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1. INTRODUCTION

This work collects several articles of the author and his colleagues devoted to the direct
sum decompositions of infinitely generated projective modules.

Before giving a summary of this thesis let us introduce the concept of a projective
module. Throughout the introduction a ring means an associative ring with unit and a
module over a ring R stands for a unital right R-module.

A module M over a ring R is called free if M is isomorphic to R(κ) (direct sum of κ
copies of R) for some cardinal κ. To some extent free modules resemble vector spaces from
linear algebra, for example every morphism between two free modules can be displayed
as a multiplication by a column-finite matrix over R. On the other hand the structure of
a free module can be very complicated. A module is called projective if it is isomorphic
to a direct summand of a free module. In our work we study projective modules that are
not finitely generated. We should stress that nonfinitely generated projective modules are
definitely less important than finitely generated ones. Therefore let us say several facts
about direct sum decompositions of finitely generated projectives.

Let R be a ring. We define a monoid V (R) as follows. The elements of V (R) are
isoclasses of finitely generated projective R-modules, write [P ] for the class of modules
isomorphic to P (of course, there is a set-theoretical problem, formally [P ] cannot be a
set but it is easy to get rid of this problem). The binary operation on V (R) is given
by [P ] + [Q] := [P ⊕ Q]. Observe that the monoid V (R) satisfies the following two
conditions: (i) If x, y ∈ V (R) then x + y = 0 implies x = 0 and y = 0 (such monoids
are called reduced). (ii) There exists u ∈ V (R) such that for every x ∈ V (R) there exist
y ∈ V (R) and n ∈ N such that x+ y = nu (any element u having this property is called
an order unit of V (R), we can put u = [R]). The monoid V (R) encodes the classification
of finitely generated projective modules over R and also direct sum decompositions of
finitely generated projective modules. A deep theorem of Bergman and Dicks [8] says
that the conditions (i) and (ii) are the only restrictions we have on V (R) in general. More
precisely, every reduced commutative monoid with an order unit is isomorphic to V (R)
of some ring R. So one can see that the theory of finitely generated projective modules
can be really complicated.

Sometimes it can be quite easy to describe V (R) of a particular ring. For example,
if R is a principal ideal domain, then V (R) ' N0. The same is true if R = k[x1, . . . , xn]
is a ring of polynomials over a field k but it is not easy at all. In fact, this problem
was formulated by Serre and has been answered independently by Suslin and Quillen
approximately 20 years later.

An invariant related to V (R) studied in algebraic K-theory is the group K0(R). One
can define it as a quotient group of V (R) or alternatively first take the free abelian group
Z(V (R)) and mod out the subgroup generated by {[P ]− [P1]− [P2] | P ' P1 ⊕ P2} where
we consider all possible direct sum decompositions of all finitely generated projective
modules (see for example [25, Theorem 1.13] for details). This group K0(R) encodes the
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classification of finitely generated projective modules up to stable equivalence. Recall
that finitely generated projective modules P,Q are called stably equivalent if there exists
a finitely generated free module F such that P ⊕ F ' Q ⊕ F . It is quite common that
one can calculate K0(R) while having no idea about the structure of V (R). On the other
hand if V (R) is a cancellative monoid then V (R) is a submonoid of K0(R).

We conclude this part of introduction by two appearances of projective modules in
number theory and in geometry.

Let R be a Dedekind domain with a quotient field K, for example R can be the ring
of algebraic integers in a number field K. A fractional ideal of R is a finitely generated
R-submodule of K. If I, L are fractional ideals of R then IL = {

∑n
t=1 itlt | i1, . . . , in ∈

I, l1, . . . , ln ∈ L} is again a fractional ideal. It can be shown that the set of nonzero
fractional ideals of R equipped with this operation forms a free abelian group and that
the set of maximal ideals of R is a free basis of this group. Let us denote this group by
I(R). It is easy to see that P (R) = {kR | 0 6= k ∈ K} is a subgroup of I(R). The quotient
C(R) = I(R)/P (R) is called the ideal class group of R.

As R is a Dedekind domain, every fractional ideal of R is projective. Moreover, it
is easy to see that I1, I2 ∈ I(R) are isomorphic as R-modules if and only if I1P (R) =
I2P (R), so the ideal class group of R is a classification of nonzero fractional ideals up
to isomorphism. Finally, it is well known that every finitely generated projective module
over R is isomorphic to Rn ⊕ I where n ∈ N0 and I is an ideal of R. Since every
fractional ideal of R is isomorphic to an ideal of R, we see that the ideal class group of
R is in fact a classification of indecomposable finitely generated projective modules up to
isomorphism. Further, it can be shown that C(R) ' K0(R)/〈[R]〉, the group on the right
hand side is also called reduced K0 of R (see for example [25, Theorem 1.4.12]). Having a
classification of finitely generated projective modules over R one has in fact a classification
of all finitely generated R-modules. It is because of the theorem of Steinitz: Every finitely
generated module over R is isomorphic to a module of the form P ⊕

⊕n
i=1R/(P

pi
i ), where

P is a finitely generated projective module, P1, . . . , Pn are maximal ideals of R, and
p1, . . . , pn ∈ N0.

If K is a number field and R is the ring of algebraic integers of K then C(R) is a finite
group. The size of C(R) is called the class number of K and it is an important invariant
of K. The class number of K is 1 if and only if R is a principal ideal domain. Let us
recall that Kummer proved the Fermat Last Theorem for exponents which are regular
primes. Let us explain this notion. Let p be an odd prime and let K = Q[e2πi/p]. The
ring of algebraic integers in K is R = Z[e2πi/p]. Now p is called regular if p does not
divide the class number of K. This can be expressed in terms of projective R-modules in
the following way: Take an indecomposable projective R-module I. If Ip (direct sum of
p copies of I) is a free module then I ' R.

Large ideal class groups can be used as platform groups for cryptographic protocols
based on discrete logarithm problem. Imaginary quadratic fields seem to be particularly
convenient (see [10]).

Finally, let us briefly discuss a connection of finitely generated projective modules and
vector bundles. This was discovered by Serre [28] in the setting of algebraic geometry.
Here we explain a similar result proved later by Swan. Let X be a topological vector
space. A real vector bundle ξ on X consists of a topological space E(ξ) and a continuous
onto map p : E(ξ) → X such that for every x ∈ X the fiber p−1(x) has the structure
of a real vector space of finite dimension. Moreover, vector bundle ξ has to be locally
trivial, that is for every x ∈ X there exists an open neighborhood U of x, n ∈ N0, and
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homeomorphism h : p−1(U)→ U × Rn such that

(i) for every e ∈ π−1(U) the equality πU (h(e)) = p(e) holds

(ii) for every u ∈ U the map h induces by restriction an isomorphism of vector spaces
p−1(u) and π−1

U (u)

As an example, put E(ξ) = X × Rn, for every x ∈ X the set {x} × Rn carries the
canonical structure of a vector space and p : X × Rn → X is defined to be the canonical
projection. Such a vector bundle is called trivial. Of course there are vector bundles that
are not trivial, for example the tangent bundle of a real 2-dimensional sphere.

A section of a real vector bundle ξ is a continuous map s : X → E(ξ) such that
ps = idX . Let us denote Γ(ξ) the set of all sections of ξ. Observe that this set has a
natural structure of an abelian group, one can define s1 + s2 : x 7→ s1(x) + s2(x) for any
s1, s2 ∈ Γ(ξ). Moreover, if f is a real valued continuous function, then sf : x 7→ f(x)s(x)
is a section of ξ again. Therefore if R is the ring of all continuous real valued functions
on X, the set Γ(ξ) has a structure of an R-module. For example, if ξ is a trivial vector
bundle then Γ(ξ) is a free module.

One can define a category whose objects are real vector bundles over X and extend
Γ to an additive functor to the category Mod-R. Swan [29, Corollary 4] proved that
if X is normal then real vector bundles ξ1, ξ2 on X are isomorphic if and only if the
corresponding R-modules Γ(ξ1) and Γ(ξ2) are isomorphic. If we assume X to be compact
Hausdorff then, by [29, Theorem 2], a module M over R is isomorphic to a module Γ(ξ)
for some real vector bundle ξ on X if and only if M is a finitely generated projective
module.

One could also formulate the result that the category of real vector bundles on X
and the category of finitely generated projective R-modules are equivalent provided X is
compact Hausdorff. Swan [29] apply this theorem to get many interesting examples of
projective modules from geometry. For example, let us look at ring S = R[x, y, z]/(x2 +
y2 + z2 − 1). It is easy to see that P = {(α, β, γ) ∈ S3 | αx + βy + γz = 0} ⊆ S3 is
a projective module (here x, y, z are the images of x, y, z in S). One can see that this
module is not free as a consequence of the fact that the tangent bundle on real sphere of
dimension 2 is not trivial.

Having said this the reader should be convinced that finitely generated projective mod-
ules are modules of particular importance. The case of nonfinitely generated projective
modules is quite different.

There are only several important papers devoted to the study of nonfinitely generated
projective modules. A fundamental one is Kaplansky [21]. Kaplansky proved that every
projective module is a direct sum of countably generated projective modules. Bass [5]
showed that nonfinitely generated projective modules are free in many important cases.
A complete classification of nonfinitely generated projective modules have been achieved
for example by Levy and Robson [19] over hereditary noetherian prime rings. They show
that in this case there may exist big projective modules that are not free. On the other
hand over any hereditary ring every projective module is a direct sum of finitely generated
modules. An example of a projective module without a nonzero finitely generated direct
summand was constructed in [15].

This thesis consists of the following articles:

1. P. Př́ıhoda: Projective modules are determined by their radical factors. J. Pure
Appl. Algebra 210 (2007), no. 3, 827 – 835.
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2. P. Př́ıhoda: Fair-sized projective modules. Rend. Sem. Mat. Univ. Padova 123
(2010), 141 – 167.

3. P. Př́ıhoda, G. Puninski: Nonfinitely generated projective modules over generalized
Weyl algebras. J. Algebra 321 (2009), 1326 – 1342.

4. P. Př́ıhoda, G. Puninski: Classifying generalized lattices. Some examples as an
introduction. J. London Math. Soc. (2009), no. 4, 1326 – 1342.

5. D. Herbera, P. Př́ıhoda: Big projective modules over noetherian semilocal rings. J.
Reine Angew. Math. 648 (2010), 111 – 148.

6. D. Herbera, P. Př́ıhoda: Infinitely generated projective modules over pullbacks of
rings. to appear in Trans. Amer. Math. Soc.

All of them are devoted to the study of rings possessing strange nonfinitely generated
projective modules. Since such a subject may look suspicious we include a brief, rather
informal, summary providing motivation and perspectives (in other words where we got
stuck) of this subject.

The main result of the first paper in this thesis says that one can classify countably
generated projective modules over a semilocal ring. First let us give a general statement:
If P is a projective module over a ring R, its Jacobson radical rad(P ) is defined as the
intersection of all maximal submodules of P . We prove that if P and Q are projective
modules over any ring R such that P/rad(P ) and Q/rad(Q) are isomorphic, then P and
Q are isomorphic.

This result is very classical in the realm of finitely generated projective modules, as
one can argue that canonical projections πP : P → P/rad(P ) and πQ : Q→ Q/rad(Q) are
projective covers. For nonfinitely generated projective modules it is not possible to use
this argument and it is necessary to be a bit more careful.

This result answers a question posed by Dolors Herbera during the problem session of
the conference Some Trends in Algebra 2003 (let us quote her ”of course, I don’t believe
it is true in general but ... ”). Another motivation comes from the research on direct sum
decompositions of serial modules, several results could be explained as a consequence of
the theorem.

The result mentioned above is particularly significant over semilocal rings. It says that
the notion of dimension known from the linear algebra can be generalized for projective
modules over semilocal rings. Let R be a ring, we denote rad(R) as J(R). It is known
that J(R) is a twosided ideal of R. The ring R is called semilocal if R/J(R) is semisimple
artinian (that is every module over R/J(R) is projective). If R is commutative then
semilocal means that it has only finitely many maximal ideals. Noncommutative semilocal
rings appear quite naturally in module theory, for example the ring of endomorphisms of
any artinian module is semilocal by [11]. Our result says that every projective R-module is
up to isomorphism determined by the R/J(R)-module P/rad(P ) = P/PJ(R). If R/J(R)
is semisimple artinian, the structure of R/J(R)-modules is well understood. There exists
k ∈ N such that R/J(R)-modules can be classified by k-tuples of cardinals. We will not go
into the details, just note that if R/J(R) is a field then R/J(R)-modules are just vector
spaces and therefore they are classified by dimension.

Let us give two easy applications to give at least some sketch how it works. Of course,
it is not necessary to use our theorem but we hope they illustrate the matter well.
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Suppose R is a local ring, that is R/J(R) is a (not necessarily commutative) field
and P a projective module over R. Now if P/PJ(R) has dimension κ, then P/rad(P ) '
R(κ)/(rad(R(κ))). Consequently P ' R(κ) and every projective R-module is free. Hence
we obtained a classical result of Kaplansky (see [21, Theorem 2]) that every projective
module over a local ring is free. Some other standard results can be also derived as a
direct consequence of the theorem.

Suppose that R is a subring of Q given by R = {ab | a ∈ Z, b ∈ Z \ 6Z}. This is a
semilocal ring, J(R) = 6R, R/J(R) ' Z/2Z× Z/3Z. If P is a projective R-module then
P/rad(P ) ' P/2P ⊕ P/3P . Observe that P/2P is a vector space over Z/2Z, P/3P is a
vector space over Z/3Z. So we write dim(P ) = (x, y), where x is a dimension of P/2P
over Z/2Z and y is the dimension of P/3P over Z/3Z. Every projective R-module is
described up to isomorphism by this pair of cardinals.

Let us give a (rather complicated) way how to prove that every projective R-module
is free. Using the theorem of Kaplansky we need to show that every countably generated
projective R-module is free that is that every countably generated projective module over
R has dimension of the form (λ, λ) for some λ ≤ ℵ0. If it is not the case then using an
argument with projective cover we can see that there exists a projective module P such
that dim(P ) = (0, λ) or dim(P ) = (λ, 0) for some 0 < λ ≤ ℵ0. Then the trace ideal of
P has to be a proper idempotent ideal of R. But R is a commutative noetherian domain
and hence cannot have proper idempotent ideals (it follows for example from the Krull’s
intersection theorem that every idempotent ideal of a commutative noetherian ring is
generated by an idempotent element). Applying similar arguments it is possible to prove
that every projective module over a commutative noetherian semilocal domain is free, we
did not use the fact that R is a Dedekind domain.

The first paper uses this kind of arguments to obtain some less trivial applications.
Among other things we give answers to [23, Question 8.1, Question 8.2, Question 8.3].

The second paper was strongly inspired by an unpublished work of Gena Puninski.
Puninski was probably motivated by an old question of Peter Linnell: If G is a finite
group is every indecomposable projective module over ZG finitely generated? This question
appeared in the list of problems from the group theory known as Kourovka notebook [18]
(I have to confess I have never seen this reference). We give a positive answer to this
question, but to be honest let us stress that the answer has nothing to do with the theory
of groups.

Let us explain the historical background of this question. Swan [30] proved that if G
is a finite solvable group then every nonfinitely generated projective ZG-module is free.
Bass quoted this result in his well-known paper [5] and continued: ”and it is undoubtedly
true in general”. Later Akasaki [1, 2] considered a question when an integral group ring
of a finite group contains a nontrivial idempotent ideal. A general solution to his problem
was given by Roggenkamp [24]. He proved that if G is a finite group then ZG has no
nontrivial idempotent ideal if and only if G is a solvable group. Later Whitehead [27]
considered a problem which idempotent ideals are trace ideals of a projective module. He
gave the following striking corollary: If I ⊆ R is an idempotent ideal finitely generated
as a left R-module, then I is a trace ideal of a countably generated projective right R-
module. Now if P is a projective ZG-module of the trace ideal I such that 0 6= I 6= ZG
then P cannot be free. So if G is a finite group and G is not solvable then ZG has to
contain a nonfinitely generated projective module which is not free. This was noted by
Akasaki [3], for a different approach see [20].

Being aware of this, Puninski noticed that if L is a finite dimensional Lie algebra
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over C and L is not solvable, then its universal enveloping algebra U(L) has to contain a
nontrivial idempotent ideal. So the same argument as in the case of integral group rings
shows that there are nonfinitely generated projective U(L)-modules that are not free.
Puninski conjectured that this property should characterize solvable finite dimensional
Lie algebras over C. We confirmed that it is indeed true: If L is a finite dimensional Lie
algebra over a field of characteristic 0, then L is solvable if and only if every nonfinitely
generated projective module over U(L) is free. We do not know if the same is true for Lie
algebras over fields of positive characteristics.

Let us briefly explain the technique introduced in this paper. We consider projective
modules that are called fair-sized. As this name suggests the concept generalizes Bass’
uniformly big modules from [5]. Suppose that R is a noetherian ring that is every left and
right ideal is a finitely generated R-module. The theory works if R satisfies the following
condition (∗): If I1, I2, · · · is a sequence of twosided ideals of R such that Ik+1Ik = Ik+1

for every k ∈ N, then there exists l0 ∈ N such that Il = Il0 for every l ≥ l0. This
condition is satisfied quite often in the noetherian context. For example, if A is a ring
whose underlying abelian group is a free group of finite rank, then A satisfies (∗).

Now suppose that we have a noetherian ring R satisfying (∗) and suppose we are able
to do the following:

a) Find the set of all idempotent ideals of R.

b) For every idempotent ideal I ⊆ R we are able to classify finitely generated projective
modules over R/I.

Then we are able to classify all countably generated projective modules over R. Roughly
speaking a countably generated projective R-module P is described by the smallest ideal I
such that P/PI is finitely generated and by the finitely generated projective R/I-module
P/PI. One can ask what kind of information about a finite group G is hidden in the
classification of countably generated projective modules over ZG. It appears that for
every perfect normal subgroup H of G there is an idempotent ideal of ZG, namely the
kernel of the augmentation homomorphism ZG → ZG/H. Moreover, the classification
has to contain full information about finitely generated projective modules over ZG/H.
It seems to be a very hard problem and we think that this is the main drawback of
this method. We tried to calculate the case when G = A5. This group has only 2 perfect
normal subgroups 1 and A5, so one would expect only 3 idempotent ideals of ZA5, namely
0,ZA5 and the augmentation ideal of ZA5. Surprisingly, the calculations show that there
is one more idempotent ideal. Right now we do not have a theoretical explanation for its
appearance. We were not able to classify finitely generated modules over ZA5 but using
the theory introduced in the paper all the remaining projective ZA5-modules were found.

The condition (∗) is true in some other classes of noetherian rings that are also stud-
ied in this thesis, for example semilocal noetherian rings and generalized Weyl algebras.
Unfortunately, it is not true that every noetherian ring satisfies (∗). For example take the
Lie algebra L = sl(2,C) and consider its universal enveloping algebra R = U(L). It is well
known that R contains strictly descending chains of idempotent ideals and therefore R
cannot satisfy (∗). What is even worse, one can show that the classification scheme intro-
duced in this paper do not apply in this case, roughly speaking the algebra R = U(sl(2,C))
possesses too many countably generated projective modules. Even to give a classification
of countably but not finitely generated projective modules over U(sl(2,C)) seems to be a
very hard problem.
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The following two papers apply the technique of fair-sized modules. The third paper
gives a classification of infinitely generated projective modules over a class of rings known
as generalized Weyl algebras. Rings in this class are connected to geometry (see Hodges
[17]), for example the first Weyl algebra, ring of differential operators on a projective line
and some primitive factors of U(sl(2,C)) belong to this class. Many algebraic properties
of these algebras are well known, finitely generated projective modules are usually well
understood on the level of K0, but on the other hand the classification of finitely generated
projective modules seems to be unreachable. In this paper we find a classification of
nonfinitely generated projective modules over any generalized Weyl algebra. We find
finitely generated projective modules P1, P2, . . . , Pm such that every nonfinitely generated
projective module is of the form ⊕i∈IQi where every Qi is isomorphic to a module of the
set {P1, . . . , Pm}.

Our strategy relies on the fact that every generalized Weyl algebra A is a noetherian
domain with a finite set of two-sided ideals, so the condition (∗) holds. Using the results
of Bavula [6] we are able to find all idempotent ideals in A and modifying a construction
of some indecomposable finitely generated projective A-modules from Hodges [17], we
show that every idempotent ideal of A is a trace ideal of a finitely generated projective
module. Further we have to show that for every nonzero idempotent ideal I ⊆ A and for
every finitely generated projective module P ′ over A/I there exists a finitely generated
projective A-module P such that P ′ ' P/PI. In the paper we do this in a bit different way,
we will omit the details here. The important thing is that in order to find all nonfinitely
generated projective modules over A it is not at all necessary to know everything about
finitely generated projective modules. Here it was enough to find only several finitely
generated projectives having some particular properties.

The fourth paper deals with generalized lattices. In order to avoid general definitions
let us concentrate on one particular example from integral representation theory. The
general theory of [9, 26] applies for (locally) lattice finite R-orders in separable algebras
where R is a Dedekind domain. Let G be a finite group. A finitely generated ZG-module
M is called ZG-lattice if the underlying abelian group of M is free. ZG-lattices can be
also seen as group homomorphisms from G to AutZ(Zn).

Butler at al. [9] studied so called generalized lattices. A generalized ZG-lattice is a
ZG-module M whose underlying abelian group is free. This research was motivated by
problems coming from C∗-algebras and Lie theory where people got interest in generalized
ZC2-lattices, where C2 stands for the group of order 2. The algebra ZG is called lattice
finite if there are only finitely many indecomposable ZG-lattices up to isomorphism. For
example, if Cp is the group of prime order p then ZCp is lattice finite (see [16]). Sup-
pose ZG lattice finite, let L1, . . . , Ln be the list of all indecomposable ZG-lattices up to
isomorphism. The lattice L = L1 ⊕ · · · ⊕ Ln is called the Auslander lattice and the ring
S = EndZG(L1⊕ · · · ⊕Ln) is called the Auslander order of L. An amazing result [9, The-
orem 2.1] says that if ZG is lattice finite then generalized ZG-lattices are exactly objects
of Add(L), that is every generalized lattice is a direct summand of L(κ) for some cardinal
κ. Moreover, by a standard result of Dress [12], categories Add(L) and Proj-S are equiv-
alent. So understanding generalized lattices is basically the same as understanding to
projective S-modules. Moreover if lattices are understood then we are left to understand
nonfinitely generated projective modules.

Butler at. al [9] proved that every generalized lattice over ZCp is a direct sum of
lattices. Their approach was basically this: Using a theorem of Kaplansky we see that
every generalized ZCp-lattice is a direct sum of countably generated generalized ZCp-
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lattices. Then a careful analysis of countable generalized lattices shows that any of them
is a direct sum of lattices.

The proof in our spirit would go differently. This example is not in the paper, but
we hope an interested reader can fill in the details easily. Let Γ be the normalization of
Λ := ZCp. It is known that Γ = Z × Z[e2πi/p] and that the ring Λ may be identified
with a subring of Γ, namely we can suppose Λ = pZ × (1 − e2πi/p)Z[e2πi/p] ∪ (1, 1)Z. If
L is an Auslander lattice of Λ, then by [4, Proposition 7.2] Add(L) = Add(Λ ⊕ Γ). So
in order to prove that every generalized Λ-lattice is a direct sum of lattices it is enough
to show that every projective module over S = EndΛ(Λ ⊕ Γ) is a direct sum of finitely
generated modules. Now let C be the largest ideal of Γ contained in Λ. Then the ring S
is isomorphic to

T =
(

Λ C
Γ Γ

)
⊆ M2(Γ) .

One can find all the idempotent ideals in T . It appears that every idempotent ideal of
T is a trace ideal of a finitely generated projective T -module. Moreover, for every non-
zero idempotent ideal I ⊆ T and for every finitely generated projective T/I-module P ′

there exists a finitely generated projective T -module P such that P ′ ' P/PI. This is all
one needs to prove that every projective T -module is a direct sum of finitely generated
modules. Further, when these calculations are done carefully, it is possible to obtain a
classification of generalized lattices up to isomorphism. In our paper we have a similar
example with generalized lattices over quadratic orders.

Further important results on generalized lattices were obtained by Rump [26]. He
gave a combinatorial criterion when every generalized lattice over a locally lattice finite
order is a direct sum of lattices. His approach does not aim at classification problems, in
our paper we investigated several interesting examples from [26]. We show that one of
Rump’s example contains a superdecomposable generalized lattice.

The last two papers are devoted to the study of V ∗(R) of a semilocal ring. The monoid
V ∗(R) is formed by isoclasses of countably generated projective R-modules. Again, for
[P ], [Q] ∈ V ∗(R) the sum is defined by [P ] + [Q] := [P ⊕Q]. Let us define a structure of
a commutative monoid on N∗0 = N0 ∪{∞} by extending the standard addition of N0 with
x+∞ =∞+x =∞. The main result of the first paper says that for every semilocal ring
R there exists a positive integer k such that V ∗(R) can be embedded to (N∗0)k. Moreover,
this embedding is quite canonical, for example k can be the number of distinct simple
modules possessed by R. In this embedding the image of V (R) is contained in Nk0 and
[R] is mapped to an element having all its coordinates nonzero. Now a natural question
is for which submonoids of (N∗0)k there exists a semilocal ring R such that the monoid
is the image of V ∗(R) in the canonical embedding. This question is still open, the fifth
paper gives a satisfactory answer if we restrict the question to semilocal noetherian rings.

Let us explain how the fifth paper is connected to the earlier result of Facchini and
Herbera [13]. They considered the same problem restricted to finitely generated projective
modules: Which submonoids of Nk0 arise as images of canonical embeddings of V (R) to
Nk0 , where R is a semilocal ring? Their answer is very nice: If we identify V (R) to a
submonoid of Nk0 using the canonical embedding then the following two conditions have to
be satisfied: (i) V (R) contains an element having all its coordinates nonzero (for example
the element [R]) and (ii) if (x1, . . . , xk), (y1, . . . , yk) ∈ V (R) are such that xi ≤ yi for
every i = 1, . . . , k then (y1 − x1, . . . , yk − xk) ∈ V (R). Moreover, if M is a submonoid of
Nk0 satisfying (i) and (ii) then M arises as a canonical image of V (R) of some semilocal
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ring R. The construction from [13] is quite complicated (let us quote the review from
MathSciNet ”I cannot do justice to the proof, which is interesting but rather tricky.”).
It uses Bergman’s results on projective modules over pushouts and then applies Cohn’s
universal localization. The problem is that this construction produces always semilocal
hereditary ring with prescribed V (R). But it is well known that every projective module
over a hereditary ring is a direct sum of finitely generated modules. So over hereditary
rings the monoid V (R)∗ is determined by its submonoid V (R). Further if we try to
repeat arguments for rings that are not hereditary, the universal localization seems to be
out of control. Fortunately, there is another approach in the literature. Wiegand [31]
studied similar monoids formed from finitely generated modules over commutative local
noetherian rings of dimension one and their behavior under completion. He proved a
similar result to that from [13] using pullbacks. The structure of projective modules over
certain pullbacks of rings was described by Milnor [22]. Using his results one can give a
quite short proof of the main result from [13]. But what is more important the approach
via pullbacks gives some space for projective modules that are not direct sums of finitely
generated modules.

It is possible to give another characterization of monoids satisfying (i) and (ii). Fix
k ∈ N. Suppose that E1, E2 are matrices m × k with coefficients in N0, let D be a
matrix of size l × k with coefficient in N0 and (x1, . . . , xl) ∈ Nl. These data defines a
submonoid M of Nk0 , M = {z ∈ Nk0 | E1z

T = E2z
T , DzT ∈ (x1N0, . . . , xlN0)T }. We

say that M is defined by equations. The characterization from [13] can be reformulated
as follows: A submonoid of Nk0 is identified to a V (R) of a semilocal ring if and only if
it is defined by equations and it contains an element having all its coordinates nonzero.
What is quite surprising we have almost the same characterization of V ∗(R) of semilocal
noetherian rings. Suppose that E1, E2, D, (x1, . . . , xl) are as above. These data define a
submonoid of (N∗0)k, M = {z ∈ (N∗0)k | E1z

T = E2z
T , DzT ∈ (x1N∗0, . . . , xlN∗0)T }. We

take the formalism 0.∞ = 0. The main result of our paper says that a submonoid of
(N∗0)k is identified to a V ∗(R) of a semilocal noetherian ring if and only if it is defined by
equations and it contains an element having all its coordinates nonzero.

The general case of V ∗(R) of a semilocal ring is still an open problem. The last paper
of the thesis uses the construction of Gerasimov and Sakhaev [15] together with pullback
constructions from the previous paper to realize monoids defined by inequalities. We will
not go into details here. One of the examples shows an asymmetry between left and right
projective modules. We found a semilocal ring such that every projective left R-module
is free but there exists a nonfinitely generated projective right module over R which is
not a generator. This answers a question of Fuller and Shutters from [14, page 310].
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2. PROJECTIVE MODULES ARE DETERMINED BY THEIR
RADICAL FACTORS

2.1 Introduction

Using a projective cover argument, one can show that two finitely generated projective
modules are isomorphic if and only if they have isomorphic factors modulo their Jacobson
radicals. This well known result can be used to get information about finitely generated
projective modules over semilocal rings. For example, Fuller and Shutters [7] proved that
over any semilocal ring there are only finitely many indecomposable finitely generated
projective modules up to isomorphism.

The aim of this note is to prove that arbitrary projective modules P,Q are isomorphic
whenever they have isomorphic factors modulo their Jacobson radical. Let us briefly recall
some related results achieved so far.

For some results saying when an infinitely generated projective module is free see [2]
and [12]. In fact, we are interested in when it is not the case. Beck [3] proved that if P
is a projective right R-module and P/rad(P ) is free right R/J(R)-module, then P is free
R-module. Later, Gruson (see appendix of [12]), proved that any free base of P/rad(P )
can be lifted to a free base of P . It follows from Jøndrup [12] that if P,Q are projective
modules such that P/rad(P ) is a direct summand of Q/rad(Q), then P can be embedded
to Q. Facchini, Herbera and Sakhajev [6] proved that if P,Q are projective modules and
there exists a pure monomorphism from P/rad(P ) to Q/rad(Q), then there is a pure
monomorphism from P to Q.

We prove the result in the title and then we give several immediate corollaries for
projective modules over semilocal rings. For example, we show that there are at most
countably many indecomposable projective modules over a semilocal ring. As a bit more
sophisticated application we show how to use knowledge of objects in Add of a uniserial
module to give a classification of right projective modules over an endomorphism ring
of a uniserial module. Also we get answers to some problems Puninski posed in [13].
The last part of this note deals with an example of a semilocal ring having a projective
module that is not possible to write as a direct sum of indecomposable modules. Let
us stress that over commutative semilocal rings the situation is much easier. Indeed,
it follows from Hinohara [9, 10] that over commutative weakly noetherian rings (hence
also over commutative semilocal rings) every projective module is a direct sum of finitely
generated modules.

All basic results about the Jacobson radical can be found, for example, in [1]. Unless
otherwise stated, we work inside the category of right modules over a (fixed) associative
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ring R with unit. We denote as J(R) the (Jacobson) radical of R and as rad(M) the
(Jacobson) radical of the module M . If P is a projective module, then rad(P ) = PJ(R).
We call P/rad(P) the radical factor of P .

2.2 The result

If P,Q are projective modules and πP : P → P/rad(P ), πQ : Q → Q/rad(Q) are the
canonical projections, then for any homomorphism f : P/rad(P )→ Q/rad(Q) there exists
a homomorphism f : P → Q such that πQf = fπP . We say that f is a lift of f . The idea
we are going to use in the next lemma is essentially described in [11].

Lemma 2.2.1. Let P,Q be countably generated projective modules. Suppose that
f : P/rad(P ) → Q/rad(Q) and g : Q/rad(Q) → P/rad(P ) are mutually inverse isomor-
phisms. Let f : P → Q be any lift of f and let X ⊆ P be a finite set. Then there exists a
lift g : Q→ P of g such that gf(x) = x for any x ∈ X.

Proof. Let P ′, Q′ be projective modules such that P ⊕ P ′ and Q ⊕ Q′ are countably
generated free modules. It is possible to suppose f ′ : P ′ → Q′ and g′ : Q′ → P ′ are
mutually inverse morphisms. (In fact, we can suppose P ′ = Q′ = R(ω) because of the
Eilenberg’s trick.) Let g0 be any lift of g and let us fix some free base Y = {e1, e2, . . . }
of P ⊕ P ′. Consider the homomorphism h = (g0 ⊕ g′) ◦ (f ⊕ f ′) : P ⊕ P ′ → P ⊕ P ′.
For any e ∈ P ⊕ P ′ is h(e) − e ∈ rad(P ⊕ P ′). Let n ∈ N be such that any element of
X can be expressed as a combination of e1, . . . , en. We claim there is an endomorphism
h′ : P ⊕ P ′ → P ⊕ P ′ lifting the identity on P ⊕ P ′/rad(P ⊕ P ′) such that h′h(ei) = ei
for any i = 1, . . . , n. In order to see this, express h as a column-finite matrix A (the i-th
column is formed by coordinates of h(ei) determined by the base Y ). Let m ≥ n ∈ N
be such that first n columns of A have non-zero values only in the first m rows. Let B
be a m ×m matrix given by the top left corner of A. Consider B as an element of the
ring Mm(R). Then B ∈ 1 + J(Mm(R)) is an invertible matrix and its inverse C is also
an element of 1 + J(Mm(R)). Replacing the top left m×m corner in the identical N×N
matrix by C we obtain a column-finite matrix A′ that represents desired endomorphism
h′ with respect to the base Y .

Let πP : P ⊕ P ′ → P be the canonical projection and let ιP : P → P ⊕ P ′ be the
canonical inclusion. Then we can put g = πPh

′ιP g0.

Lemma 2.2.2. Let P,Q be countably generated projective modules such that f : P/rad(P )→
Q/rad(Q) is an isomorphism. Then there exists a lift of f which is an isomorphism.

Proof. Let {p0, p1, . . . } be generators for P and let {q0, q1, . . . } be generators for Q. Let
g : Q/rad(Q) → P/rad(P ) be an inverse of f . We are going to define homomorphisms
fi : P → Q, gi : Q→ P and finite sets Pi ⊆ P , Qi ⊆ Q for any i ∈ N0 as follows:

Put P0 = {p0} and let f0 be any lift of f .
Suppose Pi, fi were defined, define Qi, gi by Qi = fi(Pi) ∪ {q0, . . . , qi} and let gi be a

lift of g such that gifi(x) = x for any x ∈ Pi.
Suppose Qi, gi were defined, define Pi+1 = gi(Qi) ∪ {p0, . . . , pi+1} and let fi+1 be a

lift of f such that fi+1gi(x) = x for any x ∈ Qi.
Observe that Pi ⊆ gi(Qi) ⊆ Pi+1. If p ∈ Pi, then p = gifi(p) and fi+1(p) =

fi+1gifi(p) = fi(p) since fi(p) ∈ Qi. Therefore fi+1|〈Pi〉 = fi|〈Pi〉. Thus we can de-
fine f : P → Q by f(p) = fi(p) if p ∈ 〈Pi〉.
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Suppose that f(p) = 0. Then p ∈ 〈Pi〉 for some i ∈ N. But then 0 = gif(p) =
gifi(p) = p. Therefore f is mono. In order to see that f is epi, just observe f(Pi+1) ⊇ Qi.
Finally it remains to prove that f is a lift of f . But this is obvious since all fi’s are lifts
of f .

Theorem 2.2.3. Let P,Q be projective modules such that f : P/rad(P ) → Q/rad(Q) is
an isomorphism. Then there is an isomorphism f : P → Q which is a lift of f.

Proof. By the theorem of Kaplansky, there are decompositions P = ⊕i∈IPi and Q =
⊕j∈JQj such that the modules Pi, Qj , i ∈ I, j ∈ J are countably generated. It is well
known that rad(P ) = ⊕i∈Irad(Pi), rad(Q) = ⊕j∈Jrad(Qj). As in the proof of [4, Theo-
rem 2.50] we find an ordinal κ and sets Iλ ⊆ I, Jλ ⊆ J , λ ≤ κ such that

(i) I0 = ∅ = J0,

(ii) Iλ′ ⊆ Iλ, Jλ′ ⊆ Jλ for any λ′ < λ ≤ κ

(iii) Iλ = ∪λ′<λIλ′ and Jλ = ∪λ′<λJλ′ , if λ ≤ κ is limit

(iv) if λ < κ, then |Iλ+1 \ Iλ| ≤ ω and |Jλ+1 \ Jλ| ≤ ω,

(v) I = Iκ, J = Jκ,

(vi) f(⊕i∈IλPi/rad(Pi)) = ⊕j∈JλQj/rad(Qj).

For any λ ≤ κ let Pλ = ⊕i∈IλPi, Qλ = ⊕j∈JλQj and let Pλ, Qλ be the corresponding
radical factors. Observe that f |Pλ gives an isomorphism of Pλ and Qλ.

By induction on λ ≤ κ we construct isomorphisms fλ : Pλ → Qλ such that fλ extends
fλ′ for any λ′ ≤ λ ≤ κ and fλ is a lift of f |Pλ for any λ ≤ κ. We put f0 = 0.

If λ < κ and fλ has been defined, we define fλ+1 as follows: Let P ′ = ⊕i∈Iλ+1\IλPi,
Q′ = ⊕j∈Jλ+1\JλQj and let P ′, Q′ be their radical factors. So Pλ+1 = Pλ ⊕ P ′ and
Qλ+1 = Qλ ⊕Q′. Consider the restriction f |P ′ : P ′ → Qλ ⊕Q′ and put α = πQλf |P ′ and
β = πQ′f |P ′ . Suppose that β(p) = 0 for some p ∈ P ′. Then, by (vi), f(p) = f(p′) for
some p′ ∈ Pλ. Since f is a monomorphism, p = 0 and β is a monomorphism. On the other
hand, by (vi), Q′ = πQ′(f(Pλ) + f(P ′)) = β(P ′) and thus β is an epimorphism. Since β
is an isomorphism, and P ′, Q′ are countably generated projective according to (iv), there
is an isomorphism β : P ′ → Q′ lifting β by Lemma 2.2.2. Since P ′ is projective, there
exists α : P ′ → Qλ lifting α. If we put fλ+1 = fλ ⊕ (α+ β), we can check that fλ+1 is an
isomorphism extending fλ and lifting f |Pλ+1

.
If λ is limit, and fλ′ has been defined for every λ′ < λ, we put fλ = ∪λ′<λfλ′ . By

induction, fλ : Pλ → Qλ is an isomorphism lifting f |Pλ .
Finally, f = fκ is the desired isomorphism.

Some well known results about projective modules can be seen also as corollaries of
Theorem 2.2.3.

Corollary 2.2.4.

(i) Any nonzero projective module has a maximal submodule.

(ii) Let R be a local ring. Then any projective module is free.
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(iii) Let R be a semiperfect ring, let S1, . . . , Sn be representatives of simple modules and
let Pi be a projective cover of Si for any 1 ≤ i ≤ n. Then any projective module can be
uniquely decomposed as a direct sum of copies of P1, . . . , Pn.

We hope that Theorem 2.2.3 is a step toward understanding of projective modules
over semilocal rings. Recall that a ring is semilocal if R/J(R) is semisimple artinian, thus
the radical factor of a projective module over a semilocal ring is semisimple R-module (or
R/J(R)-module.) Facchini and Herbera [5] gave a description of direct sum decomposi-
tions of finitely generated projective modules over a semilocal ring. In particular, it is
proved that for any semilocal ring R there exists a semilocal hereditary ring R′ such that
R and R′ have the same decomposition theory of finitely generated projective modules.
As we shall see this is not true for arbitrary projective modules because any projective
module over a hereditary ring is a direct sum of finitely generated modules. However,
some well known properties of finitely generated projective modules over a semilocal ring
can be generalized.

Corollary 2.2.5. Let R be a semilocal ring. If P,Q are projective right R-modules, then
the following are equivalent

(i) P ' Q

(ii) There exist epimorphisms f : P → Q and g : Q→ P .

(iii) There exist pure monomorphisms f : P → Q and g : Q→ P .

Moreover, Pn ' Qn implies P ' Q for any n ∈ N.

Proof. Since P/rad(P ) andQ/rad(Q) are semisimple, each of (ii), (iii) implies P/rad(P ) '
Q/rad(Q). Now Theorem 2.2.3 applies.

Using Kaplansky’s theorem once again we obtain the following

Corollary 2.2.6. Let R be a semilocal ring. Then there are at most countably many
pairwise non-isomorphic indecomposable projective modules.

We do not know an example of a semilocal ring having infinitely many non-isomorphic
indecomposable projective modules (recall that over a semilocal ring there are only finitely
many non-isomorphic indecomposable finitely generated projective modules.)

Observe that there would be only finitely many indecomposable projective modules
over a semilocal ring if the following was true: If P,Q are projective modules and P/rad(P )
is a direct summand of Q/rad(Q), then P is a direct summand of Q. Unfortunately,
this is not true. Gerasimov and Sakhajev [8] gave an example of a semilocal ring R
which possesses an infinitely generated projective module P such that P/rad(P ) is finitely
generated. In fact, P can be chosen such that P/rad(P ) is isomorphic to a direct summand
of R/J(R). Of course, P cannot be isomorphic to a direct summand in R. Similar
phenomena will occur in Sections 4 and 5.

Our last corollary uses a technique of Sakhajev to give an information about the
structure of projective modules having radical factor cyclic.

Corollary 2.2.7. Let P be projective R-module such that P/rad(P ) is cyclic. Then there
exists r ∈ R and p1, p2 · · · ∈ P such that P =

∑
i∈N piR and pi+1r = pi for any i ∈ N.
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Proof. We shall use the idea of [13, Fact 3.1]. Observe that P is countably generated.
Moreover, P can be considered as a pure right ideal of R by [6, Proposition 6.1], so we
can suppose that P is a countably generated pure right ideal in R. Take p ∈ P such
that (pR + rad(P ))/rad(P) = P/rad(P ). Since P is pure in RR, there exists q ∈ P such
that qp = p. By assumption, there is t ∈ R and j ∈ rad(P ) = J(R) ∩ P such that
q = pt + j. Now, p = qp = (pt + j)p and pt = (pt)2 + jpt follows. Since j ∈ J(R), the
element u = (1 − j) is invertible and upt = (pt)2. For any i ∈ N put xi = u−iptui−1.
Then xi+1xi = u−i−1(pt)2ui−1 = xi that is x1, x2, ... is a right a-sequence. As proved in
[13, Fact 3.1], Q =

∑
i∈N xiR is a pure right ideal and hence projective. We can embedd

P/rad(P ), Q/rad(Q) canonically to R/J(R).
Since, by purity, rad(P ) = P ∩ J(R), rad(Q) = Q ∩ J(R), the canonical projection

π : R→ R/J(R) induces embeddings of P/rad(P ) and Q/rad(Q) into R/J(R). Obviously,
π(P ) = pR + J(R)/J(R). Observe that u−1 = 1 + j′, where j′ ∈ J(R). Thus π(xi) =
π((1 + j′)iptui−1) = π(ptui−1). Moreover, π(p) = π((pt+ j)p) = π(pt)p implies π(x1)p =
π(p). Therefore π(Q) ⊆ pR + J(R)/J(R) and since π(x1)p = π(p), the equality π(P ) =
π(Q) holds. Thus P/rad(P ) ' Q/rad(Q) and P ' Q by Theorem 2.2.3. For any i ∈ N
put qi = xiu

−i+1. Observe that q1, q2, . . . generate Q and qi+1pt = qi for any i ∈ N, so if
f : Q ' P is an isomorphism, we can put pi = f(qi) and r = pt.

Remark 2.2.8. Recall that the trace ideal of a moduleM is Tr(M) =
∑
f∈HomR(M,R) f(M).

If P is a projective module, then Tr(P ) is the smallest ideal in the set of ideals {I ⊆ R |
PI = P}. Suppose that P is a projective module such that there exist r′ ∈ Tr(P ) and
p1, p2, · · · ∈ P generating P such that pi+1r

′ = pi for any i ∈ N. Since Pr′R = P , we
infer that Tr(P ) = Rr′R. Analyzing the proof of Corollary 2.2.7, we see that the element
r ∈ R can be chosen in the trace ideal of P . Thus, by Corollary 2.2.7, we get that if P
is a projective module with P/rad(P ) cyclic, then Tr(P ) is generated by a single element
as a two-sided ideal.

2.3 Comparing Add(MR) and Proj− EndR(MR)

We are going to investigate the relation between objects of Add(MR) (i.e., direct sum-
mands of modules that are direct sums of copies of M) and Proj − EndR(MR) (i.e.,
projective right modules over the endomorphism ring of M), where M is a nonzero R-
module. Probably we shall reinvent a wheel but we were not able to find a convenient
reference. One could simply say that the tensor product commutes with direct sums but
we need to be more explicit.

Let M be a nonzero right module over a ring R and let I be a non-empty set. Let
S denote the endomorphism ring of M . Consider a direct sum decomposition of the free
right S-module A ⊕ B = S(I), let ιA : A → S(I), ιB : B → S(I) be canonical inclusions.
Applying the tensor product functor − ⊗S M : Mod − S → Mod − R, we get Im (ιA ⊗
M) ⊕ Im (ιB ⊗ M) = S(I) ⊗ M . The module S(I) ⊗ M is isomorphic to M (I) via
the isomorphism ϕ : S(I) ⊗M → M (I) given by ϕ((si)i∈I ⊗ m) = (si(m))i∈I . Denote
A′ = Im ϕ ◦ (ιA ⊗ M), B′ = Im ϕ ◦ (ιB ⊗ M) and observe that A′ ⊕ B′ = M (I).
Let ιA′ : A′ → M (I), ιB′ : B′ → M (I), πA′ : M (I) → A′, πB′ : M (I) → B′ be canonical
injections and projections given by this decomposition. Any i ∈ I also gives the canonical
injection ιi : M → M (I) and the canonical projection πi : M (I) → M . Fix an arbitrary
j ∈ I and consider the element ej = (δi,j)i∈I ∈ S(I), where δj,j = 1 and δi,j = 0 if i 6= j.



2. Projective modules are determined by their radical factors 17

There exist unique (ai)i∈I ∈ A and (bi)i∈I ∈ B such that ej = (ai)i∈I + (bi)i∈I . Then
ιj(m) = ϕ(ej⊗m) = (ai(m))i∈I+(bi(m))i∈I . Note that (ai(m))i∈I ∈ A′ and (bi(m))i∈I ∈
B′. Therefore πiιA′πA′ιj = ai and πiιB′πB′ιj = bi for any i ∈ I. Therefore a direct
sum decomposition of S(I) in Mod− S induces a decomposition of M (I). Unfortunately,
not every decomposition of M (I) can be constructed in such a way because the module
πA′(ιi(M)) has a finite support for any i ∈ I. Thus we have defined a map Φ which
assigns a decomposition of M (I) to every decomposition of S(I).

Now let us consider the decomposition A′⊕B′ = M (I) such that πA′(ιi(M)) has finite
support for any i ∈ I, that is for any i ∈ I there exist only finitely many j ∈ I such that
πjιA′πA′ιi 6= 0. We shall say that A′, B′ form a finite support decomposition of M (I).
For any i, j ∈ I let us denote aj,i = πjιA′πA′ιi ∈ S and bj,i = πjιB′πB′ιi ∈ S. Since
πA′(ιi(M)) (and hence also πB′(ιi(M))) has finite support, we have ai = (aj,i)j∈I ∈ S(I)

and bi = (bj,i)j∈I ∈ S(I). Put A =
∑
i∈I aiS ⊆ S(I), B =

∑
i∈I biS ⊆ S(I). Since

ai + bi = ei, A+B = S(I). Suppose that there exists nonzero x ∈ A∩B. Then there are
si ∈ S, i ∈ I, almost all of them equal zero, such that x =

∑
i∈I aisi. Take some j ∈ I and

m ∈ M such that
∑
i∈I aj,isi(m) is nonzero. Observe that x′ =

∑
i∈I(ak,i(si(m)))k∈I =∑

i∈I πA′(ιi(si(m))) is a nonzero element of A′. By our assumption there are ti ∈ S, i ∈ I,
almost all of them zero, such that x =

∑
i∈I biti. By the same arguments as above, we

infer x′ ∈ B′, a contradiction. Therefore A ⊕ B = S(I). Now we have defined a map Ψ
that assigns a decomposition of S(I) to every finite support decomposition of M (I). It
can be easily verified that Φ and Ψ are mutually inverse.

Now we can summarize these observations in

Proposition 2.3.1. Let M be a nonzero right R-module, let S = EndR(M), and let
I be a nonempty set. Put C = {(A,B) | A ⊆ S(I), B ⊆ S(I), A ⊕ B = S(I)} and
D = {(A′, B′) | A′, B′ form finite support decomposition of M (I)}. The maps Φ: C → D
and Ψ: D → C are mutually inverse bijections.

If A⊕B = A1⊕B1 = S(I) are two decompositions of S(I) and A ' A1, then A′ ' A′1,
where (A′, B′) = Φ((A,B)), (A′1, B

′
1) = Φ((A1, B1)). This is because Φ is ”carried” by a

functor. But we do not have an analogy to this statement in the opposite direction, so
the classification of the projective S-modules can be different from the classification of
objects of Add(M) that arises from finite support decompositions of M (I). But observe
that projective modules should be more complex from this point of view because the
tensor product can make two non-isomorphic modules isomorphic.

2.4 Projective modules over the endomorphism ring of a biuniform
module

Now we apply these general concepts to the particular case of the endomorphism ring
of a biuniform module. Recall that a module M is called biuniform if it is nonzero, M
is not a sum of its two proper submodules and any two nonzero submodules of M have
a non-trivial intersection. A module is said to be uniserial if its lattice of submodules
is a chain. Obviously, any nonzero uniserial module is biuniform. Let S = EndR(M).
By [4, Theorem 9.1] I = {f ∈ S | f is not mono} and K = {f ∈ S | f is not epi}
are two-sided ideals. If I,K are comparable in inclusion, then S is local and hence all
projective modules are free. Therefore we shall consider only the opposite case, I,K
incomparable and, by [4, Theorem 9.1], I,K are the only maximal right ideals of S. Then
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S is semilocal and S/J(S) ' S/I × S/K. Note that simple S-modules S/I, S/K cannot
be isomorphic. Following [13], we shall use the following notation: Let P be a countably
generated projective S-module. Then P/rad(P ) ' S/I(k)⊕S/K(l) for some 0 ≤ k, l ≤ ω.
Since k, l are uniquely determined by P , we can define dim(P ) = (k, l) (the dimension of
P ). In particular dim(S) = (1, 1); hence if P is a free module, then dim(P ) = (k, k) for
some 0 ≤ k ≤ ω.

The following lemma is easy to prove see for example [17, Lemma 2.2].

Lemma 2.4.1. Let Ui, i ∈ I be a family of biuniform modules. Suppose A⊕B = ⊕i∈IUi.
If A is nonzero, then there are i, j ∈ I such that πjιAπAιi is a monomorphism.

The following lemma answers [13, Question 8.1].

Lemma 2.4.2. Let P be a countably generated projective S-module. If dim(P ) = (0, k),
then P = 0.

Proof. We can suppose that P ⊕ Q = S(ω) for some module Q. By [13, Remark 2.3]
P/rad(P ) ' P/PI ⊕ P/PK, hence our assumption is equivalent to P = PI. Thus if
(si)i∈ω ∈ P , then none of the si is a monomorphism. Suppose P 6= 0. Applying the map
Φ of Proposition 2.3.1 to (P,Q) we get a decomposition P ′⊕Q′ = M (ω). Since Φ is mono,
P ′ is nonzero. Moreover, we saw that the endomorphisms πjιP ′πP ′ιi, i, j ∈ ω are given
as coordinates of elements in P . Hence non of these endomorphisms is a monomorphism,
a contradiction to Lemma 2.4.1.

Proposition 2.4.3. Let P be a countably generated projective S-module. If dim(P ) =
(k, l), then k ≥ l.

Proof. Suppose there exists a countably generated projective S-module P such that
dim(P ) = (k, l) and k < l. Then k < ω. Observe that dim(S) = (1, 1). Since S is
a finitely generated projective module, there exists Q such that P ' Sk⊕Q. Because the
dimension is additive, dim(Q) = (0, l′), l′ 6= 0. This contradicts Lemma 2.4.2.

Let us recall a part of the main result of [13].

Fact 2.4.4. [13, Theorem 4.3] Let M be a biuniform R-module, S = EndR(M). Then
the following are equivalent:

(i) There is a monomorphism f ∈ S and an epimorphism g ∈ S such that gf = 0.

(ii) There exists a countably generated projective S-module P such that dim(P ) = (1, 0).

Observe that our results give a classification of projective S-modules in case S satisfies
the equivalent conditions of this theorem. Namely, if P is a module of dimension (1,0),
then all projective right S-modules are isomorphic to P (X) ⊕ S(Y ).

Right now we are not able to say more in general. In case M is uniserial one can
complete the classification using the following lemma which is just a small modification of
[17, Proposition 2.7]. Let us recall that if M is a nonzero uniserial module, S its endomor-
phism ring and I,K the ideals of S defined above, then we define Mm = ∩f∈S\If(M) and
Me =

∑
f∈S\K Ker f . These are fully invariant submodules of M ; for some properties of

these submodules see [18].

Lemma 2.4.5. [17, Proposition 2.7] Let M be a nonzero uniserial module such that
EndR(M) is not local. Assume there is a decomposition A ⊕ B = M (ω), A 6= 0 such
that πjιAπAιi ∈ EndR(M) is not an epimorphism for any i, j ∈ ω. Then there are a
monomorphism f : M →M and an epimorphism g : M →M such that gf = 0.
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Proof. For any i ∈ ω let Mi be an isomorphic copy of M and let N = ⊕i∈ωMi. We
consider a decomposition N = A⊕B such that for any i, j ∈ ω πiιAπAιj(Mj) 6= Mi, where
πA : N → A, πB : N → B, πi : N → Mi are the canonical projections and ιA : A → N ,
ιB : B → N , ιi : Mi → N are the canonical injections. Observe that for any i ∈ ω we have
πiπB(Mi) = Mi and πjπB(Mi) 6= Mj whenever i 6= j. (Since we work inside the module
N , we can omit the canonical inclusions and consider the projections as endomorphisms
of N .)

The strategy of the proof is following: We find a decomposition of B as a direct sum of
modules isomorphic to M , then we prove A ⊆ ⊕i∈ω(Mi)e and finally we show Mm  Me.

Set M ′0 = πB(M0). Since π0πB(M0) = M0, [17, Lemma 2.2], gives that M ′0 is a direct
summand of N isomorphic to M . Therefore there exists B0 ⊆ B such that B = M ′0⊕B0.
Note that, for any j > 0, πj(M ′0) 6= Mj .

Suppose that we have constructed M ′0, . . . ,M
′
k such that B = M ′0 ⊕ · · · ⊕M ′k ⊕ Bk

for some Bk ⊆ B, πj(M ′0 ⊕ · · · ⊕M ′k) 6= Mj for any j > k and πB(M0 ⊕ · · · ⊕Mk) =
M ′0⊕ · · · ⊕M ′k. Put M ′k+1 = πBk(Mk+1) (the projection πBk : N → Bk is with respect to
the decomposition N = A ⊕M ′0 ⊕ · · · ⊕M ′k ⊕ Bk). Now we have πk+1(M ′k+1) = Mk+1;
therefore, by [17, Lemma 2.2], M ′k+1 is a direct summand of Bk isomorphic to M and we
have B = M ′0⊕· · ·⊕M ′k⊕M ′k+1⊕Bk+1 for some Bk+1 ⊆ Bk. From the induction argument
we have that M ′0⊕· · ·⊕M ′k+1 = πB(M0⊕· · ·⊕Mk+1) and thus πj(M ′0⊕· · ·⊕M ′k+1) 6= Mj

for any j > k + 1.
It is easy to check that B = ⊕i≤ωM ′i , where πi(M ′i) = Mi.
By [18, Observation 2.6], for any x ∈ ⊕i∈ω(Mi)e ⊆ N we have πB(x) ⊆ ⊕i∈ω(M ′i)e ⊆

B. Further, observe that πB(Mi) ⊆ ⊕ij=0M
′
j for any i ∈ ω. Finally, let π′i : B →M ′i , i ∈ ω

be the canonical projections given by B = ⊕i∈ωM ′i . Then π′iπB(Mi) = M ′i . Suppose
that there exists a ∈ A \ ⊕i∈ω(Mi)e; write a = m0 + · · · + mk,mi ∈ Mi. Let j be the
greatest index such that mj 6∈ (Mj)e. If l < j, then π′jπB(ml) = 0 and if l > j, then
π′jπB(ml) ∈ (M ′j)e. Since, by [18, Lemma 2.3(iv)], for any epimorphism f : Mj → M ′j ,
f−1((M ′j)e) = (Mj)e, we get π′jπB(mj) 6∈ (M ′j)e. Thus πB(a) 6= 0, a contradiction to
a ∈ A. Therefore we conclude that A ⊆ ⊕i∈ω(Mi)e.

In order to conclude the proof, let us recall that, by Lemma 2.4.1, A 6= 0 implies that
there exist i, j ∈ ω such that πjιAπAιi is a monomorphism. So πj(A) contains (Mj)m
as a proper submodule according to Lemma [18, Lemma 2.2(ii)]. Thus if A 6= 0, then
Mm  Me. If x ∈ Me \Mm, then there are a monomorphism f : M → M such that
f(M) ⊆ xR and an epimorphism g : M →M such that g(x) = 0. Obviously gf = 0.

Proposition 2.4.6. Let M be a nonzero uniserial module. Suppose that gf 6= 0 for
any monomorphism f : M → M and any epimorphism g : M → M . Then any projective
S−module is free.

Proof. By a classical result of Kaplansky any projective module over a local ring is free
(we re-proved this in Corollary 2.2.4). Thus we can suppose that EndR(M) is not local.
Let P be a countably generated projective S-module that is not free. We can suppose that
dim(P ) = (k, 0), where k 6= 0. Let Q be an S-module such that P ⊕Q = S(ω). Applying
Φ we obtain a decomposition P ′⊕Q′ = M (ω), where P ′ is nonzero. Since dim(P ) = (k, 0),
this decomposition satisfies the assumption of Fact 2.4.5. That implies the existence of a
monomorphism f : M →M and an epimorphism g : M →M such that gf = 0.

Thus we reached the classification of projective modules over the endomorphism ring
of a uniserial module U that is quite similar to that of modules in Add(U).
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Theorem 2.4.7. Let U be a nonzero uniserial R-module and let S = EndR(U). Then
every right projective S-module is free if and only if gf 6= 0 for a monomorphism f : U →
U and an epimorphism g : U → U . In the opposite case there is a countably (but not
finitely) generated projective S module P such that P/rad(P ) is simple and every right
projective S-module is isomorphic to P (X) ⊕ S(Y ).

Recall that a module U is called self-small if for any homomorphism f : U → U (ω)

there exists a finite set F ⊆ ω such that the image of f is contained in UF . A module U
is said to be quasi-small if for any family Mi, i ∈ X, of modules such that U is a direct
summand of ⊕i∈XMi, there exists a finite set X0 ⊆ X such that U is isomorphic to a
direct summand of ⊕i∈X0Mi. For example, any finitely generated module is self-small
and quasi-small. It can be shown that any self-small uniserial module is quasi-small.

Remark 2.4.8. Let U be a uniserial module such that there are f 6∈ I and g 6∈ K such
that gf = 0. Suppose that U is quasi-small (for example, it happens if there is u ∈ U
such that h(u) 6= 0 for any h 6∈ K). By [17, Theorem 1.1], there exists a unique uniserial
module V 6' U such that V is a direct summand of U (ω). In this case all objects of Add(U)
are isomorphic to direct sums of copies of U and V . It can be proved that HomR(U, V ) is
a projective right S = EndR(U)-module of dimension (1, 0). Moreover, the Hom - tensor
adjunction induces an equivalence of K and L, where K is the full subcategory of Add(U)
given by modules of finite Goldie dimension and L is the full subcategory of Proj−S given
by projective modules with finitely generated radical factor. An example of a uniserial
module U of required property can be found in [15] but we do not know whether U can
be chosen such that HomR(U,−) does not commute with direct sums.

Question 2.4.9. We ask whether there is a uniserial module U satisfying the following:

(i) U is quasi-small.

(ii) U is not self-small.

(iii) There exist a monomorphism f : U → U and an epimorphism g : U → U such that
gf = 0.

Observe that (ii) implies that U is a countably but not finitely generated module. We
do not know the answer even if (ii) is replaced by this weaker condition.

2.5 Pure projective modules over an exceptional chain ring

In this section we are going to describe a case where there is a projective module which
is not a direct sum of indecomposable modules.

Using Theorem 2.2.3 we can complete the classification of pure projective modules
over an exceptional chain ring (see [14, Conjecture 5.9]). As most of the work was already
done in [14], we shall be as brief as possible but we will follow an abstract approach
introduced in [19]. An interested reader is advised to see [4, 16, 14, 19] for details.

Let R be a ring and let T,U be finitely generated uniserial modules such that

(i) The endomorphism ring of T is local.

(ii) There exists a uniserial module V 6' U such that V is a direct summand of U (ω).
Such V is unique up to isomorphism by [17, Theorem 1.1].
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(iii) There exists a module W such that U ⊕ T (ω) ' V ⊕W .

Let M = T ⊕ U and let S = EndR(M). Since M is finitely generated, cate-
gories Add(M) and Proj − S are equivalent. Let us denote P1 = HomR(M,T ), P2 =
HomR(M,U), P3 = HomR(M,V ) and P4 = HomR(M,W ) (take some W satisfying (iii),
we shall see that it is in fact unique). Now we want to understand radical factors of
P1, P2, P3, P4. These S-modules are countably generated and P1, P2 are even finitely gen-
erated. Since P1 is a projective module of local endomorphism ring, S1 := P1/rad(P1) is
simple. Further EndS(P2) ' EndR(U), U cannot have the endomorphism ring local by
(ii), therefore P2 has exactly 2 maximal submodules X1, X2 such that S2 := P2/X1 and
S3 := P2/X2 are not isomorphic. Namely, set X1 = {f : T ⊕ U → U | f |U is not mono}
and X2 = {f : T ⊕ U → U | f |U is not epi}. Observe that an arbitrary f : U → U is
not a monomorphism (resp. not an epimorphism) if and only if Im HomR(M,f) ⊆ X1

(resp. Im HomR(M,f) ⊆ X2). Since T is not a direct summand of U , S1, S2, S3 are
pair-wise non-isomorphic simple modules S/J(S) ' S1 ⊕ S2 ⊕ S3. Again, we shall write
dim(P ) = (a, b, c) if a, b, c are cardinals such that P/rad(P ) ' S

(a)
1 ⊕ S(b)

2 ⊕ S(c)
3 . There

exists a split monomorphism ν : V → U (ω) such that πiν : V → U is not a monomorphism
for any i > 0 (πi stands for the canonical projection U (ω) → U), see [4, Proof of Proposi-
tion 9.30] for details. Then it is easy to check that dim(P3) = (0, 1, 0). Finally, we derive
dim(P4) = (ω, 0, 1) easily from P

(ω)
1 ⊕P2 ' P3 ⊕P4. Note that W is indeed described by

(i),(ii),(iii) uniquely up to isomorphism. Let us summarize our calculations:

dim(P1) = (1, 0, 0),dim(P2) = (0, 1, 1),dim(P3) = (0, 1, 0),dim(P4) = (ω, 0, 1) .

Now we claim that any projective S-module is isomorphic to a direct sum of copies of
P1, P2, P3 and P4. Let Q be a countably generated module of dimension (a, b, c). If a = ω,
then P

(b)
3 ⊕ P (c)

4 ' Q. If a < ω, there is an S-module Q′ such that Q = Q′ ⊕ P a1 because
P1 is finitely generated. If b ≥ c, then Q′ is a direct sum of copies of P2 and P3. If
b < c then, since P2 is finitely generated, there exists projective S-module Q′′ such that
dim(Q′′) = (0, 0, d). Since Q′′ ⊕ P (d)

3 ' P
(d)
2 there would be a module in Add(U) that is

not a direct sum of copies of V and U , a contradiction to Theorem 2.4.7. This proves the
claim and we are ready to classify pure projectives over some very strange rings.

Recall that a ring R is called a chain ring if RR,RR are (left and right) uniserial
R-modules. Following [16], a chain ring is said to be exceptional if it has exactly 3
two-sided ideals 0, J(R), R, J(R)2 = J(R) and R is prime and contains zero divisors.
Henceforth, let R be an exceptional coherent chain ring. By [16, Lemma 3.5] for any
0 6= r, s ∈ J(R) modules R/rR and R/sR are isomorphic and any pure projective R-
module is isomorphic to a direct summand of a direct sum of copies of R,R/rR for some
(any) 0 6= r ∈ J(R). Let U = R/rR, T = RR. Then (i) follows since T is projective and
uniserial, (ii) holds by [14, Lemma 4.2] and (iii) holds by [14, Lemma 4.3]. As remarked
above, pure projective modules over R are exactly objects of Add(U ⊕ T ) and categories
Add(U ⊕ T ) and Proj− EndR(U ⊕ T ) are equivalent, therefore we have

Theorem 2.5.1. Let R be an exceptional chain coherent ring. Then any pure projective
module is isomorphic to a direct sum of copies of T,U, V,W .

Remark 2.5.2. It was noted in [19] that W is not a direct sum of uniserial modules, but
in fact P4 cannot be written as a direct sum of indecomposable modules and neither can
W . Indeed, by [14, Proposition 4.5] any direct sum decomposition of W is of the form



2. Projective modules are determined by their radical factors 22

W ⊕ T (δ), where 0 ≤ δ ≤ ω. This statement now follows easily from Theorem 2.5.1 and
remains valid in the more abstract context as at the beginning of this section.
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3. FAIR-SIZED PROJECTIVE MODULES

3.1 Introduction

This paper is devoted to the study of infinitely generated projective modules over associa-
tive unitary rings. We are interested in the case in which the ring has projective modules
that are not direct sums of finitely generated modules. Some general results and examples
of rings with such modules were given in [12]. Our motivation was to find a technique
that could be applied to prove the existence of superdecomposable projective modules
over semilocal rings.

Let us briefly explain the main idea of the paper. According to a well known theorem
of Kaplansky, any projective right module over a ring R is a direct sum of countably
generated right modules, so it suffices to investigate countably generated projectives, that
is, direct summands of a countably generated free right module F = R

(N)
R . Suppose that

P ⊕ P ′ = F . The canonical projection π : F → P is given by a column-finite N × N
idempotent matrix A. We say that A represents P (observe that the columns of A
generate P ). Let In be the ideal of R generated by the entries of A that are below the
n-th row. Clearly, P is finitely generated if and only if there exists k ∈ N such that Il = 0
for every l ≥ k. The other possible extreme case is when I1 = I2 = · · · = R. It is a
well-known result of Bass [3, Theorem 3.1] that in this case P ' F provided R/J(R) is
right noetherian. In this paper, we focus our attention on the case in which the sequence
I1 ⊇ I2 ⊇ . . . terminates at an ideal I. It is easy to see that I is idempotent. We
show that if R is left and right noetherian and the sequence I1 ⊇ I2 ⊇ · · · terminates
at I, then P contains as a direct summand any countably generated projective module
having its trace ideal in I. Cf. [3, Theorem 3.1]. The following easy condition assures
that any sequence of ideals derived from an idempotent column-finite matrix terminates:
If I1, I2, . . . is a sequence of ideals in R such that Ik+1Ik = Ik+1 for any k ≥ 1, then there
exists n such that In = In+1 = . . . . Call (*) this condition.

In section 2, we show that over a left and right noetherian ring R satisfying condi-
tion (*), the theory of projective modules “reduces” to the theory of idempotent ideals in
R and the theory of finitely generated projective modules over the factor rings of R mod-
ulo idempotent ideals. This explains and is related to the statement in the introduction
of [3], according to which “infinitely generated projective modules invite little interest”.

The remaining sections are devoted to presenting some examples. We prove that (*)
holds for semilocal noetherian rings, integral group rings of a finite group and universal
enveloping algebras of finite solvable Lie algebras over a field of characteristic zero. This
allows us to prove that:
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(i) There exists a semilocal noetherian ring with superdecomposable projective mod-
ules.

(ii) Indecomposable projective modules over integral group rings of finite groups are
finitely generated.

(iii) Any infinitely generated projective module over a finite dimensional solvable Lie
algebra over a field of characteristic zero is free.

Notice that (ii) solves [9, Problem 8.34].

Let us briefly recall some notions and fix the notation. The word “ring” always means
associative ring with an identity and “module” means unital right module. If M is a
module over R, then

∑
f∈HomR(M,R) f(M) is an ideal of R called the trace ideal of M .

We denote it Tr(M). If P is a projective module over R, then Tr(P ) is the smallest
ideal X of R such that PX = P , and is an idempotent ideal. Further if X is a subset
of a ring R, we denote RXR the (two-sided) ideal generated by X. In case X = {x}
we denote RxR the smallest ideal of R containing x. Notice that in general the relation
RxR = {rxs | r, s ∈ R} does not hold. Recall the following important result due to
Whitehead:

Fact 3.1.1. [18, Corollary 2.7] Let I be an idempotent ideal of R finitely generated on
the left. Then there exists a countably generated projective right R-module P such that
Tr(P ) = I.

To avoid confusion, we will call the rings which have all left ideals and all right ideals
finitely generated left and right noetherian rings, although they are often called noetherian
rings. Finally, we will call infinitely generated projective modules the projective modules
that are countably generated but not finitely generated.

3.2 I-big modules

Let P be a countably generated projective module over a ring R and let I be an ideal
of R. We say that P is I-big if for any countably generated projective module Q with
trace ideal contained in I there exists an epimorphism of P onto Q. Hence, in this case,
P contains a direct summand isomorphic to Q. Notice that this definition will be applied
to countably generated projective modules only.

Remark 3.2.1. (Eilenberg’s trick) Let I be an ideal of a ring R and let P be an I-
big projective module. If Q is a countably generated projective module with trace ideal
contained in I, then P ⊕Q ' P , because Q(ω) is a direct summand of P .

Lemma 3.2.2. Let I be an idempotent ideal that is finitely generated as a left ideal. Then
there exists an I-big projective module P such that Tr(P ) = I. Such a module P is unique
up to isomorphism.

Proof. By [18, Corollary 2.7], there exists a countably generated projective module
P with Tr(P ) = I. Clearly, Tr(P (ω)) = I. If Q is a countably generated projective
module having the trace ideal contained in I, then QI = Q and Q is a factor of P (ω). Let
P1, P2 be I-big modules such that Tr(P1) = Tr(P2) = I. By Remark 3.2.1, P1 ⊕P2 ' P1.
Similarly, P1 ⊕ P2 ' P2. Thus P1 ' P2.
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Remark 3.2.3. We have just proved that, for any ideal I that is a trace ideal of a count-
ably generated projective module, there exists a unique countably generated projective
module P (up to isomorphism) such that P is I-big and Tr(P ) = I. We will make use
of I-big modules over left and right noetherian rings. Observe that R(ω) is an R-big pro-
jective module and that any R-big projective module has trace ideal R. Therefore any
R-big projective module is isomorphic to R(ω).

We say that a ring R satisfies Condition (*) if for any sequence I1, I2, . . . of ideals in
R such that Ik+1Ik = Ik+1, k ∈ N there exists n ∈ N such that Ik = In for any n ≤ k ∈ N.
Notice that such a sequence is necessarily a descending chain.

We will use this condition in the following context: Suppose we have a countably
generated projective module P . Thus P is a direct summand of a countably generated
free module, P ⊕ P ′ = R(N) say. The canonical projection π : R(N) → P can be written
with respect to the canonical basis of R(N) as an N×N matrix A = (ai,j)i,j∈N with entries
in R. Moreover, A is a column-finite matrix (that is, for any j ∈ N there exists i ∈ N with
ak,j = 0 whenever k ≥ i). Therefore A2 is defined and it is easy to see that A2 = A (that
is, A is an idempotent matrix). Conversely, given any idempotent column-finite N × N
matrix A, the corresponding module P = AR(N) is projective.

Now, let A = (ai,j)i,j∈N be an idempotent column-finite matrix over R and let Ik =∑
k≤i∈N,j∈N Rai,jR, k ∈ N. For any k ∈ N there exists an integer nk > k such that

ai,j = 0 whenever i ≥ nk and j < k. Since A is idempotent, we have InkIk = Ink .
Hence there exist positive integers m1 < m2 < · · · such that Imj+1Imj = Imj+1 . If R
satisfies (*), then there exists l ∈ N such that Imj = Iml for any l ≤ j ∈ N, in particular,
Imj = Imj+1 = Imj+1Imj = I2

mj if j ≥ l. So if I = ∩j∈NInj , then I is an idempotent ideal
and Ij = I for almost all j ∈ N.

We will say that a projective module P over a ring R is fair-sized if P is countably
generated and the set I(P ) := { I | I is an ideal of R such that P/PI is finitely generated }
has a least element. The following lemma shows that any countably generated projective
module over a ring satisfying (*) is fair-sized. Moreover, the proof reveals the relation
between the smallest element of I(P ) and an idempotent matrix representing P .

Lemma 3.2.4. Let R be a ring satisfying (*) and let P be a countably generated projective
module over R. The set { I | I is an ideal of R such that P/PI is finitely generated } has
a least element I0, which is an idempotent ideal.

Proof. Let A = (ai,j)i,j∈N be an idempotent column-finite matrix representing P ,
and Ik, k ∈ N, be the ideals defined above. Set I0 = ∩k∈NIk. As remarked above, I0
is idempotent. Let { ei | i ∈ N } be the canonical free basis of R(N) and suppose that
I0 = Im = Im+1 = . . . Then

∑m−1
i=1 AeiR+ PI0 = P , so P/PI0 is finitely generated. Let

K be an ideal such that P/PK is a finitely generated module. Assume P = AR(N) ⊆ R(N).
Notice that PK = P ∩K(N), that is, the elements of PK are exactly the elements of P
having all their components in K. If P/PK is finitely generated, then there exists k ∈ N
such that ai,j ∈ K for every i ≥ k and j ∈ N. Therefore I0 ⊆ K.

Thus if R satisfies (*), every countably generated projective module P determines
a pair (I, P ′), where I is an idempotent ideal and P ′ is a finitely generated projective
module over R/I. More precisely, I is the smallest ideal of R such that P/PI is finitely
generated and P ′ is the module P/PI considered as an R/I-module in the obvious way. If
P is a countably generated projective module, then the corresponding idempotent ideal I
is given by a matrix representing P as I = ∩k∈NIk, but the characterization of I in Lemma
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3.2.4 implies that I is independent of the choice of the matrix (and of the complement P ′

in the decomposition P ⊕ P ′ = R(N)).

Lemma 3.2.5. Let I be an idempotent ideal of a ring R such that I is finitely generated
as a left module and as a right module. If P and Q are I-big projective modules satisfying
P/PI ' Q/QI, then P ' Q.

Proof. Let B be the unique I-big projective module having trace ideal I. Observe
that P⊕B(ω) ' P by Remark 3.2.1. If f : P → Q induces an isomorphism P/PI → Q/QI,
then f(P ) + QI = Q. Since QI is countably generated and Tr(B) = I, we get an
epimorphism h : P ⊕ B(ω) → Q such that h|P = f . As f induces a monomorphism
P/PI → Q/QI and h(B(ω)) ⊆ QI, we get X = Ker h ⊆ PI ⊕ B(ω). Thus X is a direct
summand of PI⊕B(ω). In particular, XI = X. Consequently, Tr(X) ⊆ I, so Q⊕X ' Q
by Remark 3.2.1. Finally, Q ' Q⊕X ' P ⊕B(ω) ' P , and Q ' P follows.

The following lemma is a straightforward extension of [18, Corollary 2.7].

Lemma 3.2.6. Let I be a proper idempotent ideal of a ring R. Assume I finitely generated
as a left ideal. Let P ′ be a finitely generated projective module over R/I. Then there exists
an I-big projective module P such that P/PI ' P ′.

Proof. We will find a countably generated projective module P0 such that P0/P0I '
P ′.

Suppose that P ′ is given by an n× n matrix X idempotent modulo I. The R-matrix
X is a lifting of an idempotent R/I-matrix X. Let I = Ii1 + · · · + Iil, i1, . . . , il ∈ I.
Construct a sequence of matrices A1, A2, . . . as follows: A1 has c1 = n columns and
r1 = ln+ n rows. The square matrix given by the first n rows of A1 is X, (A1)i,j = 0 if
n < i ≤ n + (j − 1)l or i > n + jl, and the remaining entries in each column are filled
with the generators i1, . . . , il. That is, the matrix A1 written in blocks is

X
b 0 0 · · · 0
0 b 0 · · · 0

...
0 0 0 · · · b

 ,

where b is the column (i1, . . . , il)T .
If Ak, rk, ck have been defined, then Ak+1 has ck+1 = rk columns and rk+1 = rk + lrk

rows. The n×n top left corner of Ak+1 is given by the matrix X and all the other entries
in the first rk rows of Ak+1 are zero. The remaining lrk rows contains i1, . . . , il placed in
each column in the same “independent manner” as described for A1.

We claim that for any k ∈ N there is a ck+1× rk+1 matrix Bk such that BkAk+1Ak =
Ak. Observe that the ck×ck matrix given by the first ck rows of Ak is idempotent modulo
I. We can find an rk × rk matrix Ck such that CkAk = Ak: The n × n top left corner
of Ck is given by X, the other entries in the first ck columns are zero and the matrix Ck
can be completed by elements of I because I = Ii1 + · · · + Iil and i1, . . . , il are placed
independently in the bottom part of Ak. This matrix Ck can be written as DkAk+1,
where Dk is a suitable rk × rk+1 matrix. (Again we place X in the top left corner of Dk,
and put all the other entries in the first rk columns of Dk equal to zero. The remaining
entries can be completed because the generators of I are placed independently in Ak+1.)
Now, since Ak = CkAk = DkAk+1Ak, put Bk = Dk.
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View the free module Fk = Rck as the set of columns of length ck. Let fk : Fk → Fk+1

be the homomorphism given by fk(u) = Ak ·u for every u ∈ Fk. By [18, Theorem 2.1], the
colimit of the direct system induced by the fk’s is a projective module P0. Obviously, P0

is a countably generated module. Applying the functor −⊗R R/I : Mod-R→ Mod-R/I,

we see that P0/P0I is an R/I-module isomorphic to the colimit of the system (R/I)n X→
(R/I)n X→ · · · , which is easily seen to be X(R/I)n ' P ′. Therefore P0/P0I ' P ′.

Finally, by Lemma 3.2.2, there exists an I-big projective module B such that Tr(B) =
I. Since BI = I, P := P0 ⊕B is an I-big projective module with P/PI ' P0/P0I ' P ′.

Remark 3.2.7. Let us explain the construction in the proof of Lemma 3.2.6 via an
example. Suppose that I is a proper idempotent ideal of a ring R such that I = Ii1 + Ii2
for some i1, i2 ∈ I. Let x ∈ R be such that x + I is an idempotent element of R/I, i.e.,
x − x2 ∈ I. Then there are t1, t2 ∈ I such that x = x2 + t1i1 + t2i2. Further, there are
u1, u2, v1, v2 ∈ I such that u1i1 + u2i2 = i1 and v1i1 + v2i2 = i2. Set

A1 =

 x
i1
i2

 C1 =

 x t1 t2
0 u1 u2

0 v1 v2

 C ′1 =

 x− x2 t1 t2
0 u1 u2

0 v1 v2

 .

Obviously, C1A1 = A1. Moreover, all entries of C ′1 are in I. Therefore there is a 3 × 6
matrix T = (ti,j)1≤i≤3,1≤j≤6 satisfying TA′2 = C ′1, where

A′2 =

 i1 i2 0 0 0 0
0 0 i1 i2 0 0
0 0 0 0 i1 i2

T

.

All the entries of T can be chosen in I, but this is not important. It is easy to see that
C1 = B1A2, where

B1 =

 x 0 0 t1,1 t1,2 t1,3 t1,4 t1,5 t1,6
0 0 0 t2,1 t2,2 t2,3 t2,4 t2,5 t2,6
0 0 0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6



A2 =

 x 0 0 i1 i2 0 0 0 0
0 0 0 0 0 i1 i2 0 0
0 0 0 0 0 0 0 i1 i2

T

.

The following lemma is, in a sense, a restatement of [3, Theorem 3.1]. We prefer to
give a brief but complete proof of the statement for left and right noetherian rings rather
than specifying what should be modified in the proof of [3, Theorem 3.1] to get a real
generalization.

Lemma 3.2.8. Let R be a left and right noetherian ring. Let A = (ai,j)i,j∈N be an
idempotent column-finite matrix. Set Ik =

∑
i≥k,j∈N Rai,jR. If there exists n0 ∈ N such

that Im = In0 for every m ≥ n0, then the module P = AR(N) ⊆ R(N) is In0-big.

Proof. Set I = In0 and observe that I is finitely generated as a left ideal. Let ai
be the i-th column of A. We will prove the following claim. For any n ∈ N there exist
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m ∈ N and r1, . . . , rm ∈ R such that if a1r1 + · · ·+ amrm = (ci)i∈N, then I ⊆
∑
i≥nRci.

By induction, define positive integers s1, . . . , sk, s′1, . . . , s
′
k and x1, . . . , xk ∈ R such that∑l

i=1Rxi  
∑l+1
i=1Rxi for every 1 ≤ l < k and I ⊆

∑k
i=1Rxi.

Put s1 = 1, s′1 = n and x1 = as′1,s1 . If I ⊆ Rx1, we have finished. Otherwise,
suppose we have defined positive integers s1, . . . , sl, s′1, . . . , s

′
l and x1, . . . , xl ∈ R such

that I 6⊆
∑l
i=1Rxi. Since R is right noetherian, there exists ml ∈ N such that ml > sl

and
∑
j∈N as′l,jR =

∑
1≤j<ml as′l,jR. Since A is column-finite, there exists m′l ∈ N with

m′l > s′l and ai,j = 0 whenever i ≥ m′l and j ≤ ml. As I ⊆ Im′l , there exist s′l+1 > m′l,
sl+1 > ml and tl+1 ∈ R such that as′l+1,sl+1tl+1 6∈

∑l
i=1Rxi. Put xl+1 = as′l+1,sl+1tl+1.

Since R is left noetherian, this process must stop, that is, there exists k such that
I ⊆

∑
1≤i≤k Rxi. It follows that there are r1, . . . , rsk ∈ R such that the s′i-th component

of
∑sk
i=1 airi is xi for any 1 ≤ i ≤ k. This is obvious for k = 1. If k > 1, note that

s1 < m1 < s2 < m2 < · · · < mk−1 < sk and s′1 < m′1 < s′2 < m′2 < · · · < m′k−1 < s′k.
Further,

∑
j∈N as′1,jR =

∑m1−1
j=1 as′1,jR and

∑
j∈N as′i,jR =

∑mi−1
j=mi−1

as′i,jR if 2 ≤ i < k.
Moreover, ai,j = 0 for any 1 ≤ j ≤ ml and i ≥ m′l. This concludes the proof of the claim.

Now we can construct a sequence p1, p2, . . . of elements in P , pi = (cj,i)j∈N say, such
that there exist integers 1 = i1 < i2 < · · · with I ⊆ Rcik,k+ · · ·+Rcik+1−1,k for any k ∈ N
and cl,k = 0 for any l ≥ ik+1. We proceed by induction again. Put i1 = 1. By the claim,
there exists p1 such that I ⊆

∑
j∈N Rcj,1. Of course, there exists i2 > i1 with cl,1 = 0 for

every l ≥ i2.
Suppose we have p1, . . . , pk and i1, . . . , ik+1. By the claim, there exists pk+1 such that

I ⊆
∑
j≥ik+1

Rcj,k+1. Let ik+2 > ik+1 be an integer such that cj,k+1 = 0 for all j ≥ ik+2.
Now, let Q be a countably generated projective module with trace ideal contained

in I given by a column-finite idempotent matrix B over R (again, we consider Q as a
submodule of R(N)). Since the trace ideal of Q lies in I, all entries of B are in I. Let C be
a matrix such that columns of C are given by p1, p2, . . . . The shape of C guarantees the
existence of a column-finite matrix D having all entries in Tr(Q) such that DC = B (it is
important to realize that the elements of D can be chosen in I). Now, let f : R(N) → R(N)

be given by D. Observe, that Q ⊆ f(P ) and that if π : R(N) → Q is a projection, then
πf |P is an epimorphism of P onto Q. Hence P is I-big.

Remark 3.2.9. Imitating the proof of [3, Theorem 3.1], we could get the following. Let
R be a ring such that R/J(R) is right noetherian. Let P, Ik be as above and suppose that
I = In = In+1 = · · · is a finitely generated left ideal such that I ∩ J(R) = J(R)I. Then
P is I-big. (For I = R we get Bass’ big projectives theorem). Also we could omit the
assumption (*) and prove that P is ∩n∈NIn-big. We do not give the details because we
do not have applications for this version of Lemma 3.2.8.

Comparing the definition of I0 in the proof of Lemma 3.2.4 and the statement of
Lemma 3.2.8, we immediately get

Corollary 3.2.10. Let R be a left and right noetherian ring satisfying (*). If P is a
countably generated projective R-module and I is the least ideal of R such that P/PI is
finitely generated, then P is I-big.

Obviously, Lemma 3.2.8 can be applied to study projective (right) modules over left
and right noetherian rings satisfying (*). The following lemma shows that over these rings
we can apply Lemma 3.2.8 also for projective left modules. Recall that an N× N matrix
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A = (ai,j)i,j∈N is said to be row-finite if for any i ∈ N there exists j ∈ N such that ai,k = 0
for every k ≥ j.

Lemma 3.2.11. Let R be a left and right noetherian ring satisfying (*). Let A =
(ai,j)i,j∈N be a row-finite matrix over R such that A2 = A. For any k ∈ N let Ik =∑
j>k,i∈N Rai,jR. Then there exists n ∈ N such that Im = In for any m ≥ n.

Proof. Throughout the proof, we will work inside the left module F = RR
(N). Let

e1, e2, . . . be the canonical free basis of F . For any i ∈ N, let ai be the i-th row of A, that
is, ai = (ai,1, ai,2, . . . ) ∈ F . Thus A gives a left projective module P = FA =

∑
i∈N Rai.

For any l ∈ N0 let πl : F → RR
l be the projection given by πl((x1, x2, . . . )) = (x1, . . . , xl)

(as usual, RR
0 is the trivial left R-module). For any i ∈ N let ci : F → RR be the

projection given by ci((x1, x2, . . . )) = xi.
Construct integers 0 = n1 < n2 < · · · and ideals J1 ⊇ J2 ⊇ · · · as follows: Put

n1 = 0 and J1 =
∑
i,j∈N Rai,jR. Suppose that nk and Jk have been defined. Since

R is left noetherian, there exists l ∈ N such that the module πnk(P ) is generated by
πnk(a1), . . . , πnk(al). As A is row-finite, there exists m > nk such that ai,m′ = 0
for any 1 ≤ i ≤ l,m′ ≥ m. Set nk+1 = m. Let Jk+1 be the ideal generated by
{ r ∈ R | there exist p ∈ P and i ∈ N such that πnk+1(p) = 0 and ci(p) = r }.
We claim that Jk+1Jk = Jk+1. In order to prove the claim, it suffices to prove that
S ⊆ Jk+1Jk for a set S generating Jk+1. Let p ∈ P be such that πnk+1(p) = 0. Write
p = (0, . . . , 0, rnk+1+1, . . . ). Then p = rnk+1+1(enk+1+1A)+rnk+1+2(enk+1+2A)+ · · · From
the construction it follows that for any i ∈ N there exists pi ∈ P such that πnk(pi) = 0 and
cnk+1+j(pi) = cnk+1+j(enk+1+iA) for every j ∈ N. Since cnk+1+j(pi) ∈ Jk, the equation
rnk+1+i = cnk+1+i(p) = rnk+1+1cnk+1+i((enk+1+1)A) + rnk+1+2cnk+1+i((enk+1+2)A) + · · ·
implies that Jk+1 = Jk+1Jk.

As R satisfies (*), there exists m ∈ N such that Jm = Jm+1 = · · · Clearly, Jk ⊆ Ink
for any k ∈ N. On the other hand, Ink+1 ⊆ Jnk . This concludes the proof of the lemma.

Let R be a ring, let Vr(R) be a set of representatives of the finitely generated projective
right R-modules, Vl(R) be a set of representatives of the finitely generated projective left
R-modules, Vr(R)∗ be a set of representatives of the countably generated projective right
modules and Vl(R)∗ be a set of representatives of the countably generated projective left
R-modules. In the following theorem we consider Vr(R/R) and Vl(R/R) as sets containing
one element.

Theorem 3.2.12. Let R be a left and right noetherian ring satisfying (*). Let Id(R) be the
set of its idempotent ideals and let S be the disjoint union ∪̇I∈Id(R)Vr(R/I). Then there is
a bijection ϕ : Vr(R)∗ → S. Moreover, there exists a bijection between Vr(R)∗ and Vl(R)∗

extending the classical bijection between Vr(R) and Vl(R) induced by HomR(−, RR).

Proof. By Corollary 3.2.10, any countably generated projective right module P is
I-big, where I is the least ideal such that P/PI is finitely generated. We know that I is
idempotent. This gives a map of Vr(R)∗ into S. This map is a bijection by Lemmas 3.2.5
and 3.2.6.

Of course, all the results of this section can be formulated for left modules. We do not
know whether condition (*) is equivalent to condition (*’): Let I1, I2, . . . be a sequence
of ideals such that IkIk+1 = Ik+1 for any k ∈ N. Then there exists n ∈ N such that
In = In+1 = . . . Condition (*) is connected to right modules while (*’) is connected to
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left modules. Therefore it would be more precise to talk about condition right (*) instead
of (*). In order to be concise, we have omitted the word “right”, but the reader should
be aware that this condition has to be changed formulating the versions of the results for
left modules. However, we can use Lemma 3.2.11 and the “left version” of Lemma 3.2.8
to see that any countably generated projective left module Q is I-big, where I is the least
ideal such that Q/IQ is finitely generated. Again, I is idempotent and finitely generated
as a right module, therefore the “left versions” of Lemma 3.2.5 and Lemma 3.2.6 give a
bijection of V ∗l (R) and the disjoint union ∪̇I∈Id(R)Vl(R/I). The bijection between V ∗r (R)
and V ∗l (R), then follows from the dualities between finitely generated projective left and
right R/I-modules, where I varies in Id(R).

Remark 3.2.13. Observe that if R is a left and right noetherian ring having (*), then
every indecomposable projective module is finitely generated. Although we think that
(*) is a very particular property (see [8] for examples of rings having infinite properly
descending chains of idempotent ideals), it seems to occur quite often in natural examples
of left and right noetherian rings.

3.3 Semilocal noetherian rings

Recall that a ring R is said to be semilocal, if the factor of R modulo its Jacobson radical
is semisimple artinian. Throughout the paper, J(R) denotes the Jacobson radical of
R. If P,Q are projective modules, then P/PJ(R) ' Q/QJ(R) if and only if P ' Q
[13, Theorem 1.3]. In this section, we show that semilocal left and right noetherian rings
satisfy (*), so that any countably generated projective module over such a ring is fair-sized.
Further, we show a connection between the pair (I, P/PI) defined in the previous section
and the semisimple module P/PJ(R). Finally, we give an example of superdecomposable
projective module over a semilocal noetherian ring.

Recall that if P is a projective module over R, then the intersection of all maximal
submodules of P , called the radical of P , is rad(P ) = PJ(R). If R is semilocal and
S1, . . . , Sk are representatives of the simple R-modules (that is, for any simple R-module
S there exists exactly one i ∈ {1, . . . , k} with S ' Si), then for every projective module P
there are cardinals λ1, . . . , λk, uniquely determined, such that P/PJ(R) = S

(λ1)
1 ⊕ · · · ⊕

S
(λk)
k . We will write dim(P ) = (λ1, . . . , λk). Clearly, dim depends on the ordering of the

representatives of the simple R-modules. Therefore we will always suppose that with any
semilocal ring R we have some fixed ordering on the set of representatives of the simple
R-modules. By [13, Theorem 1.3], two projective R-modules P and Q are isomorphic if
and only if dim(P ) = dim(Q).

Lemma 3.3.1. Let R be a right noetherian semilocal ring. If I and K are idempotent
ideals of R such that I+J(R) = K+J(R), then I = K. In particular, R has only finitely
many idempotent ideals.

Proof. Since R/J(R) has only finitely many (idempotent) ideals, it is enough to
show that I + J(R) = K + J(R) implies I = K whenever I and K are idempotent ideals
of R.

First suppose that I ⊆ K are idempotent ideals of R. In particular, KI = I. Suppose
that I+J(R) = K+J(R). Then K = K(K+J(R)) = K(I+J(R)) = I+KJ(R). Since
R is right noetherian, Nakayama’s Lemma gives I = K.
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In general, suppose that I and K are idempotent ideals of R with I+J(R) = K+J(R).
Then I and I + K are idempotent ideals of R such that I + J(R) = I + K + J(R). By
the previous step, I = I +K, and therefore K ⊆ I. The proof for I ⊆ K is similar.

Corollary 3.3.2. Let R be a right noetherian semilocal ring. Then R satisfies condi-
tion (*).

Proof. Let π : R → R/J(R) be the natural projection. Consider a descending
sequence of ideals in R such that Ik+1Ik = Ik+1. Since π(I1), π(I2), . . . is a descending
sequence in an artinian ring R/J(R), there exists k0 ∈ N such that π(Ik) = π(Ik0) for
every k ≥ k0. Then Ik+1 = Ik+1(Ik+1 + J(R)) = I2

k+1 + Ik+1J(R) for every k ≥ k0.
By Nakayama’s Lemma, we see that Ik is idempotent for any k > k0. Now conclude by
Lemma 3.3.1.

The following lemma and its application was suggested by Dolors Herbera.

Lemma 3.3.3. Let P be a projective R-module with trace ideal I and let S be a simple
R-module. The following conditions are equivalent.

(i) S is a factor of IR.

(ii) S is a factor of P .

(iii) SI = S.

Proof. (i)⇒(ii) Suppose that f : I → S is nonzero. Then f(i) 6= 0 for some
i ∈ I. Since I is the trace ideal of P , there are homomorphisms g1, . . . , gk : P → I and
p1, . . . , pk ∈ P with g1(p1) + · · · + gk(pk) = i. Therefore fgj 6= 0 for some 1 ≤ j ≤ k.
(Observe that we did not use P projective for this implication.)

(ii)⇒(iii) Follows from PI = P .
(iii)⇒(i) Let f : RR → S be nonzero. Then f(I) = S, because SI = S.

Proposition 3.3.4. Let R be a semilocal left and right noetherian ring. Suppose that P
is a countably generated projective module. Then there exists a least ideal I in R such
that P/PI is finitely generated.

Moreover, let {S1, . . . , Sk} be a set of representatives of the simple modules, indexed
in such a way that P/PJ(R) ' Sn1

1 ⊕ · · · ⊕ Snll ⊕ S
(ω)
l+1 ⊕ · · · ⊕ S

(ω)
k , n1, . . . , nl ∈ N0,

0 ≤ l ≤ k. Then:

(i) P is I-big,

(ii) Si = SiI if and only if i > l,

(iii) P/PI/rad(P/PI) ' Sn1
1 ⊕ · · · ⊕ S

nl
l .

Proof. We have seen in Corollary 3.3.2 that R satisfies (*). By Lemma 3.2.4, there
exists I such that P/PI is finitely generated and I is contained in any other ideal K
such that P/PK is finitely generated. Moreover, P is I-big according to Corollary 3.2.10.
Since I is finitely generated as a left ideal, there exists a unique I-big projective module
B with trace ideal I and P ⊕B(ω) ' P according to Remark 3.2.1. By Lemma 3.3.3, if S
is a simple module, then S(ω) is a factor of P (and hence of P/PJ(R)) whenever SI = S.
Choose an enumeration of the simple modules such that S1, . . . , Sl are annihilated by I
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and Sl+1, . . . , Sk are factors of I. Let 0 ≤ λ1, . . . , λk ≤ ∞ be such that P/PJ(R) '
S

(λ1)
1 ⊕ · · · ⊕ S

(λk)
k . As remarked above, λl+1 = · · · = λk = ∞. On the other hand,

S
(λ1)
1 ⊕ · · · ⊕ S

(λl)
l is a factor of P annihilated by I, hence a factor of P/PI. Thus

λ1, . . . , λl are finite. Suppose P/PI/rad(P/PI) ' Sn1
1 ⊕· · ·⊕S

nl
l . Since Sλ1

1 ⊕· · ·⊕S
λl
l is

a semisimple factor of P/PI, λi ≤ ni for any 1 ≤ i ≤ l. On the other hand, Sn1
1 ⊕· · ·⊕S

nl
l

is a factor of P , so that ni ≤ λi for every 1 ≤ i ≤ l.

Recall that a nonzero module is called superdecomposable if it has no indecomposable
direct summand. The following lemma explains our craving for the existence of superde-
composable projectives over semilocal rings.

Lemma 3.3.5. Suppose that there exists a superdecomposable projective module over a
semilocal ring R. Then R possesses a nonzero decomposable projective module having all
its nonzero direct summands isomorphic.

Proof. By the theorem of Kaplansky, if there exists a superdecomposable projective
module, then there exists a superdecomposable countably generated projective module. It
follows easily that then there exists a superdecomposable countably generated projective
module Q such that dim(Q) = (m1, . . . ,mk), where mi = 0 or mi = ω for any 1 ≤ i ≤ k
(use the additivity of dim). Let Q′ be a superdecomposable module such that dim(Q′) has
all components in {0, ω} and the number of nonzero components is as small as possible.
Then it is easy to see that dim(Q′) = dim(Q′′) for any nonzero direct summand of Q′, so
[13, Theorem 1.3] gives that Q′ has the required property.

The following example discovered by Puninski [12] shows that a superdecomposable
projective module may exist even over a semilocal noetherian ring.

(cf. [12, Proposition 7.5]) Let Σ = Z \ 2Z ∪ 3Z ∪ 5Z and let ZΣ be the localization
of integers at Σ. Let A5 be the group of even permutations on the set of cardinality
5. Then the group ring ZΣ[A5] is a semilocal left and right noetherian ring with a
superdecomposable projective module.

Proof. We will repeat general arguments of [12] that show that the ring R = ZΣ[A5]
is a semilocal left and right noetherian ring. First, R is a finitely generated as a (left
and right) module over the commutative noetherian ring ZΣ, therefore R is noetherian
on both sides. Further, R ' EndR(RR), so that there exists an injective homomorphism
ϕ : R → EndZΣ(R) given by the left multiplication of R on RZΣ . For any g ∈ A5, let
θg ∈ EndZΣ(R) be given by θg(r) = rg, r ∈ R. Obviously, Im ϕ consists exactly of the
elements of EndZΣ(R) that commute with all the endomorphisms of the set { θg | g ∈ A5 }.
It follows that ϕ is a local homomorphism, that is, r is invertible in R if ϕ(r) is invertible
in EndZΣ(R). Finally, since EndZΣ(R) ' M60(ZΣ) is a semilocal ring, the ring R is also
semilocal by [4, Theorem 1].

Let I be the augmentation ideal of R, that is, the kernel of the epimorphism f : R→
ZΣ, f(

∑
g∈A5

rgg) =
∑
g∈A5

rg. Since [A5, A5] = A5, the ideal I is idempotent [1, The-
orem 2.1]. By [12], it can be proved that every nonzero finitely generated projective
module over R is a generator. In fact, we only need to show that if P is a finitely gener-
ated projective R-module, then Tr(P ) cannot be contained in I: Since ZΣ is a Dedekind
ring of zero characteristic and 2,3,5 are not invertible in ZΣ, P ′ = P ⊗ZΣ[A5] Q[A5] is a
free Q[A5]-module by [16, Theorem 8.1]. If Tr(P ) ⊆ I, then P ′I ′ = P ′, where I ′ is the
augmentation ideal of Q[A5], a contradiction. Let Q be a projective module having trace
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ideal I. If Q′ is a nonzero direct summand of Q, then Q′ cannot be finitely generated,
and there is a nonzero idempotent ideal K such that Q′ is K-big. Therefore Q′ cannot
be indecomposable.

Remark 3.3.6. In the next section we look closer at the localizations of Z[A5] showing
that the augmentation ideal of ZΣ[A5] contains no nontrivial idempotent ideals.

3.4 Integral group rings, especially Z[A5]

In this section, we prove that an integral group ring of a finite group satisfies condition (*).
The proof presented here is not the quickest one, but it shows how to calculate idempotent
ideals in particular examples. We apply this method to Z[A5] describing all countably
but not finitely generated projective modules up to isomorphism. Our approach will be
elementary.

First of all, let us introduce the notation we will use throughout this section. Let
G be a finite group and R = Z[G], Rp = Z(p)[G], R0 = Q[G]. For any prime p we
have R ⊆ Rp ⊆ R0. If I is an ideal of R, I(p) stands for the ideal in Rp generated
by I and I(0) stands for the ideal of R0 generated by I. That is, I(p) = Z(p)I and
I(0) = QI. We say that an ideal I ⊆ R (or an ideal I ⊆ Rp) extends to an ideal K ⊆ R0 if
K = QI. If S is a commutative ring, the augmentation ideal of S[G] is the kernel of the
canonical homomorphism f : S[G] → S given by f(

∑
g∈G sgg) =

∑
g∈G sg. It is denoted

by Aug(S[G]).
In the following we summarize the framework of our calculations.

Fact 3.4.1. Let G be a finite group and let R = Z[G]. Then

(i) If I is an ideal of R, then I(0) = QI(p) for every prime p.

(ii) Let I,K be ideals in R. Then I = K if and only if I(p) = K(p) for every prime p.

(iii) If I ⊆ R is an ideal, then I is idempotent if and only if I(p) is idempotent for every
prime p.

(iv) If I,K are idempotent ideals of R and p a prime not dividing |G|, then I(p) = K(p)

if and only if I(0) = K(0). In this case, all central idempotents of R0 are contained
in Rp and every idempotent ideal of Rp is generated by a central idempotent.

(v) Let e be a central idempotent of R0 and suppose that, for every prime p that divides
|G|, there is an idempotent ideal Ip ⊆ Rp with QIp = eR0. Then there exists a
unique idempotent ideal I ⊆ R such that I(p) = Ip for any p | |G| and I(p) = eRp for
any p 6 ||G|.

Proof. Statements (i),(ii),(iii) and (v) are rather standard. Statement (iv) follows
from the fact that Z(p)[G] is a maximal Z(p)-order in Q[G] if and only if p does not divide
|G| (see [5, Proposition 27.1]) and using the machinery of maximal orders.

Here we give another proof of (iv). Let Q ⊆ F be a finite Galois extension of Q such
that F is a splitting field of G. Recall that if ξ is a complex character of a simple rep-
resentation of G over F (considered as a function ξ : G→ F ), then ξ(1G)

|G| (
∑
g∈G ξ(g

−1)g)
is a primitive central idempotent of F [G]. In order to get the set of primitive central
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idempotent of Q[G], consider the usual action of Gal(F : Q) on the set of primitive cen-
tral idempotents of F [G] and take sums of the orbits. It follows that if p is a prime and
p 6 ||G|, then any central idempotent of R0 is in Rp.

Let I be an idempotent ideal of Rp, where p is a prime not dividing |G|. Then QI
is an ideal of R0 generated by a central idempotent e of R0. Since e ∈ Rp, K = eRp is
an idempotent ideal of Rp, necessarily I ⊆ K because eI = I. Since QI = QK, there
exists k ∈ N such that pkK ⊆ I. As Zp[G] is semisimple, idempotent ideals in Zpn [G] are
generated by central idempotents for any n ∈ N (combine [2, Proposition 27.1] and [10,
22.10]). Moreover, it is easily seen that if K ′ is an idempotent ideal of Zp2n [G], then pnK ′

is an essential submodule of K ′. Now let π : Rp → Zp2k [G] be the canonical projection.
Then pkπ(K) ⊆ π(I) ⊆ π(K). By our previous remarks, π(I) = π(K). Since Rp is a
semilocal noetherian ring and π is an epimorphism with Ker π ⊆ J(Rp) (Fact 3.4.3),
I = K follows from Lemma 3.3.1.

The following result also follows from [15, Theorem 3].

Corollary 3.4.2. Any integral group ring of a finite group satisfies (*) and has only
finitely many idempotent ideals.

Proof. Since R is a ring of Krull dimension 1, it is enough to see that R has no
descending chain of idempotent ideals. Let I be an idempotent ideal, let e be a central
idempotent of R0 such that eR0 = QI. Then I(p) = eRp for every prime p not dividing
|G| by Fact 3.4.1(iv). If p is a prime divisor of |G|, then we have only finitely many
possibilities for I(p) by Lemma 3.3.1. Therefore, by Fact 3.4.1(v), R contains only finitely
many idempotent ideals.

The proof of Corollary 3.4.2 shows a method of finding idempotent ideals in R. We
can proceed as follows: Take an ideal I0 of R0. Let P be the set of prime divisors of
|G|. For any p ∈ P , determine the set Mp consisting of the idempotent ideals of Rp that
extend to I0. Then there is a bijective correspondence between the idempotent ideals of
R extending to I0 and the set

∏
p∈P Mp.

Thus we can now work in semilocal localizations (see [5] or use the same kind of
arguments as in Example 3.3).

Fact 3.4.3. The natural homomorphism πp : Rp → Zp[G] is a local morphism for any
prime p. In particular, pRp ⊆ J(Rp) and Rp is a semilocal ring.

Let us show the method in the case of G = A5, the alternating group on 5 elements.
The usual question “Why A5?” has a simple answer. By a result of Swan [17], non-finitely
generated projective modules over integral group rings of finite solvable groups are free.
Therefore there are no proper idempotent ideals in integral group rings of finite solvable
groups (a direct proof of this was given by Roggenkamp [14]). On the other hand, it is
known [1] that if G contains a perfect normal subgroup H, that is, [H,H] = H and H�G,
then the augmentation ideal of H (that is, the kernel of the canonical homomorphism
Z[G] → Z[G/H]) is idempotent. If there were no other idempotent ideals in Z[G], then
countably generated projective modules over Z[G] would be induced by finitely generated
projective modules over Z[G/H], where H ranges in the set of perfect normal subgroups
of G. So A5 is the first candidate to check. Unfortunately, we will see that there indeed
exists an idempotent ideal that is not the augmentation ideal of a perfect normal subgroup.
Hence the structure theory for big projective modules over integral group rings seems to
be more complicated.
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Throughout the next paragraphs, suppose G = A5. The conjugacy classes of G are the
following: c1 - the conjugacy class of the identity; c2 - the permutations that are product
of two 2-cycles (the conjugacy class of (1, 2)(3, 4)); c3 - all 3-cycles; c5 - the conjugacy
class of (1, 2, 3, 4, 5); and c′5 - the conjugacy class of (1, 3, 5, 2, 4).

Let us recall what we know about the semisimple ring R0. The primitive central
idempotents of R0 are e1 = 1

60

∑
g∈G g, e3 = 1

20 (6 − 2
∑
g∈c2 g +

∑
g∈c5∪c′5

g), e2 =
1
15 (4 +

∑
g∈c3 g −

∑
g∈c5∪c′5

g) , e5 = 1
12 (5 +

∑
g∈c2 g −

∑
g∈c3 g). Let T1, T3, T2, T5 be

the corresponding simple modules (ei corresponds to Ti). Their dimensions over Q are
1, 6, 4, 5.

We need to calculate the idempotent ideals in R2, R3, R5. Set Si = Zi[A5] for i =
2, 3, 5. By Fact 3.4.3, any simple Si-module can be considered as a simple Ri-module and
there are no other simple Ri-modules except for these. In order to find the number of
different simple modules over Ri, one can use the following results proved by Berman and
Witt (see [5, Theorem 21.5, Theorem 21.25]).

Fact 3.4.4. Let G be a finite group of exponent m.

(i) Let ∼ be the relation on G given by g ∼ h if g is conjugate to ht for some t ∈ N, (t,m) =
1. Then the number of simple Q[G]-modules is equal to |G/ ∼ |.

(ii) Let p be a prime, and Gp′ the set of p-regular elements of G. On the set Gp′ consider
the equivalence ∼ defined by g ∼ h if g is conjugate to hp

j

for some j ∈ N0. Then the
number of simple Zp[G]-modules is equal to |Gp′/ ∼ |.

Thus each ring R2, R3, R5 has exactly three non-isomorphic simple modules. Now
idempotent ideals in semilocal rings are determined by their simple factors (Lemma 3.3.1).
Call a ring T almost semiperfect if for any simple T -module M there exists a positive
integer n such that Mn has a projective cover. The next lemma describes the distribution
of idempotent ideals in Ri, for i ∈ {2, 3, 5}. In all the remaining proofs of this section, Ii
stands for Aug(Ri).

Lemma 3.4.5. Let i ∈ {2, 3, 5}. The ring Ri has exactly 3 minimal idempotent ideals and
any nonzero idempotent ideal of Ri is a sum of minimal idempotent ideals. Moreover, Ri
is almost semiperfect and any idempotent ideal of Ri is a trace ideal of a finitely generated
projective module. Finally, two minimal idempotent ideals are described as follows: If Ii
is the augmentation ideal of Ri, then eiRi and (1 − ei)Ii are minimal idempotent ideals
of Ri.

Proof. We give the proof for i = 5, the remaining cases are similar. The augmenta-
tion ideal I5 ⊆ R5 is idempotent, because A5 is perfect. Observe e5 ∈ R5. Therefore also
e5R5 and (1− e5)I5 are idempotent ideals. Let M1,M2,M3 be the set of representatives
of the simple R5-modules and suppose that M1 is the module induced by the trivial rep-
resentation of S5. Obviously, M1I5 = 0, so M1 is not a factor of I5. Since I5 must have at
least two simple factors (it contains two different nontrivial idempotent ideals), M2,M3

are both factors of I5. Choose the notation in such a way that M2 is the unique simple
factor of (1− e5)I5 and M3 is the unique simple factor of e5R5.

Obviously, e5R5 is the trace ideal of the projective module e5R5. Set g = (1, 2)(3, 4).
The idempotent e′ = (1− e5)(1− 1

2 (1 + g)) gives a projective R5-module P ′ = e′R5 with
trace ideal (1−e5)I5. It follows that P ′/P ′J(R5) = Mk

2 , for some k ∈ N (it is necessary to
check that P ′ 6= 0, below we calculate Z(5)-rank of P ′ using the so called Hattori-Stallings
map).



3. Fair-Sized projective modules 38

On the other hand, the projective module P = (1 − e5)R5 has the radical factor
P/PJ(R5) = M1 ⊕ M l

2. Therefore P ′l splits in P k, that is, there exists a projective
module Q such that P k = P ′l ⊕ Q. Since Q/QJ(R5) ' Mk

1 , it follows that Tr(Q) is an
idempotent ideal such that M1 is its only simple factor.

So we have proved that the finitely generated projective modules Q,P ′, e5R5 are the
projective covers of convenient finite powers of M1,M2,M3 and R5 is almost semiperfect.
Therefore Tr(Q), Tr(P ′) and Tr(e5R5) are the minimal idempotent ideals of R5 and any
nonzero idempotent ideal of R5 is a sum of minimal idempotent ideals.

Lemma 3.4.6. The only idempotent ideals of R = Z[A5] contained in Aug(R) are 0 and
Aug(R).

Proof. Set I = Aug(R) and let 0 6= K be an idempotent ideal of R contained
in I. Then K(i) also is a non-zero idempotent ideal of Ri contained in Ii, hence, by
Lemma 3.4.5, QK(i) is either eiR0, (e2 + e3 + e5 − ei)R0 or I(0) = (e2 + e3 + e5)R0. Now
QK(2) = QK(3) = QK(5) = QK. An easy inspection gives that the only possibility is
K(i) = Ii for any i ∈ {2, 3, 5}. Therefore K = I by Fact 3.4.1(v).

For any i ∈ {2, 3, 5}, let Ki be the (unique) minimal idempotent ideal of Ri that is not
contained in the augmentation ideal of Ri. In order to classify the idempotent ideals in
R that are not contained in the augmentation ideal of R, we must determine QK2,QK3

and QK5. Let us prove an auxiliary general result, which is probably well known.

Lemma 3.4.7. Let ϕ : S → T be a ring homomorphism. If P is a projective S-module
with trace ideal I, then P ⊗S T is a projective T -module with trace ideal Tϕ(I)T .

Proof. Let X be a set and let π : S(X) → S(X) be an idempotent endomorphism of
S(X) such that π(S(X)) ' P . If π is expressed as a column-finite idempotent matrix A
(with respect to the canonical basis), then ϕ(A) is an idempotent matrix corresponding
to the endomorphism π′ : T (X) → T (X) such that P ⊗S T ' π′(T (X)). Now Tr(P ) (resp.
Tr(P ⊗S T )) is the ideal generated by the entries of A (resp. ϕ(A)).

Fact 3.4.8. Let S be a commutative local ring and let H be a finite group. Suppose that
e =

∑
h∈H shh is an idempotent of S[H]. The module eS[H] is free when considered as

an S-module. Moreover, |H|s1 = n · 1S, where n ∈ N0 is the rank of the free S-module
eS[H].

Proof. This is a consequence of [7, Example 7]. Let us briefly explain the idea. Let
T be a ring and T/[T, T ] be the group that is the factor of the additive group of T modulo
[T, T ] = 〈{ t1t2− t2t1 | t1, t2 ∈ T }〉(T,+). There exists a map r : K0(T )→ T/[T, T ] defined
as follows. Let P be a finitely generated projective module over T and A an idempotent
matrix representing P . Then r([P ]) := Tr(A) + [T, T ] (here Tr(A) is the sum of the
diagonal entries in A).

Since S is a local ring, K0(S) ' Z. As S is commutative, r is a well defined map of
K0(S) into S. It follows that Im r ⊆ Z1S . Now view S[H] as a free S-module of rank
|H|. The left multiplication by e gives an idempotent endomorphism α of this S-module
whose image is eS[H]. Now compute r([eS[H]]). Consider the matrix of α with respect to
the basis {h | h ∈ H }. All the diagonal entries of this matrix are equal to s1. Therefore
|H|.s1 = n · 1S , where n is the rank of the free S-module eS[H].

Now we can continue in Z[A5]. In the following proofs Ii is again the augmentation
ideal of Ri and Si = Zi[A5] for every i ∈ {2, 3, 5}.
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Lemma 3.4.9. Let K5 be the minimal idempotent ideal not contained in Aug(R5). Then
QK5 = (e1 + e2)R0.

Proof. Let M1,M2,M3 be the simple R5-modules such that M1 is a unique simple
factor of K5, M2 is a unique simple factor of (1−e5)I5 and M3 is a unique simple factor of
e5R5. Let g = (1, 2)(3, 4). Then e′ = (1− e5)(1− 1

2 (1 + g)) gives a projective R5-module
P ′ = e′R5 with trace ideal (1 − e5)I5, so it follows that P ′/P ′J(R5) = Mk

2 for some
k ∈ N. Moreover, if P = (1 − e5)R5, then P/PJ(R5) ' M1 ⊕M l

2 for some l ∈ N. We
want to determine k and l. The integer l is given by the multiplicity of M2 in S5/J(S5).
Any simple S5-module is absolutely simple, therefore l is equal to the dimension of the
non-trivial simple representation that is annihilated by e5. By [18, page 201], l = 3.
Obviously, P ′ is a direct summand of P , and k ∈ {1, 2, 3} follows. Using Fact 3.4.8, we
have that the Z(5)-rank of P is equal to 35 and the Z(5)-rank of P ′ is equal to 20. If
k = 1, then P ′3 would be a direct summand of P , which is not possible. Further, consider
the S5-module P ′/P ′5R5. This is a vector space over Z5 of dimension 20. If k = 3, then
P ′/P ′5R5 ' M3, where M is an S5-module which is a projective cover of M2 if M2 is
considered as a simple S5-module. Since 3 does not divide 20, this is also impossible.
Therefore k = 2.

As we have shown in the proof of Lemma 3.4.5, K5 is the trace ideal of Q, where
Q is a projective module defined by the relation Q ⊕ P ′3 ' P 2. By Lemma 3.4.7,
QK5 = Tr(Q ⊗R5 R0). The module Q ⊗R5 R0 has Q-dimension 10 and contains the
trivial representation of R0 with multiplicity 2. The only possibility (looking at the Q-
dimension of the simple R0-modules) is Q⊗R5 R0 ' T 2

1 ⊕ T 2
2 .

Lemma 3.4.10. Let K3 be the minimal idempotent ideal of R3 that is not contained in
Aug(R3). Then QK3 = e1R0 + e5R0.

Proof. Put e = 1 − e3, g = (1, 2)(3, 4) and h = (1, 2, 3, 4, 5). These elements of
G give idempotents e′ = e(1 − 1

2 (1 + g)) and f ′ = e(1 − 1
5 (1 + h + h2 + h3 + h4)). Let

P ′ = e′R3, P ′′ = f ′R3 and P = eR3. Let M1,M2,M3 be the simple R3-modules such that
M1 is a unique simple factor of K3, M2 is a unique simple factor of eI3 and M3 is a unique
simple factor of e3R3. Again we want to find k, l ∈ N such that P/PJ(R3) ' M1 ⊕M l

2

and P ′/P ′J(R3) 'Mk
2 .

Consider the module M over S3 given by the obvious action of A5 on the vector
space {(z1, . . . , z5) ∈ Z5

3 | z1 + · · · + z5 = 0} (that is, if x ∈ A5, then (z1, . . . , z5)x =
(zx(1), . . . , zx(5))). The module M can be viewed as an absolutely simple representation
of A5 over Z3 and its dimension is 4. Now consider M as an R3-module via the canonical
epimorphism π : R3 → S3. Then M is a simple R3-module annihilated by e3, therefore
M 'M2. It follows that the multiplicity of M2 in R3/J(R3) is 4, therefore l = 4.

Since P ′ is a direct summand of P , k ∈ {1, 2, 3, 4}. Using Fact 3.4.8, we get dimZ3P/P (3R3) =
42, dimZ3P

′/P ′(3R3) = 18, dimZ3P
′′/P ′′(3R3) = 36. Now the only simple factor of P ′

and P ′′ is M2, so that P ′′ ' P ′2. Thus P ′2 is a direct summand of P , and therefore
k ∈ {1, 2}. If k = 1, then P ′3 would be a direct summand of P and this is not possible,
because 42 < 3 · 18. Therefore k = 2 and there exists Q such that P ' P ′2 ⊕ Q. The
semisimple module Q⊗R3 R0 has its Q-dimension equal to 6 and the multiplicity of T1 in
Q⊗R3 R0 is 1. The only possibility is Q⊗R3 R0 ' T1⊕T5. Hence QTr(Q) = e1R0 +e5R0.
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Lemma 3.4.11. Let K2 be the minimal idempotent ideal of R2 that is not contained in
Aug(R2). Then QK3 = e1R0 + e3R0 + e5R0.

Proof. Let M1,M2,M3 be the simple R2-modules such that M1 is the simple factor
of K2, M2 is the simple factor of (1 − e2)I2 and M3 is the simple factor of e2R2. Let
e = 1 − e2, e′ = e(1 − 1

3 (1 + g + g2)), where g = (1, 2, 3). Put P = eR2, P ′ = e′R2, so
that P/PJ(R2) 'M1 ⊕M l

2 and P ′/P ′J(R2) 'Mk
2 .

Let F be a field given by adjoining a primitive fifteenth root of one to Z2. By [18, page
200], the ring F⊗S2/J(S2) has two 2-dimensional simple modules and they are annihilated
by e2 (because they appear as composition factors of a representation annihilated by e2).
Therefore F ⊗M2 is a direct sum of these two representations. Thus the Z2-dimension of
M2 is 4, but the multiplicity of M2 in S2/J(S2) is 2. It follows that l = 2.

Using Fact 3.4.8, we get that the Z(2)-rank of P is 44 and Z(2)-rank of P ′ is 32.
Therefore P ′2 cannot be a direct summand of P and k = 2 follows. Then P ' P ′⊕Q for
some Q and K2 = Tr(Q). By Lemma 3.4.7, QK2 = Tr(Q⊗R2R0). Observe that Q⊗R2R0

has Q-dimension 12 and contains T1 with multiplicity 1. The only way of writing 11 as
a sum of multiples of 6 and 5 is 11 = 6 + 5. Therefore Q ⊗R2 R0 ' T1 ⊕ T5 ⊕ T3 and
QK2 = (e1 + e3 + e5)R0.

Now we can finish the classification of the idempotent ideals in Z[A5].

Proposition 3.4.12. The idempotent ideals in R = Z[A5] are 0,Aug(R), X and R, where
X 6= R and QX = Q[A5].

Proof. The idempotent ideals contained in Aug(R) were classified in Lemma 3.4.5.
Let K be an idempotent ideal of R not contained in Aug(R). Then for any i ∈ {2, 3, 5},
K(i) is an idempotent ideal of Ri not contained in Aug(Ri). By Lemma 3.4.9, we have
e2 ∈ K(0), by Lemma 3.4.10, we have e5 ∈ K(0) and by Lemma 3.4.11, we have e3 ∈ K(0).
It follows that K(0) = Q[A5].

If L is an idempotent ideal of R5 such that QL = Q[A5], then L = R5 by Lemmas 3.4.5
and 3.4.9. Similarly, if L is an idempotent ideal of R3 such that QL = Q[A5], then L = R3

by Lemmas 3.4.5 and 3.4.10. But if L is an idempotent ideal of R2 such that QL = Q[A5],
then either L = R2 or L = K2 + e2R2 by Lemmas 3.4.5 and 3.4.11. Therefore there exists
an idempotent ideal X ⊆ R such that X(2) = K2 + e2R2, X(3) = R3 and X(5) = R5.

Finally, we can classify the non-finitely generated projective modules over Z[A5].

Theorem 3.4.13. The countably but not finitely generated projective modules over R =
Z[A5] are the following: Let I = Aug(R) and let X be the other non-trivial idempotent
ideal of R. Let BI be the unique I-big projective R-module with trace I, and let BX be
the unique X-big projective module with trace X. Apart from these, there is an X-big
projective module P such that P/PX is the unique indecomposable projective module over
R/X. Then:

(i) Any countably generated projective module over R that is neither free nor finitely
generated has a unique decomposition as a sum Q⊕F , where Q ∈ {BX , BI , P} and
F is a finitely generated free module.

(ii) BX ⊕BI ' R(ω) and BI ⊕ P ' R(ω).

(iii) P ⊕BX ' P and P ⊕ P ' R⊕BX .
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Proof. Let M be a countably generated projective module over R. Since R has (*),
there exists a least ideal K such that M/MK is finitely generated. If K = 0, M is finitely
generated. If K = R, then M is R-big and hence free. If K = I, then M/MI ' Zn for
some n ∈ N0, because R/I ' Z. Since N = BI ⊕Rn is a countably generated projective
module such that I is the smallest ideal of the set {L ideal of R | N/NL is finitely
generated } and N/NI 'M/MI, by Lemma 3.2.5 and Corollary 3.2.10, we have M ' N .
Clearly, for every m,n ∈ N, one has BI ⊕Rn ' Bi ⊕Rm if and only if m = n.

The remaining case is X = K. Recall that X(p) = Rp for any prime different from 2.
It follows that there exists k ∈ N such that 2k ∈ X. Now R/X ' (R/2kR)/(X/2kR) '
(R2/2kR2)/(X(2)/2kR2). Let S = Z2k [A5], let π : R2 → S be the canonical epimor-
phism and let X ′ = π(X(2)). From the proof of Lemma 3.4.11, we know that S/J(S) '
M1 ⊕M2

2 ⊕Mn
3 for some n ∈ N (in fact n = 4, but we do not need this) and the M1,M3

are the simple factors of X ′. Now S/J(S)/(X ′ + J(S))/J(S) ' (S/X ′)/(J(S/X ′)) '
M2(EndS(M2)). It follows that R/X is a homogeneous semilocal ring with an indecom-
posable projective module P ′ satisfying P ′2 ' R/X. The module P ′ gives a unique
countably generated projective module P such that P is X-big and P/PX ' P ′. Since
P ′ ⊕ P ′ ' R/X, we get P ⊕ P ' BX ⊕R. The relation BX ⊕ P ' P holds because P is
X-big.

It remains to prove the relations in (ii). Since a direct sum of an X-big module and
an I-big module is R-big, these relations follow immediately.

3.5 One more application

Finally let us consider universal enveloping algebras. Let g be a Lie algebra over a field
k and let X be a basis of g. A universal enveloping algebra of g, denoted by U(g), is a
factor of the free k-algebra over X modulo the relations xy − yx = [x, y] (x, y ∈ X). If
g is a nilpotent Lie algebra of finite dimension, then U(g) is a left and right noetherian
AR-domain (see [11, Section 4.2] for the definition). It follows that all infinitely generated
projective modules are free [12, Lemma 8.6]. The AR-property does not hold for solvable
Lie algebras in general, but property (*) does. This enables us to prove that infinitely
generated projective modules are free over U(g) if g is a solvable Lie algebra of finite
dimension and k has characteristic zero. This concludes the proof of [12, Conjecture 8.5],
stating that a finite dimensional Lie algebra over a field of characteristic zero is solvable
if and only if any (left and right) projective module over U(g) is a direct sum of finitely
generated modules.

We say that a ring R satisfies strong (*) if every sequence of ideals I1, I2, · · · ⊆ R
satisfying Ik+1Ik = Ik+1, k ∈ N has either Ik = R for every k ∈ N or there exists l ∈ N
such that Il = 0. Let us point out the following straightforward consequence of Bass’
theorem [3, Theorem 3.1].

Lemma 3.5.1. Let R be a left and right noetherian ring satisfying (*). Then the following
are equivalent:

(i) R satisfies strong (*).

(ii) The only idempotent ideals of R are 0 and R.

(iii) Every projective module over R is either finitely generated or free.
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Lemma 3.5.2. Let S be a noetherian domain and let D : S → S be a derivation on S.
Let R = SD[x] be the corresponding skew polynomial ring. If X and Y are ideals of R
such that XY = X and X is nonzero, then Y contains a constant polynomial.

Proof. Let K be the (left and right) quotient field of S and D : K → K the
derivation extending D. Then R can be considered as a subring of the (left and right)
principal ideal domain R = KD[x]. Let X be the ideal of R generated by X and let
Y be the ideal of R generated by Y . Using the division algorithm one can check that
X = { s−1p | 0 6= s ∈ S, p ∈ X } and Y = { ps−1 | 0 6= s ∈ S, p ∈ Y }. Considering the
degrees of the polynomials, X 6= 0 implies Y = R. But then Y must contain a polynomial
of degree 0.

Proposition 3.5.3. Let S be a noetherian prime algebra over Q satisfying strong (*).
Suppose that D : S → S is a derivation on S and R = SD[x] is the corresponding skew
polynomial ring. If any prime ideal of S is completely prime, then R satisfies strong (*).

Proof. Let I1, I2, . . . be a sequence of nonzero ideals in R such that Ik+1Ik =
Ik+1 for every k ∈ N. We have to prove that Ik = R for every k ∈ N. For any ideal
I ⊆ R, consider the smallest ideal c(I) of S such that I ⊆

∑∞
i=0 c(I)xi. Observe that

c(Ik+1)c(Ik) = c(Ik+1) and c(Ik) 6= 0 for every k ∈ N. Therefore the strong (*) in S
implies c(Ik) = S for every k ∈ N.

Now let Q be a prime ideal of S invariant under D. On S/Q define DQ : S/Q→ S/Q
by DQ(s+Q) := D(s) +Q, s ∈ S. Consider the ring RQ = S/QDQ [x] and the canonical
projection πQ : R→ RQ. Observe that πQ is an epimorphism with kernel Q′ =

∑∞
i=0Qx

i.
We claim that for any prime ideal Q ⊆ S invariant under D and for any k ∈ N we

have πQ(Ik) = RQ. Then we conclude applying the claim to Q = 0.
Suppose the claim is not true that is the set M = {Q | Q is a prime ideal of R invariant

under D such that πQ(Il) 6= RQ for some l ∈ N} is nonempty. Let P be a maximal ideal
of M . Let π : S → S/P be the canonical projection. Observe that P cannot be a maximal
two-sided ideal of S: Since c(Ik) = S, πP (Ik) 6= 0 for every k ∈ N. Applying Lemma 3.5.2
to πP (I1), πP (I2), . . . we get S/P ∩ πP (Ik) 6= 0. Therefore if S/P is a simple ring, then
1 ∈ πP (Ik) for every k ∈ N.

In general, Lemma 3.5.2 gives Lk = πP (Ik) ∩ S/P 6= 0. Put L′k = π−1(Lk) and
notice that L′k is an ideal of S invariant under D. If L′k = S for every k ∈ N, then
πP (Ik) = RP for every k ∈ N, a contradiction to the choice of P . Therefore suppose
that L′l 6= S for some l ∈ N. Let P1, . . . , Pm be the minimal primes of L′l. As S is a Q-
algebra, applying [6, Lemma 3.3.3], P1, . . . , Pm are primes of S invariant under D properly
containing P . In particular, πPi(Il) = RPi or R = Il + P ′i for every i = 1, . . . ,m. Then
R = (Il + P ′1) · · · (Il + P ′m) = Il + P ′1 · · ·P ′m also. Further, by [11, Theorem 2.3.7], there
exists n ∈ N such that (P1 · · ·Pm)n ⊆ L′l. Note R = Rn = Il + (P ′1 · · ·P ′m)n, therefore
RP = πP (R) ⊆ πP (Il) +RPLlRP = πP (Il). So RP = πP (Il), a contradiction again.

Lemma 3.5.4. Let k be a field of characteristic zero and let g be a solvable Lie algebra
of finite dimension over k. Then U(g) satisfies strong (*).

Proof. First suppose that k is algebraically closed. Then g is completely solvable
by [11, Theorem 14.5.3]. That is, there exists a basis x1, . . . , xn of g over k such that
gm = kx1 + · · ·+ kxm is an ideal of g for every m = 1, . . . , n. Then U(gm+1) can be seen
as a skew polynomial ring over U(gm) for m = 1, . . . , n−1. Recall that each prime ideal of
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U(gm) is completely prime by [11, Theorem 14.2.11], therefore we can apply Proposition
3.5.3.

In general, let k be an algebraic closure of k. Let I1, I2, . . . be a sequence of nonzero
ideals in U(g) such that Ik+1Ik = Ik+1 for every k ∈ N. Consider R = U(g)⊗k ' U(g⊗k)
and the ideals Ik = Ik ⊗ k. It is easy to see that Ik+1 = Ik+1Ik for every k ∈ N. By the
preceding step, Ik = R for every k ∈ N. But this is possible only if Ik = U(g).

Corollary 3.5.5. Let g be a finite dimensional solvable Lie algebra over a commutative
field of characteristic zero. Then

(i) Every idempotent ideal of U(g) is trivial.

(ii) The universal enveloping algebra of g satisfies (*).

(iii) Every projective U(g)-module that is not finitely generated is free.
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4. NONFINITELY GENERATED PROJECTIVE MODULES OVER
GENERALIZED WEYL ALGEBRAS

4.1 Introduction

The theory of finitely generated projective modules is a classical topic in ring theory
inspired by rich connections with K-theory, geometry and algebraic topology. However,
it is often difficult to classify finitely generated projective modules over a given ring up
to isomorphism, and one should be usually content with finding coarser invariants of this
class of modules such as its Grothendieck group. For instance, this is certainly the case
for projective modules over the first Weyl algebra; and calculating ideal class groups of
commutative Dedekind domains is a core problem in algebraic number theory.

On the other hand the theory of infinitely generated projective modules is often es-
sentially easier. For instance, Kaplansky’s classical result says that every non-finitely
generated projective module over a commutative Dedekind domain is free and later Bass
[2] extended this to any indecomposable commutative noetherian ring as a consequence of
his theory of big projectives. For instance, it follows from his theory that every non-finitely
generated projective module over a simple noetherian ring is free. Thus it is quite often
that the theory of infinitely generated projectives is ‘trivial’, which partly justifies Bass’
remark [2, p. 24] that it ‘invites little interest’. However, this is not always the case: non-
finitely generated projective modules could be truly ‘big’. For example, extending early
results by Akasaki [1] and Linnell [14], Př́ıhoda [19] found a superdecomposable (that is,
without indecomposable direct summands) projective module over a certain localization
of the integral group ring of the alternating group A5.

In fact this result is a consequence of a far reaching development by Př́ıhoda [19] of
Bass’ theory of big projectives, that leads to a ‘rough’ classification of infinitely generated
projective modules over noetherian rings satisfying one mild additional condition (∗);
for instance, (∗) holds true for any noetherian ring with the d.c.c. on two-sided ideals.
Namely, he showed that projective modules over a noetherian ring R with (∗) are classified
by pairs (I, P ), where I is an idempotent ideal of R and P is a finitely generated projective
R/I-module. The only drawback of his classification is that it is usually very difficult to
understand the structure of the projective module Q corresponding to a given pair (I, P );
for instance, to decide whether Q is finitely generated or isomorphic to a direct sum of
finitely generated modules.

In this paper we will apply Př́ıhoda ’s theory to obtain a satisfactory classification
of non-finitely generated projective modules over the so-called generalized Weyl alge-
bras (GWAs). This class of algebras was introduced and investigated by Bavula [3], but
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also was studied by Hodges [9] who called the rings in this class deformations of type-A
Kleinian singularities; and by Rosenberg [20] under the name of hyperbolic rings. For
instance, every GWA is a noetherian domain of Krull dimension 1, and this class of al-
gebras includes the first Weyl algebra and all infinite dimensional primitive quotients of
the universal enveloping algebra Usl2 over a field of characteristic zero. In particular,
the global dimension of any GWA is 1, 2 or ∞, and there is a good understanding of the
finitely generated projective modules — the Grothendieck group of projectives has been
calculated (see [7, 9, 11, 18]) for most GWAs.

Recall that an old result of Kaplansky says that every projective left module over a
left hereditary ring is a direct sum of finitely generated modules isomorphic to left ideals.
In this paper we will show that something similar is true for projective modules over
GWAs. In fact, the result is even more precise: in each GWA we will find finitely many
homogeneous left ideals such that every non-finitely generated projective (left) module is
a direct sum of copies of those.

In detail, in Section 4.2 we discuss some basic properties of idempotent ideals and will
gather, in Section 4.3, certain (mostly folklore) statements on the structure of projective
modules and their trace ideals. We will overview, in Section 4.4, the theory of (countably
generated) projective modules (called fair-sized projectives in [19]) over noetherian rings
with (∗), and draw some consequences of this theory. For example, in Theorem 4.4.4
we will give a general criterion for when every projective module over a noetherian ring
with (∗) is a direct sum of finitely generated modules. For instance, for this to be true,
finitely generated projective modules over factors of R by idempotent ideals must lift to
finitely generated projectives over R. We also collect in this section some nice examples
illustrating the power of the aforementioned theory. For instance, (see Example 4.4) we
will classify non-finitely generated projective modules over the ring of differential operators
of n-dimensional projective space.

In Section 4.5 we will discuss some (mostly known) facts on the structure of generalized
Weyl algebras, the main sources of information being Bavula [3] and Hodges [9]. Note
that every GWA A is a noetherian domain with finitely many two-sided ideals (so (∗)
holds true) and A has a least nonzero ideal Imin. We also recall the structure of maximal
ideals of GWAs and their simple finite dimensional modules. We will prove that the
nonzero idempotent ideals of a GWA A form a finite Boolean algebra B(A) and describe
its coatoms.

Finally, in Section 4.7 we will classify infinitely generated projective modules over any
GWA A. Using a description of idempotent ideals of A we will show that every such
ideal is the trace of a finitely generated projective module; moreover, finitely generated
projectives can be lifted modulo idempotent ideals of A. This is the crucial point of
the paper, and our choice of finitely generated projective modules (to cover all finitely
generated projectives over factor rings) is a bare guess. Certainly we had in mind a family
of finitely generated projective modules constructed by Hodges [9], but our situation
is essentially more demanding. For instance, the construction of a finitely generated
projective A-module whose trace equals Imin (see Lemma 4.7.1) is quite involved. Even
more this is true for the construction (in Lemma 4.7.2) of finitely generated projectives
whose traces are atoms in B(A).

Having spent a lot of time and space on these technicalities, we are awarded with a
relative easy proof of two final results (Theorem 4.7.5 and Proposition 4.7.6). Namely,
Theorem 4.7.5 states that every infinitely generated projective module over a GWA A is
a direct sum of homogeneous left ideals of A from a prescribed finite family. In Propo-
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sition 4.7.6 we will improve this result by finding a canonical form for every infinitely
generated projective module over any GWA, thus classifying projectives over GWAs by
means of cardinal invariants.

4.2 Idempotent ideals

Most modules in this paper will be left modules over rings with unity. An element e of a
ring R is said to be an idempotent if e = e2. For instance, 0, 1 ∈ R are trivial idempotents.
We say that an ideal I of R is idempotent if I = I2, for which {0} and R are trivial
examples. Furthermore, the (two-sided) ideal ReR generated by an idempotent e (or by
any set of idempotents) is idempotent. By [12, Corollary 2.43], every finitely generated
idempotent ideal of a commutative ring is generated by an idempotent. However, if I is
the augmentation ideal of the integral group ring ZA5, then (see [1]) I is idempotent, but
ZA5 has no nontrivial idempotents.

If R is a semisimple artinian ring, then every two-sided ideal of R is generated by a cen-
tral idempotent, therefore idempotent. Furthermore, in this case the set of (idempotent)
ideals of R ordered by inclusion forms a finite Boolean algebra whose atoms correspond
to minimal (two-sided) ideals of R, therefore to isomorphism classes of simple R-modules.

Note that the sum of any set of idempotent ideals is idempotent. For instance, every
ideal I of R contains a largest idempotent ideal Iidem ⊆ I. Furthermore, when ordered
by inclusion, the set of idempotent ideals of R forms a lattice. The join in this lattice is
the usual sum, but the meet of two idempotent ideals I and J equals (I ∩ J)idem, which
could be a proper subset of I ∩ J (see some examples below).

It is often important to describe the lattice of idempotent ideals of a given ring R.
For this the following reductions will be useful. Suppose that I ⊆ J are ideals of R such
that I is idempotent. Then J is idempotent iff its image J/I is an idempotent ideal of
the factor ring R/I. For instance, assume that R has a least nonzero ideal Imin (that is,
R is subdirectly irreducible) such that I2

min 6= 0, therefore Imin is idempotent. It follows
from the above remark that the description of idempotent ideals of R boils down to the
description of idempotent ideals of R/Imin.

To make some further reductions we need the following result.

Fact 4.2.1. [22, L. 1] If I,K are distinct idempotent ideals of R and Jm ⊆ I, Jn ⊆ K
for some ideal J of R, then I and K have distinct images in R/J .

Another way to say this is that I+J = K+J yields I = K, that is, every idempotent
ideal is uniquely determined by its image in R/J . One obvious instance of this situation is
when J is a nilpotent ideal of R, and more can be said in this case. Recall that a ring R is
said to be semiperfect, if the factor of R by its Jacobson radical J is a semisimple artinian
ring and idempotents can be lifted modulo J . A semiperfect ring with a nilpotent Jacobson
radical is called semiprimary. For instance, every one-sided artinian ring is semiprimary.

Lemma 4.2.2. Every idempotent ideal of a semiprimary ring R is generated by an idem-
potent. Furthermore, the lattice of idempotent ideals of R is a finite Boolean algebra with
m atoms, where m is the number of simple R-modules.

Proof. If J denotes the Jacobson radical of R, then J is nilpotent and R/J is a
semisimple artinian ring.

Let I be an idempotent ideal of R. Then I = (I + J)/J is an idempotent ideal of
the semisimple ring R/J , hence I is generated by a central idempotent ē. Since J is
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nilpotent, one can lift ē modulo J — there exists an idempotent e ∈ R with e + J = ē.
Then K = ReR is an idempotent ideal of R such that K = ē (R/J) = I, therefore K = I
by Fact 4.2.1. Thus every idempotent ideal of R is generated by an idempotent.

Now the canonical projection π : R→ R/J induces a map (also denoted by π) from the
poset of idempotent ideals of R into the poset of idempotent ideals of R/J that preserves
sums, hence preserves ordering. Since R/J is semisimple, the latter poset is a Boolean
algebra with m atoms. Because J is nilpotent, Fact 4.2.1 yields that π is an injection.
Furthermore, by the proof of the first part, π is a surjection, and it is easily seen that π
reflects sums, hence reflects the ordering. Thus π is an isomorphism of posets, therefore
an isomorphism of lattices.

The following corollary is exactly what we need for further applications.

Corollary 4.2.3. Suppose that R is a ring with a least nonzero ideal Imin, I2
min 6= 0, such

that R/Imin is a semiprimary ring. Then the lattice of nonzero idempotent ideals of R is
a finite Boolean algebra with m atoms, where m is the number of simple (non-isomorphic)
R/Imin-modules.

4.3 Projective modules

One explanation why idempotent ideals are important is that they are intimately con-
nected with projective modules. Recall that a module P over a ring R is said to be free
if P is isomorphic to a module R(I) for some set I; and P is called projective if it is
isomorphic to a direct summand of a free module. For instance, every free module is
projective, as is the module Re for an idempotent e; but below we will see less obvious
examples of projective modules.

If P is a projective module, then the trace of P , Tr(P ), will denote the sum of images
of all morphisms from P to RR. For instance, if P = Re for an idempotent e, then
Tr(P ) = ReR is an idempotent ideal. In fact it is always the case.

Fact 4.3.1. If P is a projective module, then Tr(P ) is an idempotent ideal such that
P = Tr(P )P . Furthermore, Tr(P ) is the least among ideals I such that P = IP .

Proof. The first part is a common knowledge (see [12, Proposition 2.40]). The
second part is also well known, but somehow avoids any written account.

Clearly (say, from Fact 4.3.1) Tr(P ) 6= 0 for any nonzero projective module P and P
is said to be a generator if Tr(P ) = R (the maximal possible value of the trace). If P is
a direct summand of a free module R(I), then P is isomorphic to the module generated
by the columns of a column-finite idempotent I × I matrix E over R, therefore Tr(P ) is
a two-sided ideal generated by entries of E.

Given projective modules P and Q, we say that P generates Q if, for some α, there is
an epimorphism P (α) → Q. Since Q is projective, this is the same as Q being isomorphic
to a direct summand of P (α). The following lemma is also folklore, but should be put on
the paper, at least once.

Lemma 4.3.2. Let P and Q be projective modules. Then the following are equivalent.
1) P generates Q;
2) Q = Tr(P )Q;
3) Tr(Q) ⊆ Tr(P ).
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Proof. 1) ⇒ 2). Let f : P (α) → Q be an epimorphism, Applying f to P (α) =
Tr(P )P (α) (see Fact 4.3.1) we obtain Q = Tr(P )Q.

2) ⇒ 3). By Fact 4.3.1, Tr(Q) is the least ideal I such that Q = IQ, therefore
Q = Tr(P )Q yields Tr(Q) ⊆ Tr(P ).

3) ⇒ 2). Since Tr(Q)Q = Q and Tr(Q) ⊆ Tr(P ), we conclude that Tr(P )Q = Q.
2) ⇒ 1). It suffices to prove that every q ∈ Q is in the image of a morphism P k → Q,

for some (finite) k. From Q = Tr(P )Q it follows that q =
∑n
i=1 riqi for some ri ∈ Tr(P ),

qi ∈ Q. Clearly we may assume that n = 1, that is, q = rq′, r ∈ Tr(P ), q′ ∈ Q.
Furthermore, r ∈ Tr(P ) yields that r =

∑k
j=1 fj(pj), where pj ∈ P and fj : P → RR are

morphisms. Let g =
∑k
j=1 fj : P k → R and let h : R → Q be given by h(1) = q′. Then

hg maps P k into Q and hg(
∑k
j=1 pj) = h(r) = rh(1) = rq′ = q, as desired.

A module M is said to be countably generated if it has a finite or infinite countable set
of generators. By Kaplansky’s theorem (see [8, Corollary 2.48]) every projective module
is a direct sum of countably generated modules, thus most (but not all) questions on the
structure of projective modules can be reduced to the countably generated case.

The following lemma, which is a version of Eilenberg’s trick (see [2, p. 24] or [12,
p. 22]), shows that a projective module with a larger trace ‘absorbs’ another ‘smaller’
projective module.

Lemma 4.3.3. Let P and Q be countably generated projective modules with Tr(Q) ⊆
Tr(P ). If α ≥ β, ω, then P (α) ∼= P (α) ⊕Q(β).

Proof. By Lemma 4.3.2 and because Q is countably generated, Q, hence Q(β) is
isomorphic to a direct summand of P (α). If P (α) ∼= Q(β) ⊕ T for some module T , then

P (α) ∼= (P (α))(ω) ∼= (Q(β) ⊕ T )(ω) ∼= Q(β) ⊕ (T ⊕Q(β))(ω) ∼= Q(β) ⊕ P (α).

As we have seen in Fact 4.3.1 the trace of a projective module is always an idempotent
ideal. Unfortunately, given an idempotent ideal I, it is usually quite difficult to decide
whether I is a trace of some projective module. The following is a rare case that provides
such an answer.

Fact 4.3.4. [25, Corollary 2.7] Let I be an idempotent ideal of a ring R such that I is
finitely generated as a right ideal. Then there exists a countably generated projective left
R-module whose trace equals I.

However, we do not know much about the structure of this projective module, for
instance, whether it can be chosen to be finitely generated or not.

In the next section we will discuss the property of a projective module to decompose
into a direct sum of finitely generated modules. Thus the following result of Kaplansky
will be useful in this discussion.

Fact 4.3.5. (see [12, 2.24]) Every projective left module over a left hereditary ring is a
direct sum of modules isomorphic to finitely generated left ideals.

Recall that Kaplansky proved that every projective module over a local ring is free.
One more result along this line is worth mentioning.

Fact 4.3.6. (see [2, Corollary 3.4]) Every infinitely generated projective left module over
a left noetherian simple ring is free.
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4.4 The theory of fair-sized projectives

In this section we recall (from [19]) a classification of (countably generated) projective
modules over certain classes of noetherian rings. One can consider this theory as a far
reaching generalization of Bass’ theory of big projectives (see [2]).

We say that a ring R satisfies the condition (∗) if the following holds.

(∗) Every (descending) chain I1, I2, . . . of ideals of R, with Ik+1Ik = Ik+1 for any k,
stabilizes.

For instance, if the lattice of (two-sided) ideals of R is finite then R satisfies (∗).

Remark 4.4.1. Sakhaev [21] characterized rings R with the following property: Any
projective left R-module finitely generated modulo its Jacobson radical is finitely gener-
ated. He showed that this condition is connected with the stabilization of the (descending)
sequence of left principal ideals of the matrix ring Mn(R) generated by n×n matrices Ai,
where Ai+1Ai = Ai+1 for every i (see condition (t6) in his Theorem 3) for every positive
integer n. If Ii denotes the two-sided ideal generated by entries of Ai then we obtain that
Ii+1Ii = Ii+1, as in (∗). However, it is easy to see that Sakhaev’s condition is satisfied in
any (left) noetherian ring while there are noetherian rings not satisfying (*). Therefore
in this paper we will not pursue this analogy any further.

Proposition 4.4.2. [19] Suppose that R is a noetherian ring satisfying (∗). Then there
is a natural one-to-one correspondence between countably generated projective R-modules
and pairs (I, P ), where I is an idempotent ideal of R and P is a finitely generated projective
R/I-module.

One direction in this correspondence is easy to describe. If Q is a countably generated
projective R-module, then (∗) implies (see [19] for a proof) that there exists a least ideal
I = I(Q) of R such that P = Q/IQ is a finitely generated (projective) R/I-module. Thus
we assign to Q the pair (I, P ). The opposite direction in the above correspondence is
rather an existence theorem. For example, it is usually quite difficult to decide whether
the (countably generated) projective module corresponding to a given pair (I, P ) is finitely
generated or not.

Note that the pairs (0, P ) in the above classification correspond to finitely generated
projective R-modules, so Proposition 4.4.2 says nothing new about them. Furthermore,
if Q is a countably generated projective module, then, using Fact 4.3.1, it is easily seen
that Q(ω) corresponds to the pair (Tr(Q), 0). In particular, the pair (R, 0) corresponds to
the free module R(ω). For example, it follows that every infinitely generated projective
module over a simple noetherian ring is free, a slightly weaker form of Bass’ result in
Fact 4.3.6.

Now we will show how this theory works in a slightly more elaborate situation.

Proposition 4.4.3. Suppose that R is a noetherian ring with a unique nonzero proper
ideal J and such that D = R/J is a skew field. Further assume that there exists a finitely
generated projective module Q such that Tr(Q) = J . Then every infinitely generated
projective module is either free or isomorphic to R(α) ⊕ Q(β), where α < β, β ≥ ω, and
α, β are uniquely determined by Q.
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Proof. Since D = R/J is a skew field, every finitely generated projective R/J-
module is of the form (R/J)k for some k < ω. If P is a countably infinitely generated
projective module, then I(P ) 6= 0, hence either I(P ) = R, and then P is free, or I(P ) = J .
In the latter case P goes to (J, (R/J)k) in the correspondence of Proposition 4.4.2. But
clearly Rk ⊕Q(ω) also corresponds to this pair, therefore P ∼= Rk ⊕Q(ω).

If P is uncountably generated, then (using Kaplansky’s theorem) decompose it into
a direct sum of countably infinitely generated modules P = ⊕i∈IPi. By what we have
already proved each Pi is either free or isomorphic to Rki ⊕ Q(ω) for some ki < ω.
Gathering the copies of R and Q together, we obtain P ∼= R(α) ⊕Q(β). If α ≥ β, ω then
P is isomorphic to R(α) by Lemma 4.3.3. Otherwise, since P is not finitely generated,
α < β and β ≥ ω.

Now α = dimDP/JP is uniquely determined by P and the same is true for β = α+β
which equals the uniform dimension of P .

Note that (at least in some cases — see below) a finitely generated projective module
Q is not unique. However, if Q′ is another finitely generated projective module with
Tr(Q′) = J , then Proposition 4.4.2 implies that Q(ω) ∼= Q′(ω), because both modules
correspond to the pair (J, 0).

Now we will give some examples showing that the situation described in Proposi-
tion 4.4.3 occurs naturally.

Let R = D(Pn) denote the ring of differential operators on the projective space Pn(k),
where k is an algebraically closed field of characteristic zero. By [6, p. 213–214] R is a
noetherian domain of Krull dimension n (and global dimension n + 1) with a unique
nonzero proper ideal J and R/J ∼= k holds true. Thus to apply Proposition 4.4.3 it
suffices to find a finitely generated projective module Q such that Tr(Q) = J . Indeed,
let Q = D(1) as in [6, p. 215]. Then, by [6, Cor. 4.8], Q is a finitely generated projective
(left) D(Pn)-module such that JQ = Q, hence Tr(Q) = J .

Thus Proposition 4.4.3 gives a classification of infinitely generated projective modules
over D(Pn).

Let k be a field of characteristic 2 containing a nonzero element λ which is not a root
of unity. Let S be obtained by factoring the ring of Laurent polynomials k[X±1, Y ±1]
by the ideal generated by XY − λY X. Let σ be an automorphism of S of order 2
given by σ(X) = X−1, σ(Y ) = Y −1; and set R = Sσ, the subring of S fixed by σ.

Then (see [15, Example 1.8] or [10, p. 140–141]) R has a unique (nonzero proper)
two-sided ideal J such that R/J ∼= k and S is an indecomposable rank 2 projective
module whose trace is equal to J .

Thus, by Proposition 4.4.3 again, we obtain a classification of non-finitely generated
projective R-modules.

As one more example let us consider the subring R = k + xA1(k) of the first Weyl
algebra over a field k of characteristic zero. By [16, 1.3.10, 5.5.11], R is a hereditary
noetherian domain with a unique nonzero proper two-sided ideal J = xA1(k). Then J
is a finitely generated projective module coinciding with its trace. Thus taking Q = J
and applying Proposition 4.4.3 we obtain a classification of infinitely generated projective
R-modules (though one should be able to extract this from the classification of infinitely
generated projective modules over hereditary noetherian prime rings in Levy and Robson
[13]).
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In this case the finitely generated projective module Q is not unique. Indeed it is
well known that A1(k) has infinitely many non-isomorphic left ideals. Using End(J) =
xA1(k)x−1 ∼= A1(k) one concludes that there are infinitely many nonisomorphic (projec-
tive) left ideals of R with trace J .

Next we will investigate an even more advanced example of Stafford [23]. To keep the
notation of his paper, in this example we will consider right modules.

Let k be a field of characteristic zero, C = k[x1, . . . , xn] be the ring of polynomials,
and δ is a derivation of C given by δ(x1) = 1 and δ(xi) = xixi−1 − 1 for i > 1. Let
S = C[y, δ] be the ring of differential polynomials, and take R = C + x1S. Then
(see [23, p. 384–385]) R is a noetherian domain with a least nonzero proper ideal
J = x1S and R/J ∼= k[x1, . . . , xn−1]. It follows easily that J is the only nonzero
proper idempotent ideal of R; and every finitely generated projective R/J-module
is isomorphic to (R/J)k (because every projective k[x1, . . . , xn−1]-module is free).
Furthermore, it is not difficult to check that S is a finitely generated projective R-
module whose trace equals J . Thus arguing as in Proposition 4.4.3 we conclude
that every infinitely generated projective R-module is either free or isomorphic to
R(α) ⊕ S(β), α < β, β ≥ ω.

Note that over rings in Examples 4.4–4.4 every projective module is a direct sum of
finitely generated modules, but this is not always the case. Indeed, let R = ZA5 be
the integral group ring of the alternating group A5 and let I be the augmentation ideal
of R. Since (see [1]) I is idempotent, by Fact 4.3.4 there exists a countably generated
projective module P whose trace is equal to I. But P cannot contain a finitely generated
direct summand because (as follows from [24, Theorem 8.1] — see [1, Corollary 14] for
arguments) every finitely generated projective R-module is a generator.

In the next proposition we characterize in the framework of the theory of fair-sized
projectives the rings whose projective modules are direct sums of finitely generated mod-
ules. As we have already mentioned (see Fact 4.3.5) this holds true for left hereditary
rings; for a more thorough treatment of this question see [17].

Theorem 4.4.4. Let R be a noetherian ring satisfying (∗). Then the following are equiv-
alent.

1) Every projective module is a direct sum of finitely generated modules;
2) a) every idempotent ideal of R is the trace of a finitely generated projective module

and
b) if I is an idempotent ideal of R and P is a finitely generated projective R/I-module,

then there exists a finitely generated projective module Q such that Q/IQ ∼= P .

Proof. 1) ⇒ 2). a) Suppose that I is an idempotent ideal of R. By Fact 4.3.4,
there exists a countably generated projective module Q whose trace is equal to I. By the
assumption, Q = ⊕j∈JQj is a direct sum of finitely generated modules. Then Tr(Q) is a
directed union of traces of finitely generated projectives Qj1 ⊕ · · · ⊕ Qjk , j1, . . . , jk ∈ J .
Since R is noetherian, I is the trace of one of such finitely generated modules.

b) Suppose that P is a finitely generated projective R/I-module, where I is an idem-
potent ideal of R. Let Q be a countably generated projective module that corresponds to
the pair (I, P ) in Proposition 4.4.2. By the assumption, Q = ⊕j∈JQj is a direct sum of
finitely generated modules. From the definition of I = I(Q) it follows that Qj 6= IQj for
only finitely many j ∈ J . Adding up the Qj from this finite subset we obtain a finitely
generated projective module Q′ such that Q′/IQ′ ∼= P .
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2) ⇒ 1). Let Q be a countably generated projective module and set I = I(Q),
P = Q/IQ (see Proposition 4.4.2), therefore I is an idempotent ideal of R and P is a
finitely generated projective R/I-module. By the assumption, there are finitely generated
projective modules P1 and P2 such that Tr(P1) = I and P2/IP2

∼= P . It is easily seen
that the module P (ω)

1 ⊕ P2 also corresponds to the pair (I, P ), therefore Q ∼= P
(ω)
1 ⊕ P2

by Proposition 4.4.2.

Note that 2 b) of the above theorem says that one can ‘lift’ finitely generated projective
modules modulo idempotent ideals.

4.5 Generalized Weyl algebras

Let k be an algebraically closed field of characteristic zero and let σ be an automorphism
of the ring of polynomials k[H]. In this paper we will consider only the case when
σ(H) = H − 1 (and σ fixes k pointwise); for the case when σ is arbitrary see for example
[5]. Let a(H) ∈ k[H] be a nonconstant polynomial. We say that a k-algebra A = A(a) is a
generalized Weyl algebra, GWA, if A is generated over k[H] by (noncommuting) variables
X,Y subject the following relations.

Y X = a(H), XY = σ(a) = a(H − 1) and HY = Y (H − 1), HX = X(H + 1) .

Thus for every polynomial b(H) ∈ k[H] we obtain

b(H) · Y = Y σ(b) = Y · b(H − 1) and b(H) ·X = Xσ−1(b) = X · b(H + 1) .

For instance, consider the first Weyl algebra A1(k) as an algebra of differential oper-
ators acting on the ring of polynomials k[x] on the left; therefore A1 is generated by x
and ∂ subject to the relation ∂x − x∂ = 1. It is easily checked that the map X → x,
Y → ∂ and H → ∂x provides an isomorphism from the generalized Weyl algebra A(H)
onto A1(k).

Furthermore, (see [9] or [5, p. 522]) if G is a cyclic group of order m acting on A1(k)
via ∂ → ω∂, x → ω−1x, where ω is a primitive m-th root of unity, then the fixed ring
AG1 = k〈∂m, ∂x, xm〉 is a GWA with a(H) = mmH(H + 1/m) · · · · · (H + (m − 1)/m),
where X → xm, Y → ∂m and H → ∂x/m.

Finally, let U be the universal enveloping algebra Usl2(k) with the usual generators
e, f, h (thus [h, e] = 2e, [h, f ] = −2f and [e, f ] = h). If C = 4fe + h2 + 2h is the
Casimir element, then all infinite dimensional primitive factors of U are of the form
Uλ = U/(C − λ)U , λ ∈ k. It is straightforward to verify that Uλ is a GWA with a(H) =
λ/4− (H + 1)H, where X → e, Y → f and H → h/2.

By [4, Theorem 3.28], one can multiply the polynomial a(H) by a nonzero constant
and ‘shift’ it to the left or right without changing the isomorphism type of A. It follows
that every GWA with a linear polynomial a(H) is isomorphic to A1(k), and every GWA
with a quadratic polynomial is isomorphic to one of primitive factors Uλ.

Note that some rings we have already considered are GWAs. For instance, from [6,
p. 205] it follows that the ring of differential operators D(P1) is isomorphic to U0, that is,
to a GWA with a(H) = −(H + 1)H. By what we have just said this GWA is isomorphic
to the GWA with a(H) = H(H − 1). Using [4, Theorem 3.28], it is easily checked that
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the latter GWA is not isomorphic to the GWA with a(H) = H(H − 2). However, using
translation functors from [9, Theorem 2.3], one concludes that the last two GWAs are
Morita equivalent.

The first crucial fact about GWAs is that they are noetherian.

Fact 4.5.1. [3, Proposition 1.3, Theorem 2.5] Every GWA is a noetherian domain of
Krull dimension 1.

Furthermore, looking at the roots of a(H) one can decide whether a given GWA is
simple and calculate its global dimension. We say that λ, µ ∈ k are comparable if λ−µ ∈ Z.

Fact 4.5.2. [3, Theorem 5] Let A = A(a) be a GWA.
1) A is simple iff a(H) has no comparable (distinct) roots;
2) A is hereditary iff a(H) has neither comparable nor repeated (= multiple) roots;
3) A has global dimension 2 iff a(H) has comparable roots but no repeated roots;
4) A is of infinite global dimension iff a(H) has a repeated root.

Thus every GWA has global dimension 1, 2 or ∞. For instance, if a(H) = H2, then
A is a simple algebra of infinite global dimension; and if a(H) = H(H − 1), then A has
global dimension 2 and is not simple.

Recall that every GWA A has a standard Z-grading: setting deg(X) = 1, deg(Y ) = −1
and deg(H) = 0, we obtain A = ⊕n∈ZAn, where An = k[H]Y n = Y nk[H] if n < 0,
A0 = k[H], and An = k[H]Xn = Xnk[H] if n > 0. Note also that ad(H)Xn = [H,Xn] =
nXn and ad(H)Y m = −mY m. It follows easily that every (two-sided) ideal I of A is
homogeneous, I = ⊕n∈Z In, where In = I ∩ An is the nth homogeneous component of I;
therefore the lattice of two-sided ideals of A is distributive (because the lattice of ideals
of k[H] is distributive). In fact more can be said.

Fact 4.5.3. [3, Proposition 2.2] If I is a nonzero ideal of a GWA A, then the factor A/I
is finite dimensional. Furthermore, the lattice of ideals of A is finite and there is a least
nonzero ideal Imin.

In the following lemma we will pinpoint this ideal. Note that, for every n ≥ 1,
XnY n = a(H − 1) · · · · · a(H − n) is a polynomial cn(H) such that Y nXn = a(H + n −
1) · · · · · a(H) = cn(H + n).

Lemma 4.5.4. Let n be the maximum of |λ − µ|, where λ and µ are comparable roots
of a(H). Then Imin is generated by the polynomial dn(H) = gcd(XnY n, Y nXn) =
gcd(cn(H), cn(H + n)) and Xn, Y n ∈ Imin.

Proof. Let I be a nonzero ideal of A. Since I is homogeneous, it contains a nonzero
polynomial f(H), and we may assume that deg f ≥ 1. Choose k ≥ n such that f(H) and
f(H−k) are coprime. Then f(H)Xk ∈ I and Xkf(H) = f(H−k)Xk ∈ I implies Xk ∈ I
(and similarly Y k ∈ I). It follows that XkY k = ck(H) ∈ I and Y kXk = ck(H + k) ∈ I,
therefore dk(H) = gcd(ck(H), ck(H + k)) ∈ I.

If λ is a root of dk(H) then λ− i and λ+ j are roots of a(H) for some 1 ≤ i ≤ k and
0 ≤ j ≤ k − 1. By the assumption, i + j = |(λ − i) − (λ + j)| ≤ n, in particular i ≤ n
and j ≤ n − 1. It follows easily that dn(H) = dk(H) ∈ I. Thus dn(H) belongs to every
nonzero ideal of A, therefore dn generates Imin.

Suppose that λ ≤ µ are roots of dn(H). Then λ − i and µ + j are roots of a(H) for
some 1 ≤ i and j ≥ 0. By the assumption |(µ+ j)− (λ− i)| = µ− λ+ i+ j ≤ n, hence
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µ−λ ≤ n− 1. Now it is easily checked that dn(H) and dn(H −n) are coprime, therefore,
by the first part of the proof, Xn, Y n ∈ I.

For instance, if A is a GWA with a(H) = H(H − 1), then n = 1, hence d1(H) =
gcd(XY, Y X) = gcd((H − 1)(H − 2), H(H − 1)) = H − 1; and 〈H − 1〉 is the unique
nonzero proper ideal of A. If A is a GWA with a(H) = H(H − 1)(H − 2), then n = 2 and
d2(H) = gcd(X2Y 2, Y 2X2) = (H − 1)(H − 2).

Since every maximal ideal of k[H] is generated by H − λ, λ ∈ k, the action of σ on
the set of maximal ideals can be identified with the action λ→ λ+ 1 on k. The orbits of
this action are of the form λ+ Z, λ ∈ k, therefore λ, µ ∈ k are on the same orbit iff they
are comparable. If B is an orbit and λ, µ ∈ B, then we set λ ≤B µ if µ − λ ≥ 0, that is
µ− λ is a nonnegative integer; clearly ≤B is a linear ordering.

Let S be the (finite) set of all roots of a(H), and let U denote the set of all orbits
containing at least two roots of a(H). If B ∈ U , then S ∩ B contains a smallest element
xB and a largest element yB 6= xB (with respect to ≤B). Denote by TB = (xB , yB ]
the semi-interval {z ∈ B | xB < z ≤ yB} and set T = ∪B∈U TB . For instance, if
a(H) = H(H − 2)(H − 5), then U = {0 + Z} and T = {1, 2, 3, 4, 5}, in particular, 1 ∈ T
is not a root of a(H). By Fact 4.5.2, T is nonempty iff A is not simple.

For every λ ∈ T let Lλ = {µ ∈ S | λ− µ ∈ N} and Rλ = {µ ∈ S | µ− λ ∈ N0}, where
N stands for the set of positive integers and N0 for the set of nonnegative integers. Thus
µ ∈ Lλ iff µ is strictly to the left of λ within the equivalence class of λ; and µ ∈ Rλ iff
µ is strictly to the right of λ in the equivalence class of λ or µ = λ. Let mµ denote the
multiplicity of H − λ in a(H) and set kλ = min(

∑
µ∈Lλ mµ,

∑
τ∈Rλ mτ ).

We will give an even more algorithmic way (compare with Lemma 4.5.4) to compute
dn(H).

Lemma 4.5.5. dn(H) =
∏
λ∈T (H − λ)kλ .

Proof. By definition, dn(H) is the greatest common divisor of cn(H) = XnY n =
a(H − 1) · · · · · a(H − n) and cn(H + n) = Y nXn = a(H + n− 1) · · · · · a(H). First notice
that H −λ divides dn(H) iff it divides both cn(H) and cn(H +n), that is, λ− i and λ+ j
are roots of a(H) for some 1 ≤ i ≤ n, 0 ≤ j ≤ n − 1. By the definition of T , it follows
that H − λ divides dn(H) iff λ ∈ T .

Suppose that λ ∈ T and let us calculate the multiplicity of H−λ in cn(H). Notice that
H − λ has multiplicity mλ−1 in a(H − 1), . . . , and multiplicity mλ−n in a(H − n). Thus
H −λ has multiplicity

∑
µ∈Lλ mµ in cn(H). By similar arguments H −λ has multiplicity∑

τ∈Rλ mτ in cn(H + n), and the result follows immediately.

For instance, let a(H) = H2(H−1)3(H−2)4. Then T = {1, 2}, L1 = {0}, R1 = {1, 2},
hence

∑
µ∈L1

mµ = 2,
∑
τ∈R1

mτ = 3 + 4 = 7 and k1 = min(2, 7) = 2. Similarly L2 =
{0, 1}, R2 = {2}, therefore

∑
µ∈L2

mµ = 2+3 = 5,
∑
τ∈R2

mτ = 4 and k2 = min(5, 4) = 4.
Thus dn(H) = (H − 1)2(H − 2)4 is a generator for Imin.

4.6 Idempotent ideals of GWAs

As one may see from Proposition 4.4.2, the description of idempotent ideals is an impor-
tant ingredient in the classification of projective modules. In this section we describe the
idempotent ideals of any GWA. But first we should recall description of maximal ideals
of GWAs.
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Recall (see Fact 4.5.3) that every GWA A has a least nonzero ideal Imin such that
A/Imin is a finite dimensional algebra. It follows that every maximal ideal of A contains
Imin and is the annihilator of a simple finite dimensional A-module. A classification of
such simples is available from [3]. Suppose that λ < µ are roots of a(H) lying on the same
orbit B. We say that λ and µ are adjacent if the interval (λ, µ) = {τ ∈ B | λ < τ < µ}
contains no roots of a(H). For instance, if a(H) = H(H − 2)(H − 4), then 0 < 2 and
2 < 4 are the only pairs of adjacent roots. If λ < µ are adjacent roots of a(H), then
Sλ,µ will denote the cyclic module A/A(Y n, X,H − µ). It is easily calculated that this
module is n-dimensional with a k-basis given by Y n−1, . . . , 1. Note also that Y i spans a
one-dimensional eigenspace for the action of H, with eigenvalue µ− i.

Lemma 4.6.1. [3, Theorem 3.2] Sλ,µ is a simple (finite dimensional) A-module, and
every simple finite dimensional A-module is isomorphic to a module of this form.

In particular, the number of simple finite dimensional A-modules is the cardinality of
T ∩ S.

Thus if Iλ,µ denotes the annihilator of Sλ,µ, then these ideals form a complete list of
maximal ideals of A. Furthermore, (see [3, Lemma 3.3]) if µ − λ = m, then the factor
A/Iλ,µ is isomorphic to the full matrix ring Mm(k), therefore A/Iλ,µ is a direct sum of
m copies of Sλ,µ.

In fact one can give a precise formula for a generator of Iλ,µ. If λ < µ are adjacent
roots on an orbit B, then Tλ,µ will denote the semi-interval (λ, µ] = {τ ∈ B | λ < τ ≤ µ}.
For instance, if a(H) = H(H − 2)(H − 4), then T0,2 = {1, 2} and T2,4 = {3, 4}. Clearly
T = ∪Tλ,µ, where the union runs over all pairs of adjacent roots of a(H).

Fact 4.6.2. [3, Lemma 3.3] Iλ,µ is generated by dλ,µ(H) =
∏
τ∈Tλ,µ(H − τ).

For instance, if a(H) = H(H − 2)(H − 4), then I0,2 is generated by (H − 1)(H − 2),
in particular, X2, Y 2 ∈ I0,2, but X,Y /∈ I0,2.

Let J ⊇ Imin denote the ideal of A whose image J/Imin is the Jacobson radical of
A/Imin. It follows that J is the intersection of the ideals Iλ,µ when λ < µ run over all
pairs of adjacent roots of a(H). Since T = ∪Tλ,µ, we obtain the following.

Corollary 4.6.3. The zeroth homogeneous component J0 of J is generated by f(H) =∏
τ∈T (H − τ).

The remaining homogeneous components of J can be calculated using Fact 4.6.2. For
instance, if a(H) = H(H−2)(H−4), then X2, Y 2 ∈ J (since the maximum of differences
between adjacent roots of a(H) is 2), but (see Lemma 4.5.4) X4 is the first power of X
in Imin.

Since every GWA has the least nonzero ideal Imin and A/Imin is a finite dimensional
algebra, by Corollary 4.2.3 we obtain the following.

Corollary 4.6.4. Let A be a GWA with m nonisomorphic simple finite dimensional
modules. Then the lattice of nonzero idempotent ideals of A is a (finite) Boolean algebra
B(A) with m atoms.

Note that Imin is the least element of B(A), and every element of B(A) but Imin is a
sum of atoms (since the join in B(A) is usual sum).

But first let us look at the following example. Let A be a GWA with a(H) = H(H −
1)(H − 2)(H − 3). Then the following is a fragment of the lattice of two-sided ideals of A
containing B(A), where idempotent ideals are marked by bullets.
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•

wwwwwwww

GGGGGGGG
A

•〈H−3〉

GGGGGGGG •
〈H−2〉

wwwwwwww

GGGGGGGG • 〈H−1〉

wwwwwwww

•(H−2)(H−3)

GGGGGGGG •
(H−1)(H−3)

• (H−1)(H−2)

wwwwwwww

◦
J (H−1)(H−2)(H−3)

• Imin=〈(H−1)(H−2)2(H−3)〉

• 0

For instance, I0,1 = 〈H − 1〉 (that is, generated by H − 1), I1,2 = 〈H − 2〉 and
I2,3 = 〈H − 3〉 are the only maximal ideals of A, and they are idempotent. However,
J , the intersection of all these ideals, is not idempotent and is strictly larger than Imin.
Indeed, the zeroth component of J is generated by (H−1)(H−2)(H−3) and is it possible
to check (it is not so obvious as it seems!) that it is larger than the zeroth component of
Imin, which is generated by (H − 1)(H − 2)2(H − 3).

If λ < µ are adjacent roots of a(H), then m(λ, µ) = min(mλ,mµ) will denote the
common multiplicity of λ and µ as roots of a(H). The following lemma describes coatoms
in B(A), that is, maximal idempotent ideals.

Lemma 4.6.5. Im(λ,µ)
λ,µ , where λ < µ run over adjacent roots of a(H), is a complete list

of maximal idempotent ideals of A.

Proof. If I is a maximal idempotent ideal of A, then I is contained in a maximal
ideal L; and L = Iλ,µ for some adjacent roots λ < µ of a(H), by the description of
maximal ideals. Since I is idempotent, it follows that I ⊆ Lm for all m. But, by [3,
Proof of Theorem 3.3], m = m(λ, µ) is the smallest number such that the ideal Imλ,µ is
idempotent.

Since B(A) is a Boolean algebra, every idempotent ideal of A is a (unique) intersection
(in B(A)) of maximal idempotent ideals Im(λ,µ)

λ,µ . However, since the intersection in B(A)
may differ from set-theoretic intersection, this description is not very constructive. In the
next section we will list the atoms of B(A), hence obtain another, more handy, description
of the idempotent ideals of GWAs.

4.7 projective modules over GWAs

In this section we will classify projective modules over any given GWA. Recall that (by
Bass’ result) if A is a simple GWA, then every infinitely generated projective module is
free. Thus the only interesting case is when A is not simple, hence (by Fact 4.5.2) a(H)
has distinct comparable roots (that is, T 6= ∅). In most statements of this section we will
make a default assumption that A is not simple.

Let us make a general (well known) remark. Suppose that I is a left ideal of a GWA
A and let Q = Q(A) denote the skew field of quotients of A. Since A is a noetherian
domain, every morphism from I to AA is given by right multiplication by some q ∈ Q.
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Using the dual basis lemma (see [12, Lemma 2.9]) we conclude that I is projective iff there
are p1, . . . , pm ∈ I and q1, . . . , qm ∈ Hom(I, A) ⊆ Q such that

∑m
i=1 qipi = 1. In this case

right multiplication by the row (q1, . . . , qm) defines a morphism from I to AA
m whose

one-sided inverse is given by right multiplication by the column (p1, . . . , pm)t. Thus I is
represented by the idempotent m×m matrix (piqj), therefore the trace of I is generated
by the piqj . Moreover, Tr(I) is also generated by p′iqj , where p′1, . . . , p

′
l is any set of

generators for I, for instance this is the case when l = m and pi = rip
′
i for some ri ∈ A.

First we construct a projective homogeneous left ideal of A whose trace is equal to
Imin. We will use the notation introduced before Lemma 4.5.5. Recall that if λ ∈ T , then
Rλ denotes the set of all roots of a(H) that are comparable with λ and lie to the right of
λ (including λ). Let nλ =

∑
µ∈Rλ mµ, where mµ denotes the multiplicity of µ as a root of

a(H); and we set q(H) =
∏
λ∈T (H−λ)nλ . It is easily seen (see Lemma 4.5.5 for a similar

proof) that H −λ has multiplicity nλ in cn(H +n) = Y nXn, therefore q(H) = Y nXn |T ,
the restriction of cn(H + n) to T . For instance, if a(H) = H(H − 1)(H − 2)(H − 3), then
q(H) = (H − 1)3(H − 2)2(H − 3).

Recall that n denotes the maximum of |λ − µ|, where λ and µ are comparable roots
of a(H). For instance, if λ ∈ T , then λ− n /∈ T .

Lemma 4.7.1. Pmin = Aq(H) + AXn is a projective homogeneous left ideal of A whose
trace is equal to Imin.

Proof. Recall that Q denotes the classical ring of quotients of A, and let the mor-
phism f : A → AQ

|T |+1 be given by right multiplication by the row (q0, . . . , qn) =
(1, . . . , Y n(H − λ − n)−nλ , . . . ), where each λ ∈ T gives an entry. We claim that,
when restricted to Pmin, f provides a morphism from Pmin to AA. Indeed f(q(H)) =
(q(H), . . . , q(H)Y n(H − λ − n)−nλ , . . . ). Since (H − λ)nλ is a factor of q(H) for each
λ ∈ T , therefore q(H)Y n(H − λ − n)−nλ = q(H)(H − λ)−nλY n ∈ A. It remains to
check that each component of f(Xn) belong to A. Indeed, as we have already noticed,
(H − λ)nλ divides cn(H + n) = Y nXn, hence (H − λ − n)nλ divides cn(H) = XnY n.
Thus Xn · Y n(H − λ− n)−nλ = cn(H)(H − λ− n)−nλ ∈ A.

Now we consider the following polynomials: q(H) and Y n(H − λ − n)−nλXn =
Y nXn(H − λ)−nλ , λ ∈ T . Because q(H) =

∏
λ∈T (H − λ)nλ = Y nXn |T , therefore H − λ

does not divide Y nXn(H −λ)−nλ for any λ ∈ T , and the above polynomials are coprime.
Thus there are polynomials p(H), pλ(H), λ ∈ T such that q(H)p(H)+

∑
λ∈T Y

n(H−λ−
n)−nλXnpλ(H) = 1. Now (p0, . . . , pn)t = (q(H)p(H), . . . , Xnpλ(H), . . . )t is the column
of |T | + 1 elements of Pmin such that the right multiplication by this column defines a
morphism g : A|T |+1 → P with gf = 1Pmin , therefore Pmin is projective.

It remains to show that Tr(Pmin) = Imin. By what we have said at the beginning of the
section, the trace of Pmin is generated by the images of q(H) and Xn when multiplying
them by the qi on the right. Since Imin is a minimal nonzero ideal, it suffices to check
that q(H), q(H)Y n(H−λ−n)−nλ ∈ Imin and Xn, XnY n(H−λ−n)−nλ ∈ Imin. But (see
Lemma 4.5.4) Xn, Y n ∈ Imin, therefore q(H)Y n(H − λ− n)−nλ = q(H)(H − λ)−nλY n ∈
Imin, because (H − λ)nλ divides q(H). Further, from Lemma 4.5.5 and the definition of
q(H) it follows that dn(H) divides q(H), therefore q(H) ∈ Imin.

Now consider XnY n(H − λ − n)−nλ = cn(H)(H − λ − n)−nλ . As we have already
seen, (H − λ − n)nλ divides cn(H), hence it can be canceled. Recall (see Lemma 4.5.4)
that dn(H) also divides cn(H) and is a product of polynomials H − µ, µ ∈ T . If λ ∈ T ,
then λ − n /∈ T , hence dn(H) still divides cn(H)(H − λ − n)−nλ . By Lemma 4.5.4, the
latter polynomial belongs to Imin, as desired.
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For example if a(H) = H(H−1)(H−2)(H−3), then Pmin = A(H−1)3(H−2)2(H−
3) +AX3.

In the next lemma we will extend our supply of projective modules, hence of idempo-
tent ideals. For λ ∈ T we define qλ(H) = q(H)/(H − λ)nλ =

∏
µ∈T, µ 6=λ(H − µ)nµ and

set Pλ = Aqλ(H) +AXn.

Lemma 4.7.2. If λ ∈ T , then Pλ is a projective homogeneous left ideal of A whose trace
is generated by qλ(H).

Proof. As in Lemma 4.7.1, let f : A → AQ
|T | be given by right multiplication

by the row (1, . . . , Y n(H − µ − n)−nµ , . . . ), where each µ ∈ T , µ 6= λ gives one entry.
We claim that the restriction of f to Pλ gives a morphism from Pλ to AA. It suffices
to check that qλ(H) · Y n(H − µ − n)−nµ ∈ A and Xn · Y n(H − µ − n)−nµ ∈ A. Indeed
qλ(H)Y n(H−µ−n)−nµ = qλ(H)(H−µ)−nµY n ∈ A, because µ 6= λ yields that (H−µ)nµ
divides qλ(H). Since (H − µ)nµ divides cn(H + n), it follows that (H − µ− n)nµ divides
cn(H), therefore XnY n(H − µ− n)−nµ = cn(H)(H − µ− n)−nµ ∈ A.

Now we consider the following |T | polynomials: qλ(H) and Y n(H − µ − n)−nµXn,
where each µ ∈ T, µ 6= λ gives one polynomial. Since Y n(H − µ − n)−nµXn = cn(H +
n)(H−µ)−nµ , from the definition of qλ(H) it follows that these polynomials are coprime.
(Indeed, H − µ is not a root of cn(H + n)(H − µ)−nµ for every λ 6= µ ∈ T ). Thus
qλ(H)pλ(H) +

∑
µ∈T, µ 6=λ Y

n(H − µ− n)−nµXnpµ(H) = 1 for some polynomials pτ (H),
τ ∈ T . Now right multiplication by the column (qλ(H)pλ(H), . . . , Xnpµ(H), . . . )t of
elements of Pλ defines a morphism g : A|T | → P such that gf = 1Pλ , therefore Pλ is
projective.

It remains to calculate the trace of Pλ. By the remark at the beginning of the section,
Tr(Pλ) is generated by the images of qλ(H) and Xn when multiplying them by 1 or
Y n(H − µ− n)−nµ , λ 6= µ ∈ T . Thus qλ(H) = qλ(H) · 1 ∈ Tr(Pλ), and clearly Xn, Y n ∈
Tr(Pλ) (because Xn, Y n belong to every nonzero ideal — see Lemma 4.5.4). Furthermore,
qλ(H)Y n(H − µ − n)−nµ = qλ(H)(H − µ)−nµY n is a multiple of Y n, hence belongs to
〈qλ(H)〉. Thus it remains to look at XnY n(H − µ− n)−nµ = cn(H)(H − µ− n)−nµ . But
in the proof of Lemma 4.7.1 we showed that this polynomial is in Imin ⊆ 〈qλ(H)〉.

For instance, if a(H) = H(H − 1)(H − 2)(H − 3) and λ = 1 ∈ T = {1, 2, 3}, then
q1(H) = (H − 2)2(H − 3), hence P1 = A(H − 2)2(H − 3) + AX3 is a projective module
whose trace is generated by (H − 2)2(H − 3).

Now we are in a position to describe the atoms of B(A).

Lemma 4.7.3. If τ ∈ T , then 〈qτ 〉 = AqτA is an atom in B(A), and every atom of B(A)
is of this form.

Proof. By Lemma 4.7.2, 〈qτ 〉 is the trace of the projective module Pτ , hence
idempotent. Since τ ∈ T , it follows that τ ∈ Tλ,µ for the only pair λ < µ of adjacent
roots of a(H). From Fact 4.6.2 it follows that qτ /∈ Iλ,µ and qτ ∈ Iρ,π for all remaining
pairs of adjacent roots ρ < π of a(H). Since 〈qτ 〉 is idempotent, it equals the intersection
in B(A) of maximal idempotent ideals Im(ρ,π)

ρ,π (see Lemma 4.6.5). It follows easily that
〈qτ 〉 is an atom in B(A), and every atom of B(A) is of this form.

Thus we have obtained a somehow better (see a remark after Lemma 4.6.5) description
of the idempotent ideals of GWAs. Since every nonzero idempotent ideal of A either
equals Imin or is a (finite) sum of atoms, it follows from Lemmas 4.7.1 and 4.7.2 that
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every idempotent ideal of A is the trace of a finitely generated projective module, hence 2
a) of Theorem 4.4.4 holds true. Instead of verifying 2 b) of this theorem, we will proceed
directly to the classification of projective modules. But first we need the following lemma.

Lemma 4.7.4. If τ ∈ Tλ,µ, then Pτ/JPτ is a simple module isomorphic to Sλ,µ.

Proof. First we will show that Pτ/JPτ is a cyclic module generated by q̄τ = qτ+JPτ .
For this it suffices to prove that Xn, the second generator of Pτ , belongs to JPτ . Indeed,
from Xn ∈ J we obtain Xnqτ (H) = qτ (H−n)Xn ∈ JPτ . Further, if f(H) =

∏
η∈T (H−η)

is a generator of the zeroth component of J (see Corollary 4.6.3), then f(H)Xn ∈ JPτ .
Since all the roots of qτ are in T (and n is the maximum of differences of comparable
roots), it follows that qτ (H − n) and f(H) are coprime, hence Xn ∈ JPτ .

From the description of maximal ideals of A (see after Fact 4.6.2) we conclude that
qτ /∈ Iλ,µ and qτ ∈ Iρ,π for all remaining maximal ideals of A. It follows easily that
Iλ,µq̄τ = 0̄. Since Iλ,µ is the annihilator of Sλ,µ, this implies that Pτ/JPτ is a direct sum
of copies of Sλ,µ.

Recall (see before Lemma 4.6.1) that the τ -eigenspace of Sλ,µ (when acting by H)
is 1-dimensional. Thus to prove that Pτ/JPτ is simple it suffices to show that its τ -
eigenspace is also 1-dimensional. Moreover, since q̄τ is a generator for this module, it is
enough to check that (H − τ)q̄τ = 0̄, that is, (H − τ)qτ ∈ JPτ . If f(H) =

∏
η∈T (H − η),

then (as above) f(H) ∈ J , hence f(H)qτ ∈ JPτ . Furthermore, Y n ∈ J implies Y nXn =
cn(H + n) ∈ JPτ , therefore g(H) = gcd(f(H)qτ (H), cn(H + n)) ∈ JPτ . Since every
root of f(H)qτ (H) belongs to T and Y nXn |T= q(H) = (H − τ)nτ qτ , it follows that
g(H) = gcd(f(H)gτ , q) = (H − τ)qτ ∈ JPτ , as desired.

Note that we have some excess of projective modules ‘covering’ the same simple mod-
ule: if τ, η ∈ Tλ,µ, then both Pτ/JPτ and Pη/JPη are isomorphic to Sλ,µ. To get unique-
ness one can choose one representative τ in each set Tλ,µ; and the most natural choice
would be to take τ = µ, the utmost right end of Tλ,µ, which is a root of a(H). Thus
simple finite dimensional A-modules, hence the corresponding projective ideals, are pa-
rameterized by T ∩ S.

Let λ1, . . . , λm be a complete list of elements of T∩S (that is, of elements of T which are
roots of a(H)), where we may assume that i < j implies λi <B λj , if λi and λj are on the
same orbit B. Let S1, . . . , Sm be the corresponding (complete) list of finite dimensional A-
modules. Thus, if λi < λi+1 are adjacent roots of a(H), then Si+1 = Sλi,λi+1 (in notation
before Lemma 4.6.1). For example, if a(H) = H(H − 2)(H − 4), then T ∩ S = {2, 4},
therefore we set λ1 = 2 < λ2 = 4 and S1 = S0,2, S2 = S2,4. By what we have just noticed,
then Pλ1 , . . . , Pλm are projective homogeneous left ideals of A such that Pλi/JPλi ∼= Si.

Now we are in a position to prove the main result of the paper.

Theorem 4.7.5. Every infinitely generated projective module Q over a generalized Weyl
algebra A is a direct sum of copies of homogeneous left ideals Pmin and Pλ1 , . . . , Pλm .

Proof. By Kaplansky’s theorem we may assume that Q is countably (infinitely)
generated. Let I = I(Q) be a two-sided ideal of A corresponding to Q in Proposition 4.4.2;
in particular, I is idempotent and P = Q/IQ is a finitely generated projective A/I-
module. Since Q is infinitely generated, therefore I 6= 0.

Suppose first that I = Imin. Since Imin ⊆ J and J is nilpotent modulo Imin, therefore
the canonical projection P/IminP → P/JP is a projective cover of P/JP as an A/Imin-
module. Furthermore, because A/J is a semisimple artinian ring, we conclude that P/JP
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is a direct sum of simple finite dimensional A-modules, P/JP ∼= Sk1
1 ⊕ · · · ⊕ Skmm . Then

P ′ = P k1
λ1
⊕· · ·⊕P kmλm is a projective left A-module with P ′/JP ′ ∼= P/JP . Thus P/IminP

and P ′/IminP
′ are projective covers of P/JP as an A/Imin-module, therefore these mod-

ules are isomorphic.
Now it is easy to calculate that the pair corresponding to the projective module P (ω)

min⊕
P ′ is (Imin, P

′/IminP
′), therefore Q is isomorphic to this module by Proposition 4.4.2.

Now assume that I ⊃ Imin is an idempotent ideal of A. If Ii denotes 〈qλi〉, then, by
Lemma 4.7.3, I1, . . . , Im is a complete list of atoms of B(A), therefore I admits a (unique)
representation as a sum of atoms, I =

∑
j∈Λ Ij , where Λ is a subset of {1, . . . ,m} (for

instance, if I = A, then Λ = {1, . . . ,m}); and let Λ′ = {1, . . . ,m} \ Λ be the complement
of Λ.

Since A/J is semisimple, we conclude that P/JP is a direct sum of copies of sim-
ple modules S1, . . . , Sm. Furthermore, because I(P ) = I, it follows easily that Q/JQ ∼=⊕

j∈Λ S
(ω)
j ⊕

⊕
l∈Λ′ S

kl
l , kl < ω, therefore Q/IQ ∼=

⊕
l∈Λ′ S

kl
l . Let us consider the follow-

ing projective A-module Q′ =
⊕

j∈Λ P
(ω)
λj
⊕
⊕

l∈Λ′ P
kl
λl

. Clearly I(Q) =
∑
j∈Λ Tr(Pλj ) =∑

j∈Λ Ij = I and Q′/JQ′ ∼= Q/JQ. Using projective covers (as in the first part of
the proof) we conclude that Q′/IminQ

′ ∼= Q/IminQ. Since Imin ⊆ I, it follows that
Q′/IQ′ ∼= Q/IQ, therefore Q′ ∼= Q by Proposition 4.4.2.

Note that Hodges [9, Lemma 2.4] constructed a family of finitely generated projective
modules over a GWAA as follows. Suppose that a(H) = b(H)c(H), where the polynomials
b(H) and c(H) are coprime. Then Pb = Ab(H) + AX is a projective homogeneous left
ideal of A. It is not difficult to check that Tr(Pb) is generated by X,Y, b(H) and c(H−1).
For instance, if a(H) = H(H − 1)(H − 2) and b(H) = H − 1, then Tr(Pb) = 〈H − 1〉,
therefore Tr(Pb) is a maximal (idempotent) ideal of A. However, Tr(Pb) is always situated
close to the top of B(A), for instance, in most cases one cannot obtain Imin as Tr(Pb).
Thus our approach to idempotent ideals ‘from below’ seems to have a crucial advantage.

If we take a GWA with a(H) = H(H − 2), set b(H) = H − 2 and apply Hodges’
construction, then (see [9, Theorem 2.3]) P = A(H − 2) + AX is a projective generator
whose endomorphism ring is isomorphic to the GWA with a(H) = H(H − 1), therefore
these algebras are Morita equivalent. This is an example of a translation functor we
mentioned before Fact 4.5.1.

As one can see from the proof of Theorem 4.7.5, some direct summands of the projec-
tive module Q are clearly redundant. For instance, executing this proof for Q = A(ω), we
will end up with representation Q ∼= ⊕mi=1P

(ω)
λi

. In the next proposition we will get rid of
these repetitions, therefore obtain a canonical form for each infinitely generated projective
module over a GWA. This also allows us to include uncountably generated projectives.

Proposition 4.7.6. Let Q be an infinitely generated projective module over a GWA A.
Then exactly one of the following holds true.

1) Q is free;
2) Q ∼= A(α) ⊕

⊕
i∈Λ P

(αi)
λi
⊕ P (β)

min, where ω ≤ α < αi < β and Λ is a proper (maybe
empty) subset of {1, . . . ,m};

3) Q ∼= A(α) ⊕
⊕

i∈Λ P
(αi)
λi

, where ω ≤ α < αi and Λ is a proper nonempty subset of
{1, . . . ,m};

4) Q ∼=
⊕

i∈Λ P
(αi)
λi
⊕
⊕

j∈M P
kj
λj
⊕ P (β)

min, where kj < ω, ω ≤ αi < β, and Λ,M are
disjoint subsets of {1, . . . ,m} and Λ is proper and nonempty;
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5) Q ∼=
⊕

i∈Λ P
(αi)
λi
⊕
⊕

j∈M P
kj
λj

, where kj < ω, ω ≤ αi, and Λ,M are disjoint subsets
of {1, . . . ,m} and Λ is proper and nonempty;

6) Q ∼=
⊕

j∈M P
kj
λj
⊕ P (β)

min, where kj < ω, β ≥ ω, and M is a subset of {1, . . . ,m}.
Furthermore all the exponents α, β, . . . in the above representations are uniquely de-

termined by Q.

Proof. By Theorem 4.7.5, every infinitely generated projective A-module Q is
isomorphic to a direct sum of copies of A, Pλ1 , . . . , Pλm and Pmin (clearly there is no
harm in adding A!). Separating finite and infinite exponents of the Pλi , we obtain that

Q ∼= A(α) ⊕
⊕

i∈Λ P
(αi)
λi
⊕
⊕

j∈M P
kj
λj
⊕ P (β)

min,
where each αi ≥ ω, kj < ω, and Λ,M are disjoint subsets of {1, . . . ,m}; and choose a
representation of Q with a maximal possible α.

Suppose first that α ≥ ω. Because A = Tr(A) ⊃ Tr(Pλi) = Ii ⊃ Tr(Pmin) = Imin,
therefore, by Lemma 4.3.3, we can absorb projectives P kjµj into A(α), therefore assume
that M = ∅. Similarly, if α ≥ αi for some i ∈ Λ then A(α) ⊕ P (αi)

λi
∼= A(α) (so we can

drop P
(αi)
λi

); and A(α) ⊕ P
(β)
min
∼= A(α) if α ≥ β. Furthermore, again by Lemma 4.3.3,

P
(αi)
λi
⊕ P (β)

min
∼= P

(αi)
λi

if αi ≥ β.
Thus either Q is free or we may assume either that α < αi < β for each i ∈ Λ (or just

α < β if Λ = ∅) or β = 0, Λ 6= ∅ and α < αi for each i ∈ Λ.
Suppose that Λ = {1, . . . ,m} and αj = mini∈Λ αi. Since Tr(Pλ1 ⊕ · · · ⊕ Pλm) = A it

follows that ⊕i∈ΛP
(αi)
λi

splits off A(αj) as a direct summand, which can be transferred to
A(α). Since α + αj = αj > α, this contradicts our choice of α. As a result Λ is a proper
subset of {1, . . . ,m}, thus we have obtained 2) and 3) of the proposition.

It remains to consider the case when α = s if finite. If Λ 6= ∅ and j ∈ Λ then using
Proposition 4.4.2 it is easily seen that As ⊕ P

(αj)
λj

is isomorphic to P
(αj)
λj

⊕
⊕m

i=1 P
s
λi

,
therefore Q is isomorphic to a module of the form 4) or 5).

Similarly if Λ = ∅ and Q is not finitely generated, we obtain 6).
Arguing as in Proposition 4.4.3 it is easily seen that exponents α, β, . . . are uniquely

determined by Q. For instance, in 4), αi is equal to the uniform dimension of Q/KQ,
where K is the annihilator of the simple module Si = Pλi/JPλi .
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[9] T. Hodges, Noncommutative deformations of type-A Kleinian singularities, J. Alge-
bra, 161 (1993), 271 – 290.

[10] T. Hodges, J. Ostenburg, A rank two indecomposable projective modules over a
noetherian domain of Krull dimension 1, Bull. London Math. Soc., 19 (1987), 139 –
144.

[11] M.P. Holland, K-theory of endomorphism rings and of rings of invariants, J. Algebra,
191 (1997), 668 – 685.

[12] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics,
Vol. 199, Springer, 1999.

[13] L.S. Levy, J.C. Robson, Hereditary Noetherian prime rings. III. Infinitely generated
projective modules, J. Algebra, 225 (2000), 275 – 298.

[14] P.A. Linnell, Nonfree projective modules for integral group rings, Bull. London Math.
Soc., 14 (1982), 124 – 126.

[15] M. Lorenz, K0 of skew group rings and simple noetherian rings without idempotents,
J. London Math. Soc., 32 (1985), 41 – 50.



Bibliography 65

[16] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, Graduate Studies
in Mathematics, Vol. 30, Amer. Math. Soc., 2001.

[17] W. McGovern, G. Puninski, Ph. Rothmaler, When every projective module is a direct
sum of finitely generated modules, J. Algebra, 315 (2007), 454 – 481.

[18] P. Polo, On the K-theory and Hattori–Stallings traces of minimal primitive factors of
enveloping algebras of semisimple Lie algebras: the singular case, Ann. Inst. Fourier,
45 (1995), 707 – 720.
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5. CLASSYFIYNG GENERALIZED LATTICES.
SOME EXAMPLES AS AN INTRODUCTION.

5.1 Introduction

The title of this paper is just a rephrase of Ringel’s [17] ‘Infinite length modules. Some
examples as introduction’, which manifest a recent trend in representation theory of fi-
nite dimensional algebras to switch an attention from studying just finite dimensional
representations to investigating carefully chosen classes of infinite dimensional modules.

This ideology has been recently adopted by people in integral representation theory.
If Λ is an order over a Dedekind domain D, then Butler at al. [4] call a D-projective
Λ-module a generalized lattice. A remarkable result of [4] is a complete classification of
generalized lattices over the group ring ZCp of a cyclic group Cp of prime order, therefore
a classification of representations of the operator X, Xp = 1, by column-finite Z-matrices.
An essential step in this classification is to prove that every generalized ZCp-lattice is a
direct sum of (finitely generated) lattices whose classification is well known (this result
was later extended by Rump [18] to generalized lattices over ZCp2).

For orders of (locally) finite lattice type Rump [18] gave a useful combinatorial criterion
when every generalized lattice is a direct sum of (finitely generated) lattices. For instance,
using this criterion it has been checked that over a Bass’ order Λ(6) = {(m,n) ∈ Z2 | 6
dividesm−n} there exists a generalized lattice that is not a direct sum of finitely generated
lattices.

The main objective of this paper is to suggest a strategy of classifying generalized
lattices over orders of finite lattice type even in the case when not every generalized lattice
is a direct sum of finitely generated ones. The first step in this approach is a standard
one: using Auslander’s lattice one can reduce the original problem to the classification
of (finitely and infinitely generated) projective modules over the Auslander order A of Λ.
This order is a module-finite Noetherian algebra — a quick search through P.I.-theory
results shows that one technical condition (∗) holds true, therefore the theory [14] of
fair-sized projectives gives a classification of infinitely generated projective modules over
A in terms of idempotent ideals and finitely generated projectives over corresponding
factor-rings.

Despite a conceptual clearness the difficulty in completing this classification of projec-
tives and converting it into a classification of generalized lattices over the original order
could be enormous. In this paper we will demonstrate on carefully chosen examples
(mostly borrowed from [18]) how to carry through this classification program. Thus the
emphasis of this text is rather on examples than on general theory.

Joint work with Gena Puninski, published in J. London Math. Soc. (2009), no. 4, 1326 – 1342.
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Namely, in Section 5.4 we will give a complete classification of generalized lattices over
the quadratic orders Z[

√
n], n is square-free. The most interesting case is n ≡ 1 (mod 8)

in which there exist generalized lattices that are not direct sums of finitely generated
lattices, however the classification can be completed.

Even more this is true for one particular example of Z-order Λ considered by Rump [18,
Example 2]. In this case we will show in Section 5.6 (answering a question by Rump)
that there exists a superdecomposable (i.e. without indecomposable direct summands)
projective Λ-module, but also classify all (infinitely generated) projective Λ-modules.

To complete this classification we develop in Section 5.2 (following [14] and [16]) a piece
of general theory concerning infinitely generated projective modules over noetherian rings
satisfying (∗). Namely we will give a criterion when there exists a superdecomposable
projective module over such a ring, therefore when there exists a superdecomposable
generalized lattice over an order of finite lattice type.

In Section 5.7 we will analyze generalized lattices over a Bass order Λ(6) and show how
to classify them modulo some straightforward (but tedious) calculations. For instance we
will prove that every generalized Λ6-lattice contains a finitely generated direct summand,
but (as also follows from [18]) there exists a generalized lattice that is not a direct sum
of finitely generated lattices. Furthermore, this generalized lattice is not isomorphic to a
direct sum of indecomposable modules.

5.2 Projective modules over noetherian rings with (∗)

In this section we recall (from [14], which has been circulated for quite a while, but is yet
to be published) the theory of fair-sized projective modules over noetherian rings with
(∗). Because there is a good explanation of similar things in the follow-up paper [16], we
will be quite concise.

Recall that a module P over a ring R is said to be projective, if P is isomorphic
to a direct summand of a free module R(J). An important invariant of a projective
module P is its trace ideal, Tr(P ), which is the sum of images of all morphisms form
P to RR. For instance, if e ∈ R is an idempotent, then eR is a projective (right) R-
module with Tr(P ) = ReR (the two-sided ideal generated by e). It is known that Tr(P )
is an idempotent ideal (that is, Tr(P )2 = Tr(P )) such that P = P Tr(P ), and Tr(P )
is the least ideal with this property. In what follows we will mostly consider countably
generated projective modules over (left and right) noetherian rings. A justification for such
a restriction is given by Kaplansky’s theorem (see [7, Corollary 2.48]): every projective
module (over an arbitrary ring) is a direct sum of countably generated modules.

We say that a noetherian ring R satisfies the condition (∗) if the following holds true.

(∗) Every (descending) chain I1, I2, . . . of ideals of R, with Ik+1Ik = Ik+1 for any k,
stabilizes.

For instance, if R has a (strictly) descending chain of idempotent ideals (which is
true for the universal enveloping algebra Usl2(k) over an algebraically closed field k)
then R fails to satisfy (∗). Furthermore, as the following lemma shows, these properties
are equivalent for rings of Krull dimension 1 (for a definition of Krull dimension of a
noetherian ring see [13, Chapter 6]).



5. Generalized lattices 68

Lemma 5.2.1. Suppose that R is a noetherian ring of (right) Krull dimension 1. Then
the following are equivalent.

1) R satisfies (∗);
2) R has a d.c.c. on idempotent ideals.

Proof. 1) ⇒ 2) is obvious.
2) ⇒ 1). Otherwise let I1 ⊃ I2 ⊃ . . . be a (strictly descending) chain of ideals of R

such that Ik+1Ik = Ik+1 for every k. We will transform this chain into a descending chain
of idempotent ideals of R getting a contradiction to 2).

Since R has Krull dimension 1, almost all (right) modules Ik/Ik+1 are of finite length.
Because the property Ik+1Ik = Ik+1 passes to subchains, we may assume that all the
modules Ik/Ik+1 are of finite length. Observe that Ik+1Ik = Ik+1 implies Ik+1I

n
k = Ik+1

for every n, in particular Ik+1 ⊆ Ink , hence the descending chain Ik ⊇ I2
k ⊇ . . . stabilizes,

say Ink = In+1
k . Then I ′k = Ink is an idempotent ideal and clearly I ′1 ⊃ I ′3 ⊃ . . . is a strictly

descending chain of idempotent ideals of R, a contradiction.

Note that the proof of Lemma 5.2.1 works for rings whose lattice of two-sided ideals
has Krull dimension one.

The next proposition is a classification of projective modules over noetherian rings
with (∗).

Proposition 5.2.2. (see [14]) Suppose that R is a noetherian ring satisfying (∗). Then
there is a natural one-to-one correspondence between (at most) countably generated pro-
jective R-modules and pairs (I, P ), where I is an idempotent ideal of R (that is, I2 = I)
and P is a finitely generated projective R/I-module.

One direction in this correspondence is easy to describe. If Q is a countably generated
projective R-module, then I = I(Q) is the least ideal of R such that Q/QI is finitely
generated (I exists by the proof of the proposition) and P = P (Q) = Q/QI.

The opposite direction in the above correspondence, though constructive, often works
as rather an existence theorem. For instance, it is usually quite difficult to decide whether
the (countably generated) projective module corresponding to a given pair (I, P ) is a sum
of finitely generated modules or not.

Note that finitely generated projective modules correspond in the above classification
to pairs (0, P ), therefore Proposition 5.2.2 says nothing new about finitely generated
projectives. Furthermore the free countable rank module R(ω) corresponds to the pair
(R, 0). If a projective module Q corresponds to the pair (I, P ) then clearly I ⊆ Tr(Q) and
this inclusion is proper if P 6= 0. Furthermore Q(ω) corresponds to the pair (Tr(Q), 0).

If I is an idempotent ideal of R, then a (projective) module Q is said to be I-big, if
Q contains as a direct summand any countably generated projective module S such that
Tr(S) ⊆ I. By [14] over a noetherian ring with (∗) every projective module Q is I(Q)-big.
For instance, if Q is a (countably generated) projective module corresponding to the pair
(I, 0) then Q is I-big, Tr(Q) = I and Q⊕P ∼= Q for every countably generated projective
module P with Tr(P ) ⊆ I, in particular Q ∼= Q(k) for every 1 ≤ k ≤ ω.

For some classes of noetherian rings every projective module is a direct sum of finitely
generated modules. For instance, by Kaplansky’s result (see [10, Theorem 2.24]) this is the
case for hereditary rings; and the same is true for semiperfect rings (see [1, Theorem 27.11])
and for generalized Weyl algebras (see [16, Theorem 7.5]). However (see some examples
below) it is not always the case.
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The following two results will measure the complexity of direct sum decomposition
theory of projective modules over noetherian rings with (∗).

Fact 5.2.3. (see [16, Theorem 4.7]) Let R be a noetherian ring with (∗). Then the
following are equivalent.

1) Every projective module is a direct sum of finitely generated modules;
2) a) every idempotent ideal of R is the trace of a finitely generated projective module,

and
b) if I is an idempotent ideal of R and P is a finitely generated projective R/I-module,

then there exists a finitely generated projective R-module Q such that Q/QI ∼= P .

Thus 2 b) says that one can lift finitely generated projective modules modulo idem-
potent ideals of R.

An easy consequence of [14] that will be important for us is the following.

Remark 5.2.4. An indecomposable projective module Q over a noetherian ring with (∗)
is finitely generated.

Below we will give some examples of countably generated projective modules Q such
that every (nonzero) direct summand of Q contains a (nonzero) finitely generated direct
summand, but Q is not a direct sum of finitely generated modules. As the following
lemma shows the failure of this property gives an ‘ultimate’ level of complexity of direct
sum decompositions. Recall that a module is said to be superdecomposable if it contains
no (nonzero) indecomposable direct summands.

Lemma 5.2.5. Let R be a noetherian ring with (∗). Then the following are equivalent.
1) Every projective module contains a finitely generated direct summand;
2) every projective module has an indecomposable direct summand, that is, there is no

superdecomposable projective module;
3) every nonzero idempotent ideal of R contains the trace of a nonzero finitely generated

projective module;
4) every minimal nonzero idempotent ideal of R is the trace of a finitely generated

projective module.

Proof. 1) ⇒ 2). Because R is noetherian, every finitely generated module contains
an indecomposable direct summand.

2) ⇒ 3). Let I 6= 0 be an idempotent ideal of R and let Q be a countably generated
projective module corresponding to the pair (I, 0), in particular Tr(Q) = I. If P is
a (nonzero) indecomposable direct summand of Q then, by Remark 5.2.4, P is finitely
generated. Thus 0 6= Tr(P ) ⊆ Tr(Q), as desired.

3) ⇒ 4). Let I be a minimal nonzero idempotent ideal of R and let P be a (nonzero)
finitely generated projective module such that Tr(P ) ⊆ I. Since 0 6= Tr(P ) is an idempo-
tent ideal, we conclude that Tr(P ) = I.

4)⇒ 1). Let Q be a nonzero (countably generated) projective module. It follows from
[14] that I(Q) is an idempotent ideal and Q is I(Q)-big. If I(Q) = 0 then Q is finitely
generated, as desired. Otherwise I(Q) 6= 0. Because R satisfies (∗), there exists a minimal
nonzero idempotent ideal I ⊆ I(Q). By the assumption there exists a finitely generated
projective module P with Tr(P ) = I ⊆ I(Q). Since Q is I(Q)-big, we conclude that Q
contains P as a direct summand.
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5.3 From lattices to projective modules

In this section we recall how, using standard equivalences of categories, to convert the
classification of lattices over orders of finite lattice type into a classification of (finitely
and infinitely generated) projective modules over noetherian rings.

If M is a module over a ring R, then add(M) will denote the category whose objects
are direct summands of direct sums of finitely many copies of M . If we drop the finiteness
requirement in this definition we obtain the category Add(M). Thus N ∈ Add(M) iff N is
a direct summand of M (J) for some set J . The following is a well known trick converting
Add(M) into a category of projective modules.

Fact 5.3.1. ([7, Theorem 4.7]) If M is a finitely generated module, then Add(M) is
equivalent to the category of projective S = End(M)-modules via the following pair of
functors: NR 7→ HomR(M,N) and PS 7→ P ⊗S M .

Here is how Add(M) appears in our setting. Let Λ be an order over a Dedekind
domain D in a separable finite dimensional K-algebra, where K is a field of quotients of
D. Recall that a finitely generated D-torsion-free (=D-projective) Λ-module is called a
lattice. For an explanation and basic properties of lattices the reader is referred to [5].
Following [4] we say that a Λ-module M is a generalized lattice if M is projective as a
D-module (that is, if D = Z or MD is infinitely generated, then M is a free D-module).

An order Λ is said to be of finite lattice type if Λ has only finitely many (up to
an isomorphism) indecomposable lattices. Suppose that M1, . . . ,Mn is a complete list
of indecomposable Λ-lattices. Then M = M1 ⊕ · · · ⊕Mn is usually called the Auslander
lattice of Λ and A = End(M) is the Auslander order of Λ. By classical result of Auslander
(see [4]) A has global dimension at most 2.

The following proposition will be crucial in what follows.

Fact 5.3.2. ([4, Theorem 2.1], see also [18, p. 112, Corollary] for a generalization)
Suppose that Λ is an order of finite lattice type. A Λ-module N is a generalized lattice iff
N ∈ Add(M), where M stands for Auslander’s lattice of Λ.

Thus, by Fact 5.3.1, to classify generalized lattices over an order of finite lattice type is
the same as to classify (finitely and infinitely generated) projective modules over its Aus-
lander order A. The following proposition shows that the theory of fair-sized projectives
is applicable to A.

Proposition 5.3.3. Suppose that M is the Auslander lattice of an order Λ of finite lattice
type and let A = End(M) be the Auslander order of Λ. Then A is a noetherian ring of
Krull dimension 1 satisfying (∗).

Proof. Since M is a finitely generated Λ-module, its endomorphism ring, A, is a
module finite D-algebra. Because D is noetherian of Krull dimension 1, the same is true
for A.

By Lemma 5.2.1, to verify (∗) it suffices to show that A has a d.c.c. on idempotent
ideals. In fact more can be said — since A is a noetherian P.I.-ring, [19, Theorem 3] yields
that A has only finitely many idempotent ideals.

Thus we can use the theory of fair-sized projectives (see Section 5.2) to investigate
and classify generalized lattices over orders of finite lattice type.
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5.4 Quadratic orders

In this section we will classify generalized lattices over quadratic Z-orders Z[
√
n], where

n is a square-free integer. We will use [9, Section 12] as a reference for properties of these
rings.

If n ≡ 2, 3 (mod 4) then Λ = Z[
√
n] is a Dedekind domain. In this case it is well

known (or follows from what it will be said below) that every generalized Λ-lattice is a
direct sum of (finitely generated) lattices whose structure is reasonably well understood
(modulo some number theory).

Otherwise n ≡ 1 (mod 4) and then the normalization of Λ (that is, its integral closure
in the field of quotients Q = Q(

√
n) is Λ̃ = Z[ω], where ω = (1 +

√
n)/2. Furthermore the

conductor of Λ̃ in Λ is

C = (Λ̃ : Λ) = {q ∈ Q | qΛ̃ ⊆ Λ} = 2 Λ̃ = 2Z[ω] ,

Λ̃/Λ ∼= Λ/C as Λ-modules and Λ/C ∼= GF (2) = Z/2Z is a field. Thus C is a maximal
ideal in Λ. To understand a position of C as an ideal of Λ̃ we have to consider two cases.

1) If n ≡ 5 (mod 8), then C is a maximal ideal in Λ̃, therefore Λ̃/C is the Galois field
GF (4).

2) If n ≡ 1 (mod 8), then C is not a maximal ideal in Λ̃ and Λ̃/C is a product of two
fields GF (2)⊕GF (2).

We will proceed with cases 1) and 2). Since Λ is a Bass ring (see Section 5.7 for
explanations), every Λ-lattice is a projective Λ′-module for some ring Λ′ between Λ and
Λ̃. But Λ̃/Λ is a simple Λ-module, hence either Λ′ = Λ or Λ′ = Λ̃. Thus, if M is the
Auslander lattice of Λ, then Add(M) = Add(Λ⊕ Λ̃), therefore (see Section 5.3) to classify
generalized Λ-lattices is the same as to classify projective modules over S = End(Λ⊕ Λ̃),
a ‘shrinking’ of the Auslander order of Λ.

The following calculations are fairly general. Consider S as a matrix ring S =(
(Λ,Λ) (Λ̃,Λ)

(Λ,Λ̃) (Λ̃,Λ̃)

)
acting on the column

(
Λ
Λ̃

)
from the left, where we write (M,N) for

HomΛ(M,N). Using obvious identifications (Λ̃,Λ) = C and (Λ̃, Λ̃) = Λ̃ we conclude
that

S =
(

Λ C

Λ̃ Λ̃

)
.

Recall (see Proposition 5.2.2) that countably generated projective S-modules are clas-
sified by pairs (I, P ), where I is an idempotent ideal of S and P is a finitely generated
projective S/I-module. Thus our intermediate goal is to classify idempotent ideals of S.

First of all there are two ‘obvious’ finitely generated projective S-modules. Namely,
Λ goes to e1S = ( Λ C

0 0 ) via the correspondence in Fact 5.3.1, and Λ̃ goes to e2S =
(

0 0
Λ̃ Λ̃

)
.

Their traces are idempotent ideals:

A = Tr(e1S) = Se1S =
(

Λ C

Λ̃ Λ̃

)
·
(

Λ C
0 0

)
=
(

Λ C

Λ̃ C

)
and

B = Tr(e2S) = Se2S =
(

Λ C

Λ̃ Λ̃

)
·
(

0 0
Λ̃ Λ̃

)
=
(
C C

Λ̃ Λ̃

)
.
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Note that S/B ∼= Λ/C is a field, hence B is a maximal ideal of S. Since S/A ∼= Λ̃/C,
therefore A is a maximal ideal of S iff n ≡ 5 (mod 8); and otherwise A is contained in
exactly two (maximal) ideals A1, A2, where both A1 and A2 are idempotent.

◦
A1

◦
A2

◦
A

:::::
����� ◦

B

◦

:::::
�����

0

Now we are in a position to describe idempotent ideals of S.

Lemma 5.4.1. 1) If n ≡ 5 (mod 8) then A and B are the only (nonzero proper) idem-
potent ideals of S;

2) If n ≡ 1 (mod 8) then A,A1, A2, B is a complete list of nonzero proper idempotent
ideals of S.

Proof. Let V = ( I J
K L ) be an idempotent ideal of S =

(
Λ C

Λ̃ Λ̃

)
. Since V is an ideal,

I ⊆ Λ is an Λ-ideal; J ⊆ C and K,L ⊆ Λ̃ are Λ̃-ideals that satisfy the following scheme
of inclusions.

◦
K

×C
���

�
�

������

?????? ×C
��?

?
?

◦

??????

×C ��?
?

?L ◦

������

×C���
�

�
I

◦
J

??????

������

(for instance, L ⊆ K and KC ⊆ L).
Since V is idempotent, the following conditions are satisfied.(

I = I2 + JK J = IJ + JL
K = KI + LK L = KJ + L2

)
.

From K = KI + KL and I, L ⊆ K it follows that K = K2. Since K is an ideal in a
commutative noetherian domain Λ̃ we conclude that K = 0 or K = Λ̃. The former option
leads to V = 0, so we may assume the latter. Thus(

I = I2 + J J = J(I + L)

Λ̃ = IΛ̃ + L L = L2 + J

)
.

From K = Λ̃ and KC ⊆ L, I it follows that C ⊆ L, I. Furthermore IΛ̃+L = Λ̃ implies
(I + L)C = (IΛ̃ + L)C = C. Then IC, LC ⊆ J yields C ⊆ J , therefore J = C.

Now we consider the conditions I = I2 + C and L = L2 + C. Since C ⊆ I ⊆ Λ are
Λ-ideals we conclude that either I = C or I = Λ. If I = C then IΛ̃ + L = Λ̃ and C ⊆ L
implies L = Λ̃, hence V = B. Otherwise I = Λ. If Λ̃/C is a simple Λ-module, then either
L = C yielding V = A or L = Λ̃, which gives V = S. Similarly if Λ̃/C is not simple,
there are two more possibilities for L leading to A1 and A2.
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Before proceeding with the classification let us first calculate some invariants of count-
ably generated projective S-modules.

Remark 5.4.2. 1) Q = e1S
(ω) ⊕ e2S

k, k < ω corresponds to the pair (A, (S/A)k);
2) e1S

l ⊕ e2S
(ω), l < ω corresponds to the pair (B, (S/B)l).

Proof. 1) Since A = Tr(e1S) it is clear that A is the least ideal of S such that
Q/QA is finitely generated, therefore I(Q) = A. It remains to notice that

e2S ·A =
(

0 0
Λ̃ Λ̃

)
·
(

Λ C

Λ̃ C

)
=
(

0 0
Λ̃ C

)
,

therefore e2S/e2S ·A ∼= Λ̃/C ∼= S/A yielding P (Q) = (e2S/e2S ·A)k ∼= (S/A)k.
The verification of 2) is similar.

Now we are ready to classify generalized lattices in case 1).

Proposition 5.4.3. If n ≡ 5 (mod 8), then every infinitely countably generated general-
ized lattice over Λ = Z[

√
n] is isomorphic to one of the lattices Λ(k) ⊕ Λ̃(l), 0 ≤ k, l ≤ ω,

k + l = ω.

Proof. By Lemma 5.4.1 the only idempotent ideals of S = End(Λ⊕ Λ̃) are 0, A,B
and S. Since S/A and S/B are fields, the following is a complete list of pairs corresponding
to countably generated projective S-modules in Proposition 5.2.2:

(0, P ), where P is a finitely generated projective S-module;
(S, 0) corresponding to the free S-module S(ω);
(A, (S/A)k), k < ω corresponding to e1S

(ω) ⊕ e2S
k (see Remark 5.4.2);

(B, (S/B)l), l < ω corresponding to e1S
l ⊕ e2S

(ω) (by the same remark).
It remains to turn back to the category Add(Λ⊕ Λ̃) (see Fact 5.3.1) keeping in mind

that e1S corresponds to Λ and e2S corresponds to Λ̃.

Note that we have ignored in Proposition 5.4.3 (and elsewhere) the case when gener-
alized lattices (or projective modules) are uncountably generated. In fact, similar to [16,
Proposition 7.6] it is easy to produce canonical forms of such modules, using the fact (see
[16, Lemma 3.3]) that a projective module with a larger trace ‘absorbs’ a module with a
smaller trace.

Our next goal is to give a classification of generalized lattices in case when n ≡ 1
(mod 8). But let us make first an easy remark.

Remark 5.4.4. Let Λ = Z[
√
n], n is square-free. Then every generalized Λ-lattice con-

tains a finitely generated direct summand.

Proof. By Proposition 5.4.3 the only remaining case is n ≡ 1 (mod 8). It suffices
to prove that every projective module over S = End(Λ⊕ Λ̃) contains a finitely generated
direct summand. Since (by Lemma 5.4.1) minimal nonzero idempotent ideals of S are
A = Tr(e1S) and B = Tr(e2S), this is the case by Lemma 5.2.5.

In fact (see below) if (a projective S-module) Q is infinitely generated, it contains e1S
or e2S (even e1S

(ω) or e2S
(ω)) as a direct summand, therefore every generalized Λ-lattice

contains Λ(ω) or Λ̃(ω) as a direct summand.
Now we consider the remaining case in the classification of generalized lattices over

quadratic orders.
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Theorem 5.4.5. Let Λ = Z[
√
n], n ≡ 1 (mod 8) and let A,A1, A2, B be the nonzero

proper idempotent ideals of S = End(Λ ⊕ Λ̃) (see Lemma 5.4.1). Let Pi, i = 1, 2 be a
countably generated projective S-module corresponding to the pair (A,S/Ai). Then each
Pi is not finitely generated and the following is a complete list of infinitely countably
generated projective S-modules with corresponding pairs.

P k1 ⊕ P l2 7→ (A, (S/A1)k ⊕ (S/A2)l), 0 ≤ k, l < ω;
P

(ω)
1 7→ (A2, 0);
P

(ω)
2 7→ (A1, 0);
P s1 ⊕ P

(ω)
2 7→ (A1, (S/A1)s), 1 ≤ s < ω;

P
(ω)
1 ⊕ P t2 7→ (A2, (S/A2)t), 1 ≤ t < ω;
e1S

n ⊕ e2S
(ω) 7→ (B, (S/B)n), 1 ≤ n < ω;

Λ(ω) 7→ (Λ, 0).
Furthermore we have the following relations:
P1 ⊕ e1S

(t) ∼= P1 and P2 ⊕ e1S
(t) ∼= P2 for every 1 ≤ t ≤ ω;

and
P1 ⊕ P2

∼= e1S
(ω) ⊕ e2S.

For instance, every projective S-module has a finitely generated direct summand but
neither P1 nor P2 admits an indecomposable (direct sum) decomposition.

Proof. By Proposition 5.2.2 there exists a countably generated projective module
P1 corresponding to the pair (A,S/A1). We will show that Tr(P1) = A2, that is, P (ω)

1

corresponds to the pair (A2, 0). Indeed, A ⊂ Tr(P1) because S/A1 6= 0 (see a remark
after Proposition 5.2.2), therefore Tr(P1) = A1, A2 or Λ. If Tr(P1) = Λ then P1 would
be a generator, hence the same would be true for the S/A-module P1/P1A ∼= S/A1, a
contradiction (since S/A ∼= S/A1 ⊕ S/A2 is a direct sum of nonisomorphic simples). If
Tr(P1) = A1 then P1 = P1 · A1 would imply P1/P1A = (P1/P1A) · A1, that is, S/A1 =
(S/A1) ·A1 = 0, a contradiction.

Now we prove that P1 is not a direct sum of finitely generated modules. Indeed
otherwise P1

∼= ⊕i∈IQi, where each Qi is finitely generated and indecomposable. Because
Λ is Bass, every indecomposable Λ-lattice N is either in add(Λ) or in add(Λ̃). Since Λ
and Λ̃ are commutative noetherian domains it follows that Λ ∈ add(N) or Λ̃ ∈ add(N)
accordingly. We conclude that the trace of each Qi is either A or B, therefore the trace
of P1 equals A, B or A+B = Λ. But Tr(P1) = A2, a contradiction.

Analogously there exists a countably generated projective module P2 corresponding
to the pair (A,S/A2) and this module is not a direct sum of finitely generated modules.
Furthermore, Tr(P2) = A1 therefore P (ω)

2 corresponds to the pair (A1, 0).
Since all possible combinations of pairs (I, P ) in Proposition 5.2.2 are taken up, we

have completed the classification.
Furthermore the relations are easily checked by calculating corresponding pairs. For

instance, P1 ⊕ P2
∼= e1S

(ω) ⊕ e2S because both modules correspond to the pair (A,S/A).

It may be easier to grasp the above identification by assigning to a projective S-module
Q the triple (α1(Q), α2(Q), β(Q)), where αi(M) is the multiplicity of the simple module
S/Ai in Q/QAi and β(M) is the multiplicity of S/B in Q/QB. It clearly follows that

e1S 7→ (0, 0, 1);
e2S 7→ (1, 1, 0);
P1 7→ (1, 0, ω);
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P2 7→ (0, 1, ω).
Then P1⊕P2 7→ (1, 1, ω), the same as e1S

(ω)⊕e2S. Furthermore, it can be checked that
infinitely (even uncountably) generated projective S-modules are uniquely determined by
their triples. One possible explanation for that is the following. If we localize Λ with
respect to the prime ideal 2Z of Z we obtain a semilocal ring Λ2 with exactly 3 maximal
ideals A′1, A

′
2 and B′, hence with exactly 3 simple modules S1 = Λ2/A

′
1, S2 = Λ2/A

′
2 and

S3 = Λ2/B
′. If Q is a projective Λ2-module, then the dimension of Q, dim (Q), is the

triple of cardinals (α1, α2, α3), where αi is the multiplicity of the simple module Si in the
corresponding factor of Q. By [15, Theorem 2.3] projective modules over an arbitrary
semilocal ring are uniquely determined by their dimensions. Thus the above result claims
that infinitely generated generalized Λ-lattices are classified by their triples. For instance,
there is a unique Λ-lattice corresponding to the module P s1 ⊕ P

(ω)
2 , that is, to the triple

(s, ω, ω).

Question 5.4.6. Is it possible to find a ‘nice’ representation of the Λ-lattice corresponding
to Pi by generators and relations?

Note that such a generalized lattice can be constructed as in [14] as a direct limit of
finitely generated lattices, but the rank of the n’th term in this limit grows as 2n.

5.5 Package principle

Before analyzing more examples of lattices over orders we recall the so-called package
principle (see [11]) that allows to construct a module from a prescribed set of its localiza-
tions. For our purposes it will be enough to consider a Z-order Λ, and a module that we
are going to construct will be an idempotent ideal I of Λ.

Clearly if I is idempotent then, for every prime p, Ip, the localization of I with respect
to a prime ideal pZ of Z, is an idempotent ideal of the Zp-order Λp. Conversely, suppose
that I(p), where p runs over all primes, is a family of idempotent ideals of Zp-orders Λp.
Then an instance of the package principle (see [11, Theorem 2.9]) claims that there exists
(a necessarily idempotent) ideal I of Λ such that I(p) = Ip for every p iff the following
consistency condition holds true: I(p)0 = I(q)0 for all primes p, q, where I(p)0 denotes
the localization of I(p) at the prime ideal 0 of Z, which is an ideal in the Q-algebra Λ0.

Thus one possible (and extremely effective) strategy to classify idempotent ideals of
a given order is to describe them over localizations and then to understand how these
localized ideals could be packed into a common ideal of the original order. The main
advantage of dealing with localizations is that they are semilocal (say, as module finite
algebras over semilocal rings Zp). Recall that a (noncommutative) ring R is said to be
semilocal if the factor of R by its Jacobson radical, Jac(R), is a semisimple artinian ring.
Thus the following fact will be very useful.

Fact 5.5.1. (see [14]) An idempotent ideal I of a semilocal noetherian ring R is uniquely
determined by its semisimple factor I/I Jac(R).

Furthermore, if Λ is a maximal order in a semisimple algebra A, then it is easily seen
that every idempotent ideal of Λ is generated by central idempotents, which are the same
for Λ and A.

Recall that a semilocal ring whose idempotents can be lifted modulo the Jacobson
radical is said to be semiperfect. If R is a semiperfect ring, then (see [1, Proposition 27.10
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and Theorem 27.11]) there is a direct sum decomposition RR = e1R⊕· · ·⊕ enR, where ei
are local idempotents (that is, the rings eiRei are local), and every projective R-module
is a direct sum of copies of the eiR. Furthermore, if R is noetherian and semiperfect then
(since every idempotent ideal is a trace of a countably generated projective module) its
only idempotent ideals are the sums of the ideals ReiR.

5.6 Rump’s example

In this section we will classify projective modules (that is, projective generalized lattices)
over the following Z-order

Λ = Z · 1 +
(

2Z 6Z
Z 6Z

)
×
(

6Z 6Z
Z 3Z

)
in M2(Q)×M2(Q) taken from [18, p. 126, Example 2].

Note that Rump [18, p. 127] proved that Λ is of locally finite lattice type. It follows
from Jordan-Zassenhaus theorem [5, Theorem 24.1] that Λ is of finite lattice type. Fur-
thermore Rump showed that there exists a (nonzero) projective Λ-lattice L which contains
no nonzero finitely generated direct summands. Using the correspondence between gen-
eralized lattices and projective modules from Section 5.3 and Remark 5.2.4 we conclude
that L is superdecomposable. Thus our classification of projective Λ-modules will include
this superdecomposable object.

The following is a more useful description of Λ, which can be verified by direct calcu-
lations.

Lemma 5.6.1.

Λ =
Z

2

DDD
DDD 6Z

×
Z

3

DDD
DDD 6Z

Z Z
6 qqqqq

qqqqq Z Z







Here
2

means that the difference of 1× 1 and 2× 2 entries of the first coordinate of

Λ is divisible by 2.

Being a Z-module finite algebra, Λ satisfies (∗) (by the proof of the Proposition 5.3.3)
therefore we could follow a general strategy of classifying projective modules over noethe-
rian rings with (∗). Thus first we have to describe idempotent ideals of Λ. We approach
this problem via localizations, that is, using the package principle.

Note that for every p 6= 2, 3 the localization Λp coincides with the ring M2(Zp) ×
M2(Zp) which is a maximal order in M2(Q)×M2(Q), therefore idempotent ideals of Λp
are generated by obvious central idempotents (thus there are 4 of them).

If p = 2 then Λ2 is isomorphic to the ring

Z2

2

FFF
FFF 2Z2

×
Z2 2Z2

Z2 Z2

2 ppppp
ppppp Z2 Z2







for instance, this ring has idempotents e2 = 0 × ( 0 0
0 1 ) and 1 − e2 = ( 1 0

0 1 ) × ( 1 0
0 0 ). Easy

calculations show that the Jacobson radical of Λ2 is equal to

2Z2 2Z2
×

2Z2 2Z2

Z2 2Z2 Z2 2Z2
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and the factor Λ2/ Jac(Λ2) ∼= GF (2) ⊕ GF (2). It follows that idempotents can be lifted
modulo the Jacobson radical, therefore Λ2 is a semiperfect ring. Therefore the only
(nonzero proper) idempotent ideals of Λ2 are 〈e2〉 (the two-sided ideal generated by e2)
and

〈1− e2〉 =
Z2

2

FFF
FFF 2Z2

×
Z2 2Z2

Z2 Z2

2 ppppp
ppppp Z2 2Z2







Note also that 〈e2〉0 = 0×M2(Q) and 〈1− e2〉0 = M2(Q)×M2(Q).
Similarly localizing at 3 we obtain that

Λ3 =
Z3 3Z3

×
Z3

3

FFF
FFF 3Z3

Z3 Z3

3 ppppp
ppppp Z3 Z3







is a semiperfect ring with Λ3/ Jac(Λ3) ∼= GF (3) ⊕ GF (3). Furthermore e3 = ( 1 0
0 0 ) × 0

and 1 − e3 = ( 0 0
0 1 ) × ( 1 0

0 1 ) are local idempotents of Λ3 such that 〈e3〉 and 〈1 − e3〉 are
the only nonzero proper idempotent ideals of Λ3. Note also that 〈e3〉0 = M2(Q)× 0 and
〈1− e3〉0 = M2(Q)×M2(Q).

Now we are in a position to describe idempotent ideals of Λ.

Proposition 5.6.2. The following is the lattice of idempotent ideals of Λ.

◦
�����

?????
Λ

◦
?????I(2) ◦

����� I(3)

◦I
◦
0

Here

I(2) =
Z

2

DDD
DDD 6Z

×
Z

3

DDD
DDD 6Z

Z Z
6 qqqqq

qqqqq Z 2Z







is such that I(2)2 = 〈1− e2〉, I(2)3 = Λ3;

I(3) =
3Z

2
FFF

FFF 6Z
×

Z
3

DDD
DDD 6Z

Z Z
6 qqqqq

qqqqq Z Z







is such that I(3)2 = Λ2, I(3)3 = 〈1− e3〉; and

I = I1 ∩ I2 =
3Z

2
FFF

FFF 6Z
×

Z
3

DDD
DDD 6Z

Z Z
6 qqqqq

qqqqq Z 2Z







is such that I2 = 〈1− e2〉, I3 = 〈1− e3〉.
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Proof. Suppose that J is a nonzero idempotent ideal of Λ, in particular J2 6= 0. If
J2 = 〈e2〉, then J0 = 0 ×M2(Q). But, by inspection, there is no idempotent ideal of Λ3

with the same localization at 0. Thus J2 = 〈1 − e2〉 or J2 = Λ2. Similarly J3 = 〈1 − e3〉
or J3 = Λ3. According to the package principle all 4 combinations are possible, therefore
there are 3 nonzero proper idempotent ideals of Λ. An identification of these ideals in a
matrix form is straightforward.

From a description of idempotent ideals of Λ it easily follows that Λ/I(2) ∼= GF (2)
and Λ/I(3) ∼= GF (3). Since I = I(2)∩ I(3) and I(2) + I(3) = Λ, we conclude that Λ/I ∼=
GF (2)⊕GF (3). From Proposition 5.2.2 it follows that there exists a countably generated
projective module P that corresponds to the pair (I,GF (2)); and there exists a countably
generated projective module Q corresponding to the pair (I,GF (3)). Furthermore, if H is
a countably generated projective module corresponding to the pair (I, 0), then Tr(H) = I
andH ∼= H(k) for every 1 ≤ k ≤ ω (see remarks after Proposition 5.2.2 for an explanation).

However to complete the classification of projective Λ-modules, for instance to prove
that H is superdecomposable, first we have to develop the theory of finitely generated
projectives. In fact we will classify finitely generated projective Λ-modules up to genus.
Recall that modules M and N are said to be of the same genus, if Mp

∼= Np for every
prime p.

Since Λ2 is a semiperfect ring, the only (finitely generated) indecomposable projective
Λ2-modules are P (2) = e2Λ2 and Q(2) = (1 − e2)Λ2. Let S1 ⊆ M2(Q) × 0 and S2 ⊆
0×M2(Q) be simple (right) modules of the ring M2(Q)×M2(Q). Then clearly P (2)0

∼= S2

and Q(2)0
∼= S2

1 ⊕ S2.
Similarly the only indecomposable projective Λ3-modules are P (3) = e3Λ3 and Q(3) =

(1− e3)Λ3 and clearly P (3)0
∼= S1, Q(3)0

∼= S1 ⊕ S2
2 .

By the package principle there is a finitely generated projective Λ-module T such that
T2
∼= Q(2)2, T3

∼= P (3)3⊕Q(3) and T0
∼= S4

1⊕S2
2 . Similarly there exists a finitely generated

projective Λ-module U such that U2
∼= P (2)3⊕Q(2), U3

∼= Q(3)2 and U0
∼= S2

1⊕S4
2 . In the

following proposition we will classify genera of finitely generated projective Λ-modules.

Proposition 5.6.3. Every finitely generated projective Λ-module is in the genus of Λk⊕T s
or Λk ⊕ U t.

Proof. Let V be a finitely generated projective Λ-module. By what we have already
said, V2

∼= P (2)m2 ⊕ Q(2)n2 and V3
∼= P (3)m3 ⊕ Q(3)n3 . Localizing at 0 and using the

above relations (like Q(2)0
∼= S2

1 ⊕ S2) we obtain

2n2 = m3 + n3 and m2 + n2 = 2n3 . (∗∗)

Consider first the case when P (2) does not occur as a direct summand of V2, that is,
m2 = 0. Then n2 = 2n3, therefore 3n3 = m3. It follows easily that V is in the genus
of Tn3 (since they have isomorphic localizations). If Q(2) does not occur as a direct
summand of V2, then n2 = 0. By (∗∗) we obtain n3 = m3 = 0, therefore m2 = 0 yielding
V = 0.

Similarly if P (3) does not occur as a direct summand of V3, that is, m3 = 0, then V
is in the genus of Un2 , and the case n3 = 0 leads to V = 0.

Thus we may assume that ni,mi > 0 for i = 1, 2. Note that Λ2 = P (2) ⊕ Q(2) and
Λ3 = P (3) ⊕ Q(3). Let k = min(mi, ni). If m2 = k, then from (∗∗) it is easily derived
that n2 = k + 2s, m3 = k + 3s and n3 = k + s for some s ≥ 0, therefore V is in the
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genus of Λk ⊕ T s. Suppose that n2 = k. From (∗∗) it easily follows that ni = mi = k for
i = 1, 2, therefore V is in the genus of Λk.

The cases when m3 = k or n3 = k are considered similarly.

Now we are in a position to complete a classification of countably generated projective
Λ-modules.

Theorem 5.6.4. The following is a complete list of infinitely countably generated projec-
tive modules and corresponding pairs over Rump’s example Λ.

Λ(ω) 7→ (Λ, 0);
P k ⊕Ql 7→ (I,GF (2)k ⊕GF (3)l), 0 ≤ k, l < ω;
P (ω) 7→ (I(3), 0);
Q(ω) 7→ (I(2), 0);
H 7→ (I, 0);
P s ⊕Q(ω) 7→ (I(2), GF (2)s), 1 ≤ s < ω;
P (ω) ⊕Qt 7→ (I(3), GF (3)t), 1 ≤ t < ω.
Furthermore H is a superdecomposable module isomorphic to any of its nonzero direct

summands.

Proof. Recall that P corresponds to the pair (I,GF (2)). Note that e = ( 3 0
0 1 ) ×

( 1 0
0 1 ) ∈ I(3)\I(2) is an idempotent modulo I such that eΛ+I/I ∼= GF (2), because 2e ∈ I.

Thus P is obtained by ‘lifting’ e modulo I. Because e ∈ I(3), from the construction of
[14] it follows that Tr(P ) ⊆ I(3). Since I ⊂ Tr(P ), we conclude that Tr(P ) = I(3). Thus
P (ω) corresponds to the pair (I(3), 0). Similarly Tr(Q) = I(2), therefore Q(ω) corresponds
to the pair (I(2), 0).

Because all the possibilities for the pairs (I, P ) (from Proposition 5.2.2) are taken up,
we have completed a classification of infinitely countably generated projective Λ-modules.

Recall that H corresponds to the pair (I, 0), in particular Tr(H) = I and H ∼= H(k)

for every 1 ≤ k ≤ ω. Suppose that H ′ is a nonzero direct summand of H. It follows that
I(H ′) ⊆ I, therefore I(H ′) = I or I(H ′) = 0. If I(H ′) = I, then P (H) = H/HI = 0
yields P (H ′) = H ′/H ′I = 0, therefore H ′ ∼= H by Proposition 5.2.2.

Otherwise I(H ′) = 0, therefore H ′ is finitely generated. We will prove that this leads
to a contradiction. Namely H ′ 6= 0 implies (H ′)2

∼= P (2)m2 ⊕ Q(2)n2 6= 0. As we have
already seen (in the proof of Proposition 5.6.3) that n2 = 0 yields H ′ = 0, a contradiction.
Thus we may assume that n2 > 0. If m2 > 0, then (H ′)2 is a generator. But Tr(H) = I
yields Tr(H2) = I(2)2 6= Λ2, a contradiction. Thus m2 = 0. By similar arguments, n3 > 0
and m3 = 0, which clearly contradicts (∗∗).

Thus we have proved that every direct sum decomposition of H is of the form H ∼=
H(k), 1 ≤ k ≤ ω.

To include some finitely generated projective Λ-modules into relations let us make
first the following remark. Recall that finitely generated projective modules T and U
were introduced before Proposition 5.6.3.

Lemma 5.6.5. 1) Tr(T ) = I(2) and T/TI ∼= GF (3)3;
2) Tr(U) = I(3) and U/UI ∼= GF (2)3.

Proof. 1) By the construction, T2
∼= Q(2)2 = [(1 − e2)Λ2]2, therefore Tr(T2) =

Λ2(1 − e2)Λ2 = I(2)2. Furthermore T3
∼= P (3)3 ⊕Q(3), therefore Tr(T3) = Λ3. Because

I(2)2 = 〈1− e2〉 and I(2)3 = Λ3, we conclude that Tr(T ) = I(2).
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Since I = I(2) ∩ I(3), I(2) + I(3) = Λ and T is projective, it follows that T/TI ∼=
T/TI(2) ⊕ T/TI(3) = T/TI(3), because T = TI(2). To calculate T/TI(3) it suffices to
look at the localization

(T/TI(3))3 = T3/T3I(3)3 = P (3)3/P (3)3I(3)3 ⊕ Q(3)/Q(3)I(3)3 = GF (3)3 ,

since Tr(Q(3)) = 〈1− e3〉 = I(3)3 yields Q(3)/Q(3)I(3)3 = 0.
The verification of 2) is similar.

As a result we can include finitely generated projectives into new relations.

Lemma 5.6.6. 1) P 3 ∼= U ⊕H but U is not a direct summand of P 2;
2) Q3 ∼= T ⊕H but T is not a direct summand of Q2.

Proof. We will prove only 1).
Since U/UI ∼= GF (2)3 ∼= (P/PI)3, both P 3 and U ⊕ H correspond to the pair

(I,GF (2)3), therefore these modules are isomorphic (by Proposition 5.2.2). Furthermore,
since U/UI has GF (2)-dimension 3, therefore U cannot be a direct summand of P 2.

Note that (as it is easily seen from the classification) whether a finitely generated pro-
jective Λ-module V is a direct summand of an infinitely generated projective W depends
only on the genus of V . Since (by Proposition 5.6.3) we know all genera of finitely gen-
erated projectives, it is not difficult to understand all possible direct sum decompositions
of countably generated projective modules from Proposition 5.6.4. For instance, P has
no finitely generated direct summands, therefore (see a remark before Proposition 5.2.2)
P is superdecomposable, and the same is true for Q. On the other hand P (ω) ∼= P (ω)⊕U
contains U as a direct summand, but P (ω) cannot be represented as a direct sum of in-
decomposable modules; for instance because H is a superdecomposable direct summand
of P .

5.7 A Bass’ order

In this section we will discuss a classification of generalized lattices over a Bass’ order
Λ = Λ(6) = {(m,n) ∈ Z2 | 6 divides m − n}. Such orders in the commutative case are
the topic of a classical Bass’ paper [2].

Recall that D denotes a Dedekind domain with a field of quotients K. Suppose that Λ
is a D-order in a separable finite-dimensional K-algebra A. We say that Λ is Gorenstein
if Λ is an injective module in the category of Λ-lattices, that is, every exact sequence
0 → Λ → M → N → 0 of Λ-lattices splits. If Λ has an additional property that every
its overorder is Gorenstein, then Λ is said to be a Bass order. In the noncommutative
setting this notion was introduced by Drozd, Kirichenko and Roiter [6] (see also [8] for
some recent developments). For instance (see [5, Theorem 37.17]) every order whose one-
sided ideals are 2-generated is Bass and (by [2]) the converse is true for commutative
Bass orders. Furthermore, by [12, Theorem 2.1], a commutative order Λ is Bass iff every
faithful Λ-lattice is isomorphic to an invertible (therefore projective) ideal of a ring Λ′

between Λ and Λ̃.
Every ideal of our Z-order Λ is clearly 2-generated, therefore Λ is Bass. Furthermore,

Λ̃ = Z×Z and the only rings between Λ = Λ(6) and Λ̃ = Λ(1) are Λ(2) = {(m,n) ∈ Z2 | 2
divides m − n} and Λ(3) = {(m,n) ∈ Z2 | 3 divides m − n}. It follows that every
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indecomposable Λ-lattice M is either isomorphic to Z⊕0, 0⊕Z, or is a faithful projective
module over Λ(i), i = 2, 3, 6. Since Λ(i) has Krull dimension 1, by Serre’s theorem on big
projectives M has rank 1, therefore is an element of the Pickard group of Λ(i).

Note that Λ = Λ(6) can be represented as a pullback

Λ

��

// Z
π

��
Z π

// Z/6Z

where π denotes the canonical projection. Using the standard Mayer-Vietoris sequence
(see [3, p. 482]) it is easily calculated that the Picard group of Λ = Λ(6) is trivial, and
the same is true for Λ(2) and Λ(3) (see [12, 4.3.1] for general arguments). It follows
that every indecomposable Λ-lattice is isomorphic to Z ⊕ 0, 0 ⊕ Z, Λ(2), Λ(3) or Λ(6).
Thus we know all (finitely generated) Λ-lattices and our goal is to classify generalized
lattices over Λ. According to the general strategy we will form the Auslander lattice
M = Λ(1)⊕ Λ(2)⊕ Λ(3)⊕ Λ(6) and consider its endomorphism ring A = End(M), that

is, the Auslander order of Λ. If we consider A as acting on the column

(
Λ(1)
Λ(2)
Λ(3)
Λ(6)

)
on the

left, then (as an easy calculation shows)

A =


Λ(1) Λ(1) Λ(1) Λ(1)
2Λ(1) Λ(2) 2Λ(1) Λ(2)
3Λ(1) 3Λ(1) Λ(3) Λ(3)
6Λ(1) Λ(2) ∩ 3Λ(1) Λ(3) ∩ 2Λ(1) Λ(6)

 ⊆M4(Z× Z) .

Thus to classify generalized Λ-lattices is the same as to classify (finitely and infinitely)
generated projective A-modules; and the first objective towards this goal is to describe
idempotent ideals of A. As in Section 5.6 we will approach this problem using localizations.
Note that if p 6= 2, 3 then Ap = M4(Zp ×Zp) is a maximal order in M4(Q×Q), therefore
every idempotent ideal of Ap is generated by a central idempotent of M4(Q×Q), hence
there are 4 of them.

If p = 2, then the localization A2 is the following ring

A2 =


Z2 × Z2 Z2 × Z2 Z2 × Z2 Z2 × Z2

2(Z2 × Z2) Λ(2)2 2(Z2 × Z2) Λ(2)2

Z2 × Z2 Z2 × Z2 Z2 × Z2 Z2 × Z2

2(Z2 × Z2) Λ(2)2 2(Z2 × Z2) Λ(2)2

 ,

where Λ(2)2 = {(a/b, c/b) ∈ Q2 | b ∈ Z \ 2Z and 2 divides a− c}. Thus A2 is isomorphic
to the full matrix ring M2(A′2), where

A′2 =
(
Z2 × Z2 Z2 × Z2

2(Z2 × Z2) Λ(2)2

)
.

We would like to describe idempotent ideals of A′2. It is easily seen that the Jacobson
radical of A′2, Jac(A′2), equals(

2(Z2 × Z2) Z2 × Z2

2(Z2 × Z2) 2(Z2 × Z2)

)
,
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therefore A′2/ Jac(A′2) =
(
GF (2)⊕GF (2) 0

0 GF (2)

)
.

Since A′2 is semilocal and idempotents can be lifted modulo the Jacobson radical,
therefore it is a semiperfect ring. It follows that every (nonzero) idempotent ideal of A′2
is a sum of two-sided ideals generated by the following idempotents: e1 =

(
(1,0) (0,0)
(0,0) (0,0)

)
,

e2 =
(

(0,1) (0,0)
(0,0) (0,0)

)
and e3 =

(
(0,0) (0,0)
(0,0) (1,1)

)
. For instance 〈e1〉 =

( Z2× 0 Z2× 0
2Z2× 0 2Z2× 0

)
〈e2〉 =(

0×Z2 0×Z2
0× 2Z2 0× 2Z2

)
and 〈e3〉 =

(
2(Z2×Z2) Z2×Z2
2(Z2×Z2) Λ(2)2

)
are idempotent ideals of A′2.

Turning back to A2, we obtain that every nonzero idempotent ideal of A2 is a sum of
ideals generated by idempotents f1 =

(
e1 0
0 0

)
, f2 =

(
e2 0
0 0

)
and f3 =

(
e3 0
0 0

)
; for instance

〈f3〉 =


2(Z2 × Z2) Z2 × Z2 2(Z2 × Z2) Z2 × Z2

2(Z2 × Z2) Λ(2)2 2(Z2 × Z2) Λ(2)2

2(Z2 × Z2) Z2 × Z2 2(Z2 × Z2) Z2 × Z2

2(Z2 × Z2) Λ(2)2 2(Z2 × Z2) Λ(2)2

 .

Furthermore, 〈e1〉0 = M4(Q)× 0, 〈e2〉0 = 0×M4(Q) and 〈e3〉0 = M4(Q)×M4(Q).
An obvious explanation for the appearance of the matrix structure in A2 is the follow-

ing. When localizing with respect to 2Z, the lattices Λ(1) and Λ(3), and also Λ(2) and
Λ(6) are gotten isomorphic. A similar thing is happening when localizing at 3, but now
the lattices Λ(1) and Λ(2), and also Λ(3) and Λ(6) are identified. Thus (by straightforward
calculations)

A3 =


Z3 × Z3 Z3 × Z3 Z3 × Z3 Z3 × Z3

Z3 × Z3 Z3 × Z3 Z3 × Z3 Z3 × Z3

3(Z3 × Z3) 3(Z3 × Z3) Λ(3)3 Λ(3)3

3(Z3 × Z3) 3(Z3 × Z3) Λ(3)3 Λ(3)3

 ,

where Λ(3)3 = {(a/b, c/b) ∈ Q2 | b ∈ Z \ 3Z and 3 divides a− c}. Thus A3 is isomorphic
to the full matrix ring M2(A′3), where

A′3 =
(
Z3 × Z3 Z3 × Z3

3(Z3 × Z3) Λ(3)3

)
.

As above nonzero idempotent ideals of A3 are the sums of the ideals generated by the

following idempotents: g1 =
(

(1,0) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
, g2 =

(
(0,1) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

)
and g3 =

(
0 0 0 0
0 0 0 0
0 0 (1,1) 0
0 0 0 0

)
, for

instance,

〈g3〉 =


3(Z3 × Z3) 3(Z3 × Z3) Z3 × Z3 Z3 × Z3

3(Z3 × Z3) 3(Z3 × Z3) Z3 × Z3 Z3 × Z3

3(Z3 × Z3) 3(Z3 × Z3) Λ(3)3 Λ(3)3

3(Z3 × Z3) 3(Z3 × Z3) Λ(3)3 Λ(3)3

 .

Furthermore, 〈g1〉0 = M4(Q× 0), 〈g2〉0 = M4(0×Q) and 〈g3〉0 = M4(Q×Q).
Now we are in a position to classify idempotent ideals of A. Let I be a nonzero

idempotent ideal of A. Then the localization I2 is a nonzero idempotent ideal of A2.
Suppose first that I2 = 〈f1〉, therefore I0 = M4(Q ⊕ 0). Since I3 6= 0, a search through
a list of idempotent ideals of A3 shows that the only possibility is I3 = 〈g1〉. It follows

easily that I is a two-sided ideal generated by
(

(1,0) 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

)
∈ A.
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Similarly, if I2 = 〈f2〉, then I3 = 〈g2〉, therefore I is a two-sided ideal of A generated

by
(

(0,1) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
∈ A.

Otherwise it is easily seen that I0 = M4(Q × Q), therefore I2 is one of the following
ideals: 〈f3〉, 〈f1, f2〉, 〈f1, f3〉, 〈f2, f3〉, A2 and I3 = 〈g3〉, 〈g1, g2〉, 〈g1, g3〉, 〈g2, g3〉, or A3.
Furthermore by the package principle, any of possible 25 combinations of I2 and I3 occurs,
say, there exists a unique idempotent ideal I of A such that I2 = 〈f1, f3〉 and I3 = 〈g2, g3〉.
Thus altogether A has 28 idempotent ideals and any factor of A by a nonzero idempotent
ideal is an artinian ring.

To complete a classification of projective A-modules (that is, of generalized lattices
over this Bass’ order) one should calculate projective modules over factors A/I, where I
is an idempotent ideal of A. We will leave this straightforward (but tedious) calculations
to the interested reader, but extract only some useful facts.

Proposition 5.7.1. (see [18, Proposition 7]) Every generalized lattice over the Bass order
Λ = Λ(6) contains a finitely generated direct summand.

Proof. By Remark 5.2.4 and Lemma 5.2.5, it suffices to prove that every nonzero
idempotent ideal I of A contains the trace J of a nonzero finitely generated projective
A-module. By localizing it suffices to check that Jp ⊆ Ip for every prime p. For this
let us recall a list of indecomposable finitely generated projective A-modules (or rather
corresponding Λ-lattices) and localizations of their traces at 2 and 3.
Z⊕ 0 7→ 〈f1〉, 〈g1〉;
0⊕ Z 7→ 〈f2〉, 〈g2〉;
Λ(2) 7→ 〈f3〉, 〈g1, g2〉;
Λ(3) 7→ 〈f1, f2〉, 〈g3〉;
Λ 7→ 〈f3〉, 〈g3〉.
Now the result follows by an easy inspection. For instance, if I2 = 〈f1, f3〉 and

I3 = 〈g2, g3〉, then I contains a trace of the finitely generated projective A-module corre-
sponding to the lattice Λ.

The following question is about a general version of Proposition 5.7.1.

Question 5.7.2. Does there exist a Bass order with a superdecomposable generalized
lattice?

Despite Proposition 5.7.1, not every generalized lattice over Λ is a direct sum of
(finitely generated) lattices. Namely let a projective A-module Q correspond to the pair
(I, 0) (see Proposition 5.6.3), where I is an idempotent ideal of A with I2 = 〈f1, f3〉 and
I3 = 〈g2, g3〉. Then Tr(Q) = I and Q ∼= Q(k) for every 1 ≤ k ≤ ω. If P is a finitely
generated direct summand of Q, then Tr(P ) ⊆ Tr(Q) = I, therefore, by inspection, P is
a direct sum of copies of a projective A-module corresponding to the lattice Λ = Λ(6),
in particular Q is not a direct sum of finitely generated modules. Furthermore it can
be shown that every direct sum decomposition of Q is of the form Q ∼= Q(k) ⊕ P (l),
1 ≤ k, l ≤ ω.
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6. INFINITELY GENERATED PROJECTIVE MODULES OVER
NOETHERIAN SEMILOCAL RINGS

A theorem of Kaplansky states that, for any ring R, a projective right R-module is
a direct sum of countably generated projective right R-modules. This reduces the study
of direct summands of R(I), where I denotes an arbitrary set, to the study of direct sum
decomposition of R(ℵ0) or, equivalently, to the study of countably generated projective
right R-modules.

The commutative monoid V (R) of isomorphism classes of finitely generated projective
right R-modules, with the addition induced by the direct sum of modules, encodes the
direct sum behavior of finite direct sums of finitely generated projective right R-modules.
Similarly, the monoid V ∗(R) of isomorphism classes of countably generated projective
right R-modules, with the addition induced by the direct sum of modules, encodes the
direct-sum behavior of countably generated projective modules. In this paper we charac-
terize the monoids that can be realized as V ∗(R) for R a noetherian semilocal ring.

It is well known that finitely generated projective modules are isomorphic if and only
if they are isomorphic modulo the Jacobson radical. Recently, Př́ıhoda in [20] proved that
the same holds true for arbitrary projective modules. Hence, if R is a ring with Jacobson
radical J(R), we can see not only V (R) as a submonoid of V (R/J(R)) but also V ∗(R) is
a submonoid of V ∗(R/J(R)). This is an essential tool in this paper.

A ring R is said to be semilocal if it is semisimple artinian modulo its Jacobson
radical J(R). To fix notation, we assume that R/J(R) ∼= Mn1(D1)×· · ·×Mnk(Dk) where
D1, . . . , Dk are division rings uniquely determined up to isomorphism. The monoids V (R)
and V ∗(R) can be viewed as submonoids of V (R/J(R)) ∼= Nk0 and V ∗(R/J(R)) ∼= (N0 ∪
{∞})k = (N∗0)k, respectively; the class of R corresponds to the element (n1, . . . , nk) ∈ Nk0 .
The submonoids of Nk0 containing (n1, . . . , nk) that can be realized as V (R) for a semilocal
ring R were characterized in [8] as the set of solutions in Nk0 of systems of diophantine
equations of the form

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 and E1

 t1
...
tk

 = E2

 t1
...
tk

 (1)

where the coefficients of the matrices D, E1 and E2 as well as m1, . . . ,mn are elements
of N0. Such submonoids of Nk0 are called full affine submonoids (cf. Definition 6.1.5
and Proposition 6.6.2). This terminology was introduced by Hochster in [17], however
full affine monoids appear in different contexts with different names. In the setting of
commutative noetherian rings they are also called positive normal monoids, see [1]. Such

Joint work with Dolors Herbera, published in J. Reine Angew. Math. 648 (2010), 111 – 148.
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monoids also appear in generalizations of the multiplicative ideal theory where they are
called finitely generated Krull monoids see, for example, [5].

In this paper we show that the submonoids of (N∗0)k that can be realized as V ∗(R)
for a noetherian semilocal ring R are precisely the sets of solutions in (N∗0)k of systems
of type (1). We refer the reader to Theorem 6.2.6 for the precise statement. Most of the
paper is devoted to the proof of Theorem 6.2.6 which has, essentially, two quite different
parts. A more ring theoretical one, in which we provide the necessary tools to construct
noetherian semilocal rings with prescribed monoid V ∗(R). Our key idea is to use a
well known theorem due to Milnor to determine a context in which the category of right
projective modules over a pullback of rings is equivalent to the pullback of the categories of
projective modules. Surprisingly enough, just considering suitable pullbacks of semilocal
principal ideal domains (or just noetherian semilocal rings such that all projective modules
are free) and semisimple artinian rings a rich supply of noetherian semilocal rings R with
non-trivial V ∗(R) is obtained.

The second part of the paper (and of the proof of Theorem 6.2.6) deals with sub-
monoids of (N∗0)k. Our starting point are the results in [21] where it was proven that, for
a noetherian semilocal ring, V ∗(R) is built up from a finite collection of full affine sub-
monoids of Nr10 , . . . ,N

rm
0 , respectively, where ri ≤ k, chosen in a compatible way. These

monoids are placed in the finite supports of the elements of V ∗(R) or, better saying, in
the complementary of the infinite supports of the elements of V ∗(R), see Definition 6.1.2
for the unexplained terminology. In the paper, we make an abstraction of this type of
monoid by introducing the concept of (full affine) system of supports in Definition 6.7.1,
then V ∗(R), viewed as a submonoid of (N∗0)k, is given by a full affine system of supports.
Our main result in this part of the paper shows that the monoids given by a full affine sys-
tem of supports are precisely the solutions in (N∗0)k of systems of the form (1). We stress
the fact that though the description of these submonoids of (N∗0)k as sets of solutions of a
system of equations is very elegant, and it extends nicely the characterization for the case
of finitely generated projective modules, the one given by the systems of supports seems
to give a better idea of the complexity of the monoids we are working with.

Going back to the module theoretic point of view, the contrast with the commutative
situation is quite striking as all projective modules over a commutative semilocal inde-
composable ring are free [16]. On the other hand, the noetherian situation is simpler
than the general one. In the noetherian case it follows from [21] that the monoids that
can appear are always finitely generated and that V ∗(RR) ∼= V ∗(RR). We do not know
whether, for a general semilocal ring, V ∗(RR) is still finitely generated, and in [14] we
construct a semilocal ring R such that all projective left R-modules are free while R has
a nonzero (infinitely generated) right projective module that is not a generator, and it is
not a direct sum of finitely generated projective modules. This shows that the monoid
V ∗(RR), in general, is not isomorphic to V ∗(RR).

Our interest on semilocal rings stems from the fact that many classes of small modules
have a semilocal endomorphism ring. For example, artinian modules or, more generally,
modules with finite Goldie and dual Goldie dimension [15], finitely presented modules
over a local ring or, more generally, finitely presented modules over a semilocal ring are
classes of modules with a semilocal endomorphism ring [12]. We refer to the monograph
[7] as a source to read about, the good and the not so good, properties of modules with
a semilocal endomorphism ring.

A description of the projective modules over the endomorphism ring is a first step
towards understanding (part of) the category Add (M) of direct summands of any direct
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sum of copies of a module M . Wiegand in [24] proved that all monoids of solutions in Nk0
of systems of the form (1) can be realized as V (R) when R is the endomorphism ring of a
finitely presented module over a noetherian semilocal ring, or the endomorphism ring of
an artinian module. Yakovlev [26, 27] proved the same kind of result for semilocal endo-
morphism rings of certain classes of torsion free abelian groups of finite rank. For further
information, see the survey paper [25]. Our results give a new twist to the situation, as
they indicate that when considering countable direct sums of such modules a rich supply
of new direct summands might appear.

Let us mention a connection between projective modules over noetherian semilocal
rings and integral representation theory. In [3] the so called generalized lattices were
investigated. For a Dedekind domain D with a quotient field K, we consider an order R
in a separable K-algebra. An R-module M is said to be a generalized R-lattice provided
it is projective as a D-module. If M is also finitely generated, M is a lattice over R. R is
said to be of finite lattice type if there exist only finitely many indecomposable lattices up
to isomorphism. Suppose that R is of finite lattice type and let A be the direct sum of a
representative set of isomorphism classes of indecomposable lattices. By [3], the category
of generalized lattices over R and the category of projective modules over EndR(A) are
equivalent. For any maximal ideal M of D let R(M) be the localization of R in D \M
and let R(0) be the localization of R in D \ {0}. Then monoid homomorphisms

V ∗(EndR(A))→ V ∗(EndR(M)(A⊗R R(M)))→ V ∗(EndR(0)(A⊗R R(0)))

give approximations of generalized lattices over R by projective modules over the noethe-
rian semilocal rings EndR(M)(A⊗R R(M)) and an artinian ring EndR(0)(A⊗R R(0)). For
further results on generalized lattices see [23].

The paper is structured as follows, in §6.1 we introduce the basic language used
throughout the paper. We describe the monoids of projective modules, specializing to a
semisimple artinian ring, we recall the results needed to understand the relation between
these monoids when considered over R and over R/J(R) emphasizing on the particular
case of semilocal rings. In §6.2 we specialize to the noetherian case; we recall the results
from [21] essential for our investigation and we state our main Theorem 6.2.6. Sections
6.3, 6.4 and 6.5 deal with the realization part of the proof of Theorem 6.2.6; §6.3 shows
how to construct principal ideal domains with prescribed semisimple factor modulo the
Jacobson radical, in §6.4 we provide all the results we need on ring pullbacks in order to
be able to realize the monoids we want as V ∗(R) of semilocal noetherian algebras in §6.5.

In section 6.6 we turn towards monoids. We recall some basics on full affine monoids,
and we prove the auxiliary results that will allow us to conclude the proof of Theorem 6.2.6
in §6.7.

The potential of pullback constructions in order to give semilocal rings with prescribed
semigroup of countably generated projective modules goes beyond the noetherian situa-
tion. In [14] we further investigate this direction.

All rings have 1, ring morphisms and modules are unital. We shall usually consider
right modules.

Our convention is N = {1, 2, . . . }, and we denote the nonnegative integers by N0 =
{0, 1, 2, . . . }.

Another basic object in this paper is the monoid (N∗0,+, 0) whose underlying set is
N0 ∪ {∞}, the operation + is the extension of addition of non-negative integers by the
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rule ∞+ x = x+∞ =∞. Sometimes we will be also interested in extending the product
of N0 to N∗0 by setting ∞ · 0 = 0 and ∞ · n =∞ for any n ∈ N∗0 \ {0}.

For any right R-module M the trace of M in R is the two sided ideal of R

TrR(M) = Tr (M) =
∑

f∈HomR(M,R)

f(M).

If X ⊆M then we denote the right annihilator of X by

rR(X) = {r ∈ R | mr = 0 for any m ∈ X}.

If N is a left R-module and Y ⊆ N then we denote the left annihilator of Y by

lR(Y ) = {r ∈ R | rn = 0 for any n ∈ Y }.

We thank Pere Ara for very helpful comments on a preliminary version of the paper
that lead us to the actual version of Theorem 6.4.8.

We also thank the referee for his/her encouraging comments, for the careful reading
of the paper, and for suggesting us to write [14].

6.1 Monoids of projective modules

Definition 6.1.1. Let (M,+, 0) be a commutative additive monoid. An element x ∈ M
is said to be an order unit or an archimedean element of M if for any y ∈M there exists
n ∈ N and z ∈M such that nx = y + z.

The monoid M is said to be reduced if for any x ∈M , x+ y = 0 implies x = 0 = y.
Let x, y ∈M . The relation x ≤ y if and only if there exists z ∈M such that x+ z = y

is a preorder order on M that is called the algebraic order or, more properly, the algebraic
preorder.

For example, any x ∈ N∗0 satisfies that x ≤ ∞. If k ≥ 1 the algebraic preorder of Nk0
and in (N∗0)k is the component-wise order and it is a partial order.

Note that if M is a monoid preordered with the algebraic preorder then all the elements
must be positive, that is, bigger or equal than zero.

Let R be a ring. We denote by V (R) the monoid of isomorphism classes of finitely
generated projective right R-modules with the operation induced by the direct sum. That
is, if P1 and P2 are finitely generated projective right R-modules then 〈P1〉 + 〈P2〉 =
〈P1 ⊕ P2〉. The monoid V (R) is commutative, reduced and it has an order unit 〈R〉. We
usually think on V (R) as a monoid preordered by the algebraic preorder.

Similarly, we define V ∗(R) to be the monoid of isomorphism classes of countably
generated projective right R-modules with the sum induced by the direct sum. Clearly
V (R) is a preordered submonoid of the preordered monoid V ∗(R).

The functor HomR(−, R) induces a monoid isomorphism between V (R) = V (RR) and
the monoid of isomorphism classes of finitely generated left projective modules V (RR).
This is no longer true for countably generated projective modules so, in general, V ∗(R) =
V ∗(RR) is not isomorphic to V ∗(RR), cf. [14].

If ϕ : R1 → R2 is a ring morphism then the functor − ⊗R1 R2 induces a mor-
phism of monoids with order unit V (ϕ) : V (R1) → V (R2) and a morphism of monoids
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V ∗(ϕ) : V ∗(R1)→ V ∗(R2). Both morphisms are given by the formula 〈P 〉 7→ 〈P ⊗R1 R2〉.
Another useful way to describe these monoid morphisms is describing projective modules
via idempotent matrices.

Let PR1 be a finitely generated projective right R1-module. There exist n ∈ N
and an idempotent matrix E ∈ Mn(R1) such that P ∼= ERn1 , then V (ϕ)(〈ERn1 〉) =
〈Mn(ϕ)(E)Rn2 〉 where Mn(ϕ) : Mn(R1) → Mn(R2) is the map defined by Mn(ϕ)(aij) =
(ϕ(aij)). One proceeds similarly with the countably generated projective rightR1-modules
taking instead of finite matrices elements in CFM(R1) and CFM(R2) the rings of (count-
able) column finite matrices with entries in R1 and R2, respectively.

6.1.1 The semisimple artinian case

Let R be a semisimple artinian ring. Then by the Artin-Wedderburn theorem, there
exist k ∈ N, n1, . . . , nk ∈ N, D1, . . . , Dk division rings, and a ring isomorphism ϕ : R →
Mn1(D1)× · · · ×Mnk(Dk).

Let (V1, . . . , Vk) be an ordered set of representatives of the isomorphism classes of
simple right R-modules such that EndR(Vi) ∼= Di and, hence, dim (DiVi) = ni for i =
1, . . . , k. If PR is a finitely generated projective module then PR ∼= V x1

1 ⊕ · · · ⊕ V xkk . The
assignment 〈P 〉 7→ (x1, . . . , xk) ∈ Nk0 induces an isomorphism of monoids dim ϕ : V (R)→
Nk0 . Since dim ϕ(〈R〉) = (n1, . . . , nk), taking (n1, . . . , nk) as the order unit of Nk0 , dim ϕ

becomes an isomorphism of monoids with order unit. We call dim ϕ(〈P 〉) or, by abuse of
notation dim ϕ(P ), the dimension vector of the (finitely generated) projective module P .

The morphism dim ϕ extends to a monoid morphism dim ϕ : V ∗(R) → (N∗0)k by set-
ting dim ϕ(〈V (ℵ0)

i 〉) = (0, . . . ,∞i), . . . , 0) for i = 1, . . . , k. Again, we call dim ϕ(〈P 〉) the
dimension vector of the (countably generated) projective module P .

Throughout the paper it is important to keep in mind how to compute dimension
vectors in terms of idempotent matrices. If P is a finitely generated (countably generated)
right projective module such that dim ϕ(P ) = (x1, . . . , xk) then P ∼= (E1, . . . , Ek)·F where
F is a finitely generated (countably generated) free right R-module and Ei are idempotent
matrices over Mni(Di) (over CFM(Di)) such that rankDi(Ei) = xi for i = 1, . . . , k.

Notice that dim ϕ depends on the ordering of the isomorphism classes of the simple
right modules. Therefore when we refer to a dim ϕ function or to dimension vectors
we implicitly assume that we have chosen an ordering of the simple modules. If we
explicitly state that the semisimple artinian ring R is isomorphic to Mn1(D1) × · · · ×
Mnk(Dk), for D1, . . . , Dk division rings, then we assume we are choosing an ordered
family of representatives of the isomorphism classes of simple right (or left) R-modules
(V1, . . . , Vk) such that EndR(Vi) ∼= Di for i = 1, . . . , k.

To ease the work with the elements in N∗0 we shall use the following definitions.

Definition 6.1.2. Let x = (x1, . . . , xk) ∈ (N∗0)k. We define

supp (x) = {i ∈ {1, . . . , k} | xi 6= 0}

and we refer to this set as the support of x. We also define

inf-supp (x) = {i ∈ {1, . . . , k} | xi =∞},

we refer to this set as the infinite support of x.
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6.1.2 Passing modulo the Jacobson radical

First we recall the following well known Lemma

Lemma 6.1.3. Let R be a ring with Jacobson radical J(R). Let P and Q be projective
right R-modules.

(i) Assume P and Q are finitely generated. If there exists a projective right R/J(R)-
module X such that P/PJ(R) ∼= Q/QJ(R)⊕X then there exists a projective right
R-module Q′ such that P ∼= Q⊕Q′ and Q′/Q′J(R) ∼= X.

(ii) Assume only that Q is finitely generated. If f : P/PJ(R) → Q/QJ(R) is an onto
module homomorphism then Q is isomorphic to a direct summand of P .

If, in the situation of the above Lemma, neither P nor Q are finitely generated then
even the weaker divisibility property (ii) is lost. It was shown in [20] that it is still true
that projective modules isomorphic modulo the Jacobson radical are isomorphic. We
recall this fundamental result in the next statement together with a weaker property on
lifting pure monomorphisms.

We recall that a right module monomorphism f : M1 → M2 is said to be a pure
monomorphism if, for any left module N , f ⊗R N : M1 ⊗R N → M2 ⊗R N remains a
monomorphism. For example, if f is a (locally) split monomorphism then it is pure. If f
is a monomorphism between two projective modules then f is pure if and only if coker f
is a flat module if and only if f is locally split.

Theorem 6.1.4. Let R be any ring, and let P and Q be projective right R-modules.

(i) [11, Proposition 6.1] A module homomorphism f : P → Q is a pure monomorphism
if and only if so is the induced map f : P/PJ(R)→ Q/QJ(R).

(ii) [20, Theorem 2.3] If f : P/PJ(R)→ Q/QJ(R) is an isomorphism of right R/J(R)-
modules then there exists an isomorphism of right R-modules g : P → Q such that
the induced morphism g : P/PJ(R)→ Q/QJ(R) coincides with f .

Theorem 6.1.4(ii) allows us to see the monoids V (R) and V ∗(R) as submonoids of
V (R/J(R)) and of V ∗(R/J(R)), respectively. To give the assertion in a more precise way
we shall use the following notion (cf. [9]).

Definition 6.1.5. A submonoid A of a monoid C is said to be a full submonoid of C if
for any x ∈ A and any t ∈ C, x+t ∈ A implies t ∈ A. If f : A→ C is an injective monoid
homomorphism and im(f) is a full submonoid of C we say that f is a full embedding.

A full affine monoid is a full submonoid of a finitely generated free commutative
monoid, and a full affine embedding of a monoid A is a full embedding of A into a
finitely generated free commutative monoid.

See Proposition 6.6.2 for a characterization of full affine submonoids of Nk0 .
We note that in the terminology of [1] a full affine embedding is a pure embedding of

monoids.
Now we are ready to state the announced result for the monoids of projective modules.

Corollary 6.1.6. Let R be a ring with Jacobson radical J(R), and let π : R → R/J(R)
denote the canonical projection. Then:
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(i) V (π) : V (R) → V (R/J(R)) is a full embedding of monoids with order unit. In
particular, the algebraic preorder on V (π)(V (R)) coincides with the one induced by
the algebraic preorder on V (R/J(R)).

(ii) V ∗(π) : V ∗(R)→ V ∗(R/J(R)) is an injective monoid morphism.

There is an interesting intermediate submonoid between V (R) and V ∗(R).

Definition 6.1.7. Let R be a ring. Set W (R) = W (RR) to be the additive monoid
of isomorphism classes of countably generated projective right R-modules that are pure
submodules of a finitely generated free right R-module. The addition on W (R) is induced
by the direct sum of modules.

Analogously, W (RR) is the additive monoid of isomorphism classes of projective left
R-modules that are pure submodules of a finitely generated free right R-module.

For example, if R = C([0, 1]) is the ring of real valued continuous functions defined on
the interval [0, 1] then the ideal

I = {f ∈ R | there exists ε > 0 such that f([0, ε]) = 0}

is countably generated, projective and pure inside R. Therefore 〈I〉 ∈W (R) \ V (R).
If ϕ : R → S is a ring homomorphism then there is a homomorphism of monoids

W (ϕ) : W (R)→W (S) defined, as usual, by 〈P 〉 7→ 〈P ⊗R S〉.
The notation W (R) is borrowed from the C∗-algebra world, as we think on W (R) as

the discrete analogue of the Cuntz monoid (cf. [6])
The following result, which is a consequence of [11, Theorem 7.1] and Theorem 6.1.4,

describes one way to obtain elements in W (R)\V (R) and which is the only one when the
ring R is semilocal.

Proposition 6.1.8. Fix n ∈ N. Let R be a ring. Let P1, P2 be finitely generated projective
right R/J(R)-modules such that (R/J(R))n ∼= P1 ⊕ P2. Then the following statements
are equivalent

(i) There exists a projective right R-module P such that P/PJ(R) ∼= P1.

(ii) There exists a pure right submodule M of Rn such that M/MJ(R) ∼= P1.

(iii) There exists a projective left R-module Q such that Q/J(R)Q ∼= HomR/J(R)(P2, R/J(R)).

When the above statements hold P and Q are countably generated pure submodules of Rn,
and they are finitely generated if and only if there exists a projective right R-module P ′

such that P ′/P ′J(R) ∼= P2.

Observe that, by Theorem 6.1.4, the isomorphism class of the module P appearing
in Proposition 6.1.8 is an element of W (RR) and the isomorphism class of Q gives an
element of W (RR). Therefore if P is not finitely generated, 〈P/PJ(R)〉 ≤ 〈(R/J(R))n〉
in W (R/J(R)) but P is not a direct summand of Rn. So that, in general, the algebraic
preorder on W (R) does not coincide with the order induced by the algebraic preorder on
W (R/J(R)).

We study in more detail the monoid W (R) in [14]. If R is noetherian then, clearly,
V (R) = W (R). Results of Lazard [18] show that this also holds just assuming ascending
chain condition on annihilators.
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Proposition 6.1.9. Let R be a ring such that, for any n ∈ N, Mn(R) has the ascending
chain condition on right annihilators of elements. Then a pure submodule of a finitely
generated free right R-module is finitely generated and, in particular V (R) = W (R).

Proof. Combine [18, Lemme 2(i)] with the argument in [10, Corollary 3.6].

6.1.3 Semilocal rings

Let R be a semilocal ring such that R/J(R) ∼= Mn1(D1)×· · ·×Mnk(Dk) for suitable divi-
sion rings D1, . . . , Dk. Fix an onto ring homomorphism ϕ : R→Mn1(D1)×· · ·×Mnk(Dk)
such that Kerϕ = J(R). Then there is an induced ring isomorphism ϕ : R/J(R) →
Mn1(D1) × · · · ×Mnk(Dk), so that we have a dimension function dim ϕ, cf. § 6.1.1. For
any countably generated projective right R-module P , set

dim ϕ(〈P 〉) := dim ϕ(〈P ⊗R R/J(R)〉) = dim ϕ(〈P/PJ(R)〉).

By Corollary 6.1.6, dim ϕ(V (R)) is a full affine submonoid of Nk0 with order unit (n1, . . . , nk)
and dim ϕ(V ∗(R)) is a submonoid of (N∗0)k.

It was shown in [8] that the full affine property characterizes the monoids A with
order unit that can be realized as V (R) of some semilocal ring R. More precisely, if A
is a full affine submonoid of Nk0 with order unit (n1, . . . , nk) then there exist a semilocal
hereditary ring R, D1, . . . , Dk division rings and an onto ring homomorphism ϕ : R →
Mn1(D1)× · · · ×Mnk(Dk) with kernel J(R) such that dim ϕV (R) = A.

Since over a hereditary ring any projective module is a direct sum of finitely generated
projective modules, it follows that for a hereditary ring R as above

dim ϕV
∗(R) = A+∞ ·A ⊆ (N∗0)k (∗)

(see also Corollary 6.7.9 and Proposition 6.6.7) where ∞·A = {∞ · a | a ∈ A}. Indeed, it
is always true that dim ϕV

∗(R) k A+∞ · A; the other equality holds because full affine
submonoids of Nk0 are finitely generated.

6.2 Semilocal rings: The noetherian case

We start this section recalling some results on projective modules over noetherian semilo-
cal rings from [21] and adapting them to our purposes. We also state in 6.2.6 our main
characterization theorem.

It is well known that the trace ideal of a projective module is an idempotent ideal.
Whitehead in [22] characterized idempotent ideals that are trace ideals of countably gen-
erated projective modules. His results yield that in a noetherian ring any idempotent
ideal is a trace ideal of a countably generated projective module. In [21], Př́ıhoda noted
that Whitehead’s ideas can be extended to prove that if I is an idempotent ideal of a
noetherian ring R then any finitely generated projective R/I-module can be extended to
a projective R-module. For further quotation we state these results.

Proposition 6.2.1. Let R be a noetherian ring. Then the following statements are
equivalent for a two sided ideal I

(i) I2 = I.
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(ii) There exists a countably generated projective right R-module P such that Tr (P ) = I.

(iii) For any finitely generated projective right R/I-module P ′ there exists a countably
generated projective right R-module P such that P/PI ∼= P ′ and I ⊆ Tr (P ).

(iv) There exists a countably generated projective left R-module Q such that Tr (Q) = I.

(v) For any finitely generated projective left R/I-module Q′ there exists a countably
generated projective left R-module Q such that Q/IQ ∼= Q′ and I ⊆ Tr (Q).

Proof. Combine [22, Corollary 2.7] with [21, Lemma 2.6].

Trace ideals of projective modules keep memory of the semisimple factors of the pro-
jective module.

Lemma 6.2.2. Let R be a semilocal ring, and let P be a projective right module with
trace ideal I. Let VR be a simple right R-module with endomorphism ring D, and let
W = HomD(V,D) ∼= HomR(V,R/J(R)) be its dual simple left R-module. Then the
following statement are equivalent:

(i) V is a quotient of P .

(ii) V is a quotient of I.

(iii) I + rR(V ) = I + lR(W ) = R.

(iv) W is a quotient of I.

In particular, if I is also the trace ideal of a left projective module Q then the above
statements are also equivalent to the fact that W is a quotient of Q.

Proof. The equivalence of (i) and (ii) is a particular case of [21, Lemma 3.3]. It
is clear that (iii) is equivalent to (ii) because, for a semilocal ring, rR(V ) = lR(W ) is a
maximal two-sided ideal of R. Statements (iii) and (iv) are equivalent by the symmetry
of (iii).

Theorem 6.2.3. [21] Let R be a noetherian semilocal ring. Let V1, . . . , Vk be an ordered
set of representatives of the isomorphism classes of simple right R-modules.

For i = 1, . . . , k, let Di = EndR(Vi) and Wi = HomDi(Vi, Di) ∼= HomR(Vi, R/J(R)).
So that W1, . . . ,Wk is an ordered set of representatives of the isomorphism classes of
simple left R-modules. Let S be a subset of {1, . . . , k}. Assume that there exists a countably
generated projective right R-module P such that

P/PJ(R) ∼=
(
⊕i∈{1,...,k}\SV nii

)
⊕
(
⊕i∈SV (ℵ0)

i

)
,

where ni ∈ N0. Then the following statements hold:

(1) There exists a countably generated projective right R-module P ′ such that P ′/P ′J(R) ∼=
⊕i∈SV (ℵ0)

i . Hence P ∼= P ⊕ P ′.

(2) Let I be the trace ideal of P ′. Then P/PI is a finitely generated right R/I-module
such that

P/PI ⊗R/I (R/I) /J(R/I) ∼= P/P (I + J(R)) ∼= ⊕i∈{1,...,k}\SV nii .
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(3) There exists a countably generated projective left R-module Q such that

Q/J(R)Q ∼=
(
⊕i∈{1,...,k}\SWni

i

)
⊕
(
⊕i∈SW (ℵ0)

i

)
(4) There exists a countably generated projective left R-module Q′ such that Q′/J(R)Q′ ∼=
⊕i∈SW (ℵ0)

i . Hence Q ∼= Q⊕Q′.

Therefore, V ∗(RR) ∼= V ∗(RR) and, fixing ϕ : R→Mn1(D1)×· · ·×Mnk(Dk) an onto ring
homomorphism with kernel J(R), we obtain that dim ϕV

∗(RR) = dim ϕV
∗(RR) and that

dim ϕV (R) = (dim ϕV
∗(R)) ∩ Nk0 .

Proof. (1). The existence of P ′ follows from [21, Proposition 3.4]. The isomorphism
P ∼= P ⊕ P ′ follows from Theorem 6.1.4(ii).

Statement (2) is also part of [21, Proposition 3.4].
By Proposition 6.2.1, I is also the trace ideal of a projective left R-module M . As

M (ℵ0)/J(R)M (ℵ0) is semisimple and contains all semisimple factors of M it follows from
Lemma 6.2.2 that M (ℵ0)/J(R)M (ℵ0) ∼= ⊕i∈S(Wi)(ℵ0). Therefore taking Q′ = M (ℵ0) we
deduce that the first statement of (4) holds.

By (2), P/PI is a finitely generated R/I-module. Therefore Q = HomR/I(P/PI,R/I)
is a finitely generated projective left R/I-module such that Q/J(Q) ∼= ⊕i∈{1,...,k}\SWni

i .
By Proposition 6.2.1, there exists a projective left R-module Q1 such that Q1/IQ1

∼= Q.
Then Q = Q1 ⊕ Q′ fulfills the requirements of statement (3) and the second half of
statement (4).

Finally, note that the assignment 〈P 〉 7→ 〈Q〉 induces an isomorphism between V ∗(RR)
and V ∗(RR) such that dim ϕ(V ∗(RR)) = dim ϕ(V ∗(RR)). The claim on dim ϕV (R) follows
either from (2) or from combining Proposition 6.1.8 with Proposition 6.1.9.

As a corollary of Theorem 6.2.3 we note that, in the context of noetherian semilocal
rings, the divisibility property of Lemma 6.1.3(ii) still holds for general projective modules.

Corollary 6.2.4. Let R be a noetherian semilocal ring. Let P and Q be projective right
R-modules such that P/PJ(R) is isomorphic to a direct summand of Q/QJ(R) then P is
isomorphic to a direct summand of Q.

Proof. Since any projective module is a sum of countably generated projective
modules we may assume that P and Q are countably generated [7, Proposition 2.50].

Let V1, . . . , Vk be an ordered set of representatives of the isomorphism classes of simple
right R-modules. Since P/PJ(R) is a homomorphic image of Q/QJ(R) there exist S′ ⊆
S ⊆ {1, . . . , k} such that

Q/QJ(R) ∼=
(
⊕i∈{1,...,k}\SV nii

)
⊕
(
⊕i∈SV (ℵ0)

i

)
and

P/PJ(R) ∼=
(
⊕i∈{1,...,k}\S′V mii

)
⊕
(
⊕i∈S′V (ℵ0)

i

)
where ni and mj are in N0, and ni −mi ∈ N0 for any i ∈ {1, . . . , k} \ S.

By Theorem 6.2.3, there exists a countably generated projective module Q′ such that
Q′/Q′J(R) ∼= ⊕i∈SV (ℵ0)

i . Let I be the trace ideal of Q′. Again by Theorem 6.2.3, P =
P/PI and Q = Q/QI are finitely generated projective right R/I-modules.
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Now
Q/QJ(R/I) ∼= Q/Q(I + J(R)) ∼= ⊕i∈{1,...,k}\SV nii

and
P/PJ(R/I) ∼= P/P (I + J(R)) ∼= ⊕i∈{1,...,k}\SV mii

By Corollary 6.1.6, there exists a finitely generated projective right R/I-module X such
that X/XJ(R/I) ∼= ⊕i∈{1,...,k}\SV ni−mii . By Proposition 6.2.1, there exists a countably
generated projective right R-module X such that X/XI ∼= X. By Theorem 6.1.4(ii),
Q ∼= P ⊕Q′ ⊕X.

After some amount of work, it will turn out that Proposition 6.2.1 and Theorem 6.2.3
contain all the information needed to describe V ∗(R) for R a noetherian semilocal ring.

Definition 6.2.5. Let k ≥ 1. A submonoid M of (N∗0)k is said to be a monoid defined
by a system of equations provided that there exist D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0)
and m1, . . . ,mn ∈ N , mi ≥ 2 for any i ∈ {1, . . . , n}, such that M is the set of solutions
in (N∗0)k of the system of equations

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 (∗) and E1

 t1
...
tk

 = E2

 t1
...
tk

 (∗∗)

where `, n ≥ 0. By convention, ` or n equal to zero means that either (∗) or (∗∗) are
empty systems.

As we shall recall in Proposition 6.6.2, any full affine monoid of Nk0 is of the form
M ∩ Nk0 where M is a submonoid of (N∗0)k defined by a system of equations.

Now we can state our main theorem,

Theorem 6.2.6. Let k ∈ N. Let M be a submonoid of (N∗0)k containing (n1, . . . , nk) ∈
Nk. Then the following statements are equivalent:

(1) M is defined by a system of equations.

(2) For any field F there exist a noetherian semilocal F -algebra R, a semisimple F -
algebra S = Mn1(D1)×· · ·×Mnk(Dk), where D1, . . . , Dk are division rings, and an
onto morphism of F -algebras ϕ : R→ S with Kerϕ = J(R) such that dim ϕV

∗(R) =
M . In particular, dim ϕV (R) = M ∩ Nk0 .

(3) There exist a noetherian semilocal ring R, a semisimple ring S = Mn1(D1)× · · · ×
Mnk(Dk), where D1, . . . , Dk are division rings, and an onto ring morphism ϕ : R→
S with Kerϕ = J(R) such that dim ϕV

∗(R) = M . Therefore, dim ϕV (R) = M ∩Nk0 .

Remark 6.2.7. We follow the notation of Definition 6.2.5. As it is done for full affine
monoids in [2, Exercise 6.4.16] or [1, Proof of Theorem 2.29], if M ⊆ (N∗0)k is defined by
a system of equations as in 6.2.5 then it is isomorphic to the submonoid M ′ of (N∗0)k+n

defined by system of linear diophantine equalities

D

 t1
...
tk

 =

 m1 · · · 0
...

. . .
...

0 · · · mn


 tk+1

...
tk+n

 and E1

 t1
...
tk

 = E2

 t1
...
tk
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The isomorphism is given by the assignment

(x1, . . . , xk) 7→ (x1, . . . , xk,
1
m1

k∑
j=1

d1jxj , . . . ,
1
mn

k∑
j=1

dnjxj),

where we make the convention ∞
mi

=∞.
Therefore it is important to take into account that we are considering our monoids

always inside some fixed (N∗0)k or, in the ring context, that we are viewing V ∗(R) as a
submonoid of V ∗(R/J(R)).

The monoid N∗0 is not cancellative, therefore the solutions of two systems of equa-
tions may coincide over N0 but be different when considered over N∗0. We illustrate this
phenomena with an easy example.

Example 6.2.8. The set of solutions of the equation x = y in N2
0 is M = {(n, n) | n ∈

N0}, and the set of solutions in (N∗0)2 is M +∞ ·M = M ∪ {(∞,∞)}.
The set of solutions of 2x = x + y in N2

0 is, of course, also M but in (N∗0)2 is M1 =
M ∪ {(∞, n) | n ∈ N∗0}.

Finally, the set of solutions of 2x+ y = x+ 2y in (N∗0)2 is M1 ∪ {(n,∞) | n ∈ N∗0}.

Theorem 6.2.6 shows that, for noetherian semilocal rings, the description of V ∗(R)
viewed inside V ∗(R/J(R)) nicely extends the one of V (R) inside V (R/J(R)) (cf. Propo-
sition 6.6.2). In [14] we give examples showing that the picture for general semilocal rings
must be more complicated.

6.3 Semilocal principal ideal domains

We recall that a ring R is a principal ideal domain if R is a right and left principal ideal
domain, that is, if every right ideal of R has the form aR for some a ∈ R and every left
ideal of R has the form Ra for some a ∈ R.

Semilocal principal ideal domains are a source of semilocal noetherian rings such that
all projective modules are free. Our aim in this section is to construct semilocal PID’s
with certain types of semisimple factors.

Let R be a commutative ring. Let k ≥ 1, and let M1, . . . ,Mk be different maximal
ideals of R. The localization of R at the set Σ = R \ (M1 ∪ · · · ∪Mk) is a semilocal ring
such that modulo its Jacobson radical is isomorphic to R/M1 × · · · ×R/Mk.

Fuller and Shutters observed in [13] that the same procedure to construct semilocal
rings can be extended to, non necessarily commutative, principal ideal domains by using
Ore localization.

Proposition 6.3.1. [13, Proposition 4] Let ϕ : R→ S be a surjective ring homomorphism
of a principal ideal domain R onto a semisimple artinian ring S. Let Σ = {a ∈ R |
ϕ(a) is invertible in S}. Then:

(i) Σ is a right and left Ore set.

(ii) The Ore localization RΣ of R with respect to Σ is a semilocal principal ideal domain,
and the extension ϕ : RΣ → S of ϕ induces an isomorphism RΣ/J(RΣ) ∼= S.
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Next result gives a source of examples where to apply Proposition 6.3.1.
Let E be any ring, and let α : E → E a (unital) ring morphism. The skew polynomial

ring or the twisted polynomial ring is the ring

E[x;α] = {p(x) = p0x
m + · · ·+ pm | m ∈ N0 and pi ∈ E for i = 0, . . . ,m}

with componentwise addition and multiplication induced by the rule xr = α(r)x for any
r ∈ E.

It is well known that if E is a division ring and α is an automorphism then E[x;α]
has a right and a left division algorithm, hence, it is a principal ideal domain.

Proposition 6.3.2. Let E be a field. Let α : E → E be a field automorphism of order n
with fixed field Eα = {a ∈ E | α(a) = a}. Then the skew polynomial ring R = E[x;α] has
a simple factor isomorphic to Mn(Eα).

Moreover, if E is infinite then, for any k ∈ N, R has a factor isomorphic to Mn(Eα)k.

Proof. We may assume that n > 1.
Note the following fact that will be useful throughout the proof:
(*) Let p(x) = xm + p1x

m−1 + · · · + pm ∈ R be such that pm 6= 0. If a ∈ E satisfies
that ap(x) ∈ p(x)R then αm(a) = a.

As α has order n, the center of R contains (in fact coincides with) Eα[xn]. Therefore,
for any 0 6= t ∈ Eα, the right ideal (xn − t)R is two-sided. As R is a right principal ideal
domain, (*) yields that (xn − t)R is a maximal two-sided ideal, so that R/(xn − t)R is
a simple artinian ring. We claim that if t = rn for some r ∈ Eα then R/(xn − t)R ∼=
Mn(Eα). To prove this we need to find a simple right R/(xn − t)R-module such that its
endomorphism ring is Eα and its dimension over Eα is n.

In Eα[x] ⊆ R we have a decomposition xn − rn = (x − r)q(x). As xn − rn is central
in R, V = R/(x− r)R is a right R/(xn − rn)R-module. It is readily checked that V is a
right E-vector space of dimension 1, therefore it is a simple right R/(xn − rn)R-module.

EndR(V ) = I/(x−r)R, where I = {p(x) ∈ R | p(x)(x−r) ∈ (x−r)R} is the idealizer
of (x− r)R in R. As any p(x) ∈ R can be written in a unique way as a+ (x− r)q(x) for
a ∈ E,

EndR(V ) ∼= I ∩ E = {a ∈ E | a(x− r) ∈ (x− r)R}

By (*), I ∩ E = Eα and, hence, EndR(V ) ∼= Eα. Since EαV ∼= EαE and, by Artin’s
Theorem, [E : Eα] = n we deduce that the dimension of V over its endomorphism ring is
n as desired.

Now assume that E, and hence Eα, is infinite. Fix k ∈ N. Let r1, . . . , rk ∈ Eα be
such that rn1 , . . . , r

n
k are k different elements. Consider the ring homomorphism

Φ: R→ R/(xn − rn1 )R× · · · ×R/(xn − rnk )R

defined by Φ(p(x)) = (p(x) + (xn − rn1 )R, . . . , p(x) + (xn − rnk )R). By the Chinese re-
mainder Theorem, Φ is also onto. Therefore, by the first part of the proof, Φ induces an
isomorphism R/Ker Φ ∼= Mn(Eα)k.

In Theorem 6.5.3 we will use the following examples.

Examples 6.3.3. Let n, k ∈ N.

(i) There exists a semilocal Q-algebra R that is a principal ideal domain such that
R/J(R) ∼= Mn(Q)k.
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(ii) Let F be any field, and consider the transcendental extension of F , E = F (t1, . . . , tn).
Let α : E → E be the automorphism of E that fixes F and satisfies that α(ti) = ti+1

for i = 1, . . . , n− 1 and α(tn) = t1. Then there exists a semilocal F -algebra R, that
is a principal ideal domain, such that R/J(R) ∼= Mn(Eα)k.

In both cases all projective right or left modules over R are free.

Proof. (i) Let Q ⊆ E be a Galois field extension with Galois group G ∼= Z/nZ. Let
α : E → E be a generator of G. By Proposition 6.3.2, there exists an onto ring homomor-
phism ϕ : E[x;α]→Mn(Q)k. By Proposition 6.3.1, Σ = {a ∈ R | ϕ(a) is invertible in Mn(Q)k}
is a right and left Ore set and (E[x;α])Σ has the desired properties.

(ii) Proceed as in (i) combining Proposition 6.3.2 with Proposition 6.3.1.

6.4 Pullbacks of rings

We shall use ring pullbacks to construct noetherian semilocal rings with prescribed V ∗(R).
In this section we study when ring pullbacks are semilocal and noetherian. We start fixing
some notation.

Notation 6.4.1. Let R1, R2 and S be rings with ring homomorphisms ji : Ri → S, for
i = 1, 2. Let R be the pullback of these rings. That is, R fits into the pullback diagram

R1
j1−−−−→ S

i1

x xj2
R −−−−→

i2
R2

So that it can be described as

R = {(r1, r2) ∈ R1 ×R2 | j1(r1) = j2(r2)}

and the maps i1 and i2 are just the canonical projections.

A ring homomorphism ϕ : R→ S is said to be local if, for any r ∈ R, ϕ(r) is a unit of
S if and only if r is a unit of R. The following deep result by Rosa Camps and Warren
Dicks (see [4, Theorem 1] or [7, Theorem 4.2]) characterizes semilocal rings in terms of
local morphisms.

Theorem 6.4.2. A ring R is semilocal if and only if it has a local ring homomorphism
into a semilocal ring.

We note the following elegant corollary of Theorem 6.4.2.

Corollary 6.4.3. In the situation of Notation 6.4.1, R is a local subring of R1 ×R2. In
particular, the pullback of two semilocal rings is a semilocal ring.

Proof. Note that if (r1, r2) ∈ R ⊆ R1 × R2 is a unit of R1 × R2 then its inverse
(r−1

1 , r−1
2 ) also satisfies that j1(r−1

1 ) = j2(r−1
2 ). Hence (r−1

1 , r−1
2 ) ∈ R, and we deduce

that the inclusion R→ R1 ×R2 is a local ring homomorphism.



6. Semilocal noetherian case 100

Lemma 6.4.4. Let T be a subring of a ring R, and assume that there exists a two-sided
ideal I of R such that I ⊆ T and that R/I is finitely generated as a left T/I-module.
Then:

(i) TR is finitely generated.

(ii) If R and T/I are left noetherian rings then so is T .

Proof. (i) Let x1, . . . , xn ∈ R be such that x1 + I, . . . , xn + I generate R/I as a left
T/I-module. Then R = Tx1 + · · ·+ Txn + T · 1 is finitely generated as a left T -module.

(ii) Let J be a left ideal of T . As IJ is a left ideal of R, it is finitely generated as a
left R-module. By (i), it is finitely generated as a left T -module.

The left R-module RJ/IJ is also a finitely generated left R/I-module, hence it is a
noetherian left T/I-module. Therefore J/IJ ⊆ RJ/IJ is a finitely generated left T/I-
module. Since

0→ IJ → J → J/IJ → 0

we can conclude that TJ is finitely generated. This proves that T is left noetherian.

Proposition 6.4.5. In the situation of Notation 6.4.1, assume that j1 is surjective and
that R2S is finitely generated. If Ri is a left noetherian ring, for i = 1, 2, then R is left
noetherian.

Proof. As j1 is onto, i2 is also an onto ring homomorphism with kernel I =
Ker j1 × {0}. Let T = i1(R), and note that Ker j1 is a two-sided ideal of R1 that is
contained in T . As a first step we shall prove that T is left noetherian and that TR1

is finitely generated. Observe that T/Ker j1 ' j2(R2) is left noetherian. In view of
Lemma 6.4.4 we only need to prove that TS ∼= R1/Ker j1 is finitely generated.

By assumption, there exist s1, . . . , sn ∈ S such that S =
∑n
i=1R2si. Fix an element

s ∈ S, there exist r1
2, . . . , r

n
2 ∈ R2 such that s =

∑n
i=1 r

i
2 · si =

∑n
i=1 j2(ri2)si. Since

j1 is onto, for i = 1, . . . , n, there exists ri1 ∈ R1 such that j1(ri1) = j2(ri2). Hence
s =

∑n
i=1 j1(ri1)si =

∑n
i=1 r

i
1 · si. Since (ri1, r

i
2) ∈ R, ri1 ∈ T for i = 1, . . . , n. This shows

that S =
∑n
i=1 Tsi, so that TS is finitely generated.

We want to prove that any left ideal of R is finitely generated. Let I be a left ideal
of R contained in Ker j1 × {0}. Hence I = I1 × {0} with I1 a left ideal of T , as T is left
noetherian I is finitely generated.

Now, let I be any left ideal of R. Since i2 is onto and R2 is left noetherian, i2(I) is a left
ideal of R2, finitely generated by elements r1

2, . . . , r
n
2 ∈ R2 say. Fix r1

1, . . . , r
n
1 ∈ R1 such

that (ri1, r
i
2) ∈ I. If x ∈ I then there exist y1, . . . , yn ∈ R such that x−

∑n
i=1 yi(r

i
1, r

i
2) ∈

I
⋂

(Ker j1 × {0}). Therefore I = I
⋂

(Ker j1 × {0}) +
∑n
i=1R(ri1, r

i
2). By the previous

case, I
⋂

(Ker j1 × {0}) is finitely generated, therefore I is finitely generated.

In the next result we compute the Jacobson radical for some pullbacks of rings.

Lemma 6.4.6. In the situation of Notation 6.4.1, assume that j1 is an onto ring homo-
morphism such that Ker j1 ⊆ J(R1) and j1(J(R1)) ⊇ j2(J(R2)). Then J(R) fits into the
induced pullback diagram

J(R1)
j1−−−−→ j1(J(R1))

i1

x xj2
J(R) −−−−→

i2
J(R2)
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and R/J(R) ∼= R2/J(R2). In particular, if J(R1) = Ker j1 and J(R2) = Ker j2 then
J(R) = J(R1)× J(R2).

Proof. Let J be the pullback of the induced maps j1 : J(R1) → j1(J(R1)) and
j2 : J(R2) → j1(J(R1)). Since, by Corollary 6.4.3, R is a local subring of R1 × R2 it
follows that J ⊆ J(R).

In order to prove the reverse inclusion consider (r1, r2) ∈ J(R). Being j1 onto, i2
is also onto, hence r2 ∈ J(R2). Since j1(r1) = j2(r2) ⊆ j1(J(R1)), we deduce that
r1 ∈ Ker j1 + J(R1) = J(R1). Therefore (r1, r2) ∈ J .

Since Ker i2 = Ker j1 × {0} ⊆ J(R) and i2 is onto, it immediately follows that the
map

R
i2→ R2

π→ R2/J(R2),

where π denotes the canonical projection, induces an isomorphism between R/J(R) and
R2/J(R2).

The claim when J(Ri) = Ker ji follows from the fact that the pullback of zero homo-
morphisms is the product.

In the situation of Notation 6.4.1 and assuming that j1 is onto, Milnor in [19] charac-
terized the category of projective right (or left) modules over R in the following way,

Remark 6.4.7. We follow Notation 6.4.1 and we assume that j1 is onto. Let P be the
category with objects the triples M(P1, P2, h) where, for i = 1, 2, Pi is a projective right Ri-
module, and h : P1⊗R1 S → P2⊗R2 S is an isomorphism. A morphism f : M(P1, P2, h)→
M(Q1, Q2, g) in P is defined as a pair f = (f1, f2) where, for i = 1, 2, fi : Pi → Qi is a
morphism of right Ri-modules and g(f1 ⊗ S) = (f2 ⊗ S)h. Finally we say that an object
M(P1, P2, h) of P is finitely generated (countably generated) if P1 and P2 are finitely
generated (countably generated).

If P,Q are projective right modules over R and f : P → Q is a homomorphism then
the assignment

P 7→M(P ⊗R R1, P ⊗R R2, IdP ⊗ S)

Q 7→M(Q⊗R R1, Q⊗R R2, IdQ ⊗ S)

f 7→ (f ⊗R R1, f ⊗R R2)

defines a functor from the category of projective right R-modules and the category P.
Milnor proved [19, Theorems 2.1, 2.2 and 2.3] that this functor is an equivalence of
categories. He also observed that the equivalence can be restricted to the full subcategories
of finitely generated objects, the same proof shows that the equivalence can be also restricted
to the full subcategories of countably generated objects.

In general, the category P is not just the pullback of the categories of projective right
Ri-modules. Next Theorem describes a situation where not only this is true, but it also
follows that the isomorphism class of a projective right R-module P only depends on the
isomorphism class of the projective right R2-module P⊗RR2. The result is a combination
of Milnor’s characterization with Theorem 6.1.4(ii).

Theorem 6.4.8. In the situation of Notation 6.4.1, assume that j1 is an onto ring
homomorphism and that Ker j1 ⊆ J(R1). Then the assignment PR 7→ P ⊗R R2, where P
denotes a projective right R-module, induces monoid isomorphisms

V (i2) : V (R)→ {〈P2〉 ∈ V (R2) | 〈P2 ⊗R2 S〉 ∈ ImV (j1)}



6. Semilocal noetherian case 102

and
V ∗(i2) : V ∗(R)→ {〈P2〉 ∈ V ∗(R2) | 〈P2 ⊗R2 S〉 ∈ ImV ∗(j1)}.

Proof. We shall use Milnor’s characterization described in Remark 6.4.7.
Our hypothesis implies that Ker i2 ⊆ J(R1) × {0} and, hence, Ker i2 ⊆ J(R). This

allows us to use Theorem 6.1.4(ii) to deduce that P ⊗R R2
∼= Q⊗R R2 implies P ∼= Q for

any pair of projective right R-modules P,Q. Therefore, V (i2) and V ∗(i2) are injective.
Then the results [19, Theorems 2.1, 2.2 and 2.3] recalled in Remark 6.4.7, show that the
image of these maps is as claimed in the statement.

Now we state the precise result we will be using in §6.5.

Corollary 6.4.9. In the situation of Notation 6.4.1, let R1 and R2 be semilocal rings,
and let S = Mm1(D′1) × · · · ×Mm`(D

′
`) for suitable division rings D′1, . . . , D

′
`. Assume

that j1 is an onto ring homomorphism with kernel J(R1), and that J(R2) ⊆ Ker j2. If
R2/J(R2) ∼= Mn1(D1) × · · · × Mnk(Dk) for D1, . . . , Dk division rings, and π : R2 →
Mn1(D1)× · · · ×Mnk(Dk) is an onto morphism with kernel J(R2) then

(i) i2 induces an onto ring homomorphism i2 : R → Mn1(D1) × · · · ×Mnk(Dk) with
kernel J(R). In particular, R is a semilocal ring and R/J(R) ∼= R2/J(R2).

(ii) Let α : dim πV
∗(R2)→ (N∗0)` be the monoid homomorphism induced by j2. Then

dim i2
V ∗(R) = {x ∈ dim πV

∗(R2) | α(x) ∈ dim j1V
∗(R1)}.

Moreover, if R1 and R2 are noetherian, and S is finitely generated, both as a left and as
a right j2(R2)-module, then R is noetherian and dim i2

(V (R)) =
(
dim i2

V ∗(R)
)
∩ Nk0 .

Proof. Statement (i) follows from Lemma 6.4.6 and Corollary 6.4.3. Statement (ii)
is a consequence of (i) and Theorem 6.4.8.

The final part of the Corollary follows from Proposition 6.4.5 and the fact that over
a noetherian semilocal ring a projective module is finitely generated if and only if it is
finitely generated modulo the Jacobson radical (cf. Proposition 6.1.9 or Theorem 6.2.3).

We single out the following particular case of Corollary 6.4.9.

Corollary 6.4.10. In the situation of Notation 6.4.1, for i = 1, 2, assume that ji is
onto and Ker ji = J(Ri). Assume S = Mn1(D1) × · · · ×Mnk(Dk) where D1, . . . , Dk are
division rings. Then

(i) i2 (and i1) induces an onto ring homomorphism i : R→Mn1(D1)× · · · ×Mnk(Dk)
with kernel J(R).

(ii) dim iV
∗(R) = dim j1V

∗(R1) ∩ dim j2V
∗(R2).

6.5 Noetherian semilocal rings with prescribed V ∗(R)

Now we have all the elements to construct noetherian semilocal rings with prescribed
V ∗(R) and to prove the realization part of Theorem 6.2.6. We explain the basic construc-
tions in the following two examples.
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Example 6.5.1. Let k,m ∈ N, and let a1, . . . , ak ∈ N0. Assume (n1, . . . , nk) ∈ Nk is
such that a1n1 + · · · + aknk = m` ∈ N. Let F be a field, and let F ⊆ F2 be a field
extension such that there exists a semilocal principal ideal domain R1, that is also an
F -algebra, with R1/J(R1) ∼= Mm(F2). Then for any intermediate field F ⊆ F1 ⊆ F2 such
that [F2 : F1] <∞ there exist a noetherian semilocal F -algebra R and an onto morphism
of F -algebras ϕ : R→Mn1(F1)×· · ·×Mnk(F1) with Kerϕ = J(R) such that dim ϕV

∗(R)
is exactly the set of solution in (N∗0)k of the congruence a1t1 + · · ·+ aktk ∈ mN∗0.

Note that dim ϕ(〈R〉) = (n1, . . . , nk).

Proof. Fix j1 : M`(R1) → Mm`(F2) an onto morphism of F -algebras with kernel
J(M`(R1)) = M`(J(R1)).

Set R2 = Mn1(F1)× · · · ×Mnk(F1), and consider the morphism of F -algebras

j2 : R2 −→ Mm`(F2)

(r1, . . . , rk) 7→



r1 ··· 0

...
. . .a1)

...
0 ··· r1

· · · 0

. . .

0 · · ·
rk ··· 0

...
. . .ak)

...
0 ··· rk


where, for i = 1, . . . , k, ai is the size of the i-th block of the matrix j2(r1, . . . , rk). Note
that (V (R2), 〈R2〉) ∼= (Nk0 , (n1, . . . , nk)) and V ∗(R2) ∼= (N∗0)k; V (Mm`(F2)) is isomorphic
to the monoid N0 with order unit m · ` and V ∗(Mm`(F2)) ∼= (N0)∗. Then j2 induces the
morphism of monoids f : (N∗0)k → N∗0 defined by f(x1, . . . , xk) = a1x1 + · · · + akxk, cf.
§6.1.1.

Let R be the ring defined by the pullback diagram

M`(R1)
j1−−−−→ Mm`(F2)

i1

x xj2
R −−−−→

ϕ
Mn1(F1)× · · · ×Mnk(F1)

Since [F2 : F1] < ∞ we can apply (i) and the final part of Corollary 6.4.9 to deduce R
is a noetherian semilocal F -algebra and that ϕ is an onto morphism of F -algebras with
kernel J(R).

Now we compute dim ϕV
∗(R) using Corollary 6.4.9(ii). We have chosen R1 such

that dim j1V
∗(M`(R1)) = mN∗0. Therefore (x1, . . . , xk) ∈ dim ϕV

∗(R) if and only if
f(x1, . . . , xk) = a1x1 + · · · + akxk ∈ mN∗0. That is, dim ϕV

∗(R) is exactly the set of
solutions in (N∗0)k of the congruence a1t1 + · · ·+ aktk ∈ mN∗0 as desired.

Example 6.5.2. Let k ∈ N, and let a1, . . . , ak, b1, . . . , bk ∈ N0. Let (n1, . . . , nk) ∈ Nk be
such that a1n1 + · · ·+aknk = b1n1 + · · ·+bknk ∈ N. For any field extension F ⊆ F1, there
exist a noetherian semilocal F -algebra R and an onto morphism of F -algebras ϕ : R →
Mn1(F1) × · · · ×Mnk(F1) with kernel J(R) such that dim ϕV

∗(R) is the set of solutions
in (N∗0)k of the equation a1t1 + · · ·+ aktk = b1t1 + · · ·+ bktk.

Note that dim ϕ(〈R〉) = (n1, . . . , nk).
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Proof. Set m = a1n1 + · · ·+ aknk = b1n1 + · · ·+ bknk.
Let R1 be a noetherian semilocal F -algebra such that R1/J(R1) ∼= F1 × F1, and

all projective modules over R1 are free. For example, we could take the commutative
principal ideal domain R1

∼= F1[x]Σ with Σ = (F1[x]) \ (xF1[x] ∪ (x− 1)F1[x]) .
Let j1 : Mm(R1)→Mm(F1)×Mm(F1) be an onto morphism of F -algebras with kernel

J(Mm(R1)). Set R2 = Mn1(F1) × · · · ×Mnk(F1). Consider the morphism of F -algebras
j2 : R2 −→Mm(F1)×Mm(F1) defined by

j2(r1, . . . , rk) =





r1 ··· 0

...
. . .a1)

...
0 ··· r1

· · · 0

. . .

0 · · ·
rk ··· 0

...
. . .ak)

...
0 ··· rk

 ,



r1 ··· 0

...
. . .b1)

...
0 ··· r1

· · · 0

. . .

0 · · ·
rk ··· 0

...
. . .bk)

...
0 ··· rk




Note that j2 induces the morphism of monoids f : (N∗0)k → N∗0×N∗0 defined by f(x1, . . . , xk) =
(a1x1 + · · ·+ akxk, b1x1 + · · ·+ bkxk), cf. §6.1.1. Hence, f(n1, . . . , nk) = (m,m).

Let R be the ring defined by the pullback diagram

Mm(R1)
j1−−−−→ Mm(F1)×Mm(F1)

i1

x xj2
R −−−−→

ϕ
Mn1(F1)× · · · ×Mnk(F1)

Applying (i) and the final part of Corollary 6.4.9, we can deduce that R is a noethe-
rian semilocal F -algebra and that ϕ is an onto morphism of F -algebras with kernel J(R).
We have chosen R1 such that dim j1V

∗(M`(R1)) = {(x, x) | x ∈ N∗0}. Also by Corol-
lary 6.4.9(ii), (x1, . . . , xk) ∈ dim ϕV

∗(R) if and only if f(x1, . . . , xk) ∈ dim j1V
∗(M`(R1))

if and only if a1x1 + · · ·+ akxk = b1x1 + · · ·+ bkxk as desired.

Theorem 6.5.3. Let k ≥ 1, and let F be a field. Let M be a submonoid of (N∗0)k defined
by a system of equations and containing an element (n1, . . . , nk) ∈ Nk. Then there exist a
noetherian semilocal F -algebra R, a semisimple F -algebra S = Mn1(E)× · · · ×Mnk(E),
where E is a field extension of F , and an onto morphism of F -algebras ϕ : R → S with
Kerϕ = J(R) satisfying that dim ϕV

∗(R) = M .
Note that, in this situation, dim ϕ(〈R〉) = (n1, . . . , nk).

Proof. Let M be defined by the system of equations,

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 (∗) and E1

 t1
...
tk

 = E2

 t1
...
tk

 (∗∗)

where D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0), n, ` ≥ 0 and m1, . . . ,mn ∈ N , mi ≥ 2 for
any i ∈ {1, . . . , n}.
Step 1. There exist a field E containing F , a noetherian semilocal F -algebra R1 and an
onto morphism of F -algebras ϕ1 : R1 →Mn1(E)× · · · ×Mnk(E) such that dim ϕ1V

∗(R1)
is the set of solutions in (N∗0)k of the system of congruences (∗).



6. Semilocal noetherian case 105

If n = 0, that is, if (∗) is empty we set E = F , R1 = Mn1(E) × · · · ×Mnk(E) and
ϕ1 = Id. Assume n > 0, therefore we may also assume that all the rows of D are nonzero.

Consider the field extension F ⊆ F ′ = F (tij | i = 1, . . . , n, j = 1, . . . ,mi). For each
i = 1, . . . , n consider the automorphism αi of F ′ that fixes Fi = F (tsj | s 6= i) ⊆ F ′, maps
tij to tij+1 for 1 ≤ j < mi, and maps timi to ti1. Note that αi has order mi. Let G be the
group of permutations of m1 + · · · + mk variables. Then G acts on F ′. Set E = (F ′)G,
and note that E ⊆ F ′ is a finite field extension.

By Example 6.3.3(ii), for each i = 1, . . . , n, we can construct a principal ideal domain
such that modulo the Jacobson radical is isomorphic to Mmi((F

′)αi). By Example 6.5.1,
for i = 1, . . . , n, there exist a noetherian semilocal F -algebra Li and an onto morphism of
F -algebras πi : Li →Mn1(E)×· · ·×Mnk(E) with kernel J(Li) and such that dim πiV

∗(Li)
is the set of solutions in (N∗0)k of the i-th congruence in (∗).

Let R1 be the pullback of the πi, i = 1, . . . , n. By Corollary 6.4.9, R1 is a noetherian
semilocal F -algebra. By Corollary 6.4.10, there exists an onto morphism of F -algebras
ϕ1 : R1 → Mn1(E) × · · · ×Mnk(E), with kernel J(R1), such that dim ϕ1V

∗(R1) is the
monoid of solutions of (*). This concludes the proof of the first step.

Step 2. There exist a noetherian semilocal F -algebra R2 and an onto morphism of F -
algebras ϕ2 : R2 →Mn1(E)×· · ·×Mnk(E) such that dim ϕ2V

∗(R2) is the set of solutions
in (N∗0)k of the system of equations (∗∗).

If ` = 0, that is, if (∗∗) is empty we set R2 = Mn1(E) × · · · ×Mnk(E) and ϕ2 = Id.
Assume ` > 0. Therefore, we can assume that none of the rows in E1 and, hence, in E2

are zero.
By Example 6.5.2, for i = 1, . . . , `, there exist a noetherian semilocal F -algebra Ti and

an onto morphism of F -algebras πi : Ti →Mn1(E)× · · · ×Mnk(E) with kernel J(Ti) and
such that dim πiV

∗(Ti) is the set of solutions in (N∗0)k of the i-th equation defined by the
matrices E1 and E2.

Let R2 be the pullback of πi, i = 1, . . . , `. By Corollary 6.4.9, R2 is a noetherian
semilocal F -algebra with an onto morphism of F -algebras ϕ2 : R2 → Mn1(E) × · · · ×
Mnk(E) with kernel J(R2). By Corollary 6.4.10, dim ϕ2V

∗(R2) is the set of solutions of
(∗∗). This concludes the proof of Step 2.

Finally, set R to be the pullback of ϕi : Ri → Mn1(E) × · · · × Mnk(E), i = 1, 2.
By Corollary 6.4.9, R is a noetherian semilocal F -algebra with an onto morphism of F -
algebras ϕ : R → Mn1(E) × · · · ×Mnk(E) with kernel J(R). By Corollary 6.4.10, the
elements in dim ϕV

∗(R) are the solutions of (∗) and (∗∗).

6.6 Solving equations in N0 and in N∗
0: Supports of solutions

In this section we study the supports of elements of a full affine submonoid of Nk0 and
the supports of elements of a submonoid of (N∗0)k defined by systems of equations. Our
main aim is to show in Proposition 6.6.7 that if A is a full affine submonoid of Nk0 then
A+∞ ·A is a submonoid of (N∗0)k defined by a system of equations.

We recall that a full affine monoid is finitely generated.
Next result is quite easy but it is very important to keep in mind, for example, in

Definition 6.7.1. It shows that full affine submonoids are closed by projections over the
complementary of supports of elements.
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Proposition 6.6.1. Let k ≥ 1. Let A ⊆ Nk0 be a full affine submonoid. Let I  {1, . . . , k}
be the support of an element of A, and denote by pI : Nk0 → N{1,...,k}\I0 the canonical
projection. Then pI(A) is a full affine submonoid of N{1,...,k}\I0 .

Proof. Clearly pI(A) is a submonoid of N{1,...,k}\I0 . We need to check the full affine
property.

Let a, b ∈ A be such that there exists z ∈ N{1,...,k}\I0 satisfying that pI(a) + z = pI(b).
Let d ∈ A be such that supp (d) = I. There exists n ∈ N0 such that a + c = b + nd for
some c ∈ Nk0 . As A is full affine, c ∈ A and, hence, z = pI(c) ∈ pI(A).

Let C ⊆ Qk, and let C⊥ = {v ∈ Qk | 〈v, c〉 = 0 for any c ∈ C} where 〈−,−〉 denotes
the standard scalar product. If X ⊆ Qk, the support of X is defined by

supp (X) =
⋃
x∈X

supp (x)

Let A be a submonoid of Nk0 , and let B be the subgroup of Zk generated by A. Then
A is full affine if and only if B ∩Nk0 = A (see, for example, [8, Lemma 3.1]). So assume A
is full affine and consider B′ = (A⊥)⊥

⋂
Zk which is a subgroup of Zk defined by a system

of diophantine linear equations

E

 t1
...
tk

 =

 0
...
0


with E ∈M(k−`)×k(Z) and ` is the rank of the group B′.

By construction B ⊆ B′. Since the rank of B is also `, there exist d1, . . . , d` ≥ 1 such
that B′/B ∼= Z/d1Z × · · · × Z/d`Z. Equivalently, there exists a basis {v1, . . . , v`} of B′

such that {d1v1, . . . , d`v`} is a basis of B. Therefore, an element x ∈ B′

x = (x1, . . . , xk) = α1v1 + · · ·+ α`v`

is in B if and only if, for any i = 1, . . . , `, αi ∈ diZ. Since each αi can be written as
a Q-linear combination of x1, . . . , xk, by clearing denominators and eliminating trivial
congruences, we deduce that, for any x ∈ B′, x ∈ B if and only if it is a solution of

D

 t1
...
tk

 ∈
 m1Z

...
mnZ


where 0 ≤ n ≤ `, D ∈Mn×k(Z) and mi > 1 for i = 1, . . . , n.

Adding to D a suitable integral matrix in

(
m1 ··· 0

...
. . .

...
0 ··· mn

)
·Mn,k(Z), we can also assume

that D ∈Mn×k(N0).
In the next Proposition we collect the consequences of this discussion.

Proposition 6.6.2. ([2, Exercise 6.4.16] or [1, Proof of Theorem 2.29]) Let k ≥ 1. Let A
be a full affine submonoid of Nk0 , and let ` be the rank of the group generated by A. Then
there exist 0 ≤ n ≤ `, D ∈ Mn×k(N0), E1, E2 ∈ M(k−`)×k(N0) and m1, . . . ,mn integers
strictly bigger than one such that
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(i) x = (t1, . . . , tk) ∈ Nk0 is an element of A if and only if it is a solution of

D · T ∈

 m1N0

...
mnN0

 and E1 · T = E2 · T

where T = (t1, . . . , tk)t.

For j = 1, 2, let rji denote the i-th row of Ej. Then E1 and E2 can be chosen such
that, for i = 1, . . . , k − `, supp (r1

i ) ∩ supp (r2
i ) = ∅.

(ii) The set of solutions of E1 · T = E2 · T is A′ = (A⊥)⊥ ∩ Nk0 .

(iii) There exists d ∈ N such that dA′ ⊆ A. In particular,

{I ⊆ {1, . . . , k} | there exists a ∈ A such that supp (a) = I} =

= {I ⊆ {1, . . . , k} | there exists a ∈ A′ such that supp (a) = I}.

Proof. Following with the notation in the remarks before Proposition 6.6.2, we can
write the matrix E = E1 − E2 where E1 and E2 are in M(k−`)×k(N0). Clearly, E1 and
E2 can be chosen in a way such that the i-th row of E1 has disjoint support with the i-th
row of E2. Then (i) follows from the fact that A = B ∩ Nk0 .

The rest of the statement is clear.

Now we prove an auxiliary (and probably known) result that will be useful to determine
the supports of positive solutions of linear diophantine equations.

Lemma 6.6.3. Let k ≥ 1, and let V be a subspace of Qk. Then the following statements
are equivalent,

(i) V ⊥ ∩ Nk 6= ∅;

(ii) supp (V ⊥ ∩ Nk0) = {1, . . . , k};

(iii) V ∩ Nk0 = {0}.

Proof. It is clear that (i) and (ii) are equivalent statements and also that (i) implies
(iii). We will show that (iii) implies (ii).

The assumption in (iii) is equivalent to say that any element 0 6= v ∈ V has a compo-
nent strictly bigger than zero and another one strictly smaller than zero. As a first step
we show that V ⊥ cannot satisfy this condition.

Assume, by the way of contradiction, that k is the minimal dimension in which the
conclusion of (ii) fails. So that there exists V ≤ Qk such that V ∩ Nk0 = V ⊥ ∩ Nk0 = {0}.
Note that k and the dimension of V must be strictly bigger than 1.

Let v1, . . . , vn be a basis of V such that there exists i ∈ supp (v1)\ supp ({v2, . . . , vn}).
Let π : Qk → Q{1,...,k}\{i} denote the canonical projection.

If π(V ) ∩ N{1,...,k}\{i}0 = {0} then, by the minimality of k, there exists v ∈ Qk such
that 0 6= π(v) ∈ π(V )⊥ ∩N{1,...,k}\{i}0 . Since v can be chosen satisfying that i 6∈ supp (v),
we would get 0 6= v ∈ V ⊥ ∩ Nk0 , a contradiction. Let 0 6= λ1π(v1) + · · · + λnπ(vn) ∈
π(V ) ∩ N{1,...,k}\{i}0 . Then w = λ1v1 + · · · + λnvn ∈ V . Since V ∩ Nk0 = {0}, λ1 6= 0.
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Therefore, replacing v1 by w if necessary, we may assume that 0 6= π(v1) ∈ N{1,...,k}\{i}0

and that the i-th component of v1 is < 0. Let −a be such component.
Let W be the subspace of Qk\{i} generated by π(v2), . . . , π(vn). Our hypothesis imply

that W ∩ N{1,...,k}\{i}0 = {0}. By the minimality of k, there is v ∈ Qk such that 0 6=
π(v) ∈ W⊥ ∩ N{1,...,k}\{i}0 . Therefore, as b = 〈π(v), π(v1)〉 ≥ 0, picking v such that
its i-th component is b/a we find that 0 6= av ∈ V ⊥ ∩ Nk0 , a contradiction. Therefore
V ⊥ ∩ Nk0 6= {0} for any V such that V ∩ Nk0 = {0}, as claimed.

Now assume that V is a Q-vector space satisfying (iii). Observe first that supp (V ⊥) =
{1, . . . , k}, since otherwise there would exist i ∈ {1, . . . , k} such that the i-th component
of any element in V ⊥ is zero. Therefore, ei = (0, . . . , 0, 1i), 0, . . . , 0) ∈ (V ⊥)⊥ = V , which
is a contradiction with the assumption.

Let I = supp (V ⊥∩Nk0) and let J = {1, . . . , k}\I. We already know that I 6= ∅ and we
want to show J = ∅. Assume, by the way of contradiction, that J 6= ∅. Set πI : Qk → QI
and πJ : Qk → QJ to be the canonical projections.

Pick x ∈ V ⊥ ∩ Nk0 such that supp (x) = I. Then for any v ∈ V ⊥ there exists n ∈ N0

such that πI(nx+ v) ≥ 0. By the definition of I, this implies that πJ(v) = πJ(nx+ v) is
either zero or it has a component > 0 and another one < 0. Therefore, πJ(V ⊥)∩NJ0 = {0}.
By the first part of the proof, there exists w ∈ Qk such that 0 6= πJ(w) ∈ πJ(V ⊥)⊥ ∩NJ0 .
Choosing w such that πI(w) = 0, we obtain that 0 6= w ∈ (V ⊥)⊥ ∩ Nk0 = V ∩ Nk0 which
contradicts (iii). Therefore J = ∅.

Lemma 6.6.3 yields a first characterization of the supports of the elements in a full
affine monoid.

Corollary 6.6.4. Let k ≥ 1. Let A be a full affine submonoid of Nk0 . Let ∅ 6= I ⊆
{1, . . . , k}, and denote by πI : Qk → QI the canonical projection. Then there exists a ∈ A
such that I = supp (a) if and only if πI(A⊥) ∩ NI0 = {0}.

Proof. If a ∈ A is such that supp (a) = I then, as 〈x, πI(a)〉 = 0 for any x ∈ πI(A⊥),
it follows that πI(A⊥) ∩ NI0 = {0}.

Conversely, if πI(A⊥)∩NI0 = {0} then, by Lemma 6.6.3, there exists u ∈ πI(A⊥)⊥∩NI .
Let x = (x1, . . . , xk) ∈ Nk0 be such that πI(x) = u and xi = 0 for any i ∈ {1, . . . , k} \ I.
Then x ∈ (A⊥)⊥∩Nk0 . By Proposition 6.6.2 (iii), there exists d ∈ N such that a = dx ∈ A.
By construction, supp (a) = I.

A further characterization is the following.

Corollary 6.6.5. Let k ≥ 1. Let A be a full affine submonoid of Nk0 . For any ∅ 6= I ⊆
{1, . . . , k} denote by πI : Qk → QI the canonical projection. Let v1, . . . , vr ∈ Qk be a
finite subset of A⊥. Then, there exist vr+1, . . . , vs ∈ A⊥ such that v1, . . . vs generate the
Q-vector space A⊥ and the set

S(v1, . . . , vs) = {∅ 6= I ⊆ {1, . . . , k} | for any i = 1, . . . , s, πI(vi) is either zero

or it has a component < 0 and a component > 0}

coincides with

Supp (A \ {0}) = {I ⊆ {1, . . . , k} | I = supp (a) for some 0 6= a ∈ A}.
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Proof. Pick vr+1, . . . , vs ∈ A⊥ such that v1, . . . , vs generate A⊥ and the set
S(v1, . . . , vs) has minimal cardinality.

We claim that v1, . . . , vs have the desired property. If ∅ 6= I ⊆ {1, . . . , k} is such that
there exists a ∈ A such that supp (a) = I then I ∈ S(v1, . . . , vs) because 〈a, vi〉 = 0 for
any i = 1, . . . , s.

Let I ∈ S(v1, . . . , vs) and assume, by the way of contradiction, that I 6∈ Supp (A).
Then πI(A⊥) ∩ NI0 6= {0}, by Corollary 6.6.4.

Let v ∈ A⊥ be such that 0 6= πI(v) ∈ πI(A⊥) ∩ NI0. Notice that, S(v1, . . . , vs, v) ⊆
S(v1, . . . , vs) and I ∈ S(v1, . . . , vs) \ S(v1, . . . , vs, v). This contradicts the minimality of
the cardinality of S(v1, . . . , vs). This finishes the proof of the claim and of the Corollary.

Now we consider the solutions over (N∗0)k. In the next Lemma we see how to determine
the set of nonempty supports of such monoids (which coincides with the set of infinite
supports) for the special kind of systems that appears in Proposition 6.6.2(i).

Lemma 6.6.6. Let k ≥ 1. Let M be a submonoid of (N∗0)k defined by the system of
equations

D · T ∈

 m1N∗0
...

mnN∗0

 (∗) and E1 · T = E2 · T (∗∗)

where D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0) and m1, . . . ,mn ∈ N , mi ≥ 2 for any
i ∈ {1, . . . , n}. For j = 1, 2 and i = 1, . . . , `, let rji denote the i-th row of Ej. For
∅ 6= I ⊆ {1, . . . , k}, let πI : (N∗0)k → (N∗0)I denote the canonical projection. Then:

(i) Let N be the submonoid of (N∗0)k whose elements are the solutions of the system of
congruences (∗). Then, for any i ∈ {1, . . . , k}, the element (0, . . . , 0,∞, 0, . . . , 0) ∈
N .

(ii) If x ∈M then also ∞ · x ∈M .

(iii) If x ∈M then the element x∗ ∈ (N∗0)k uniquely determined by the property supp (x∗) =
inf-supp (x∗) = inf-supp (x) also belongs to M .

(iv) Assume that, for i = 1, . . . , `, supp (r1
i ) ∩ supp (r2

i ) = ∅, and let ∅ 6= I ⊆ {1, . . . , k}
then there exists x ∈ M such that supp (x) = I if and only if, for any i = 1, . . . , `,
πI(r1

i − r2
2) is either 0 or it has a component > 0 and another one < 0.

Proof. Statement (i) is trivial, and it allows us to prove the rest of the statement
just for the monoid M defined by the system of linear diophantine equations (∗∗).

Let x ∈ M . Fix i ∈ {1, . . . , `}, there are three possible situations. The first one is
0 = 〈x, r1

i 〉 = 〈x, r2
i 〉 which happens if and only if, for j = 1, 2, supp (x) ∩ supp (rji ) = ∅.

The second one is 0 6= 〈x, r1
i 〉 = 〈x, r2

i 〉 ∈ N0 which happens if and only if, for j = 1, 2,
inf-supp (x)∩ supp (rji ) = ∅ but supp (x)∩ supp (rji ) 6= ∅. Finally, 〈x, r1

i 〉 = 〈x, r2
i 〉 =∞ if

and only if inf-supp (x) ∩ supp (rji ) 6= ∅ for j = 1, 2. Then, in the three situations, it also
follows that 〈∞ · x, r1

i 〉 = 〈∞ · x, r2
i 〉 and 〈x∗, r1

i 〉 = 〈x∗, r2
i 〉. This shows that (ii) and (iii)

hold.
To prove statement (iv) assume that supp (r1

i ) ∩ supp (r2
i ) = ∅ for i = 1, . . . , `. Let

∅ 6= I ⊆ {1, . . . , k} have the property required in the statement. Let x ∈ (N∗0)k be such
that supp (x) = inf-supp (x) = I. If i ∈ {1, . . . , `} is such that πI(r1

i − r2
i ) is zero then
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0 = 〈x, r1
i 〉 = 〈x, r2

i 〉, if πI(r1
i − r2

i ) has a positive component and a negative component
then ∞ = 〈x, r1

i 〉 = 〈x, r2
i 〉. This shows that x satisfies (∗∗), therefore it is an element of

M .
To prove the converse, let x ∈ M . By (ii) we may assume that x = ∞ · x. Let

I = supp (x), then one can proceed as in the proof of (ii) and (iii) to show that I has the
required property.

Proposition 6.6.7. Let k ≥ 1, and let A be a full affine submonoid of Nk0 . Then

M = A+ {∞ · a | a ∈ A}

is a submonoid of (N∗0)k defined by a system of equations.

Proof. We divide the proof into a couple of steps.
Step 1. Let k ≥ 1, and let A be a full affine submonoid of Nk0 . Then there exists a
submonoid M ′ of (N∗0)k defined by a system of equations such that M ′ ∩ Nk0 = A and if
x ∈M ′ then there exists a ∈ A such that ∞ · x =∞ · a ∈M ′.

By Proposition 6.6.2, there existD ∈Mn×k(N0), E1, E2 ∈M`×k(N0) andm1, . . . ,mn ∈
N, mi ≥ 2 for any i ∈ {1, . . . , n} such that A is the set of elements in Nk0 that satisfy the
system

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 (∗) and E1

 t1
...
tk

 = E2

 t1
...
tk

 (∗∗).

For j = 1, 2, let rji denote the i-th row of Ej . By Proposition 6.6.2, we can assume that
supp (r1

i ) ∩ supp (r1
i ) = ∅ for i = 1, . . . , `. Set v1 = r1

1 − r2
1, . . . , v` = r1

` − r2
` . Notice that

v1, . . . , v` ∈ A⊥ ∩ Zk and, in fact, generate the Q-vector space A⊥.
By Corollary 6.6.5, there exist v`+1, . . . , vs ∈ A⊥ such that the set of supports of

nonzero elements in A coincides with

S(v1, . . . , vs) = {∅ 6= I ⊆ {1, . . . , k} | for any i = 1, . . . , s, πI(vi) is either zero

or it has a component < 0 and a component > 0}

We can assume that v`+1, . . . , vs ∈ A⊥ ∩Zk. For i = `+ 1, . . . , s, write vi = r1
i − r2

i where
rji ∈ Nk0 and supp (r1

i ) ∩ supp (r2
i ) = ∅. For, j = 1, 2, let Fj be the matrix whose i-th row

is rj`+i. Now, add to the initial system defining A the equations defined by

F1

 t1
...
tk

 = F2

 t1
...
tk

 .

Let M ′ be the set of solutions in (N∗0)k of the resulting system. The monoid A is still
the set of solutions in Nk0 of this new system, so that M ′ ∩Nk0 = A. By Lemma 6.6.6(iv),
the set of supports of elements of M ′ is exactly S(v1, . . . , vs) which, by construction,
coincides with the set of supports of elements in A. This implies that if x ∈ M ′ then
there exists a ∈ A such that∞·x =∞·a. By Lemma 6.6.6(ii), if x ∈M ′ then∞·x ∈M ′.
This finishes the proof of the first step.
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Step 2. The monoid M in the statement is defined by a system of equations
Let

S = {I  {1, . . . , k} | there exists a ∈ A such that supp (a) = I}.
Notice that since (0, . . . , 0) ∈ A then ∅ ∈ S.

For any I ∈ S, denote by pI : Nk0 → N{1,...,k}\I0 the canonical projection. If I ∈ S then,
by Proposition 6.6.1, AI = pI(A) is a full affine submonoid of N{1,...,k}\I0 . In particular
p∅ = Id so that A = A∅.

By Step 1, there is a monoid M ′I ⊆ (N∗0){1,...,k}\I defined by a system of equations
and such that N{1,...,k}\I0 ∩M ′I = AI and if x ∈ M ′I then there exists a ∈ AI such that
∞ · x =∞ · a.

Set MI = π−1
I (M ′I). Notice that MI is defined by the same system of equations

defining M ′I but considered over Nk0 . Notice that x ∈ Nk0 ∩MI if and only if πI(x) ∈ AI .
In particular, A = Nk0 ∩M∅ and A ⊆MI for any I ∈ S.

Since for any I ∈ S, MI is defined by a system of equations so is ∩I∈SMI . We claim
that M = ∩I∈SMI . We already know that A ⊆ ∩I∈SMI , so that, by Lemma 6.6.6(ii),
M ⊆ ∩I∈SMI . To prove the other inclusion, let x ∈ ∩I∈SMI . Let I1 = inf-supp (x)
and consider the element x∗ ∈ (N∗0)k such that I1 = inf-supp (x∗) = supp (x∗). By
Lemma 6.6.6(iii), x∗ ∈ ∩I∈SMI . Since x∗ ∈ M∅ = M ′∅, there exists a ∈ A such that
x∗ = ∞ · a, therefore x∗ ∈ M . Since supp (a) = I1, we deduce that I1 ∈ S. Therefore,
there exists a1 ∈ A such that pI1(a1) = pI1(x) ∈ M ′I1 ∩ N

{1,...,k}\I1
0 . This implies that

x = x∗ + a1, so that x ∈ M . This finishes the proof of the claim and the proof of the
Proposition.

6.7 Systems of supports

In order to conclude the proof of Theorem 6.2.6, we need to show that the monoids that
appear as V ∗(R) for noetherian semilocal rings are defined by a system of equations. To
this aim we abstract the following class of submonoids of (N∗0)k.

Definition 6.7.1. Fix k ∈ N and an order unit (n1, . . . , nk) ∈ Nk. A system of supports
S(n1, . . . , nk) consists of a collection S of subsets of {1, . . . , k} together with a family of
commutative monoids {AI , I ∈ S} such that the following conditions hold

(i) ∅ ∈ S, and (n1, . . . , nk) ∈ A∅.

(ii) For any I ∈ S the monoid AI is a submonoid of N{1,...,k}\I0 . The monoid A{1,...,k}
is the trivial monoid.

(iii) S is closed under unions, and if x ∈ AI for some I ∈ S then I ∪ supp (x) ∈ S. In
particular {1, . . . , k} ∈ S.

(iv) Suppose that I,K ∈ S are such that I ⊆ K and let p : N{1,...,k}\I0 → N{1,...,k}\K0 be
the canonical projection. Then p(AI) ⊆ AK .

If in addition, for any I ∈ S, the submonoids AI are full affine submonoids of
N{1,...,k}\I0 then S(n1, . . . , nk) is said to be a full affine system of supports.

In the next Lemma we show that systems of supports are, in some sense, closed under
projections.
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Lemma 6.7.2. Let k > 1, and let (n1, . . . , nk) ∈ Nk. Let S(n1, . . . , nk) = (S;AI , I ∈ S)
be a system of supports. Fix I ∈ S \ {{1, . . . , k}}, and let pI : (N∗0)k → (N∗0){1,...,k}\I

denote the canonical projection.
If we define SI = {K \ I | K ∈ S and I ⊆ K} and for each K \ I ∈ SI we take

AI,K\I = AK , then:

(1) SI(pI(n1, . . . , nk)) = (SI ;AI,K\I ,K\I ∈ SI) is a system of supports of (N∗0){1,...,k}\I .

(2) If I 6= ∅ then | SI |<| S |.

(3) If S(n1, . . . , nk) is a full affine system of supports then so is SI(pI(n1, . . . , nk)).

Proof. It is routine to check that SI(pI(n1, . . . , nk)) satisfies the conditions of a
system of supports. Statements (2) and (3) are immediate from the definitions.

The following Proposition shows that systems of supports is just a way to describe a
particular class submonoids of (N∗0)k,

Proposition 6.7.3. Fix k ∈ N and (n1, . . . , nk) ∈ Nk. For any I ⊆ {1, . . . , k}, let
pI : (N∗0)k → (N∗0){1,...,k}\I denote the canonical projection. Let S(n1, . . . , nk) be a system
of supports. Consider the subset M(S) of (N∗0)k defined by x ∈ M(S) if and only if
I = inf-supp (x) ∈ S and pI(x) ∈ AI . Then M(S) is a submonoid of (N∗0)k such that
(n1, . . . , nk) ∈ Nk ∩M(S) and satisfying the properties:

(M1) if I ⊆ {1, . . . , k} is an infinite support of some x ∈ M(S) then the element x∗

determined by supp (x∗) = inf-supp (x∗) = inf-supp (x) belongs to M(S).

(M2) If x ∈M(S) then ∞ · x ∈M(S).

Moreover, M(S) is finitely generated whenever all monoids AI , I ∈ S are finitely gener-
ated.

Any submonoid M of (N∗0)k with M ∩ Nk 6= ∅ and satisfying (M1) and (M2) is of
the form M = M(S) for some system of supports S. In this situation, for any I ∈ S,
AI = pI(M) ∩ N{1,...,k}\I0 .

Proof. Since A∅ ⊆M(S), 0 ∈M(S) and (n1, . . . , nk) ∈M(S). To see that M(S) is
a monoid it remains to see that it is closed under addition.

Let x, y ∈M(S). Set I = inf-supp (x), J = inf-supp (y) and K = I ∪J . By Definition
6.7.1(iii), K ∈ S. Let x∗ ∈ (N∗0)k be such that supp (x∗) = inf-supp (x∗) = K. Notice that
x∗ ∈M(S) because 0 ∈ AK , and that x+ x∗ and y + x∗ ∈M(S) by Definition 6.7.1(iv).
Then x + y = (x + x∗) + (y + x∗) and, since inf-supp (x + x∗) = inf-supp (y + x∗) = K,
we deduce that x+ y ∈M(S) by applying again Definition 6.7.1(iv)..

Since 0 ∈ AI for any I, M(S) satisfies (M1). Property (M2) follows combining condi-
tions (iii) and (i) in Definition 6.7.1.

Now suppose that AI is a finitely generated monoid for every I ∈ S. Fix I ∈ S. Let
x∗I be the element of M(S) determined by supp (x∗I) = inf-supp (x∗I) = I. Let x1

I , . . . , x
nI
I

be elements in M(S) such that, for i = 1, . . . , nI , inf-supp (xiI) = I and satisfying that
pI(x1

I), . . . , pI(x
nI
I ) form a set of generators of AI .

By the construction of M(S),
⋃
I∈S{x∗I , x1

I , . . . , x
nI
I } is a (finite) set of generators of

M(S), so that M(S) is a finitely generated monoid.
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To prove the final part of the statement, let M be a submonoid of (N∗0)k satisfying
(M1) and (M2) and such that (n1, . . . , nk) ∈M ∩ Nk. Set

S = {I ⊆ {1, . . . , k} | there exists x ∈M such that inf-supp (x) = I}

as the collection of subsets of {1, . . . , k}. Moreover, set AI = pI(M) ∩ N{1,...,k}\I0 for any
I ∈ S. It is easy to check that the properties of M ensure that S(n1, . . . , nk) is a system
of supports such that M(S) = M .

Remark 6.7.4. With the notation as in Proposition 6.7.3 and Lemma 6.7.2, assume
that |S| > 2 and let T = {I1, . . . , I`} be the set of minimal elements in S \ {∅}. For each
i ∈ {1, . . . , `}, let SIi be the system of supports given by Lemma 6.7.2 and let M(SIi) be
the associated monoid. Then

M(S) = A∅
⋃(
∪`i=1M

′(SIi)
)

= M0

⋃(
∪`i=1M

′(SIi)
)

where M0 = A∅ + {∞ · x | x ∈ A∅} and

M ′(SIi) = {x ∈ (N∗0)k | pIi(x) ∈M(SIi) and inf-supp (x) ⊇ Ii}.

Now we give a couple of crucial examples of monoids given by a full affine system of
monoids.

Example 6.7.5. Let k ≥ 1. Let R be a noetherian semilocal ring with an onto ring
homomorphism ϕ : R→Mn1(D1)×· · ·×Mnk(Dk) with kernel J(R) and where D1, . . . , Dk

are division rings. Let M = dim ϕV
∗(R) ⊆ (N∗0)k. Then M is a finitely generated

submonoid of (N∗0)k given by a full affine system of supports.

Proof. Notice that (n1, . . . , nk) ∈ M . By Theorem 6.2.3(1), M satisfies condition
(M1) in Proposition 6.7.3.

If P is a countably generated projective right R-module then

dim ϕ(〈P (ℵ0)〉) =∞ · dim ϕ(〈P 〉).

Hence M also satisfies condition (M2) in Proposition 6.7.3 and we can conclude that M
is a submonoid of (N∗0)k given by a system of supports.

Let x ∈ M , and let P be a countably generated projective right module such that
dim ϕ(〈P 〉) = x. Let I = inf-supp (x). By Theorem 6.2.3(1), there exists a countably
generated projective right R module P ′ such that

supp (dim ϕ(〈P ′〉)) = inf-supp (dim ϕ(〈P ′〉)) = I.

Let J be the trace ideal of P ′. Then R/J is a semilocal ring with Jacobson radical
J + J(R)/J and, by Lemma 6.2.2, ϕ induces an onto ring homomorphism ϕ : R/J →∏
i∈{1,...,k}\IMni(Di) with kernel J(R/J). Moreover, by Theorem 6.2.3(2),

dim ϕ(〈P/PJ〉) = pI(x)

and P/PJ is a finitely generated projective right R/J-module. This shows that AI =
pI(M)∩N{1,...,k}\I0 ⊆ dim ϕV (R/J). We claim that dim ϕV (R/J) = AI . Equivalently, for
any finitely generated projective right R/J-module P there exists a countably generated
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projective right R/J-module P1 such that P1/P1J ∼= P . Therefore the claim follows from
Proposition 6.2.1(iii).

By Corollary 6.1.6, AI = dim ϕV (R/J) is a full affine submonoid of N{1,...,k}\I0 . There-
fore the monoid M is given by a full affine system of supports. As full affine monoids are
finitely generated, M is also finitely generated by Proposition 6.7.3.

Next example is a consequence of Example 6.7.5 and Theorem 6.5.3. We prefer to give
a proof just in the monoid context.

Example 6.7.6. Let D ∈ Mn×k(N0) and E1, E2 ∈ M`×k(N0). Let m1, . . . ,mn ∈ N be
such that mi ≥ 2 for any i ∈ {1, . . . , n}.

Let M ⊆ (N∗0)k be the set of solutions in (N∗0)k of the system

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 and E1

 t1
...
tk

 = E2

 t1
...
tk

 .

Assume also that there exists (n1, . . . , nk) ∈M∩Nk. Then there exists a full affine system
of supports S(n1, . . . , nk) such that M = M(S). In particular, M is finitely generated.

Proof. By Lemma 6.6.6, M satisfies conditions (M1) and (M2) in Proposition 6.7.3.
Hence, by Proposition 6.7.3 and following the notation there, M is given by a system of
supports in which

S = {I | there exists x ∈M such that inf-supp (x) = I}

as a collection of subsets of {1, . . . , k} and, for any I ∈ S, AI = pI(M) ∩ N{1,...,k}\I0 . We
want to show that, for each I ∈ S, the monoid AI is full affine in N{1,...,k}\I0 . To this aim
we prove that AI is the set of solutions in N{1,...,k}\I0 of a certain subsystem of the initial
one.

Fix I ∈ S. Let DI be the matrix with entries in N0 obtained from D = (dij) by first
deleting the rows i such that there exists j ∈ I with dij 6= 0, and then deleting in the
remaining matrix the j-th column for any j ∈ I. Let us denote K the subset of {1, . . . , n}
indicating which rows of D were deleted and let pK : N∗0

n → N∗0
{1,...,n}\K be the canonical

projection.
As I ∈ S, for any i ∈ {1, . . . , `}, either e1

i,j = 0 = e2
i,j for all j ∈ I or there are

j1, j2 ∈ I such that e1
i,j1
6= 0 and e2

i,j2
6= 0. Let EI1 and EI2 be the matrices with entries in

N0 obtained from E1 = (e1
ij) and E2 = (e2

ij) by first deleting the rows i such that there
exists j ∈ I satisfying that e1

ij is different from zero; after we also delete to each of the
remaining matrices the j-th column for any j ∈ I.

Then the monoid AI is the set of solutions in N{1,...,k}\I0 of the system

DI · pI

 t1
...
tk

 ∈ pK
 m1N∗0

...
mnN∗0

 and EI1 · pI

 t1
...
tk

 = EI2 · pI

 t1
...
tk

 .

Theorem 6.7.7. Let k ∈ N, and let (n1, . . . , nk) ∈ Nk. Let M be a submonoid of (N∗0)k

such that (n1, . . . , nk) ∈M . Then the following statements are equivalent
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(i) There exists a full affine system of supports S(n1, . . . , nk) such that M = M(S).

(ii) The submonoid M is defined by a system of equations.

To easy the proof of the theorem we first prove an auxiliary result.

Lemma 6.7.8. Let (A, (n1, . . . , nk)) ⊆ (N∗0)k be a monoid defined by a system of equations
EA. Let I be a proper nonempty subset of {1, . . . , k} and set Ic = {1, . . . , k} \ I. Let
p : (N∗0)k → (N∗0)Ic denote the canonical projection. Assume also B ⊆ (N∗0)Ic is a monoid
defined by a system of equations EB and such that p(n1, . . . , nk) ∈ B.

Then the set A′ ⊆ (N∗0)k defined by x = (x1, . . . , xk) ∈ A′ if and only if either

(1) x ∈ A and p(x) ∈ B

or

(2) xi =∞ for any i ∈ I and p(x) ∈ B

is a monoid defined by a system of equations. Moreover, (n1, . . . , nk) ∈ A′.

Proof. Let

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 and E1

 t1
...
tk

 = E2

 t1
...
tk


be a system of equations defining A. Fix i ∈ I. Let E ′A be the system of equations

D

 t1 + n1ti
...

tk + nkti

 ∈
 m1N∗0

...
mnN∗0

 and E1

 t1 + n1ti
...

tk + nkti

 = E2

 t1 + n1ti
...

tk + nkti

 .

Notice that if x ∈ (N∗0)k and i 6∈ inf-supp (x) then it is a solution of E ′A if and only if
x ∈ A; while any x ∈ (N∗0)k such that i ∈ inf-supp (x) is a solution of E ′A.

Let Ai ⊆ (N∗0)k be the solutions of the system Ei = E ′A ∪ EB , where EB is the trivial
extension of the system defining B. Then x ∈ Nk0 belongs to Ai if and only if x ∈ A and
p(x) ∈ B. In particular, (n1, . . . , nk) ∈ Ai. While if x ∈ (N∗0)k is such that i ∈ inf-supp (x)
then x ∈ Ai if and only if p(x) ∈ B.

Now the submonoid A′ = ∩i∈IAi ⊆ (N∗0)k defined as the solutions of the system
∪i∈IEi, satisfies the properties required in the conclusion of the statement.

Proof of the Theorem 6.7.7. In view of Example 6.7.6 we only need to prove
that (i) implies (ii).

Let k ∈ N, and let S(n1, . . . , nk) be a full affine system of supports. We proceed by
induction on |S|. If |S| = 2 then the only sets in S are ∅ and {1, . . . , k}. So that the only
nontrivial full affine semigroup is A∅ and, for any x ∈ A∅ \ {0}, supp (x) = {1, . . . , k}. By
[9, Example 2.5], this implies that there exists y = (y1, . . . , yk) ∈ A∅ such that A∅ = yN0.
Therefore M(S) = A ∪ {∞ · y}. By Proposition 6.6.7, M(S) is defined by a system of
equations.

Now assume that |S| > 2 and that the statement is true for full affine systems of
supports such that the set of supports has smaller cardinality. Let T ⊆ S be the set of
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all minimal elements of S \ {∅}. Note that, since |S| > 2, no element in T is equal to
{1, . . . , k}. For any I ∈ T we construct the full affine system of supports SI given by
Lemma 6.7.2. As, for each I ∈ T , |SI | < |S|, we know that the monoid MI(SI) is given
by a system of equations. Moreover, by Proposition 6.6.7, M0 = A∅ + {∞ · x | x ∈ A∅} is
a submonoid of (N∗0)k defined by a system of equations.

Let T = {I1, . . . , I`}. We complete M0 to a chain M0 ⊆M1 ⊆ · · · ⊆M` of submonoids
of (N∗0)k given by a system of equations, inductively, in the following way: If i < ` is
such that Mi is constructed then Mi+1 is the monoid given by applying Lemma 6.7.8
to A = Mi, I = Ii+1 and B = MIi+1(SIi+1). Notice that, following the notation of
Lemma 6.7.8 and by the definition of a system of supports, pIi+1(Mi) ⊆ MIi+1(SIi+1),
therefore Mi+1 = Mi

⋃
M ′Ii+1

where

M ′Ii+1
= {x ∈ (N∗0)k | pIi+1(x) ∈MIi+1(SIi+1) and inf-supp (x) ⊇ Ii+1}.

Therefore
M` = M0 ∪M ′I1 ∪ · · · ∪M

′
I`

= M(S)

by Remark 6.7.4. This allows us to conclude that M(S) is a monoid given by a system of
equations.

Now Theorem 6.2.6 follows by just patching together our previous results.

Proof Theorem 6.2.6. (1) ⇒ (2) follows from Theorem 6.5.3. It is clear that
(2)⇒ (3).

Finally, assume (3). By Example 6.7.5, M is given by a full affine system of supports.
By Theorem 6.7.7, M is defined by a system of equations, and (1) follows.

We close the paper characterizing the monoids corresponding to semilocal rings such
that any projective right R-module is a direct sum of finitely generated modules. They
are precisely the ones arising in Proposition 6.6.7.

Corollary 6.7.9. Let k ∈ N. Let M be a submonoid of (N∗0)k containing (n1, . . . , nk) ∈
Nk. Let A = M ∩ Nk0 . Then the following statements are equivalent:

(i) A is a full affine submonoid of Nk0 and M = A+ {∞ · a | a ∈ A}.

(ii) There exists a (noetherian) semilocal ring R such that all projective right R mod-
ules are direct sum of finitely generated modules, and an onto morphism ϕ : R →
Mn1(D1)×· · ·×Mnk(Dk) with Kerϕ = J(R), where D1, . . . , Dk are suitable division
rings, satisfying that dim ϕV

∗(R) = M .

Proof. Assume (i). By Proposition 6.6.7, M is given by a system of equations. By
Theorem 6.2.6, (ii) holds.

Assume (ii). So that R is a, not necessarily noetherian, semilocal ring such that all
projective right modules are direct sum of finitely generated ones. By Corollary 6.1.6, A
is a full submonoid of Nk0 . It is clear that A + {∞ · a | a ∈ A} ⊆ M . Let P1, . . . , Ps be
a set of representatives of the indecomposable (hence finitely generated) projective right
modules. For i = 1, . . . , s, let ai = dim ϕ(〈Pi〉). As any projective module is a direct sum
of finitely generated projective modules, any x ∈ M satisfies that x = α1a1 + · · · + αsas
for some αi ∈ N∗0, hence x ∈ A+ {∞ · a | a ∈ A}. This shows that (i) holds.
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7. INFINITELY GENERATED PROJECTIVE MODULES
OVER PULLBACKS OF RINGS

After the paper of Bass [2] there seemed to be the general belief that the theory of infinitely
generated projective modules invited little interest. However some of the developments in the
representation theory of finite dimensional algebras [21] and subsequent ones in integral repre-
sentation theory have drawn the attention to the infinite dimensional representations [22], [3].
Also the study of the direct sum decomposition of infinite direct sums of modules over general
rings requires a good knowledge of the behavior of all projective modules [20]. As a result of this
pressure, interesting general theory on projective modules has recently appeared [17], [18] and
it has been shown that examples of rings such that not all projective modules are direct sum
of finitely generated are relatively frequent [19] and the behavior can be quite complex even for
noetherian rings [7]. In this paper we continue this line of work by providing further examples
of such rings. All of them are semilocal rings, that is, rings that are semisimple artinian modulo
the Jacobson radical.

Our study makes essential use of the result proved by P. Př́ıhoda in [17] that, over an arbitrary
ring, projective modules are isomorphic if and only if they are isomorphic modulo the Jacobson
radical. For a semilocal ring R this implies that the monoid of isomorphism classes of countably
generated projective right (or left) R-modules can be seen as a submonoid of (N0 ∪ {∞})k for a
suitable k ≥ 1, cf. §7.1 for the precise definitions.

In [12], we characterized the class of monoids that can be realized as monoid of isomorphism
classes of countably generated projective right (or left) modules over a noetherian semilocal ring
as essentially the set of solutions in N0 ∪ {∞} of finite homogeneous systems of diophantine
linear equations. In Theorem 7.1.6 we show that any monoid M which is the set of solutions in
N0 ∪ {∞} of a finite homogeneous system of diophantine linear inequalities can also be realized
as monoid of isomorphism classes of countably generated projective right modules over a suitable
semilocal ring R. In the examples we construct, the monoid of isomorphism classes of countably
generated projective left R-modules is the set of solutions in N0 ∪ {∞} of the system obtained
by reversing the inequalities of the system defining M . While in the noetherian case the monoid
of countably generated projective right modules is isomorphic to the one of countably generated
projective left modules, as we show in this paper, this is no longer true for general semilocal
rings.

In this paper we emphasize in the study of projective modules that are not finitely generated
but that they are finitely generated modulo the Jacobson radical. The first example of this kind
was provided by Gerasimov and Sakhaev in [11], and the construction was further developed by
Sakhaev in [23]. Other examples appear when studying the direct sum decomposition of infinite
direct sums of uniserial modules [20], [8] and [17]. From these examples it seemed that the
existence of such projective modules is rare and very difficult to handle. With our methods we
can produce a wide variety of examples where such projectives exist and where their behavior
is under control. In our examples, the countably generated projective modules that are finitely
generated modulo the Jacobson radical, correspond to the solutions in N0 of the system of
inequalities. Between them we distinguish the finitely generated ones as the ones that fulfill the

Joint work with Dolors Herbera, to appear in Trans. Amer. Math. Soc.
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equality.
The techniques we use in this paper are an extension of the ones in [12]. As the title in-

dicates, our rings are constructed as pullbacks of suitable rings, and we take advantage of [16,
Theorems 2.1, 2.2 and 2.3] in which Milnor describes all projective modules over a class of ring
pullbacks. A key ingredient is the Gerasimov-Sakhaev example mentioned above and the com-
putation of its monoid of isomorphism classes of countably generated projective right (and left)
modules done in [6].

In §7.1 we give an overview of the paper: we introduce the monoids of projective modules,
we define in a precise way the class of monoids that we will realize in section 7.5 as monoids of
countably generated projective right modules and of countably generated projective left modules
over suitable semilocal rings, and we state our main realization Theorem 7.1.6.

In section 7.2 we develop some theory on projective modules that are finitely generated mod-
ulo the Jacobson radical which essentially follows [23]. Theorem 7.2.9 is a slight generalization
of the main result in [9].

In section 7.3 we compute some particular examples to illustrate the consequences of The-
orem 7.1.6. For instance, in 7.3.6, we construct a semilocal ring such that all projective left
R-modules are free while R has a nonzero (infinitely generated) right projective module that is
not a generator. Such an example also shows that the notion of p-connected ring is not left-right
symmetric; this answers in the negative a question in [10, page 310]. Recall that, following Bass
[2], a ring is (left) p-connected if every nonzero left projective module is a generator.

We also provide examples showing that if R is a semilocal ring such that R/J(R) ∼= D1×D2

and R has a countably generated, but not finitely generated, projective module that is finitely
generated modulo the Jacobson radical then there is still room for countably generated (right
and left, or just right) projective modules that are not direct sums of projective modules that
are finitely generated modulo the Jacobson radical. This answers in the negative a question
formulated in [6, page 3261].

In section 7.4 we develop some properties of the monoids defined by inequalities. Finally, in
section 7.5 we prove Theorem 7.1.6.
Acknowledgements: We thank the referee for the careful reading of the paper and for his/her
helpful suggestions.

7.1 Preliminaries and overview

All our rings are associative with 1, and ring morphism means unital ring morphism.

7.1.1 Monoids of projective modules

Let R be a ring. Let V ∗(RR) = V ∗(R) (V ∗(RR)) be the set of isomorphism classes of countably
generated projective right (left) R-modules. If P and Q are countably generated projective right
R-modules then the direct sum induces an addition on V ∗(R) by setting 〈P 〉 + 〈Q〉 = 〈P ⊕Q〉,
so that V ∗(R) is an additive monoid. Similarly, V ∗(RR) is also an additive monoid.

Let V (R) be the set of isomorphism classes of finitely generated right (or left) R-modules.
Again V (R) is an additive monoid, which can be identified with a submonoid of V ∗(R). Since the
functor HomR(−, R) induces a duality between the category of finitely generated projective right
R-modules and the category of finitely generated projective left R-modules we identify V (RR)
with V (R). So that, we also see V (R) as a submonoid of V ∗(RR).

Another interesting submonoid of V ∗(R) is W (RR) = W (R) which we define as the set of
isomorphism classes of countably generated projective right R-modules that are pure submodules
of finitely generated projective modules. The submonoid of V ∗(RR), W (RR) is defined in a
similar way. Clearly, V (R) ⊆ W (R) ⊆ V ∗(R), and V (R) ⊆ W (RR) ⊆ V ∗(RR). Notice that
W (R) \ V (R) is also a semigroup.
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Along the paper we will find many examples of (semilocal) rings R with non trivial W (R).
Now we give a different kind of example.

Example 7.1.1. [2] Let R denote the ring of continuous real valued functions over the interval
[0, 1]. Let

I = {f ∈ R | there exists ε > 0 such that f([0, ε]) = 0}
then I is a projective pure ideal of R, cf. [8, Example 3.3] or [6, p. 3263].

The notation W (R) is borrowed from the C∗-algebra world, as we think on this monoid as
an algebraic analogue of the Cuntz monoid defined in C∗-algebras.

7.1.2 The semilocal case

A ring R is said to be semilocal if modulo its Jacobson radical J(R) is semisimple artinian, that
is, R/J(R) ∼= Mn1(D1) × · · · ×Mnk (Dk) for suitable division rings D1, . . . , Dk. For the rest of
our discussion we fix an onto ring homomorphism ϕ : R→Mn1(D1)× · · · ×Mnk (Dk) such that
Kerϕ = J(R).

Let V1, . . . , Vk denote a fixed ordered set of representatives of the isomorphism classes of
simple right R-modules such that EndR(Vi) ∼= Di. Let us also fix W1, . . . ,Wk, where Wi =
HomR(Vi, R/J(R)) for i = 1, . . . , k, as an ordered set of representatives of simple left R-modules.

If PR is a countably generated projective right R-module then P/PJ(R) ∼= V
(I1)
1 ⊕· · ·⊕V (Ik)

k

and the cardinality of the sets I1, . . . , Ik determines the isomorphism class of P/PJ(R). By [17]
(cf. Theorem 7.2.2) projective modules are determined, up to isomorphism, by its quotient
modulo the Jacobson radical. So that, for a semilocal ring R, to describe V ∗(R) we only need to
record the cardinality of the sets Ii for i = 1, . . . , k. A similar situation holds for projective left
R-modules.

Note that, by Theorem 7.2.2(i), in the case of semilocal rings

W (R) = {〈P 〉 ∈ V ∗(R) | P/PJ(R) is finitely generated}.

Similarly, for W (RR).

7.1.3 The dimension monoids for semilocal rings

Let N = {1, 2, . . . } and N0 = N ∪ {0}. We also consider the monoid N∗0 = N0 ∪ {∞} with the
addition determined by the addition on N0 extended by the rule n +∞ = ∞ + n = ∞ for any
n ∈ N∗0.

Following the notation of §7.1.2, if P is a countably generated projective right R-module
such that P/PJ(R) ∼= V

(I1)
1 ⊕ · · · ⊕ V (Ik)

k we set dim ϕ(〈P 〉)) = (m1, . . . ,mk) ∈ (N∗0)k where, for
i = 1, . . . , k, mi = |Ii| if Ii is finite and mi =∞ if Ii is infinite. Therefore dim ϕ : V ∗(R)→ (N∗0)k

is a monoid morphism. Similarly, we define a monoid morphism dim ϕ : V ∗(RR)→ (N∗0)k.
By Theorem 7.2.2(ii), dimϕ : V ∗(R) → (N∗0)k and dimϕ : V ∗(RR) → (N∗0)k are monoid

monomorphisms. Note that dim ϕ(〈R〉) = (n1, . . . , nk) ∈ Nk and that dim ϕ(W (R)) = Nk0 ∩
dim ϕ(V ∗(R)) while dim ϕ(W (RR)) = Nk0 ∩ dim ϕ(V ∗(RR)).

Definition 7.1.2. A submonoid A of Nk0 is said to be full affine if whenever a, b ∈ A are such
that a = b+ c for some c ∈ Nk0 then c ∈ A.

The class of full affine submonoids of Nk0 containing an element (n1, . . . , nk) ∈ Nk is the
precise class of monoids that can be realized as dim ϕ(V (R)) for a semilocal ring R such that
dim ϕ(〈R〉) = (n1, . . . , nk) [7].

The general problem we are interested in is determining which submonoids of (N∗0)k can be
realized as dimension monoids, that is, as dimϕ(V ∗(R)) for a suitable semilocal ring R. For the
case k = 1 the solution is easy and was first given in [4]; right now we have tools to justify it very
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briefly: let P a finitely generated projective module such that dimϕ(〈P 〉) is a minimal element of
dimϕ(V ∗(R)) it follows from Theorem 7.2.2(ii) that any projective right R module is isomorphic
to a direct sum of copies of P .

For k ≥ 2 the situation is much more involved and we do not know a complete solution of
the problem. In the next definition we single out some classes of monoids that can be realized
as dimension monoids of semilocal ring.

Definition 7.1.3. Let k ≥ 1.

(i) A submonoid M of (N∗0)k is said to be a monoid defined by a system of equations if it is
the set of solutions in (N∗0)k of a system of the form

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 (∗) and E1

 t1
...
tk

 = E2

 t1
...
tk

 (∗∗)

where D ∈Mn×k(N0), E1, E2 ∈M`×k(N0), m1, . . . ,mn ∈ N, mi ≥ 2 for any i ∈ {1, . . . , n}
and `, n ≥ 0.

(ii) A submonoid M of (N∗0)k is said to be a monoid defined by a system of inequalities provided
that there exist D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0), `, n ≥ 0, and m1, . . . ,mn ∈ N ,
mi ≥ 2 for any i ∈ {1, . . . , n}, such that M is the set of solutions in (N∗0)k of

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 and E1

 t1
...
tk

 ≥ E2

 t1
...
tk

 .

(iii) If M ≤ (N∗0)k is defined by a system of inequalities as in (ii) we define its dual monoid
D(M) as the set of solutions in (N∗0)k of

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 and E1

 t1
...
tk

 ≤ E2

 t1
...
tk


In the situation of (i) or in the situation of (ii) we shall refer to M ∩ Nk0 as a submonoid of Nk0
defined by a system of equations or by a system of inequalities, respectively.

Remarks 7.1.4. 1) It is important to notice that N∗0 is no longer a cancellative monoid. So
that, for example, the set of solutions in (N∗0)2 of the equation x = y is not the same as the set
of solutions of 2x = y + x.

2) If M is a monoid defined by a system of inequalities then the monoid D(M) depends on
the particular system fixed to define M . For an easy example see Examples 7.3.6(ii) and (iii).

3) Let A be a submonoid of Nk0 containing (n1, . . . , nk) ∈ Nk. It was observed by Hochster
that A is full affine if and only if A is a submonoid of Nk0 defined by a system of equations (cf.
[12, §6]).

In this case, the monoid M = A +∞ · A is a submonoid of (N∗0)k defined by a system of
equations [12, Corollary 7.9].

7.1.4 Realization results. Main result

For further quoting we recall the main result in [12] which characterized the monoids M that
can be realized as V ∗(R) for a semilocal noetherian ring R. For this class of rings a projective
module that is finitely generated modulo J(R) must be finitely generated so that W (R) = V (R)
(see, for example, Proposition 7.2.7), and also, by [18], V ∗(RR) ∼= V ∗(R).
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Theorem 7.1.5. Let k ∈ N. Let M be a submonoid of (N∗0)k containing (n1, . . . , nk) ∈ Nk.
Then the following statements are equivalent:

(1) M is a monoid defined by a system of equations.

(2) There exist a noetherian semilocal ring R, a semisimple ring S = Mn1(D1)×· · ·×Mnk (Dk),
where D1, . . . , Dk are division rings, and an onto ring morphism ϕ : R → S with Kerϕ =
J(R) such that dim ϕV

∗(R) = M . Therefore, dim ϕV (R) = M ∩ Nk0 .

In the above statement, if F denotes a field, R can be constructed to be an F -algebra such that
D1 = · · · = Dk = E is a field extension of F .

In this paper we shall prove the following realization result

Theorem 7.1.6. Let k ≥ 1, and let F be a field. Let M be a submonoid of (N∗0)k defined by
a system of inequalities. Let D(M) denote its dual monoid. Assume that M ∩ D(M) contains
an element (n1, . . . , nk) ∈ Nk. Then there exist a semilocal F -algebra R, a semisimple F -algebra
S = Mn1(E)×· · ·×Mnk (E), where E is a suitable field extension of F , and an onto morphism of
F -algebras ϕ : R→ S with Kerϕ = J(R) satisfying that dim ϕV

∗(RR) = M and dim ϕV
∗(RR) =

D(M).
Moreover, dim ϕW (RR) = M ∩ Nk0 , dim ϕW (RR) = D(M) ∩ Nk0 , and dim ϕV (R) = M ∩

D(M) ∩ Nk0 .

For any semilocal ring V (R) is a finitely generated monoid, so is V ∗(R) for R noetherian and
semilocal. As we will show in §7.4, monoids defined by a system of inequalities are still finitely
generated. But, in general, we do not know whether a monoid that can be realized as V ∗(R) for
some semilocal ring R must be finitely generated.

7.2 Projective modules, monoids of projectives and Jacobson radical

In this section we want to explain the relation between W (RR) and W (RR) completing the
results in [9]. We also take the opportunity to state in a (too) precise way results on lifting maps
between projective modules modulo an ideal contained in the Jacobson radical.

Let I be a two-sided ideal of a ring R, let M and N be right R-modules, and let f : M → N
denote a module homomorphism. By the induced homomorphism f : M/MI → N/NI we mean
the map defined by f(m+MI) = f(m) +NI for any m ∈M .

Recall the following well known result.

Lemma 7.2.1. Let R be any ring, and let I ⊆ J(R) be a two-sided ideal of R. Let f : P → Q be
a morphism between finitely generated projective right R-modules. Then f is an isomorphism if
and only if the induced homomorphism f : P/PI → Q/QI is an isomorphism.

In contrast, for general projective modules we have.

Theorem 7.2.2. Let R be any ring, let P and Q be projective right R-modules, and let I ⊆ J(R)
be a two-sided ideal of R.

(i) [9, Proposition 6.1] A module homomorphism f : P → Q is a pure monomorphism if and
only if so is the induced map f : P/PI → Q/QI.

(ii) [17, Theorem 2.3 and its proof] Let α : P/PI → Q/QI be an isomorphism of right R/I-
modules. Let f : P → Q be a module homomorphism such that f = α, and let X be a finite
subset of P . Then there exists an isomorphism g : P → Q such that g = α and g(x) = f(x)
for any x ∈ X.

In particular, P and Q are isomorphic if and only if they are isomorphic modulo the
Jacobson radical.

For further applications we note the following corollary of Theorem 7.2.2.
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Corollary 7.2.3. Let R be a ring, and let I ⊆ J(R) be a two-sided ideal. Let P be a countably
generated projective right R-module. Let f : P → P be a homomorphism such that the induced
map f : P/PI → P/PI is the identity, and let X be a finite subset of P . Then there exists a
bijective homomorphism h : P → P such that the induced homomorphism h = IdP/PI and such
that hf(x) = x for any x ∈ X.

Proof. By Theorem 7.2.2(ii), there exists an isomorphism g : P → P such that g = IdP/PI
and g(x) = f(x) for any x ∈ X. Set h = g−1 to conclude.

Lemma 7.2.4. Let R be a ring, let P and Q be projective right R-modules. Let I be a two-sided
ideal of R contained in J(R), and let α : Q/QI → P/PI and β : P/PI → Q/QI be homomor-
phisms such that β ◦ α = IdQ/QI . Let f : Q→ P and g : P → Q be module homomorphisms such

that f = α and g = β.
If f ◦ g is idempotent then P ∼= Q⊕Q′ and Q′/Q′I ∼= (IdP/PI − αβ)(P/PI).

Proof. Since fg(P ) is a direct summand of P ,

fg(P )/fg(P )I = fg(P )/(fg(P ) ∩ PI) ∼= (fg(P ) + PI) /PI.

Since, for any x ∈ P , β(fg(x) + PI) = β(x+ PI) we deduce that β : fg(P )/fg(P )I → Q/QI is
bijective. By Theorem 7.2.2, we conclude that Q ∼= fg(P ).

Since ((IdP − fg)(P ) + PI) /PI = (IdP/PI −αβ) (P/PI), it follows that Q′ = (IdP −fg)(P )
has the claimed properties.

Corollary 7.2.5. Let R be a ring with Jacobson radical J(R). Let I ⊆ J(R) be a two-sided
ideal. Let P and Q be projective right R-modules such that Q is finitely generated. If there exists
a projective right R/I-module X such that P/PI ∼= Q/QI⊕X then there exists a projective right
R-module Q′ such that P ∼= Q⊕Q′ and Q′/Q′I ∼= X.

Proof. Since Q is finitely generated, the split exact sequence of R/I-modules

0→ X → P/PI
β→ Q/QI → 0

lifts to a split exact sequence
0→ Ker g → P

g→ Q→ 0

where g = β. Therefore P ∼= Q⊕Ker g. We want to show that Ker g/(Ker g)I ∼= X.
Let α : Q/QI → P/PI be such that βα = IdQ/QI , and let f : Q → P be such that f = α.

Since Q is finitely generated and gf = βα = IdQ/QI , gf : Q → Q is invertible (cf. Lemma

7.2.1). So that, there exists an invertible endomorphism h of Q satisfying that h = IdQ/QI ,
and such that g(fh) = Id. Therefore, (fh)g is an idempotent endomorphism of P and since
(Id− (fh)g)P = Ker g we conclude, by the second part of Lemma 7.2.4, that Q′ = Ker g has the
claimed properties.

In the following lemma we recall the properties of sequences {fn}n≥1 satisfying that fn+1fn =
fn. Lazard in [14] realized the importance of them to describe pure ideals of a ring. They play
a fundamental rôle in constructing finitely generated flat modules over semilocal rings that are
not projective or, equivalently, in constructing non-finitely generated projective modules that are
finitely generated modulo the Jacobson radical.

They were very well analyzed by Sakhaev in several papers, see for example [23]. Recently,
they have been extensively re-studied [8], [9] and [6].

Lemma 7.2.6. Let R be any ring. Let P be a right R-module and let f1, . . . , fn, . . . be a sequence
of endomorphisms of P satisfying that, for each n ≥ 1, fn+1fn = fn then,

(i)
⋃
n≥1 fn · EndR(P ) is a projective pure right ideal of EndR(P ).
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(ii) Q =
⋃
n≥1 fn(P ) is a pure submodule of P isomorphic to a direct summand of P (N). In

particular, if P is projective then so is Q.

Proof. (i). This is due to Lazard [14].
(ii). The purity of I inside S gives I ⊗S P ↪→ S ⊗S P . Using the identification S ⊗S P ' P ,

we get
⋃
n≥1 fn(P ) ' I ⊗S P . Hence the purity of Q inside P follows from the associativity of

the tensor product and (i).
Consider the countable direct system

P1
f1→ P2 · · ·Pn

fn→ Pn+1 · · ·

where P = Pn for any n ≥ 1. Since fn+1fn = fn, the sequence {fn}n≥1 induces an injective map
f : lim−→Pn → P such that Im f = Q. Therefore, Q fits into the (pure) exact sequence

0→ ⊕n≥1Pn
Φ→ ⊕n≥1Pn → Q→ 0

where, for each n ≥ 1 and letting εn : Pn → ⊕n≥1Pn denote the canonical embedding, the map
Φ is determined by Φεn(x) = εn(x)− εn+1fn(x) for each x ∈ Pn.

The properties of the sequence of maps {fn}n≥1 imply that Φ splits (see, for example, [1,
Proposition 2.1]).

Proposition 7.2.7. Let R be a ring. Let PR and QR be projective right R-modules such that
PR is finitely generated. Let α : Q/QJ(R) → P/PJ(R) and β : P/PJ(R) → Q/QJ(R) be such
that βα = IdQ/QJ(R). Let ε : Q→ P be any module homomorphism such that ε = α. Then there
exists a sequence f1, . . . , fn, . . . of endomorphisms of P such that, for each n ≥ 1, fn+1fn = fn,
fn = α ◦ β and Q ∼= ε(Q) =

⋃
n≥1 fn(P ).

Moreover Q is finitely generated if and only if there exists n0 such that f2
n0 = fn0 . In this

case, f2
n0+k = fn0+k for any k ≥ 0.

Proof. Let ϕ : P → Q be a lifting of β.
Note that QR must be a countably generated projective module, so that we can fix an

ascending chain ∅ = X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ Xn ⊆ . . . of finite subsets of Q such that
X =

⋃
n≥1 Xn generates Q.

Since P is finitely generated and using Corollary 7.2.3, we can construct, inductively, a
sequence IdQ = h1, . . . , hn, . . . of (auto)morphisms of Q such that if, for each n ≥ 1, we set fn =
εhnhn−1 · · ·h1ϕ then hn+1hn · · ·h1ϕfn = hn · · ·h1ϕ and hn+1hn · · ·h1ϕε(x) = x for any x ∈
Xn+1. It can be easily checked that the homomorphisms {fn}n≥1 satisfy the desired properties.

If Q is finitely generated there exists n0 such that ε(Q) = fn0−1(P ). Observe that fn0fn0−1 =
fn0−1 says fn0(x) = x for any x ∈ ε(Q). In particular, f2

n0+k = fn0+k for any k ∈ N.
Conversely, in view of Lemma 7.2.4, if there exists n0 such that f2

n0 = fn0 thenQ is isomorphic
to fn0(P ) which is a direct summand of P . In particular, Q is finitely generated and fn0(P ) =
fn0+k(P ) for any k ≥ 0. Since fn0 is idempotent, for any k ≥ 0, fn0+k = fn0fn0+k so that
f2
n0+k = fn0+kfn0fn0+k = fn0+k.

Remark 7.2.8. In the situation of Proposition 7.2.7, fix n ≥ 1. Notice that (fn+1 − fn)fn =
fn − f2

n. Since fn+1 − fn = 0 ∈ EndR(P/PI) and P is a finitely generated projective module,
u = IdP − (fn+1 − fn) is a unit such that ufn = f2

n.
For any m ∈ Z, set gm = u−(m+1)fnu

m ∈ EndR(P ). It easily follows that, for any m ∈ Z,
gm+1gm = gm and also that (IdP − gm+1)(IdP − gm) = IdP − gm+1 so that, by Lemma 7.2.6,
P ′n =

⋃
m≥0 gmP is a projective pure submodule of P and Q′n =

⋃
m≤0 HomR(P,R)(IdP − gm) is

a projective pure submodule of the projective left R-module HomR(P,R).
Notice that, for any m, gm = α ◦ β and IdP − gm = IdP/PI − α ◦ β. Therefore, P ′n/P

′
nI ∼=

Q/QI, hence P ′n ∼= Q, and

Q′n/IQ
′
n
∼= HomR/RI((IdP/PI − α ◦ β)P/PI,R/I).



7. Projective modules over pullbacks 126

In particular, the isomorphism classes of P ′n and Q′n, respectively, do not depend on n.

Combining Proposition 7.2.7 with Remark 7.2.8 we obtain the following theorem which is a
slight refinement of [9, Theorem 7.1].

Theorem 7.2.9. Let R be a ring, let P be a finitely generated projective right R-module, and
let I ⊆ J(R) be a two-sided ideal of R. Assume that there is a split exact sequence of right R/I
modules

0→ X → P/PI → X ′ → 0.

Then the following statements are equivalent,

(i) There exists a (countably generated) projective right R-module Q such that Q/QI ∼= X.

(ii) There exists a (countably generated) projective left R-module Q′ such that Q′/IQ′ ∼=
HomR/I(X

′, R/I).

When the above equivalent statement hold Q is isomorphic to a pure submodule of P , and Q′ is
isomorphic to a pure submodule of HomR(P,R). Moreover, Q is finitely generated if and only
if Q′ is finitely generated if and only if there exists a projective right R-module P ′ such that
P ′/P ′I ∼= X ′.

Now we are going to state some of the results above in terms of monoids of projectives. More
precisely, in terms of pre-ordered monoids of projectives.

We recall that over a commutative monoid M there is a pre-order relation called the algebraic
preorder on M defined by x ≥ y, for x, y ∈M , if and only if x = y + z for some z ∈M .

For example, over (N∗0)k the algebraic order is the component-wise order, which is even a
partial order. When the monoid is V ∗(R) for some ring R, 〈Q〉 ≤ 〈P 〉 if and only if Q is
isomorphic to a direct summand of P .

In terms of monoids of projective modules Corollary 7.2.5 essentially says that for elements
in V (R) the algebraic preorder is respected modulo J(R). We state this in a precise way in the
next result.

Corollary 7.2.10. Let R be a ring, and let I be a two-sided ideal of R contained in J(R). Let

π : R → R/I denote the projection, and let
∼
π : V ∗(R)→ V ∗(R/I) denote the induced homomor-

phism of monoids. If x ∈ V ∗(R), y ∈ V (R) are such that there exist c ∈ V ∗(R/I) satisfying that
∼
π (x) =

∼
π (y) + c then there exists z ∈ V ∗(R) such that

∼
π (z) = c and x = y + z.

In general, for a semilocal ring R, the monoid V ∗(R) is isomorphic to a submonoid of (N∗0)k. In
view of Theorem 7.2.2, the algebraic order of (N∗0)k induces an order on V ∗(R) that is translated in
terms of projective modules over R by 〈Q〉 ≤ 〈P 〉 if and only if there exists a pure monomorphism
f : Q → P if and only if Q/QJ(R) is a direct summand of P/PJ(R). By [17], the relation ≤
is antisymmetric. This partial order relation defined on V ∗(R) restricts to the usual algebraic
order over V (R), but not on W (R) when V (R) (W (R).

Corollary 7.2.11. Let R be a semilocal ring, fix ϕ : R → S an onto ring homomorphism to a
semisimple artinian ring S such that Kerϕ = J(R). Then

(i) x ∈W (R) \V (R) if and only if x is incomparable (with respect to the algebraic order) with
n〈R〉 for any n ≥ 1 if and only if there exist n ≥ 1 such that n · dim ϕ〈R〉 − dim ϕ(x) ∈
dim ϕW (RR) \ dim ϕV (R).

(ii) V (R) = W (R) ∩W (RR).

Proof. Since over a semisimple artinian ring any exact sequence splits, the statement
follows by applying Theorem 7.2.9.
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Remark 7.2.12. Corollary 7.2.11 implies that, if dim ϕV
∗(R) ⊆ (N∗0)k is a monoid defined by

inequalities and
dim ϕ(〈R〉) ∈ dim ϕV

∗(R) ∩D(dim ϕV
∗(R)),

the elements of the semigroup dim ϕW (R) \ dim ϕV (R) must be the elements of Nk0 such that
some of the inequalities they satisfy are strict. So that

dim ϕV (R) = dim ϕV
∗(R) ∩D(dim ϕV

∗(R)) ∩ Nk0 = dim ϕW (R) ∩ dim ϕW (RR).

In terms of order relations on the monoids we have the following Corollary.

Corollary 7.2.13. Let R be a semilocal ring. Consider the following relation over V ∗(R),
〈P 〉 ≤ 〈Q〉 if and only if P/PJ(R) is isomorphic to a direct summand of Q/QJ(R). Then

(i) 〈P 〉 ≤ 〈Q〉 if and only if there exists a pure embedding f : P → Q.

(ii) ≤ is a partial order relation that refines the algebraic order on V ∗(R).

(iii) If, in addition, R is noetherian then the partial order induced by ≤ over V ∗(R) is the
algebraic order.

Proof. (i). If 〈P 〉 ≤ 〈Q〉 then there exists a splitting monomorphism f : P/PJ(R) →
Q/QJ(R) which by Theorem 7.2.2(i) lifts to a pure monomorphism f : P → Q. Conversely, if
f : P → Q is a pure monomorphism of right R-modules then the induced map f⊗RR/J(R) : P⊗R
R/J(R)→ Q⊗RR/J(R) is a pure monomorphism of R/J(R)-modules. Since R/J(R) is semisim-
ple, f ⊗R R/J(R) is a split monomorphism.

(ii). It is clear that ≤ is reflexive and transitive. As it is already observed in [17], Theo-
rem 7.2.2 implies that ≤ is also antisymmetric.

If P is isomorphic to a direct summand of Q, then P/PJ(R) is also isomorphic to a direct
summand of Q/QJ(R). Hence 〈P 〉 ≤ 〈Q〉, that is, ≤ refines the algebraic order on V ∗(R).

(iii). It is a consequence of the realization Theorem 7.1.5. Indeed, it is not difficult to check
that a submonoid M of (N∗0)k defined by a system of equations satisfies that whenever there is
an equality x+ y = z in (N∗0)k with x and z ∈M , then there exists y′ ∈M such that x+ y′ = z.

We shall see in Examples 7.3.6 that the monoid V ∗(R) does not determine V ∗(RR). Theorem
7.2.9, or [9, Theorem 7.1], combined with Theorem 7.2.2(ii) implies that for a semilocal ring W (R)
does determine W (RR).

Corollary 7.2.14. For i = 1, 2, let Ri be a semilocal ring and let ϕi : Ri → Mn1(Di
1) × · · · ×

Mnk (Di
k) be an onto ring homomorphism such that Kerϕi = J(Ri) and Di

1, . . . , D
i
k are division

rings.
Then dim ϕ1W (R1) = dim ϕ2W (R2) if and only if dim ϕ1W (R1R1) = dim ϕ2W (R2R2).

Proof. By symmetry, it is enough to prove that if dim ϕ1W (R1) = dim ϕ2W (R2) then
dim ϕ1W (R1R1) ⊆ dim ϕ2W (R2R2).

Let x ∈ dim ϕ1W (R1R1). There exists m ∈ N such that x ≤ m(n1, . . . , nk). By Theorem
7.2.9, y = m(n1, . . . , nk) − x ∈ dim ϕ1W (R1) = dim ϕ2W (R2). Applying again Theorem 7.2.9,
we deduce that x = m(n1, . . . , nk)− y ∈ dim ϕ2W (R2R2).

7.3 Some examples

Gerasimov and Sakhaev gave the first example of a semilocal ring such that V (R) &W (R). The
final step for the computation of V ∗(R) was made in [6]. We want to start this section stating the
main properties of this example as it is one of the basic tools to prove our realization Theorem
7.1.6.
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Theorem 7.3.1. ([11], [6]) Let F be any field. There exists a semilocal F -algebra R with an onto
ring morphism ϕ : R → F × F with Kerϕ = J(R) and such that all finitely generated projective
modules are free but

dim ϕW (RR) = {(x, y) ∈ N0 | x ≥ y} = (1, 1)N0 + (1, 0)N0

dim ϕV
∗(RR) = (dim ϕW (RR))N∗0 = {(x, y) ∈ N∗0 | x ≥ y}

and
dim ϕW (RR) = {(x, y) ∈ N0 | y ≥ x} = (1, 1)N0 + (0, 1)N0

dim ϕV
∗(RR) = (dim ϕW (RR))N∗0 = {(x, y) ∈ N∗0 | y ≥ x}

In particular, any projective module over R is a direct sum of indecomposable projective modules
that are finitely generated modulo J(R).

It is quite an interesting question to determine the structure of V ∗(R) for a general semilocal
ring. But right now it seems to be too challenging even for semilocal rings R such that R/J(R) ∼=
D1×D2 where D1, D2 are division rings. Now we provide some examples of such rings to illustrate
Theorem 7.1.6 and the difficulties that appear in the general case. We first observe that, since
k = 2 and dim ϕ(〈R〉) = (1, 1), to have some room for interesting behavior of countably generated
projective modules all finitely generated projective modules must be free.

Lemma 7.3.2. Let R be a semilocal ring such that R/J(R) ∼= D1×D2 for suitable division rings
D1 and D2. Fix ϕ : R → D1 × D2 an onto ring homomorphism such that Kerϕ = J(R). If R
has non-free finitely generated projective right (or left) modules then there exists n ∈ N such that
dim ϕV (R) is the submonoid of N2

0 generated by (1, 1), (n, 0) and (0, n). In this case,

dim ϕV
∗(R) = (1, 1)N∗0 + (n, 0)N∗0 + (0, n)N∗0 = {(x, y) ∈ N∗0 | x+ (n− 1)y ∈ nN∗0}.

Therefore, all projective modules are direct sum of finitely generated projective modules.

Proof. Note that dim ϕ(〈R〉) = (1, 1). So that (1, 1) ∈ A = dim ϕV (R).
Let P be a non-free finitely generated projective right R-module, and let dim ϕ(〈P 〉) = (x, y).

As P is not free, either x > y or x < y. Assume x > y, then

(x, y) = (x− y, 0) + y(1, 1) ∈ A (∗).

Since, by Corollary 7.2.5 or its monoid version Corollary 7.2.10, A is a full affine submonoid of
N2

0 we deduce that (x− y, 0) ∈ A and also that (0, x− y) = (x− y)(1, 1)− (x− y, 0) ∈ A. If x < y
we deduce, in a symmetric way that (y − x, 0) and (0, y − x) are elements of A.

Choose n ∈ N minimal with respect to the property (n, 0) ∈ A, and note that then also
(0, n) ∈ A. We claim that

A = (1, 1)N0 + (n, 0)N0 + (0, n)N0.

We only need to prove that if (x, y) ∈ A then it can be written as a linear combination, with
coefficients in N0 of (1, 1), (n, 0) and (0, n). In view of the previous argument, it suffices to show
that if (x, 0) ∈ A then (x, 0) ∈ (n, 0)N0. By the division algorithm (x, 0) = (n, 0)q + (r, 0) with
q ∈ N0 and 0 ≤ r < n. As A is a full affine submonoid of N2

0 we deduce that (r, 0) ∈ A. By the
choosing of n, r = 0 as desired.

Let P1 be a finitely generated right R-module such that dim ϕ(〈P1〉) = (n, 0), and let P2 be
a finitely generated right R-module such that dim ϕ(〈P2〉) = (0, n).

Let Q be a countably generated projective right R-module that is not finitely generated. Let
dim ϕ(〈Q〉) = (x, y) ∈ N∗0. We want to show that

(x, y) ∈ (1, 1)N∗0 + (n, 0)N∗0 + (0, n)N∗0

If x = y then (x, y) = x(1, 1) and, by Theorem 7.2.2(ii), Q is free. If x > y then y ∈ N0

and (x, y) = (x− y, 0) + y(1, 1), combining Theorem 7.2.2(ii) with Lemma 7.2.5 we deduce that
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Q = yR ⊕Q′ with Q′ such that dim ϕ(〈Q′〉) = (z, 0) where z = x− y. If z <∞ then, by Theo-
rem 7.2.2(ii), nQ′ ∼= zP1 hence Q′, and Q, are finitely generated. If z =∞, by Theorem 7.2.2(ii),

Q′ ∼= P
(ω)
1 . Hence (x, y) =∞ · (n, 0) + y(1, 1). The case x < y is done in a symmetric way.

It is not difficult to check that the elements of dim ϕV
∗(R) are the solutions in N∗0 of x+(n−

1)y ∈ nN∗0.

Now we will list all the possibilities for the monoid V ∗(R) viewed as a submonoid of V ∗(R/J(R))
when R is a noetherian ring such that R/J(R) ∼= D1 × D2, for D1 and D2 division rings, and
all finitely generated projective modules are free. In view of Theorem 7.1.5 this is equivalent to
classify the submonoids of (N∗0)2 containing (1, 1) and that are defined by a system of equations.
Though the presentation of the monoid as solutions of equations is quite attractive there is an
alternative one that, even being technical, is more useful to work with.

Definition 7.3.3. Fix k ∈ N and (n1, . . . , nk) ∈ Nk. A system of supports S(n1, . . . , nk)
consists of a collection S of subsets of {1, . . . , k} together with a family of commutative monoids
{AI , I ∈ S} such that the following conditions hold

(i) ∅ and {1, . . . , k} are elements of S.

(ii) For any I ∈ S, AI is a submonoid of N{1,...,k}\I0 . The monoid A{1,...,k} is the trivial monoid
and (n1, . . . , nk) ∈ A∅.

(iii) S is closed under unions, and if x ∈ AI for some I ∈ S then I∪supp (x) ∈ S. In particular
{1, . . . , k} ∈ S.

(iv) Suppose that I,K ∈ S are such that I ⊆ K and let p : N{1,...,k}\I0 → N{1,...,k}\K0 be the
canonical projection. Then p(AI) ⊆ AK .

If in addition, for any I ∈ S, the submonoids AI are full affine submonoids of N{1,...,k}\I0

then S(n1, . . . , nk) is said to be a full affine system of supports.

Remark 7.3.4. Given a system of supports S(n1, . . . , nk) = {AI , I ∈ S} we can associate to it a
monoid. Consider the subset M(S) of (N∗0)k defined by x ∈M(S) if and only if I = inf-supp (x) ∈
S and pI(x) ∈ AI , where if x = (x1, . . . , xk) then

inf-supp (x) = {i ∈ {1, . . . , k} | xi =∞},

and pI : (N∗0)k → (N∗0){1,...,k}\I denotes the canonical projection.
By [12, Theorem 7.7], S(n1, . . . , nk) is a full affine system of supports if and only if M(S) is

a monoid defined by equations and containing (n1, . . . , nk).

We recall that a module is superdecomposable if it has no indecomposable direct summand.
By Theorem 7.1.5 and Lemma 7.2.5, in our context superdecomposable modules are relatively
frequent as they correspond to the elements x ∈ M ⊆ (N∗0)k such that, for any y ∈ M ∩ Nk0 ,
supp (y) " supp (x).

Example 7.3.5. Let R be a semilocal noetherian ring such that there exists ϕ : R → D1 ×D2,
an onto ring morphism with Kerϕ = J(R), where D1 and D2 are division rings. Assume that
all finitely generated projective right R-modules are free. Hence dim ϕV (R) = (1, 1)N0, and
dim ϕ(〈R〉) = (1, 1). Then there are the following possibilities for dim ϕV

∗(R):

(0) All projective modules are free, so that M0 = dim ϕV
∗(R) = (1, 1)N∗0. Note that M0 is the

set of solutions (x, y) ∈ (N∗0)2 of the equation x = y.

(1) M1 = dim ϕV
∗(R) = (1, 1)N∗0 +(0,∞)N∗0. So that, M1 is the set of solutions (x, y) ∈ (N∗0)2

of the equation x+ y = 2y.

Note that for such an R there exists a countably generated superdecomposable projective
right R-module P such that dim ϕ(〈P 〉) = (0,∞). Then any countably generated projective
right R module Q is isomorphic to R(n) ⊕ P (m) for suitable n ∈ N∗0 and m ∈ {0, 1}.
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(1’) M ′1 = dim ϕV
∗(R) = (1, 1)N∗0 +(∞, 0)N∗0. So that, M ′1 is the set of solutions (x, y) ∈ (N∗0)2

of the equation x+ y = 2x.

(2) M2 = dim ϕV
∗(R) = (1, 1)N∗0 + (∞, 0)N∗0 + (0,∞)N∗0. So that, M2 is the set of solutions

(x, y) ∈ (N∗0)2 of the equation 2x+ y = x+ 2y.

Note that for such an R there exist two countably generated superdecomposable projective
right R-modules P1 and P2 such that dim ϕ(〈P1〉) = (0,∞) and dim ϕ(〈P2〉) = (∞, 0).
Any countably generated projective right R module Q satisfies that there exist n ∈ N0 and
m1,m2 ∈ {0, 1} such that Q = R(n) ⊕ P (m1)

1 ⊕ P (m2)
2 .

Proof. In view of Theorem 7.1.5 and Remark 7.3.4 we must describe all the possibilities
for full affine systems of supports of {1, 2} such that A∅ = (1, 1)N0. Since the set of supports of
a system of supports at least contains ∅ and {1, 2} there are just four possibilities.

Since the image of the projections of A∅ on the first and on the second component is N0, all
the monoids AI in the definition of system of supports are determined by A∅.

Case (0) is the one in which M0 = A∅ +∞ ·A∅. According to Remark 7.1.4 (3), in this case
all projective modules are direct sum of finitely generated (indecomposable) modules.

In cases (1) and (1′) there are 3 different supports for the elements in the monoid, and in
case (2) there are 4.

Now we give some examples whose existence is a direct consequence of Theorem 7.1.6.

Example 7.3.6. Let F be any field. In all the statements R denotes a semilocal F-algebra, and
ϕ : R→ E ×E denotes an onto ring homomorphism such that Kerϕ = J(R) and E is a suitable
field extension of F . Fix n ∈ N. Then there exist R and ϕ such that

(i)

N = dim ϕV
∗(RR) = (1, 1)N∗0 +(n, 0)N∗0 = {(x, y) ∈ (N∗0)2 | x ≥ y and x+(n−1)y ∈ nN∗0}

D(N) = dim ϕV
∗(RR) = (1, 1)N∗0+(0, n)N∗0 = {(x, y) ∈ (N∗0)2 | x ≤ y and x+(n−1)y ∈ nN∗0}

For n = 1, we recover the situation in [11]. Note that over R all projective modules are
direct sum of indecomposable projective modules.

(ii)

dim ϕV
∗(RR) = N + (0,∞)N∗0 = {(x, y) ∈ (N∗0)2 | 2x+y ≥ 2y+x and x+ (n−1)y ∈ nN∗0}

dim ϕV
∗(RR) = D(N)+(∞, 0)N∗0 = {(x, y) ∈ (N∗0)2 | 2x+y ≤ 2y+x and x+(n−1)y ∈ nN∗0}

In this case R has a superdecomposable projective right R-module and a superdecomposable
projective left R-module.

(iii)

dim ϕV
∗(RR) = N + (0,∞)N∗0 = {(x, y) ∈ (N∗0)2 | x+ y ≥ 2y and x+ (n− 1)y ∈ nN∗0}

dim ϕV
∗(RR) = D(N) = {(x, y) ∈ (N∗0)2 | x+ y ≤ 2y and x+ (n− 1)y ∈ nN∗0}

In this situation R has a superdecomposable projective right R-modules but every projective
left R-module is a direct sum of indecomposable modules.

(iv)
dim ϕV

∗(RR) = (1, 1)N∗0 + (∞, 0)N∗0 = {(x, y) ∈ (N∗0)2 | 2x = x+ y and x ≥ y}
and

dim ϕV
∗(RR) = (1, 1)N∗0 = {(x, y) ∈ (N∗0)2 | 2x = x+ y and x ≤ y}.

Therefore, all projective left R-modules are free hence they are a direct sum of finitely
generated modules but this is not true for projective right R-modules. In particular, V ∗(RR)
and V ∗(RR) are not isomorphic.
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In the first three examples V (R)  W (R) = (1, 1)N0 +(n, 0)N0
∼= W (RR). In the fourth example,

as Theorem 7.2.9 implies, V (R) = W (R) = W (RR).

Proof. After Theorem 7.1.6 what is left to do is to check the generating sets of the monoids.
But all the computations are straightforward.

In (iv) to prove that V ∗(R) is not isomorphic to V ∗(RR) just count the number of idempotent
elements in both monoids.

Remark 7.3.7. Examples 7.3.6(ii) and (iii) answer a problem mentioned in [6, page 3261], and
Example 7.3.6(iv) answers a problem in [10, page 310].

Following the notation of Examples 7.3.6 and under the same hypothesis, the first place
where it was shown that there could be a non finitely generated projective module P such that
dimϕ(〈P 〉) = (n, 0) for a given n > 1 was in [23].

The monoid M = N + (0,∞)N∗0 is described in Examples 7.3.6(ii) and (iii) in two different
ways as a monoid given by a system of inequalities. Both descriptions result in different monoids
D(M).

Now we give an example such that W (R) 6∼= W (RR) and V ∗(R) 6∼= V ∗(RR). It also shows
that Corollary 7.2.5 fails also for the semigroup W (R)\V (R), so that in Theorem 7.2.9 we cannot
just assume that P is finitely generated modulo the Jacobson radical.

Example 7.3.8. Fix 1 ≤ n ∈ N. Let F be any field. There exist a semilocal F-algebra R, a
suitable field extension E of F and an onto ring homomorphism ϕ : R → E ×Mn(E) such that
Kerϕ = J(R) and

dim ϕV
∗(R) = (1, n)N∗0 + · · ·+ (1, 0)N∗0 = {(x, y) ∈ (N∗0)2 | nx ≥ y}

dim ϕV
∗(RR) = (1, n)N∗0 + (0, 1)N∗0 = {(x, y) ∈ (N∗0)2 | nx ≤ y}.

Therefore W (R) = (1, n)N0 + · · · + (1, 0)N0 and W (RR) = (1, n)N0 + (0, 1)N0 which are non
isomorphic monoids provided n ≥ 2.

Notice that the (1, 0), . . . , (1, n − 1) are minimal elements of W (R) and of W (R) \ V (R) so
that they are incomparable.

Proof. The existence of the semilocal ring follows from Theorem 7.1.6. We show that the
two monoids have the required set of generators.

Let M = {(x, y) ∈ (N∗0)2 | nx ≥ y}. It is clear that (1, n)N∗0 + · · · + (1, 0)N∗0 ⊆ M . If
(x, y) ∈ M ∩ Nk0 then y = n · k + y′ for some k, y′ ∈ N0 and 0 ≤ y′ < n. Therefore, if x = k,
(x, y) = k(1, n). If x > k then (x, y) = k(1, n)+(x−k−1)(1, 0)+(1, y′) provided y′ > 0, otherwise
(x, y) = k(1, n)+(x−k)(1, 0). In the three cases we conclude that (x, y) ∈ (1, n)N0+· · ·+(1, 0)N0.
For elements with nonempty infinite support the inclusion is clear.

If (x, y) ∈ D(M) ∩ Nk0 then (x, y) = x(1, n) + (y − nx)(0, 1) which proves that D(M) =
(1, n)N∗0 + (0, 1)N∗0.

The monoids W (R) and W (RR) have the same number of minimal elements if and only if
n = 1. Therefore they cannot be isomorphic for n ≥ 2.

7.4 Monoids defined by inequalities

We think on (N∗0)k and of Nk0 as ordered monoids with the order relation given by the algebraic
order. That is, (x1, . . . , xk) ≤ (y1, . . . , yk) if and only if xi ≤ yi for any i = 1, . . . , k.

We recall that a monoid M is said to be unperforated if, for every n ∈ N and any x, y ∈M ,
nx ≤ ny implies x ≤ y; where ≤ denotes the algebraic preordering on M .

Proposition 7.4.1. ([15, Proposition],[13, Proposition 2]) Let A be a commutative cancellative
monoid without non-trivial units. Then the following statements are equivalent;
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(i) A is finitely generated and unperforated.

(ii) There exist k ≥ 1, a monoid embedding f : A → Nk0 and E ∈ M`×k(Z) such that f(A) is
the set of solutions in Nk0 of the system E · T = 0 where T = (t1, . . . , tk)t.

(iii) There exist m ≥ 1 and a monoid embedding g : A→ Nm0 such that g(A) is a submonoid of
Nm0 defined by a system of equations.

(iv) There exist s ≥ 1 and a monoid embedding h : A→ Ns0 such that h(A) is the set of solutions
in Ns0 of a system of inequalities.

Proof. For further quoting we give the proof of the equivalence of (iii) and (iv). It is clear
that the monoids in (iii) can be described as the set of solutions of a system of congruences and
inequalities as the ones appearing in (iv).

Conversely, let A be a submonoid of Ns0 that is the set of solutions of the system of inequalities

D

 t1
...
ts

 ∈
 m1N0

...
mnN0

 and E1

 t1
...
ts

 ≥ E2

 t1
...
ts


where D ∈ Mn×s(N0), E1, E2 ∈ M`×s(N0) and m1, . . . ,mn ∈ N , mi ≥ 2 for any i ∈ {1, . . . , n}.
Consider the monoid morphism g : A→ Ns+`0 defined by

g(a1, . . . , as) =

(
a1, . . . as,

s∑
i=1

e1
1iai −

s∑
i=1

e2
1iai, . . . ,

s∑
i=1

e1
`iai −

s∑
i=1

e2
`iai

)

where (a1, . . . , as) ∈ A and, for k = 1, 2, ekij denotes the i-j-entry of the matrix Ek.
Then g(A) is the set of solutions in Ns+l0 of the system

D

 t1
...
ts

 ∈
 m1N0

...
mnN0

 and E1

 t1
...
ts

 = E2

 t1
...
ts

+

 ts+1

...
ts+`

 .

So that A is also a monoid of the type appearing in (iii).

The embeddings of (iii) are the full affine embeddings. We recall that if (n1, . . . , nm) ∈
Nm∩g(A) then g(A) can be realized as dim ϕ(V (R)) for some semilocal ringR such thatR/J(R) ∼=
Mn1(D1)× · · · ×Mnm(Dm) for suitable division rings D1, . . . , Dm [7].

We stress that not all finitely generated submonoids of Nk0 are unperforated. Consider, for
example, N = 2N0 + 3N0 ⊆ N0. In N , 2 · 2 ≤ 2 · 3 but 2 and 3 are incomparable in N . Note
however that N cannot be realized as dim ϕ(W (R)) for a semilocal ring R, because for k = 1
such monoids are principal (cf. remarks before Definition 7.1.3).

We do not know whether, for any semilocal ring R, dim ϕ(W (R)) is an unferforated submonoid
of Nk0 . For example, (1, 1)N0 + (2, 0)N0 + (3, 0)N0 is a submonoid of N2

0 that is not unperforated
and we do not know whether it can be realized as dim ϕ(W (R)) for a suitable semilocal ring R.

In the next lemma we study monoids defined by a system of equations and monoids defined
by a system of inequalities.

Lemma 7.4.2. Let M be a submonoid of (N∗0)k defined by a system of inequalities

D · T ∈

 m1N∗0
...

mnN∗0

 (∗) and E1 · T ≥ E2 · T (∗∗)
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where T = (t1, . . . , tk)t, D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0) and m1, . . . ,mn ∈ N , mi ≥ 2 for
any i ∈ {1, . . . , n}. Let A be the submonoid of M whose elements are the solutions in Nk0 of

D · T ∈

 m1N0

...
mnN0

 and E1 · T = E2 · T

Then,

(i) M and D(M) are finitely generated monoids.

(ii) A = M ∩D(M) ∩ Nk0 .

(iii) For any m ∈M and a ∈ A, if there exists m′ ∈ (N∗0)k such that m = a+m′ then m′ ∈M .

Proof. (i) Consider the monoid N defined the system of equations

D′ · T ′ ∈

 m1N∗0
...

mnN∗0

 (∗) and E1 · T = E2 · T +

 tk+1

...
tk+`

 (∗∗)

where T ′ = (t1, . . . , tk, tk+1, · · · , tk+`)
t and D′ = (D|0) ∈ Mn×(k+`)(N0). By [12, Example 7.6],

N is a finitely generated monoid.
Let p : (N∗0)k+` → (N∗0)k denote the projection onto the first k components. It is easy to see

that p(N) = M , so that M is finitely generated.
Statements (ii) and (iii) are clear.

In contrast to the results proved in [15], that we have recalled in Proposition 7.4.1, the monoid
N appearing in the proof of Lemma 7.4.2 need not be isomorphic to M .

In general, as the following basic example shows, a monoid defined by inequalities may not be
isomorphic to a monoid defined by a system of equations. Therefore the equivalence of statements
(ii), (iii) and (iv) in Proposition 7.4.1 does not extend to submonoids on (N∗0)k.

Example 7.4.3. Let M be the submonoid of (N∗0)2 that is the set of solutions of x ≥ y. Then
M is not isomorphic to a monoid defined by a system of equations.

Proof. In order to be able to manipulate this monoid we need to think on the language of
system of supports, see Definition 7.3.3 and Remark 7.3.4.

First note that M = (1, 1)N0 + (1, 0)N0 + (∞, 0)N0 + (∞,∞)N0. The elements c = (∞, 0)
and d = (∞,∞) are nonzero elements satisfying that 2c = c, 2d = d and d + c = d. Therefore,
if h : M → N is a monoid morphism and N is a submonoid of (N∗0)k defined by a system
of equations, h(c) and h(d) must be elements such that its support coincides with its infinite
support and, moreover, supph(c) ⊆ supph(d). If h is bijective, then h(c) and h(d) are the only
non-zero elements of N such that its support coincides with its infinite support. So that if we
think on the presentation of N as a system S of supports, we deduce that there are only three
different sets in S, that is ∅, supph(c) and supph(d). Moreover, supph(c) ( supph(d)

On the other hand, since (1, 0) + c = c, we deduce ∞· h(1, 0) = h(c). Similarly, ∞· h(1, 1) =
h(d). Moreover, h(1, 0) + h(1, 0) 6= h(1, 0) and h(1, 1) + h(1, 1) 6= h(1, 1) and then it follows that
∞ · h(1, 0) 6= h(1, 0) and ∞ · h(1, 1) 6= h(1, 1). Since there are only three elements in S, h(1, 1)
and h(1, 0) have empty infinite support. As ∞ · h(1, 1) +∞ · h(1, 0) = ∞ · h(1, 1), there exists
n ∈ N and 0 6= z ∈ Nk0 such that nh(1, 1) = h(1, 0)+z; taking n to be minimal with this property
we may assume that the support of z is strictly contained in the support of h(1, 1). Since N is
defined by a system of equations, and nh(1, 1) and h(1, 0) ∈ N we deduce that z ∈ N . Then
∞ · z ∈ N , but the infinite support of ∞ · z is not a set of S, a contradiction. Therefore, M
cannot be isomorphic to a monoid defined by a system of equations.

Finally, we draw some consequences for monoids of projective modules of the results obtained
in this section.
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Corollary 7.4.4. Let R be a semilocal ring, let ϕ : R→ S be an onto ring homomorphism such
that Kerϕ = J(R) and S ∼= Mn1(D1) × · · · ×Mnk (Dk) for suitable division rings D1, . . . , Dk.
Assume that dim ϕV

∗(R) can be defined by a system of inequalities such that dim ϕV
∗(RR) =

D(dim ϕV
∗(R)).

Then the monoids W (R), W (RR), V ∗(R) and V ∗(RR) are finitely generated. In addition,
W (R) and W (RR) are cancellative and unperforated.

If P is a projective right module such that 〈P 〉 ∈ W (R) then V (EndR(P )) is a cancellative,
finitely generated and unperforated monoid.

Proof. By Corollary 7.2.11 and Remark 7.2.12, the elements of W (R) are the solutions in
Nk0 of the system of inequalities defining M . By Proposition 7.4.1, W (R) is finitely generated and
unperforated. Being isomorphic to a submonoid of Nk0 , W (R) is also cancellative. The statement
on W (RR) follows by symmetry.

By Lemma 7.4.2, it follows that V ∗(R) and V ∗(RR) are finitely generated.
Let P be a projective right R-module such that P/PJ(R) is finitely generated. Let S =

EndR(P ). The functors HomR(P,−) and − ⊗S P induce an equivalence between the category
of modules that are direct summands of Pn, for some n and the category of finitely generated
projective right modules over EndR(P ) (cf. [5, pp. 984–985]). Therefore

V (EndR(P )) ∼= {x ∈W (R) | there exists n such that x ≤ n〈P 〉} = M

Since W (R) is finitely generated, cancellative and unperforated then so is M .

Remark 7.4.5. Observe that if R/J(R) is right noetherian then 〈P 〉 ∈ W (R) if and only if
P/PJ(R) is finitely generated. In this case W (R) is finitely generated whenever V ∗(R) is finitely
generated.

For a general semilocal ring we do not know whether the endomorphism ring of a projective
right R-module P such that it is finitely generated modulo the Jacobson radical must be again a
semilocal ring. We do not even know whether this happens for the rings appearing in Theorem
7.1.6. On the positive side, Corollary 7.4.4 shows that, at least, the monoid V (EndR(P )) is of
the correct type, cf. Proposition 7.4.1.

7.5 Realizing monoids defined by inequalities

We use the following result to construct semilocal rings with prescribed V ∗(R).

Theorem 7.5.1. [12] Let R1 and R2 be semilocal rings, and let S = Mm1(D′1)× · · · ×Mm`(D
′
`)

for suitable division rings D′1, . . . , D
′
`. For i = 1, 2, let ji : Ri → S be ring homomorphisms. Let

R be the ring that fits into the pullback diagram

R1
j1−−−−−→ S

i1

x xj2
R −−−−−→

i2
R2

Assume that j1 is an onto ring homomorphism with kernel J(R1), and that J(R2) ⊆ Ker j2. If
R2/J(R2) ∼= Mn1(D1)× · · · ×Mnk (Dk) for D1, . . . , Dk division rings, and π : R2 →Mn1(D1)×
· · · ×Mnk (Dk) is an onto morphism with kernel J(R2) then

(i) i2 induces an onto ring homomorphism i2 : R → Mn1(D1) × · · · ×Mnk (Dk) with kernel
J(R). In particular, R is a semilocal ring and R/J(R) ∼= R2/J(R2).
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(ii) Let α : dim πV
∗(R2)→ (N∗0)` be the monoid homomorphism induced by j2. Then

dim i2
V ∗(R) = {x ∈ dim πV

∗(R2) | α(x) ∈ dim j1V
∗(R1)},

and
dim i2

V ∗(RR) = {x ∈ dim πV
∗(R2R2) | α(x) ∈ dim j1V

∗(R1R1)}.

Example 7.5.2. Let k ∈ N, and let a1, . . . , ak, b1, . . . , bk ∈ N0. Let (n1, . . . , nk) ∈ Nk be such
that a1n1 + · · · + aknk = b1n1 + · · · + bknk ∈ N. For any field extension F ⊆ F1, there exist a
semilocal F -algebra R and an onto morphism of F -algebras ϕ : R → Mn1(F1) × · · · ×Mnk (F1)
with kernel J(R) such that dim ϕV

∗(RR) is the set of solutions in (N∗0)k of the inequality a1t1 +
· · ·+ aktk ≥ b1t1 + · · ·+ bktk and dim ϕV

∗(RR) is the set of solutions in (N∗0)k of the inequality
a1t1 + · · ·+ aktk ≤ b1t1 + · · ·+ bktk.

Note that dim ϕ(〈R〉) = (n1, . . . , nk).

Proof. Set m = a1n1 + · · ·+ aknk = b1n1 + · · ·+ bknk.
Let T be a semilocal F -algebra with an onto algebra morphism j1 : T → F1 × F1 with

Ker(j1) = J(T ), and such that dimj1 V
∗(TT ) = {(x, y) ∈ (N∗0)2 | x ≥ y} and dimj1 V

∗(TT ) =
{(x, y) ∈ (N∗0)2 | y ≥ x}. Such T exists by Theorem 7.3.1. Let Mm(j1) : Mm(T ) → Mm(F1) ×
Mm(F1) be the induced morphism.

Set R2 = Mn1(F1) × · · · × Mnk (F1). Consider the morphism of F -algebras j2 : R2 −→
Mm(F1)×Mm(F1) defined by

j2(r1, . . . , rk) =





r1 ··· 0

...
. . .a1)

...
0 ··· r1

· · · 0

. . .

0 · · ·
rk ··· 0

...
. . .ak)

...
0 ··· rk


,



r1 ··· 0

...
. . .b1)

...
0 ··· r1

· · · 0

. . .

0 · · ·
rk ··· 0

...
. . .bk)

...
0 ··· rk




The morphism j2 induces the morphism of monoids f : (N∗0)k → N∗0×N∗0 defined by f(x1, . . . , xk) =
(a1x1 + · · ·+ akxk, b1x1 + · · ·+ bkxk). Hence, f(n1, . . . , nk) = (m,m).

Let R be the ring defined by the pullback diagram

Mm(T )
Mm(j1)−−−−−→ Mm(F1)×Mm(F1)

i1

x xj2
R −−−−−→

ϕ
Mn1(F1)× · · · ×Mnk (F1)

Applying Theorem 7.5.1 (i), we conclude that R is a semilocal F -algebra and that ϕ is an onto
morphism of F -algebras with kernel J(R). By Theorem 7.5.1(ii), (x1, . . . , xk) ∈ dim ϕV

∗(RR) if
and only if f(x1, . . . , xk) ∈ dimMm(j1)V

∗(Mm(T )) if and only if a1x1 + · · ·+ akxk ≥ b1x1 + · · ·+
bkxk. Similarly, (x1, . . . , xk) ∈ dim ϕV

∗(RR) if and only if a1x1 + · · ·+ akxk ≤ b1x1 + · · ·+ bkxk.

Now we are ready to prove Theorem 7.1.6.
Proof of Theorem 7.1.6. Let M be the monoid defined by the system of inequalities,

D

 t1
...
tk

 ∈
 m1N∗0

...
mnN∗0

 (∗) and E1

 t1
...
tk

 ≤ E2

 t1
...
tk

 (∗∗)

where D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0), n, ` ≥ 0 and m1, . . . ,mn ∈ N , mi ≥ 2 for any
i ∈ {1, . . . , n}.
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By [12, Theorem 5.3] we know the following.
Step 1. There exist a field extension E of F , a (noetherian) semilocal F -algebra R1 and an onto
morphism of F -algebras ϕ1 : R1 →Mn1(E)× · · · ×Mnk (E) such that dim ϕ1V

∗(R1) is the set of
solutions in (N∗0)k of the system of congruences (∗).

Now we need to prove,
Step 2. There exist a semilocal F -algebra R2 and an onto morphism of F -algebras ϕ2 : R2 →
Mn1(E)× · · · ×Mnk (E) such that dim ϕ2V

∗(R2) is the set of solutions in (N∗0)k of the system of
inequalities (∗∗) and dim ϕ2V

∗(R2R2) is the set of solutions in (N∗0)k of the system of inequalities
D(∗∗).

If ` = 0, that is, if (∗∗) is empty we set R2 = Mn1(E)× · · · ×Mnk (E) and ϕ2 = Id. Assume
` > 0. Therefore, we can assume that none of the rows in E1 and, hence, in E2 are zero.

By Example 7.5.2, for i = 1, . . . , `, there exist a semilocal F -algebra Ti and an onto morphism
of F -algebras πi : Ti → Mn1(E) × · · · ×Mnk (E) with kernel J(Ti) and such that dim πiV

∗(Ti)
is the set of solutions in (N∗0)k of the i-th inequality defined by the matrices E1 and E2, and
dim πiV

∗(TiTi) is the set of solutions in (N∗0)k of the reversed inequality.
For i = 1, . . . , `, we construct inductively semilocal F -algebras R′i and maps ϕ′i : R

′
i →

Mn1(E) × · · · × Mnk (E) such that Kerϕ′i = J(R′i). Set R′1 = T1 and ϕ′1 = π1. Assume
1 < i ≤ ` and that R′i−1 and ϕ′i−1 are already constructed, let R′i to be the pullback of ϕ′i−1

and πi. By Theorem 7.5.1, R′i is a semilocal F -algebra with an onto morphism of F -algebras
ϕ′i : R

′
i → Mn1(E) × · · · ×Mnk (E) with kernel J(R′i). This finishes the construction of R′i and

ϕ′i.
Set R2 = R′` and ϕ2 = ϕ′`. By repeatedly applying Theorem 7.5.1 to R′i, we deduce that

dim ϕ2V
∗(R2) is the set of solutions of the inequalities (∗∗) and that dim ϕ2V

∗(R2R2) is the set
of solutions of the inequalities D(∗∗). This concludes the proof of Step 2.

Finally, set R to be the pullback of ϕi : Ri → Mn1(E) × · · · × Mnk (E), i = 1, 2. By
Theorem 7.5.1, R is a semilocal F -algebra with an onto morphism of F -algebras ϕ : R →
Mn1(E) × · · · × Mnk (E) with kernel J(R). The elements in dim ϕV

∗(RR) are the solutions
of (∗) and (∗∗), and the ones in dim ϕV

∗(RR) are the elements of D(M).
The description of the images via dim ϕ of V (R), W (R) and W (RR) follows from Remark

7.2.12.
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