let us show that condition (3) is equivalent to the condition

K∗
i is a minimum cardinality set such that R(Y ∪ K∗

i) = R(V) (5)

Optimally compressible subclass of Horn CNFs 275

To show that (4) implies (5) it suffices to use Lemma 8 where we set X = V and
C = W ∪ Y ∪ K∗

i and C = W ∪ Y ∪ K∗
i . For the reverse implication we need to use

Lemma 6 twice. First we set X = W and Z = Y ∪ K∗
i obtaining R(W ∪ (Y ∪ K∗

i)) =
R(W ∪ R(Y ∪ Ki)) = R(W ∪ R(V)). In the next step we set X = W and Z = V
getting R(W ∪ R(V)) = R(W ∪ V).

A set K∗
i satisfying condition (5) can be found by solving ORTSC for the instance

in which we set g to be the Y-component of h, F = C ∩ Y = ConeDC (Ki) \ Ki,
and Q = C ∩ (V \ Y) = Ki. According to (i)–(iii) of Theorem 8, the function g
represented by F ∪ Q = C ∩ Xi satisfies the conditions of an input for ORTSC. Thus
the set K∗

i = Q∗ which is a solution of ORTSC to this input satisfies condition (5)
and therefore by the above arguments also condition (3). Hence the sets K∗

1, . . . , K∗
t

satisfy requirements of Lemma 11, and C∗ = ⋃t
i=1 K∗

i is a minimum cardinality set
representing h. ��

Remark 1 If ORTSC is reformulated to output a set Q∗ consisting of a minimum
number of literals such that R(F ∪ Q∗) = R(F ∪ Q), then the proof of Theorem 9
can be easily modified to show that using ORTSC one can find a representation of
a given input pure Horn function with the minimum number of literals. In this case
the minimization procedure does not necessarily work for Horn CNFs which contain
negative clauses. The same number of negative clauses may have a different total
number of literals, so dropping them in the preprocessing step cannot be justified
in this case (see Section 6.2 for more details on the minimization of the number of
literals).

5.4 Switching lemmas

To arrive at a polynomial algorithm for Horn minimization (at least for CQ-
functions) we need to tackle problem ORTSC, according to Theorem 9. For this,
we shall need to analyze further the structure of clause graphs and in particular, the
structure of clause graphs of CQ-functions.

Let us remark that until this point, all of our statements remained valid for
arbitrary additive complexity measure of CNF-s, in particular, for both measures |η|�
and |η|c. From now on however, we need to restrict our claims to the minimality of
the number of clauses, i.e., to measure |η|c.

In this subsection, we prove a series of “switching” claims for pure Horn, and
more specifically for CQ functions. In each of these claims some literals of implicates
connected in the clause graph are switched, resulting in another implicate of h. We
assume h to be a fixed pure Horn function, and simply write D instead of Dh, and G
instead of Gh.

Lemma 19 Let A ∨ u, B ∨ v ∈ I(h) be implicates of h such that (B ∨ v, A ∨ u) is an
arc of the clause graph D. Then, there exists a subset A′ ⊆ A such that A′ ∨ v is a
prime implicate of h.

Proof Since (B ∨ v, A ∨ u) is an arc of D, we have B ⊆ FCh(A) by definition, and
thus v ∈ FCh(A) follows, since B ∨ v ∈ I(h) is assumed. Therefore, A ∨ v is an
implicate of h by Lemma 2. Consequently, there must exist a pure Horn prime
implicate A′ ∨ v subsuming A ∨ v. ��

276 E. Boros et al.

It follows from the definition of the clause graph D that whenever both (C1, C2)

and (C2, C1) are arcs in D for some pair of clauses C1, C2 ∈ I(h), then both
(Head(C1), Head(C2)) and (Head(C2), Head(C1)) are arcs in the implication graph
G. Therefore, all clauses from the same strong component of D must have their heads
in a single strong component of G (however, heads of clauses from several strong
components of D may also belong to the same strong component of G). This fact
allows us to state the following definition.

Definition 9 For a strong component K of the clause graph D let us denote by Q(K)

the strong component of the implication graph G which contains the heads of the
clauses belonging to K.

In the rest of this section we shall separate, for each implicate C ∈ I(h), the
subgoals of C which are in the same strong component of the implication graph
G as its head Head(C) from those subgoals of C which are in preceding strong
components. This separation will allow us to state and prove several stronger
“switching” results. Let us start with a simple auxiliary lemma.

Lemma 20 Let K be a strong component of graph D and let (A ∨ X ∨ u), (B ∨ Y ∨
v) ∈ K be two implicates of h, such that A ∩ Q(K) = ∅, B ∩ Q(K) = ∅, and X, Y ⊆
Q(K). Let further I = ConeG(Q(K)) \ Q(K) be an initial set of G, and denote, as
before, by hI the Clauses(I)-component of h, and let X = ConeD(K) \ K. Then, we
have

B ⊆ FChI (A) ∩ FCX (A) ⊆ FCh(A) and A ⊆ FChI (B) ∩ FCX (B) ⊆ FCh(B).

Proof Let us first recall that hI is well defined by Definition 8 (applied to the initial
set I of the implication graph G). Let us note next that, since K is a strong component,
(B ∨ Y ∨ v, A ∨ X ∨ u) is an arc in D, and thus the inclusion B ∪ Y ⊆ FCh(A ∪ X)

holds (by the definition of the clause graph D). By Lemma 15 applied to the initial
set I and the set of variables A ∪ X we get

B = (B ∪ Y) ∩ I ⊆ FCh(A ∪ X) ∩ I = FCh|I ((A ∪ X) ∩ I) = FCh|I (A) ⊆ FCh(A).

Consider next an arbitrary variable b ∈ B \ A, and choose a minimal set C of
prime implicates of hI such that b ∈ FCC(A) holds. We claim that C ⊆ X . To see
this claim, let us note first that

⋃
C∈C Vars(C) ⊆ ConeG(b) follows by Lemma 14,

implying that (Head(C), b) is an arc in G for every clause C ∈ C. We also have
(b , v) as an arc in G for all b ∈ B by Lemma 4, since B ∨ Y ∨ v is an implicate
of h. Finally, we have (v, u) as an arc of G, since A ∨ X ∨ u and B ∨ Y ∨ v are
implicates from the same strong component K of D. Since G is transitively closed,
these imply that (Head(C), u) is an arc in G for all C ∈ C. On the other hand, for all
C ∈ C we have Subg(C) ⊆ FCC(A) ⊆ FCh(A) ⊆ FCh(A ∪ X) by our choice of C.
Thus, (C, A ∨ X ∨ u) ∈ Ah follows, implying C ⊆ ConeD(K). Since C ⊆ Clauses(I)
and Clauses(I) ∩ K = ∅, C ⊆ X follows, as claimed.

Applying the above claim for all b ∈ B \ A, we get B ⊆ FCX (A) ⊆ FCh(A),
completing the proof of the first part of the theorem.

The second part, i.e., the inclusion A ⊆ FChI (B) ∩ FCX (B) ⊆ FCh(B) can be
proved analogously by interchanging the roles of clauses A ∨ X ∨ u and B ∨ Y ∨ v.

��

Optimally compressible subclass of Horn CNFs 277

Now we are ready to state the main result of this subsection, a generalization of
Lemma 19.

Theorem 10 (Switching Theorem) Let K be a strong component of the clause graph
D = Dh and let A ∨ X ∨ u, B ∨ Y ∨ v ∈ K be two implicates of h, such that A ∩
Q(K) = ∅, B ∩ Q(K) = ∅, and X, Y ⊆ Q(K). Then, there exist subsets A′ ⊆ A and
Y ′ ⊆ Y, such that

(a) A′ ∨ Y ′ ∨ v is a prime implicate of h belonging to ConeD(K).
(b) Additionally, if B ∨ Y ∨ v is a prime implicate of h and Y �= ∅, then also Y ′ �= ∅.
(c) Furthermore, if B ∨ Y ∨ v is not redundant, then A′ ∨ Y ′ ∨ v ∈ K.
(d) Finally, if A ∨ X ∨ u is prime, and A′ ∨ Y ′ ∨ v ∈ K, then A = A′.

Proof By Lemma 20 we get B ⊆ FCh(A). Moreover, B ∨ Y ∨ v is an implicate of h,
and so it follows that v ∈ FCh(A ∪ Y), which by Lemma 2 implies that A ∨ Y ∨ v is
an implicate of h. Thus there must exist sets A′ ⊆ A and Y ′ ⊆ Y, such that A′ ∨ Y ′ ∨
v ∈ I p(h). Furthermore, since (B ∨ Y ∨ v, A ∨ X ∨ u) is an arc in the clause graph D,
(v, u) must be an arc of G and A′ ∪ Y ′ ⊆ A ∪ Y ⊆ A ∪ B ∪ Y ⊆ FCh(A ∪ X) must
hold, implying that (A′ ∨ Y ′ ∨ v, A ∨ X ∨ u) is an arc in the implication graph D,
completing the proof of (a).

To see (b), let us assume that B ∨ Y ∨ v ∈ I p(h), Y �= ∅, and by contradiction
that Y ′ = ∅. These imply that A′ ∨ v ∈ I p(h) and so v ∈ FCh(A′). By Lemma 20 we
get A′ ⊆ A ⊆ FCh(B), implying v ∈ FCh(B), from which B ∨ v ∈ I(h) would follow,
contradicting the primality of B ∨ Y ∨ v.

Next, to see (c), let us define X = ConeD(K) \ K, and observe that A ⊆ FCX (B)

follows by Lemma 20, implying A′ ∪ Y ′ ⊆ A ∪ Y ⊆ FCX (B ∪ Y). Now, if A′ ∨ Y ′ ∨
v were not belonging to K, then by (a) it would belong to X , and thus v ∈ FCX (B ∪
Y) would also follow, implying B ∨ Y ∨ v ∈ R(X) \ X , that is that B ∨ Y ∨ v is
redundant by Lemma 10, since X is an exclusive set.

Finally, to see (d), let us apply (a) for the pair A′ ∨ Y ′ ∨ v, A ∨ X ∨ u ∈ K of
clauses, and get that A′′ ∨ X ′′ ∨ u is also an implicate of h for some X ′′ ⊆ X and
A′′ ⊆ A′ ⊆ A. Since A ∨ X ∨ u is assumed to be prime, A′′ = A′ = A and X ′′ = X
are implied. ��

Corollary 9 Let C be a prime and irredundant representation of the pure Horn
function h, K be a strong component of D, and A ∨ X ∨ u, B ∨ Y ∨ v ∈ C ∩ K. Then,
there exists a subset Y ′ ⊆ Y such that the set C ′ = (C \ {B ∨ Y ∨ v}) ∪ {A ∨ Y ′ ∨ v} is
again a prime and irredundant representation of h. Furthermore, if |Y| ≤ 1, then we
must have Y ′ = Y.

Proof By (a), (c) and (d) of Theorem 10 we know that there exists a subset Y ′ ⊆
Y such that A ∨ Y ′ ∨ v ∈ K is a prime implicate of h. Thus both the primality and
irredundancy of C ′ is implied trivially by that of C. The only claim remained to show
is that C ′ represents h, that is that B ∨ Y ∨ v ∈ R(C ′), or equivalently by Lemma 2
that v ∈ FCC′(B ∪ Y).

278 E. Boros et al.

Let us denote by X = ConeD(K) \ K and note that by Lemma 20 we have A ⊆
FCX (B). Thus, by C ∩ X = C ′ ∩ X , we get A ⊆ FCC′(B), from which A ∪ Y ′ ⊆
A ∪ Y ⊆ FCC′(B ∪ Y) follows. Since we also have A ∨ Y ′ ∨ v ∈ C ′, v ∈ FCC′(B ∪ Y)

follows too, as claimed.
Finally, by (b) of Theorem 10, we have Y ′ �= ∅ whenever Y �= ∅, which implies

Y ′ = Y, since |Y| ≤ 1 is assumed. ��

5.5 A classification of strong components of clause graphs

In this section we introduce a useful classification of the strong components of
the clause graph D by the number of their subgoal variables which belong to the
same strong component of the implication graph as their head. Let us start with an
analogous classification of the clauses.

Definition 10 A pure Horn clause C ∈ I(h) is said to be of type i (with respect to h),
if exactly i subgoals of C belong to the same strong component of the graph G as the
head of C.

Let us note next an easy consequence of Lemma 20.

Corollary 10 Let K be a strong component of the clause graph D and let (A ∨ X ∨ u),
(B ∨ Y ∨ v) ∈ K be two prime implicates of h, such that A ∩ Q(K) = ∅, B ∩ Q(K) =
∅, and X, Y ⊆ Q(K). Then, if X = ∅ we must also have Y = ∅.

Proof Since (B ∨ Y ∨ v, A ∨ X ∨ u) is an arc of D, we have B ∪ Y ⊆ FCh(A ∪ X)

by the definition of the arcs in the clause graph. By Lemma 20 we also have A ⊆
FCh(B). Thus, if X = ∅, then Y ⊆ FCh(B) follows, implying by Lemma 2 that B ∨ v

is also an implicate of h. Thus, Y = ∅ is implied by the primality of B ∨ Y ∨ v. ��

Corollary 11 Let h be a pure Horn function, and let K be a strong component of D.
Then, either all or none of the prime implicates belonging to K are of type 0.

Proof Immediate by Corollary 10. ��

If h is a CQ function then Corollary 11 justifies a complete classification of strong
components of D. Indeed, every prime implicate of h is either of type 0 or of type
1 and hence every strong component of D either contains only prime implicates of
type 0 or it contains only prime implicates of type 1.

Definition 11 Let K be a strong component of the graph D. Then we say that K is
of type 0 if all prime implicates belonging to K are of type 0, and we say that K is of
type 1 if all prime implicates belonging to K are of type 1.

6 Algorithm for minimizing CQ functions

Now we are ready to design an algorithm for the minimization of CQ functions.

Optimally compressible subclass of Horn CNFs 279

Algorithm 1 Minimization of CQ functions
Input: Irredundant and prime CNF C representing a function h from the class CQ.
Output: A CNF Cmin representing h such that Cmin has the minimum possible number
of clauses.

1. [Implication graph] Construct the graph GC , its transitive closure Gh and find its
strong components.

2. [Clause graph] Construct the graph DC (i.e., the subgraph of Dh induced by the
clauses in C), find its strong components, and find some topological order T =
(K1, . . . Kt) of these strong components.

3. [Main loop] Process the strong components of the graph DC in the topological
order T found in the preceding step, and for each component K perform one of
the following actions:

– Action K0: If the component K is of type K0, then do nothing.
– Action K1: If the component K is of type K1, then do the following:

(a) Switch all subgoal sets outside of Q(K) of all clauses in K to some
representative set A(K) (i.e., to a set of subgoals outside of Q(K)

of an arbitrary clause from K) obtaining set of clauses K′ and new
representation C ′.

(b) Construct the subgraph Q′(K′) of Q(K′) whose arcs are generated only
by the clauses from ConeDC′ (K′) and mark all arcs generated by clauses
from (ConeDC′ (K′) \ K′) as f ixed and all arcs generated by clauses from
K′ as free.

(c) Find the transitive reduction of Q′(K′) with the added restriction that
the reduction must contain all fixed arcs. Free arcs can be removed
and replaced by other arcs (however the transitive closure of Q′(K′)
must of course remain the same). This task can be performed using a
generalization of the augmentation algorithm described in [12] and [28].

(d) For each removed arc, remove from C ′ the corresponding clause. For
each added arc, add to C ′ the corresponding quadratic clause and extend
the clause by adding the representative set A(K) of subgoals. Update
the graph DC′ accordingly.

4. [Output] Output the final CNF C.

Let us show the work of Algorithm 1 on the set C of clauses defined by the CNF φ

from Example 1. Let us assume that Algorithm 1 processes the strong components of
the clause graph DC in the order K1, K2, K3 and K4 given by Fig. 3. Let us consider
the processing of these four strong components step by step.

– Strong component K = K1 is of type K1. We get Q(K) = C1 and hence no clause
in K has any subgoals outside of Q(K). Thus no switching takes place in step
(a) and we get K = K′ and C = C ′. In step (b) the subgraph Q′(K′) is in fact
the entire component Q(K′) = Q(K) as no clauses outside of K′ = K contribute
arcs in Q(K′). Moreover, all arcs in Q′(K′) are marked as free since K′ is a source
component of DC′ and hence (ConeDC′ (K′) \ K′) is empty. Finally, in steps (c)

280 E. Boros et al.

and (d) the four quadratic clauses in K′ are replaced by three clauses (e.g. x1 ∨
x2, x2 ∨ x3, x3 ∨ x1) which span a directed cycle in Q(K′).

– When processing K = K2 and K = K3 which are also both of type K1 we get
in both cases Q(K) = C2 and no subgoals outside of Q(K). Hence no switching
occurs in step (a). For K = K2 the subgraph Q′(K′) consists of a single arc (x6, x7)

which is marked as free in step (b) and no change occurs in steps (c) and (d). For
K = K3 the subgraph Q′(K′) consists of arc (x6, x7) which is marked as fixed and
arcs (x5, x4), (x5, x6) which is marked as free in step (b). Again, no change occurs
in steps (c) and (d).

– The most interesting case occurs when processing K = K4 which is also of type
K1 and Q(K) = C2. Each of the three cubic clauses in K has a different subgoal
outside of Q(K), namely x1, x2, and x3. Therefore in step (a) these subgoals are
all switched to the same subgoal, e.g. to x1. See Fig. 4 for a directed hypergraph
which corresponds to the CNF after the switch.
In step (b) we get Q′(K′) = Q(K) = C2. Note that K is a terminal com-
ponent of DC′ and so all clauses in C ′ are from ConeDC′ (K′). The arcs
(x6, x7), (x5, x4), (x5, x6) are marked as fixed, while (x4, x5), (x6, x5), (x7, x6) are
marked as free. Finally, in steps (c) and (d) the arcs (x7, x6), (x6, x5) are replaced
by (x7, x5) which keeps all fixed arcs in place and maintains the strong component
C2. This implies replacing the cubic clauses x1 ∨ x7 ∨ x6 and x1 ∨ x6 ∨ x5 by a new
cubic clause x1 ∨ x7 ∨ x5. The resulting CNF

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1)∧

∧(x5 ∨ x4) ∧ (x5 ∨ x6) ∧ (x6 ∨ x7) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x7 ∨ x5)

is shown as a directed hypergraph in Fig. 5.

The rest of this section is organized as follows. Subsection 6.1 proves the cor-
rectness of Algorithm 1, i.e., it shows that Algorithm 1 outputs a minimum CNF
representation of the CQ-function given by the input CNF. Subsection 6.2 shows that
Algorithm 1 not only minimizes the number of clauses but it also outputs a minimum
CNF with respect to the number of literals. Finally, Subsection 6.3 deals with the time
complexity of Algorithm 1 and proves that it runs in O(n2 + m�) time where n is the
number of variables, m is the number of clauses, and � is the number of literals in the
input CNF.

Fig. 4 Hypergraph
corresponding to the CNF
after the switch

Optimally compressible subclass of Horn CNFs 281

Fig. 5 Hypergraph
corresponding to the resulting
CNF produced by Algorithm 1
from CNF ϕ defined in
Example 1

6.1 Correctness of algorithm 1

Theorem 11 Algorithm 1 works correctly and outputs a minimum CNF representation
of the given input function h.

Proof Algorithm 1 follows the idea from the proof of Theorem 9. The only thing we
have to prove is, that we are able to solve problem ORTSC if we restrict our attention
to CQ functions. Action K0 solves problem ORTSC in case of strong components
of type K0 and its correctness is justified by Lemma 21. Action K1 solves problem
ORTSC in case of strong components of type K1 and its correctness is justified by
Lemma 22.

In both lemmas we will use the following notation (it is same notation as in the
proof of Theorem 9):

Li = strong component of graph Dh corresponding to Ki

V = ConeDh(Ki)

Y = ConeDh(Ki) ∩
i−1⋃

j=1

ConeDh(K j)

Note that Q = Ki and F = C ∩ Y = ConeDC (Ki) \ Ki in the notation from the
definition of ORTSC. Moreover, note that Li ⊆ V \ Y , where the inclusion is proper
if Xi \ Xi−1 (where Xi = ⋃i

j=1 ConeDh(K j)) contains some redundant strong compo-
nent of Dh. ��

Lemma 21 (Action K0) Let Ki be of type K0, then Ki is a minimum cardinality set
such that R(Y ∪ Ki) = R(V).

Proof We shall show that the irredundancy of C is in this case sufficient for the
intersection C ∩ Li to have the minimum possible cardinality and no further action
is required. Let us denote Ki = C ∩ Li = {A1 ∨ u1, . . . , A� ∨ u�}. By Corollary 9 we
may switch the subgoal sets of all clauses in Ki to some representative set A, such
that after this switch we get K′ = C ′ ∩ Li = {A ∨ u1, . . . , A ∨ u�} and C ′ is still a
prime and irredundant representation of h. The irredundancy of C ′ now implies that

282 E. Boros et al.

for every i �= j we have ui �= u j. Moreover, by Proposition 2 we have R(Y ∪ K′) =
R(Y ∪ Ki) = R(V).

Now let us assume by contradiction that there exists a set of clauses P = {B1 ∨
w1, . . . , B� ∨ w�′ } where �′ < � such that R(Y ∪ P) = R(V). By Proposition 2 and
exclusiveness of Y and V it follows that replacing K′ by P produces again a CNF
representation of h and we may w.l.o.g. assume that P is such that this CNF is
irredundant and prime. Now we may once more use Corollary 9 to switch the subgoal
sets of all clauses in P to some representative set B, such that after this switch
we get P′ = C ′′ ∩ Li = {B ∨ w1, . . . , B ∨ w�′ } and C ′′ is still a prime and irredundant
representation of h. Clearly, after such a switch we again have R(Y ∪ P′) = R(Y ∪
P) = R(V).

Due to irredundancy of C ′ and C ′′ no clause in K′ ∪ P′ can be in R(Y). On the
other hand R(Y ∪ K′) = R(Y ∪ P′) implies K′ ⊆ R(Y ∪ P′) and P′ ⊆ R(Y ∪ K′).
Therefore any forward chaining derivation of a variable uk, k = 1, . . . , �, from the
set A using the set of clauses Y ∪ P′ must involve at least one clause B ∨ w j ∈ P′
(and symmetrically any forward chaining derivation of a variable wk from the set B
using the set of clauses Y ∪ K′ must involve at least one clause A ∨ u j ∈ K′). Then, by
the forward chaining Lemma 14, w j ∈ ConeGY∪P′ (uk), and so there must be a path in
GY∪P′ leading from w j to uk. Since Li is of type K0, no arc in Q(Li) can be generated
by clauses in P′ ⊆ Li. Therefore, for every uk there exists a w j such that there is a
path in GY leading from w j to uk. Since �′ < �, there is some w j (w.l.o.g. w1), from
which paths lead to (at least) two different uk’s (w.l.o.g., to u1 and u2). However, by
a symmetric argument, for every wk (and in particular for w1) there exists a u j such
that there is a path in GY leading from u j to wk. Thus there is a path in GY from some
u j to both u1 and u2, and so no matter what the value of j is, there is a path in GY
from u j to uk where j �= k. We shall finish the proof by showing that the existence of
such a path contradicts the irredundancy of C ′.

Due to Theorem 3 we can assume that all arcs on the path from u j to uk are
generated by clauses present in C ′ ∩ Y , namely by some B1 ∨ ui ∨ w1, B2 ∨ w1 ∨
w2, . . . , B�−1 ∨ w�−2 ∨ w�−1, B� ∨ w�−1 ∨ u j ∈ Y , where Bi ∩ Q(K′) = ∅ for every
i = 1, . . . , �. Since A ∨ u j ∈ Li, Y ⊆ ConeDh(Li), and Dh is transitively closed, the
graph Dh contains arcs (Bi ∨ wi−1 ∨ wi, A ∨ u j) for every i = 1, . . . , � (here we
denote u j = w0 and uk = w�), and therefore Bi ⊆ FCh(A) holds for each such
index i. Let I = ConeGh(Q(K′)) \ Q(K′). Since A, Bi ⊆ I for all i, it follows from
Lemma 15 that the inclusion Bi ⊆ FCh|I (A) holds for each index i. Let us now
define C∗ = C ′ \ {A ∨ uk}, and let us investigate the set FCC∗(A). First of all, since
uk �∈ I, the inclusion Bi ⊆ FCh|I (A) ⊆ FCC∗(A) holds for each index i. Secondly,
since A ∨ u j ∈ C∗, we get B1 ∪ {u j} ⊆ FCC∗(A) and so w1 ∈ FCC∗(A). Similarly,
B2 ∪ {w1} ⊆ FCC∗(A) implies w2 ∈ FCC∗(A), and so on, eventually obtaining uk ∈
FCC∗(A). Thus φ(C∗) ≡ φ(C ′) which is a contradiction to the irredundancy of C ′. ��

Lemma 22 (Action K1) Let Ki be of type K1, then the set Ki after being modif ied by
Action K1 is a minimum cardinality set such that R(Y ∪ Ki) = R(V).

Proof Before we start the proof, let us describe its main steps. We shall start
by proving that the set K′ created in step (a) of Action K1 satisfies that R(Y∪

Optimally compressible subclass of Horn CNFs 283

K′) = R(Y ∪ Ki) = R(V) and that Q(Ki) = Q(K′). Then we shall show that the
set K′′, which denotes the set Ki after being modified by Action K1, satisfies that
R(Y ∪ K′′) = R(Y ∪ K′) = R(V). After that we shall show that C ′′ which denotes
the set C ∩ V after being modified by Action K1 is again the prime and irredundant
representation of V-component hV of h. We will finish the proof by showing that K′′
is a minimum cardinality set for which R(Y ∪ K′′) = R(V).

Let us denote Ki = C ∩ Li = {A1 ∨ u1 ∨ v1, . . . , Ak ∨ uk ∨ vk} where A j ∩ Q
(Ki) = ∅ and {u j, v j} ⊆ Q(Ki) for each index j. By Corollary 9 we can switch all sets
of subgoals outside of Q(Ki) of all clauses from Ki to some representative set A,
such that after this switch we obtain K′ = C ′ ∩ Li = {A ∨ u1 ∨ v1, . . . , A ∨ uk ∨ vk}.
Corollary 9 guarantees that after this switch is performed in step (a) of Action K1

the “current” CNF C ′ is still a prime and irredundant representation of h. Note also
that K′ is now a strong component of DC′ (such that Li is its corresponding strong
component of Dh) and R(Y ∪ K′) = R(Y ∪ Ki) = R(V). Moreover, since the switch
did not change anything inside of Q(Ki) = Q(K′) the subgraphs of Q(K′) generated
by clauses in Ki and K′ are identical.

Let us investigate the exclusive set V = ConeDh(Ki) = ConeDh(K′) of h and the
corresponding exclusive component hV of h. Since C ′ is a prime and irredundant rep-
resentation of h, C ′ ∩ V is, due to Lemma 9, a prime and irredundant representation
of hV . Moreover, the fact I(h) = R(C ′) implies by Lemma 16 that DC′ = DI(h)(C ′) =
Dh(C ′) which in turn implies ConeDC′ (K′) = C ′ ∩ ConeDh(K′) = C ′ ∩ V .

In step (b) of Action K1 the graph Q′(K′) is defined as the subgraph of Q(K′)
generated by clauses from ConeDC′ (K′) = C ′ ∩ V . We shall show that if there is a path
in Q′(K′) from u to v, then A ∨ u ∨ v ∈ R(V) (i.e., A ∨ u ∨ v is an implicate of hV).
Since C ′ ∩ V represents hV this is the same as proving A ∨ u ∨ v ∈ R(C ′ ∩ V)). The
last fact is (by Lemma 2) equivalent to showing that v ∈ FCC′∩V (A ∪ {u}). Let B1 ∨
u ∨ w1, B2 ∨ w1 ∨ w2, . . . , Bk ∨ wk−1 ∨ v be the clauses from C ′ ∩ V = ConeDC′ (K′)
that generate a path from u to v in Q′(K′), where w1, . . . wk−1 ∈ Q(K′). Since
A ∨ u1 ∨ v1 ∈ K′ (we could pick any clause from K′ here) the arc (B� ∨ w�−1 ∨
w�, A ∨ u1 ∨ v1) is in DC′ for every � = 1, . . . , k (here we denote w0 = u and wk = v)
by the definition of ConeDC′ (K′) and the fact that DC′ is transitively closed. However,
the definition of the graph DC′ now implies B� ⊆ FCC′∩V (A ∪ {u1}) for every � =
1, . . . , k. However, B� ⊆ ConeGh(Q(K′)) \ Q(K′) and so by Lemma 14 no clause with
literals in Q(K′) (and in particular no clause containing u1) is necessary to derive B�

by forward chaining from A ∪ {u1}. Hence B� ⊆ FCC′∩V (A) for every � = 1, . . . , k.
This means that B1 ∪ {u} ⊆ FCC′∩V (A ∪ {u}) which together with B1 ∨ u ∨ w1 ∈
C ′ ∩ V gives w1 ∈ FCC′∩V (A ∪ {u}). Similarly, B2 ∪ {w1} ⊆ FCC′∩V (A ∪ {u}) together
with B2 ∨ w1 ∨ w2 ∈ C ′ ∩ V gives w2 ∈ FCC′∩V (A ∪ {u}) and so on, eventually obtain-
ing v ∈ FCC′∩V (A ∪ {u}), which finishes the proof that A ∨ u ∨ v ∈ R(V).

Note that in step (c) an arc (u, v) is added into the transitive reduction of Q′(K′)
only if there is a path in Q′(K′) from u to v. Therefore the argument in the previous
paragraph proves that every clause added in step (d) is in R(V). Thus R(Y ∪ K′′) ⊆
R(Y ∪ K′) = R(V) holds after K′ is modified to K′′ in step (d). Let us denote Cold =
(C ′ ∩ V) \ (K′ \ K′′), Cnew = (K′′ \ K′) and C ′′ = Cold ∪ Cnew. To prove the reverse
inclusion R(Y ∪ K′) ⊆ R(Y ∪ K′′) we need to show that for every clause A ∨ u ∨ v

removed from K′ in step (d), v can be derived by forward chaining from A ∪ {u} using
the new set of clauses C ′′. Note that an arc (u, v) is removed from Q′(K′) in step (c)
only if there is a path from u to v in the constructed transitive reduction which means

284 E. Boros et al.

that clauses in C ′′ generate a path from u to v. However, now we can repeat the
argument from the previous paragraph to prove that v ∈ FCC′′(A ∪ {u}) provided
we can show B� ⊆ FCC′′(A) for every clause B� ∨ w�−1 ∨ w� ∈ C ′′ generating an
arc on the path from u to v. If B� ∨ w�−1 ∨ w� ∈ Cold then we already know that
B� ⊆ FCC′∩V (A). However, B� ⊆ ConeGh(Q(K′)) \ Q(K′) and so by Lemma 14 no
clause with its head in Q(K′) is necessary to derive B� by forward chaining from
A. Hence B� ⊆ FC(C′∩V)\K′(A) which implies B� ⊆ FCC′′(A) as C ′ \ K′ and C ′′ \ K′′
are identical. If B� ∨ w�−1 ∨ w� ∈ Cnew then B� ⊆ FCC′′(A) holds trivially as B� = A.
This finishes the proof of R(Y ∪ K′′) = R(Y ∪ K′).

The use of Corollary 9 in step (a) at every iteration of the algorithm requires not
only that all added clauses be implicates of hV (and thus implicates of h) but also
that all added clauses be prime implicates, maintaining the primality of the CNF
representation of h. Let us assume that an arc (u, v) is added into the transitive
reduction of Q′(K′) in step (c). Since the minimum possible number of arcs has been
added to get back the same transitive closure, it implies that all paths from u to v

in Q′(K′) contain at least one free arc which is then removed in step (d) (note that
no fixed arcs are removed and no arc spanning a path which entirely stays in Q′(K′)
can be added into its transitive reduction). The addition of the arc (u, v) in step (c)
implies the addition of the clause A ∨ u ∨ v in step (d). Let us show that A ∨ u ∨ v is
a prime implicate of hV . Let us distinguish two cases:

– First let us assume by contradiction that A ∨ v is an implicate of hV , and hence
C∗ = C ′′ \ {A ∨ u ∨ v} ∪ {A ∨ v} still represents hV . However, the arc (u, v) which
was added in step (c) is now missing from Q′(K′), and since the minimum number
of arcs was added to keep the transitive closure of Q′(K) the same, the transitive
closure will change as a result of removing (u, v). That means that the graphs
GC′′ and GC∗ have different transitive closures, which by Theorem 3 contradicts
the assumption that C ′′ represents the same function as C∗. This argument also
proves that C ′′ is an irredundant representation of hV and thus C ′ \ (C ′ ∩ V) ∪ C ′′
is an irredundant representation of h.

– Now let us assume by contradiction that A′ ∨ u ∨ v, where A′ ⊂ A, is an im-
plicate of hV , and hence C∗ = C ′′ \ {A ∨ u ∨ v} ∪ {A′ ∨ u ∨ v} still represents hV .
This implies that v ∈ FCC′∩V (A′ ∪ {u}) while v �∈ FCC′∩V (A′) due to the above
first case. Therefore, any forward chaining derivation of v from A′ ∪ {u} must
use some clause C1 in which u is a subgoal. By Lemma 14 also the head (say
w1) of this clause must be in Q(K′), and so we can write C1 = B1 ∨ u ∨ w1 for
some B1 ∩ Q(K′) = ∅ (since C1 is a CQ clause). Assuming that we are looking
at a forward chaining derivation of v from A′ ∪ {u} in which all derived variables
are subsequently used in some future step, also w1 must be a subgoal of some
clause C2 used in the derivation chain. By similar considerations as above we
can write C2 = B2 ∨ w1 ∨ w2 where w2 ∈ Q(K′) and B2 ∩ Q(K′) = ∅, and so on,
until some clause C� = B� ∨ w�−1 ∨ v is used. Clauses C1 to C� of course generate
a path from u to v in Q′(K′). However, every such path contains at least one
free arc generated by a clause from K′ and so A ⊆ FCC′∩V (A′ ∪ {u}) must hold.
But now using the fact that A ⊆ ConeGh(Q(K′)) \ Q(K′) and Lemma 14 we get
that no clause with literals in Q(K′) (and in particular no clause containing u)
is necessary to derive A by forward chaining from A′ and so A ⊆ FCC′∩V (A′)
contradicting the primality of C′.

Optimally compressible subclass of Horn CNFs 285

The above considerations show that the CNF C ′′ = ((C ′ ∩ V) \ K′) ∪ K′′ resulting
from Action K1 is an irredundant and prime representation of hV such that R(Y ∪
K′′) = R(Y ∪ K′) = R(V). Using Corollary 4 we moreover get that (C ′ \ (C ′ ∩ V)) ∪
C ′′ is an irredundant and prime representation of h. To finish the proof we shall show
that K′′ is a minimum cardinality set with this property.

Let us assume by contradiction that there exists a set of clauses K∗, where |K∗| <

|K′′|, such that R(Y ∪ K∗) = R(Y ∪ K′′). Let Q′′(K′) and Q∗(K′) be the subgraphs of
Q(K′) generated by clauses from Y ∪ K′′ and Y ∪ K∗. Since the set of arcs generated
by clauses from Y is exactly the same in both cases, and the set of arcs K′′ has the
minimum cardinality subject to the condition that the transitive closure of Q′′(K′) is
the same as that of Q′(K′), then the transitive closure of Q∗(K′) must be different.
That means that the graphs GY∪K′′ and GY∪K∗ have different transitive closures,
which by Theorem 3 contradicts the assumption that Y ∪ K′′ represents the same
function as Y ∪ K∗. ��

6.2 Minimization of the number of literals

In this subsection we shall show that given a CQ function f Algorithm 1 not only
outputs a minimum CNF with respect to the number of clauses, but if a simple
preprocessing and postprocessing step is employed (adding and removing an extra
variable which turns an arbitrary CQ CNF into a CQ CNF with no negative clauses)
then the output CNF is also minimum with respect to the number of literals.
Throughout this subsection let us simply denote the clause graph D f by D and let K
be an arbitrary strong component of D. We shall show that all prime implicates of f
which belong to K have the same degree, i.e., consist of the same number of literals.
We shall start with two preparatory lemmas.

Lemma 23 Let f be a CQ function and let C = A ∨ X ∨ u be a prime implicate of f ,
let Q be the strong component of GConeD(C) to which u belongs and let us assume that
A ∩ Q = ∅, X ⊆ Q \ {u}, |X| ≤ 1. Let K denote the strong component of D = D f , to
which C belongs. Then each strong component of GConeD(C)\K contains at most one
element of A.

Proof Let us denote X = ConeD(C) \ K. According to Theorem 6, we have that X is
an exclusive set of clauses of f . To prove the lemma, let us proceed by contradiction.
Let us assume, that there are two distinct variables a1, a2 ∈ A which belong to the
same strong component S of GX . Since there is a path from a1 to a2 in GX there
must exist clauses C1 = B1 ∨ x1 ∨ x2, C2 = B2 ∨ x2 ∨ x3, . . . , Ck = Bk ∨ xk ∨ xk+1 in
X , where x1 = a1, xk+1 = a2, and ∀ 1 ≤ i ≤ k + 1 : xi ∈ S. The following properties
can now be derived for every 1 ≤ i ≤ k:

– From the fact that X ⊆ I(f) and from Corollary 1 it follows that Ci is a CQ-
clause w.r.t. f , which in turn implies that Bi ⊆ ConeGX (S) \ S.

– Moreover, since Ci ∈ X = ConeD(C) \ K, we get Bi ⊆ FCX (A ∪ X) by the
definition of graph D, and using Lemma 15 (where we set I = ConeGX (S) \ S)
we can strengthen this to Bi ⊆ FCX (A).

Let us denote B = ⋃k
i=1 Bi. Clearly, the properties of individual Bi’s carry over to set

B and so B ⊆ ConeGX (S) \ S and B ⊆ FCX (A) hold. Using the resolution chain of

286 E. Boros et al.

Ci clauses along the path from a1 to a2 also C′ = B ∨ a1 ∨ a2 ∈ R(X) ⊆ I(f) holds.
Now there are two possibilities:

– Either B ⊆ FCX (A \ {a2}) but then using the clause C′ ∈ I(f) we get a2 ∈
FC f (A \ {a2}), contradicting the primality of C,

– or there must exist a variable b ∈ B such that each forward chaining derivation
proving b ∈ FCX (A) uses a2. Let {E1, . . . , E�} ⊆ X be a minimal (under inclu-
sion) forward chaining derivation of b ∈ FCX (A), then due to the above con-
siderations a2 ∈ ⋃k

j=1 Vars(E j) must hold. However, Lemma 14 now implies that
there is a path from a2 to b in GX contradicting the fact that B ⊆ ConeGX (S) \ S.

��

Lemma 24 Let f be a CQ function and let C = A ∨ X ∨ u and C′ = B ∨ Y ∨ v be
two prime implicates of f that belong to the same strong component K of clause graph
D = D f . Let Q be the strong component of G f to which both u and v belong, and let
us assume that A ∩ Q = ∅, X ⊆ Q \ {u}, |X| ≤ 1, B ∩ Q = ∅, Y ⊆ Q \ {v}, |Y| ≤ 1.
Let S be an arbitrary strong component of GConeD(C)\K. Then |S ∩ A| = |S ∩ B| ≤ 1.

Proof Similarly as in the proof of Lemma 23 let us denote the exclusive set of clauses
ConeD(C) \ K = ConeD(C′) \ K by X . Using Lemma 20 we get A ⊆ FCX (B) and
B ⊆ FCX (A). By Lemma 23, |S ∩ A| ≤ 1 and |S ∩ B| ≤ 1, so we only need to show
that if |S ∩ A| = 1 (say S ∩ A = {a}) then there exists some b ∈ S ∩ B (the opposite
direction is of course similar).

Now A ⊆ FCX (B) implies a ∈ FCX (B), i.e., B ∨ a is an implicate of function
fX , the X -component of f . Therefore there must exist B′ ⊆ B such that B′ ∨ a is a
prime implicate of fX , which implies a ∈ FCX (B′). Using Theorem 3 there must be
a path from every variable b ∈ B′ to a in the graph GX . Furthermore, the inclusion
B ⊆ FCX (A) of course implies B′ ⊆ FCX (A), and so, similarly as in the proof of
Lemma 23, there are two possibilities:

– Either B′ ⊆ FCX (A \ {a}) but then also a ∈ FC f (A \ {a}) (recall that a ∈
FCX (B′)), contradicting the primality of C,

– or there must exist a variable b ∈ B′ such that each forward chaining deriva-
tion proving b ∈ FCX (A) uses a. Let {E1, . . . , E�} ⊆ X be a minimal (under
inclusion) forward chaining derivation of b ∈ FCX (A), then due to the above
considerations a ∈ ⋃k

j=1 Vars(E j) must hold. However, Lemma 14 now implies
that there is a path from a to b in GX . Thus GX contains both a path from b to
a and a path from a to b proving that b ∈ S. ��

Now we are ready to derive the desired result.

Corollary 12 Let f be a CQ function and let C = A ∨ u and C′ = B ∨ v be two prime
implicates of f , which belong to the same strong component K of D = D f , then
|A| = |B|.

Proof Let Q be the strong component of G f which contains both u and v. According
to Corollary 11 both C and C′ are of the same type (either K0 or K1) and hence
|A ∩ Q| = |B ∩ Q|. According to Lemma 24, |S ∩ A| = |S ∩ B| for every strong

Optimally compressible subclass of Horn CNFs 287

component S of the graph GConeD(C)\K, and hence |A \ Q| = |B \ Q|. Therefore
|A| = |B|. ��

As an easy corollary, we now get that Algorithm 1 for minimizing the number of
clauses in a CQ CNF minimizes also the number of literals, if the input CNF is pure
Horn.

Corollary 13 Let f be a pure Horn CQ function and let C be a CNF with the minimum
number of clauses which represents f and which was produced by Algorithm 1. Then
C is also a CNF with the minimum number of literals which represents f .

Proof Algorithm 1 in each step solves one ORTSC problem by minimizing the
number of clauses in some strong component K of D f . Using Corollary 12 we get
that all prime clauses in K have the same number of literals. It then follows that a
minimum cardinality set Q∗ ⊆ K which solves the current ORTSC is also a set with
the minimum number of literals which solves the ORTSC reformulated to output a
set Q∗ consisting of a minimum number of literals such that R(F ∪ Q∗) = R(F ∪ Q)

(as in Remark 1). ��

Using a simple transformation we can extend Corollary 13 to all CQ functions
including those that have negative prime implicates.

Corollary 14 Let f be a CQ function given by a prime and irredundant CQ CNF
F . Then a CNF with the minimum number of literals which represents f can be
constructed using a simple modif ication of Algorithm 1.

Proof If F is pure Horn then Algorithm 1 constructs the desired CNF due to
Corollary 13. If F contains negative clauses then introduce a new variable z and
replace each negative clause

∨
i∈I xi in F with a pure Horn clause

∨
i∈I xi ∨ z.

Notice that the new pure Horn CNF Fz resulting from such a replacement is CQ,
because all newly introduced arcs in GFz point to z, which means that z constitutes
a new singleton strong component of GFz , while the structure of all the other
strong components of GFz remains the same as in GF . Let fz be the CQ function
represented by Fz. Note that fz(z = 0) = f , and fz(z = 1) = fH, where fH is the
pure Horn component of f .

Let F ′
z be a CNF produced by Algorithm 1 on input Fz. Using Corollary 13 we

get that F ′
z is a representation of fz with the minimum number of literals. Let F ′ be

the CNF produced from F ′
z by dropping all occurrences of literal z (or equivalently,

by substituting z = 0). We claim that F ′ is a representation of f with the minimum
number of literals.

Note first that F ′ represents f , since F ′ = F ′
z(z = 0), and F ′

z represents fz and
fz(z = 0) = f . Let k be the number of negative clauses in F . Let us assume by
contradiction that F ′′ is a prime and irredundant representation of f with fewer
literals than F ′. By Proposition 4 both F ′ and F ′′ have exactly k negative clauses. Let
F ′′

z be the CNF constructed from F ′′ by adding z to all negative clauses, as above.
Clearly, F ′′

z represents fz since F ′′
z (z = 0) represents f and F ′′

z (z = 1) represents
fH. However, now we have: |F ′′

z |� = |F ′′|� + k < |F ′|� + k = |F ′
z|� contradicting the

minimality of F ′
z. ��

288 E. Boros et al.

6.3 Time complexity of algorithm 1

Now let us turn our attention to the complexity of CQ minimization. First let us
recall that due to Theorem 2, we can transform any given Horn CNF representation
(having � literals) of a CQ function h into an irredundant and prime CNF C in O(�2)

time. By Lemma 4 we know that such a prime representation must be a CQ CNF,
which can be easily tested in O(�) time (by building the strong components of GC
in O(�) time, and then testing whether each clause is CQ in O(�) time). Once we
have an irredundant and prime CNF representation of a CQ function, we can run
Algorithm 1.

Theorem 12 Let h be a Horn function on n variables which is from the class CQ.
Let C be an irredundant and prime CNF representing h which is given as an input to
Algorithm 1. Then Algorithm 1 runs in O(n2 + m�) time, where m is the number of
clauses and � is the number of literals in C.

Proof As we have shown in property (iv) of Theorem 8, we can perform the first
and the second step in time O(n2 + m�). To classify the components according to
Definition 11 (types K0 and K1) it suffices to look at one clause in C from each strong
component, which can also be easily done in O(m�) time. Note that DC is transitively
closed, so it is sufficient to keep the graph of the acyclic condensation of DC and for
each strong component a list of participating clauses.

The third step is the main loop and it is executed for each strong component of
DC exactly once. Thus the body of the loop is repeated at most m times. Performing
Action K0 of course takes constant time. We shall show that Action K1 can be
performed in O(�) time for each strong component of type K1. Let us analyze Action
K1 in detail.

– Step (a): switching all subgoal sets outside of Q(K) of all clauses in C ∩ K to
some representative set A(K) can be easily performed in O(�) time.

– Step (b): identifying the subgraph Q′(K′) of Q(K′) generated only by clauses
from ConeDC′ (K′) also takes only O(�) time.

– Step (c): finding a transitive reduction of Q′(K′) with the added restriction that
the reduction must contain all fixed arcs can be done in three steps:

1. Detecting the strong components of Q′(K′) takes O(|Q′(K′)|) time (which
is of course O(�)).

2. Arcs between different strong components all stay in place. This is due to
the fact that the irredundancy of the CNF representation C ′ guarantees that
these arcs already span the skeleton graph of the acyclic condensation of
Q′(K′) which is of course the unique transitive reduction of the acyclic
condensation of Q′(K′). Therefore this step takes no time. To see that
the irredundancy of C ′ is sufficient, let us assume by contradiction that
there is a free arc (u, v) (generated by a clause C′ in K′) between two
distinct strong components of Q′(K′) which is not in the skeleton graph
of the acyclic condensation. That means that there is a path from u to
v in Q′(K′) (i.e., a path generated by clauses in ConeDC′ (K′)) not using
the arc (u, v). By the definition of the graph DC′ , for each such clause
C′′ we have Subg(C′′) ⊆ FCC′(Subg(C′)). In fact, by Lemma 14 all such

Optimally compressible subclass of Horn CNFs 289

forward chaining derivations can be done without ever using a clause
containing v (in particular, without using the clause C′), and so Subg(C′′) ⊆
FCC′\C′(Subg(C′)). However, this means that v ∈ FCC′\C′(Subg(C′)) (i.e., v
can be derived from Subg(C′) along the path from u to v without using the
clause C′) which is a contradiction to the irredundancy of C ′.

3. In each strong component of Q′(K′) its transitive reduction that keeps all
the fixed arcs can be found in O(|Q′(K′)|) (and hence also O(�)) time using
the algorithm from [12] and its correction from [28].

– Step (d): removing clauses that correspond to the removed arcs and adding
clauses that correspond to the added arcs in step (c) amounts to updating the
list that represents the strong component K′, which can be performed in O(�)

time as the total length of the added clauses is at most equal to the total length
of the removed clauses (this also takes care of updating the graph DC′).

The fourth and last step takes only O(�) time, so adding all time requirements
together we get the desired O(n2 + m�) time bound. Moreover, if we assume that
each variable appears as a head of some clause, then the complexity of Algorithm 1
can be simplified to O(m�) time. ��

6.4 Compression performance of algorithm 1

By carefully examining Algorithm 1 it is not too hard to give an estimate on the
maximum compression rate (in terms of the number of clauses) that the algorithm
may achieve (recall that a prime and irredundant input CNF is assumed). Clauses
are deleted and replaced by other clauses only in the Action K1 step. The subgoal
set outside of the strong component of the implication graph plays no role in
the minimization. The only procedure that is essential for the minimization of the
input CNF is removing arcs from the strong component of the implication graph
and replacing them with a smaller number of arcs while maintaining the strong
connectivity of the component. Each arc in this procedure corresponds to a clause.
It is not hard to see that the maximum number of arcs in a strong component on k
vertices when no transitive (redundant) arcs are allowed is 2(k − 1). Any spanning
tree on k vertices where each edge of the tree is replaced by arcs in both directions
provides such a directed graph. On the other hand, the minimum number of arcs that
still maintain strong connectivity of the component is k. Any directed simple cycle
through all k vertices provides such a graph. Therefore, the ratio of the maximum
and minimum number of arcs in each strong component is bounded from above
by two.

7 Conclusions

This paper introduces a new subclass of Horn functions - the class of CQ (component-
wise quadratic) functions, which strictly contains the class of quasi-acyclic functions
defined in [19]. For this new class a polynomial time algorithm is designed, which for
a given prime and irredundant input CNF of a CQ function f outputs a minimum
(shortest) CNF representation of f . The algorithm minimizes the number of clauses

290 E. Boros et al.

and, with an additional preprocessing step, can be also used to minimize the number
of literals.

Moreover, the algorithm in fact works for a broader subclass of Horn functions
than just the class of CQ functions. The property which suffices for the correctness of
the algorithm is the following: every prime implicate C = A ∨ u of f has at most one
subgoal from A in the strong component QConeD f (C)(u) (i.e., the strong component
which contains u) of the implication graph induced by the exclusive component of f
represented by clauses in ConeD f (C). Since this implication graph is a subgraph of
G f (has fewer edges), the strong component QConeD f (C)(u) can be strictly smaller
than the strong component Q f (u) in G f . Thus, it may happen that some prime
implicate C = A ∨ u has two or more subgoals in Q f (u) (which means that f is
not a CQ function) while it still has at most one subgoal in QConeD f (C)(u) (thus, still
enabling the minimization algorithm to work).

Aside of the theoretical contribution, it would also be interesting to assess the
practical importance of the minimization algorithm. To that end, it would be inter-
esting to find out how frequently the CQ functions may appear, or more specifically,
to answer the following questions. Among the Horn functions over n variables,
how many are component-wise quadratic? Among the component-wise quadratic
Horn functions, how many are quasi-acyclic? These may be hard questions to solve
analytically. Perhaps an asymptotic behavior of the corresponding ratios can be
estimated through experiments (randomly generated Horn CNFs).

Acknowledgements We would like to thank two anonymous reviewers for their valuable comments
which helped to improve this paper. The second author gratefully acknowledges the support by
the Czech science Foundation (grant P202/10/1188). The fourth author gratefully acknowledges the
support by the Czech Science Foundation (grant 201/07/P168).

References

1. Ausiello, G., D’Atri, A., Sacca, D.: Minimal representation of directed hypergraphs. SIAM J.
Comput. 15, 418–431 (1986)

2. Boros, E., Čepek, O.: On the complexity of Horn minimization. RUTCOR Research Re-
port RRR 1-94, Rutgers University, New Brunswick, NJ (1994)

3. Boros, E., Čepek, O., Kogan, A.: Horn minimization by iterative decomposition. Ann. Math.
Artif. Intell. 23, 321–343 (1998)

4. Boros, E., Čepek, O., Kogan, A., Kučera, P.: Exclusive and essential sets of implicates of Boolean
functions. Discrete Appl. Math. 158(2), 81–96 (2010)

5. Buning, H.K., Letterman, T.: Propositional Logic: Deduction and Algorithms. Cambridge
University Press (1999)

6. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3–4), 137–150
(1997)

7. Čepek, O.: Structural properties and minimization of Horn Boolean functions. Doctoral disser-
tation, Rutgers University, New Brunswick, NJ (1995)

8. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)
9. Dechter, R., Pearl, J.: Structure identification in relational data. Artif. Intell. 58, 237–270 (1992)

10. Delobel, C., Casey, R.G.: Decomposition of a data base and the theory of Boolean switching
functions. IBM J. Res. Develop. 17, 374–386 (1973)

11. Dowling, W.F., Gallier, J.H.: Linear time algorithms for testing the satisfiability of propositional
Horn formulae. J. Log. Program. 3, 267–284 (1984)

12. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5, 653–665 (1976)
13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, San Francisco (1979)

Optimally compressible subclass of Horn CNFs 291

14. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan Kauf-
mann, Los Altos, CA (1987)

15. Hammer, P.L., Kogan, A.: Horn functions and their DNFs. Inf. Process. Lett. 44, 23–29 (1992)
16. Hammer, P.L., Kogan, A.: Horn function minimization and knowledge compression in produc-

tion rule bases. RUTCOR Research Report RRR 8-92, Rutgers University, New Brunswick, NJ
(1992)

17. Hammer, P.L., Kogan, A.: Optimal compression of propositional Horn knowledge bases: com-
plexity and approximation. Artif. Intell. 64, 131–145 (1993)

18. Hammer, P.L., Kogan, A.: Knowledge compression—logic minimization for expert systems. In:
Computers As Our Better Partners. Proceedings of the IISF/ACM Japan International Sympo-
sium, pp. 306–312. World Scientific, Singapore (1994)

19. Hammer, P.L., Kogan, A.: Quasi-acyclic propositional Horn knowledge bases: optimal compres-
sion. IEEE Trans. Knowl. Data Eng. 7(5), 751–762 (1995)

20. Ibaraki, T., Kogan, A., Makino, K.: Functional dependencies in Horn theories. Artif. Intell.
108(1–2), 1–30 (1999)

21. Ibaraki, T., Kogan, A., Makino, K.: On functional dependencies in q-Horn theories. Artif. Intell.
131(1–2), 171–187 (2001)

22. Itai, A., Makowsky, J.A.: Unification as a complexity measure for logic programming. J. Log.
Program. 4, 105–117 (1987)

23. Kautz, H., Kearns, M., Selman, B.: Forming concepts for fast inference. In: Proceedings of the
Tenth National Conference on Artificial Intelligence (AAAI’92), pp. 786–793. AAAI, San Jose,
CA (1992)

24. Maier, D.: Minimal covers in the relational database model. J. ACM 27, 664–674 (1980)
25. Minoux, M.: LTUR: a simplified linear time unit resolution algorithm for Horn formulae and

computer implementation. Inf. Process. Lett. 29, 1–12 (1988)
26. Quine, W.: The problem of simplifying the truth functions. Am. Math. Mon. 59, 521–531 (1952)
27. Quine, W.: A way to simplify truth functions. Am. Math. Mon. 62, 627–631 (1955)
28. Raghavan, S.: A note on Eswaran and Tarjan’s algorithm for the strong connectivity augmenta-

tion problem. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing,
Optimization, and Decision Technologies, pp. 19–26. Springer (2005)

29. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: pre-
liminary report. In: Proceedings of the Sixth National Conference on Artificial Intelligence
(AAAI’87), pp. 183–189. AAAI, San Jose, CA (1987)

30. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. J. ACM 43(2), 193–
224 (1996)

31. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 2, 146–160 (1972)

Ann Math Artif Intell (2011) 61:231–244
DOI 10.1007/s10472-011-9263-9

Disjoint essential sets of implicates
of a CQ Horn function

Ondřej Čepek · Petr Kučera

Published online: 12 November 2011
© Springer Science+Business Media B.V. 2011

Abstract In this paper we study a class of CQ Horn functions introduced in Boros
et al. (Ann Math Artif Intell 57(3–4):249–291, 2010). We prove that given a CQ Horn
function f , the maximal number of pairwise disjoint essential sets of implicates of f
equals the minimum number of clauses in a CNF representing f . In other words, we
prove that the maximum number of pairwise disjoint essential sets of implicates of
f constitutes a tight lower bound on the size (the number of clauses) of any CNF
representation of f .

Keywords Horn functions · Boolean minimization · CQ functions · Essential sets ·
Exclusive sets

Mathematics Subject Classification (2010) 93C10

1 Introduction

The problem of CNF minimization can be stated as follows: given a CNF F find
a logically equivalent CNF F ′ which consists of the minimum possible number of
clauses. This problem has many practical applications in artificial intelligence [9,
13, 14] and database design [10, 16]. CNF minimization is a very hard problem: it
is �

p
2 -complete if the input can be any CNF [20, 21] and it is NP-complete (i.e.,

O. Čepek (B) · P. Kučera
Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: ondrej.cepek@mff.cuni.cz

P. Kučera
e-mail: kucerap@ktiml.mff.cuni.cz

O. Čepek
Institute of Finance and Administration - VŠFS, Estonská 500,
100 00 Praha 10, Czech Republic

232 O. Čepek, P. Kučera

�
p
1 -complete) if the input is restricted to Horn CNFs (see [1, 2, 7, 13, 16] for various

Boolean Minimization (BM) intractability results).
On the other hand there are subclasses of Boolean functions for which CNF min-

imization can be done in polynomial time. The easiest case is the class of monotone
functions since every monotone function f has a unique prime and irredundant CNF
representation (the canonical CNF consisting of all prime implicates of f) which
is therefore also the minimum CNF representation. Moreover the canonical CNF
of f can be obtained from any monotone CNF representing f in polynomial time
simply by performing all possible absorptions. Similarly, every acyclic Horn function
f has a unique prime and irredundant CNF which is of course a minimum CNF
and can be constructed from an arbitrary Horn CNF of f in polynomial time [15].
Another class that admits polynomial time minimization is the class of quadratic
functions [15]. In this case the preprocessing step that outputs an irredundant and
prime CNF representation of the input function is not sufficient. It can be shown
that the minimization of a quadratic function can be reformulated as a problem on a
directed graph, namely a problem of finding its transitive reduction, which is known
to be solvable in polynomial time [19]. Finally, the results for acyclic Horn functions
and quadratic functions can be combined to get a polynomial time minimization
algorithm for the class of quasi-acyclic Horn function [15].

There are several known lower bounds for the size of the minimum CNF represen-
tation. For instance, the number of essential prime implicates provides such a lower
bound (a prime implicate is essential if it appears in every prime CNF representation
of the given function). The notion of an essential implicate was generalized to the
notion of an essential set of implicates in [4]. It was proved there, that the maximum
number of pairwise disjoint essential sets constitutes a lower bound for the number
of clauses in a minimum CNF. Moreover this bound was proved to be tight for the
classes of monotone, quadratic, acyclic Horn and quasi-acyclic Horn functions.

Recently, a class of CQ Horn functions was introduced [5]. This class properly con-
tains negative, quadratic, acyclic Horn, and quasi-acyclic Horn functions. The main
result in [5] is a polynomial time minimization algorithm for this new class. In this
paper we shall show that the lower bound presented in [4] (i.e., the maximum number
of pairwise disjoint essential sets) is a tight lower bound on the size of the minimum
CNF for the class of CQ Horn functions. In other words, we shall prove that given
a CQ Horn function f , the maximum number of pairwise disjoint essential sets of
implicates of f equals the minimum number of clauses in a CNF representation of
f . Functions which satisfy this equality are called coverable in [8], and so, using this
terminology, the main result of this paper can be simply reformulated as stating that
every CQ Horn function is coverable.

2 Basic notation, definitions, and results

In this section we shall introduce the necessary notation and summarize the basic
known results that will be needed later in the text.

2.1 Boolean functions

A Boolean function f on n propositional variables x1, . . . , xn is a mapping {0, 1}n →
{0, 1}. The propositional variables x1, . . . , xn and their negations x1, . . . , xn are called

Disjoint essential sets of implicates of a CQ Horn function 233

literals (positive and negative literals, respectively). An elementary disjunction of
literals is called a clause, if every propositional variable or its negation appears in it at
most once. A clause C is called an implicate of a function f if for every x ∈ {0, 1}n we
have f (x) ≤ C(x) (i.e., if f evaluates to 1 on the vector x then C must also evaluate
to 1 on x). An implicate C is called prime if dropping any literal from it produces a
clause which is not an implicate.

It is a well-known fact that every Boolean function f can be represented by a
conjunction of clauses (see e.g. [11]). Such an expression is called a conjunctive
normal form (or CNF) of the Boolean function f . In the rest of the paper we
shall often identify a CNF φ with a set of its clauses and we shall use both notions
interchangeably. A CNF φ representing a function f is called prime if each clause
of φ is a prime implicate of the function f . A CNF φ representing a function f is
called irredundant if dropping any clause from φ produces a CNF that does not repre-
sent f .

Two clauses C1 and C2 are said to be resolvable if they contain exactly one
complementary pair of literals. That means that we can write C1 = C̃1 ∨ x and
C2 = C̃2 ∨ x for some propositional variable x and clauses C̃1 and C̃2 which contain
no complementary pair of literals. The clauses C1 and C2 are called parent clauses and
the disjunction R(C1, C2) = C̃1 ∨ C̃2 is called the resolvent of the parent clauses C1

and C2. Note that the resolvent is a clause (does not contain a propositional variable
and its negation). It is a well known fact (see [6]), that a resolvent of two implicates
of f is an implicate of f and every prime implicate of f can be obtained by a series of
resolutions from any CNF representing f (see [6, 17]). So called Quine’s procedure
takes a CNF ϕ as an input and it outputs the list of all prime implicates of function
represented by ϕ, reader can find description of this procedure in [6, 17].

For a Boolean function f let us denote by I p(f) the set of its prime implicates, and
let I(f) denote the set of implicates, which can be obtained by a series of resolutions
from prime implicates (i.e., the resolution closure of I p(f)).

A clause C is called negative if it contains no positive literals. It is called pure Horn
if it contains exactly one positive literal. To simplify notation, we shall sometimes
write a pure Horn clause C = ∨

x∈S x ∨ y simply as C = S ∨ y. Each propositional
variable x ∈ S is called a subgoal of C and the propositional variable y is called the
head of C. We shall denote Head(C) = y, Subg(C) = S, and Vars(C) = S ∪ {y}.

A CNF is called Horn if it contains only negative and pure Horn clauses. A CNF
is called pure Horn if it contains only pure Horn clauses. Finally, a Boolean function
is called Horn if it has at least one representation by a Horn CNF, and similarly a
Boolean function is called pure Horn if it has at least one representation by a pure
Horn CNF.

It is known (see [12]) that each prime implicate of a Horn function is either
negative or pure Horn, and each prime implicate of a pure Horn function is pure
Horn. Thus, in particular, any prime CNF representing a Horn function is Horn, and
any prime CNF representing a pure Horn function is pure Horn.

2.2 Forward chaining procedure

In verifying that a given clause is an implicate of a given pure Horn function, a
very useful and simple procedure is the following. Let η be a pure Horn CNF of
a pure Horn function h. We shall define a forward chaining procedure [15] which

234 O. Čepek, P. Kučera

associates to any subset Q of the propositional variables of h a set M in the following
way. The procedure takes as input the subset Q of propositional variables, initializes
the set M = Q, and at each step it looks for a pure Horn clause S ∨ y in η such
that S ⊆ M, and y 	∈ M. If such a clause is found, the propositional variable y is
included into M, and the search is repeated as many times as possible. The set M
output by this procedure will be denoted by FCη(Q), where η is the input CNF and
Q the starting set of variables. It can be shown [13, 18], that a clause C = Q ∨ y
is an implicate of h if and only if y ∈ FCη(Q). If η′ and η′′ are two distinct CNF
representations of a given pure Horn function h and if Q is an arbitrary subset of the
propositional variables, then FCη′(Q) = FCη′′(Q) because η′ and η′′ have the same
set of implicates. Therefore, the set of propositional variables reachable from Q by
forward chaining depends only on the underlying function rather than on a particular
CNF representation. For this reason, we shall also use the expression FCh(Q) instead
of FCη(Q) whenever we do not want to refer to a specific CNF.

2.3 Implication graphs of Horn functions

Let us recall some very useful definitions from [15], associating directed graphs to
Horn CNFs and Horn functions.

Definition 2.1 For a Horn CNF φ let Gφ = (N, Aφ) be the digraph defined by

N = {
x| x is a propositional variable in φ

}

Aφ = {(x, y) | ∃ a clause C ∈ C(φ) which contains both literals x and y} .

In other words, for each pure Horn clause C in φ, the graph Gφ contains as many
arcs as is the number of subgoals in C, with each arc going from the corresponding
subgoal to the head of C. Since a Horn function can be represented by several
different Horn CNFs, we can associate in this way several different graphs to a Horn
function. It was shown in [3] that given two prime CNFs φ1 and φ2 both representing
the same function f , Gφ1 and Gφ2 have the same transitive closure which will be
denoted by G f . In what follows we shall call Gφ and G f the implication graphs of φ

and f , respectively. In [5] it was shown that if f is a pure Horn function and C ∈ I(h),
then (x, Head(C)) is an arc of G f for every x ∈ Subg(C).

The following graph-theoretic notion will often be used in the rest of paper. Let
G be a directed graph and let v be one of its vertices, then ConeG(v) denotes the set
of vertices, where a vertex u ∈ ConeG(v) if and only if there is a directed path from
u to v in G.

2.4 CQ functions

CQ Horn functions were defined in [5]. Their definition is based on implication
graphs and it generalizes the definitions of acyclic and quasi-acyclic functions [15].

Definition 2.2 Let us call a pure Horn clause C component-wise quadratic (or CQ
for short) with respect to a Horn function f if at most one subgoal of C belongs to

Disjoint essential sets of implicates of a CQ Horn function 235

the strong component of G f containing the head of C. A Horn CNF φ representing
a function f is said to be CQ if every pure Horn clause of φ is CQ with respect
to f . Finally, a Horn function f is called CQ if it admits at least one CQ CNF
representation.

The following important property of CQ functions was shown in [5].

Theorem 2.3 Let f be a CQ function and C an arbitrary clause in I(f). Then C is CQ
with respect to f .

2.5 Essential sets of implicates

In this section we shall recall the notion of essential set introduced in [4] and some
of their properties proved there. In the remainder of this section let us consider an
arbitrary but fixed Boolean function f .

Definition 2.4 Given a set C of clauses, a subset E ⊆ C is called an essential subset of
C if for every pair of resolvable clauses C1, C2 ∈ C the following implication holds:

R(C1, C2) ∈ E =⇒ C1 ∈ E or C2 ∈ E,

i.e., the resolvent belongs to E only if at least one of the parent clauses are from E . In
particular, if C = I(f) for a Boolean function f , we call E an essential set of clauses
of f (or simply an essential set, if f or C is clear from the context).

The orthogonality property of essential sets was proved in [4]. This key propo-
sition (which appears there as Theorem 6.4) shows that every essential set has one
(or more) of its clauses present in every representation of f and moreover that this
condition is not only necessary but also sufficient.

Proposition 2.5 [4] Let C ⊆ I(f) be arbitrary. Then C represents f if and only if C ∩
E 	= ∅ for every nonempty essential set of clauses E ⊆ I(f).

Proposition 2.5 has an obvious corollary: if there exist nonempty essential sets
E1, E2, . . ., Ek ⊆ I(f) which are pairwise disjoint, then every representation of f
must consist of at least k clauses. Hence, any collection of pairwise disjoint essential
sets of clauses provides an easy lower bound on the size (i.e., number of clauses)
of a minimal representation of f . The authors posed a question in [4] asking for
which classes of Boolean functions this lower bound is in fact tight. They also gave
a partial answer to this question by proving, that the bound is tight for the classes of
monotone, quadratic, acyclic and quasi-acyclic functions.

It was shown in [15] that every prime and irredundant CNF representation of a
Horn function f contains the same number of negative clauses. This result was later
extended in [4] by showing that this is also the maximum number of pairwise disjoint

236 O. Čepek, P. Kučera

essential sets of negative implicates of f . Following this result, it was also observed
in [4] that to find pairwise disjoint essential sets of implicates of a Horn function
f , it is enough to find pairwise disjoint essential sets of a pure Horn function f ′
represented by pure Horn implicates of f , and then to add pairwise disjoint essential
sets of negative implicates of f . In the rest of the paper we shall therefore restrict
our attention only to pure Horn functions.

The following essential sets will play important role in the proof of our result.

Definition 2.6 Given a Boolean function f on n propositional variables and an
arbitrary vector t ∈ {0, 1}n let us define a falsepoint set of f def ined by t as

E(t) = {C ∈ I(f) | C(t) = 0}
where by C(t) = 0 we mean the following : if we substitute for the propositional
variables of f the truth values according to the vector t then the clause C evaluates
to zero (false).

It was shown in [4], that the sets defined in Definition 2.6 are essential sets of
implicates of f .

We shall show, that given a pure Horn CQ function f with the number of clauses
in a shortest CNF representing f equal to k, we can find falsepoints t1, . . . , tk, such
that for every two different falsepoints ti and t j we have E(ti) ∩ E(t j) = ∅. This will
show, that the maximum number of pairwise disjoint essential sets of f is equal to
the size of the shortest CNF representing f .

2.6 Clause graphs

For a definition of suitable falsepoints we need to recall the definition of yet another
directed graph, associated to a set of pure Horn clauses and/or to a pure Horn
function. As opposed to Gφ and G f which are defined on the set of variables, this
so called clause graph [5] is defined on the set of clauses.

Given a set C of pure Horn clauses let us define its clause graph DC = (VC, EC).
The vertex set of the clause graph VC = V(DC) = C is the given set of clauses, and
the edge set EC = E(DC) is defined as follows: For C1, C2 ∈ C we have (C1, C2) ∈ EC
if and only if both

(1) Head(C1) ∈ ConeGC (Head(C2)), and
(2) Subg(C1) ⊆ FCC(Subg(C2)).

It is easy to see by the definitions of the implication graph GC and of the forward
chaining procedure that the clause graph DC is transitively closed. In the special
case when C = I(f) for a pure Horn function f we shall denote the clause graph
of C by D f . Furthermore, whenever the function f will be clear from the context,
we shall simply write D instead of D f . In this latter case condition (1) simplifies to
(Head(C1), Head(C2)) ∈ A f , due to the fact that G f = (N, A f) is itself transitively
closed.

Let f be a CQ pure Horn function and let C, C′ ∈ I(f) be two implicates of f ,
which belong to the same strong component of D f . Let Q (Q′ resp.) be a strong
component of G f which contains Head(C) (Head(C′) resp.). It was shown in [5] that

Disjoint essential sets of implicates of a CQ Horn function 237

|Subg(C) ∩ Q| = |Subg(C′) ∩ Q′|. In particular, either both intersections are empty
or both have cardinality one.

3 Disjoint essential sets for the class of CQ functions

In this section we shall show the main result of this paper, which is contained in the
following theorem.

Theorem 3.1 Let f be a CQ pure Horn function on n variables and let ϕ = ∧k
i=1 Ci

be a CNF representing f which has the least number of clauses. Then there exist
falsepoints t1, . . . , tk of f , such that the corresponding essential sets E(t1), . . . , E(tk)
are pairwise disjoint.

Proof of Theorem 3.1 is contained in the rest of this section. We shall suppose,
that ϕ is the shortest CNF representing f which has been found by the algorithm for
minimizing CQ formulae described in [5]. We refer the reader to [5] for details on
the structure of CNF ϕ.

In the rest of this section, we shall use the following notation: G denotes an
implication graph of f , Dϕ denotes a clause graph of ϕ, D denotes a clause graph
of f . Given a variable z, Q(z) denotes the strong component of G which contains
z. Given an implicate C ∈ I(f), K(C) denotes the strong component of D, which
contains C.

For every i ∈ {1, . . . , k} let Ci = Ai ∨ Xi ∨ ui, where Ai ∩ Q(ui) = ∅, Xi ⊆ Q(ui),
and |Xi| ≤ 1. Let z be an arbitrary variable, let ϕi = ConeDϕ

(Ci), and let Qi(z) denote
the strong component of Gϕi , which contains z. Note that clearly Qi(z) ⊆ Q(z) and
it may happen that Qi(z) ⊂ Q(z) (i.e., Gϕi may have several strong components
inside a single strong component of G) because ϕi contains less clauses than ϕ. It
can be shown, that ϕi represents the same function as ConeD(Ci), see [4]. Similarly,
ϕi \ K(Ci) represents the same function as ConeD(Ci) \ K(Ci). In particular, let z be
a variable and B a set of variables, then it can be shown, that if (B ∨ z) ∈ ConeD(Ci),
then z ∈ FCϕi(B) = FCConeD(Ci)(B), for more details, see [4, 5]. Let ti ∈ {0, 1}n be a
vector, which is defined as follows.

Let us at first assume, that Xi ∩ Qi(ui) = ∅ (this includes both the case when Xi =
∅ and the case when Xi = {xi} for some variable xi ∈ Q(ui) \ Qi(ui)).

ti[z] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z 	∈ ConeG(ui)

1 if z ∈ FCϕi\K(Ci)(Ai ∪ Xi)

0 if z ∈ ConeG(ui) \ Q(ui) and z 	∈ FCϕi\K(Ci)(Ai ∪ Xi)

1 if z ∈ Q(ui) \ Qi(ui) and z ∈ FCϕi(Ai ∪ Xi)

0 if z ∈ Q(ui) \ Qi(ui) and z 	∈ FCϕi(Ai ∪ Xi)

0 if z ∈ Qi(ui) and z 	∈ FCϕi\K(Ci)(Ai ∪ Xi)

For a more illustrative definition of vector ti, see Fig. 1.
Now, we shall assume, that Xi = {xi} for some variable xi ∈ Qi(ui). Let msi denote

the number of source strong components of graph Gϕi\K(Ci) within Qi(ui) and let mti

238 O. Čepek, P. Kučera

Fig. 1 Definition of vector ti when Xi ∩ Qi(ui) = ∅

denote the number of sink strong components of graph Gϕi\K(Ci) within Qi(ui) for
i = 1, . . . , k.

ti[z] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z 	∈ ConeG(ui)

1 if z ∈ FCϕi\K(Ci)(Ai), this has precedence before the next rules
0 if z ∈ ConeG(ui) \ Q(ui) and z 	∈ FCϕi\K(Ci)(Ai)

1 if z ∈ Q(ui) \ Qi(ui) and z ∈ FCϕi(Ai ∪ Xi)

0 if z ∈ Q(ui) \ Qi(ui) and z 	∈ FCϕi(Ai ∪ Xi)

0 if z ∈ Qi(ui) and z is in the same strong component of Gϕi\K(Ci) as ui

1 if z ∈ Qi(ui) and z is in the same strong component of Gϕi\K(Ci) as xi

0 if msi ≤ mti, z ∈ Qi(ui), and
z is in a different strong component of Gϕi\K(Ci) than xi

1 if msi > mti, z ∈ Qi(ui), and
z is in a different strong component of Gϕi\K(Ci) than ui.

For a more illustrative definition of vector ti, see Fig. 2. Here the white color
denotes value 0, darker gray color denotes value 1, and lighter gray color denotes
either value 0 if msi ≤ mti, or value 1 if msi > mti. Circles enclosing Xi and ui denote
the strong components of Gϕi\K(Ci) which contain Xi and ui.

In the rest of this section we may assume, that for every i = 1, . . . , k the following
invariants are satisfied.

(I) If msi ≤ mti, then the strong component of Gϕi\K(Ci) containing xi does not
have any outgoing arcs. If msi > mti, then the strong component of Gϕi\K(Ci)

containing ui does not have any incoming arcs.
(II) If Ci and C j belong to ϕi ∩ K(Ci), and Qi(ui) = Qi(u j) = Qi(xi) = Qi(x j), then

i 	= j implies xi 	= x j and ui 	= u j.

Disjoint essential sets of implicates of a CQ Horn function 239

Fig. 2 Definition of vector ti when Xi ⊆ Qi(ui)

The correctness of these invariants follows from the properties of the algorithm
described in [5] which constructs the CNF ϕ. We shall now state and prove a sequence
of technical lemmas which will show that for every i = 1, . . . , k we have Ci ∈ E(ti)
(implying that ti is a falsepoint of f and the essential set E(ti) is nonempty), and that
for every j ∈ {1, . . . , k} \ {i} we have E(ti) ∩ E(t j) 	= ∅ (i.e., that the essential sets are
pairwise disjoint).

Lemma 3.2 For every i = 1, . . . , k we have Ci ∈ E(ti).

Proof Let us assume that Xi ∩ Qi(ui) = ∅. Clearly, Ai ∪ Xi ⊆ FCϕi\K(Ci)(Ai ∪ Xi),
and therefore for every z ∈ Ai ∪ Xi we have that ti[z] = 1. Also ti[ui] = 0, because
obviously ui ∈ Qi(ui).

Now, let us assume, that Xi = {xi} for some variable xi ∈ Qi(ui). Clearly Ai ⊆
FCϕi\K(Ci)(Ai), therefore for every z ∈ Ai we have ti[z] = 1. On the other hand
neither xi, nor ui belong to FCϕi\K(Ci)(Ai) because, otherwise Ci would not be a prime
implicate. Since xi ∈ Qi(ui) and xi belongs to the same strong component of Gϕi\K(Ci)

as xi, we have that ti[xi] = 1 and for similar reasons we have that ti[ui] = 0.
In both cases Ci(ti) = 0 and hence Ci ∈ E(ti). ��

Lemma 3.3 Let i ∈ {1, . . . , k} be arbitrary with Xi ∩ Qi(ui) = ∅, then E(ti) ⊆ K(Ci).

Proof Let (Z ∨ v) ∈ E(ti) be an arbitrary implicate of f . Let us at first show
that (Z ∨ v) ∈ ConeD(Ci). For this we need, that Z ⊆ FCϕ(Ai ∪ Xi), and that v ∈
ConeG(ui). If v 	∈ ConeG(ui), then we would have ti[v] = 1, therefore v ∈ ConeG(ui),
and hence Z ⊆ ConeG(ui) as well. Now let z ∈ Z be arbitrary, and let us show, that
z ∈ FCϕ(Ai ∪ Xi). If z ∈ FCϕi\K(Ci)(Ai ∪ Xi), then clearly also z ∈ FCϕ(Ai ∪ Xi).
Now, let us assume that z ∈ Q(ui) \ Qi(ui), but then z ∈ FCϕi(Ai ∪ Xi), and we
are done.

240 O. Čepek, P. Kučera

Now, let us assume by contradiction, that (Z ∨ v) ∈ ConeD(Ci) \ K(Ci). Since for
every z ∈ Z we have ti[z] = 1 and z ∈ ConeG(ui), we have that z ∈ FCϕi(Ai ∪ Xi),
and therefore also Z ⊆ FCϕi(Ai ∪ Xi). If Z ⊆ FCϕi\K(Ci)(Ai ∪ Xi), then we would
have that v ∈ FCϕi\K(Ci)(Ai ∪ Xi), which is not possible, because in this case we
would have ti[v] = 1. Therefore there must be a variable y ∈ Z such that y 	∈
FCϕi\K(Ci)(Ai ∪ Xi). It follows that y ∈ Q(ui) \ Qi(ui). Since f is a CQ function,
there can be at most one such variable. Let B = Z \ {y}, so that we can write
(B ∨ y ∨ v) = (Z ∨ v). Since such a y exists, it follows, that v ∈ Q(ui) and hence also
v ∈ Qi(ui), because v ∈ FCϕi(Ai ∪ Xi) and ti[v] = 0. This means that there is a path
from v to ui in Gϕi , and this path cannot use the arc generated by Ci, because none
of the subgoals of Ci belongs to Qi(ui). Therefore there is in fact a path from v to
ui in Gϕi\{Ci}. Since (B ∨ y ∨ v) ∈ ConeD(Ci) \ K(Ci), we have that there is a path
from y to v in Gϕi\K(Ci) and hence there is also a path from y to ui in graph Gϕi\{Ci}.
From this we shall derive that ui ∈ FCϕi\{Ci}(Ai ∪ Xi), which will yield a contradiction
to irredundancy of ϕi. Let D1, . . . , D� ∈ ϕi be an irredundant forward chaining
derivation of y from Ai ∪ Xi. If a clause Ci would be present in this derivation,
it would mean that y ∈ Qi(ui), therefore Ci is not present in this derivation. Now,
let (E1 ∨ y ∨ w1), (E2 ∨ w1 ∨ w2), . . . , (Em ∨ wm−1 ∨ ui) ∈ ϕi \ {Ci} be clauses, which
generate the path from y to ui in graph Gϕi\{Ci}. For each j = 1, . . . , m we clearly
have that E j ⊆ FCϕi(Ai ∪ Xi) because all clauses in ϕi \ {Ci} belong to ConeD(Ci),
which means that E j ⊆ FCϕ(Ai). However, every clause used in the forward chaining
derivation of variables in E j from Ai is in ϕi, because E j ⊆ ConeG(ui). Moreover,
since E j ∩ Q(ui) is necessarily empty, we have that in fact E j ⊆ FCϕi\K(Ci)(Ai).
Therefore we get that E1 ∪ {y} ⊆ FCϕi\{Ci}(Ai ∪ Xi). Since (E1 ∨ y ∨ w1) ∈ ϕi \ {Ci},
we have, that also w1 ∈ FCϕi\{Ci}. By a simple induction we can derive that in fact
for every j = 1, . . . , m − 1 we have w j ∈ FCϕi\{Ci}(Ai ∪ Xi) and in particular that
ui ∈ FCϕi\{Ci}(Ai ∪ Xi). However, this cannot happen because of the irredundancy
of ϕ, and hence we have shown that (Z ∨ v) = (B ∨ y ∨ v) belongs to K(Ci). ��

Lemma 3.4 Let i ∈ {1, . . . , k} be an arbitrary index with Xi = {xi} for some variable
xi ∈ Qi(ui). Then E(ti) ⊆ K(Ci). Moreover, if a clause (B ∨ y ∨ v) ∈ E(ti), where B ∩
Q(ui) = ∅ and y, v ∈ Q(ui), then y, v ∈ Qi(ui).

Proof Let (Z ∨ v) ∈ E(ti) be an arbitrary implicate.
Let us at first show, that (Z ∨ v) ∈ ConeD(Ci). For this we need, that Z ⊆

FCϕ(Ai ∪ Xi) and that v ∈ ConeG(ui). We can observe, that if v 	∈ ConeG(ui), then
we would have ti[v] = 1, hence v ∈ ConeG(ui) and Z ⊆ ConeG(ui) as well. Let
z ∈ Z be arbitrary and let us show that z ∈ FCϕ(Ai ∪ Xi). Since ti[z] = 1 and z ∈
ConeG(ui), we have to distinguish three cases.

– z ∈ FCϕi\K(Ci)(Ai). In this case trivially z ∈ FCϕ(Ai).
– z ∈ Qi(ui). The fact that z ∈ Qi(ui) implies, that there is a path from z to ui in Gϕi ,

let z′ be a variable, such that (z, z′) ∈ Gϕi . Therefore there must be a clause (V ∨
z ∨ z′) ∈ ϕi. In particular, (V ∨ z ∨ z′) ∈ ConeDϕ

(Ci), hence z ∈ FCϕ(Ai ∪ Xi).
– z ∈ Q(ui) \ Qi(ui), and z ∈ FCϕi(Ai ∪ Xi), in this case trivially z ∈ FCϕ(Ai ∪ Xi).

Now let us show, that (Z ∨ v) ∈ K(Ci). We shall proceed by contradiction and as-
sume, that (Z ∨ v) ∈ ConeD(Ci) \ K(Ci). Assume for a while, that Z ⊆ FCϕi\K(Ci)(Ai).
Then also v ∈ FCϕi\K(Ci)(Ai), which would mean, that ti[v] = 1. Therefore there is

Disjoint essential sets of implicates of a CQ Horn function 241

a variable y ∈ Z for which y 	∈ FCϕi\K(Ci)(Ai). Since ti[y] = 1 and y ∈ ConeG(ui),
we have that y ∈ Q(ui). Together with the fact that v ∈ ConeG(ui) we also get that
v ∈ Q(ui). Since f is a CQ function, there can be at most one such variable y.
Let us denote by B = Z \ {y}, so that we can write (Z ∨ v) = (B ∨ y ∨ v), where
B ⊆ FCϕi\K(Ci)(Ai).

Let us at first show, that z ∈ Qi(ui). The facts that y ∈ Q(ui) and ti[y] = 1
together imply y ∈ FCϕi(Ai ∪ Xi). Therefore v ∈ FCϕi(Ai ∪ Xi) as well (recall that
B ⊆ FCϕi\K(Ci)(Ai) holds) and thus ti[v] = 0 forces v ∈ Qi(ui). Now let us show,
that y ∈ Qi(ui). Assume by contradiction that y ∈ Q(ui) \ Qi(ui). From (B ∨ y ∨ v) ∈
ConeD(Ci) and v ∈ Qi(ui) it follows that there is a path from y to ui in Gϕi . In fact,
we can even observe, that y ∈ FCϕi(Ai ∪ Xi) can be strengthened to y ∈ FCϕi(Ai),
since otherwise there would be a path from xi to y in Gϕi implying y ∈ Qi(ui) and
contradicting our assumption. Hence also v ∈ FCϕi(Ai). We can even conclude now
that v ∈ FCϕi\K(Ci)(Ai), since otherwise, let (A j ∨ x j ∨ u j) ∈ K(Ci) be an arbitrary
clause used in an irredundant forward chaining derivation of v from Ai. Then
Ai ⊆ FCϕi(A j) and x j ∈ FCϕi(Ai), and therefore (A j ∨ u j) is an implicate of f
contradicting the primality of ϕi. The fact that v ∈ FCϕi\K(Ci)(Ai) however implies,
that ti[v] = 1, and that is a contradiction as well. Thereore y ∈ Qi(ui) must hold.

Note, that when deriving y, z ∈ Qi(ui) in the previous paragraph, we have not
used the fact, that (Z ∨ v) = (B ∨ y ∨ v) ∈ K(Ci). We have only used the previously
derived fact that y, z ∈ Q(ui). Therefore y, z ∈ Qi(ui) holds for every implicate (B ∨
y ∨ v) ∈ E(ti) for which B ∩ Q(ui) = ∅ and y, v ∈ Q(ui), which finishes the proof of
the second statement of the lemma.

To complete the proof of the first statement of the lemma let us distinguish two
cases according to which of msi and mti is bigger.

– If msi ≤ mti then let us denote by Q the strong component of Gϕi\K(Ci) contain-
ing xi. In this case ti[y] = 1 implies y ∈ Q and ti[v] = 0 implies v 	∈ Q. Since
according to invariant (I) there is no arc going out of Q, it is not possible that
(B ∨ y ∨ v) ∈ ConeD(Ci) \ K(Ci).

– If msi > mti then let us denote by Q the strong component of Gϕi\K(Ci) contain-
ing ui. In this case ti[y] = 1 implies y 	∈ Q and ti[v] = 0 implies v ∈ Q. Since
according to invariant (I) there is no arc going into Q, it is not possible that
(B ∨ y ∨ v) ∈ ConeD(Ci) \ K(Ci).

Since the assumption that (B ∨ y ∨ v) ∈ ConeD(Ci) \ K(Ci) leads to a contradiction
in both cases, we can conclude, that (B ∨ y ∨ v) ∈ K(Ci). ��

Now, let us show, that given Ci, C j ∈ ϕ with i 	= j we have E(ti) ∩ E(t j) = ∅. Since
this trivially holds when K(Ci) 	= K(C j), we need to consider only the case when
K(Ci) = K(C j).

Lemma 3.5 Let Ci = (Ai ∨ Xi ∨ ui), C j = (A j ∨ X j ∨ u j) ∈ ϕ where i 	= j, and Xi =
X j = ∅ be two clauses such that K(Ci) = K(C j). Then E(ti) ∩ E(t j) = ∅.

Proof Let us proceed by contradiction and let us consider an implicate (B ∨ v) ∈
E(ti) ∩ E(t j). Using Lemma 3.3 we get (B ∨ v) ∈ K(Ci) = K(C j), which implies
v ∈ Q(ui) = Q(u j), and that in turn implies B ⊆ ConeG(ui) = ConeG(u j). Since
for every z ∈ B we have ti[z] = t j[z] = 1, we have that B ⊆ FCϕi\K(Ci)(Ai) and

242 O. Čepek, P. Kučera

B ⊆ FCϕi\K(Ci)(A j). Since (B ∨ v) ∈ K(Ci), we have that v ∈ FCϕi(Ai) and v ∈
FCϕi(A j), and since ti[v] = t j[v] = 0, we also have that v ∈ Qi(ui) and v ∈ Q j(u j). In
particular this implies that Qi(ui) = Q j(u j). Since A j ⊆ FCϕi\K(Ci)(Ai), we must have
that j = i, otherwise we would get a contradiction with irredundancy of ϕ, because
we could generate (Ai ∨ ui) from ϕ \ {(Ai ∨ ui)}. Therefore given i 	= j, we must have
that E(ti) ∩ E(t j) = ∅. ��

Lemma 3.6 Let Ci = (Ai ∨ xi ∨ ui), C j = (A j ∨ x j ∨ u j) ∈ ϕ where i 	= j be two
clauses such that K(Ci) = K(C j), xi ∈ Q(ui) \ Qi(ui), and x j ∈ Q(u j) = Q(ui). Then
E(ti) ∩ E(t j) = ∅.

Proof Let us proceed by contradiction and let us consider an implicate (B ∨ y ∨ v) ∈
E(ti) ∩ E(t j), where B ∩ Q(ui) = ∅, y, v ∈ Q(ui) = Q(u j).

Let us at first consider the case when also x j ∈ Q(u j) \ Q j(j). Since for every
z ∈ B we have ti[z] = t j[z] = 1, we have that B ⊆ FCϕi\K(Ci)(Ai ∪ {xi}) and B ⊆
FCϕi\K(Ci)(A j ∪ {x j}), in fact since if xi (x j resp.) would be necessary in this forward
chaining derivation, we would have that some element of B belongs to Q(ui),
therefore we have that B ⊆ FCϕi\K(Ci)(Ai) and B ⊆ FCϕi\K(Ci)(A j). Similarly y ∈
FCϕi(Ai ∪ {xi}) and y ∈ FCϕi(A j ∪ {x j}). Since (B ∨ y ∨ v) ∈ K(Ci), we have that
v ∈ FCϕi(Ai ∪ {xi}) and v ∈ FCϕi(A j ∪ {x j}), and since ti[v] = t j[v] = 0, we also have
that v ∈ Qi(ui) and v ∈ Q j(u j). In particular this implies that Qi(ui) = Qi(ui) =
Q j(u j). We can observe that A j ⊆ FCϕi\K(Ci)(Ai), because C j ∈ K(Ci). Also x j ∈
FCϕi\{Ci}(Ai ∪ {xi}), otherwise there would be a path from ui to x j in graph Gϕi and
therefore x j would belong to Qi(ui) = Q j(u j). This together with fact that Qi(ui) =
Q j(u j) implies, that j = i, otherwise we would get a contradiction with irredundancy
of ϕ, because we could generate (Ai ∨ xi ∨ ui) from ϕ \ {(Ai ∨ xi ∨ ui)}. Therefore
given i 	= j, we must have that E(ti) ∩ E(t j) = ∅.

Now let us assume, that x j ∈ Q j(u j). Still B ⊆ FCϕi\K(Ci)(Ai), y ∈ FCϕi(Ai ∪
{xi}), v ∈ FCϕi(Ai ∪ {xi}), and v ∈ Qi(ui). Let z ∈ B be arbitrary, since t j[z] = 1,
we must have that z ∈ FCϕi\K(Ci)(A j) and hence B ⊆ FCϕi\K(Ci)(A j). According to
Lemma 3.4, we also have that y, v ∈ Q j(u j), in particular, we get, that Qi(ui) =
Qi(u j) = Q j(u j). We know, that Ai ⊆ FCϕi\K(Ci)(A j), and xi ∈ FCϕi(A j ∪ {x j}). If
x j appears in any irredundant forward chaining derivation of xi from A j ∪ {x j}, we
would have a path from x j to xi in Gϕi and hence we would have that xi ∈ Qi(ui) =
Qi(u j). Therefore in fact xi ∈ FCϕi(A j) and hence no clause from ϕi ∩ K(Ci) can
be used in this derivation, assuming ϕi is prime and irredundant. Therefore we get
in fact Ai ∪ {xi} ⊆ FCϕi\K(Ci)(A j). This implies that ui ∈ FCϕi\{C j}(A j), together with
fact that Qi(ui) = Q j(u j) we get a contradiction with irredundancy of ϕi since we
would be able to derive C j from ϕi \ {C j}. ��

Lemma 3.7 Let Ci = (Ai ∨ Xi ∨ ui), C j = (A j ∨ X j ∨ u j) ∈ ϕ where i 	= j be two
clauses such that Xi = {xi} and X j = {x j} for some variables xi ∈ Qi(ui) and x j ∈
Q j(u j) and K(Ci) = K(C j). Then E(ti) ∩ E(t j) = ∅.

Proof Let us proceed by contradiction and let us consider an implicate (B ∨ y ∨ v) ∈
E(ti) ∩ E(t j), where B ⊆ FCϕ(Ai), B ⊆ FCϕ(A j), v ∈ Q(ui) = Q(u j), y ∈ FCϕ(Ai ∪
Xi), y ∈ FCϕ(A j ∪ X j), y ∈ Q(ui) = Q(u j). From Lemma 3.4 we also know, that

Disjoint essential sets of implicates of a CQ Horn function 243

both y and v must belong to Qi(ui) and Q j(u j), therefore in fact Qi(ui) = Qi(u j) =
Q j(u j).

Let us at first assume, that msi ≤ mti, then necessarily y belongs to the same strong
component of Gϕi\K(Ci) as both xi and x j, which would imply according to invariant
(II) that i = j which is a contradiction.

Similarly if msi > mti, then necessarily v belongs to the same strong component of
Gϕi\K(Ci) as both ui and u j, which would imply according to invariant (II) that i = j
which is a contradiction. ��

Now we are ready to complete the proof of Theorem 3.1.

Proof Lemma 3.2 shows ∀1 ≤ i ≤ k : Ci ∈ E(ti) and thus the vectors ti are falsepoints
of f which define nonempty essential sets E(ti) of f . It remains to show that the
sets E(t1), . . . , E(tk) are pairwise disjoint. Lemmas 3.3 and 3.4 show that ∀1 ≤ i ≤ k :
E(ti) ⊆ K(Ci), i.e., each of the k essential sets sits inside a single strong component
of the clause graph D. Hence any two E(ti), E(t j) contained in two different strong
components of D are disjoint.

Lemmas 3.5, 3.6, and 3.7 deal with the case when E(ti), E(t j) are both inside the
same strong component K(Ci) = K(C j) of the clause graph D. Lemma 3.5 tackles
the case when no subgaol of Ci and C j is in the same strong component Q(ui) =
Q(u j) of the graph G as their heads. Lemma 3.6 treats the case when both Ci and
C j have exactly one subgoal each (let us call these subgoals xi and x j) inside the
strong component Q(ui) = Q(u j) and moreover xi 	∈ Qi(ui) or x j 	∈ Q j(u j) (actually
xi 	∈ Qi(ui) is assumed without a loss of generality). Finally, Lemma 3.7 deals with
the case which is similar to the one of Lemma 3.6, except that here both xi ∈ Qi(ui)

and x j ∈ Q j(u j) hold. Since this covers all possible cases the proof is finished. ��

Acknowledgements The authors gratefully acknowledge the support by the Czech Science Foun-
dation (grants 201/07/P168 and P202/10/1188). They would also like to thank the anonymous referee
for the valuable comments which helped to improve the presentation of this paper.

References

1. Ausiello, G., D’Atri, A., Sacca, D.: Minimal representation of directed hypergraphs. SIAM J.
Comput. 15(2), 418–431 (1986)

2. Boros, E., Čepek, O.: On the complexity of Horn minimization. Tech. Rep. RUTCOR Research
Report RRR 1-1994, Rutgers University, New Brunswick, NJ (1994)

3. Boros, E., Čepek, O., Kogan, A.: Horn minimization by iterative decomposition. Ann. Math.
Artif. Intell. 23, 321–343 (1998)

4. Boros, E., Čepek, O., Kogan, A., Kučera, P.: Exclusive and essential sets of implicates of Boolean
functions. Discrete Appl. Math. 158(2), 81–96 (2010)

5. Boros, E., Čepek, O., Kogan, A., Kučera, P.: A subclass of Horn cnfs optimally compressible in
polynomial time. Ann. Math. Artif. Intell. 57(3–4), 249–291 (2010)

6. Büning, H.K., Letterman, T.: Propositional Logic: Deduction and Algorithms. Cambridge
University Press, New York, NY (1999)

7. Čepek, O.: Structural properties and minimization of Horn Boolean functions. Ph.D. thesis,
Rutgers University, New Brunswick, NJ (1995)

8. Čepek, O., Kučera, P., Savický, P.: Boolean functions with a simple certificate for CNF complex-
ity. Discrete Applied Mathematics (2011, in print, available online)

9. Dechter, R., Pearl, J.: Structure identification in relational data. Artif. Intell. 58, 237–270 (1992)

244 O. Čepek, P. Kučera

10. Delobel, C., Casey, R.: Decomposition of a data base and the theory of Boolean switching
functions. IBM J. Res. Develop. 17, 374–386 (1973)

11. Genesereth, M., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann,
Los Altos, CA (1987)

12. Hammer, P., Kogan, A.: Horn functions and their DNFs. IBM J. Res. Develop. 44, 23–29 (1992)
13. Hammer, P., Kogan, A.: Optimal compression of propositional Horn knowledge bases: complex-

ity and approximation. Artif. Intell. 64, 131–145 (1993)
14. Hammer, P., Kogan, A.: Knowledge compression—logic minimization for expert systems. In:

Computers as our Better Partners. Proceedings of the IISF/ACM Japan International Sympo-
sium, pp. 306–312. World Scientific, Singapore (1994)

15. Hammer, P., Kogan, A.: Quasi-acyclic propositional Horn knowledge bases: optimal compres-
sion. IEEE Trans. Knowl. Data Eng. 7(5), 751–762 (1995)

16. Maier, D.: Minimal covers in the relational database model. JACM 27, 664–674 (1980)
17. Quine, W.: A way to simplify truth functions. Am. Math. Mon. 62, 627–631 (1955)
18. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson Education

(2003)
19. Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 2, 146–160 (1972)
20. Umans, C.: The minimum equivalent DNF problem and shortest implicants. J. Comput. Syst. Sci.

63(4), 597–611 (2001)
21. Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-level logic minimization.

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(7), 1230–1246 (2006)

Discrete Applied Mathematics 160 (2012) 365–382

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Boolean functions with a simple certificate for CNF complexity

Ondřej Čepek a,b,∗, Petr Kučera a,1, Petr Savický c

a Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00
Praha 1, Czech Republic
b Institute of Finance and Administration, Estonska, 500 101 00 Praha 10, Czech Republic
c Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou vezi, 271/2 182 07 Prague 8, Czech Republic

a r t i c l e i n f o

Article history:
Received 15 January 2010
Received in revised form 13 May 2011
Accepted 31 May 2011
Available online 13 July 2011

Keywords:
Boolean functions
CNF representations

a b s t r a c t

In this paper we study relationships between CNF representations of a given Boolean
function f and essential sets of implicates of f . It is known that every CNF representation
and every essential setmust intersect. Therefore themaximumnumber of pairwise disjoint
essential sets of f provides a lower bound on the size of any CNF representation of f . We
are interested in functions, for which this lower bound is tight, and call such functions
coverable.We prove that for every coverable function there exists a polynomially verifiable
certificate (witness) for its minimum CNF size. On the other hand, we show that not all
functions are coverable, and construct examples of non-coverable functions. Moreover,
we prove that computing the lower bound, i.e. the maximum number of pairwise disjoint
essential sets, is NP-hard under various restrictions on the function and on its input
representation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Boolean minimization (BM) problem can be stated as follows: given a CNF φ find a CNF φ′ representing the same
function and such that φ′ consists of a minimum possible number of clauses. A decision version of the problem is obtained
by including a bound in the instance and the question is, whether there is a representation φ′ of at most the given size. BM
hasmany practical applications. For instance, in artificial intelligence this problem is equivalent to finding themost compact
representation of a given knowledge base [11,12]. Such transformation of a knowledge base accomplishes knowledge
compression, since the actual knowledge does not change, while the size of the representation can be significantly reduced.

BM is in general a hard problem. Obviously, it contains the satisfiability problem (SAT) as its special case. An unsatisfiable
CNF is identically zero, whichmeans that its shortest representation consists only of a constant. In fact, BMwas shown to be
probably harder than SAT: while SAT is NP-complete (i.e.Σp

1 -complete) [6], the decision version of BM isΣp
2 -complete [20].

BM remains NP-hard even for some classes of Boolean functions for which SAT is solvable in polynomial time. The best
known example of such a class are Horn functions (see [2,11,15] for various BM intractability results for the class of Horn
functions). The difficulty of BM of course raises a natural question whether for a given input CNF, a nontrivial lower bound
can be obtained for the number of clauses in the shortest equivalent CNF. This question was recently addressed in [3] where
the concept of essential sets of function f was introduced.

∗ Corresponding author at: Department of Theoretical Computer Science andMathematical Logic, Faculty ofMathematics and Physics, Charles University,
Malostranské náměstí 25, 118 00 Praha 1, Czech Republic. Tel.: +420 221 914 246; fax: +420 221 914 323.

E-mail addresses: ondrej.cepek@mff.cuni.cz, cepek@rutcor.rutgers.edu (O. Čepek), kucerap@ktiml.mff.cuni.cz (P. Kučera), savicky@cs.cas.cz
(P. Savický).
1 Tel.: +420 221 914 138; fax: +420 221 914 323.

0166-218X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2011.05.013

366 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

Similarly as in [3], the main object of interest throughout this paper will be the set I(f) defined as the resolution closure
of the set Ip(f) of all prime implicates of f . A subset E ⊆ I(f) is an essential set of f , if I(f) \ E is closed under resolution.
It was shown in [3] that given a Boolean function f , every CNF representation of f must intersect every nonempty essential
set. Therefore, the maximum number of pairwise disjoint essential sets constitutes a lower bound on the size of any CNF
which represents f .

In this paper we are primarily interested in functions for which the above described lower bound is tight. We shall
call such functions coverable. It should be noted that nontrivial subclasses of Boolean functions which consist of coverable
functions are already known. These include acyclic and quasi-acyclic Horn functions [3] as well as the class of CQ-Horn
functions [5].

After introducing the necessary notation and presenting the basic results from [3] related to essential sets in Section 2, we
show in Section 3 that for every coverable function f there exists a polynomially verifiable certificate (witness) for the size
of its minimum CNF representation, i.e. a certificate sufficient for a polynomial time verification that no CNF representation
of f has fewer clauses than the given minimum one. In Section 4 we study tractable classes of CNFs, and prove that if a
tractable class is coverable (i.e. all CNFs in the class represent coverable functions) then the decision version of BM for this
class is both in NP and coNP and derive several consequences of this fact.

Given a CNF which represents a function f , it may be difficult to compute the lower bound (i.e. the maximum number
of pairwise disjoint essential sets) simply because the set I(f) is too large. Therefore we define in Section 5 projections of
essential sets on the set Ip(f) of prime implicates, and show that the lower bound on the size of f can be characterized
using these projections only. This allows us to work with smaller sets of implicates and thus prove or disprove the tightness
of the lower bound for particular input CNFs more efficiently. Moreover, it is shown in Section 5 that several properties of
essential sets carry over to the studied projections. Using the results of Section 5 we construct in Section 6 an example of a
function where the lower bound is not tight, and moreover we show that the gap between the lower bound and the size of
the minimal CNF can be made arbitrarily large.

In Section 7 we prove that given a CNF which represents a function f , computing the maximum number of pairwise
disjoint essential sets of f is NP-hard, even if the input is restricted to cubic pure Horn CNFs. Finally, in Section 8, we show
that in the unrestricted case, computing the maximum number of pairwise disjoint essential sets is NP-hard, when the
function is given by its truth table instead of a CNF. On the other hand, given a truth table representation, a relaxation of the
lower bound based on linear programming is shown to be obtainable in polynomial time.

2. Basic notation, definitions, and results

In this section we introduce the necessary notation and summarize the basic known results that will be needed later in
the text.

2.1. Boolean functions

A Boolean function f on n propositional variables x1, . . . , xn is a mapping {0, 1}n → {0, 1}. The propositional variables
x1, . . . , xn and their negations x1, . . . , xn are called literals (positive and negative literals, respectively). An elementary
disjunction of literals is called a clause, if every propositional variable appears in it at most once. A clause C is called an
implicate of a function f if for every x ∈ {0, 1}n we have f (x) ≤ C(x). An implicate C is called prime if dropping any literal
from it produces a clause which is not an implicate.

It is a well-known fact that every Boolean function f can be represented by a conjunction of clauses (see e.g. [9]). Such
an expression is called a conjunctive normal form (or CNF) of the Boolean function f . In the rest of the paper we shall often
identify a CNF φ with a set of its clauses and we shall use both notions interchangeably. A CNF φ representing a function f is
called prime if each clause of φ is a prime implicate of the function f . A CNF φ representing a function f is called irredundant
if dropping any clause from φ produces a CNF that does not represent f .

Two clauses C1 and C2 are said to be resolvable if they contain exactly one complementary pair of literals. That means
that we can write C1 = C̃1 ∨ x and C2 = C̃2 ∨ x for some propositional variable x and clauses C̃1 and C̃2 which contain
no complementary pair of literals. The clauses C1 and C2 are called parent clauses and the disjunction R(C1, C2) = C̃1 ∨ C̃2
is called the resolvent of the parent clauses C1 and C2. Note that the resolvent is a clause (does not contain a propositional
variable and its negation). We say that a clause C can be derived by a series of resolutions from a CNF φ, if there exists a finite
sequence C1, C2, . . . , Cp of clauses such that

(1) Cp = C , and
(2) for i = 1, . . . , p, either Ci is a clause in φ or there exist j < i and k < i such that Ci = R(Cj, Ck).

It is a well-known fact, see for example [4], that a resolvent of two implicates of f is an implicate of f and every prime
implicate of f can be derived by a series of resolutions from any CNF representing f . The so-calledQuine’s procedure [4,17,18]
takes a CNF ϕ as an input and outputs the list of all prime implicates of the function represented by ϕ. Given a set of clauses
C, we shall denote by R(C) the resolution closure of C, i.e. R(C) is the set of all clauses, which can be derived by a series of
resolutions from clauses in C.

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 367

For a Boolean function f let us denote by Ip(f) the set of its prime implicates, and let I(f) denote the resolution closure
of the set of its prime implicates I(f) = R(Ip(f)). A clause C is called negative if it contains no positive literals. It is called
pure Horn if it contains exactly one positive literal. To simplify notation, we shall sometimes write a pure Horn clause
C =

x∈S x ∨ y simply as C = S ∨ y. Each propositional variable x ∈ S is called a subgoal of C and the propositional

variable y is called the head of C .
A CNF is called Horn, if it contains only negative and pure Horn clauses. A CNF is called pure Horn, if it contains only pure

Horn clauses. Finally, a Boolean function is called Horn, if it has at least one representation by a Horn CNF, and similarly a
Boolean function is called pure Horn, if it has at least one representation by a pure Horn CNF.

It is known (see [10]) that each prime implicate of a Horn function is either negative or pure Horn, and each prime
implicate of a pure Horn function is pure Horn. Thus, in particular, any prime CNF representing a Horn function is Horn, and
any prime CNF representing a pure Horn function is pure Horn.

Definition 2.1. A class of CNFs X will be called tractable, if it satisfies the following properties.

• Recognition: Given an arbitrary CNF ϕ it is possible to decide in polynomial time with respect to the size of ϕ whether
ϕ ∈ X.

• Satisfiability: Given an arbitrary CNF ϕ ∈ X it is possible to decide in polynomial time with respect to the size of ϕ
whether ϕ is satisfiable.

• Partial assignment: Given an arbitrary CNF ϕ ∈ X, if ψ is produced from ϕ by fixing some variables to 0 or 1 and
substituting these values into ϕ, then ψ ∈ X.

• Prime representations: Given an arbitrary CNF ϕ ∈ X, if ϕ represents a function f then all prime CNF representations of
f belong to X.

It follows that given a CNF ϕ from a tractable class, we can decide in polynomial time whether a given clause C is an
implicate of ϕ by substituting the appropriate values (whichmake C zero) into ϕ and testing the satisfiability of the resulting
formula. This property of tractable classes has two important consequences.

Lemma 2.2. Let ϕ be a CNF from a tractable class. Then it is possible to find in polynomial time a prime and irredundant CNF ψ
which is equivalent to ϕ.

Proof. For every clause C in ϕ we can delete its literals one by one and test whether the remaining clause is still an implicate
of ϕ. If yes, the literal is deleted permanently, if no, the literal is returned back into the clause.When no literal can be deleted,
we have arrived to a prime subclause of C which can replace C in ϕ. Note that for different orders of literal deletions wemay
arrive to different prime subclauses of C . After getting a prime CNF we can test for each clause whether it is an implicate
of the CNF defined by the remaining clauses. If yes, the clause is redundant and can be deleted, if no, the clause is kept in
place. In this way an irredundant CNF is produced. Note again that for different orders of clause deletions we may arrive
to different prime and irredundant CNFs (all representing the same function as ϕ). Since the described procedure amounts
to a linear number of tests whether a given clause is an implicate of a given CNF from a tractable class, it follows that the
procedure runs in polynomial time with respect to the length of the input CNF. �

Lemma 2.3. Let ϕ and ψ be two CNFs from a tractable class. Then it is possible to test in polynomial time whether ϕ and ψ
represent the same Boolean function (are logically equivalent) or not.

Proof. It suffices to test for each clause C in ϕ whether it is an implicate of ψ and for each clause C in ψ whether it is an
implicate of ϕ. The two CNFs are logically equivalent if and only if none of these tests fails. �

An example of a tractable class is the class of Horn CNFs, which we use most frequently in the subsequent text.

2.2. Forward chaining procedure

In verifying that a given clause is an implicate of a given pure Horn function, a very useful and simple procedure is the
following. Let η be a pure Horn CNF of a pure Horn function h. We shall define a forward chaining procedure [13] which
associates to any subset Q of the propositional variables of h a set M in the following way. The procedure takes as input
the subset Q of propositional variables, initializes the set M = Q , and at each step it looks for a pure Horn clause S ∨ y in
η such that S ⊆ M , and y ∉ M . If such a clause is found, the propositional variable y is included into M , and the search is
repeated as many times as possible. The set M output by this procedure will be denoted by FCη(Q), where η is the input
CNF and Q the starting set of variables. It can be shown [11,19] that a clause C = Q ∨ y is an implicate of h if and only if
y ∈ FCη(Q). If η′ and η′′ are two distinct CNF representations of a given pure Horn function h and if Q is an arbitrary subset
of the propositional variables, then FCη′(Q) = FCη′′(Q) because η′ and η′′ have the same set of implicates. Therefore, the set
of propositional variables reachable from Q by forward chaining depends only on the underlying function h rather than on
a particular CNF representation η. For this reason, we shall also use the expression FCh(Q) instead of FCη(Q) whenever we
do not want to refer to a specific CNF.

368 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

2.3. Essential sets

In this section we shall define the central notion of this paper, the essential set of clauses, which was introduced in [3].

Definition 2.4 ([3]). Given a Boolean function f , a subset E ⊆ I(f) is called an essential set of f (or simply an essential set if
f is clear from the context) if for every pair of resolvable clauses C1, C2 ∈ I(f) the following implication holds:

R(C1, C2) ∈ E H⇒ C1 ∈ E or C2 ∈ E,

i.e. the resolvent belongs to E only if at least one of the parent clauses is from E .

It is easy to see that a set is essential if and only if its complement is closed under resolution. Hence, we have also the
following characterization.

Theorem 2.5 ([3]). A subset E of I(f) is an essential set of f iff I(f) \ E = R(I(f) \ E).

Note that the empty set is an essential set of any Boolean function. We shall often use the notion of a minimal (with
respect to inclusion) essential set and we shall require that such a set is nonempty. For this reason, we exclude empty set
when defining minimal essential set. In particular, we have the following definition.

Definition 2.6. We shall say that an essential set E isminimal, if E ≠ ∅ and the only essential set which is properly included
in E is an empty set.

Definition 2.7. For a Boolean function f , let ess(f) be the maximum number of pairwise disjoint nonempty essential sets of
implicates and let cnf(f) be the minimum number of clauses needed to represent f by a CNF.2

An important connection between ess(f) and cnf(f)was shown in [3].

Theorem 2.8 ([3]). For every Boolean function f , we have cnf(f) ≥ ess(f).

In Section 6.1,we demonstrate an example of aHorn Boolean function, forwhichwehave cnf(f) > ess(f). On the other hand,
many useful functions satisfy cnf(f) = ess(f). When this is satisfied, there is a polynomially verifiable certificate for this
fact by Theorem 3.8. The main goal of this paper is to investigate the general properties of essential sets and to derive
consequences for the properties of the class of functions satisfying cnf(f) = ess(f).

Definition 2.9. Let f be a Boolean function. We shall call f coverable if ess(f) = cnf(f). Let X be a set (or class) of CNFs. We
shall call X coverable if every CNF from X represents a coverable function.

3. A polynomially verifiable certificate for ess(f)

Given a falsepoint t of f , we define

E(t) = {C ∈ I(f) | C(t) = 0}.

The assumption that t is a falsepoint of f implies E(t) ≠ ∅. Moreover, it is easy to verify that E(t) is an essential set of
implicates (for a proof, see Lemma 6.5 in [3]). The set E(t) will be called a falsepoint essential set defined by t (or an FE set
defined by t for brevity). It is easy to see that not every essential set is an FE set (consider e.g. the entire set I(f)which is of
course an essential set of f—if it contains two clauses containing a pair of complementary literals then no vector t can falsify
both such clauses). However, every minimal essential set of implicates is equal to E(t) for some t .

Theorem 3.1. Let f be a Boolean function and let E be a minimal essential set of I(f), then there is some falsepoint t of f , such
that E = E(t).

Proof. Let g be a function represented by clauses in I(f) \ E . Clearly g ≥ f , because it is represented by implicates of f .
Since E is essential, we have that R(I(f)\E) = I(f)\E ≠ I(f) by Theorem 2.5. By Lemma 4.3 in [3], we have that a subset
of I(f) defines the function f if and only if its resolution closure is I(f). Hence, we have g ≠ f . Therefore, there is a vector
t , such that g(t) = 1, while f (t) = 0, and hence every implicate C ∈ I(f) for which C(t) = 0 belongs to E . In other words,
E(t) ⊆ E . Since E(t) is an essential set of implicates and E is a minimal essential set of I(f), we have E(t) = E . �

Let us use this fact to provide an equivalent characterization of ess(f).

Corollary 3.2. Let f be an arbitrary Boolean function, then ess(f) is equal to the maximum number of disjoint FE sets.

Proof. Let k = ess(f). The maximum number of disjoint FE sets of clauses is at most k because every FE set (i.e. E(t) for an
arbitrary falsepoint t) is essential. For the opposite inequality, let E1, . . . , Ek be a family of pairwise disjoint essential sets

2 The first number is denoted by ϵ(f) and the second number by σ(f) in [3].

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 369

of f . For every i = 1, . . . , k let E ′

i be a minimal essential set, which is a subset of Ei. Using Theorem 3.1 there exists a vector
ti, such that E ′

i = E(ti). Hence E ′

1, . . . , E
′

k constitute k disjoint FE sets and so the maximum number of disjoint FE sets of
clauses is at least k. �

Let us prove some further properties of FE sets which are used later.

Definition 3.3. Let s, t, r be Boolean vectors of length n. We say that r separates s and t , if for every i = 1, . . . , n, we have
ri = si or ri = ti.

Definition 3.4. Let s, t be Boolean vectors of length n. Then we denote

Cst =

i∈I(s,t)

xi ∨

i∈O(s,t)

xi,

where sets I(s, t) and O(s, t) are defined as follows

I(s, t) = {i | (1 ≤ i ≤ n) ∧ s[i] = t[i] = 1}
O(s, t) = {i | (1 ≤ i ≤ n) ∧ s[i] = t[i] = 0}.

Note that r separates s, t if and only if Cst(r) = 0.

Lemma 3.5. Let s and t be two falsepoints of a Boolean function f . Then the following statements are equivalent:
1. E(s) ∩ E(t) ≠ ∅.
2. Cst is an implicate of f .
3. E(s) ∩ E(t) ∩ Ip(f) ≠ ∅.
Proof. • (1) H⇒ (2): Let us assume that there exists an implicate C ′

∈ E(s) ∩ E(t). Since C ′(t) = C ′(s) = 0, we have that
variables of all positive literals of C ′ belong to O(s, t) and variables of all negative literals of C ′ belong to I(s, t). This in
turn means that C ′ is a subclause of Cst . Therefore C ′

≤ Cst and hence Cst is an implicate of f .
• (2) H⇒ (3): Let us assume that Cst is an implicate of f . Clearly, Cst evaluates to zero on both s and t (it is by its definition

the ‘‘longest’’ clause with this property). Since Cst is an implicate of f , there exists a prime implicate C ′
∈ Ip(f) such that

C ′
≤ Cst (i.e. C ′ is a subclause of Cst). Since C ′ also evaluates to zero on both s and t , we have C ′

∈ E(s) ∩ E(t) ∩ Ip(f),
which need not be true for Cst .

• (3) H⇒ (1): This implication is trivial. �
Note that if the given CNF representation of f is from a tractable class (e.g. if it is a Horn CNF), then for every pair of vectors

s and t we can test in polynomial time, whether E(t)∩E(s) = ∅ or not. This observation easily follows from Lemma 3.5 and
the fact that testing whether a given clause is an implicate of a function given by a CNF from a tractable class can be done in
polynomial time.

Corollary 3.6. Let E1 and E2 be two minimal essential sets of implicates of a Boolean function f , then E1 and E2 have a nonempty
intersection if and only if there is a prime implicate of f which belongs to both E1 and E2.
Proof. This directly follows from Theorem 3.1 and Lemma 3.5. �

The following formulation explicitly shows a certificate for the disjointness of two FE sets.

Lemma 3.7. Let s and t be two falsepoints of a Boolean function f . Then E(s) and E(t) are disjoint if and only if there exists a
truepoint r of f , which separates s and t.
Proof. Since r separates s, t if and only if Cst(r) = 0, we obtain that there exists a truepoint r , which separates s, t if and
only if Cst is not an implicate. Then, the lemma follows by taking negations of parts 1 and 2 in Lemma 3.5. �

Let us now formulate the following decision problem.
Problem ESS(F , k).
Input: A CNF F which represents a Boolean function f and a natural number k.
Question: ess(f) ≥ k?

Now we shall show that this problem belongs to the class NP . In Sections 7 and 8, we shall prove that it is also NP hard.

Theorem 3.8. Problem ESS(F , k) is in NP.
Proof. Let a pairF , k be a positive instance of ESS(F , k), i.e. let ess(f) ≥ k hold, where f is the Boolean function represented
by F . Then by Corollary 3.2 there exist k falsepoints t1, . . . , tk of function f which define pairwise disjoint nonempty FE sets
E(t1), . . . , E(tk). Let 1 ≤ i < j ≤ k be arbitrary. By Lemma 3.7 there exists a truepoint rij of f which separates ti and tj.
However, now the vectors ti, 1 ≤ i ≤ k, and rij, 1 ≤ i < j ≤ k form a certificate for ess(f) ≥ k. This certificate has a
polynomial size with respect to the input CNF F because it consists of O(k2) vectors of length nwhile F consists of at least
ess(f) ≥ k clauses by Theorem 2.8 (and we may assume without loss of generality that each of n variables appears at least
once in F). Of course, such a certificate is also polynomially verifiable: it suffices to check that every ti, 1 ≤ i ≤ k is a
falsepoint of f (by substituting the appropriate binary values into F), and that every rij, 1 ≤ i < j ≤ k is a truepoint of f
which separates ti and tj. �

370 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

4. CNF minimization for tractable classes

Let us start this section by formulating CNF minimization as a decision problem.
Problem CNF(F , ℓ).
Input: A CNF F which represents a Boolean function f and a natural number ℓ.
Question: cnf(f) ≤ ℓ?

We shall show that this decision problem is in NP when the input CNFs are restricted to some tractable class of CNFs.

Lemma 4.1. Let X be a tractable class of CNFs. Then CNF(F , ℓ) is in NP for F ∈ X.

Proof. Let a pairF , ℓ be a positive instance of CNF(F , ℓ), i.e. let cnf(f) ≤ ℓhold,where f is the Boolean function represented
by F . Then a prime CNF G, which represents f and consists of at most ℓ clauses is a polynomial size certificate for this
inequality. Note that we may assume that G is a prime representation since the existence of a CNF representing f and
consisting of atmost ℓ clauses clearly implies the existence of a prime CNFwith the same property.Moreover, the tractability
of X implies G ∈ X. The fact that G is a polynomially verifiable certificate follows from the fact that both F and G belong to
the tractable class X, and hence it is possible to test in polynomial time that they both represent the same function f (see
Lemma 2.3). �

Theorem 4.2. Let X be a class of CNFs which is both tractable and coverable. Then CNF(F , ℓ) is in NP ∩ coNP for F ∈ X.

Proof. The fact that CNF(F , ℓ) is in NP for F ∈ X, i.e. that there exists a polynomially verifiable certificate for a positive
answer, follows directly from Lemma 4.1. Let f be the Boolean function represented byF . A certificate for a negative answer
is a certificate for the fact that cnf(f) ≥ ℓ+ 1 which is the same as ess(f) ≥ ℓ+ 1 since cnf(f) = ess(f) due to the fact that
f is coverable. However, such a certificate, which is polynomially verifiable, exists due to Theorem 3.8. �

It should be remarked here that the requirement X ∈ P , i.e. that there exists a polynomial time recognition algorithm
for X (imposed on tractable classes in Definition 2.1), can be weakened to X ∈ NP ∩ coNP while both Lemma 4.1 and
Theorem 4.2 remain valid.

It can be also pointed out that even a stricter ‘‘equality version’’ of CNF(F , ℓ), where the input stays the same but the
question is changed to cnf(f) = ℓ?, is still in NP ∩ coNP for F in a tractable and coverable class. A certificate for a positive
answer is a combination of certificates for cnf(f) ≤ ℓ and ess(f) ≥ ℓ, while a certificate for a negative answer is one of the
certificates for cnf(f) ≤ ℓ− 1 or ess(f) ≥ ℓ+ 1.

Theorem 4.2 indicates that if for a tractable class X one can show that X is coverable, then there is a good chance
CNF(F , ℓ) is solvable in polynomial time for F ∈ X, as most decision problems known to be in NP ∩ coNP are in fact in P .
This is indeed the case for all three classes known to be simultaneously tractable and coverable which were mentioned in
the Introduction (acyclic Horn, quasi-acyclic Horn, and CQ-Horn CNFs). Let us now state a simple corollary.

Corollary 4.3. Let X be a tractable class of CNFs for which the minimization problem CNF(F , ℓ) is NP-hard. Then X is not
coverable unless NP = coNP.

Proof. Let us proceed by contradiction and assume that X is coverable. Then by Theorem 4.2 we have that CNF(F , ℓ) is in
NP ∩ coNP for F ∈ X, and by an assumption CNF(F , ℓ) is NP-hard for F ∈ X. However, the fact that an NP-complete
problem falls into coNP implies NP = coNP (see e.g. [8]). �

There are many classes with NP-hard minimization which may play the role of class X in Corollary 4.3. A good example
is the class of Horn CNFs [2]. Therefore, unless NP = coNP , there must exist a Horn CNF representing function f for which
ess(f) < cnf(f). We shall construct such a CNF in Section 6.1 after we introduce further notation and derive results needed
to prove the properties of such a CNF. In particular, we shall first concentrate on how to compute ess(f) using only clauses
from Ip(f) instead of looking at the entire I(f)which may be much larger.

5. Prime essential sets

According to Corollary 3.6, in order to test the disjointness of minimal essential sets, it is sufficient to look at prime
clauses. This suggests to consider the following notion.

Definition 5.1. Let f be an arbitrary Boolean function and let E ⊆ Ip(f) be a set of prime implicates. We say that E is a
prime essential set of f (or simply a prime essential set if f is clear from the context), if E = E ′

∩ Ip(f) for a set of clauses
E ′ such that E ′ is an essential set of f . We shall say that a prime essential set E of f is minimal, if E ≠ ∅ and the only prime
essential set of f which is properly included in E is the empty set.

Note that every nonempty essential set E ′ contains at least one prime implicate (otherwise the complement I(f) \ E ′

contains all prime implicates implying R(I(f) \ E ′) = I(f) and thus contradicting Theorem 2.5), so prime essential set
E = E ′

∩ Ip(f) is nonempty whenever E ′ is nonempty.

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 371

In order to characterize prime essential sets in a way similar to the characterization of essential sets in Theorem 2.5, we
introduce the following notation for the resolution closure restricted to prime clauses. Moreover, to make the presentation
in subsequent sections simpler, we extend this notation also to FE sets.

Definition 5.2. Let f be an arbitrary Boolean function. For every set C of prime implicates of f , let Rp(C) = R(C) ∩ Ip(f).
For every FE set E(t) let Ep(t) = E(t) ∩ Ip(f).

Theorem 5.3. A subset E of Ip(f) is a prime essential set of f if and only if Ip(f) \ E = Rp(Ip(f) \ E).

Proof. First, assume that E is a prime essential set. Then, there is an essential set E ′ such that E = E ′
∩ Ip(f) and E ′

satisfies I(f) \ E ′
= R(I(f) \ E ′) by Theorem 2.5. Since Ip(f) \ E ⊆ I(f) \ E ′, we have Rp(Ip(f) \ E) ⊆ Rp(I(f) \ E ′) =

(I(f)\E ′)∩Ip(f) = Ip(f)\E . On the other hand, we have Ip(f)\E ⊆ Rp(Ip(f)\E). Altogether,Rp(Ip(f)\E) = Ip(f)\E .
For the opposite direction, assume Ip(f) \ E = Rp(Ip(f) \ E) and define E ′

= I(f) \ R(Ip(f) \ E). We have
I(f) \ E ′

= R(Ip(f) \ E) and, hence, R(I(f) \ E ′) = R(R(Ip(f) \ E)) = R(Ip(f) \ E) = I(f) \ E ′. Consequently,
by Theorem 2.5, E ′ is an essential set. Since (I(f) \ E ′) ∩ Ip(f) = Rp(Ip(f) \ E) = Ip(f) \ E , we also have E ′

∩ Ip(f) = E
and E is a prime essential set. �

Theorem 5.4. Let f be an arbitrary Boolean function. Then ess(f) is equal to the maximum number of pairwise disjoint prime
essential sets of f .

Proof. Let k be the maximum number of pairwise disjoint prime essential sets, and let E1, . . . , Eess(f) be disjoint essential
sets. Since Ei ∩ Ip are disjoint prime essential sets, we have k ≥ ess(f).

Let Ei for i = 1, . . . , k be disjoint prime essential sets. Consider minimal essential sets E ′

i such that Ei ⊇ E ′

i ∩Ip. If E ′

i and
E ′

j for i ≠ j are not disjoint, then by Corollary 3.6 their intersection contains a prime implicate. This is a contradiction with
the assumption that Ei and Ej are disjoint. Hence, E ′

1, . . . , E
′

k are disjoint and we have k ≤ ess(f). �

The following lemma gives a connection between minimal essential sets and minimal prime essential sets.

Lemma 5.5. Let f be an arbitrary Boolean function, and let Ep be a minimal prime essential set of implicates of f , then there exist
a minimal essential set E of implicates of f , such that Ep = E ∩ Ip(f).

Proof. By definition, there is an essential set E such that Ep = E ∩ Ip. Consider any minimal essential subset E ′ of E . The
intersection E ′

∩Ip is a nonempty subset of Ep, which is a prime essential set. Since Ep is minimal, we have E ′
∩Ip

= Ep. �

Note that the reverse direction of Lemma 5.5 does not hold in general, i.e. given a minimal essential set E of implicates
of a Boolean function f , we cannot conclude that E ∩ Ip(f) is a minimal prime essential set. Consider the function f defined
by the following set of clauses

F = {(a ∨ b ∨ c), (a ∨ b ∨ d), (c ∨ d), (c ∨ e), (b ∨ c ∨ d), (a ∨ b ∨ e), (c ∨ d ∨ e), (b ∨ d ∨ e)}.

The following set of additional clauses can be derived from F by resolution

G = {(a ∨ b ∨ c ∨ e), (a ∨ b ∨ c ∨ d), (a ∨ b ∨ d ∨ e),

(a ∨ b ∨ d ∨ e), (a ∨ b ∨ c ∨ d), (a ∨ b ∨ c ∨ e), (b ∨ c ∨ e)}.

Notice that every clause in G contains some subclause from F which means that Ip(f) = F , and I(f) = F ∪ G. To verify
this fact it suffices to check that for every pair of resolvable clauses from F ∪ G the resolvent already belongs to F ∪ G.
Moreover, if we denote t1 = (00111) and t2 = (00110), it can be checked that the sets of clauses

E(t1) = {(a ∨ b ∨ c), (a ∨ b ∨ d), (a ∨ b ∨ e)}
E(t2) = {(a ∨ b ∨ c), (a ∨ b ∨ d), (a ∨ b ∨ c ∨ e), (a ∨ b ∨ d ∨ e)}

are minimal essential sets of f . However, the sets

Ep(t1) = E(t1) ∩ Ip(f) = E(t1)
Ep(t2) = E(t2) ∩ Ip(f) = (a ∨ b ∨ c)(a ∨ b ∨ d),

satisfy Ep(t2) (Ep(t1), and therefore Ep(t1) is not a minimal prime essential set.

Corollary 5.6. Let f be an arbitrary Boolean function and let Ep be a minimal prime essential set of implicates of f , then there is
a falsepoint t of f , such that Ep = Ep(t).

Proof. According to Lemma 5.5 there is a minimal essential set E such that Ep = E ∩ Ip(f). According to Theorem 3.1 there
is a falsepoint t of f for which E = E(t) and thus Ep = E(t) ∩ Ip(f) = Ep(t). �

The following theorem appears in [3] as two parts, one implication as Corollary 6.14 and the other as Theorem 6.15.

Theorem 5.7 ([3]). Let f be an arbitrary Boolean function and let E ⊆ I(f) be an arbitrary set of clauses. Then E is a minimal
essential set iff E is a minimal (with respect to inclusion) subset of I(f) such that E ∩ C ≠ ∅ for every C ⊆ I(f) which
represents f .

372 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

We can now state a similar result for prime essential sets.

Theorem 5.8. Let f be an arbitrary Boolean function and let Ep ⊆ Ip(f) be an arbitrary set of prime implicates of f . Then Ep
is a minimal prime essential set iff Ep is a minimal (with respect to inclusion) subset of I(f) such that Ep ∩ C ≠ ∅ for every
C ⊆ Ip(f) which represents f .

Proof. First, let us prove both directions of the equivalence without proving the minimality of the corresponding set in the
conclusion.

Let Ep be a minimal prime essential set and let C ⊆ Ip(f) be an arbitrary prime representation of f . By Lemma 5.5 there
exists a minimal essential set E such that Ep = E ∩ Ip(f). Theorem 5.7 now implies that E ∩ C ≠ ∅. This fact together with
the assumption C ⊆ Ip(f) gives us Ep ∩ C ≠ ∅. Since C was an arbitrary prime representation of f we get that Ep ∩ C ≠ ∅

for every C ⊆ Ip(f)which represents f .
Now let us assume that Ep ∩ C ≠ ∅ for every C ⊆ Ip(f)which represents f and that Ep is a minimal subset of I(f)with

this property. It follows that Ep ⊆ Ip(f). Let us show that Ep is a prime essential set. Let E ′
⊆ I(f)\Ip(f) be aminimal (with

respect to inclusion) set of nonprime implicates such that (E ′
∪ Ep) ∩ C ≠ ∅ for every C ⊆ I(f) which represents f . Since

Ep already intersects every prime representation of f , adding nonprime implicates is sufficient. By construction, E = E ′
∪Ep

is a minimal subset of I(f) such that E ∩ C ≠ ∅ for every C ⊆ I(f)which represents f and thus by Theorem 5.7 we obtain
that E is a minimal essential set of f . Moreover, Ep = E ∩ Ip(f) holds and hence Ep is a prime essential set.

It remains to show that in both directions, we get, in fact, minimal sets. Let Ep be a minimal prime essential set. By the
first paragraph of the proof we know that this set intersects any prime representation of f . If there is a proper subset of Ep,
which also intersects every prime representation, then by the second paragraph, this subset is a prime essential set. This is
not possible, since Ep was a minimal prime essential set.

Now, let Ep be an inclusion minimal set, which intersects every prime representation. By the second paragraph of the
proof, we know that it is a prime essential set. If there is a proper subset of Ep, which is also a prime essential set, then, by
the first paragraph of the proof, it also intersects every prime representation. This is not possible, since Ep is an inclusion
minimal set with this property. �

Now let us recall Theorem 6.6 from [3]. The following theorem is a minor strengthening of that theorem, which uses the
fact that a set intersects every nonempty essential set if and only if it intersects every minimal essential set.

Theorem 5.9 ([3]). Let f be an arbitrary Boolean function. A set C ⊆ I(f) is a representation of f iff C intersects every minimal
essential set of f .

This statement gives a direct corollary for prime essential sets.

Corollary 5.10. Let f be an arbitrary Boolean function. A set C ⊆ Ip(f) is a representation of f iff C intersects every minimal
prime essential set of f .

In the following section we shall use Corollary 5.10 in the following way: for a given function f we first list all minimal
prime essential sets of f , and then use this list to compute how many clauses are needed to intersect every set in the list,
i.e. to compute cnf(f).

6. Examples of functions with cnf(f) > ess(f)

In the end of Section 4 we have noticed that unless NP = coNP , there must exist a Horn CNF representing function f for
which ess(f) < cnf(f). We shall start this section by constructing such a CNF.

6.1. Cubic pure Horn example on 4 variables

Let us consider pure Horn clauses C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x1 ∨ x2 ∨ x3),Q1 = (y ∨ x1),Q2 =

(y∨x2),Q3 = (y∨x3) and function f defined by CNFF = C1 ∧C2 ∧C3 ∧Q1 ∧Q2 ∧Q3. Notice that each pair among the three
cubic clauses C1, C2, C3 has two complementary pairs of literals and hence no such pair of clauses is resolvable. Moreover,
no pair among the three quadratic clauses Q1,Q2,Q3 has a complementary pair of literals and thus again no such pair of
clauses is resolvable. In fact, there are only six resolvable pairs in the set S = {C1, C2, C3,Q1,Q2,Q3} (all of them ‘‘mixed
pairs’’ of one cubic and one quadratic clause), namely (C1,Q2), (C1,Q3), (C2,Q1), (C2,Q3), (C3,Q1), (C3,Q2). It is easy to
check that each of the six resolvents is absorbed by some other clause in S (e.g. the resolvent x1 ∨ y∨ x3 of the pair (C1,Q2)
is absorbed by Q1). Thus, using Quine’s resolution procedure to obtain the set of all prime implicates (canonical CNF) of a
function defined by CNF F (this procedure is described, e.g. in [4]), it follows that Ip(f) = S.

Consider the vectors t1 = (0, 1, 1, 0), t2 = (1, 0, 1, 0), t3 = (1, 1, 0, 0), t4 = (0, 0, 1, 1), t5 = (1, 0, 0, 1), t6 =

(0, 1, 0, 1) as truth value assignments of the variables x1, x2, x3, y. These vectors define the following prime essential sets
of clauses.

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 373

E(t1) = {C1}

E(t2) = {C2}

E(t3) = {C3}

E(t4) = {Q1,Q2}

E(t5) = {Q2,Q3}

E(t6) = {Q1,Q3}.

It is obvious that E(t1), E(t2), E(t3) are minimal prime essential sets as they contain one clause each. To see that also
E(t4), E(t5), E(t6) areminimal prime essential sets it suffices to check that the sets Ip(f)\{Q1}, I

p(f)\{Q2}, and Ip(f)\{Q3},
are not closed under Rp, which by Theorem 5.3 implies that none of the sets {Q1}, {Q2}, and {Q3} is a prime essential set.
Moreover, this observation immediately implies that every nonempty prime essential set must contain either one of the
cubic clauses C1, C2, C3 or two of the quadratic clauses Q1,Q2,Q3. In other words every nonempty prime essential set must
contain one of E(t1), . . . , E(t6), which in turn implies that E(t1), . . . , E(t6) is a complete list of minimal prime essential sets
of f .

Now, using Corollary 5.10 we obtain that cnf(f) = 5. Indeed, all three cubic clauses must be present in C to intersect
E(t1), E(t2), E(t3) and a single quadratic clause is not sufficient to intersect all of E(t4), E(t5), E(t6). Thus we need a
minimum of two quadratic clauses which yields the only three minimum cardinality prime representations of f as follows:

ϕ1 = C1 ∧ C2 ∧ C3 ∧ Q1 ∧ Q2

ϕ2 = C1 ∧ C2 ∧ C3 ∧ Q2 ∧ Q3

ϕ3 = C1 ∧ C2 ∧ C3 ∧ Q1 ∧ Q3.

It can now also be easily checked that there are at most 4 pairwise disjoint minimal prime essential sets of implicates
of f (E(t1), E(t2), E(t3) together with one of E(t4), E(t5), E(t6)) which implies that there are at most 4 pairwise disjoint
nonempty prime essential sets of implicates of f and using Theorem 5.4 we get that ess(f) = 4.

The just constructed example has a gap cnf(f)− ess(f) = 5− 4 = 1. In the following section we shall show that the gap
cnf(f)− ess(f) can be made arbitrarily large.

6.2. More general example

Let xA be a set of n1 variables and yB a set of n2 variables, where A, B are disjoint sets of indices and n1 = 2k− 1 for some
integer k. Let us define a function fn1,n2 of n = n1 + n2 variables by

fn1,n2(xA, yB) =

i∈B

yi ∨

i∈A

xi ≥ k

⇒

i∈A

xi

or, equivalently, by the following CNF

fn1,n2(xA, yB) =

i∈A
j∈B

(yj ∨ xi)

A′⊆A, |A′ |=k
j∈A\A′

i∈A′

xi ∨ xj

 .
Lemma 6.1. The clauses of the above representation of fn1,n2 form exactly the list of its prime implicates. In other words, the list
of prime implicates of fn1,n2 is formed by the following two types of clauses.
1. For every i ∈ A and j ∈ B, the clause yj ∨ xi.
2. For every A′

⊆ A satisfying |A′
| = k and every j ∈ A \ A′, the clause

i∈A′ xi ∨ xj.

Proof. Resolution may be applied either to two clauses of type 2 or to a clause of type 1 and a clause of type 2. One may
verify by case inspection that in the former case, the result is either a clause of type 2 or a superset of some of these clauses.
In the latter case, the result is a superset of a clause of type 1. Consequently, the set of clauses from the lemma is stable
under Quine’s procedure [4] and hence, is a list of all prime implicates of the function defined by the conjunction of its
elements. �

Theorem 6.2. The following two types of sets of clauses represent exactly all minimal prime essential sets for fn1,n2 .
1. For every j ∈ B and every A′

⊆ A, such that |A′
| = k, let P(j, A′) be the set of prime implicates

{yj ∨ xi | i ∈ A′
}.

2. For every A′
⊆ A satisfying |A′

| ∈ [k, n1 − 1] let Q (A′) be the set of prime implicates
i∈A′′

xi ∨ xj | A′′
⊆ A′, |A′′

| = k, j ∈ A \ A′

.

374 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

Proof. Let us describe the falsepoints t of fn1,n2 , for which Ep(t) is minimal. It follows from the definition of the function
fn1,n2 that a vector t ∈ {0, 1}n1+n2 is a falsepoint iff t satisfies at least one of the following conditions:

(1) There are i ∈ A and j ∈ B such that t[xi] = 0 and t[yj] = 1, or
(2)

i∈A t[xi] ∈ [k, n1 − 1].

If a falsepoint t satisfies both (1) and (2), then Ep(t) is notminimal, since if t ′ differs from t by setting t[yj] = 0 for every j ∈ B,
then t ′ is again a falsepoint and Ep(t ′) (Ep(t). If t is a falsepoint satisfying (1) and not (2), then according to Lemma 6.1

Ep(t) ⊆ {yj ∨ xi | i ∈ A and j ∈ B}.

If t ′ is a falsepoint satisfying (2) and not (1), then according to Lemma 6.1

Ep(t ′) ⊆

i∈A′

xi ∨ xj | A′
⊆ A, |A′

| = k and j ∈ A \ A′

.

It follows that for any such pair of falsepoints t and t ′ we have Ep(t) ∩ Ep(t ′) = ∅, hence, we may consider the candidates
for falsepoints t with minimal Ep(t) in these two groups separately.
Falsepoints satisfying (1) and not (2)

Let t be an arbitrary falsepoint satisfying (1) and not (2) such that Ep(t) is a minimal prime essential set. It follows that
i∈A

t[xi] < k.

If

i∈A t[xi] < k − 1, then we can produce a falsepoint t ′ from t by setting t ′[xi] = 1 for some i ∈ A for which t[xi] = 0.
Falsepoint t ′ still satisfies (1) and not (2) and Ep(t ′) $ Ep(t), because there are fewer unsatisfied clauses of form yj ∨ xi on
t ′. Since we assume that Ep(t) is a minimal prime essential set, we get

i∈A

t[xi] = k − 1.

Similarly, if there are at least two indices j1, j2 ∈ B such that t[yj1] = t[yj2] = 1, then we can produce falsepoint t ′ from
t by setting t ′[yj2] = 0. Falsepoint t ′ again satisfies (1) and not (2) and Ep(t ′) $ Ep(t) because there are fewer unsatisfied
clauses of form yj ∨ xi on t ′. Since we assume that Ep(t) is a minimal prime essential set this is not possible, and thus there is
exactly one j ∈ B such that t[yj] = 1. Together we have that a falsepoint t which satisfies (1) and not (2) defines a minimal
prime essential sets only if the following two conditions are satisfied:

(a) There is exactly one j ∈ B such that t[yj] = 1 and
(b)

i∈A t[xi] = k − 1.

Now we shall show that these two conditions are also sufficient for t to define a minimal prime essential set Ep(t).
Let t and t ′ be two different falsepoints satisfying (a) and (b), and let us assume that j1 ∈ B is the only index such that

t[yj1] = 1 and that j2 ∈ B is the only index such that t ′[yj2] = 1. We shall show that Ep(t) is incomparable with Ep(t ′). If
j1 ≠ j2 then clearly Ep(t) ∩ Ep(t ′) = ∅ so let us suppose that j1 = j2. Since t ≠ t ′ but

i∈A t[xi] =

i∈A t

′
[xi] = k − 1, we

have that there are i1, i2 ∈ A for which t[xi1] = 0, t[xi2] = 1, t ′[xi1] = 1, and t ′[xi2] = 0. Clearly yj1 ∨ xi1 ∈ Ep(t) \ Ep(t ′)
and yj1 ∨ xi2 ∈ Ep(t ′) \ Ep(t), and therefore Ep(t) and Ep(t ′) are incomparable. It follows that every falsepoint t satisfying
both (a) and (b) defines a minimal prime essential set Ep(t).

Let t be a falsepoint satisfying (a) and (b), let j ∈ B be the only index for which t[yj] = 1, and let us denote
A′

= {i ∈ A | t[xi] = 0}. Since n1 = 2k − 1 we have that |A′
| = k and thus

Ep(t) = {yj ∨ xi | i ∈ A′
} = P(j, A′).

On the other hand, if j ∈ B and A′
⊆ Awith |A′

| = k one can easily construct a falsepoint t which satisfies (a) and (b) and for
which Ep(t) = P(j, A′) as follows:

t[yj′] = 0 j′ ∈ B \ {j}
t[yj] = 1
t[xi] = 0 i ∈ A′

t[xi] = 1 i ∈ A \ A′.

Therefore, the sets P(j, A′) are in one-to-one correspondence with falsepoints satisfying (a) and (b). Note also that since
k > n1/2 we have that P(j, A′) ∩ P(j, A′′) ≠ ∅ for every j ∈ B and A′, A′′

⊆ A where |A′
| = |A′′

| = k.
Falsepoints satisfying (2) and not (1)

If t is a falsepoint satisfying (2) and not (1) then t[yj] = 0 for every j ∈ B. Let us show that for any two such falsepoints
t1 and t2 the sets Ep(t1) and Ep(t2) are incomparable. Let A′

i = {j ∈ A | ti[xj] = 1}, i = 1, 2, we have |A′

i| ∈ [k, n1 − 1] for
i = 1, 2. We shall distinguish two cases, whether A′

1 and A′

2 are comparable, or not.

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 375

If A′

1 and A′

2 are incomparable, choose some a1 ∈ A′

1 \ A′

2 and a2 ∈ A′

2 \ A′

1. Further, let A
′′

1 be an arbitrary subset of A′

1 of
size k and similarly, A′′

2 a subset of A′

2 of size k. Then the clause
i∈A′′

1

xi ∨ xa2 (1)

evaluates to 0 on t1 and to 1 on t2. Similarly, the clause
i∈A′′

2

xi ∨ xa1 (2)

evaluates to 1 on t1 and to 0 on t2. Consequently, Ep(t1) and Ep(t2) are incomparable.
If A′

1 and A′

2 are comparable, assume w.l.o.g. A′

1 (A′

2 and let a2 ∈ A′

2 \ A′

1. Then, there is a clause constructed similarly
to (1), which evaluates to 0 on t1 and to 1 on t2. On the other hand, if A′′

2 is a k element subset of A′

2, which is not a subset
of A′

1, and a1 is an arbitrary index not contained in A′

2, then the clause of the form (2) evaluates to 1 on t1 and to 0 on t2.
Consequently, Ep(t1) and Ep(t2) are incomparable.

It follows that given a falsepoint t satisfying (2) and not (1), Ep(t) is a minimal prime essential set, if we denote
A′

= {i ∈ A | t[xi] = 1}, then |A′
| ∈ [k, n1 − 1] and

Ep(t) =

i∈A′′

xi ∨ xj | A′′
⊆ A′, |A′′

| = k, j ∈ A \ A′

and therefore Ep(t) = Q (A′). On the other hand, given A′

⊆ A, |A′
| ∈ [k, n1 −1]we can easily define a falsepoint t satisfying

(2) and not (1) for which Ep(t) = Q (A′) by setting t[xi] = 1 iff i ∈ A′ and t[yj] = 0 for every j ∈ B. Thus the sets Q (A′) are
in one-to-one correspondence with falsepoints satisfying (2) and not (1).
Conclusion

By considering the two cases above, we obtained that the list of prime essential sets presented in the theorem is the list
of all minimal prime essential sets of fn1,n2 . �

Lemma 6.3. Let n, k be integers such that n ≥ 3 and 1 ≤ k ≤ n − 1. Let A be a set of size n. Let Gn,k be the undirected graph of
subsets of A of size k, where two sets A′ and A′′ form an edge if and only if their symmetric difference has size 2. Then Gn,k contains
a Hamiltonian cycle.
Proof. If n ≥ 3 and k = 1 or k = n − 1, then Gn,k is a complete graph, so it contains Hamiltonian cycle. In particular, this
proves the lemma for n = 3. Let us continue by induction on n.

Assume n > 3. It is sufficient to prove the statement for k satisfying 2 ≤ k ≤ n − 2. The vertices of Gn,k are subsets of
{1, . . . , n}. Let G1 be the subgraph of Gn,k induced by the vertices containing 1, and let G2 be the subgraph of Gn,k induced by
the remaining vertices. Graph G1 is isomorphic to Gn−1,k−1 and G2 is isomorphic to Gn−1,k. Hence, by induction hypothesis,
both G1 and G2 contain a Hamiltonian cycle. Fix a Hamiltonian cycle in G2 and choose an edge (A′, A′′) contained in it. Let u
be an element in the intersection of A′ and A′′. Such an element exists, since the intersection has size k − 1 and k ≥ 2. Let
B′

= A′
\ {u} ∪ {1} and B′′

= A′′
\ {u} ∪ {1}. Sets B′ and B′′ are vertices of G1 connected by an edge. Since each edge in G1 may

be mapped to any other edge in G1 by an isomorphism of G1, there is a Hamiltonian cycle in G1 containing the edge (B′, B′′).
By removing the edges (A′, A′′) and (B′, B′′) from the two Hamiltonian cycles and by connecting them using edges (A′, B′)
and (A′′, B′′), we obtain a Hamiltonian cycle in Gn,k. �

Theorem 6.4. For the function fn1,n2 defined above, we have

cnf(fn1,n2) =

n1

k

+ kn2 (3)n1

k

+ n2 ≤ ess(fn1,n2) < 2n1 + n2. (4)

Proof. In order to prove (3), we may restrict ourselves to prime CNFs representing fn1,n2 . Given an arbitrary prime CNF ϕ
representing fn1,n2 and an arbitrary A′

⊆ A of size |A′
| = k, ϕ has to contain at least one clause of the form

i∈A′ xi ∨ xj

where j ∈ A \ A′, since otherwise FCϕ(A′) = A′ contradicting the fact that

i∈A′ xi ∨ xj is an implicate of fn1,n2 for every
j ∈ A \ A′. Hence, ϕ has to contain at least

 n1
k

clauses of this form. To show that this number of clauses of this type is also

sufficient, use Lemma 6.3 to prove the existence of a cycle consisting of all subsets of A of size k and such that sets, which are
neighbors in the cycle, have symmetric difference of size 2. Then, consider the cycle as an ordered cycle with any of the two
possible orderings. Finally, for each set A′ in the cycle, consider the clause

i∈A′ xi ∨ xj, where j is the uniquely determined

index not contained in A′, but contained in the set, which follows A′ in the cycle. It is easy to verify that the obtained set of
clauses of size

 n1
k

generates by forward chaining every prime clause listed in item 2 in Lemma 6.1 (by starting with the set

of subgoals and following the cycle to the desired head).
Similarly, for each i ∈ B, ϕ has to contain a superset of the set of clauses P(i, A′) for some set A′ of size k, since otherwise

FCϕ({yi}) contains only those xj for which clauses yi ∨ xj are explicitly present in ϕ, contradicting the fact that yi ∨ xj is an

376 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

implicate of fn1,n2 for every j ∈ A. Thus ϕ contains at least kn2 clauses of this form. To show that this number of clauses
of this type is also sufficient, take for each i ∈ B exactly one set P(i, A′) for some arbitrary set A′ of size k. Now FCϕ({yi})
contains all xj for j ∈ A′ and using the cycle of clauses from the previous paragraph forward chaining derives all remaining
xj for j ∈ A \ A′.

In order to prove (4), we use Theorem 6.2 to find disjoint essential sets. Let us consider the two types ofminimal essential
sets listed in Theorem 6.2 separately. For each index i ∈ B, we can choose at most one of the sets P(i, A′), since for every pair
of sets A′, A′′, sets P(i, A′) and P(i, A′′) have nonempty intersection. Hence, we have at most n2 disjoint minimal essential
sets of this type. If we choose Q (A′) for all A′

⊆ A of size |A′
| = k, we obtain

 n1
k

further disjoint essential sets. On the other

hand, the number of different sets A′ is at most 2n1 . Altogether, we can find at least
 n1

k

+ n2 and at most 2n1 + n2 pairwise

disjoint minimal essential sets. �

Corollary 6.5. For fixed n1, k and n2 → ∞, we have cnf(fn1,n2)/ess(fn1,n2) → k.

7. Hardness of computing ess(f) for pure Horn 3CNFs

In this section we shall show that the following problem is NP-complete:
Problem: ESS-Horn-3CNF.
Input: A pure Horn 3CNF ϕ representing a pure Horn function f and an integer k ≥ 0.
Question: Is ess(f) ≥ k?

We shall prove the hardness of this problem by a transformation from the problem of finding a maximum independent
set in a graph G. This reduction is inspired by a similar construction in [2] where a reduction from the Set Cover problem
to Boolean minimization (BM) is presented. For this purpose, let us associate a pure Horn function fG with every undirected
graph G = (V , E), where V = {x1, x2, . . . , xn}, n = |V |, E = {ei,j | ei,j = {xi, xj}}, and m = |E|. With every vertex xi ∈ V
of G we associate a Boolean variable xi and similarly with every edge ei,j ∈ E we associate a Boolean variable ei,j (note that
since G is an undirected graph, ei,j = ej,i). fG is then a function on n + m + 1 variables, n variables associated with vertices,
m variables associated with edges and an additional variable z. fG is defined by the following pure Horn CNF expression

FG =

ei,j∈E

(ei,j ∨ xi) ∧ (ei,j ∨ xj) ∧ (xi ∨ xj ∨ ei,j)

∧

n
i=1

(z ∨ xi).

Let us at first examine, how the prime implicates of fG (i.e. the set Ip(fG)) may look like.

Lemma 7.1. Let G be an arbitrary undirected graph and let fG be its associated pure Horn function defined by CNF FG. A clause
C is a prime implicate of fG if and only if one of the following is true:
(a) C = (ei,j ∨ xi) for some edge ei,j ∈ E,
(b) C = (xi ∨ xj ∨ ei,j) for some edge ei,j ∈ E,
(c) C = (ei,j ∨ xk ∨ ei,k) for some edges ei,j, ei,k ∈ E where xi, xj, and xk are three pairwise different vertices of G,
(d) C = (ei,j ∨ ek,l ∨ ei,k) for some edges ei,j, ei,k, ek,l ∈ E where xl may be the same vertex as xj,
(e) C = (z ∨ ei,j) for some edge ei,j ∈ E, or
(f) C = (z ∨ xi) for some vertex xi ∈ V .

Proof. Let us first verify that each clause described in the proposition of the lemma is an implicate of fG. The cases (a), (b),
and (f) are trivial as these are the clauses appearing directly in FG. A clause C = (ei,j ∨ xk ∨ ei,k) from case (c) is a resolvent
of C1 = (ei,j ∨ xi) and C2 = (xi ∨ xk ∨ ei,k) and is therefore an implicate of fG. A clause C = (ei,j ∨ ek,l ∨ ei,k) from case (d)
is a resolvent of C1 = (ei,j ∨ xk ∨ ei,k), which is an implicate due to (c), and C2 = (ek,l ∨ xk), which is an implicate due to
(a). A clause C = (z ∨ ei,j) from case (e) is a resolvent of C1 = (z ∨ xi) and C2 = (z ∨ xi ∨ ei,j), where C2 is a resolvent of
C4 = (z ∨ xj) and C5 = (xi ∨ xj ∨ ei,j).

In order to verify that the clauses (a)–(f) are prime implicates, let us use the following set of satisfying assignments.

• All ones assignment.
• For every vertex xa, a ∈ {1, . . . , n}, the assignment, which sets z, xa and ea,i for all i ≠ a to 0 and all other variables to 1.

Consider any of the clauses (a)–(f). For every literal in it, it is possible to find an assignment from the above list, which satisfies
the chosen literal, but no other literal in the considered clause. Since the assignment satisfies the whole formula, the literal
cannot be omitted without changing the represented function. This implies that the clauses (a)–(f) are prime implicates
of fG.

For the other direction let us start by examining the forward chaining closure of a set of variables S with respect to fG
which shall be denoted by FCG(S). Given an arbitrary set S of variables of fG, let us denote by VS = {xi | xi ∈ S or xi ∈

ei,k for some ei,k ∈ S}, i.e. VS consists of those vertices which are either present in S directly, or they are incident to some
edge, which belongs to S. By ES let us denote the set of edges of G, whose both vertices belong to VS . Now we claim that

FCG(S) =

V ∪ E ∪ {z} if z ∈ S
VS ∪ ES otherwise.

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 377

Let us at first assume that z ∈ S. Then according to the fact that clauses in (e) and (f) are implicates of fG, we can derive
everything from z and therefore clearly FCG({z}) = FCG(S) = V ∪ E ∪ {z}. Now let us assume that z ∉ S. By using clauses
from (a) and (b) we can observe that VS ∪ ES ⊆ FCG(S). By definition of VS ∪ ES we can see that S ⊆ VS ∪ ES . Let C be a clause
in FG and let us assume that all its subgoals are contained in VS ∪ ES . We shall show that in this case also its head belongs to
VS ∪ ES , and thus it follows that FCG(S) = VS ∪ ES . Let us at first assume that C is of type (a), i.e. C = (ei,j ∨ xi). In this case
ei,j ∈ ES and therefore by definition of ES , we have that xi ∈ VS . Now, let us assume that C is of type (b), i.e. C = (xi ∨ xj ∨ ei,j)
for some edge ei,j ∈ E. In this case xi, xj ∈ VS and hence also ei,j ∈ ES .

Now let us assume that C = (S ∨ y) is an implicate of fG, which is nontrivial, i.e. y ∉ S. If z ∈ S, then z itself is sufficient
for deriving anything and therefore if C should be prime, then S = {z}, y ∈ V ∪ E and C has the form of (e) or (f). If z ∉ S,
then since C is an implicate of fG, we get that y ∈ FCG(S) ⊆ VS ∪ ES . If y = xi ∈ VS , then since y ∉ S it must be the case that
ei,j ∈ S for some edge ei,j ∈ E incident to xi. If C should be prime, then we must have S = {ei,j} and C has the form of (a). If
on the other hand y = ei,k ∈ ES , then we have three possibilities.

1. xi, xk ∈ S. In this case, if C is prime, then S = {xi, xk} and C has the form of (b).
2. ei,j, xk ∈ S for some ei,j ∈ E or ej,k, xi ∈ S for some ej,k ∈ E. In the former case, if C is prime, we have that S = {ei,j, xk}

and C has the form of (c). The latter case is symmetric.
3. ei,j, ek,l ∈ S for some ei,j, ek,l ∈ E and then if C is prime, we must have that S = {ei,j, ek,l} and C has the form of (d).

By this we have shown that every prime implicate of fG must have the form of one of the cases (a)–(f) in the proposition of
the lemma. �

Let us denote the size of the largest independent set of the undirected graph G by α(G), then we claim that the following
holds.

Theorem 7.2. Let G = (V , E) be an undirected graph, then α(G) = ess(fG)− 3m, where m = |E|.

Proof. Let us at first assume that we have an independent set I of G of size α(G). We shall define three sets of (m+n+1)-bit
vectors, which define pairwise disjoint essential sets.

1. Given an edge ei,j and a vertex xi ∈ ei,j we define vector t ii,j
• t ii,j[xj] = 1,
• t ii,j[xk] = 0 for xk ∈ V \ {xj},
• t ii,j[ei,j] = 1,
• t ii,j[ek,l] = 0 for ek,l ∈ E \ {ei,j}, and
• t ii,j[z] = 0.

2. Given an edge ei,j ∈ E, we define vector ti,j
• ti,j[xi] = ti,j[xj] = 1,
• ti,j[xk] = 0 for xk ∈ V \ {xi, xj},
• ti,j[ek,l] = 0 for ek,l ∈ E (including ei,j), and
• ti,j[z] = 0.

3. Given xa ∈ I we define vector ta as follows.
• ta[xa] = 0,
• ta[xj] = 1 for xj ∈ V \ {xa},
• ta[ea,k] = 0 for ea,k ∈ E,
• ta[ej,k] = 1 for ej,k ∈ E where xa ∉ ej,k, and
• ta[z] = 1.

Let us prove that the prime essential sets defined using these falsepoints are

Ep(t ii,j) = {(ei,j ∨ xi)}, (5)

Ep(ti,j) = {(xi ∨ xj ∨ ei,j)}, and (6)

Ep(ta) = {(z ∨ xa)} ∪ {(z ∨ ea,j) | ea,j ∈ E} (7)

and, in particular, these essential sets are disjoint.

• Let us at first consider vector t ii,j for an arbitrary edge ei,j ∈ E. Clearly (ei,j ∨ xi) ∈ Ep(t ii,j). On the other hand, let C be an
implicate of fG for which C(t ii,j) = 0, then the subgoals of C may contain only xj and ei,j (because these are the only bits
set to 1 in t ii,j). According to Lemma 7.1, this condition is satisfied by the prime implicates (ei,j ∨ xj) and (ei,j ∨ xi). The
former is not falsified by t ii,j, therefore the latter is the only prime implicate which belongs to Ep(t ii,j).

• Now let us consider vector ti,j for an arbitrary ei,j ∈ E. Clearly (xi ∨ xj ∨ ei,j) ∈ Ep(ti,j). On the other hand, let C be an
implicate of fG, for which C(ti,j) = 0, then the subgoals of C may contain only xi and xj (because these are the only bits
set to 1 by ti,j), According to Lemma 7.1, the only prime implicate satisfying this condition is (xi ∨ xj ∨ ei,j) and it is also
the only implicate belonging to Ep(ti,j).

378 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

• Now let us consider an arbitrary xa ∈ I and the corresponding vector ta. The fact that {(z ∨ xa)} ∪ {(z ∨ ea,j) | ea,j ∈

E} ⊆ Ep(ta) follows from the definition of ta and it should also be clear that every clause with subgoal z, which belongs
to Ep(ta), is contained in the left-hand side of the above set inclusion. It therefore remains to show that every implicate
C , which does not contain z as a subgoal, evaluates to 1 on ta. Since C does not contain z as a subgoal, it must have the
form (a)–(c), or (d) from the proposition of Lemma 7.1. If C = (ei,j∨xi) for some ei,j ∈ E (case (a)), then C(ta) = 1 because
if ta[xi] = 0, then i = a and ta[ei,j] = 0. If C = (xi ∨ xj ∨ ei,j) for some edge ei,j ∈ E (case (b)), then C(ta) = 1, because
if xi and xj are both set to 1 by ta, then also ei,j is set to 1. If C = (ei,j ∨ xk ∨ ei,k) for some edges ei,j, ei,k (case (c)), then
either a ∈ {i, j, k} in which case one of ei,j or xk is set to 0 by ta, or a ∉ {i, j, k} and ta[ei,k] = 1, therefore also in this case
C(ta) = 1. If C = (ei,j ∨ ek,l ∨ ei,k) for some edges ei,j, ek,l, ei,k ∈ E (case (d)), then either a ∈ {i, j, k, l}, in which case
ta[ei,j] = 0 or ta[ek,l] = 0, or a ∉ {i, j, k, l}, in which case ta[ei,k] = 1. According to Lemma 7.1, there are no other prime
clauses, which could belong to Ep(ta).

The above shows that the sets of type E(t ii,j) and E(ti,j) are pairwise disjoint and that they are disjoint with sets of type E(ta).
It remains to show that given two different xa, xb ∈ I , the sets E(ta) and E(tb) are disjoint. A clause (z ∨ xa) ∉ E(tb) and
similarly (z ∨ xb) ∉ E(ta), therefore if there is a clause in E(ta) ∩ E(tb), then it is the clause (z ∨ ea,b). However, this clause
is not a prime implicate by Lemma 7.1, because I is an independent set and hence {xa, xb} ∉ E, which means that ea,b does
not appear as a variable in FG. The number of pairwise disjoint essential sets we have found is 3|E| + |I| = 3m+ α(G). This
implies that ess(fG) ≥ 3m + α(G).

Now let us assume that we have ess(fG) pairwise disjoint FE sets of fG. The above construction implies that ess(fG) ≥ 3m.
We shall construct an independent set I of size k = ess(fG) − 3m ≥ 0. Let the falsepoints defining the ess(fG) pairwise
disjoint sets be denoted by s1, . . . , sess(fG) and assumewithout loss of generality that each Ep(si) isminimal. Prime implicates
C , which have the form (a) or (b) of the proposition of Lemma 7.1, form themselves singleton prime essential sets, which are
alsominimal essential sets. Hence, for every such C , we have some i for which Ep(si) = {C}, otherwise, we could find a larger
collection of pairwise disjoint essential sets by adding {C} to it. Let us assume that s1, . . . , s3m correspond to these singleton
sets. Therefore, s3m+1, . . . , s3m+k are falsepoints which define the remaining k essential sets. Let us inspect the set Ep(s3m+w)
for an arbitraryw ∈ {1, . . . , k}. The set Ep(s3m+w)must have a nonempty intersectionwithFG by Theorem 5.8, but it cannot
contain clauses of the form (a) or (b) from the proposition of Lemma 7.1, because Ep(s3m+w) is disjoint with Ep(si) for every
i ∈ {1, . . . , 3m}. Hence, it must contain a clause (z ∨ xi) for some variable xi ∈ V . Let us associate with every vector s3m+w

one of these variables and let us denote it by xiw . We set I = {xi1 , . . . , xik} and claim that I is an independent set of G. Let
w, y ∈ {1, . . . , k} be two arbitrary, but distinct indices and xiw , xiy their associated variables. Let us assume by contradiction
that eiw ,iy = {xiw , xiy} ∈ E. Since (z ∨ xiw) ∈ Ep(s3m+w) and (z ∨ xiy) ∈ Ep(s3m+y), we have s3m+w[z] = s3m+y[z] = 1 and
s3m+w[xiw] = s3m+y[xiy] = 0. Since Ep(s3m+w) ∩ Ep(s3m+y) = ∅, we also have s3m+w[xiy] = s3m+y[xiw] = 1. Moreover, at
least one of s3m+w[eiw ,iy] and s3m+y[eiw ,iy] must be 1, otherwise (z ∨ eiw ,iy) ∈ Ep(s3m+w)∩ Ep(s3m+y). But if s3m+y[eiw ,iy] = 1,
then (eiw ,iy ∨xiy) evaluates to 0 on s3m+y, which is a contradiction to the disjointness of Ep(s3m+y) and {(eiw ,iy ∨xiy)} included
among Ep(s1), . . . , Ep(s3m). Similarly, if s3m+w[eiw ,iy] = 1, then (eiw ,iy ∨xiw) evaluates to 0 on s3m+w , which is a contradiction
to the disjointness of Ep(s3m+w) and {(eiw ,iy ∨ xiw)}. Therefore xiw , xiy cannot form an edge of G. By this we have shown that
I is an independent set of G of size |I| = k ≤ α(G) and, hence, ess(fG) = 3m + k ≤ 3m + α(G).

The first and the second half of the proof together imply that ess(fG) = 3m + α(G). �

The fact that the problem ESS-Horn-3CNF belongs to NP follows directly from Theorem 3.8 and we may therefore
conclude the following.

Corollary 7.3. The problem ESS-Horn-3CNF is NP-complete.

It is also worth to note that while computing ess(fG) is NP-hard (equivalent to computing α(G)), computing cnf(fG) can
be done in polynomial time. As was shown in [2], computing cnf(fG) is equivalent to computing the size of a minimum edge
cover of G, which is long known to be in P .

8. Computing ess(f) and its relaxation from the truth table of f

In this section we first prove NP-completeness of the following problem.
Problem ESS-TT (f , k).
Input: A Boolean function f represented by its truth table and an integer k ≥ 0.
Question: Is ess(f) ≥ k?

Minimization of DNF for a Boolean function given by its truth table is proved to be NP-hard in [1] using a reduction from
3-Partite Set Cover. We use essentially the same reduction, although we use it as a reduction of the problem 3-PARTITE-
TRIANG-INDSET described below to ESS-TT. An instance of the input problem is a 3-uniform hypergraph H = (V , S), whose
set of edges S is a subset ofU1×U2×U3 for somepairwise disjoint sets of verticesU1,U2, andU3.We consider this hypergraph
as a representation of an ordinary graph, which is a union of a set of 3-partite triangles. Namely, for H as above, we define
G(H) as a graph on the set of vertices V and whose edges are all two-element subsets of the edges in S. Formally, we define
problem 3-PARTITE-TRIANG-INDSET (H, k) as follows:

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 379

Problem 3-PARTITE-TRIANG-INDSET (H, k).
Input: A hypergraph H = (U, S), where U = U1 ∪U2 ∪U3 and S ⊆ U1 ×U2 ×U3 for some pairwise disjoint sets of vertices
U1,U2, and U3, and an integer k ≥ 0.
Question: Is there an independent set of vertices I ⊆ U in G(H), |I| ≥ k?

Note that the instance of 3-PARTITE-TRIANG-INDSET is the same as in 3-Partite Set Cover, the only difference is in the
question, which we ask about the input hypergraph. We shall start by proving that the problem we have just defined is
NP-complete.

Theorem 8.1. 3 − PARTITE − TRIANG − INDSET(H, k) problem is NP-complete.

Proof. The problem is clearly in NP , since an independent set I of at most k vertices can serve as a polynomially verifiable
certificate of a positive answer. We prove that it is NP-complete using a reduction from the maximum independent set
problem restricted to instances (G = (V , E), k), where G is a graph with no isolated vertices satisfying |E| ≥ |V | and k ≥ 2.
In order to see that this problem is NP-complete, consider an unrestricted instance of maximum independent set problem.
If we eliminate all isolated vertices and decrease the size bound for the independent set accordingly, we get an equivalent
instance. If we add a vertex connected to all vertices of the original graph, we do not change the size of the maximum
independent set, but we get a graph, which has at least so many edges as vertices. The assumption that k ≥ 2 does not
change the NP-complete status of the problem, since the instances with k ≤ 1 are trivial.

In order to reduce the problem from the previous paragraph into 3-PARTITE-TRIANG-INDSET problem, we construct a
3-partite graph G′, using a reduction from [16]. Namely, construct G′

= (V ′, E ′) from G by replacing each edge by a path
of length 3 and consider the instance (G′, k + |E|) of the maximum independent set problem. Note that V ′ consists of the
original vertices and of 2|E| new vertices, which are internal vertices of the paths replacing original edges. Let V2 be a set of
the newnodes containing one of the two nodes from each of these paths chosen arbitrarily. Let V3 be the set of the remaining
new nodes. For simplicity of notation, let us denote V1 = V . Then, we have V ′

= V1 ∪ V2 ∪ V3 and these three sets form the
partitions of the 3-partite graph G′. Since |V | ≤ |E|, we have |V1| ≤ |V2| = |V3| = |E|.

Using the argument from [16], G contains an independent set of size k if and only if G′ contains an independent set of size
k + |E|.

Let G′′
= (V ′′, E ′′) be obtained from G′ by adding three nodes u1, u2, u3 and all edges between ui and all vertices of

Vj, where i ≠ j. Note that G′′ is 3-partite with the partitions Vi ∪ {ui} for i = 1, 2, 3. Consider the instance of maximal
independent set (G′′, k+|E|). We will prove that it is equivalent to the instance (G′, k+|E|). The independent sets of G′′ are
of two types. If it contains one of the nodes ui, then it is a subset of Vi ∪ {ui}. If it does not contain any of the nodes ui, then it
is an independent set in G′. Now note that the independent sets contained in Vi ∪ {ui} have size smaller than k + |E|, since
|V1| ≤ |V2| = |V3| = |E| and k ≥ 2.

Given 3-partite graph G′′, it is easy to construct a hypergraph H such that G′′
= G(H). Namely, let

Ui = Vi ∪ {ui}, i = 1, 2, 3,

and

S = {{vi, vj, uk} | {vi, vj} ∈ E ′ and {i, j, k} = {1, 2, 3}}.

The sets Ui are clearly disjoint. Since, G′′
= G(H), the instance (G′′, k + |E|) of maximum independent set is equivalent to

the instance (H, k + |E|) of 3-PARTITE-TRIANG-INDSET. �

Now we shall describe a reduction of an instance (H, k) of 3-PARTITE-TRIANG-INDSET to an instance of ESS-TT, i.e. to a
Boolean function f . The construction we use here is the same as the one used in [1] to transform an instance of 3-Partite
Set Cover to a minimization of DNF for a Boolean function given by its truth table. Here, we use the fact that an instance
of 3-PARTITE-TRIANG-INDSET is described by the same hypergraph as an instance of 3-Partite Set Cover, use the same
transformation to a Boolean function and consider its negation, since we are dealing with CNFs instead of DNFs. However,
finally, we ask a different question about the constructed Boolean function, which is equivalent to a question on the input
instance considered as a 3-PARTITE-TRIANG-INDSET and not a 3-Partite Set Cover instance. Since the proof of the correctness
of the transformation for our purpose is different from the one in [1], we describe the transformation here in full detail.

LetH = (U1∪U2∪U3, S) be an arbitrary hypergraph, where S ⊆ U1×U2×U3 for some pairwise disjoint sets of vertices
U1,U2, and U3. We shall describe, how to associate a Boolean function fH with H in the same way as it was done in [1].

Let n = max{|U1|, |U2|, |U3|}, let q be the smallest integer satisfying

q
q/2

≥ n, and let t = 3q. Note that the fact that q is

the smallest integer with the required property implies that q = O(log n). Let b(j) for j = 1, . . . , n be distinct vectors from
{0, 1}q each of which contains exactly q/2 ones. Then, let V ⊆ {0, 1}t be such that it contains encodings of the elements of
U1 ∪U2 ∪U3 defined as follows. The jth element u of Ui, where j = 1, . . . , |Ui|, is encoded by a vector e(u) consisting of three
blocks of length q, ith of which is b(j) and the remaining two blocks consist of q zeros.

For each A ∈ S, let its encoding e(A) be the bitwise disjunction of the encodings of the three elements of A in V .
Note that the construction of the encodings guarantees that different sets A correspond to incomparable vectors in {0, 1}t ,
since the sets differ in at least one of their elements and the corresponding blocks of length q are incomparable. Let
W = {e(A) | A ∈ S}. The following lemma was proved in [1].

380 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

Lemma 8.2 ([1], First Part of Lemma 3.1). For each A ∈ S and each u ∈ U1 ∪ U2 ∪ U3, we have

u ∈ A ⇔ e(u) ≤ e(A).

Let R = {x ∈ {0, 1}t | x ∉ V and for somew ∈ W , x ≤ w}. Let g be a partial function with the domain {0, 1}t such that
g(x) = 0 if x ∈ V , g(x) = ∗ if x ∈ R, and g(x) = 1 otherwise. We shall finish the transformation by reduction of the partial
function g of the variables x ∈ {0, 1}t to the total function fH of the variables (x, y1, y2) ∈ {0, 1}t+2

fH (x, y1, y2) =

0, if g(x) = 0 and y1 = y2 = 1
0, if g(x) = ∗ and y1 = y2 = 1
0, if g(x) = ∗ and y1 = p(x), and y2 = ¬p(x)
1, otherwise

where p(x) is the parity of x, i.e. the sum of the bits in xmod 2.
As we have already mentioned, the construction of the function fH is exactly the same as described in [1] (see also [7])

with the only difference caused by using CNFs instead of DNFs—we had to negate the final function fH . Now we shall show
that ess(fH) ≥ |R| + k if and only if the graph G(H) has an independent set of size k.

Theorem 8.3. Let H = (U = U1 ∪ U2 ∪ U3, S ⊆ U1 × U2 × U3), where U1,U2,U3 are pairwise disjoint sets of vertices, let fH
be its associated Boolean function, let R be the set of inputs defined during its construction, and let k be an arbitrary integer. Then
ess(fH) ≥ |R| + k if and only if the hypergraph H has an independent set of size k.

Proof. Let us start by description of the list of all prime implicates of fH . For every x ∈ R, consider the clause, which is 0 on
the two points (x, p(x),¬ p(x)) and (x, 1, 1). This is a prime implicate, since (x, 1, 1) is the only neighbor of (x, p(x),¬ p(x)),
where fH is 0. Moreover, these are the only prime implicates, which are zero on some of the points with y1 = 0 or y2 = 0.
Hence, all the remaining prime implicates are zero only on the points (z, 1, 1) for some z ∈ {0, 1}t . Since fH (z, 1, 1) = 0
if and only if z ≤ w for some w ∈ W and the elements of W are pairwise incomparable, it is easy to verify that all the
remaining prime implicates of fH may be obtained in such a way that for any w ∈ W , we consider the clause, which is 0
exactly on the vectors (z, 1, 1), where z ≤ w for the givenw.

Now, assume that I is an independent set in G(H) of size k and let us construct a set of |R| + k essential sets of fH , which
are pairwise disjoint. Consider the prime essential sets Ep((x, p(x),¬ p(x))) for x ∈ R and Ep(e(v)) for v ∈ I . Prime essential
sets of the former type contain a single clause, which is not contained in any other prime essential set from the presented
list. Hence, these essential sets are disjoint with all the others. Consider prime essential sets Ep(e(v1)) and Ep(e(v2)) for
different points v1, v2 ∈ I . If these two essential sets are not disjoint, then there is a vector w ∈ W such that v1 ≤ w and
v2 ≤ w. By the definition ofW , this implies that there is A ∈ S such that v1, v2 ∈ A and so, (v1, v2) is an edge of G(H). This
is not possible, since I is an independent set. Hence, the presented |R| + k essential sets are indeed disjoint.

For the opposite direction, assume that Z is a set of vectors in {0, 1}t+2 such that |Z | ≥ |R| + k and the prime essential
sets Ep(z) for all z ∈ Z are pairwise disjoint. If some of the points (x, p(x),¬ p(x)) is not in Z , thenmodify Z by including this
point to Z and removing the point (x, 1, 1) from Z , if it is there. The size of Z does not decrease and one may verify that the
points from the modified Z still define disjoint prime essential sets. Now, note that except of |R| points (x, p(x),¬ p(x)), Z
contains only points from V . Hence, there are at least k points v ∈ V , such that for every w ∈ W , at most one of them
satisfies v ≤ w. These k vectors from V are encodings of k vertices of H , no two of which belong to the same set A ∈ S.
It follows that no two of these points are connected by an edge in G(H) and so, G(H) contains an independent set of
size k. �

As a corollary we now obtain the following.

Theorem 8.4. The problem to determine, whether ess(f) ≥ k for a function f defined by its truth table, i.e. the problem ESS −

TT(f , k), is NP-complete.

Proof. The fact that ESS-TT belongs toNP can be easily observed and it also follows fromTheorem3.8.NP-hardness of ESS-TT
follows from Theorem 8.1, construction of fH described in this section, and Theorem 8.3. �

8.1. Relaxation of ess(f) for functions given by their truth table

Computing ess(f) for functions given by their truth table is intractable by Theorem 8.4. On the other hand, it appears that
a relaxation of ess(f)may be computed more efficiently under the same conditions, namely that the truth table of f is given
as the input.

Definition 8.5. For every Boolean function f , let lp(f) be the maximum of
x∈{0,1}n:f (x)=0

w(x),

O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382 381

(over all possible choices of weights w) where w(x) is a nonnegative real number assigned to every falsepoint x of f and
such that for every prime implicant C of f , the inequality

x∈{0,1}n:C(x)=0

w(x) ≤ 1

is satisfied.

Theorem 8.6. For every Boolean function f , we have

cnf(f) ≥ lp(f) ≥ ess(f).

Proof. Let F be a set of prime implicates, which form a minimal CNF representation and let w(x) be an assignment of the
weights, on which the value lp(f) is achieved in Definition 8.5. Since f =

C∈F C , we have also

x∈{0,1}n:f (x)=0

w(x) ≤

C∈F

x∈{0,1}n:C(x)=0

w(x) ≤ |F |.

Since |F | = cnf(f) and

x∈{0,1}n:f (x)=0w(x) = lp(f), we have cnf(f) ≥ lp(f).
Let T be a set of ess(f) falsepoints t , for which the sets E(t) are pairwise disjoint. Let w(t) = 1 for t ∈ T and w(t) = 0

otherwise. If C is a prime implicate, then it belongs to at most one E(t), t ∈ T , and thus there is at most one falsepoint t
falsifying C for which w(x) = 1. Hence, the weights w(x) satisfy the condition in Definition 8.5. Since lp(f) is a maximum
over all possible weights satisfying this condition, we have

lp(f) ≥

x∈{0,1}n:f (x)=0

w(x) = |T | = ess(f). �

Let us verify that the linear programming problem corresponding to computing lp(f) has size polynomial in the size of
the table of the function f . The variables of the corresponding LP problem are the weights w(x) for all falsepoints of f . If
the function has n variables, then the size of the table is 2n and this is clearly an upper bound on the number of falsepoints.
Moreover, the largest set of constraints correspond to prime implicates. Since there are at most 3n

= (2n)log2 3 clauses on
n variables, the number of prime implicates is also bounded by a polynomial in the table size and they can be found in
polynomial time. Consequently, the problem can be solved, e.g. by Karmarkar’s algorithm [14], in time polynomial in the
size of the table of f and the number of bits of the precision of the representation of the numbers used in the computation.

9. Conclusion

In this paper we have studied a lower bound on the minimum CNF size of a given function f represented by a CNF ϕ. The
lower bound which we have considered is given by ess(f), which denotes the number of pairwise disjoint essential sets of
implicates of f . We are mainly interested in functions for which this lower bound matches the minimum CNF size. We have
called such functions coverable, and we have shown in Sections 3 and 4 that if a class of Boolean function C is tractable and
coverable, then the problem of minimization of functions in this class belongs to both NP and co-NP . This fact proves that
such a minimization problem is not NP-hard (unless NP = co-NP), and thus indicates that it might in fact belong to P . In
Section 5we study the intersections of essential setswith the set of prime implicates, call these intersections prime essential
sets and prove that many properties of essential sets carry over to prime essential sets. This fact allows us to restrict our
attention to prime implicates only.

Wehave also proved several negative results about ess(f). In Section 6wehave shown that not every function is coverable
and moreover for every constant k we can construct a function f , for which cnf(f)/ess(f) ≥ k. In Section 7 we have shown
that the problem of checking whether ess(f) ≥ k is NP-complete if its input is a pure Horn 3CNF. In Section 8 we have
shown that this problem remains NP-complete even in the case when the input is allowed to be much larger, namely when
the input function is represented by a truth table. On the other hand we have shown that a relaxed value of ess(f) can be
computed using linear programming.

Given the fact that minimization seems to be easier for coverable functions than in the general case, one might ask,
whether it would be possible to check in polynomial time, if a given function f is coverable, i.e. whether ess(f) = cnf(f).
Unfortunately, it turns out that this problem is NP-complete even if the input is a pureHorn 3CNF. This result is not contained
in the present paper, because we have found the corresponding reduction just recently. On the other hand, all classes for
which a polynomial time minimization algorithm is known to us are coverable. This gives an indication that if a tractable
class of Boolean functions is found to be coverable, then we can hope for a polynomial minimization algorithm for it. From
theoretical point of view, it would be therefore interesting to find a class of Boolean functions which would be tractable and
coverable, and yet we would not be able to find a polynomial minimization algorithm for it.

Acknowledgments

Petr Savickywas supported by grant number 1M0545 (MŠMT ČR) and by Institutional Research Plan AV0Z10300504. Petr
Kučera and Ondřej Čepek gratefully acknowledge the support by the Czech Science Foundation (grants 201/07/P168 and

382 O. Čepek et al. / Discrete Applied Mathematics 160 (2012) 365–382

P202/10/1188). The authors would like to thank the two anonymous referees for their valuable comments which helped to
improve the presentation of this paper.

References

[1] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, M. Saks, Minimizing DNF formulas and AC0
d circuits given a truth table, in: Proceedings of the 21st

Annual IEEE Conference on Computational Complexity, IEEE Computer Society, 2006, pp. 237–251.
[2] G. Ausiello, A. D’Atri, D. Sacca, Minimal representation of directed hypergraphs, SIAM Journal on Computing 15 (2) (1986) 418–431.
[3] E. Boros, O. Čepek, A. Kogan, P. Kučera, Exclusive and essential sets of implicates of Boolean functions, Discrete Applied Mathematics 158 (2) (2010)

81–96.
[4] H. Kleine Büning, T. Letterman, Propositional Logic: Deduction and Algorithms, Cambridge University Press, New York, NY, 1999.
[5] O. Čepek, P. Kučera, Disjoint essential sets of implicates of a CQ Horn function, in: Proceedings of 12th Czech-Japan Seminar on Data Analysis and

Decision Making under Uncertainty, Litomyšl, Czech Republic, 2009, pp. 79–92.
[6] S.A. Cook, The complexity of theorem-proving procedures, in: STOC’71: Proceedings of the Third Annual ACM Symposium on Theory of Computing,

New York, NY, 1971, pp. 151–158.
[7] S. Czort, The complexity of minimizing disjunctive normal form formulas, Master’s Thesis, University of Aarhus, 1999.
[8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, San Francisco, CA,

1979.
[9] M.R. Genesereth, N.J. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 1987.

[10] P.L. Hammer, A. Kogan, Horn functions and their DNFs, Information Processing Letters 44 (1992) 23–29.
[11] P.L. Hammer, A. Kogan, Optimal compression of propositional horn knowledge bases: complexity and approximation, Artificial Intelligence 64 (1993)

131–145.
[12] P.L. Hammer, A. Kogan, Knowledge compression—logic minimization for expert systems, in: Proceedings of IISF/ACM Japan International Symposium,

World Scientific, Tokyo, Singapore, 1994, pp. 306–312.
[13] P.L. Hammer, A. Kogan, Quasi-acyclic propositional horn knowledge bases: optimal compression, IEEE Transactions on Knowledge and Data

Engineering 7 (5) (1995) 751–762.
[14] N. Karmarkar, A new polynomial time algorithm for linear programming, Combinatorica 4 (4) (1984) 373–395.
[15] D. Maier, Minimal covers in the relational database model, Journal of the ACM 27 (1980) 664–674.
[16] S. Poljak, A note on stable sets and colorings of graphs, Commentationes Mathematicae Universitatis Carolinae 15 (2) (1974) 307–309.
[17] W. Quine, The problem of simplifying the truth functions, American Mathematical Monthly 59 (1952) 521–531.
[18] W. Quine, A way to simplify truth functions, American Mathematical Monthly 62 (1955) 627–631.
[19] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Pearson Education, 2003.
[20] C. Umans, The minimum equivalent DNF problem and shortest implicants, Journal of Computer and System Sciences 63 (4) (2001) 597–611.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.1 (1-16)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A decomposition method for CNF minimality proofs

Endre Boros a, Ondřej Čepek b, Petr Kučera b,∗
a RUTCOR, Rutgers University, P.O. Box 5062, New Brunswick, NJ 08903, USA
b Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathematics and Physics, Charles University in Prague,
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2013
Received in revised form 17 July 2013
Accepted 17 September 2013
Communicated by G. Ausiello

Keywords:
Boolean functions
CNF
Boolean minimization
Horn minimization
Decomposition method

A CNF is minimal if no shorter CNF representing the same function exists, where by
CNF length we mean either the number of clauses or the total number of literals (sum
of clause lengths). In this paper we develop a decomposition approach that can be in
certain situations applied to a CNF formula when proving its minimality. We give two
examples in which this decomposition approach is used. Both examples deal with pure
Horn minimization, a problem defined as follows: given a pure Horn CNF, construct a
logically equivalent pure Horn CNF which is the shortest possible (either w.r.t. the number
of clauses or w.r.t. the total number of literals). Both presented examples give alternative
proofs of known complexity results for pure Horn minimization.

© 2013 Published by Elsevier B.V.

1. Introduction

Boolean functions are often represented by conjunctive normal forms (CNFs). In some applications, an important problem
(a so-called Boolean minimization problem) is to find a shortest possible CNF representation of a given Boolean function. For
instance, in artificial intelligence this problem is equivalent to finding a most compact representation of a given knowledge
base [1,2]. Such transformation of a knowledge base accomplishes knowledge compression, since the actual knowledge does
not change, while the size of the representation can be significantly reduced. The procedure of knowledge compression
preprocesses the knowledge base, and can be done off-line. This results in speeding up on-line operation while answering
queries. Therefore, the computational expense of a single run of knowledge compression may be later amortized over a
large number of queries to the knowledge base.

The formal statement of the Boolean minimization problem (BM) depends on how the input function is represented,
and how the size of the output CNF formula is measured. In this paper the input to the Boolean minimization problem is
assumed to be in a form of a CNF and we consider two possible ways of measuring the size of the output CNF formula,
the number of clauses and the total number of literals (sum of clause lengths). It is easy to see that the Boolean mini-
mization problem is NP-hard (for both measures of the size of the output CNF). This is an easy consequence of the fact
that BM contains the CNF satisfiability problem (SAT) as its special case (an unsatisfiable formula can be trivially recog-
nized from its shortest CNF representation). BM was shown to be probably harder than SAT: while SAT is NP-complete (i.e.
Σ

p
1 -complete [3]), BM is Σ

p
2 -complete [4] (see also the review paper [5] for related results). It was also shown that BM is

Σ
p
2 -complete when considering general formulas of constant depth as the input and output to the Boolean minimization

problem [6].
It is also long known that BM is NP-hard already for some classes of CNFs where SAT is solvable in polynomial time.

Maybe a best known example is the class of Horn CNFs (a CNF is Horn if every clause in it contains at most one positive

* Corresponding author. Tel.: +420 221 914 138; fax: +420 221 914 323.
E-mail addresses: Endre.Boros@rutgers.edu (E. Boros), ondrej.cepek@mff.cuni.cz (O. Čepek), kucerap@ktiml.mff.cuni.cz (P. Kučera).

0304-3975/$ – see front matter © 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.tcs.2013.09.016

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.2 (1-16)

2 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

literal) where the NP-hardness with respect to both output measures was proved [1,7–10]. There exists a hierarchy of
tractable subclasses of Horn CNFs for which there are polynomial time minimization algorithms, namely acyclic and quasi-
acyclic Horn CNFs [11], and CQ Horn CNFs [12]. There are also few heuristic minimization algorithms for Horn CNFs [13].

A problem closely related to Boolean minimization is the following: given a CNF, prove that it is the shortest CNF
representation of the underlying function. This problem belongs to Π

p
2 (for every shorter CNF there exists an assignment of

truth values on which the two CNFs differ), its complexity has not yet been fully established, although it is conjectured that
it is Π

p
2 -complete [6].

In this paper we present a decomposition technique for such CNF minimality proofs. It is based on recent results [14]
about certain sets (so-called exclusive sets) of implicates of a Boolean function. The introduced decomposition technique is
quite general. It is not specific to any subclass of Boolean functions and, in principle, can be applied to any CNF formula
when proving its minimality.

We shall show two examples where the developed decomposition technique is used. Both minimality proofs will be
parts of NP-hardness reductions for Horn minimization problems. In these examples, we shall restrict our attention to pure
Horn CNFs only (where a CNF is pure Horn if each of its clauses contains exactly one positive literal), omitting negative
clauses, which, at least in the case of clause minimization, do not influence the complexity of the problem [1].

The clause minimization problem for pure Horn formulas was first addressed in [7] where its NP-hardness was es-
tablished. However, the proof is a bit sketchy and in our opinion contains a logical leap which requires a more detailed
justification (a detailed discussion of this issue is in Subsection 5.5). Moreover, the reduction in the proof in [7] constructed
high degree clauses (with the degree proportional to the number of all variables, where the degree of a clause is the num-
ber of literals in it), which left open the question, what is the complexity of clause minimization for pure Horn CNFs of a
bounded degree. In [8,9] this question was solved by proving that clause minimization stays NP-hard even for cubic pure
Horn CNFs. Unfortunately, as pointed out in [15], the proof contains an error which is probably quite difficult to correct.

The literal minimization results for pure Horn formulas are even older than clause minimization ones. The first NP-
hardness proof for the problem appeared in [10]. Although strictly speaking the measure defined in [10] is slightly different
from the one used here, the proof can be easily modified to work also for the number of literals. A simpler proof (this time
really using the number of literals as the minimality measure) then appeared in [1]. Both of these proofs had the same
drawback as the clause minimization proof in [7]. Again, both reductions constructed clauses of a very high degree. The
natural question, what is the complexity of literal minimization for pure Horn CNFs of a bounded degree was addressed
in [9] where it was proved, that it stays NP-hard when we restrict the input to CNFs of degree at most seven. This was later
improved to degree at most five in [16].

Recently, it was shown in [17,18] that pure Horn minimization is not only hard to solve exactly but even hard to
approximate. More precisely, [17] shows that this problem is inapproximable within a factor 2log1−ε(n) assuming NP �
DTIME(npolylog(n)), and [18] that it is inapproximable within a factor 2O (log1−o(1) n) assuming P � NP even when the input
is restricted to 3-CNFs with O (n1+ε) clauses, for some small ε > 0. The latter result of course implies, that pure Horn
minimization (both with respect to the number of clauses and the number of literals) is NP-hard already for cubic CNFs.

In this paper we give an alternative (and much simpler) proof of the same result (NP-hardness of clause and literal
minimization for cubic pure Horn CNFs). Our polynomial time reduction is loosely based on the original reduction from [7],
and uses the decomposition technique to prove the minimality of certain parts of the CNF constructed during the reduction.

The paper is structured as follows. Section 2 introduces basic Boolean terminology. Section 3 presents the developed
method for proving CNF minimality. It consists of three subsections. The first subsection recalls results from [14] about
exclusive sets of implicates of a Boolean function. The second subsection uses these results to formulate and prove the
main theoretical contribution of the present paper, namely a general decomposition theorem that can be used to prove
CNF minimality. The third subsection recalls further results from [14], this time about essential sets of implicates of a
Boolean function. Section 4 introduces Horn and pure Horn CNFs and the forward chaining procedure which works on pure
Horn CNFs together with few basic results related to this procedure. It also defines specific exclusive and essential sets of
implicates of a pure Horn function which will be used later in the minimality proofs. Finally, Section 4 introduces all the
decision problems studied in the rest of the paper (the NP-hard set cover problems used for the reductions and the clause
and literal pure Horn minimization problems proved to be NP-hard). Section 5 contains the first simple example of the
decomposition technique shown on a reduction very similar to the original proof from [7]. Section 6 deals with a second,
more complicated, example of the decomposition technique shown on a reduction which is also loosely based on [7]. This
final reduction proves the NP-hardness of clause and literal minimization for cubic pure Horn CNFs. The paper closes with
a brief conclusions section.

2. Definitions

A Boolean function f on n propositional variables x1, . . . , xn is a mapping {0,1}n → {0,1}. The propositional variables
x1, . . . , xn and their negations x̄1, . . . , x̄n are called literals (positive and negative literals, respectively). An elementary disjunc-
tion of literals

C =
∨
i∈I

x̄i ∨
∨
j∈ J

x j (1)

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.3 (1-16)

E. Boros et al. / Theoretical Computer Science ••• (••••) •••–••• 3

is called a clause, if every propositional variable appears in it at most once, i.e. if I ∩ J = ∅. The degree of a clause C is the
number of literals in C. It is a well-known fact that every Boolean function f can be represented by a conjunction of clauses
(see e.g. [19]). Such an expression is called a conjunctive normal form (or CNF) of the Boolean function f .

For two Boolean functions f and g we write f � g if

∀(x1, . . . , xn) ∈ {0,1}n: f (x1, . . . , xn) = 1 	⇒ g(x1, . . . , xn) = 1. (2)

Since each clause is in itself a Boolean function, formula (2) also defines the meaning of inequalities C1 � C2, C1 � f , and
f � C1, where C1, C2 are clauses and f is a Boolean function.

We say that a clause C1 subsumes another clause C2 if C1 � C2 (e.g. the clause x̄ ∨ z subsumes the clause x̄ ∨ ȳ ∨ z).
A clause C is called an implicate of a function f if f � C . An implicate C is called prime if there is no distinct implicate C ′
subsuming C , or in other words, an implicate of a function is prime if dropping any literal from it produces a clause which
is not an implicate of that function.

It should be noted that a given Boolean function may have many CNF representations. We shall often identify a CNF with
the set of clauses it contains and use these notions interchangeably. If two distinct CNFs, say ψ1 and ψ2, represent the same
function, we say that they are equivalent, and denote this fact by ψ1 ≡ ψ2. CNF ψ representing function f is called prime
if each clause of ψ is a prime implicate of function f . CNF ψ representing function f is called irredundant if dropping any
clause from ψ produces a CNF that does not represent f . A clause containing two literals is called quadratic and a clause
containing three literals is called cubic. A CNF in which every clause has degree at most three is called cubic and it will be
denoted here as 3CNF. There are two common ways of measuring the “size” of a given CNF ψ :

• |ψ |c denotes the number of clauses in ψ ,
• |ψ |� denotes the number of literals in ψ , i.e. |ψ |� = ∑

C∈ψ |C | where |C | denotes the degree of C .

Furthermore, for a Boolean function f , let us denote by τ (f) the minimum number of clauses and by λ(f) the minimum
number of literals needed in a CNF representation of f , i.e. let

• τ (f) = min{|ψ |c | ψ represents f },
• λ(f) = min{|ψ |� | ψ represents f }.

Two clauses C1 and C2 are said to be resolvable if they contain exactly one complementary pair of literals, i.e. if there
exists exactly one propositional variable that appears uncomplemented in one of the clauses and complemented in the
other. That means that we can write C1 = C̃1 ∨ x and C2 = C̃2 ∨ x̄ for some propositional variable x and clauses C̃1 and
C̃2 which contain no complementary pair of literals. The clauses C1 and C2 are called parent clauses and the disjunction
R(C1, C2) = C̃1 ∨ C̃2 is called the resolvent of the parent clauses C1 and C2. Note that the resolvent is a clause (does not
contain a propositional variable and its negation). The following is an easy lemma [20].

Lemma 2.1. Let C1 and C2 be two resolvable implicates of a Boolean function f . Then R(C1, C2) is also an implicate of f .

We say that a set of clauses A is closed under resolutions if given two resolvable clauses C1, C2 ∈ A, their resolution
R(C1, C2) also belongs to A. For an arbitrary set of clauses C the resolution closure of C denoted by R(C) is the smallest
set of clauses with respect to inclusion, which contains clauses from C and which is closed under resolution. For a Boolean
function f let us denote by I p(f) the set of its prime implicates, and let I(f) = R(I p(f)).

Example 2.2. Let us consider the following formula representing a function f :

ψ = (a ∨ x̄ ∨ z)(b ∨ x̄ ∨ z)(z̄ ∨ y)(ȳ ∨ x).

By performing resolutions on ψ one can obtain I p(f):

I p(f) = {
(a ∨ x̄ ∨ y), (a ∨ x̄ ∨ z), (a ∨ ȳ ∨ x), (a ∨ ȳ ∨ z), (a ∨ z̄ ∨ x), (a ∨ z̄ ∨ y),

(b ∨ x̄ ∨ y), (b ∨ x̄ ∨ z), (b ∨ ȳ ∨ x), (b ∨ ȳ ∨ z), (b ∨ z̄ ∨ x), (b ∨ z̄ ∨ y),

(z̄ ∨ y), (ȳ ∨ x), (z̄ ∨ x)
}
.

By checking that there is no non-absorbed resolution it follows from the completeness of resolution that I p(f) is indeed a
complete list of prime implicates of f . Moreover by including also absorbed resolvents we obtain I(f):

I(f) = I p(f) ∪ {
(a ∨ b ∨ x ∨ y), (a ∨ b ∨ x̄ ∨ z), (a ∨ b ∨ ȳ ∨ x),

(a ∨ b ∨ ȳ ∨ z), (a ∨ b ∨ z̄ ∨ x), (a ∨ b ∨ z̄ ∨ y)
}
.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.4 (1-16)

4 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

3. A decomposition method for proving CNF minimality

In this section we shall first recall a definition and several key results from [14] concerning exclusive sets of implicates
of a Boolean function which are needed for the decomposition method (Subsection 3.1). Then we present the decomposition
theorem which is the main theoretical contribution of the present paper (Subsection 3.2). Finally, we recall a definition of
essential sets of implicates and a key theorem about these sets from [14] (Subsection 3.3). This result is necessary for the
application of the decomposition theorem in the two particular examples presented in Sections 5 and 6.

3.1. Exclusive sets of implicates of a Boolean function

We start by defining exclusive sets of implicates of a Boolean function and by stating some of their properties.

Definition 3.1. (See [14].) Let f be a Boolean function and let X ⊆ I(f) be a set of clauses. We shall say, that X is an
exclusive set of implicates of f if for every pair of resolvable clauses C1, C2 ∈ I(f) the following implication holds:

R(C1, C2) ∈ X 	⇒ C1 ∈ X and C2 ∈ X ,

i.e. the resolvent belongs to X only if both parent clauses are in X . If function f is clear from the context, we shall simply
say that X is an exclusive set.

We shall recall some of the properties of exclusive sets, which were proved in [14] and which we will use in this paper.

Lemma 3.2. (See [14].) Let A,B ⊆ I(f) be exclusive sets of implicates of f , then both A ∪ B and A ∩ B are also exclusive subsets
of f .

Theorem 3.3. (See [14].) Let f be an arbitrary Boolean function, let C1,C2 ⊆ I(f) be two distinct sets of clauses which both repre-
sent f , and let X ⊆ I(f) be an exclusive set of implicates of f . Then C1 ∩ X ≡ C2 ∩ X , i.e. both represent the same function.

Based on this proposition we define an exclusive component of a Boolean function.

Definition 3.4. (See [14].) Let f be an arbitrary Boolean function, X ⊆ I(f) be an exclusive set of implicates of f , and
C ⊆ I(f) be a set of clauses which represents f . The Boolean function fX represented by the set C ∩ X is called the
X -component of the function f . We shall simply call a function g an exclusive component of f , if g = fX for some exclusive
subset X ⊆ I(f).

Theorem 3.3 guarantees that the X -component fX is well defined for every exclusive set X ⊆ I(f). Theorem 3.3 has
the following corollary.

Corollary 3.5. (See [14].) Let C1,C2 ⊆ I(f) be two distinct sets of clauses such that C1 ≡ C2 ≡ f , i.e. such that both sets represent f ,
and let X ⊆ I(f) be an exclusive set of clauses. Then (C1 \ X) ∪ (C2 ∩ X) also represents f .

Example 3.6. Let us consider the formula ψ defined in Example 2.2 representing function f :

ψ = (a ∨ x̄ ∨ z)(b ∨ x̄ ∨ z)(z̄ ∨ y)(ȳ ∨ x).

We can find several exclusive sets of implicates of f , firstly I(f) itself forms an exclusive set. It can be shown (by checking
all resolvable pairs of clauses) that the following two sets are also exclusive:

Xa = {
(a ∨ x̄ ∨ y), (a ∨ x ∨ z), (a ∨ ȳ ∨ x), (a ∨ ȳ ∨ z), (a ∨ z̄ ∨ x), (a ∨ z̄ ∨ y), (z̄ ∨ y), (ȳ ∨ x), (z̄ ∨ x)

}
,

Xb = {
(b ∨ x̄ ∨ y), (b ∨ x ∨ z), (b ∨ ȳ ∨ x), (b ∨ ȳ ∨ z), (b ∨ z̄ ∨ x), (b ∨ z̄ ∨ y), (z̄ ∨ y), (ȳ ∨ x), (z̄ ∨ x)

}
.

It follows by Lemma 3.2 that the intersection

Xa ∩ Xb = {
(z̄ ∨ y), (y ∨ x), (z̄ ∨ x)

}
forms an exclusive set, too. And finally it is not hard to check that {(x̄ ∨ y)} and {(ȳ ∨ z)} form two singleton exclusive sets.
There are no other nonempty exclusive sets of implicates of f .

Note, that each of the above mentioned exclusive sets defines an exclusive component, e.g. clauses from Xa define an
exclusive component of f , where ψ ∩ Xa = (a ∨ x ∨ z)(ȳ ∨ x)(z̄ ∨ y) is one of its representations.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.5 (1-16)

E. Boros et al. / Theoretical Computer Science ••• (••••) •••–••• 5

3.2. Decomposition properties of exclusive covers

We shall start this subsection with a technical lemma and its corollary.

Lemma 3.7. Let f be a Boolean function and let ψ be one of its CNF representations. Let X be an exclusive set of implicates of f , let
fX be the corresponding exclusive component, and let ψX = ψ ∩X be its CNF representation inside of ψ . Let ψ ′

X be an arbitrary CNF
representation of fX , then ψ ′ = (ψ \ ψX) ∪ ψ ′

X is again a CNF representation of f .

Proof. In order to show that ψ ≡ ψ ′ we have to show that any clause C ∈ ψ is an implicate of ψ ′ and on the other hand
that any clause C ′ ∈ ψ ′ is an implicate of ψ . If C is a clause from ψ then there are two cases, either C belongs to ψX ,
or not. If C does not belong to ψX , then C is also in ψ ′ and thus it is an implicate of ψ ′ . If C belongs to ψX , then C is
an implicate of fX and thus it is an implicate of a function represented by both ψX and ψ ′

X = ψ ′ ∩ X . The fact that C is
an implicate of ψ ′

X implies that C is an implicate of ψ ′ . We can argue in a symmetric way that a clause C ′ from ψ ′ is an
implicate of ψ and hence ψ ≡ ψ ′ . �
Corollary 3.8. Let f be a Boolean function and let ψ be its minimum representation (with respect to either the number of clauses or
literals). Let X be an arbitrary exclusive set of implicates of f , then ψX = ψ ∩ X is a minimum CNF representation of the exclusive
X -component (with respect to either the number of clauses or literals respectively).

Proof. This follows directly from Lemma 3.7. Let us denote the X -component of f by fX . If there would be a smaller CNF
representation of fX than ψX , say ψ ′

X , we could plug it into ψ instead of ψX thus obtaining ψ ′ which would be a smaller
CNF representation of f than ψ . That would be in contradiction with the assumption. �

Note that the above two statements use only the fact that ψX and ψ ′
X are logically equivalent and do not use the fact

that X is an exclusive set.
Now we are ready to present a decomposition theorem which describes how an exclusive cover of a CNF, i.e. a collection

of exclusive sets which covers all clauses of the given CNF, can be used to prove the minimality of the given CNF. This
theorem is not specific to any particular subclass of CNFs and can be used for such proofs of minimality for arbitrary CNFs
in all cases where an appropriate exclusive cover can be found. For brevity let us in the sequel denote [r] = {1,2, . . . , r} for
positive integers r ∈ Z+ .

Theorem 3.9. Assume that ψ is a CNF representing a function g, and let the sets Xi , i = 1, . . . , p be an arbitrary collection of exclusive
sets of implicates of g such that

ψ ⊆ X̂ =
p⋃

i=1

Xi .

For a nonempty subset I ⊆ [p] let us introduce XI = ⋂
i∈I Xi and let us denote by gI the XI -component of g. Then, if for all nonempty

subsets I ⊆ [p] the CNF ψ ∩ XI is a minimum representation of gI with respect to the number of clauses (literals), then ψ is also a
minimum representation of g with respect to the number of clauses (literals).

Proof. Recall that by Lemma 3.2 both an intersection and union of exclusive sets is also an exclusive set. Thus for an
arbitrary I ⊆ [p] the set XI is an exclusive subset of I(g) and hence gI is well defined. We also get that X̂ is an exclusive
set.

Let us first show this claim for the number of clauses. Consider an arbitrary prime CNF ϕ representing g with the
minimum number of clauses. Then, for any exclusive set X ⊆ I(g) and the corresponding X -component gX of g we must
have |ϕ ∩ X |c = τ (gX) by Corollary 3.8. Thus, for all I ⊆ [p] the equality

|ϕ ∩ XI |c = τ (gI) = |ψ ∩ XI |c (3)

follows by our assumptions. Let us now consider the following chain of equalities:

|ϕ|c =
∣∣∣∣∣

p⋃
i=1

(ϕ ∩ Xi)

∣∣∣∣∣
c

=
p∑

k=1

∑
I⊆[p]
|I|=k

(−1)k−1|ϕ ∩ XI |c =
p∑

k=1

∑
I⊆[p]
|I|=k

(−1)k−1|ψ ∩ XI |c =
∣∣∣∣∣

p⋃
i=1

(ψ ∩ Xi)

∣∣∣∣∣
c

= |ψ |c .

The last equality follows by our assumption ψ ⊆ X̂ , which also implies that the X̂ -component of g is g itself, which
then implies the first equality by the minimality of ϕ (possible clauses in ϕ outside of X̂ could be deleted as redundant
contradicting the minimality of ϕ). The second and fourth equalities are by the sieve formula, while the third equality is
implied by (3). To see the claim for the number of literals, it suffices to assume that ϕ represents g with the minimum
number of literals, and to replace the ||c norm by the ||� norm everywhere in the above considerations. �

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.6 (1-16)

6 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

The above theorem can be used for the proof of minimality of a given CNF in the following way. Find an appropriate
covering of the input CNF by exclusive sets, where the key property of the cover is a sufficient simplicity of each individual
exclusive set in the cover and of each nonempty intersection of these sets. Every exclusive set in question must have a
simple enough structure so that the size of the minimum representation of the corresponding exclusive component can be
determined and shown to be equal to the size of the intersection of the given CNF with the corresponding exclusive set. Of
course, the particular way how to select a cover and how to prove the minimality of the intersections of the given CNF with
the individual exclusive sets may depend on some specific properties of the studied CNF. In the last two sections of this
paper we shall construct two particular examples of such minimality proofs. The specific properties of the CNFs appearing
in these two examples will be stated in two simple lemmas in Subsection 4.1.

We shall conclude this subsection by a corollary of Theorem 3.9 that shows that the minimality assumption is really
necessary only for ψ ∩ Xi , i.e. only one element sets I = {i} have to be considered.

Corollary 3.10. Assume that ψ is a CNF representing function g, and the sets Xi , i = 1, . . . , p are exclusive subsets of I(g) such that

ψ ⊆
p⋃

i=1

Xi .

Let us denote by gi the Xi -component of g. Then, if for all i ∈ [p] the CNF ψ ∩ Xi is a minimum representation of gi with respect to
the number of clauses (literals), then ψ is also a minimum representation of g with respect to the number of clauses (literals).

Proof. The minimality of ψ ∩ XI for |I| � 2 follows by Lemma 3.2 (intersection of exclusive sets is exclusive) and by
Corollary 3.8. Thus the assumptions of Theorem 3.9 are fulfilled. �

Let us note that a decomposition technique based on exclusive sets of implicates can be useful not only for minimality
proofs but also for CNF manipulation that may in some cases lead to shorter logically equivalent CNFs. Given an input CNF
(which is not minimum yet), consider an arbitrary exclusive component of the represented function. The corresponding part
of the input CNF can be extracted, minimized independently of the rest of the input CNF, and then the minimal CNF (or
any shorter CNF if a minimum cannot be achieved) of the exclusive component can be inserted back into the original CNF,
thus getting a shorter CNF of the input function. This gives a heuristic minimization procedure which hinges on the ability
to detect nontrivial exclusive sets of implicates. This procedure was described in [14]. A particular case of such iterative
heuristic minimization procedure can be found in [13], although exclusive sets are used only implicitly there (the definition
of exclusive sets and the results concerning them were presented in [14], much later than [13] was published). In some
cases, the CNF manipulation based on the above idea can be shown to be not just a heuristic minimization procedure but
really an optimization algorithm. An example of such a case can be found in [12].

Example 3.11. Let us consider the formula ψ from Example 2.2 representing function f :

ψ = (a ∨ x̄ ∨ z)(b ∨ x̄ ∨ z)(z̄ ∨ y)(ȳ ∨ x).

We want to show that ψ is a minimum CNF representation of f . We can see that ψ ⊆ Xa ∪ Xb and thus we can use
Theorem 3.9 to argue that ψ is indeed a minimum CNF representation of f . To show this we have to check that ψ ∩ Xa ,
ψ ∩ Xb , and ψ ∩ Xa ∩ Xb form minimum representations of the respective exclusive components. First let us consider
ψ ∩ Xa ∩ Xb = (x̄ ∨ y)(ȳ ∨ z). This is the only prime and irredundant representation of exclusive component defined by
Xa ∩ Xb and thus it is also the only minimum one. Now, let us consider ψ ∩ Xa = (a ∨ x̄ ∨ z)(z̄ ∨ y)(ȳ ∨ x). Note, that we
already know that (z̄ ∨ y)(y ∨ x) is the only minimum representation of the exclusive component defined by Xa ∩ Xb and
thus we cannot save anything in this part. There is only one more clause (a ∨ x̄ ∨ z) and on the other hand we need to add
at least one clause with variable a thus ψ ∩ Xa is also a minimum representation of the respective exclusive component.
The case of ψ ∩ Xb is symmetrical. By Theorem 3.9 we thus get that ψ is indeed a minimum representation of f .

Let us observe that X̂ = Xa ∪ Xb form a proper subset of I(f), it does not contain clauses containing both literals a and
b, these clauses are redundant and do not appear in any prime and irredundant CNF representation of f . When searching
for a minimum CNF representation of f it is indeed enough to consider clauses from X̂ .

Let us moreover observe that it is important that the sets Xa and Xb we use to decompose ψ are exclusive sets of
implicates of f . Without this exclusivity assumption Theorem 3.9 would not hold. To demonstrate it, let us consider another
representation of function f by the following CNF ψ ′:

ψ ′ = (a ∨ x̄ ∨ y)(a ∨ ȳ ∨ z)(b ∨ x̄ ∨ y)(b ∨ ȳ ∨ z)(z̄ ∨ y)(ȳ ∨ x).

CNF ψ ′ is a prime and irredundant representation of f but it is not minimum because it contains six clauses where ψ con-
tains only four. Now let us split ψ ′ into the following singleton sets X1 = {(a ∨ x̄ ∨ y)}, X2 = {(a ∨ ȳ ∨ z)}, X3 = {(b ∨ x̄ ∨ y)},
X4 = {(b ∨ ȳ ∨ z)}, X5 = {(z̄ ∨ y)}, X6 = {(ȳ ∨ x)}. It is true that ψ ′ ⊆ ⋃6

i=1 Xi and moreover it is true that ψ ′ ∩ Xi is a
minimum representation of function gi represented by Xi , i = 1, . . . ,6. Yet ψ ′ is not minimum representation of f and this
is because the sets X1, . . . ,X4 are not exclusive sets of implicates of f and thus Theorem 3.9 does not apply in this case.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.7 (1-16)

E. Boros et al. / Theoretical Computer Science ••• (••••) •••–••• 7

3.3. Essential sets of implicates of a Boolean function

When proving the minimality of certain representations of exclusive components the notion of an essential set (also
originally defined in [14]) will become very useful.

Definition 3.12. (See [14].) Let f be a Boolean function and let X ⊆ I(f) be a set of clauses. We shall say, that X is an
essential set of clauses of f if for every pair of resolvable clauses C1, C2 ∈ I(f) the following implication holds:

R(C1, C2) ∈ X 	⇒ C1 ∈ X or C2 ∈ X ,

i.e. the resolvent belongs to X only if at least one of the parent clauses is in X . If function f is clear from the context, we
shall simply say that X is an essential set.

The key property of essential sets of implicates is stated in the following theorem.

Theorem 3.13. (See [14].) Let C ⊆ I(f) be an arbitrary set of clauses. Then C represents f if and only if C ∩E �= ∅ for every nonempty
essential set of clauses E ⊆ I(f).

Theorem 3.13 says that every CNF representation of function f must intersect every essential set of f . This implies an
important fact for the lower bounds on the size of any CNF representation of f : if there exist k pairwise disjoint essential
sets of f then any CNF representation of f contains at least k clauses.

Example 3.14. Let us for example consider the formula ψ representing the function f from Example 2.2. First any exclusive
set of implicates of f is also an essential set of implicates. There are other essential sets of implicates, too, consider for
example set E formed by implicates containing literal z, i.e.

E = {
(a ∨ x̄ ∨ z), (a ∨ ȳ ∨ z), (b ∨ x̄ ∨ z), (b ∨ ȳ ∨ z), (a ∨ b ∨ x̄ ∨ z), (a ∨ b ∨ ȳ ∨ z)

}
.

It is easy to see that E forms an essential set, because in order to get literal z in a resolvent it must come from one of the
parent clauses. We shall consider this kind of essential sets in the next section.

4. Pure Horn functions and forward chaining procedure

A clause C defined by (1) is called negative if it contains no positive literals (i.e. if J = ∅). It is called pure Horn (or in some
literature definite Horn) if it contains exactly one positive literal (i.e. if | J | = 1). To simplify notation, we shall sometimes
write a pure Horn clause C = ∨

x∈S x̄ ∨ y simply as C = S ∨ y. Each propositional variable x ∈ S is called a subgoal of C and
the propositional variable y is called the head of C . We shall denote Head(C) = y, Subg(C) = S , and Vars(C) = S ∪ {y}.

A CNF is called Horn if it contains only negative and pure Horn clauses. A CNF is called pure Horn if it contains only pure
Horn clauses. Finally, a Boolean function is called Horn if it has at least one representation by a Horn CNF, and similarly a
Boolean function is called pure Horn if it has at least one representation by a pure Horn CNF.

It is known (see [21]) that each prime implicate of a Horn function is either negative or pure Horn, and each prime
implicate of a pure Horn function is pure Horn. Thus, in particular, any prime CNF representing a Horn function is Horn,
and any prime CNF representing a pure Horn function is pure Horn.

In verifying that a given clause is an implicate of a given pure Horn function, a very useful and simple procedure is
the following. Let ϕ be a pure Horn CNF of a pure Horn function h. We shall define a forward chaining procedure which
associates to any subset Q of the propositional variables of h a set Fϕ(Q) in the following way. The procedure takes as
input the subset Q of propositional variables, initializes the set Fϕ(Q) = Q , and at each step it looks for a pure Horn
clause S ∨ y in ϕ such that S ⊆ Fϕ(Q), and y /∈ Fϕ(Q). If such a clause is found, the propositional variable y is included
into Fϕ(Q), and the search is repeated as many times as possible.

Forward Chaining Procedure(C, Q)

Input: A set C of pure Horn clauses, and
a subset Q of propositional variables.

Initialization: Set FC(Q) = Q .

Main Step: While ∃C ∈ C: Subg(C) ⊆ FC(Q) and Head(C) /∈ FC(Q)

do FC(Q) = FC(Q) ∪ {Head(C)}.

Output: FC(Q).

The following lemma, proved in [1], shows how the above procedure can help in determining whether a given clause is
an implicate of a given CNF, or not.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.8 (1-16)

8 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

Lemma 4.1. Given a set C of pure Horn clauses, a subset Q of its propositional variables, and its variable y /∈ Q , we have y ∈ FC(Q)

if and only if Q ∨ y is an implicate of the function represented by C .

In what follows we will frequently refer to CNFs as well as their sets of clauses, and thus if C is a set of clauses in CNF
ϕ we shall write both Fϕ(Q) = FC(Q). Moreover, if ϕ′ and ϕ′′ are two distinct pure Horn CNF representations of a given
pure Horn function h and if Q is an arbitrary subset of the propositional variables, then by Lemma 4.1 Fϕ′ (Q) = Fϕ′′(Q)

because ϕ′ and ϕ′′ have the same set of implicates. Therefore, the set of propositional variables reachable from Q by
forward chaining depends only on the underlying function rather than on a particular CNF representation. For this reason,
we shall also use the expression Fh(Q) instead of Fϕ(Q) whenever we do not want to refer to a specific CNF. Furthermore,
Lemma 4.1 has the following corollary.

Corollary 4.2. Let ϕ′ and ϕ′′ be two CNFs on the same set V of variables. Then ϕ′ and ϕ′′ represent the same pure Horn function if and
only if Fϕ′ (X) = Fϕ′′ (X) for every X ⊆ V .

4.1. Exclusive and essential sets of pure Horn functions

In the two decomposition proofs that we present later in this paper the following type of exclusive sets of clauses will
be used for the decomposition.

Lemma 4.3. Let ψ be a prime, pure Horn CNF representing the function g over the set of variables V = {x1, . . . , xn}, let W ⊆ V be
such that Fψ(W) = W , and define

X (W) = {
C ∈ I(g) | vars(C) ⊆ W

}
. (4)

Then X (W) is an exclusive set of g.

Proof. Consider the binary assignment X defined as x j = 1 for j ∈ W and x j = 0 otherwise. Since Fψ(W) = W holds,
ψ does not have a clause which would have only its head outside of W , implying that ψ(X) = g(X) = 1.

Assume by contradiction now that C1, C2 ∈ I(g) are such that R(C1, C2) ∈ X (W), while {C1, C2} �⊆ X (W). Then by the
definition of X (W) the clauses C1, C2 must be resolved over some variable v /∈ W while all other variables in C1, C2 must
be in W (they compose the resolvent), and hence one of these implicates of g , say C1, must have only its head outside of
W , implying g(X) � C1(X) = 0, which is a contradiction to g(X) = 1. �

While Lemma 4.3 will be used to decompose the set of implicates into small exclusive subsets, the following lemma will
help in proving that the given representations of the individual exclusive components are minimal.

Lemma 4.4. Let g be a pure Horn function, v be a variable of it, and define

E(v) = {
C ∈ I(g) | v is the head of C

}
. (5)

Then, E(v) is an essential set of g.

Proof. The head of the resolvent is the same as the head of one of the parent clauses, while the head of the other parent
clause is the variable over which the parent clauses are resolved. So in fact in this case for every resolvent in E exactly one
of the parent clauses is in E . �
4.2. Horn minimization and set cover problems

Let us start by defining the decision problems, which we shall use later in this paper. We will use the decomposition
method to prove NP-completeness of these problems. More specifically, we will use the decomposition method to prove the
minimality of certain CNFs which are constructed in the polynomial transformations proving the NP-hardness of the below
stated problems.

Horn minimization with respect to clauses (HMC)

Instance: A Horn CNF ϕ representing function h and integer c � 0.

Question: Is τ (h) � c?

Horn minimization with respect to literals (HML)

Instance: A Horn CNF ϕ representing function h and integer � � 0.

Question: Is λ(h) � �?

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.9 (1-16)

E. Boros et al. / Theoretical Computer Science ••• (••••) •••–••• 9

Clause minimization of a pure Horn 3CNF (3HMC)

Instance: A pure Horn 3CNF ϕ representing function h and integer c � 0.

Question: Is τ (h) � c?

Literal minimization of a pure Horn 3CNF (3HML)

Instance: A pure Horn 3CNF ϕ representing function h and integer � � 0.

Question: Is λ(h) � �?

All of the above defined decision problems clearly belong to the class NP. A certificate for a positive answer is in all four
cases a Horn CNF of the appropriate length equivalent with the input CNF. Such a certificate is checkable in polynomial time
because checking logical equivalence of two Horn CNFs amounts to testing whether each clause in one CNF is an implicate
of the other CNF. Let us describe this in more details for the HMC problem. If we are given a Horn formula ψ we can check
in polynomial time whether |ψ |c � c and whether ψ represents h. The latter step is done by checking if ψ ≡ ϕ . It is enough
to check that every clause in ψ is an implicate of ϕ and on the other hand that every clause in ϕ is an implicate of ψ .
This test is hard for general formulas, but for Horn CNFs this can be done in polynomial time The fact that a clause C is an
implicate of a Horn CNF ϕ is equivalent to the fact that ϕ ∧ ¬C is unsatisfiable (note, that if ϕ is Horn then also ϕ ∧ ¬C
is Horn as ¬C is a conjunction of clauses of degree one). This unsatisfiability check can be done in linear time for Horn
formula [22–24].

For the NP-hardness results we shall use a transformation from the following two NP-complete problems (which appear
in [25] as two versions of the problem SP5).

Set Cover (SC)

Instance: An integer k � 0, a set of elements U = {u1, . . . , un}, a collection of subsets S =
{S1, . . . , Sm} ⊆ P(U) for which

⋃m
i=1 Si = U , where for every Si, S j ∈ S such that

i �= j we have Si � S j , i.e. S has the Sperner property.

Question: Is there a set S ′ ⊆ S with |S ′| � k, for which
⋃

S∈S ′ S = U ?

3-Set Cover (3SC)

Instance: An integer k � 0, a set of elements U = {u1, . . . , un}, a collection of subsets
S = {S1, . . . , Sm} ⊆ P(U) for which

⋃m
i=1 Si = U , where for every Si ∈ S we have

|Si | = 3. We also assume that every set appears only once in S , i.e. that Si �= S j
for i �= j.

Question: Is there a set S ′ ⊆ S with |S ′| � k, for which
⋃

S∈S ′ S = U ?

Strictly speaking the cubic version of the problem SP5 in [25] is slightly different. It claims the NP-hardness for the
variant of the set covering problem where every set has at most three elements rather than exactly three elements as
required in (3SC). To see that this stricter condition does not influence the complexity status of the problem consider
an instance (U ,S,k) of the set cover problem such that |S| � 3 for all S ∈ S . Then extend U with three new elements
U ′ = U ∪ {a,b, c}, extend every set of S of size 1 or 2 by adding elements a and/or b, as needed, and add a new set
H = {a,b, c} to S . Then the new instance of set cover must have H in all covers (in order to cover c), and hence the
minimum covers of the original instance and the new instance are in a one-to-one relation.

Furthermore let us denote by γ (S) the number of sets in the minimum set cover for the family S , i.e. let

γ (S) = min
S ′⊆S

{∣∣S ′∣∣ ∣∣ ⋃
S∈S ′

S = U

}
.

The problem (3SC) can be then reformulated as follows: given an instance (U ,S,k) decide whether γ (S) � k.

5. First example: the disjoint case

In this section we shall show, that problems HMC and HML are NP-hard. We shall use a slight modification of the
construction used in [7] for showing the NP-hardness of the problem HMC. In [7] the authors used directed hypergraph
terminology instead of Boolean terminology used in this paper, but the concepts are very similar. As in [7], our proof also
uses the NP-hard problem SC for the transformation: it takes an instance of SC as an input and constructs a CNF as an
instance of HMC and HML (the CNF is the same for both problems, the constructed numbers c for HMC and � for HML are
different).

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.10 (1-16)

10 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

Fig. 1. An example of construction for sets S1 = {u1, u2, u3}, S2 = {u2, u3, u4}, S3 = {u3, u4, u5}, and S4 = {u5, u6, u7}. Dotted bubbles mark parts of the
CNF corresponding to X j -components of g , 1 � j � 4, considered in the proof of Theorem 5.4.

5.1. Constructing the transformation from the set cover problem

Let (U ,S,k) be an instance of the SC problem, where U = {ui | i ∈ [n]}, S = {S j | j ∈ [m]}, and for each j ∈ [m] we have
S j = {u j(1), u j(2), . . . , u j(� j)}, such that j(1), j(2), . . . , j(� j) are distinct elements from [n]. Assume that elements of U ∪ S
denote also Boolean variables and let us introduce an additional Boolean variable t , different from the elements of U and S .
Finally, let us denote V = U ∪S ∪{t} to be the set of variables. Now let us consider the following sets of clauses on variables
from V :

(i) α j = (t̄ ∨ S j) for j ∈ [m];
(ii) β j,k = (S̄ j ∨ u j(k)) for j ∈ [m] and k ∈ [� j];

(iii) γ j = (ū j(1) ∨ ū j(2) ∨ · · · ∨ ū j(� j) ∨ S j) for j ∈ [m].

Using the clauses of the second and third type let us define a CNF

ψ =
(∧

j∈[m]

� j∧
k=1

β j,k

)
∧

(∧
j∈[m]

γ j

)
,

and let g be the pure Horn function defined by ψ . Furthermore, using the clauses of the first type and the just specified
function g let us define

ϕ J =
(∧

j∈ J

α j

)
∧ ψ

for subsets J ⊆ [m]. Finally, let us denote by h the pure Horn function represented by ϕ[m] and by � the sum of cardinalities
of all sets in S , i.e. � = ∑

j∈[m] � j . You can see an example of the construction in Fig. 1. We shall show that the input set
covering problem reduces to the minimization of the above defined pure Horn function h. In particular, we shall in the
sequel arrive to the proof of the following statement.

Theorem 5.1. Let S be the collection of subsets from the input instance of the SC problem and let h be the pure Horn function defined
above. Then the following equivalences hold

γ (S) � k ⇐⇒ τ (h) � c = k + � + m ⇐⇒ λ(h) � � = 2k + 3� + m.

Clearly, Theorem 5.1 shows exactly the desired result, i.e. that the problem SC reduces both to HMC and to HML. The
proof of the theorem will consist of several steps. First, we shall prove that the function g constitutes an exclusive com-
ponent of h and thus can be minimized independently. Then, we shall use the decomposition technique to show that CNF
ψ is a minimum representation of g , i.e. that τ (g) = � + m and λ(g) = 3� + m. Furthermore, we shall show that CNF ϕ J
represents h if and only if the sets S j for j ∈ J form a cover of U . Finally, we shall prove that a minimum representation of
h contains at most k quadratic clauses containing t if and only if there exists a set cover of U of size at most k. Note, that
in this case we have |ϕ J |c = |ψ |c + k = � + m + k, and |ϕ J |� = |ψ |� + 2k = 3� + m + 2k which are the bounds promised in
Theorem 5.1.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.11 (1-16)

E. Boros et al. / Theoretical Computer Science ••• (••••) •••–••• 11

5.2. Decomposing the minimization of h

Let us first observe that no clause in I(h) contains positive literal t , since none of the clauses of types (i)–(iii) contains
it. Define W to be the set of all variables except variable t , and X ⊆ I(h) to be the implicates of h not containing literal t̄ .
Note that W = Fh(W) and X = X (W). Hence, Lemma 4.3 implies the following statement:

Lemma 5.2. The set X is an exclusive subset of I(h).

Obviously, ϕ[m] ∩ X = ψ and so ψ is a CNF representation of the X -component of h by Theorem 3.3. Thus we get an
easy corollary.

Corollary 5.3. The function g is the X -component of h. Consequently, given a CNF representation of h, the sub-CNF representing g can
be replaced by an arbitrary minimum representation of g, and the resulting CNF still represents h.

5.3. Minimum representation of g

We are going to argue in this subsection that ψ is a minimum representation of g with respect to both norms, i.e. that
τ (g) = � + m and λ(g) = 3� + m.

Theorem 5.4. The CNF ψ is a minimum (term and literal) representation of g, that is τ (g) = � + m and λ(g) = 3� + m.

Proof. For every j ∈ [m] let us define W j = Fψ({S j}) (the set of variables derivable by forwarding chaining on the CNF ψ

from the single element set containing variable S j), and set X j = X (W j) as defined in Lemma 4.3 by Eq. (4). Then, by
the statement of Lemma 4.3 the set X j is an exclusive set of g for every j ∈ [m]. Since S has the Sperner property, we
have that W j = {S j, u j(1), u j(2), . . . , u j(� j)} and ψ ∩ X j = {β j,1, β j,2, . . . , β j,� j , γ j} (note that Si ⊂ S j would imply Si ∈ W j
and γi ∈ ψ ∩ X j). Moreover no two clauses in ψ ∩ X j are resolvable which implies that ψ ∩ X j = X j is the unique prime
representation of the X j-component of g , and hence it is obviously both clause minimum and literal minimum. It follows
that the assumptions of Corollary 3.10 are met by the family of exclusive sets X j , j ∈ [m]. Now notice that there are �

clauses of type (ii) with a total of 2� literals in ψ and m clauses of type (iii) with a total of � + m literals in ψ , implying
that τ (g) = � + m and λ(g) = 3� + m, which finishes the proof. �
5.4. Minimum representation of I(h) \ I(g)

Let us define D to be the set of all prime implicates of f in I(h) \ X . Note that these are exactly all prime implicates of
f containing variable t (i.e. containing literal t̄). Let us at first determine which clauses belong to D, certainly the clauses
of type (i) belong to D as they belong to ϕ[m] and they do not belong to X . We can easily show that the only other prime
implicates which belong to D are of the following type:

(iv) α′
j,k = (t̄ ∨ u j(k)) for j ∈ [m], and k ∈ [� j].

Lemma 5.5. All clauses of type (iv) belong to I(h).

Proof. For every j ∈ [m] and k ∈ [� j] we have α′
j,k = R(α j, β j,k). �

Thus, by the definition of D, all clauses of type (iv) belong to D.

Lemma 5.6. ϕ J represents h if and only if U ⊆ ⋃
j∈ J S j , that is iff {S j | j ∈ J } is a cover for (U ,S).

Proof. We shall use forward chaining (in particular Corollary 4.2) to prove this statement. To this end, it suffices to show
that Fϕ J (W) = Fϕ[m] (W) for every subset W ⊆ V of the variables if and only if {S j | j ∈ J } is a cover for (U ,S) (recall that
ϕ[m] represents h by definition). We shall consider two cases:

1. t /∈ W : In this case the forward chaining procedure works completely inside the exclusive component of h defined by g ,
where ϕ J and ϕ[m] do not differ. Note that no clause of type (i), i.e. a clause from D, may ever be used in the forward
chaining procedure in this case. Thus Fϕ J (W) = Fϕ[m] (W) = F g(W) = Fh(W) follows immediately.

2. t ∈ W : Note that using all clauses of type (i) and of type (ii) we get Fϕ[m] ({t}) = V and thus Fϕ[m] (W) = V for every W
containing t . Therefore, in order to prove our statement, it suffices to show that Fϕ J ({t}) = V if and only if {S j | j ∈ J } is
a cover for (U ,S). This fact can be verified by a step-by-step analysis of the forward chaining procedure on ϕ J starting
with set {t}. Namely, first we can observe that using clauses of type (i) the set Fϕ J ({t}) will include all variables S j for

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.12 (1-16)

12 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

j ∈ J . Then, using clauses of type (ii), Fϕ J ({t}) will include all variables in U ′ = ⋃
j∈ J S j ⊆ U , and subsequently, using

clauses of type (iii), all variables S j such that S j ⊆ U ′ (those which were not included before by clauses of type (i)).
However, at this moment the forward chaining procedure stops, and no variable u j ∈ U \ U ′ will be included in Fϕ J ({t}).
Hence Fϕ J ({t}) = V if and only if U \ U ′ = ∅, i.e. if

⋃
j∈ J S j = U . �

Lemma 5.7. A minimum (both clause and literal) prime CNF representation of h involves exactly γ (S) clauses from D.

Proof. Since no clause in I(h) involves literal t , and since the quadratic clauses in D involve all other variables of h
(aside of t), D is exactly the set of prime implicates of h involving t̄ . Furthermore, in any CNF representation of h by
Corollary 5.3 and by the proof of Lemma 5.5 (all clauses of types (iv) can be derived by resolution from clauses of type (i)
and clauses from I(g)), we can replace any clause of type (iv) by the corresponding clause of type (i) without changing
the function the CNF represents, and without increasing its number of clauses and/or literals. Thus, it is enough to consider
minimum representations of h of the type ϕ J for subsets J ⊆ [m], where g is replaced by a (clause or literal) minimum CNF
representation of ψ . Then, our statements follow by Lemma 5.6. �

Now, using Lemma 5.7 we can conclude that τ (h) = γ (S) + τ (g) and λ(h) = 2γ (S) + λ(g) which put together with
Theorem 5.4 finishes the proof of Theorem 5.1.

5.5. Notes on the original NP-hardness proof in [7]

In the original proof published in [7] the construction of ϕ[m] slightly differs.1 The only difference is, that clauses of type
(ii) are replaced by

(ii) γ ′
j = ∨n

i=1 ūi ∨ S j for j ∈ [m],

i.e. the set of subgoals of each such clause consists of all variables in U rather than only those which belong to the
corresponding set S j . Obviously, this changes the definition of the exclusive component g of h, and hence the arguments
used in Subsection 5.3 cannot be used (the arguments used in Subsections 5.2 and 5.4 go through without any substantial
change for the modified definition of ϕ[m]). Unfortunately, the decomposition technique used in Subsection 5.3 does not
work on the modified g as easily as in the previous case. However, the fact that ψ is again a minimum representation of g
is still true, and can be proved (in a more complicated manner then in the previous case) as described below.

If we mimic the proof of Theorem 5.4 we get W j = {S j, u j(1), u j(2), . . . , u j(� j)} and ψ ∩ X j = {β j,1, β j,2, . . . , β j,� j } (note
that γ ′

j /∈ ψ ∩ X j in this case unless S j = U which makes the problem SC trivial). It is still true that no two clauses in
ψ ∩ X j are resolvable and so again ψ ∩ X j = X j is the unique prime representation of the X j -component of g (which is
both clause minimum and literal minimum), but this time the union of the X j sets does not contain all clauses in ψ and
so Corollary 3.10 cannot be used.

As argued above, every X j is a unique prime representation of the X j-component of g and hence must be a part of
a minimum length CNF representing h. What remains to be argued about is the minimality of the part of ψ outside of
the union of all X j -components, i.e. of the conjunction of γ ′

j for j ∈ [m]. For proving the minimality with respect to the
number of clauses we can use Lemma 4.4 and Theorem 3.13. Clearly, given an arbitrary S j , the clauses having S j as a head
form an essential set of g by Lemma 4.4, and each such essential set must be represented by at least one clause in any
representation of g by Theorem 3.13. Since ψ intersects each such essential set in exactly one clause γ ′

j , the minimality of
ψ with respect to the number of clauses follows.

Let us comment in this context, that the original proof of Theorem 3 in [7] argues about the minimality of ψ by the
following single sentence: “Note that if we take out from the hypergraph the node T and the hyperarcs leaving it the
remaining hypergraph is nonredundant and no equivalent hypergraph with a smaller number of hyperarcs may exist.” This
is a true statement as argued above (in the previous paragraph), but in our opinion it is by no means a trivial observation
(note that Lemma 4.4 and Theorem 3.13 were employed in our argument). To see the insufficiency of the argument, one
can also try to replace the words “number of hyperarcs” with “sum of hyperarc sizes” in the above sentence from the proof
in [7]. The new sentence seems to be just as plausible as the original one. Unfortunately, this time the claim is false which
can be demonstrated as follows.

Let us construct an instance of the set cover problem such that ψ is not minimum with respect to the number of literals.
Consider a set cover problem with U = {u1, u2, u3}, S1 = {u1, u2}, and S2 = {u2, u3} for which

ψ = (S̄1 ∨ u1) ∧ (S̄1 ∨ u2) ∧ (S̄2 ∨ u2) ∧ (S̄2 ∨ u3) ∧ (ū1 ∨ ū2 ∨ ū3 ∨ S1) ∧ (ū1 ∨ ū2 ∨ ū3 ∨ S2).

1 The paper [7] uses a directed hypergraph terminology rather than pure Horn CNF terminology. Nevertheless, there is an obvious bijection between
directed hypergraphs and pure Horn CNFs, so ϕ[m] can be thought of as a directed hypergraph, and conversely the directed hypergraph H constructed in
Theorem 3 of [7] can be thought of as a pure Horn CNF.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.13 (1-16)

E. Boros et al. / Theoretical Computer Science ••• (••••) •••–••• 13

It is possible to replace the last clause in ψ by S̄1 ∨ ū3 ∨ S2 which results in a logically equivalent CNF with a strictly smaller
total number of literals.

6. Second example: the non-disjoint case

In this section we shall show, that problems 3HMC and 3HML are NP-hard. The proof is in many ways similar to the
proof for HMC and HML in the previous section with two major differences. Firstly, the problem used for the transformation
is 3SC instead of SC (note that the Sperner property of the system of subsets assumed for SC is satisfied automatically for
3SC), and secondly, the definition of the exclusive component g of h is different, which causes the exclusive sets used in
the decomposition to intersect.

6.1. Constructing the transformation from the set cover problem

Let (U ,S,k) be an instance of the 3SC problem, where U = {ui | i ∈ [n]}, S = {S j | j ∈ [m]}, and for each j ∈ [m] we have
S j = {u j(1), u j(2), u j(3)}, such that j(1), j(2), j(3) are distinct elements from [n]. Introduce further Z = {z j | j ∈ [m]}, and
assume that elements of U ∪ S ∪ Z denote also Boolean variables. Let as finally introduce an additional Boolean variable t ,
different from the elements of U , S , and Z , and let us denote V = U ∪ S ∪ Z ∪ {t} to be the set of variables. Now let us
consider the following sets of clauses on variables from V :

(i) α j = (t̄ ∨ S j) for j ∈ [m];
(ii) β j,k = (S̄ j ∨ u j(k)) for j ∈ [m], and k = 1,2,3;
(iii) γ j = (ū j(1) ∨ ū j(2) ∨ z j), for j ∈ [m]; and
(iv) δ j = (z̄ j ∨ ū j(3) ∨ S j) for j ∈ [m].

Using the clauses of the second, third and fourth type let us define a CNF

ψ =
(∧

j∈[m]

3∧
k=1

β j,k

)
∧

(∧
j∈[m]

(γ j ∧ δ j)

)
,

and let g be the pure Horn function defined by ψ . Furthermore, using the clauses of the first type let us define

ϕ J =
(∧

j∈ J

α j

)
∧ ψ

for subsets J ⊆ [m]. Finally, let us denote by h the pure Horn function represented by ϕ[m] . We shall show that the input set
covering problem reduces to the minimization of h. In particular, we shall in the sequel arrive to the proof of the following
statement.

Theorem 6.1. Let S be the collection of subsets from the input instance of the 3SC problem and let h be the pure Horn function defined
above. Then the following equivalences hold

γ (S) � k ⇐⇒ τ (h) � c = k + 5m ⇐⇒ λ(h) � � = 2k + 12m.

Clearly, Theorem 6.1 shows exactly the desired result, i.e. that the problem 3SC reduces both to 3HMC and to 3HML. The
proof of the theorem will consist of several steps which are the same as in the disjoint case in the previous section. First,
we shall note that the function g constitutes an exclusive component of h and thus can be minimized independently. Then,
we shall prove that CNF ψ is a minimum representation of g , i.e. that τ (g) = 5m and λ(g) = 12m (this step is different
from the disjoint case). We shall conclude the proof by showing, that (just as in the disjoint case) CNF ϕ J represents h if
and only if the sets S j for j ∈ J form a cover of U , which in turn implies that a minimum representation of h contains at
most k quadratic containing t if and only if there exists a set cover of U of size at most k.

6.2. Decomposing the minimization of h

This subsection is a carbon copy of Subsection 5.2 so let us just state the results again.

Lemma 6.2. The set X ⊆ I(h) of implicates of h not involving variable t is an exclusive subset of I(h).

Corollary 6.3. The function g is the X -component of h. Consequently, given a CNF representation of h, the sub-CNF representing g can
be replaced by an arbitrary minimum representation of g, and the resulting CNF still represents h.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.14 (1-16)

14 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

Fig. 2. An example of construction for sets S1 = {u1, u2, u3}, S2 = {u2, u3, u4}, S3 = {u3, u4, u5}, and S4 = {u5, u6, u7}. Dotted bubbles mark parts of the
CNF corresponding to X j -components of g , 1 � j � 4, considered in the proof of Theorem 6.4.

6.3. Minimum representation of g

We are going to argue in this subsection that ψ is a minimum representation of g with respect to both norms, i.e. that
τ (g) = 5m and λ(g) = 12m.

Theorem 6.4. The CNF ψ is a minimum (clause and literal) representation of g, that is τ (g) = 5m and λ(g) = 12m.

Proof. For every j ∈ [m] let us define W j = Fψ({S j}) (the set of variables derivable by forwarding chaining on the CNF ψ

from the single element set containing variable S j), and set X j = X (W j) as defined in Lemma 4.3 by Eq. (4). Then, by
the statement of Lemma 4.3 the set X j is an exclusive set of g for every j ∈ [m]. We shall show that the assumptions of
Corollary 3.10 are met by the family of exclusive sets X j , j ∈ [m], which will finish the proof. To arrive to this end, let us set
I j = {i ∈ [m] | {i(1), i(2)} ⊆ { j(1), j(2), j(3)}} (in Fig. 2 we have I1 = {1,2}, I2 = {2,3}, I3 = {3}, and I4 = {4}), and observe
the following:

(a) W j = {S j, u j(1), u j(2), u j(3)} ∪ {zi | i ∈ I j}. In fact the only clauses of ψ playing a role in the forward chaining derivation
of W j are β j,k for k = 1,2,3 and γi for indices i ∈ I j . Note that for any such i �= j, the index i(3) must be outside of
{ j(1), j(2), j(3)}, and hence the forward chaining can never use any zi for i �= j as a subgoal to further enlarge W j .

(b) ψ ∩ X j = {β j,1, β j,2, β j,3, δ j} ∪ {γi | i ∈ I j}.

In order to use Corollary 3.10 we have to verify that ψ ∩ X j is a minimum representation of g j , the X j -component of g .
For proving the minimality with respect to the number of clauses we can (similarly as in Subsection 5.5) use Lemma 4.4

and Theorem 3.13. Clearly, given an arbitrary variable v ∈ W j , the clauses having v as a head form an essential set E(v)

of g j by Lemma 4.4, and each such essential set must be represented by at least one clause in any representation of g j by
Theorem 3.13. Since ψ ∩ X j intersects each such essential set E(v) in exactly one clause, the minimality of ψ ∩ X j with
respect to the number of clauses follows.

Showing that ψ ∩ X j is also a minimum representation of g j with respect to the number of literals needs a bit more
work. As we have observed in the previous paragraph, any CNF representation of g j must intersect every E(v), v ∈ W j , so
the only hope to make the CNF shorter would be to replace the unique clause from E(v) in ψ ∩X j by a shorter clause from
the same E(v). However, since there are no linear implicates of g j , all quadratic implicates are already the shortest possible.
Hence the only possible shortening could occur by replacing a cubic clause of type (iii) or (iv) by a quadratic clause with
the same head. However, as one can easily check by subsequently performing forward chaining on ψ ∩ X j starting with
set {v} for all v ∈ W j , the only quadratic clauses in I(g j) not explicitly present in ψ ∩ X j are clauses S̄ j ∨ zi , i ∈ I j . So
the only possible replacement of a cubic clause by a quadratic clause in the same E(v) is to replace γi for some i ∈ I j by
the corresponding S̄ j ∨ zi . Now one can check that no such replacement (or set of such replacements) maintains the logical
equivalence of the two CNFs as forward chaining starting with {u j(1), u j(2)} no longer derives zi after the replacement.
Hence ψ ∩ X j is a literal minimum representation of g j . �

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.15 (1-16)

E. Boros et al. / Theoretical Computer Science ••• (••••) •••–••• 15

6.4. Minimum representation of I(h) \ I(g)

This subsection is very similar to Subsection 5.4, so we shall point out only the differences. Let us again consider the
set D of all prime implicates in I(h) \ X , this is the set of all prime implicates containing literal t . It is immediate that the
clauses of type (i) all belong to D. The only other implicates belonging to D have one of the following types:

(v) α′
j,k = (t̄ ∨ u j(k)) for j ∈ [m], and k = 1,2,3; and

(vi) α′′
j = (t̄ ∨ z j), for j ∈ [m].

Lemma 6.5. All clauses of types (v) and (vi) belong to I(h).

Proof. For every j ∈ [m] and k = 1,2,3 we have that α′
j,k = R(α j, β j,k) and α′′

j = R(α′
j,1, R(α′

j,2, γ j)). �
It follows that D is formed by clauses of types (i), (v), and (vi).

Lemma 6.6. ϕ J represents h if and only if U ⊆ ⋃
j∈ J S j , that is iff {S j | j ∈ J } is a cover for (U ,S).

Proof. The proof is almost the same as the proof of Lemma 5.6. The only difference is that clauses of types (ii) and (iii)
have to be used together where only type (ii) was used in Lemma 5.6, and of course type (iv) has to be used where type
(iii) was used before. �
Lemma 6.7. A minimum (both clause and literal) prime representation of h involves exactly γ (S) clauses from D.

Proof. Again, the proof is almost the same as the proof of Lemma 5.7. The only difference is that clauses of types (v) and
(vi) play the role played by type (iv) in Lemma 5.7. �

Now, using Lemma 6.7 we can conclude that τ (h) = γ (S) + τ (g) and λ(h) = 2γ (S) + λ(g) which put together with
Theorem 6.4 finishes the proof of Theorem 6.1.

7. Conclusions

In this paper we have designed a procedure for proving the minimality of a given CNF, i.e. for proving that no shorter
logically equivalent CNF exists, where the length of a CNF is either the number of clauses or the total number of literal
occurrences in the given CNF. This procedure rests on a decomposition of the input CNF into so-called exclusive components
where the minimality of each component can be then proved independently. The minimality of all components suffices for
the minimality of the input CNF. How to decompose the input CNF (and whether a nontrivial decomposition is possible
at all) as well as how to prove the minimality of the individual components depends on the properties of the input CNF.
We have shown two examples of such decompositions and component minimality proofs. These examples give alternative
proofs to known minimization complexity results, namely NP-hardness of minimization for Horn CNFs and NP-hardness of
minimization for Horn 3CNFs, in both cases with respect to both the number of clauses and the total number of literal
occurrences.

Acknowledgements

The first author also thanks for partial support the NSF (Grants CMMI-0856663 and IIS-1161476). The second and third
author gratefully acknowledge a support by the Czech Science Foundation (grant P202/10/1188).

References

[1] P. Hammer, A. Kogan, Optimal compression of propositional horn knowledge bases: Complexity and approximation, Artif. Intell. 64 (1993) 131–145.
[2] P.L. Hammer, A. Kogan, Knowledge compression – logic minimization for expert systems, in: Proceedings of IISF/ACM Japan International Symposium,

World Scientific, Singapore, Tokyo, 1994, pp. 306–312.
[3] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC ’71,

ACM, New York, NY, USA, 1971, pp. 151–158.
[4] C. Umans, The minimum equivalent DNF problem and shortest implicants, J. Comput. Syst. Sci. 63 (2001) 597–611.
[5] C. Umans, T. Villa, A.L. Sangiovanni-Vincentelli, Complexity of two-level logic minimization, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25

(2006) 1230–1246.
[6] D. Buchfuhrer, C. Umans, The complexity of Boolean formula minimization, J. Comput. Syst. Sci. 77 (2011) 142–153.
[7] G. Ausiello, A. D’Atri, D. Sacca, Minimal representation of directed hypergraphs, SIAM J. Comput. 15 (1986) 418–431.
[8] E. Boros, O. Čepek, On the complexity of Horn minimization, Technical Report 1-94, RUTCOR Research Report RRR, Rutgers University, New Brunswick,

NJ, 1994.
[9] O. Čepek, Structural properties and minimization of Horn Boolean functions, Ph.D. dissertation, Rutgers University, New Brunswick, NJ, October 1995.

JID:TCS AID:9463 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v 1.114; Prn:9/10/2013; 8:01] P.16 (1-16)

16 E. Boros et al. / Theoretical Computer Science ••• (••••) •••–•••

[10] D. Maier, Minimal covers in the relational database model, J. ACM 27 (1980) 664–674.
[11] P. Hammer, A. Kogan, Quasi-acyclic propositional Horn knowledge bases: Optimal compression, IEEE Trans. Knowl. Data Eng. 7 (1995) 751–762.
[12] E. Boros, O. Čepek, A. Kogan, P. Kučera, A subclass of Horn CNFs optimally compressible in polynomial time, Ann. Math. Artif. Intell. 57 (2009) 249–291.
[13] E. Boros, O. Čepek, A. Kogan, Horn minimization by iterative decomposition, Ann. Math. Artif. Intell. 23 (1998) 321–343.
[14] E. Boros, O. Čepek, A. Kogan, P. Kučera, Exclusive and essential sets of implicates of Boolean functions, Discrete Appl. Math. 158 (2010) 81–96.
[15] Š. Bigoš, Hornovské formule, Master’s thesis, Charles University in Prague, Faculty of Mathematics and Physics, 2010 (in Czech).
[16] O. Čepek, P. Kučera, On the complexity of minimizing the number of literals in Horn formulae, Technical Report 11, RUTCOR Research Report RRR,

Rutgers University, New Brunswick, NJ, 2008.
[17] A. Bhattacharya, B. DasGupta, D. Mubayi, G. Turán, On approximate Horn formula minimization, in: S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer

auf der Heide, P. Spirakis (Eds.), Lecture Notes in Computer Science, vol. 6198, Springer, Berlin/Heidelberg, 2010, pp. 438–450.
[18] E. Boros, A. Gruber, Hardness results for approximate pure Horn CNF formulae minimization, in: Proceedings of International Symposium on AI and

Mathematics (ISAIM), 2012.
[19] M. Genesereth, N. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 1987.
[20] H.K. Büning, T. Lettmann, Propositional Logic: Deduction and Algorithms, Cambridge University Press, New York, NY, USA, 1999.
[21] P. Hammer, A. Kogan, Horn functions and their DNFs, Inf. Process. Lett. 44 (1992) 23–29.
[22] W. Dowling, J. Gallier, Linear time algorithms for testing the satisfiability of propositional Horn formulae, J. Log. Program. 3 (1984) 267–284.
[23] A. Itai, J. Makowsky, Unification as a complexity measure for logic programming, J. Log. Program. 4 (1987) 105–117.
[24] M. Minoux, LTUR: A simplified linear time unit resolution algorithm for Horn formulae and computer implementation, Inf. Process. Lett. 29 (1988)

1–12.
[25] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, San Francisco, 1979.

